
TUGBOAT

Volume 28, Number 3 / 2007
TUG 2007 Conference Proceedings

TUG 2007 274 Conference program, delegates, and sponsors

276 Tim Arnold / TUG 2007: A few words

Keynote 280 Peter Wilson / Between then and now — A meandering memoir

Fonts 299 Barbara Beeton / The STIX Project— From Unicode to fonts

305 Jonathan Kew and Victor Gaultney / Fonts for every language: SIL’s font projects

and the Open Font License

Electronic Documents 306 William Hammond / Dual presentation with math from one source using GELLMU

Software & Tools 312 Taco Hoekwater / LuaTEX

314 Hans Hagen / ConTEXt MkIV: Going UTF

317 Taco Hoekwater and Hans Hagen / MPlib: MetaPost as a reusable component

319 Nelson Beebe / Extending TEX and METAFONT with floating-point arithmetic

329 Richard Koch / Support for multiple TEX distributions in i-Installer and MacTEX

335 Barry MacKichan / Design decisions for a structured front end to LATEX

340 Paul Topping / MathType 6.0’s TEX input for MS Word and Wikipedia

342 Robert Burgess and Emin Gün Sirer / CrossTEX: A modern bibliography

management tool

LATEX 350 Klaus Höppner / Typesetting tables with LATEX

354 Andrew Mertz and William Slough / Programming with PerlTEX

363 Eitan Gurari / LATEX conversion into normalized forms and speech

Abstracts 369 Abstracts (Allen, DeLand, Hagen, Hamid, Hefferon, Høgholm, Ierusalimschy,

Kew, Rosenthol, Rowley, Stern)

ConTEXt 372 Aditya Mahajan / ConTEXt basics for users: Table macros

TUG Business 375 TEX Development Fund committee / A roadmap for TEX development

377 TUGboat Editors / Random comments

Errata: Lars Hellström, “Writing ETX format font encoding specifications”,

TUGboat 28:2, pp. 186–197;

DEK’s periodic bug review; “Off-site” complement to TUG 2007 proceedings;

Other comments on the TUG 2007 proceedings; TEX Development Fund;

EuroBachoTEX proceedings to be the first 2008 TUGboat issue

378 Institutional members

News 379 Calendar

380 TUG 2008 announcement

Sponsors 381 Springer: More Math Into LATEX; von Hoerner& Sulger; O’Reilly

382 MacKichan: Scientific WorkPlace, Scientific Word;

Addison-Wesley: The LATEX Graphics Companion

383 Cheryl Ponchin Training; Carleton Production Centre; Design Science: MathType6

Advertisements 384 TEX consulting and production services

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2007 dues for individual members are as follows:
Ordinary members: $85.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group, as well as providing
a discounted group rate and other benefits. For
further information, contact the TUG office or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2007 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not be

reproduced, distributed or translated without the authors’

permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Jon Breitenbucher
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Richard Koch
Ross Moore
Arthur Ogawa
Steve Peter
Cheryl Ponchin
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for past board
members.

Addresses

General correspondence,
payments, etc.

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: September 2007]

The Communications of the TEX Users Group

Volume 28, Number 3, 2007
TUG 2007 Conference Proceedings

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2007 dues for individual members are as follows:
Ordinary members: $85.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group, as well as providing
a discounted group rate and other benefits. For
further information, contact the TUG office or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2007 TEX Users Group.
Copyright to individual articles within this publication

remains with their authors, so the articles may not be
reproduced, distributed or translated without the authors’
permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice are

preserved.
Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations
of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President
David Walden∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Jon Breitenbucher
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Richard Koch
Ross Moore
Arthur Ogawa
Steve Peter
Cheryl Ponchin
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for past board
members.

Addresses

General correspondence,
payments, etc.

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: September 2007]

TUG2007 Proceedings

San Diego State University

San Diego, California, USA

July 17–20, 2007

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 28, NUMBER 3 • 2007
PORTLAND • OREGON • U.S.A.

TUG 2007 —Practicing TEX
July 17–July 20, 2007

San Diego State University San Diego, California, USA

Sponsors

TEX Users Group DANTE e.V.

Adobe Systems Inc. Addison-Wesley Carleton Production Centre Design Science Inc. Integre Mac-
Kichan Software NTG O’Reilly & Associates Springer von Hoerner & Sulger GmbH

Thanks to the sponsors, and to all the speakers, teachers, and participants, without whom there
would be no conference. Special thanks to Sue DeMeritt for her help with local coordination,
Wendy McKay for organizing the Mac OSX gatherings, and Duane Bibby for the (as always)
excellent drawing.

Conference committee

Cheryl Ponchin Karl Berry Robin Laakso Sue DeMeritt

Participants

David Allen, University of Kentucky
Tim Arnold, SAS

Caleb Ashley, Gaithersburg, MD

Dave Bailey, MacKichan Software, Inc.
Kaveh Bazargan, Focal Image Ltd
Nelson Beebe, University of Utah
Barbara Beeton, American Mathematical Society
Karl Berry, TEX Users Group
Jon Breitenbucher, College of Wooster
Steve Brenton, Long Beach, CA

Philip Brown, Texas A & M Univ. at Galveston
Lance Carnes, Personal TEX Inc.
Robert Burgess, Cornell University
Dennis Claudio, Richmond, CA

Jennifer Claudio, St. Lawrence Academy
Don DeLand, Integre Technical Publishing Co.
Sue DeMeritt, Center for Communications

Research, La Jolla, CA

Paulo Ney de Souza, UC Berkeley
Ron Fehd, Center for Disease Control and

Prevention
Frances Felluca, INFORMS

Peter Flynn, Silmaril Consultants
August Gering, Duke University Press
Steve Grathwohl, Duke University Press
Eitan Gurari, Ohio State University
Hans Hagen, Pragma ADE

Michele Hake, American Physical Society
Idris Samawi Hamid, Colorado State University
William Hammond, SUNY Albany
Steven Harris, San Diego, CA
Jim Hefferon, St. Michael’s College
Hartmut Henkel, von Hoerner & Sulger GmbH
Taco Hoekwater, Elvenkind BV

Klaus Höppner, DANTE e.V.
Morten Høgholm, LATEX team and Technical

University of Denmark

Roberto Ierusalimschy, Lua team, PUC-RIO

Calvin Jackson, Caltech
Mirko Janc, INFORMS

Shannon Jones, FRB Richmond
Jonathan Kew, SIL International
Richard Koch, University of Oregon
Martha Kummerer, University of Notre Dame
Robin Laakso, TEX Users Group
Richard Leigh, United Kingdom
Jenny Levine, Duke University Press
Barry MacKichan, MacKichan Software, Inc.
Barbara Mastrian, Rutgers
Wendy McKay, Caltech
Andrew Mertz, Eastern Illinois University
Jaime Moore, Decision & Sensor Analytics
Stephen Moye, American Mathematical Society
Brian Papa, American Meteorological Society
Oren Patashnik, BIBTEX author
Cheryl Ponchin, Center for Communications

Research, Princeton, NJ

Walter Reddall, Redondo Beach, CA

Joseph Riel, San Diego, CA

Leonard Rosenthol, Adobe Systems Inc.
Chris Rowley, Open University
Volker RW Schaa, DANTE e.V.
Martin Schröder, pdfTEX team
Herbert Schulz, Naperville, Illinois
Heidi Sestrich, Carnegie-Mellon University
William Slough, Eastern Illinois University
Lowell Smith, Salt Lake City, UT

Jon Stenerson, MacKichan Software, Inc.
Ari Stern, Caltech
Larry Thomas, Saint Peter’s College
Paul Topping, Design Science, Inc.
Alan Wetmore, US Army
Peter Wilson, The Herries Press
Martin Woolstenhulme, San Diego, CA

TUG 2007 —program and information
Tuesday

July 17
9 am–5 pm track 1: LATEX workshop, Sue DeMeritt & Cheryl Ponchin

9 am track 2: MetaPost workshop, Hartmut Henkel
10:30–10:45 am break

10:45 am track 1 continues
10:45 am track 2a: Beamer & TikZ workshop, William Slough & Andrew Mertz
10:45 am track 2b: ConTEXt workshop, Hans Hagen

12:30–2 pm lunch
2 pm track 1 continues
2 pm track 2a continues
2 pm track 2b: Lua and LuaTEX, Roberto Ierusalimschy and Taco Hoekwater

3:30–3:45 pm break
5–7 pm registration & reception, at the Tula Community Center

Wednesday

July 18
8–9 am registration

8:30 am Karl Berry, TEX Users Group Welcome

8:35 am Peter Wilson, Herries Press Keynote: Between then and now— A meandering memoir

9:30 am Barbara Beeton, AMS & TUG STIX fonts and Unicode

9:55 am Jonathan Kew, SIL SIL font projects

10:15 am break
10:30 am Dick Koch, Univ. of Oregon Multiple TEX distribution support in MacTEX

11:05 am Jim Hefferon, St. Michael’s College CTAN package sourcing

11:45 am Jonathan Kew X

E

TEX Live

12:20 pm Morten Høgholm, DTU LATEX3 project update

12:45 pm lunch

1:45 pm Klaus Höppner, DANTE e.V. & TUG Typesetting tables with LATEX

2:25 pm David Allen, Univ. of Kentucky Three-dimensional graphics in LATEX

3:05 pm Morten Høgholm The breqn package: revised and revised

3:45 pm break
4:00 pm Ari Stern, Caltech Incorporating LATEX text with LATEXiT

4:20 pm Leonard Rosenthol, Adobe Systems Everything you wanted to know about PDF but were afraid to ask

5 pm q&a

Thursday

July 19
8:30 am Robert Burgess, Cornell Univ. CrossTEX: A modern bibliography management tool

9:10 am Andrew Mertz & William Slough,
Eastern Illinois University

Programming with PerlTEX

9:50 am Chris Rowley, Open University Vistas for TEX

10:30 am break
10:45 am Paul Topping, Design Science MathType 6’s TEX input for MS Word and Wikipedia

11:25 am William Hammond, SUNY Albany Dual presentation with math from one source

12:05 am Barry MacKichan, MacKichan Inc. Design decisions for a structured front end to LATEX

12:45 pm lunch

1:45 pm Don DeLand, Integre From TEX to XML: The legacy of techexplorer and the

future of math on the Web

2:25 pm Eitan Gurari, Ohio State Univ. LATEX conversion into normalized forms and speech

3:05 pm Paulo Ney de Souza, UC Berkeley Long-time preservation strategies for TEX-sourced content

3:45 pm break
4 pm q&a, TUG meeting
7 pm banquet (at the Aztec Center)

Friday

July 20
8:30 am Roberto Ierusalimschy, PUC-RIO About Lua

9:30 am Hans Hagen, Pragma ADE Introduction to the LuaTEX project

9:50 am Taco Hoekwater, Elvenkind BV The Lua–TEX interface: Extra tables and callbacks

10:30 am break
10:45 am Hans Hagen LuaTEX attributes

11:25 am Idris Hamid, Colorado State Univ. Arabic script typography

12:05 pm Hans Hagen Zapfinfo as torture test

12:45 pm lunch

1:45 pm Nelson Beebe, Univ. of Utah Extending TEX and METAFONT with floating-point arithmetic

2:25 pm Taco Hoekwater MPLib: Turning MetaPost into a reusable component

3:05 pm Hans Hagen ConTEXt MkIV

3:45 pm break
4 pm Idris Hamid Critical editions

4:40 pm panel Nelson Beebe, Taco Hoekwater, Jonathan Kew, Barry MacKichan,

Oren Patashnik; moderator: Don DeLand

TUG 2007: A few words

Tim Arnold
SAS

The 2007 TEX Users Group annual conference was
a gathering of old friends and new faces, all con-
cerned with and excited about the future of “TEX
and friends”.

The workshops preliminary to the conference
were interesting — I only wish I could have attended
them all. The chief architect of the Lua language
(and its principal reference, the book Programming

in Lua), Roberto Ierusalimschy, provided a great in-
troduction to the language and its design and goals.
Taco Hoekwater teamed up with him to give an over-
view and examples of how LuaTEX can work. For
me this was a little like looking into the future with
two knowledgeable guides pointing out the interest-
ing features.

For me, there were several special highlights of
the conference itself. In my daily work I am almost
alone in my LATEX endeavors and often find my-
self in correspondence (asking for help!) with peo-
ple around the globe. The contingent of partici-
pants from Europe was a delight as I got to meet
people face-to-face who have been of great help to
me. Their enthusiasm for LuaTEX was quite con-
tagious and I am looking forward to experimenting
with their results so far.

Another delight was Peter Wilson, the author
of the memoir class. I have based all my publish-
ing work on this class and it was quite a treat to
meet the man behind the code. His keynote address
covered the history of writing, from cuneiform to
medieval script to documents of today. He brought
several writing artifacts that he encouraged us to
inspect while he talked. Afterwards I thanked him
for his trust in us to respect the items from his col-
lection. He responded confidently, “I know my au-
dience.”

Perhaps the best thing about these yearly con-
ferences, aside from the knowledge shared from the
podiums, is the indescribable feeling of community
when listening to others describe their struggles and
achievements, their concerns and excitement about
the future. We often toil alone during the year, per-
haps fending off arguments about why TEX is on
the wane, that Word or some other format is going
to make TEX obsolete, etc. Sharing time with oth-
ers involved in the same work and challenges gives
me a sense of “Well, I’m not crazy after all. This
typesetting system really is amazing.”

(A few photos from the conference follow, courtesy of Jennifer Claudio, Volker RW Schaa,

and Hartmut Henkel. Many more are at http://tug.org/tug2007/photos. Ed.)

Roberto Ierusalimschy, Taco Hoekwater
(Mirko Janc in background)

Jonathan Kew, Jon Breitenbucher, Paulo Ney de Souza

276 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

TUG 2007: A few words

Front: William Hammond, Leonard Rosenthol, Tim Arnold, Frances Felluca, Jenny Levine, Heidi Sestrich,
Cheryl Ponchin, Larry Thomas.

Behind: Eitan Gurari, Paulo Ney de Souza, Mirko Janc, Paul Topping, Herb Schulz, Jon Breitenbucher,
Steve Grathwohl, Richard Leigh, August Gering, Morten Høgholm, Kaveh Bazargan, Karl Berry, Ron Fehd,
Barbara Beeton, Dave Bailey, Jim Hefferon, Steve Brenton.

Dennis Claudio Robin Laakso (Philip Brown in background)

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 277

Tim Arnold

Front: Martha Kummerer, Jennifer Claudio, Wendy McKay, Shannon Jones, Jonathan Kew, Hans Hagen,
Roberto Ierusalimschy, Taco Hoekwater, Lowell Smith.

Behind: Robert Burgess, Don DeLand, Martin Schröder, Alan Wetmore, Walter Reddall, Nelson Beebe,
Dick Koch, William Slough, Brian Papa, Andrew Mertz, Jon Stenerson, Stephen Moye, Peter Wilson,
Peter Flynn, Chris Rowley, Barry MacKichan, Klaus Höppner, David Allen, Hartmut Henkel, Philip Brown.

Oren Patashnik, Nelson Beebe

Idris Hamid Barbara Beeton

278 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

TUG 2007: A few words

Jenny Levine, Peter Flynn

Wendy McKay, Stephen Moye, Dick Koch,
Jon Breitenbucher, Robin Laakso

Ron Fehd, Caleb Ashley

Volker RW Schaa, Hartmut Henkel, Martin Schröder,
Klaus Höppner, Steve Grathwohl

Taco Hoekwater, Morten Høgholm

Nelson Beebe

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 279

Between then and now — A meandering memoir

Peter Wilson
Herries Press
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries dot press (at) earthlink dot net

Abstract

I was asked to talk about something interesting — perhaps how I came to develop
the memoir class. Following this suggestion the first part is about how I became
involved with LATEX and friends and why the memoir class. To me all this is not
particularly interesting as it falls into the personal ‘been there, done that’ cate-
gory. What I find more interesting is how the written word has been presented.
The second part briefly describes this, starting four millenia ago with Cuneiform
and, with a few stops along the way, ending at recent times.

memoir, n. a fiction designed to flatter the
subject and impress the reader.

With apologies to Ambrose Bierce

We are the inheritors of an ancient tradition,
one that goes back for more than four thousand
years. It has taken me a long time to start to appre-
ciate it, and had it not been for LATEX I never would
have realised that it was there.

1 Neophyte

In 1973 I had to submit six bound copies of my the-
sis — one for my supervisor, another for the exter-
nal examiner, the third for the University library, a
fourth for myself, and two spare in case something
untoward happened.1 A very kind secretary typed
it for me, one original and five carbon copies. I had
to insert all the mathematics by hand (see Figure 1,
original size 71/2 by 10 inches), and in the last car-
bon copy that was about all that was legible.

