ConTEXt MKIV: Going UTF

Hans Hagen
http://pragma-ade.com
http://luatex.org

1 Introduction

In this document I will keep track of the transition
of ConTEXt from MKIT to MKIV, the latter being the
Lua aware version.

The development of LuaTEX started with a few
email exchanges between me and Hartmut Henkel.
I had played a bit with Lua in Scite and somehow
felt that it would fit into TEX quite well. Hart-
mut made me a version of pdfTEX which provided
a \lua command. After exploring this road a bit
Taco Hoekwater took over and we quickly reached
a point where the pdfTEX development team could
agree on following this road to the future.

The development was boosted by a substantial
grant from Colorado State University in the context
of the Oriental TEX Project of Idris Samawi Hamid.
This project aims at bringing features into TEX that
will permit ConTEXt to do high quality Arabic type-
setting. Due to this grant Taco could spent substan-
tial time on development, which in turn meant that
I could start playing with more advanced features.

The full MKIV document is not so much a users
manual as a history of the development. Consider
it a collection of articles, and some chapters —like
this one—have indeed ended up in the journals of
user groups. Things may evolve and the way things
are done may change, but it felt right to keep track
of the process this way. Keep in mind that some
features may have changed while LuaTEX matured.

Just for the record: development in the LuaTEX
project is done by Taco Hoekwater, Hartmut Henkel
and Hans Hagen. Eventually, the stable versions will
become pdfTEX version 2 and other members of the
pdfTEX team will be involved in development and
maintenance. In order to prevent problems due to
new and maybe even slightly incompatible features,
pdfTEX version 1 will be kept around as well, but
no fundamentally new features will be added to it.
For practical reasons we use LuaTEX as the name
of the development version but also for pdfTEX 2.
That way we can use both engines side by side.

Editor’s note: This is the introduction and one chapter of the
full ConTEXt MKIV document. See the ‘Random comments’
column on p. 377 for more publication information.

This document is also one of our test cases.
Here we use traditional TEX fonts (for math), Type 1
and OpenType fonts. We use color and include test
code. Taco and I always test new versions of Lua-
TEX (the program) and MKIV (the macros and Lua
code) with this document before a new version is
released. Keep tuned ...

2 Going UTF

LuaTEX only understands input codes in the Uni-
versal Character Set Transformation Format, aka
UCS Transformation Format, better known as: UTF.
There is a good reason for this universal view on
characters: whatever support gets hard coded into
the programs, it’s never enough, as 25 years of TEX
history have clearly demonstrated. Macro packages
often support more or less standard input encodings,
as well as local standards, user adapted ones, etc.

There is enough information on the Internet
and in books about what exactly is UTF. If you
don’t know the details yet: UTF is a multi-byte
encoding. The characters with a bytecode up to
127 map onto their normal ASCII representation. A
larger number indicates that the following bytes are
part of the character code. Up to 4 bytes make an
UTF-8 code, while UTF-16 always uses two pairs of
bytes.

bytel byte2 Unicode
192-223 128-191 0x80-0x7FF
224-239 128-191 128-191 0x800-0xFFFF

240-247 128-191 128-191 128-191 0x10000-0x1FFFF

byte3 byte4

In UTF-8 the characters in the range 128-191
are illegal as first characters. The characters 254 and
255 are completely illegal and should not appear at
all since they are related to UTF-16.

Instead of providing a never-complete truckload
of other input formats, LuaTEX sticks to one input
encoding but at the same time provides hooks that
permits users to write filters that preprocess their
input into UTF.

While writing the LuaTEX code as well as the
ConTEXt input handling, we experimented a lot.
Right from the beginning we had a pretty clear pic-
ture of what we wanted to achieve and how it could
be done, but in the end arrived at solutions that

314 TUGboat, Volume 28 (2007), No. 3— Proceedings of the 2007 Annual Meeting



permitted fast and efficient Lua scripting as well as
a simple interface.

What is involved in handling any input encod-
ing and especially UTF? First of all, we wanted to
support UTF-8 as well as UTF-16. LuaTgX imple-
ments UTF-8 rather straightforwardly: it just as-
sumes that the input is usable UTF. This means
that it does not combine characters. There is a good
reason for this: any automation needs to be config-
urable (on/off) and the more is done in the core, the
slower it gets.

In Unicode, when a character is followed by an
‘accent’, the standard may prescribe that these two
characters are replaced by one. Of course, when
characters turn into glyphs, and when no matching
glyph is present, we may need to decompose any
character into components and paste them together
from glyphs in fonts. Therefore, as a first step, a
collapser was written. In the (pre)loaded Lua tables
we have stored information about what combination
of characters need to be combined into another char-
acter.

So, an a followed by an ¢ becomes & and an e
followed by " becomes & This process is repeated
till no more sequences combine. After a few alter-
natives we arrived at a solution that is acceptably
fast: mere milliseconds per average page. Experi-
ments demonstrated that we can not gain much by
implementing this in pure C, but we did gain some
speed by using a dedicated loop-over-utf-string func-
tion.