Round about 1980 I came across a computer
program called RUNOFF that would do a reasonable
job of printing technical reports, provided you didn’t
mind adding in any mathematics by hand and you
could overlook the fact that all we had was a dot
matrix printer with too few dots.

Relief came in 1985 when I was introduced to
LATEX; no more hand insertions, justified text, differ-
ent fonts, a professional look, and no looking back.

I used it for all my internal company reports
and paper submission to journals — this was before
we could ship documents around electronically so in

1 It did. The binder bound one copy with some pages
upside down and others back to front!

Herries Collection

Figure 1: Page from PhD thesis (1973)

280 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Between then and now — A meandering memoir

revision 8, 1/02 (PRW)

E-mail:

Facsimile:

Telephone:

Address:

Project Leader:

E-mail:

Facsimile:

Telephone:

Address:

Project Editor:

COMMENTS TO READER:

KEYWORDS:

ABSTRACT:

COPYRIGHT NOTICE
This ISO document is a Final Draft International Standard and is copyright protected by ISO. Except as
permitted under the applicable laws of the user’s country, neither this ISO draft nor any extract from it
may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
photocopying, recording, or otherwise, without prior written permission being secured.
Requests for permission to reproduce should be addressed to ISO at the address below or ISO’s member
body in the country of the requester:

ISO copyright office
Case postale 56. CH-1211 Geneva 20

Tel. +41 22 749 01 11
Fax +41 22 734 01 79

E-mail copyright@iso.ch
Reproduction for sales purposes for any of the above-mentioned documents may be subject to royalty
payments or a licensing agreement.
Violators may be prosecuted.

ISO/FDIS 10303-11

Product data representation and exchange: description methods: The EXPRESS
Language Reference Manual

Supersedes ISO TC 184/SC4/ N

ISO TC 184/SC4/ N Date:WG11 210 2003/07/21

WG11 152

This document contains the definition of the EXPRESS lexical information modelling language,
together with the definition of the EXPRESS-G iconic language which is a subset of EXPRESS.

EXPRESS, EXPRESS-G, Information modelling

This document has been reviewed using the internal review checklist (see WG11N206), the project
leader checklist (see WG11N207), and the convenor checklist (see WG11N208), and is ready for
this ballot cycle. Resolutions of the following SEDS reports have been included in this document:
SEDS 683, SEDS 685, SEDS 766, and SEDS 786.

Phil Spiby

73 Columbia Avenue
Sutton-in-Ashfield
Nottinghamshire
NG17 2GZ
United Kingdom

+44 1623 443049

+44 1623 522940

Phil.Spiby@eurostep.com

Jochen Haenisch

EPM Technology AS
Grenseveien 107
PO Box 6629 Etterstad
N-0607 Oslo
Norway

+47 23 17 17 00

+47 23 17 17 01

jh@epmtech.jotne.com

Herries Collection

Figure 2: Cover sheet for ISO/FDIS 10303-11:2003

some sense it didn’t matter what you used to create
them as they would either be copied or retyped.

I became involved in the development of the
International Standard 10303 Industrial automation
systems and integration—Product data representa-
tion and exchange, commonly known as STEP, both
as the editor and as a technical contributor. ISO

had strict rules about the layout of the typewrit-
ten documents we would be submitting, which they
would then retype for their publishing system, mer-
rily adding typos as they went along. We managed
to persuade them to take camera-ready copy so they
could eliminate the typo introducing stage. We used
LATEX, of course, as it produced high quality output
and, further, it was non-proprietary and we were
working in a non-proprietary area.

The draft standard grew to about 2000 pages
before we were allowed to split it up into parts to be
published separately. Some part editors, for what-
ever reason, started to use wordprocessors instead
of LATEX. In the meantime I had developed a class
for ISO standards in general (Wilson, 2002a), and
ISO 10303 in particular (Wilson, 2002b).

Figure 2 shows the cover sheet for the part of
the standard defining the express and express-g

information modeling languages. The cover sheet

ISO/FDIS 10303-11:2003(E)

male female

INTEGER

STRING

2,5 dateperson

hair type

*sc person

1

(DER) age

nickname

last name

first name

birth date

hairchildren S[0:?]

(INV) parents S[0:2]

wife
(INV) husband S [0:1]

Figure D.1 – Complete entity level diagram of the example in J.1 on page 241
(Page 1 of 2)

2,5 (1) date INTEGER
A [1:3]

Figure D.2 – Complete entity level diagram of the example in J.1 on page 241
(Page 2 of 2)

D.2.1 Symbol for simple data types

The symbol for an EXPRESS simple data type is a rectangular solid box with a double vertical

line at the right end of the box. The name of the data type is enclosed within the box, as shown

in Figure D.3.

D.2.1.1 Symbols for generalized data types

The symbol for the EXPRESS generic entity data type is the same as for EXPRESS simple

data types. The name of the data type is enclosed within the box as shown in figure D.4.

NUMBER INTEGER REAL

BOOLEAN LOGICAL STRING

BINARY

Figure D.3 – Symbols for EXPRESS simple data types

186 c©ISO 2003 — All rights reserved

Herries Collection

Figure 3: Page 186 from ISO/FDIS 10303-11:2003

was implemented using the picture environment
and all that an author had to do was use a few
macros for the text — rather like for the \maketitle
command. Also as part of my work on STEP I devel-
oped the MetaPost expressg package (Wilson, 2004a)
for drawing BLA (box, line, annotation) diagrams
like the ones in Figure 3.

I eventually moved to the National Institute
of Standards and Technology (NIST) in Maryland
where the secretariat for STEP was based (Kem-
merer, 1999). Someone up the management chain
decided that the whole thing should be maintained
as SGML documents (or portions thereof) in a data-
base. As they were one of the major supporters of
using wordprocessors I was surprised that they chose
LATEX as the publishing system and I spent a con-
siderable time writing a LATEX to SGML translator,
and vice-versa. Unfortunately ISO kept changing
their formatting requirements, LATEX authors kept
introducing their own macros, the SGML team kept
changing their DTD, and the wordprocessor users
were going to be involved at some indefinite date in
the future. The experience made me really appre-
ciative of Eitan Gurari’s TeX4ht (Gurari, 2007). I
left before any document made it through the sys-
tem, which I think has died the death it deserved.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 281

Peter Wilson

The Memoir Class
for

Configurable Typesetting

User Guide

Peter Wilson

THP

The Herries Press

Herries Collection

Figure 4: Title page of the memoir class user manual

Some of the documents had got up to 1200 pages
which caused enormous difficulties to the poor souls
who had to use ‘the’ wordprocessor.

This led me on to the development of my LATEX
memoir class (Wilson, 2004b). I didn’t want to be
bitten by the ISO experience again, so I felt that a
class that would let me change the document format-
ting easily without having to delve into its innards
would be very useful. I had written a few pack-
ages that helped in formatting bits and pieces and
decided to incorporate them into the class. Then
there were other packages that I quite often used
and integrating those, or their functionality, seemed
reasonable, thus ensuring that they would all work
well together. Then, like Topsy, it ‘just growed’.
Now it encompasses the functionality of more than
30 popular packages.

Putting everything together got me started on
wondering how a document should be put together.
This led to a long trail. One portion was trying to
get a better idea about the typographer’s craft. And
as typographers deal with letter forms that led me
to the history of the alphabet and the story of the
letter forms that we use now.

Herries Collection

Figure 5: Sumerian cuneiform tablet (circa
2112–2004 bc)

2 Early writing

Writing was invented in ancient Mesopotamia, an
area which roughly corresponds to modern day Iraq.
The earliest recorded writings are by the Sumerians
from around 3300 bc, who used pointed sticks or
reeds to impress marks into wet clay tablets that
were subsequently dried. The result is what we call
Cuneiform.2 We are still in the business of recording
writing.

As the city states arose and society became
more complex writing was necessary to help the bu-
reaucrats and merchants keep track of things and so
that tax collectors and others could go about their
business in a fair manner.

Figure 5 shows a replica of a Sumerian cuneiform
tablet dating back to between 2112 and 2004 bc,
from the Third Dynasty of Ur, about the time of
the Biblical Abraham. The original is 11/4 by 11/4
by 3/8 inches. The scribes would write on the front
and the back of a tablet, and sometimes on the sides
as well.

Cuneiform writing was adopted by the Babylo-
nians even though their language was not like Sume-
rian, and Figure 6 shows a replica of a Babylonian

2 From the Latin cuneus meaning wedge.

282 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Between then and now — A meandering memoir

Herries Collection

Figure 6: Babylonian cuneiform tablet and envelope
(circa 1790 bc)

tablet and its clay envelope, from about 1790 bc.
The tablet is 11/2 by 13/4 by 1/2 inches.

The package is a receipt for an amount of grain
sufficient for one man for 6 months. The same text is
on the outside of the clay envelope as on the tablet;
if there was doubt about the external message then
the envelope could be broken and the external and
internal messages compared.

Writing evolved from that needed for simple
record keeping to be able, for instance, to write peo-
ple’s names or to record the majestic deeds of the
ruler. The earliest literary tablets containing parts
of the Epic of Gilgamesh, which is by far the world’s
oldest epic, date back to about 2100 bc. The Gil-
gamesh story has been pieced together from thou-
sands of pieces of broken cuneiform tablets (George,
2000). Figure 7 shows a replica of one of the many
tablets found by Sir Austen Henry Layard in 1850–
53 in the ruins of King Ashurbanipal’s library at
Ninevah which was destroyed in 612 bc. This partic-
ular one contains much of what is called ‘Tablet 11’
of the Epic which includes the best preserved story
of a Deluge3 or Flood, well pre-dating the Biblical
version which was written around the 9th century
bc.

The tablet, which is 53/4 by 53/4 by 11/4 inches,
was first translated in 1872 by George Smith work-
ing at the British Museum. Wallis Budge (Budge,
1925) described the event like this:

Smith took the tablet and began to read over
the lines which Ready [the conservator who
had cleaned the tablet] had brought to light;
and when he saw that they contained the por-
tion of the legend he had hoped to find there,

3 There is evidence that the catastrophe occurred around
7500 bc when the Black Sea’s water level rose by 400 feet
during the course of about a year (Ryan and Pitman, 2000).

Herries Collection

Figure 7: Epic of Gilgamesh, part of tablet 11 (circa
650 bc)

he said, “I am the first man to read that after
two thousand years of oblivion.” Setting the
tablet on the table, he jumped up and rushed
about the room in great excitement, and, to
the astonishment of those present, began to
undress himself!

Figure 8 shows a replica of a soft piece of lime-
stone rock from around 925 bc. This was found in
1908 by R.A.S. Macalister at Tell el-Jazari (the his-
toric city of Gezer) about 20 miles NW of Jerusalem.
The tablet is 3 by 41/2 by 5/8 inches. The text is
written right to left in what some say is in a Proto-
Hebrew script while others (Healey, 1990, p. 30) say
it is in the Phoenician4 script. It is a calendar of
agricultural tasks and seasons. The tablet’s inscrip-
tion is:

zwERYPsAwERY

SqLwERY‘R

tSPAX‘ERY

MR‘SRXqERY

LKwRXqERY

RMzwERY

XqERY

YBA

4 To me it looks remarkably like Phoenician.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 283

Peter Wilson

Herries Collection

Figure 8: Gezer Calendar (circa 925 bc)

In the following transliteration I have added
inter-word spaces that are not in the original. The
first two lines on the tablet contain the first three
lines of the calendrical information.

z wh. ry ps’ wh. ry
šql wh. ry ‘r
ťsp ’s. ‘ h. ry

mr‘̌s rs.q h. ry
lkw rs.q h. ry

rmz wh. ry
s.q h. ry

yb’

And a translation is:

Two months are [olive] harvest,
Two months are planting [grain],
Two months are late planting;
One month is hoeing up flax,
One month is harvest of barley,
One month is harvest and feasting;
Two months are vine tending,
One month is summer fruit.

It is signed in the bottom lefthand corner with the
name ‘Abijah’.

Herries Collection

Figure 9: Leaf from a copy of the Bhagavad Gita,
Kashmir (circa 1800)

3 Manuscripts

Our modern alphabets date back to around 1600
bc, and in particular to the Phoenician script and
alphabet. By various routes this spread out from
the Middle East, changing as time went on to ac-
commodate different languages (Wilson, 2005).

Throughout the ages scribes have always taken
great care in the appearance of their work, especially
with religious works.

Figure 9 is a leaf from a Kashmiri copy of the
Bhagavad Gita. The original is 51/2 by 31/4 inches
overall in a black Devanagari script surrounded by
a yellow, red and blue border, on burnished paper.
It dates to the late 18th or early 19th century. The
Bhagavad Gita (The Song of the Divine One) is a
poem consisting of a dialogue between the warrior
prince Arjuna and Lord Krishna (in the person of
his charioteer), on the eve of the climactic battle at
Kurukshetra. It forms part of the Hindu epic, the
Mahabharata which dates back to the first millenium
bc, while the Gita was written later, probably be-
tween the fifth and second centuries bc.

N. P. Davis (Davis, 1969) quotes J. Robert Op-
penheimer after observing the first test of the atomic
bomb on July 16, 1945, as saying:

There floated through my mind a line from
the Bhagavad Gita in which Krishna is trying
to persuade the Prince that he should do his
duty: ‘I am become death: the shatterer of
worlds’. I think we all had this feeling more
or less.

The preceding lines in the Bhagavad Gita are:

If the radiance of a thousand suns
Were to burst into the sky,
that would be like
the splendour of the Mighty One.

284 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Between then and now — A meandering memoir

Herries Collection

Figure 10: Leaf from a copy of Delail al-Khayrat
Arabic/Persian (circa 1690)

Figure 10 shows a leaf from a copy of Delail
al-Khayrat — the book of Blessings on the Prophet
composed by Muhammad ibn Sulayman al-Jazuli
(d. 1465). The original of the leaf is 411/16 by 75/8
inches. It was written about 1690 by Mohammed
Azeem for Nawab Sadullah Khan who was the Prime
Minister of the Moghul emperor Shah Jehan — the
builder of the Taj Mahal. The Arabic text is black
with an interlinear Persian translation in red and a
commentary in the margins around the main text.
The border is in gold and a light blue.

Figure 11 is a leaf from a 16th century Indian
copy of the Koran. The original is 31/2 by 6 inches
overall. The Arabic script is in black ink, except for
the central line which is in liquid gold, surrounded
by a main border, 21/4 by 33/4 inches, in gold and
blue. The marginal discs are also in gold and blue.

Arabic texts are famous for their calligraphy
but there are other cultures as well where calligra-
phy is an esteemed art. Figure 12 is number 66
from the series of Japanese woodblock prints Ogura
Imitation of 100 Poets illustrating a famous anthol-

Herries Collection

Figure 11: Leaf from a Koran, India (16th century)

ogy of 100 poems by 100 poets that was assem-
bled by the poet Fujiwara no Teiko in 1235. The
woodblock print publisher Iba-ya Sensburō commis-
sioned three artists — Kuniyoshi, Hiroshige and Ku-
nisada — to produce the prints in the series which
were published between 1845 and 1847. This one
by Hiroshige illustrates a poem by Daisōjō Gyōson
(1055–1136). The poem reads:

Morotomi ni
Aware to omoe
Yamazakura
Hana yori hoka ni
Shiru hito mo nashi

Let us, each for each
Pitying, hold tender thought,
Mountain cherry flower!
Other than thee, lonely flower,
There is none I know as
friend.

The main illustration shows a contemplative
Kuganosoke (the hero of the play Imoseyama) out-
side a pavilion on the bank of a river. The title of
the series is at the top right in large kanji charac-
ters and at the top left is a description of the main
illustration in smaller kanji. The lozenge contains a
portrait of the poet and the poem itself in a highly
calligraphic style. The original is in the standard

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 285

Peter Wilson

Herries Collection

Figure 12: Ogura Imitation of 100 Poets no. 66, by
Hiroshige (circa 1846)

oban size of approximately 91/2 by 14 inches. To
print it there would have been one carved wood-
block for each colour in the picture, with the pic-
ture being gradually built up one colour at a time.
Registration between the individual blocks and with
the paper is critical. Even seemingly simple pictures
could require ten or more blocks.

Coming closer to home, European books were
mainly written in Latin. Literacy was essentially
confined to the Church, the Papal See and monas-
teries in particular, and to clerks in noble courts.
Most works that have survived were religious in na-
ture but rulers required administrative records of
all kinds. One of the most famous is the Domesday
Book that William the Conqueror (circa 1028–1087)
ordered to be compiled in 1086. It is a survey of
the newly conquered England, from Yorkshire to the
South Coast, arranged by county, and listing all the
landowners and the worth and taxes paid on their
properties (Hinde, 1985). Figure 13 shows one page
from the book that starts with information about
Glastonbury in the County of Somerset. The text
is in Latin, in two columns of 44 lines each, written
in a Carolingian minuscule script. An enlarged view

Herries Collection

Figure 13: Page from the Domesday Book, England
(1086)

Herries Collection

Figure 14: Domesday Book (enlarged), England
(1086)

286 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Between then and now — A meandering memoir

Herries Collection

Figure 15: Book of Hours, France, (circa 1445)

of the top of the left column is shown in Figure 14.
Some headings are in red, but the text is not without
errors.

Many beautiful manuscripts were written by
scribes in monasteries, some for use by the Church
and others for rich patrons. Many of the latter are
elaborately decorated and illuminated.

Figure 15 is a leaf (verso) from a Benedictine
Book of Hours produced in France around 1445.
The original vellum leaf is 53/4 by 8 inches. The
Latin text, 3 by 41/4 inches, is in the Gothic Tex-
tura Quadrata bookhand in a light brown ink. The
versal initials are in liquid gold on grounds of red
and blue with white tracery. The paragraph end-
ings use the same style.

A more decorative example is shown in Fig-
ure 16 which is a leaf from a Book of Hours pro-
duced in France, perhaps at Rheims, around 1450 or
maybe a little later. The original vellum leaf is 33/4
by 55/8 inches. The Latin text, 21/2 by 27/8 inches,
is in the Gothic Textura Quadrata bookhand in a
dark brown ink. The versals are in liquid gold with
additional decoration in red and blue. The floriated
decoration uses green as well as the other colours.

In a different vein, and a different script, Fig-
ure 17 is a page from Antonio Pigafetta’s account
of Magellan’s circumnavigation (1519–1522), beau-
tifully written in a humanist bookhand. There are
four surviving manuscripts, one in the Venetian di-
alect of Italian, and three in French. Pigafetta prob-

Herries Collection

Figure 16: Book of Hours, France, (circa 1450)

ably completed his work in 1524 and it would then
have been copied out by professional scribes. The
manuscript now at the Bernicke Library at Yale Uni-
versity consists of 103 vellum leaves, measuring 71/2
by 111/4 inches, with 27 lines to a page (Pigafetta,
1969). The page in the illustration shows the end of
chapter XVIII, a summary (in red) of the next chap-
ter, and the title and first four lines of chapter XIX.
The marginal notes, in red and blue, are a summary
of the corresponding paragraphs in the main text.

4 Printed books

In the West, printing using moveable type was in-
vented by Johannes Gutenberg around 1440–1450,
although the earliest printed book known is a 9th
century Chinese woodblock printing of the Diamond
Sutra. Gutenberg had to experiment to determine
the formula for a suitable ink and also to discover
a good metal alloy for the type itself. He came up
with lead to which he added antimony for strength
and hardness and tin for toughness.5

5 This is still the basis for type today; Monotype casting
machines use lead with 15–24% antimony and 6–12% tin.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 287

Peter Wilson

Herries Collection

Figure 17: Magellan’s Voyage Around the World
(1524)

In order to be successful in the market, Guten-
berg had to produce books that equaled those pro-
duced by the scribes, except that they did not neces-
sarily have to be decorated so lavishly. The scribes,
though, used many ligatures and other techniques
to try and have non-ragged text blocks. To compete
with them Gutenberg’s font for his 42-line Bible,
published around 1455, consisted of some 290 char-
acters though all the text is in Latin which requires
a basic character set of only forty letters — twenty
lowercase letters and twenty caps — and some punc-
tuation marks (Thorpe, 1999).

The 42-line Bible is set in two columns of 42
lines each. It is believed that about 135 copies were
printed on paper and 40 on vellum. The page size
was 12 by 161/2 inches and it is estimated that more
than five thousand calfskins were required for the
vellum copies.

The Nuremberg Chronicle was published in 1493
in Nuremberg and was the first book to combine
text with illustrations that illuminated the words
(instead of using randomly selected woodblock en-

Herries Collection

Figure 18: Nuremberg Chronicle, Folio CLIIv (1493)

gravings that happened to be at hand). As was usual
then the book did not have a title page: Latin schol-
ars call it the Liber Chronicarum and in German it is
called Die Schedelsche Weltchronik after its author
Hartmann Schedel. The book was printed and pub-
lished by Anton Keberger with a print run of about
1500 Latin copies and 900 German ones. Around
400 Latin and 300 German copies have survived.

There are 1809 woodcut illustrations printed
from 645 originals, so many were used multiple times,
usually portraits. For example a single woodcut was
used to represent Alcuin, Cato, Dante, Paris and
Plutarch on different pages. The woodcuts were cre-
ated by Michael Wolgemut and Hans Pleydenwurff,
with perhaps one or two by Albrecht Dürer who was
apprenticed to Wolgemut at the time.

The pages are large, 12 by 171/2 inches. Views
of cities were printed as a double spread. Spaces
were left in the text for the woodcuts; in the more
luxurious volumes the woodcuts were hand coloured.

The Chronicle divides the history of the world
into seven ages:

1. Creation to the Deluge

2. ends with the birth of Abraham

3. ends with the reign of King David

4. ends with the Babylonian captivity

288 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Between then and now — A meandering memoir

Herries Collection

Figure 19: Nuremberg Chronicle, Folio CXLVIIIr
(1493)

5. ends with the Incarnations of Jesus

6. from the birth of Christ to the end of the world

7. the age of the Anti-Christ

8. the Last Judgement

Beloit College has an extensive web site (http://
www.beloit.edu/~nurember) devoted to their copy
of the Nuremberg Chronicle which has coloured il-
lustrations.

Figure 18 is Folio CLII (verso) from the Nurem-
berg Chronicle. At the bottom is half of a double
spread picture of Salzburg (the other half is on the
recto of Folio CLIII).

Figure 19 shows Folio CXLVIII (recto) from the
Nuremberg Chronicle. The hand coloured pictures
are of various ecclesiastical personages and at the
lower right a queen (Radegudis regina fracie) and a
doctor (Gregorius magnus doctor). The original for
this picture is 12 by 151/2 inches (over the years 2
inches have disappeared from the lower margin).

Books had, of course, been made and sold long
before Gutenberg. In London, for example, the pub-
lishing trade was regulated by the Guild of Station-
ers which was incorporated in 1403. At that time
stationers were either booksellers who sold manu-
scripts that they had copied; or illuminators who il-

Herries Collection

Figure 20: Chruso-thriambos: Title page (1611)

lustrated and decorated manuscripts; or bookbinders
who bound manuscripts. Stationers would also sell
the materials that they used. Unless you were a
member of the Guild you could do none of these
things.

Following Gutenberg, printing rapidly spread
out over much of Europe. In England, for exam-
ple, Caxton set up his shop in 1476, Theoderic Rood
was printing in Oxford between 1478 and 1485, and
John Sieberch in Cambridge in 1520. The Station-
ers Guild received a royal charter in 1557 and was
responsible for regulating the printing industry over
all the country, which meant that they had a monop-
oly on book production — once a member asserted
ownership of a text (or ‘copy’) no other member
could publish it. This is the origin of the term ‘copy-
right’.

In Germany books were usually printed in a
gothic type but the rest of Europe moved to types
based on the humanist tradition that had been main-
tained in Italy.

Figure 20 is the title page of a reprint of Chruso-
thriambos or The Triumphs of Golde by Anthony
Mundy, published in 1611. The original is 6 by 9

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 289

Peter Wilson

Herries Collection

Figure 21: Chruso-thriambos: page 8 (1611)

inches. The pageant Chruso-thriambos was writ-
ten and produced at the request and charge of the
Worshipful Company of Goldsmiths in honour of Sir
James Pemberton, a goldsmith, the newly elected
Lord Mayor of London. Page 8 (numbered 26 in the
book containing the reprint) from the body is shown
in Figure 21.

Ambroise Paré (1510–1590) served as the of-
ficial royal surgeon for kings Henry II, Francis II,
Charles IX and Henry III of France, and did much
to advance medical procedures, particularly surgery.
A page from the first English translation of his ma-
jor work, by Thomas Johnson and printed in 1634
by Th. Cotes and R. Young, is shown in Figure 22.
The original is 8 by 121/2 inches and is set using
an Oldstyle type, possibly Garamond. Paré’s major
contributions included the abandonment of boiling
oil for the treatment of gunshot wounds in favour of
egg yolk, oil of roses and turpentine which worked
far better. He also introduced the use of ligatures in-
stead of cauterisation during amputations, and was
especially adept at devising ingenious and efficient
artificial limbs and new surgical instruments. All in

Herries Collection

Figure 22: Page from the first English translation of
Ambroise Paré’s works (1634)

all he seems to have been afflicted with a great deal
of common sense.

A book by Hans Sachs, Eygentliche Beschrei-
bung Aller Stände auff Erden about 16th century
trades, was published in Frankfurt in 1568 which in-
cluded several woodcuts from drawings by Jost Am-
man. Figure 23 is one of these showing a printing
shop. The two men in the background are setting
type, taking the characters from the type cases in
front of them. The men in the foreground are oper-
ating the printing press. The one on the left is re-
moving a sheet of paper that has just been printed
and the one on the right is using two circular pads
to ink the type for the next sheet. A fresh sheet of
paper will replace the one being removed. The flap
at the left, with the cutouts, will be folded down to
hold the paper in place, then the assembly folded
over to lie on top of the type. The final assembly
is slid into the press, the lever pulled to press the
paper onto the type, the assembly slid out from the
press and the printed page removed.

Figure 24 is another of the woodcuts, this time
showing a book bindery. In the background there is

290 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Between then and now — A meandering memoir

Herries Collection

Figure 23: 16th century printing shop

a sewing frame with a book and the man is sewing
the sheets together. In the foreground there is a
book in a lying press at the left and at the right
the man is trimming the edges of the pages in a
sewn book, which is in another lying press, before
the covers will be put on. In those days books were
often sold without covers so that clients could select
the kind they wanted.

Little changed in the manufacture of books un-
til the middle of the 19th century when some of the
processes began to be mechanized (Chappell and
Bringhurst, 1999). Figure 25 is a reconstructed 18th
century print shop in Williamsburg, Virginia, 2007.
James Mosley, who for 42 years was the Librarian at
the St Bride Printing Library in London, said that
it was ‘the most perfect and accurate working re-
construction of an 18th-century office’ that he had
ever seen (Mosley, 2003). The paper holder is at the
left, the type in the center and the press itself, a
so-called English Common Press, at the right. The
man is preparing to ink the type.

Also at Williamsburg is a reconstructed 18th
century bindery, shown in Figure 26. Two sewing
frames are in the foreground and a large standing
press is in the semi-background.

Herries Collection

Figure 24: 16th century book bindery

Herries Collection

Figure 25: Reconstructed 18th century print shop
(Williamsburg 2007)

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 291

Peter Wilson

Herries Collection

Figure 26: Reconstructed 18th century bindery
(Williamsburg 2007)

In the days of the American Colonies, printing
was not encouraged. Sir William Berkeley, who was
the governer of Virginia for 1642 to 1652 and again
from 1660 to 1677, spoke for many officials when he
said,

But, I thank God, there are no free schools
nor printing, and I hope we shall not have
these for hundreds of years; for learning has
brought disobedience, and heresy, and sects
into the world, and printing has divulged
them, and libels against the best government.
God keep us from both.

However, using type purchased from England,
such as those of William Caslon (1692–1766), print-
ing became a thriving business. Figure 27 is Caslon’s
first specimen sheet, originally printed in 1734. The
original is 151/2 by 201/2 inches. As well as the ex-
pected roman, italic, and blackletter, the specimens
include fonts for the Saxon, Gothic, Coptic, Arme-
nian, Syriac, Samaritan, Arabic, Hebrew (both with
and without points), and Greek alphabets. The ro-
man ranges in size from Canon to Pearl although
examples of 6- and 8-line Pica are also shown; the
exotics mostly come in a single size although there
are three sizes of Greek. There are also several ty-
pographic ornaments.

Nowadays, the size of a font is expressed in
points but originally names were used. The more
common sizes are given in Table 1.

Caslon’s type was used in Philadelphia by John
Dunlap for the first printing of The Declaration of
Inpependence in 1776. A more prosaic example of
the kind of work done by Colonial printers is Fig-
ure 28 showing the title page of Every Man his own
Doctor: or, The Poor Planter’s Physician as printed

Herries Collection

Figure 27: Specimen sheet of Caslon types (1734)

Table 1: Traditional font size designations

Points Name

3 Excelsior
31/2 Brilliant
4 Diamond
5 Pearl
51/2 Agate
6 Nonpareil
61/2 Mignonette
7 Minion
8 Brevier
9 Bourgeois

10 Long Primer
11 Small Pica
12 Pica
14 English
18 Great Primer
24 Double (or Two Line) Pica
28 Double (or Two Line) English
36 Double (or Two Line) Great Primer
48 French Canon (or Four Line Pica)
60 Five Line Pica
72 Six line Pica
96 Eight Line Pica

292 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Between then and now — A meandering memoir

Herries Collection

Figure 28: Title page of Every Man his own Doctor,
Williamsburg, VA (1736)

in Williamsburg by William Parks in 1736. This
edition is hand set with Caslon Oldstyle Type. The
original is 5 by 71/2 inches. The binding of such
publications was very easy as the sheets were sim-
ply sewn together along the lines of Japanese stab
bindings, but not so attractively.

The book was very popular; two editions were
printed by William Parks, and Benjamin Franklin
printed three editions between 1734 and 1737. The
reprinted version notes that ‘The Directions in the
Book “were not designed for such as are in the Con-
dition to Purchase more learned Advice” but mainly
for the Services of the Poor’. The Directions mainly
seemed aimed at making the patient so uncomfort-
able that it was better to be well than ill. The
recommended treatments for almost everything ex-
cept physical injuries seemed to involve the letting
of copious amounts of blood accompanied by po-
tions aimed at purging anything the patient may
have eaten or drunk over the previous couple of days.

Like Caslon, John Baskerville (1706–1775) came
from the Birmingham area in England. He printed

Herries Collection

Figure 29: Page from Baskerville’s edition of The
Plays and Poems of William Congreve (1761)

his first book, Virgil’s Georgics, in 1757. Not only
did he design his type but he also improved on the
printing press of the day and experimented with
the formula for ink to produce one that was blacker
and more uniform, and also dried quicker which im-
proved the overall efficiency of the printing process.
A page from his 1761 edition of The Plays and Po-
ems of William Congreve is shown in Figure 29; the
original is 53/4 by 87/8 inches. He invented, and used,
a new kind of paper called wove rather than the nor-
mal laid paper. His type had greater contrast be-
tween the thick and thin strokes than Caslon’s and
was more open. His work was not much appreciated
in his native England as it was felt to be too bril-
liant, or bright, thus hurting the eyes. However he
had a major influence on continental type designers
such as Fournier, Didot and Bodoni.

John Johnson (1777–1848) produced an exhaus-
tive survey of typography and printing in his two
volume, 1300 page Typographia, or the Printers’ In-
structor published in 1824. The work was produced
in four sizes, the largest being royal octavo (61/8 by
97/8 inches) and the smallest, as shown in Figure 29,

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 293

Peter Wilson

Herries Collection

Figure 30: Page from John Johnson’s Typographia
(1824)

being thirty-twomo (31/4 by 47/8 inches) (Wulling,
1967). The latter is not easy to read because of the
small size of the print, from 8pt down to 4pt, but
it must have been infinitely more difficult to type-
set and proofread the half a million words in the
two volumes. The title pages alone, one of which is
shown in Figure 31 enlarged slightly, were built up
using over a thousand flowers and rules. Included
in the two volumes are sixty exotic alphabets as-
sembled from the learned and commercial presses in
England.

Many nineteenth century printers seem to have
felt the need to show off their collection of fonts, of-
ten choosing a book’s title page as the ideal place
for this. Johnson’s title page is an amazing piece
of printing, but most certainly is not at all repre-
sentative of the general style. Figure 32 is the title
page from Affectionate Advice to Apprentices, writ-
ten in 1827 by the Rector of St. Swithin’s at Lon-
don Stone, for the then Lord Mayor of London. It
was distributed widely to many of the young peo-

Herries Collection

Figure 31: Title page of John Johnson’s Typographia
(1824)

ple learning their crafts within the City.6 This copy
was reprinted in 1903. The original size is 43/4 by 7
inches. The Victorian lifestyle comes through very
clearly: work, obey, learn, and pray. There is no
mention of having fun but plenty of advice about
avoiding sinful pleasures like going to the theatre to
see a play. There is one telling remark, though.

Our Creator, in great mercy to working peo-
ple, has commanded every seventh day to be
kept to the end of the world as a day of holy
rest. If God had not appointed this rest, mas-
ters would never in the first instance have
thought of giving it to their workpeople.