A second UTF related issue is UTF-16. This
coding scheme comes in two endian variants. We
wanted to do the conversion in Lua, but decided to
play a bit with a multi-byte file read function. Af-
ter some experiments we quickly learned that hard
coding such methods in TEX was doomed to be com-
plex, and the whole idea behind LuaTEX is to make
things less complex. The complexity has to do with
the fact that we need some control over the different
linebreak triggers, that is, (combinations of) charac-
ter 10 and/or 13. In the end, the multi-byte readers
were removed from the code and we ended up with a
pure Lua solution, which could be sped up by using
a multi-byte loop-over-string function.

Instead of hard coding solutions in LuaTEX a
couple of fast loop-over-string functions were added
to the Lua string function repertoire and the solu-
tions were coded in Lua. We did extensive timing
with huge UTF-16 encoded files, and are confident
that fast solutions can be found. Keep in mind that
reading files is never the bottleneck anyway. The
only drawback of an efficient UTF-16 reader is that

ConTEXt MKIV: Going UTF

the file is loaded into memory, but this is hardly a
problem.

Concerning arbitrary input encodings, we can
be brief. It’s rather easy to loop over a string and
replace characters in the 0-255 range by their UTF
counterparts. All one needs is to maintain conver-
sion tables and TEX macro packages have always
done that.

Yet another (more obscure) kind of remapping
concerns those special TEX characters. If we use a
traditional TEX auxiliary file, then we must make
sure that for instance percent signs, hashes, dollars
and other characters are handled right. If we set the
catcode of the percent sign to ‘letter’, then we get
into trouble when such a percent sign ends up in the
table of contents and is read in under a different cat-
code regime (and becomes for instance a comment
symbol). One way to deal with such situations is to
temporarily move the problematic characters into a
private Unicode area and deal with them accord-
ingly. In that case they no longer can interfere.

Where do we handle such conversions? There
are two places where we can hook converters into
the input.

1. each time when we read a line from a file, i.e.
we can hook conversion code into the read call-
backs

2. using the special process_input_buffer call-
back which is called whenever TEX needs a new
line of input

Because we can overload the standard file open
and read functions, we can easily hook the UTF col-
lapse function into the readers. The same is true for
the UTF-16 handler. In ConTgXt, for performance
reasons we load such files into memory, which means
that we also need to provide a special reader to TEX.
When handling UTF-16, we don’t need to combine
characters so that stage is skipped then.

So, to summarize this, here is what we do in
ConTgXt. Keep in mind that we overload the stan-
dard input methods and therefore have complete
control over how LuaTgX locates and opens files.

1. When we have a UTF file, we will read from
that file line by line, and combine characters
when collapsing is enabled.

2. When LuaTgX wants to open a file, we look
into the first bytes to see if it is a UTF-16 file,
in either big or little endian format. When this
is the case, we load the file into memory, convert
the data to UTF-8, identify lines, and provide a
reader that will give back the file linewise.

3. When we have been told to recode the input
(i.e. when we have enabled an input regime) we

TUGboat, Volume 28 (2007), No. 3— Proceedings of the 2007 Annual Meeting 315



Hans Hagen

use the normal line-by-line reader and convert
those lines on the fly into valid UTF. No col-
lapsing is needed.

Because we conduct our experiments in Con-
TEXt MKIV the code that we provide may look a bit
messy and more complex than the previous descrip-
tion may suggest. But keep in mind that a mature
macro package needs to adapt to what users are ac-
customed to. The fact that LuaTEX moved on to
UTF input does not mean that all the tools that
users use and the files that they have produced over
decades automagically convert as well.

Because we are now living in a UTF world, we
need to keep that in mind when we do tricky things
with sequences of characters, for instance in process-
ing verbatim. When we implement verbatim in pure
TEX we can do as before, but when we let Lua kick
in, we need to use string methods that are UTF-
aware. In addition to the linked-in Unicode library,

there are dedicated iterator functions added to the
string namespace; think of:

for ¢ in string.utfcharacters(str) do
something_with(c)
end

Occasionally we need to output raw 8-bit code,
for instance to DVI or PDF backends (specials and
literals). Of course we could have cooked up a truck-
load of conversion functions for this, but during one
of our travels to a TEX conference, we came up with
the following trick.

We reserve the top 256 values of the Unicode
range, starting at hexadecimal value 0x110000, for
byte output. When writing to an output stream,
that offset will be subtracted. So, 0x1100A9 is writ-
ten out as hexadecimal byte value A9, which is the
decimal value 169, which in the Latin 1 encoding is
the slot for the copyright sign.

316 TUGboat, Volume 28 (2007), No. 3— Proceedings of the 2007 Annual Meeting