When clearing out my late father-in-law’s Lin-
colnshire farmhouse I came across an old recipe book
tucked away at the back of a cupboard. It covered a

6 The Worshipful Company of Goldsmiths, chartered in
1327, still presents it to those seeking to become Freemen of
the Company; other Livery Companies may do so as well.

294 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Between then and now — A meandering memoir

Herries Collection

Figure 32: Affectionate Advice to Apprentices (1827)

fascinating collection of topics ranging from brewing
beer and adulterating rum, through dyeing cloth, to
destroying vermin. As the pages were very fragile I
reprinted it using the memoir class and the Century
Old Style fonts from Christopher League’s fontsite

package (League, 2003). The title page is shown in
Figure 33 and the LATEX code, among many other
examples for title pages, is given in Wilson (2007).
The original had been printed by George Wilkins
and Son, Derby, in 1830.

William Morris, one of the founders of the Arts
and Crafts movement, disliked the erosion of crafts-
manship by machines, and in 1891 he established
the Kelmscott Press to produce hand made books
of the highest quality.

Among others, he produced what is known as
the Kelmscott Chaucer, his best known book, con-
sisting of Chaucer’s Canterbury Tales and all his
other works — a total of 31 altogether — which in-
clude The Romaunt of the Rose, Troilus and Cres-
sida and A Treatise on the Astrolabe. Although
Morris designed the type (Chaucer) and the borders
and the decorative initials, 87 woodcuts by Edward
Burne-Jones were used as well. The book was pub-

THE NEW

FAMILY RECEIPT BOOK
CONTAINING A LARGE COLLECTION OF

HIGHLY ESTIMATED RECEIPTS IN A VARIETY

OF BRANCHES, NAMELY:

BREWING,

MAKING AND PRESERVING BRITISH WINES,

DYING,

RURAL AND DOMESTIC ECONOMY,

SELECTED FROM EXPERIENCED & APPROVED RECEIPTS,

FOR THE USE OF PUBLICANS

AND HOUSEKEEPERS IN GENERAL,

A GREAT MANY OF WHICH WERE NEVER BEFORE PUBLISHED.

BY G. MILLSWOOD.

PRICE ONE SHILLING

DERBY: PRINTED AND SOLD BY G. WILKINS AND SON,

QUEEN STREET.

Herries Collection

Figure 33: Title page of a Recipe book (1830)

lished as a limited edition in 1896. There were 425
copies on paper, forty-eight of which were bound in
pigskin by Thomas Cobden-Sanderson of the Doves
Bindery (later the Doves Press). There were also
thirteen copies on vellum. As the pages are 113/8 by
165/8 inches it is not a book for light reading.

Figure 34 is the opening page of the Prologue
to Chaucer’s Canterbury Tales from a facsimile of
the Kelmscott Chaucer. The facsimile is ‘slightly
reduced in size’ where the pages are only 85/8 by
127/8 inches and weighs 61/2 lbs (3 kg).

Morris believed that the factors in bookmaking
were all interdependent, that is, the type, paper,
ink, imposition and impression all had to be con-
sidered together. He also declared that a double
spread must always be considered as a whole unit,
as demonstrated in Figure 35. Although it has been
said (Chappell and Bringhurst, 1999, p. 226) that
his style has ‘an abundance of thickets and under-
growth’, he started people considering a book as a
work of art, not as simply words on pages, and was
instrumental in initiating the move away from the
excesses of the Victorian printers.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 295

Peter Wilson

Herries Collection

Figure 34: Opening page of the Kelmscott Chaucer’s
Prologue (1896)

Herries Collection

Figure 35: Double spread from the Kelmscott
Chaucer (1896)

Herries Collection

Figure 36: The Centaur Types (1949)

5 Almost today

The traditions that started to be established in the
16th century are still seen today. Although books
are not so lavishly decorated as some from the early
days of printing, in general they have calmed down
from the freneticism that occurred during the 19th
century.

Manuscripts tended to emphasise the capital
letter at the start of a paragraph (see Figures 15
and 16), and especially at the start of a major piece
of the text as in Figure 17. Versals are still used,
as shown in Figure 36 which is the opening page of
The Centaur Types (Rogers, 1949), but much more
rarely than in medieval times. Bruce Rogers (1870–
1957) is said to be the ‘most accomplished book
designer that America has yet produced’ (Lawson,
1990, p. 62). He was also the designer of the Cen-
taur type which ‘has been one of the widely praised
roman types of our time’ (ibid, p. 72). Rogers de-
scribed how he came to design Centaur in his book
The Centaur Types, which, of course, is set in Cen-
taur and also includes exact size reproductions of
the engraver’s patterns. The original size is 61/4 by
91/2 inches.

296 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Between then and now — A meandering memoir

Herries Collection

Figure 37: Hammer and Hand (1969)

Herries Collection

Figure 38: A Stickful of Nonpareil: page 19 (1956)

Herries Collection

Figure 39: Type metal medallion (1987)

The Nuremberg Chronicle, as in Figure 19, put
woodcuts into cutouts in the text. The same idea
can be seen in Figure 37 which shows page 3 from
Hammer and Hand by Raymond Lister with draw-
ings by Richard Bawden (Lister, 1969). The book
is a long essay on the ironwork of Cambridge, prin-
cipally the colleges’ wrought iron gates. It was the
Cambridge University Printer’s Christmas book for
1969. The original page size is 93/4 by 83/8, and
unusually it is printed on beige paper.

Another element in the design of the Nurem-
berg Chronicle is putting full width illustrations at
the top of a page or, as in Figure 18, at the bottom.
Figure 38 shows page 19 from A Stickful of Non-
pareil by George Scurfield and illustrated by Edward
Ardizzone (Scurfield, 1956). It was the Cambridge
University Printer’s Christmas book for 1956. The
original is 61/2 by 9 inches. ‘Nonpareil’ is an old
printers name for a particular size (6pt) of type, and
the book consists of recollections of working at the
Cambridge University Press around the end of the
nineteenth century. The illustration shows a part
of the composing room which is not all that differ-
ent from the composing area in Jost Amman’s 16th
century view (Figure 23).

There are, of course, the inevitable changes,
both in fashion and, more significantly, in technol-
ogy. For example, the Cambridge University Press
used metal types when it was founded in 1584 and
since then all was set by hand until a Monotype
composing machine was introduced in 1913 (Black,
1988). Computer-aided phototypesetting and litho-
graphic printing were introduced in the early 1970s.
Finally, after four centuries, the last vestiges of the
traditional techniques vanished in 1987 when the
types that remained in use were finally melted down
and cast into commemorative medallions, shown in
Figure 39.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 297

Peter Wilson

Duane Bibby (EuroTEX 2003)

Figure 40: The TEX print shop, 2003

On the other hand, Duane Bibby’s drawing for
the EuroTEX 2003 conference (Figure 40) shows that
the spirit of the tradition lives on.

References

Black, M. H. Cambridge University Press
1584–1984. Cambridge University Press, 1988.

Budge, E. A. Wallis. The Rise and Progress of
Assyriology. London, 1925.

Chappell, Warren, and R. Bringhurst. A Short
History of the Printed Word. Hartley & Marks,
1999.

Davis, N. P. Lawrence and Oppenheimer. Cape,
1969.

George, Andrew. The Epic of Gilgamesh. Penguin
Classics, 2000.

Gurari, Eitan. “TeX4ht: LaTeX and TeX for
Hypertext”. 2007. Available from http:

//www.cse.ohio-state.edu/~gurari/TeX4ht.

Healey, John F. The Early Alphabet. Reading the
Past. University of California Press, 1990.

Hinde, Thomas, editor. The Domesday Book:
England’s Heritage, Then and Now. Guild
Publishing London, 1985.

Kemmerer, Sharon J., editor. STEP: The
Grand Experience. Number 939 in Special
Publications. National Institute of Standards
and Technology, 1999.

Lawson, Alexander. Anatomy of a Typeface.
David R. Godine, 1990.

League, Christopher. “TEX support for the
FontSite 500 CD”. 2003. Available from
http://contrapunctus.net/fs500tex.

Lister, Raymond. Hammer and Hand: An essay
on the Ironwork of Cambridge. Cambridge
University Printer, 1969. Drawings by Richard
Bawden.

Mosley, James. “The American Printing
History Association 2003 Individual Award:
Acceptance Remarks”. 2003. Available from
http://www.printinghistory.org/htm/misc/

awards/2003-james-mosley.htm.

Pigafetta, Antonio. Magellan’s Voyage: A
Narrative Account of the First Circumnavigation.
Yale University Press, 1969. In two volumes.
Translated and edited by R. A. Skelton from
the manuscript in the Beinecke Rare Book and
Manuscript Library of Yale University.

Rogers, Bruce. The Centaur Types. October House,
1949.

Ryan, William, and W. Pitman. Noah’s Flood:
The New Scientific Discoveries About the Event
that Changed History. Touchstone, 2000.

Scurfield, George. A Stickful of Nonpareil.
Cambridge University Printer, 1956. Illustrated
by Edward Ardizzone.

Thorpe, James. The Gutenberg Bible: Landmark in
Learning. Huntington Library, 1999.

Wilson, Peter. “LATEX for ISO Standards”. 2002a.
Available from ctan/macros/latex/contrib/

isostds/iso.

Wilson, Peter. “LATEX Package Files for ISO
10303”. 2002b. Available from ctan/macros/

latex/contrib/isostds/iso10303.

Wilson, Peter. “The Expressg MetaPost package
for drawing box-line-annotation diagrams”.
2004a. Available from ctan/graphics/

metapost/contrib/macros/expressg.

Wilson, Peter. “The Memoir Class for
Configurable Typesetting”. 2004b. Available
from ctan/macros/latex/contrib/memoir.

Wilson, Peter. “The Alphabet Tree”. TUGboat
26(3), 199–214, 2005.

Wilson, Peter. Some Examples of Title Pages.
Herries Press, 2007. Available from ctan/info/

latex-samples/titlepages.pdf.

Wulling, Emerson G. J. Johnson, Typ. Sumac
Press, La Crosse, Wisconsin, 1967.

298 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

The STIX Project — From Unicode to fonts

Barbara Beeton
American Mathematical Society
201 Charles Street
Providence, RI 02904-2294
USA
bnb at ams dot org

Abstract

The goal of the STIX project is to provide fonts usable with other existing tools
to make it possible to communicate mathematics and similar technical material
in a natural way on the World Wide Web. This has involved two major efforts:
enlarging Unicode to recognize the symbols of the mathematical language, and
creating the fonts necessary to convert encoded texts into readable images.

This ten-year effort is finally resulting in fonts that can actually be used for
the intended purpose.

1 Introduction: What is Unicode?

According to the Unicode manual, the original goal
of the effort was “to unify the many hundreds of con-
flicting ways to encode characters, replacing them
with a single, universal standard.”

Unicode is thus an encoding system capable of
representing all the world’s languages in a way that
will enable any person to interact with a computer
in his own language. Nearly all modern computer
operating systems are based on Unicode.

The three principal components of Unicode are
the character, the block and the plane. A character
is the smallest unit, carrying a semantic value. A
character may represent a letter, a digit, or some
other symbol or function.

A block consists of 256 characters — the num-
ber of characters that can be addressed by eight bi-
nary digits, addressed as 00–FF. A plane is com-
posed of 256 blocks, for a total of 65,536 characters;
there are 17 planes for a capacity of 1,114,112 in all
[4, p. 2].

The first plane, Plane 0, is referred to as the
Basic Multilingual Plane (BMP); if a piece of soft-
ware claims to support Unicode, it should be able
to access every character in the BMP.

Characters are assigned to blocks with the most
heavily used given the lowest addresses; assignments
are made in half-block (128-byte) chunks.

The first half of block 00 is the basic character
set known as ASCII (the formal name is “C0 Con-
trols and Basic Latin”). This contains the upper-
and lowercase Latin alphabet, ten digits, various
punctuation marks, and a number of control func-
tions; it is the set of characters found on most com-

puter keyboards. The second half of block 00 is
known as “Latin 1”, and includes many accented
letters found in western European languages, as well
as additional punctuation marks and control char-
acters.

The next few blocks contain:

• the Greek and Cyrillic alphabets;
• a collection of diacritics to be used to compose

accented letters not accommodated by Latin 1;
• Hebrew;
• Arabic;
• the scripts for many of the languages of India

and southeast Asia.

Each script is allotted a half or full block as needed.
Blocks from 10 to 1F accommodate more lan-

guage scripts, including extensions for Latin and
Greek. Except for very basic symbols such as plus
(+) or asterisk (*), non-language characters aren’t
included until blocks beginning at 20.

2 Who is responsible for Unicode, and how

do things get added?

Unicode was developed and is maintained by the
Unicode Technical Committee (UTC) an arm of the
Unicode Consortium. Members of the consortium
include most computer hardware manufacturers and
software vendors. To align Unicode with ISO 10646,
the standard on which hardware and software are
actually based, the UTC works closely with the stan-
dardization subcommittee for coded character sets
of the International Organization for Standardiza-
tion.

The UTC members are individuals with various
areas of expertise. Most have a strong background in

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 299

Barbara Beeton

computer software. Many are skilled as well in lan-
guages and linguistic-related areas. However, there
are very few practicing physical scientists.

If something isn’t in Unicode, there is a stan-
dard proposal form. This asks for a number of items:

• the repertoire of characters being requested, in-
cluding character names;

• the context in which the proposed characters
are used;

• references to authoritative published sources
where the characters have been used;

• relationships the proposed characters bear to
characters already encoded;

• contact information for the supplier of a com-
puterized font to be used in printing the stan-
dard;

• names and addresses of contacts within national
or user organizations.

The on-line description of the proposal review pro-
cess warns that

• international standardization requires a signifi-
cant effort on the part of the submitter;

• it frequently takes years to move from an initial
proposal to final standardization;

• submitters should be prepared to become in-
volved in the process.

In the case of the STIX proposal, all these warnings
were true, in spades.

3 Initial conditions

In 1997, when the STIX project began, Unicode was
at version 2.0. It contained several blocks of interest
for mathematics:

• combining diacritics (first half of block 03 for
text; the last three 16-cell columns of block 20
for diacritics used with symbols)

• Greek (last half of block 03)

• arrows (last half of block 21) (Figure 1)

• mathematical operators (block 22) (Figure 2)

• miscellaneous technical (first half of block 23)

• geometric shapes (last half of block 25)

None of these blocks was entirely full at that time.

4 Character 6= glyph

Unicode encodes characters. Each character has a
designated, well-defined meaning. It appears in the
Unicode charts as a representative glyph, or image.
However, since the purpose of Unicode is to convey
meaning, the shape of the glyph may vary. To take
a trivial example, in text, an “A” has the same code
whether it is upright Roman, italic (A), bold (A),

The Unicode Standard 5.0, Copyright © 1991-2006 Unicode, Inc. All rights reserved.182

21FFArrows2190

219 21A 21B 21C 21D 21E 21F

←

↑

→

↓

↔

�

տ

ր

ց

ւ

փ

ք

օ

ֆ

�

�

�

�

֋

֌

֍

֎

֏

֐

�

֒

֓

֔

֕

֖

�

↖

↗

↙

↘

֣

↵

'

(

↸

*

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

⇍

?

⇏

⇐

⇑

⇒

⇓

⇔

F

G

H

I

J

K

L

⇜

⇝

⇞

⇟

⇠

⇡

⇢

⇣

U

V

W

X

Y

Z

⇪

\

]

^

_

`

a

b

c

d

�

�

�

�

�

�

�

�

	

�

�

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

219A

219B

219C

219D

219E

219F

21A0

21A1

21A2

21A3

21A4

21A5

21A6

21A7

21A8

21A9

21AA

21AB

21AC

21AD

21AE

21AF

21B0

21B1

21B2

21B3

21B4

21B5

21B6

21B7

21B8

21B9

21BA

21BB

21BC

21BD

21BE

21BF

21C0

21C1

21C2

21C3

21C4

21C5

21C6

21C7

21C8

21C9

21CA

21CB

21CC

21CD

21CE

21CF

21D0

21D1

21D2

21D3

21D4

21D5

21D6

21D7

21D8

21D9

21DA

21DB

21DC

21DD

21DE

21DF

21E0

21E1

21E2

21E3

21E4

21E5

21E6

21E7

21E8

21E9

21EA

21EB

21EC

21ED

21EE

21EF

21F0

21F1

21F2

21F3

21F4

21F5

21F6

21F7

21F8

21F9

21FA

21FB

21FC

21FD

21FE

21FF

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Figure 1: When the STIX project began, positions
21EB–21FF were empty. Copyright Unicode, used by
permission.

The Unicode Standard 5.0, Copyright © 1991-2006 Unicode, Inc. All rights reserved. 185

22FFMathematical Operators2200

220 221 222 223 224 225 226 227 228 229 22A 22B 22C 22D 22E 22F

∀

∁

∂

∃

∄

∅

∆

∇

∈

∉

�

∋

∌

�

�

∏

∐

∑

−

∓

∔

�

∖

∗

∘

∙

√

∛

∜

∝

∞

∟

∠

∡

∢

∣

#

$

%

∧

∨

∩

∪

∫

∬

∭

∮

∯

∰

�

�

�

∴

∵

∶

∷

∸

∹

∺

∻

∼

3

4

∿

≀

≁

≂

≃

≄

≈

≆

≇

≈

≉

≊

≋

≌

B

≎

≏

≐

≑

≒

≓

≔

≕

≖

≗

≘

≙

≚

≛

≜

R

S

≟

≠

≡

≢

≣

≤

≥

≦

≧

]

^

≪

≫

≬

b

≮

≯

e

f

g

h

i

j

k

l

≸

≹

≺

≻

o

p

q

r

⊀

⊁

⊂

⊃

⊄

⊅

⊆

⊇

⊈

⊉

⊊

⊋

⊌

⊍

�

⊏

⊐

�

�

�

�

⊕

⊖

⊗

�

�

�

�

⊜

◌

⊞

⊟

⊠

�

�

⊣

⊤

⊥

⊦

�

�

⊩

�

�

¡

⊮

£

¤

¥

¦

§

¨

©

⊶

⊷

⊸

ª

«

⊻

⊼

⊽

⊾

⊿

⋀

⋁

⋂

⋃

⋄

⋅

µ

¶

⋈

�

�

�

·

¸

¹

⋐

⋑

⋓

⋒

¾

⋕

⋖

⋗

Â

Ã

⋚

⋛

⋜

⋝

È

É

Ê

Ë

Ì

Í

Î

Ï

Ð

Ñ

Ò

Ó

⋪

⋫

⋬

⋭

Ø

Ù

Ú

Û

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

220A

220B

220C

220D

220E

220F

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

221A

221B

221C

221D

221E

221F

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

222A

222B

222C

222D

222E

222F

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

223A

223B

223C

223D

223E

223F

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

224A

224B

224C

224D

224E

224F

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

225A

225B

225C

225D

225E

225F

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

226A

226B

226C

226D

226E

226F

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

227A

227B

227C

227D

227E

227F

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

228A

228B

228C

228D

228E

228F

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

229A

229B

229C

229D

229E

229F

22A0

22A1

22A2

22A3

22A4

22A5

22A6

22A7

22A8

22A9

22AA

22AB

22AC

22AD

22AE

22AF

22B0

22B1

22B2

22B3

22B4

22B5

22B6

22B7

22B8

22B9

22BA

22BB

22BC

22BD

22BE

22BF

22C0

22C1

22C2

22C3

22C4

22C5

22C6

22C7

22C8

22C9

22CA

22CB

22CC

22CD

22CE

22CF

22D0

22D1

22D2

22D3

22D4

22D5

22D6

22D7

22D8

22D9

22DA

22DB

22DC

22DD

22DE

22DF

22E0

22E1

22E2

22E3

22E4

22E5

22E6

22E7

22E8

22E9

22EA

22EB

22EC

22ED

22EE

22EF

22F0

22F1

22F2

22F3

22F4

22F5

22F6

22F7

22F8

22F9

22FA

22FB

22FC

22FD

22FE

22FF

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Figure 2: Math operators in Unicode; at the start
of the STIX project, the last code assigned was 22F1.
Copyright Unicode, used by permission.

300 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

The STIX Project — From Unicode to fonts

or sans serif (A). Similarly, an accented “é” can be
represented either by one code or by a combination
of the letter “e” and the combining diacritic “´”.

This is not true for math notation, however.
The same letter in different styles (italic, script,
Fraktur, bold, . . .) means different things. This is il-
lustrated by the Hamiltonian equation from physics:

H =

∫

dτ(εE2 + µH2)

In 1997, at the beginning of the STIX project, there
was no way to unambiguously identify the script H.
Based only on the encoding, it was indistinguishable
from the H on the right side of the equation:

H =

∫

dτ(εE2 + µH2)

Something more was needed; early proposals by
UTC members recommended markup (e.g., font
changes), such as provided by XML or MathML.
However, it was realized that a physicist might wish
to search for this entity in a corpus or database, and
searching would be much more reliable if it could be
done using an unambiguous code.

The UTC solution was to incorporate a sub-
stantial set of mathematical alphanumerics, about
1,000 characters. These variations on the Latin and
Greek alphabets fill four complete blocks (U+1D40–
U+1D7F) in Plane 1. Placement outside the BMP

was meant to discourage casual users from using
these special alphabets for things such as wedding
invitations, where stylistic markup is more appro-
priate.

Another facet of the character/glyph dichotomy
is the use in math notation of different-sized opera-
tors in text vs. display environments — the size used
in text is generally smaller; compare

∑∞
i=0 xi and

∞
∑

i=0

xi .

The sum symbol is just a single character in Uni-
code. Delimiters (parentheses, brackets, etc.) are
also considered to be single characters, but they
must be provided in many sizes, including segments
suitable for piecing together to span multiple lines.

Unicode takes the position that such substitu-
tions are the responsibility of the application.

5 Requesting additions to Unicode

In addition to the approximately 1,000 mathemati-
cal alphanumerics already mentioned, the STIX col-
lection identified roughly 1,000 non-alphanumeric
symbols that couldn’t be found in Unicode version 2.
These were assigned provisional identifiers in the
Unicode Private Use Area (PUA) in order to keep

track of them. IDs were assigned in order of acces-
sion, rather than by shape, usage, or other rational
system.

Because of the large number of characters be-
ing requested, the UTC invited a representative of
STIX to present the proposal in person at a regular
UTC meeting, to answer questions directly, rather
than carrying on an extensive paper and e-mail in-
terchange. The fact that the proposal was backed
by five professional societies and a technical pub-
lisher, based on actual experience in their publica-
tions, probably lessened the usual requirement for
extensive examples. This did not mean that there
was no requirement to justify every symbol; it did,
however, allow symbols to be considered in groups
rather than individually — if one member of a co-
herent symbol group (e.g., arrows with a triple stem
pointing in several directions) was accepted, the rest
of the group was accepted as well.

As noted earlier, Unicode assigns characters in
blocks, preferably of groups with some inherent rela-
tionships. The UTC experts, acting on usage infor-
mation provided with the proposed characters, clas-
sified them into groups that corresponded to the ex-
isting symbol blocks: operators, arrows, geometrics,
and so forth. Then began the process of shoehorning
them into the code space. First, the gaps in existing
blocks were filled with appropriate items. Next, the
number of characters in each category was tallied,
and new blocks of appropriate sizes assigned. The
bulk of the math additions first appeared (on line) in
Unicode version 3.2, with the first paper publication
in version 4.0.

As of Unicode version 5.0, these new blocks
have been added:

• miscellaneous mathematical symbols A
(U+2700–U+27EF)

• supplemental arrows A (U+27F0–U+27FF)

• supplemental arrows B (U+2900–U+297F)

• miscellaneous mathematical symbols B
(U+2980–U+29FF)

• supplemental mathematical operators
(U+2A00–U+2AFF)

• miscellaneous symbols and arrows
(U+2B00–U+2BFF)

Not all of these blocks are filled yet, but space has
been left where experience has shown growth is likely
to occur.

One other key feature was adopted: a variation
selector — a one-character code (U+FE00 for math
symbols) identifying the preceding character as hav-
ing the same meaning, but an alternate shape which
cannot be composed from a base character plus a

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 301

Barbara Beeton

combining diacritic. An example is the relation 	
(U+2269) vs. � (U+2269,U+FE00). The use of the
variation selector is very tightly controlled; all char-
acters using it must be accepted explicitly by the
UTC. Other shape variations must be indicated by
markup and recognized by the application software.

Some important decisions were made during the
course of this exercise that should make future sub-
missions progress more smoothly.

First and foremost, it was accepted that math-
ematics is a language, and that symbols used in this
context are as essential as the letter “e” is to En-
glish. Another “given” is that math notation is
open-ended — mathematicians and other scientists
will continue to invent and adopt new symbols, so
the job isn’t done, and may never be.

Just within the past few months, a mathemati-
cian from Morocco has submitted documentation of
mathematical notation in Arabic — it is a mirror im-
age of what we see in European language contexts.
This generated a flurry of activity in the UTC to
adopt a rational collection of right-to-left symbols
to complement the basically left-to-right symbols al-
ready present. The new material will appear in Uni-
code version 5.1.

6 What wasn’t accepted, and why not?

In spite of the generally high level of acceptance
of characters proposed by STIX, the UTC rejected
some symbols. The reason for most rejections was
that they weren’t “math”. Symbols used by other
disciplines (astronomy, meteorology) were not con-
sidered to be relevant to the STIX request; it was
suggested that an organization involved in those dis-
ciplines should make a separate submission, at which
time it would be considered on its own merits.

Some symbols were rejected because they were
easily constructed as compounds of existing char-
acters and combining diacritics; this includes any
negated relations that hadn’t already been encoded.

For some symbols, in particular ones that were
identified after the initial proposal, the available
documentation was deemed insufficient for accep-
tance. However, when a suitable in-context pub-
lished example is found, acceptance of these strag-
glers is very likely.

Finally, some items in the STIX collection aren’t
considered independent symbols; they are partial
glyphs used for constructing larger symbols such as
multi-line parentheses or braces, or extenders for ar-
rows. These weren’t even submitted to the UTC

since they fall into the area that is the responsibil-
ity of application software.

7 Okay, Unicodes have been assigned;

how can we print them?

Assignment of Unicodes, while necessary, is not suf-
ficient for use of these symbols in electronic or paper
communication. It is also necessary to be able to
generate images that can be understood by some-
one trying to read them. Here is where fonts come
in.

A popular font for typesetting of math is Times
Roman or one of its variants. This font, originally
designed for newspaper use, is compact (a lot of
material can be squeezed onto a page), and is leg-
ible at small sizes. Its adoption for technical ma-
terial means that a large number of symbols have
been designed to be compatible. Times Roman was
the overwhelming choice of the STIX organizations
as the base font around which the new STIX fonts
would be created.

There are some very specific design criteria for
a font intended for math:

• Each letter must be unambiguously recogniz-
able in isolation; for Times, this means that
a substitute must be provided for the italic v,
since the usual Times shape is too easily con-
fused with the Greek letter nu ν.

• Hairlines must be thick enough to keep shapes
from breaking up in sub- and superscripts, and
to withstand multiple photocopy runs.

• Normal weight must be readily distinguishable
from bold.

• An alphabet intended for use as symbols need
not be usable for continuous text; in fact, it is
often desirable for a math alphabet to look a
bit peculiar if used for text.

Implementation of the STIX glyphs was con-
tracted out. The working list was a database in
order of provisional ID; assignment of new Unicodes
was still in the future. Glyphs were implemented
in blocks, which were returned to the STIX Techni-
cal Review Committee for comments; any problem
glyphs were returned to the contractor for repair.

The random ordering of the glyphs in the work-
ing list meant that glyphs intended to be used to-
gether, or supposed to be the same shape or weight,
often weren’t designed in the same batches, and
weren’t available for review at the same time. This
meant that a final design review would be essential.

The random ordering also meant that the fonts
couldn’t yet be used for anything practical. Among
other things, it was necessary to have a well-defined
naming scheme. Because the fonts were delivered
in Adobe Type 1 form, it was decided to assign
glyph names according to the Adobe guidelines.

302 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

The STIX Project — From Unicode to fonts

Except for a relatively small core of glyphs — es-
sentially those representing the ASCII and Latin 1
blocks and some additional punctuation — the rec-
ommended form of a name was based on the Uni-
code, with extensions to indicate compounding or
size and shape variations. This name begins with
either “uni” or “U” for glyphs corresponding to char-
acters in Unicode Plane 0 or Plane 1 respectively,
or with “stix” for (the fewer than 256) glyphs with
no corresponding Unicode.

8 Bookkeeping, bookkeeping

In order to keep track of what was happening, mas-
ter tables or databases were maintained in several
places. Tim Ingoldsby (of AIP, the overall project
manager) started with the same database as used
by the font contractor. To this he added, as phases
were delivered, information about what glyphs were
delivered in which phase, and the font and position
in the font where each was located.

I maintained a list based on the original collec-
tion information, sorted by Unicode or provisional
ID. This initially included sources, the names by
which the sources refer to each glyph, the number
of instances required (for weight, posture, size, etc.),
and a glyph description. As new information be-
came available, or was defined, it was added to the
table:

• newly assigned Unicodes, with cross-references
to and from the provisional ID;

• Type 1 glyph names;

• “TEX names”, since several of the STIX organi-
zations use that typesetting system;

• MathML entity names.

When delivery of the glyphs was nearing com-
pletion, Tim reprocessed my list, merged the dif-
ferences into his database, and produced a file for
checking. In this process we identified items that
had been overlooked, and made a final list for com-
pletion of the deliveries.

That left only a few tasks:

• design review;

• shape and content corrections;

• packaging and user documentation;

• beta testing;

• (LA)TEX support;

• final coordination of MathML entity names.

9 The design review

One more rearrangement was necessary — organiz-
ing the glyphs into groups that reflected shape cat-
egories, irrespective of identifier value. Since alpha-
bets are ordered logically within Unicode, they had

Table 2.5 Sizes of Simple Shapes

Shape tiny very small small
 (Bullet)

medium
small

medium
(default1)

regular
(default2)

large

triangle
left

25C2 25C3

25C0 25C1

triangle
right

25B8
2023

25B9

25B6 25B7

triangle
up

25B4 25B5

25B2 25B3

triangle
down

25BE 25BF

25BC 25BD

square
2B1D 2B1E 25AA 25AB 25FD 25FE 25FC 25FB 25A0 25A1 2B1B 2B1C

diamond
2B29 22C4 2B25 2B26

25C6 25C7

lozenge
2B2A 2B2B 2B27 2B28

29EB 25CA

pentagon
2B1F 2B20

pentagon
right

2B53 2B54

hexagon
horizontal

2B23 2394

hexagon
vertical

2B22 2B21

arabic
star

22C6 2B52 2B51 2B50 2605 2606

ellipse
horizontal

2B2C 2B2D

ellipse
vertical

2B2E 2B2F

circle

22C5 2219
00B7

2218 2022 25E6 2981 26AC 26AB 26AA 25CF 25CB 2B24 25EF

circled
circles

2299 2609

233E

circled
circles

2A00 29BF 229A

29BE 25C9 25CE

Figure 3: For geometric shapes, Unicode does make
a distinction by size. From Unicode Technical Report
#25 [1]; copyright Unicode, used by permission.

already been reviewed and corrected, and it was not
necessary to look at them again. The other cate-
gories included

• diacritics;

• punctuation;

• geometric shapes (circles, squares, diamonds
and lozenges, triangles, other polygons);

• arrows;

• relations (equals, greater/less, sub/supersets,
others);

• binary operators (cups/caps, and/or,
plus/times, other);

• large operators (integrals, other);

• delimiters and fences;

• other shapes.

Within each category, glyphs were arranged by sim-
ilarity of shape and size (Figure 3). Making sure
that everything was accounted for involved one more
sweep through the entire STIX master table. This
turned up some residual errors, which were corrected
so that the permanent documentation would be ac-
curate.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 303

Barbara Beeton

EQUALS AND FRIENDS (Re-Re-Revised)

@=A @࡞A@࡟A @ҎA @ߏA @ߐA @ѾA @ࡏA @ѿA @ࡠA @ҀA @ҁA
003D 2A75 2A76 2260 29E3 29E4 2250 2A66 2251 2A77 2252 2253

@҂A @࡝A @҃A @҄A @҅A @҆A @҇A @҈A @ҊA @҉A @ࡗA฀ @ҋA @ҌA
2254 2A74 2255 2256 2257 2258 2259 225A 225C 225B 2A6E 225D 225E

@ҍA @૒A฀ @ҏA @ࡐA @ࡡA @ҐA @ӿA @ࡑA @ࡒA @ґA
225F EE8B 2261 2A67 2A78 2262 22D5 2A68 2A69 2263

Bold

@=A @ЪA @КA @տA @ЛA @МA @НA @ОA
003D 2260 2250 2A66 2251 2252 2253 2254

@ПA @РA @СA @ТA @УA @ФA @ЦA @ХA @փA฀ @ЧA @ШA @ЩA
2255 2256 2257 2258 2259 225A 225C 225B 2A6E 225D 225E 225F

@ЫA @րA @ЬA @қA @ЭA
2261 2A67 2262 22D5 2263

IN CONTEXT

=
࡞
࡟
Ҏ

xߏx

xߐx

Ѿ
ࡏ
ѿ
ࡠ
Ҁ
ҁ
҂
࡝
҃
҄

҅
҆
҇
҈
Ҋ
҉
ࡗ
ҋ
Ҍ
ҍ
૒
ҏ
ࡐ
ࡡ
Ґ

xӿx

ࡑ
ࡒ
ґ
Bold

=
Ъ
К
տ
Л
М
Н
О
П
Р
С
Т

У
Ф
Ц
Х
փ
Ч
Ш
Щ
Ы
ր
Ь

xқx

Э

COMMENTS
I฀brought฀up฀the฀stroke฀widths฀of฀the฀question฀mark฀in฀the฀light฀225F฀and฀the฀exclamation฀mark฀

in฀EE8B.฀I฀also฀changed฀the฀asterisk฀in฀light฀and฀bold฀2A6E฀

Figure 4: A proof sheet for the glyphs based on or
related to equal signs.

For each group of symbols, proof sheets were
generated (Figure 4), reviewed, and comments for-
warded to the font specialist making the corrections.
No category was accepted the first time around, but
most required no more than two cycles for approval.

10 LATEX support

For non-TEX use, the fonts will be delivered as Open-
Type. However, some of the STIX organizations are
still using TEX implementations that don’t even sup-
port the use of virtual fonts. For this reason, a set
of Type 1 fonts will be provided as well, re-encoded
to access the glyphs in 256-glyph chunks.

Most “TEX names” will not change for glyphs
that were already available for TEX; Scott Pakin’s
comprehensive symbols list [2] has been an invalu-
able resource in the naming effort. For symbols

that were not already generally available, new names
have been assigned according to established naming
principles, being careful to avoid conflicts with ex-
isting names. Actual coding of the LATEX support
package will be done by an experienced LATEX pro-
grammer.

LATEX support will not be included for the ini-
tial beta release, which is expected early in the Fall,
but it should be available soon afterwards, and we
anticipate that it will be ready to go by the time the
fonts are posted for general release.

11 The future

We expect that a few more problems will be iden-
tified during beta testing, but in general, we be-
lieve that our efforts have resulted in a collection of
fonts that will make it possible to represent nearly
all mathematical expression both on paper and on
computer screens. How this is actually done does
depend on application developers, but since support
of Unicode beyond just Plane 0 is beginning to be
viewed as necessary by browser distributors, we are
optimistic.

As we mentioned earlier, mathematical nota-
tion is open-ended. The mechanism for adding this
notation to Unicode is now in place. The only ques-
tion open is, how will new glyphs become part of
these fonts. Presumably the STIX organizations will
address that question after they’ve all had a well de-
served rest.

References

[1] Barbara Beeton, Asmus Freytag and Murray
Sargent III, Unicode Technical Report #25,
Unicode Support for Mathematics, 2007.
http://www.unicode.org/reports/tr25

[2] Scott Pakin, The Comprehensive LATEX
Symbol List, 2005. CTAN: info/symbols/

comprehensive

[3] The Unicode Consortium, The Unicode
Standard, Version 2.0, Addison-Wesley
Developers Press, Reading, MA, 1996.

[4] The Unicode Consortium, The Unicode
Standard, Version 5.0, edited by Julie D.
Allen et al., Addison-Wesley, Upper Saddle
River, NJ / Boston, 2006.

304 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Fonts for every language:
SIL’s font projects and the Open Font License

Jonathan Kew
(based on slides by Victor Gaultney)
jonathan_kew (at) sil (dot) org

People around the world speak over 6000 languages;
to communicate in writing, these language commu-
nities use hundreds of variations on dozens of differ-
ent scripts. Written communication is fundamental
to today’s information-based world, and an ever-
increasing proportion of the world’s writing and com-
munication is done through computer systems.

While the writing systems of major national
languages are generally well supported, millions of
people still have no way to type their language on a
computer, because there are no adequate fonts for
their writing system. Minority language communities
may use a well-known script such as Latin, Cyrillic,
Arabic, or Devanagari, but with particular extensions
or variations that were not known to mainstream
developers, and thus are not supported in standard
fonts or software. In other cases, entire scripts used
by minority groups are as yet not fully documented
or encoded in Unicode.

Without adequate support for their language in
computer systems, people are excluded from the “in-
formation society”, or have access to it only through
a second or third language, seriously hampering their
ability to participate in the modern world and to
access the resources they need to develop their own
communities, as well as to benefit from current tech-
nology to enhance their own literature and cultural
heritage.

Several factors may play a part in cutting lan-
guage communities off from adequate computing
solutions:

Availability Is there even a font for their script or
alphabet?

Completeness Does that font support that partic-
ular language, with its unique variations on the
script?

Complexity Does the technology support the rules
of the writing system?

Quality Is the result both correct and attractive,
in the eyes of the user community?

Accessibility Does everyone have access to that
solution?

For many of the world’s minorities, at least one (often
several) of these factors severely limits their access
to digital information and modern communication
systems.

The situation is changing, albeit gradually. A
growing number of individuals and groups are coming
together to provide solutions, and SIL International
is privileged to play a part. By linking experienced
type designers and technicians with minority com-
munities that have particular needs, we have been
able to provide high-quality fonts that meet the re-
quirements of a number of minority language groups.
Graphite, an open-source font layout engine devel-
oped by SIL, makes it possible to program complex
script behavior into fonts without waiting for the
(sometimes lengthy) process of standardization and
then implementation in engines like Uniscribe, Pango,
or ICU. And X ETEX provides a document formatting
system able to work with complex scripts, whether
implemented via OpenType layout or Graphite.

For solutions to be useful, they must be available.
And to be maximally useful, they must also be adapt-
able, as no single developer can hope to meet the
needs of all potential users. We therefore encourage
font developers to consider releasing their work under
the SIL Open Font License. This license is specifically
designed for fonts and related software. To quote
from the web site (http://scripts.sil.org/OFL),
“The OFL is designed to be in tune with the FLOSS

(Free/Libre and Open Source Software) culture. It
builds upon good ideas already in existence in some
free and open projects but by bringing our extensive
font design experience and linguistic software engi-
neering know-how into the mix, we believe we are
able to make a font-specific license better, simpler,
more human-readable, neutral and reusable.”

It is our view that every community should have
at least one high-quality font, working with standard
software, suitable for their language. We invite the
partnership of all who are interested in making this
a reality.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 305

Dual presentation with math from one source using GELLMU

William F. Hammond
Department of Mathematics & Statistics
University at Albany
Albany, New York 12222 USA
http://www.albany.edu/~hammond/

Abstract

Two traditional approaches for achieving simultaneous print and HTML output
from a single marked-up source are relevant to the TEX community.

1. Write a LATEX article, and use a program that translates to HTML.

2. Write an article in an author-level XML document type, and use standard
XML translation methods to generate both LATEX and HTML.

This article addresses a hybrid approach: the use of “generalized LATEX”, as
implemented in the GELLMU Project, to produce dual presentation from a sin-
gle LATEX-like source. The method combines the reliability of XML document
transformation with many of the conveniences traditionally available to LATEX
authors.

1 Introduction

A contemporary author writing an article for “dual
presentation” has in mind both the classical printed
presentation of an article and the online form of an
article formatted in HTML. There are particular
challenges when mathematics is involved because it
is moderately difficult to produce correct mathemat-
ical markup for modern HTML documents.

While mathematics is a principal concern in this
article, most of what is said here is relevant, though
less critically so, for documents that do not involve
mathematics.

There are two main approaches for achieving
dual presentation that are relevant to the TEX com-
munity. (Texinfo, the language of the GNU docu-
mentation system, also provides a route for dual pre-
sentation of articles without mathematical markup.)

1. Write a LATEX article, and use a program that
translates to HTML.

2. Write an article in a suitable XML document
type, such as DocBook, and use standard soft-
ware for generating LATEX and HTML.

Both methods present challenges to authors
who have been accustomed to using LATEX. In par-
ticular, if mathematics is involved, there are no
widely deployed XML document types that support
author-level mathematical markup. Since mid-2002
mathematical content in the second-generation form
of HTML has been supported by the two most widely
deployed web browsers, but not many articles seem

to have appeared on the web in this form so far. The
most likely reason is difficulty of creation.

This article addresses the use of “generalized
LATEX”, as implemented in the GELLMU Project,
to produce dual content from a single LATEX-like
source. (The overall system design in GELLMU is
one for multiple outputs although at this time the
standard implementation provides (i) printed out-
put via standard LATEX and (ii) HTML.)

A generalized LATEX article under the GELLMU

Project is essentially equivalent to an XML doc-
ument under an author-level document type that
may be called “GELLMU article”. Preparing doc-
uments this way combines the reliability of XML

document transformation with most of the conve-
niences, such as newcommand macro substitutions,
the use of blank lines for paragraph boundaries, and
cross-referencing, that are available when writing
LATEX markup.

It should be emphasized that the GELLMU

Project does not provide translation of classical
LATEX to HTML or to any XML document type. Of
course, one may open a classical LATEX document in
an editor and invest time and energy to “port” it
to GELLMU source, but there is no automation for
this.

The task of translating legacy documents to
HTML and to XML document types is difficult. In
2007 we are witness to more than 10 years of effort in
this direction, and we still have no easy path, partic-
ularly when mathematics is involved. Nonetheless,
translation, to the extent that it is reasonably pos-

306 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Dual presentation with math from one source using GELLMU

sible, is very important because we have 30 years
of legacy documents. (Most of the past translation
efforts have been aimed at standard structured for-
mats like HTML and the DocBook XML document
type. It would be interesting to see if the translation
task toward such standard formats can be improved
by first translating toward an author-level document
type, such as GELLMU article, that models struc-
tured LATEX rather closely and then translating from
there toward the original target.)

When a contemporary author has dual presen-
tation in mind for new documents, writing classical
LATEX is no longer the best way to proceed because
of the difficulty of translation from LATEX to other
formats. Writing for a suitable author-level XML

document type is a much better way to have seam-
less dual presentation, and using the LATEX-like front
end offered by GELLMU makes it seem to the author
very much like writing LATEX.

In his talk preceding mine at TUG 2007 Chris
Rowley ventured the idea that “peak TEX”, like
“peak oil”, lies in the near future. In saying that
I hope he is speaking of a peak in relative use by au-
thors as markup source of the print-focused typeset-
ting language that we have known. The other side of
this is that if, as a community, we come to appreci-
ate the usefulness of LATEX-like markup, as opposed
to classical LATEX, as a general author front end for
writing structured documents and then come to un-
derstand that practice as part of the TEX world and
hone our techniques of formatting these structured
documents for classical TEX-based typesetting, the
future I imagine is one of more, not less, TEX.

2 Writing source markup

This is GELLMU source for a short paragraph with
a relatively simple mathematical display.

The following identity may be

regarded as a formulation of the

Weierstrass product for the Gamma

function.

\[\int {0}^{\infty} t^x

e^{-t} \frac{dt}{t} \int:

= \frac{1}{x}

\prod {k=1}^{\infty}

\frac{\bal{1 + \frac{1}{k}}^x

}{\bal{1 + \frac{x}{k}}}

\prod: \]

Understanding the derivation of

this identity is reasonable for a

bright student of first year

undergraduate calculus in the

United States.

This source compiles to:

The following identity may be regarded as
a formulation of the Weierstrass product for
the Gamma function.

∫ ∞

0

txe−t dt

t
=

1

x

∞
∏

k=1

(

1 + 1
k

)x

(

1 + x
k

)

Understanding the derivation of this identity
is reasonable for a bright student of first year
undergraduate calculus in the United States.

The markup looks like classical LATEX. In fact,
except for the use of the zone closers \int: and
\prod:, it would be classical LATEX. It is generalized
LATEX.

The mandatory use of zone closers arises from
the fact that the GELLMU system is not monolithic.
Rather than being a single program, it is a suite
of cross-platform component programs, each with
a well-defined task, managed with a driver script.
The first stage of processing operates at the level
of syntax with almost no knowledge of markup vo-
cabulary.1 Because of this, GELLMU source, like
Texinfo source, has stricter syntactic requirements
than plain TEX and classical LATEX.

Other ways in which GELLMU source differs
from classical LATEX source include:

1. Command arguments must be explicitly braced.

2. There may be no white space between a com-
mand name and the delimiter (a brace or
bracket) for its first argument or option.

3. There may be no white space separating the de-
limiters of the successive arguments and options
of a command.

4. Braces for the argument of a superscript or sub-
script may be omitted only if the argument is a
single character.

5. The semi-colon at the end of a command name
(such as \latex; above) indicates that the
command does not introduce content. Often
this type of semi-colon may be omitted, and,
beyond that for most purposes \foo; may be
regarded as shorthand for \foo{}.

6. The command vocabulary is somewhat differ-
ent.

3 Another example

Figure 1 provides a GELLMU rendition of an ex-
ample posted to the UseNet newsgroup sci.math.

research on 29 October 20022 by David Madore of
ENS, comparing TEX markup to MathML markup
in order to illustrate the undisputed point that no

1 It can be given lists of names of commands with shared
syntactic properties.

2 Message id: apmpvnbpb1.repost@nef.ens.fr

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 307

William F. Hammond

In a letter to Godfrey Harold Hardy, Sr
¯
ı̄n
¯
ivāsa Rāmān

¯
ujan

¯
Aiyaṅkār asserts that

1

1 + e−2π

√
5

1+ e
−4π

√
5

1+ e
−6π

√
5

...

=









√
5

1 +
5

√

53/4
(√

5−1
2

)5/2

− 1

−
√

5 + 1

2









e2π/
√

5

Figure 1

Figure 2

author would ever regularly want to write MathML

directly.3

This is the GELLMU source underlying figure 1:

\macro{\=}{\ovbar}

\macro{\.}{\ovdot}

\newcommand{\b}[1]{\unbar{#1}}

In a letter to Godfrey Harold

Hardy, S\b{r}\={\i}\b{n}iv\={a}sa

R\={a}m\={a}\b{n}uja\b{n}

Aiya\.{n}k\={a}r asserts that

\[\frac{1

}{1+\frac{e^{-2\pi\sqrt{5}}

}{1+\frac{e^{-4\pi\sqrt{5}}

}{1+\frac{e^{-6\pi\sqrt{5}}

}{\ldots}}}}

=

\bal{\frac{\sqrt{5}

}{

1+\sqrt[5]{5^{3/4}

\bal{

\frac{\sqrt{5}-1}{2}

}^{5/2}-1}}

-\frac{\sqrt{5}+1}{2}}

e^{2\pi/\sqrt{5}} \]

In this markup, note first the use of GELLMU’s
\macro facility to provide emulation of classical
LATEX algorithmic accents with names that are not
formed with letters. Further note the use of \bal{

... } in place of the LATEX usage \left(...

3 Madore ends his posting as follows: “And, to remain
fully on topic, I ask: has this remarkable statement by Ra-
manujan ever been proven rigorously? And, if so, how com-
plicated is it?”

\right). GELLMU has various balancers of this
type and will eventually have more. This is related
to the fact that the markup is simply a “front” for
an SGML document type where a name is needed.
The processor for XHTML + MathML output will not
tolerate unbalanced balancing characters in a math
zone except as provided through these balancers and
also through the list generator

\vect[...]{...}{...} ... {...} .

The kinds of weak enforcement of mathemati-
cal semantics represented by such balancing provi-
sions and by the requirement for explicit ending of
sum, int, and prod containers is a prelude to future
optional incorporation of stronger mathematical se-
mantics in the markup.

Madore is correct in suggesting that one doesn’t
want to look at the MathML markup for this, but
the rendering by Firefox, somewhat enlarged, is cap-
tured in the screenshot that is figure 2.

4 The importance of XHTML + MathML

There are several reasons why it is important to
have articles and course materials with mathemati-
cal content online in modern HTML, i.e., XHTML +

MathML.

4.1 Public relations for mathematics

• To a young person XHTML + MathML repre-
sents “math on the web”.

• It’s more flexible and more convenient for online
reading than PDF — doubly so by comparison

308 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Dual presentation with math from one source using GELLMU

Figure 3

with double-column online PDF.

• In many cases print journals are disappearing
as librarians strive to conserve money and shelf
space.

• In an electronic library browsing HTML is the
analogue of browsing in the stacks, while print-
ing a PDF document is the analogue of making
a copy of an article.

4.2 Special needs

• It’s great for proof reading. (Enlarge and
shorten the lines.)

• Large print editions at no cost.

The small gamma bit presented earlier may
easily be made to look like figure 3 in Firefox

(a screenshot).

• Articles presented in XHTML + MathML com-
ply with web accessibility guidelines. PDF doc-
uments normally do not. (In the GELLMU pro-
duction stream (see figure 5) an intermediate
stage file with suffix .zml generated during the
final stage of translation to XHTML + MathML

may be of more interest than the XHTML +

MathML form to those wishing to generate spe-
cific output formats for various accessibility-
related purposes.)

5 Compiling an article

5.1 Acquiring the software

GELLMU is based on cross-platform free software
licensed under the GNU GPL. Its package is avail-
able from CTAN [2] and from the GELLMU web site
[6]. The package requires several other free cross-
platform programs: GNU Emacs, perl, and two stan-
dard libraries of SGML/XML software, Open SP (for
onsgmls) and Expat (for xmlwf). Whatever image
manipulation software is used for handling graphic
inclusions in TEX on one’s platform should suffice
except one should note that neither PDF nor en-
capsulated PostScript (usually .eps files) may be
included as an image within an HTML page. There-
fore, if one is using incorporated images, one will
want to have the ability to generate copies in, for
example, the PNG and JPEG formats.

Linux: The required packages are generally
part of a full GNU/Linux distribution. GELLMU

should be installed in /usr/local/gellmu and sym-
links to driver scripts should be made from a suitable
place in one’s command path.

Mac OSX and other Unix variants: The
only difference from GNU/Linux is that some of the
supporting packages may need to be acquired and
installed.

MS Windows: The best strategy is to install
a full Cygwin (http://www.cygwin.com/) distribu-

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 309

William F. Hammond

\documenttype{article}

\title{}

\begin{document}

The following identity may be regarded as a formulation of the

Weierstrass product for the Gamma function.

\[\int {0}^{\infty} t^x e^{-t} \frac{dt}{t} \int:

= \frac{1}{x}

\prod {k=1}^{\infty}

\frac{\bal{1 + \frac{1}{k}}^x}{\bal{1 + \frac{x}{k}}}

\prod: \]

Understanding the derivation of this identity is reasonable for

a bright student of first year undergraduate calculus in the

United States.

\end{document}
Figure 4

tion. Then proceed as with Linux. (It is possible
to operate natively, but the author has not done so
since 2002, and no native MS-Windows user has of-
fered to update the native MS-Windows batch files.)

5.2 Procedure

Let’s package the preceding Weierstrass product
markup segment as a tiny article. Because it is
GELLMU, not LATEX, it begins with

\documenttype{article}

rather than with

\documentclass{article} .

See figure 4.
Beyond early-stage syntactic processing the sys-

tem requires that there be a title in the preamble of
every article. An empty title is allowed.

Text normally must be in paragraphs. (There
are exceptions.) Therefore, the blank line after
\begin{document} is essential.

It is sometimes said about LATEX that a blank
line ends a paragraph. However, in GELLMU a
blank line begins a paragraph.

We place the tiny article text in a file named
gammabit.glm, with .glm the canonical suffix for a
GELLMU source file, enter the command

mmkg gammabit

and prepare to read the scroll. At the end when all
goes well there are the following outputs:

• XHTML + MathML — the best online version
• PDF — for widely distributable print
• DVI — for TEXies
• classical HTML — for challenged browsing

Additionally one might note that some level of ren-
dering based on cascading style sheets (CSS) is pos-
sible for the author-level XML.

In order to understand the scroll one needs to
understand the system design.

6 System components

Regular GELLMU is a system assembled from mod-
ular components. Each step along the way produces
an intermediate stage output that has its own sense
and that, when things go wrong, provides oppor-
tunity both for diagnosis and intervention. A flow
chart for regular GELLMU is found in figure 5.

In figure 5 what I call the “side door” is the
second row entry showing the possibility of transla-
tion from source languages other than the markup
of regular GELLMU into the author-level XML doc-
ument type corresponding to the source markup of
regular GELLMU.

One will note from the scroll that SGML/XML

validation is done at several stages. This valida-
tion can be important for catching the author’s mis-
takes. When there are error messages, it is possible
and important to consult the scroll’s last message
regarding the stage of processing. Note in this re-
gard that the translation from elaborated XML to
XHTML + MathML takes place in three stages that
are not shown on the chart but that may be seen in
the example scroll.

7 Further information

Much more information may be found in the User
Guide [3], the GELLMU Manual [4], and the web
site for GELLMU,

http://www.albany.edu/~hammond/gellmu/ .

A link to an online version of this document with
live links should be available at the GELLMU web
site for several years.

310 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Dual presentation with math from one source using GELLMU

GELLMU

source
SGML

Outside
SGML

or
XML

source

Author-level
XML

Elaborated
XML

PDF

XHTML

+
MathML

Classic
HTML

Figure 5

References

[1] William F. Hammond, “GELLMU: A Bridge
for Authors from LATEX to XML”, TUGboat:
The Communications of the TEX Users Group,
vol. 22 (2001), pp. 204–207; also available
online at http://www.tug.org/TUGboat/
Contents/contents22-3.html.

[2] GELLMU at CTAN:
http://www.tex.ac.uk/tex-archive/help/

Catalogue/entries/gellmu.html

[3] William F. Hammond, “Introductory
User’s Guide to Regular GELLMU”, http:
//www.albany.edu/~hammond/gellmu/igl/

userdoc.xhtml (parallel PDF).

[4] William F. Hammond, “The GELLMU

Manual”, http://www.albany.edu/~hammond/
gellmu/glman/glman.xhtml (parallel PDF).

[5] “New York Journal of Mathematics Articles
in Mathematically-Capable HTML”;
demonstration versions of past articles
from The New York Journal of Mathematics
ported from classical LATEX using GELLMU,
http://math.albany.edu/demos/nyj/.

[6] The GELLMU web site:
http://www.albany.edu/~hammond/gellmu/

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 311

LuaTEX

Taco Hoekwater
http://luatex.org

Abstract

LuaTEX is an extended version of TEX that uses Lua as an embedded scripting
language. The main objective of the LuaTEX project is to provide an open and
configurable variant of TEX while at the same time offering downward compati-
bility. This paper gives a broad overview of the project.

1 Introduction

The LuaTEX source code of course includes Lua and
the latest versions of pdfTEX and Aleph, but it also
contains a few other more or less distinguishable
parts:

• Some specialized TEX extensions
• A set of Lua module libraries
• The font reading code from FontForge
• Some of the font writing code from xdvipdfmx
• C source code to glue all of this together

If \pdfoutput is not set, LuaTEX is a lot like
Aleph with additional support for the microtypog-
raphy pdfTEX is known for. And if \pdfoutput is
set, then it is like pdfTEX with the much better di-
rectionality support provided by Aleph.

If needed, Lua code is used to apply input re-
encoding, instead of I/O translation OTPs (Aleph)
or tcx files (pdfTEX). Also, some experimental fea-
tures of both programs were removed since the orig-
inal problems can be better dealt with using Lua.

2 Time-line

The first informal start of LuaTEX was around TUG

2005. After an initial period of playing around and
experimenting, the project gained momentum in the
spring of 2006, when funding from Colorado State
University and TUG (via the Oriental TEX Project)
was acquired.

Soon after that, a public repository was set up
and a mailing list and website were started. After a
year of continuous work, the first beta was released
at the TUG 2007 conference in San Diego, USA. The
offered functionality is not completely finalized yet,
so the interfaces are likely to change a bit still. A
stable release is planned for the next TUG confer-
ence, in Cork, Ireland, 2008.

3 Features

The new functionality of LuaTEX falls into a few
broad categories that are explained briefly in the
next paragraphs.

3.1 Unicode support

LuaTEX uses UTF-8 encoded Unicode throughout
the system. That means input and output files are
Unicode, and also that the hyphenation patterns are
expected to express hyphenation points of Unicode
characters (instead of the traditional font glyphs).

Commands like \char and \catcode are ex-
tended to accept the full Unicode range, and used
fonts can (but do not have to) be Unicode encoded.

3.2 TEX extensions

In the process of extending TEX for Unicode support
and the cleanup required for interfacing to Lua code,
some other extensions were also added. Here we
briefly describe the most interesting of these.

The startup processing is altered to allow the
document (via a Lua script) to have access to the
command line.

A new feature called ‘\catcode tables’ allows
switching of all category codes in a single statement.

A new set of registers called attribute is added.
Attributes can be used as extra counter values, but
their usefulness comes mostly from the fact that all
the ‘set’ attributes are automatically attached to all
typesetting nodes created within their active scope.
These node attributes can then be queried from any
Lua code that deals with node processing.

The single internal memory heap that tradi-
tional TEX uses for tokens and nodes is split into two
separate arrays, and each of these will grow dynam-
ically when needed. The same is true for the input
line buffer and the string pool size. All font memory
is allocated on a per-font basis. Some less important
arrays are still statically allocated, but eventually all
memory allocation will become dynamic.

There is no separate pool file any more; all
strings from that file are embedded during the final
phase of the compilation of the luatex executable.

The format files are passed through zlib, allow-
ing them to shrink to roughly half of the size they
would have had in uncompressed form.

312 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

LuaTEX

3.3 Extended font subsystem

The font system of LuaTEX is totally configurable
through optional Lua code. If you do nothing, Lua-
TEX handles both TEX (TFM) and Omega (OFM)
fonts as well as the related virtual font formats.

With some user-supplied Lua code, LuaTEX can
also happily use OpenType and TrueType fonts. In
addition, it is possible to build up encodings and
virtual fonts totally in-memory.

The handling of ‘virtualness’ takes place at a
different level in LuaTEX, meaning every single char-
acter can be either virtual or real, instead of this be-
ing handled at the font level. Inside a virtual char-
acter, it is possible to use arbitrary typeset data as
‘character contents’.

3.4 Lua execution

Execution of Lua code within a document is handled
by two new primitives: the expandable \directlua

command, and the non-expandable \latelua com-
mand. The latter creates a node with Lua code that
will be executed inside the \output routine, just like
the traditional \write.

There can be more than one Lua interpreter
state active at the same time. Some modules that
are normally external to Lua are statically linked in
with LuaTEX, because they offer useful functional-
ity. This is one of the areas where future change is
likely, but at the moment the list comprises:

• slnunicode, from the Selene libraries,
luaforge.net/projects/sln (v1.1)

• luazip, from the kepler project,
www.keplerproject.org/luazip/ (v1.2.1)

• luafilesystem, also from the kepler project, www.
keplerproject.org/luafilesystem/ (v1.2)

• lpeg, by Roberto Ierusalimschy, www.inf.
puc-rio.br/~roberto/lpeg.html (v0.6)

• lzlib, by Tiago Dionizio, mega.ist.utl.pt/
~tngd/lua/ (v0.2)

• md5, by Roberto Ierusalimschy, www.inf.
puc-rio.br/~roberto/md5/md5-5/md5.html

• fontforge, a partial binding to the FontForge
font editor by George Williams,
fontforge.sf.net

It is also possible to make LuaTEX behave like
the standalone Lua interpreter or the Lua bytecode
compiler.

3.5 Lua interface libraries

LuaTEX would not be very useful if the Lua code
did not have a way to communicate with the TEX

internals. For this purpose, a set of Lua modules is
defined:

• tex (general TEX access)
• pdf (routines related to pdf output)
• lua (lua bytecode registers)
• texio (writing to the log and terminal)
• font (accessing font internals)
• status (LuaTEX status information)
• kpse (file searching)
• callback (setting up callback hooks)
• token (handling TEX tokens)
• node (handling typeset nodes)

3.6 Callbacks

A callback is a hook into the internal processing of
LuaTEX. Using callbacks, you can make LuaTEX
run a Lua function you have defined instead of (or
on top of) a bit of the core functionality.

It is easiest to think of it this way: callbacks
offer a way to define something equivalent to com-
piled executable code. They have no connection to
the TEX input language at all. Because of this they
are very different from the argument to \directlua.

There are a few dozen callback hooks already
defined, with many more to come later. There are
callbacks for a wide variety of tasks, for instance:
finding files, reading and preprocessing textual in-
put, defining fonts, token creation, node list han-
dling, and information display.

Here is a short example of defining a callback:

\directlua0{

function read_tfm (name)

archive = zip.open(’texmf-fonts.zip’)

if archive then

tfmfile = archive:open(name .. ’.tfm’)

if tfmfile then

data = tfmfile:read(’*all’)

return true, data, \string#data

end

end

return false, nil, 0

end

callback.register(’read_font_file’,read_tfm)

}

4 Contact

The LuaTEX project is currently run by:

• Hans Hagen (general overview and website)
• Hartmut Henkel (pdf backend)
• Taco Hoekwater (coding and manual)

With help from:

• Arthur Reutenauer (binaries and testing)
• Martin Schröder (release support)

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 313

ConTEXt MkIV: Going UTF

Hans Hagen
http://pragma-ade.com

http://luatex.org

1 Introduction

In this document I will keep track of the transition
of ConTEXt from MkII to MkIV, the latter being the
Lua aware version.

The development of LuaTEX started with a few
email exchanges between me and Hartmut Henkel.
I had played a bit with Lua in Scite and somehow
felt that it would fit into TEX quite well. Hart-
mut made me a version of pdfTEX which provided
a \lua command. After exploring this road a bit
Taco Hoekwater took over and we quickly reached
a point where the pdfTEX development team could
agree on following this road to the future.

The development was boosted by a substantial
grant from Colorado State University in the context
of the Oriental TEX Project of Idris Samawi Hamid.
This project aims at bringing features into TEX that
will permit ConTEXt to do high quality Arabic type-
setting. Due to this grant Taco could spent substan-
tial time on development, which in turn meant that
I could start playing with more advanced features.

The full MkIV document is not so much a users
manual as a history of the development. Consider
it a collection of articles, and some chapters — like
this one — have indeed ended up in the journals of
user groups. Things may evolve and the way things
are done may change, but it felt right to keep track
of the process this way. Keep in mind that some
features may have changed while LuaTEX matured.

Just for the record: development in the LuaTEX
project is done by Taco Hoekwater, Hartmut Henkel
and Hans Hagen. Eventually, the stable versions will
become pdfTEX version 2 and other members of the
pdfTEX team will be involved in development and
maintenance. In order to prevent problems due to
new and maybe even slightly incompatible features,
pdfTEX version 1 will be kept around as well, but
no fundamentally new features will be added to it.
For practical reasons we use LuaTEX as the name
of the development version but also for pdfTEX 2.
That way we can use both engines side by side.

Editor’s note: This is the introduction and one chapter of the
full ConTEXt MkIV document. See the ‘Random comments’
column on p. 377 for more publication information.

This document is also one of our test cases.
Here we use traditional TEX fonts (for math), Type 1
and OpenType fonts. We use color and include test
code. Taco and I always test new versions of Lua-
TEX (the program) and MkIV (the macros and Lua
code) with this document before a new version is
released. Keep tuned . . .

2 Going UTF

LuaTEX only understands input codes in the Uni-
versal Character Set Transformation Format, aka
UCS Transformation Format, better known as: UTF.
There is a good reason for this universal view on
characters: whatever support gets hard coded into
the programs, it’s never enough, as 25 years of TEX
history have clearly demonstrated. Macro packages
often support more or less standard input encodings,
as well as local standards, user adapted ones, etc.

There is enough information on the Internet
and in books about what exactly is UTF. If you
don’t know the details yet: UTF is a multi-byte
encoding. The characters with a bytecode up to
127 map onto their normal ASCII representation. A
larger number indicates that the following bytes are
part of the character code. Up to 4 bytes make an
UTF-8 code, while UTF-16 always uses two pairs of
bytes.

byte1 byte2 byte3 byte4 Unicode

192–223 128–191 0x80–0x7FF
224–239 128–191 128–191 0x800–0xFFFF
240–247 128–191 128–191 128–191 0x10000–0x1FFFF

In UTF-8 the characters in the range 128–191
are illegal as first characters. The characters 254 and
255 are completely illegal and should not appear at
all since they are related to UTF-16.

Instead of providing a never-complete truckload
of other input formats, LuaTEX sticks to one input
encoding but at the same time provides hooks that
permits users to write filters that preprocess their
input into UTF.

While writing the LuaTEX code as well as the
ConTEXt input handling, we experimented a lot.
Right from the beginning we had a pretty clear pic-
ture of what we wanted to achieve and how it could
be done, but in the end arrived at solutions that

314 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

ConTEXt MkIV: Going UTF

permitted fast and efficient Lua scripting as well as
a simple interface.

What is involved in handling any input encod-
ing and especially UTF? First of all, we wanted to
support UTF-8 as well as UTF-16. LuaTEX imple-
ments UTF-8 rather straightforwardly: it just as-
sumes that the input is usable UTF. This means
that it does not combine characters. There is a good
reason for this: any automation needs to be config-
urable (on/off) and the more is done in the core, the
slower it gets.

In Unicode, when a character is followed by an
‘accent’, the standard may prescribe that these two
characters are replaced by one. Of course, when
characters turn into glyphs, and when no matching
glyph is present, we may need to decompose any
character into components and paste them together
from glyphs in fonts. Therefore, as a first step, a
collapser was written. In the (pre)loaded Lua tables
we have stored information about what combination
of characters need to be combined into another char-
acter.

So, an a followed by an ‘ becomes à and an e

followed by " becomes ë. This process is repeated
till no more sequences combine. After a few alter-
natives we arrived at a solution that is acceptably
fast: mere milliseconds per average page. Experi-
ments demonstrated that we can not gain much by
implementing this in pure C, but we did gain some
speed by using a dedicated loop-over-utf-string func-
tion.

A second UTF related issue is UTF-16. This
coding scheme comes in two endian variants. We
wanted to do the conversion in Lua, but decided to
play a bit with a multi-byte file read function. Af-
ter some experiments we quickly learned that hard
coding such methods in TEX was doomed to be com-
plex, and the whole idea behind LuaTEX is to make
things less complex. The complexity has to do with
the fact that we need some control over the different
linebreak triggers, that is, (combinations of) charac-
ter 10 and/or 13. In the end, the multi-byte readers
were removed from the code and we ended up with a
pure Lua solution, which could be sped up by using
a multi-byte loop-over-string function.

Instead of hard coding solutions in LuaTEX a
couple of fast loop-over-string functions were added
to the Lua string function repertoire and the solu-
tions were coded in Lua. We did extensive timing
with huge UTF-16 encoded files, and are confident
that fast solutions can be found. Keep in mind that
reading files is never the bottleneck anyway. The
only drawback of an efficient UTF-16 reader is that

the file is loaded into memory, but this is hardly a
problem.

Concerning arbitrary input encodings, we can
be brief. It’s rather easy to loop over a string and
replace characters in the 0–255 range by their UTF

counterparts. All one needs is to maintain conver-
sion tables and TEX macro packages have always
done that.

Yet another (more obscure) kind of remapping
concerns those special TEX characters. If we use a
traditional TEX auxiliary file, then we must make
sure that for instance percent signs, hashes, dollars
and other characters are handled right. If we set the
catcode of the percent sign to ‘letter’, then we get
into trouble when such a percent sign ends up in the
table of contents and is read in under a different cat-
code regime (and becomes for instance a comment
symbol). One way to deal with such situations is to
temporarily move the problematic characters into a
private Unicode area and deal with them accord-
ingly. In that case they no longer can interfere.

Where do we handle such conversions? There
are two places where we can hook converters into
the input.

1. each time when we read a line from a file, i.e.
we can hook conversion code into the read call-
backs

2. using the special process_input_buffer call-
back which is called whenever TEX needs a new
line of input

Because we can overload the standard file open
and read functions, we can easily hook the UTF col-
lapse function into the readers. The same is true for
the UTF-16 handler. In ConTEXt, for performance
reasons we load such files into memory, which means
that we also need to provide a special reader to TEX.
When handling UTF-16, we don’t need to combine
characters so that stage is skipped then.

So, to summarize this, here is what we do in
ConTEXt. Keep in mind that we overload the stan-
dard input methods and therefore have complete
control over how LuaTEX locates and opens files.

1. When we have a UTF file, we will read from
that file line by line, and combine characters
when collapsing is enabled.

2. When LuaTEX wants to open a file, we look
into the first bytes to see if it is a UTF-16 file,
in either big or little endian format. When this
is the case, we load the file into memory, convert
the data to UTF-8, identify lines, and provide a
reader that will give back the file linewise.

3. When we have been told to recode the input
(i.e. when we have enabled an input regime) we

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 315

Hans Hagen

use the normal line-by-line reader and convert
those lines on the fly into valid UTF. No col-
lapsing is needed.

Because we conduct our experiments in Con-
TEXt MkIV the code that we provide may look a bit
messy and more complex than the previous descrip-
tion may suggest. But keep in mind that a mature
macro package needs to adapt to what users are ac-
customed to. The fact that LuaTEX moved on to
UTF input does not mean that all the tools that
users use and the files that they have produced over
decades automagically convert as well.

Because we are now living in a UTF world, we
need to keep that in mind when we do tricky things
with sequences of characters, for instance in process-
ing verbatim. When we implement verbatim in pure
TEX we can do as before, but when we let Lua kick
in, we need to use string methods that are UTF-
aware. In addition to the linked-in Unicode library,

there are dedicated iterator functions added to the
string namespace; think of:

for c in string.utfcharacters(str) do

something_with(c)

end

Occasionally we need to output raw 8-bit code,
for instance to DVI or PDF backends (specials and
literals). Of course we could have cooked up a truck-
load of conversion functions for this, but during one
of our travels to a TEX conference, we came up with
the following trick.

We reserve the top 256 values of the Unicode
range, starting at hexadecimal value 0x110000, for
byte output. When writing to an output stream,
that offset will be subtracted. So, 0x1100A9 is writ-
ten out as hexadecimal byte value A9, which is the
decimal value 169, which in the Latin 1 encoding is
the slot for the copyright sign.

316 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

MPlib: MetaPost as a reusable component

Taco Hoekwater, Hans Hagen
http://tug.org/metapost

Abstract

This short article introduces MPlib, a project that will be started in the autumn
of 2007. The goal of this project is to turn MetaPost into a modern, re-entrant
system library that can be used by many different applications programs at the
same time.

1 The MetaPost workflow

Probably the most common use of MetaPost today is
as a batch drawing program to create graphics that
are then included inside a pdfTEX document. It is
even quite normal for those graphics to be included
inside the TEX source, with the MetaPost input file
created on the fly by macro processing: for LATEX,
this functionality is provided by the packages emp,
feynmf, and mfpic; in ConTEXt, extensive in-line
MetaPost support is built into the core engine.) In
that case, MetaPost is often run on the fly by means
of Web2C’s \write18 TEX extension.

In figure 1 you will see a typical flowchart of
that process, and you will notice that it is a fairly
complex affair.

The left column is the process that is immedi-
ately visible to the user: you run pdfTEX on a .tex

file, and it generates a .pdf file.
The next column shows the execution of Meta-

Post, along with the required pre-processing (the
TEX macro package has to create a temporary input
file for MetaPost) and the post-processing (convert-
ing MetaPost’s output from EPS to PDF format).
In the figure, mptopdf is represented as a single pro-
gram for the sake of simplicity. Various solutions ex-
ist for this, and the most common one is based on a
set of TEX macros that ship with the ConTEXt distri-
bution. These macros can be executed via a stand-
alone program, or (most often) as a macro package
that is included by the main TEX document.

The whole right-hand side of the flowchart is
taken up by makempx, the program that handles
TEX-based labels inside images. The MetaPost exe-
cutable calls makempx automatically when it discov-
ers that there are TEX-based labels in the document.
makempx itself is just a dispatcher: it runs the sepa-
rate program mpto to extract those labels from the
MetaPost input file and place them in a TEX file,
then it runs TEX on that file, and finally it runs
dvitomp to convert the DVI file back into low-level
drawing routines that MetaPost understands.

.mp mpto .tex

MetaPost makempx TEX

.eps .mpx dvitomp .dvi

mptopdf

.pdf

.tex

TEX

.pdf

Figure 1: A typical workflow for MetaPost images
inside a PDF document.

In this workflow, there are half a dozen pro-
grams called and the same number of intermediate
files created.

2 Rationale

From looking at the workflow figure, it should be
clear that all of this is not very efficient. In partic-
ular, the whole makempx block is wasteful of system
resources, especially when MetaPost is executed on-
the-fly.

It would be much nicer if MetaPost behaved
like other system library components such as XML

parsers and OpenGL engines: just link your appli-
cation to the library, and there should be no more
need for all those intermediate files and external pro-
grams.

Unfortunately, updating the label handling and
creating system integration requires massive changes
to the source code as well as the build system, and
therefore it was very unlikely that this would ever
get done without extra incentives. A significant
amount of time and effort has to be invested to fix
those particular problems.

It was clear to us that, to get these tasks done
within a reasonable time frame, at least some of the

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 317

Taco Hoekwater, Hans Hagen

work would have to be done under an organized
project umbrella, and that is why we started the
MPlib project.

3 Goals

What we want is to convert MetaPost into a reusable
component library that is fully re-entrant and whose
functionality can be easily embedded into other pro-
grams. To reach this primary goal, MetaPost not
only has to be converted to a form suitable for li-
brary use, but also a set of new components needs
to be added: an indirection layer for input and out-
put, a configurable system for strategies regarding
error handling, and a re-engineered labeling system.

4 Implementation

Work will start in the autumn of this year, and it is
our current estimate that the project will be com-
plete by the summer of 2008. The actual program-
ming will be carried out by Taco. Hans Hagen will
lead the project, and Bogus law Jackowski will be in
charge of quality control.

The current version of MetaPost is a mix of
WEB (Pascal) and C code, that is compiled using
a complex build system based on the Web2C Pas-
cal converter. One of the implementation tasks for
MPlib is to convert MetaPost into a more main-
stream distribution package. For that, all of the
source code will be converted into C, using either
CWEB or NOWEB to retain the literate program-
ming quality of MetaPost.

Some parts of the internals of MetaPost will
be opened up and a documented application inter-
face will be offered. Besides a MetaPost-compatible
standalone executable based on MPlib, a Lua lan-
guage binding to the library will be provided. This
binding will allow the immediate use of MPlib within
LuaTEX, as well as function as an example for other
language bindings.

5 Acknowledgments

This project is supported by the worldwide TEX
User Groups. In particular, we want thank the fol-
lowing user groups that have already promised fi-
nancial and other support: DANTE e.V., TUGIndia,
TUG, NTG, CSTUG, and GUST.

318 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Extending TEX and METAFONT with floating-point arithmetic

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
WWW URL: http://www.math.utah.edu/~beebe

Telephone: +1 801 581 5254
FAX: +1 801 581 4148
Internet: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org

Abstract

The article surveys the state of arithmetic in TEX and METAFONT, suggests that they
could usefully be extended to support floating-point arithmetic, and shows how this
could be done with a relatively small effort, without loss of the important feature of
platform-independent results from those programs, and without invalidating any ex-
isting documents, or software written for those programs, including output drivers.

Contents

1 Dedication 319

2 Introduction 319

3 Arithmetic in TEX and METAFONT 319

4 Historical remarks 321

5 Why no floating-point arithmetic? 321

6 IEEE 754 binary floating-point standard 322

7 IEEE 754R precision and range 322

8 Remarks on floating-point arithmetic 323

9 Binary versus decimal 323

10 Problems with IEEE 754 arithmetic 324

11 How decimal arithmetic is different 324

12 Software floating-point arithmetic 324

13 How much work is needed? 326

14 Summary 326

1 Dedication

This article is dedicated to Professors Donald Knuth
(Stanford University) and William Kahan (University of
California, Berkeley), with thanks for their many scien-
tific and technical contributions, and for their writing.

2 Introduction

Arithmetic is a fundamental feature of computer pro-
gramming languages, and for some of us, the more
we use computers, the more inadequate we find their
computational facilities. The arithmetic in TEX and
METAFONT is particularly limiting, and this article ex-
plains why this is so, why it was not otherwise, and
what can be done about it now that these two impor-
tant programs are in their thirtieth year of use.

3 Arithmetic in TEX and METAFONT

Before we look at issues of arithmetic in general, it is
useful to summarize what kinds of numbers TEX and
METAFONT can handle, and how they do so.

TEX provides binary integer and fixed-point arith-
metic. Integer arithmetic is used to count things,
such as with TEX’s \count registers. Fixed-point arith-
metic is needed for values that have fractional parts,
such as the \dimen dimension registers, the \muskip

and \skip glue registers, and scale factors, as in
0.6\hsize.

For portability reasons, TEX requires that the host
computer support an integer data type of at least 32
bits. It uses that type for the integer arithmetic avail-
able to TEX programs. For fixed-point numbers, it re-
serves the lower 16 bits for the fractional part, and all
but two of the remaining bits for the integer part. Thus,
on the 32-bit processors that are commonly found in
personal computers, 14 bits are available for the inte-
ger part. One of the remaining two bits is chosen as a
sign bit, and the other is used to detect overflow, that is,
generation of a number that is too large to represent.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 319

Nelson H. F. Beebe

When fractional numbers represent TEX dimen-
sions, the low-order fraction bit represents the value
2−16 pt. While printer’s points have been a common
unit of measurement since well before the advent of
computer-based typesetting, this tiny value is new
with TEX, and has the special name scaled point. The
value 1 sp is so small that approximately 100 sp is about
the wavelength of visible light. This ensures that differ-
ences of a few scaled points in the positioning of ob-
jects on the printed page are completely invisible to
human eyes.

The problem with fixed-point numbers in TEX is
at the other end: 14 integer bits can only represent
numbers up to 16383. As a dimension, that many
points is about 5.75 m, which is probably adequate for
printed documents, but is marginal if you are typeset-
ting a billboard. The PDP-10 computers on which TEX
and METAFONT were developed had 36-bit words: the
four extra bits raised the maximum dimension by a fac-
tor of 16. Nevertheless, if TEX’s fixed-point numbers are
used for purposes other than page dimensions, then it
is easy to exceed their limits.

TEX is a macro-extensible language for type-
setting, and arithmetic is expected to be relatively
rare. TEX has little support for numerical expressions,
just verbose low-level operators, forcing the TEX pro-
grammer to write code such as this fragment from
layout.tex to accomplish the multiply-add opera-
tion noted in the comment:

% MRGNOTEYA = 0.75*TEXTHEIGHT + FOOTSKIP

\T = \TEXTHEIGHT

\multiply \T by 75 % possible overflow!

\divide \T by 100

\advance \T by \FOOTSKIP

\xdef \MRGNOTEYA {\the \T}

Notice that the scale factor 0.75 could have been re-
duced from 75/100 to 3/4 in this example, but that is
not in general possible. Similarly, here we could have
written \T = 0.75 \TEXTHEIGHT, but that is not pos-
sible if the constant 0.75 is replaced by a variable in a
register. The multiplication by 75 can easily provoke an
overflow if \T is even as big as a finger length:

*\dimen1 = 220pt

*\dimen2 = 75\dimen1

! Dimension too large.

*\multiply \dimen1 by 75

! Arithmetic overflow.

See the LATEX calc package for more horrors of fixed-
point arithmetic.

TEX has, however, also seen use a scripting lan-
guage, chosen primarily because of its superb quality,

stability, reliability, and platform independence. TEX
distributions now contain macro packages and utilities
written in TEX for generating complex font tables, for
packing and unpacking document archives, for scan-
ning PostScript graphics files, and even for parsing
SGML and XML.

TEX’s arithmetic does not go beyond the four ba-
sic operations of add, subtract, multiply, and divide.
In particular, no elementary functions (square root,
exponential, logarithm, trigonometric and hyperbolic
functions, and so on) are provided in TEX itself, even
though, in principle, they can be provided with macro
packages.

In TEX, overflow is detected in division and multi-
plication but not in addition and subtraction, as I de-
scribed in my TUG 2003 keynote address [4].

Input numbers in METAFONT are restricted to 12
integer bits, and the result of even trivial expressions
can be quite surprising to users:

% mf expr

gimme an expr: 4095 >> 4095

gimme an expr: 4096

! Enormous number has been reduced.

>> 4095.99998

gimme an expr: infinity >> 4095.99998

gimme an expr: epsilon >> 0.00002

gimme an expr: 1/epsilon

! Arithmetic overflow.

>> 32767.99998

gimme an expr: 1/3 >> 0.33333

gimme an expr: 3*(1/3) >> 0.99998

gimme an expr: 1.2 - 2.3 >> -1.1

gimme an expr: 1.2 - 2.4 >> -1.2

gimme an expr: 1.3 - 2.4 >> -1.09999

Notice that although 4096 is considered an overflow,
internally METAFONT can generate a number almost
eight times as large. Binary-to-decimal conversion is-
sues produce the anomaly in 3 × (1/3). The last line
shows that even apparently simple operations are not
so simple after all.

Overflows in METAFONT can also produce a re-
port like this:

Uh, oh. A little while ago one of the

quantities that I was computing got

too large, so I’m afraid your answers

will be somewhat askew. You’ll

probably have to adopt different

tactics next time. But I shall try to

carry on anyway.

METAFONT provides a few elementary functions:
++ (Pythagoras), abs, angle, ceiling, cosd, dir,
floor, length, mexp, mlog, normaldeviate, round,

320 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Extending TEX and METAFONT with floating-point arithmetic

sind, sqrt, and uniformdeviate. They prove useful
in the geometric operations required in font design.

4 Historical remarks

TEX and METAFONT are not the only systems that suf-
fer from the limitations of fixed-point arithmetic. Most
early computers were inadequate as well:

It is difficult today to appreciate that
probably the biggest problem facing
programmers in the early 1950s was scaling
numbers so as to achieve acceptable
precision from a fixed-point machine.

Martin Campbell-Kelly
Programming the Mark I: Early Programming

Activity at the University of Manchester

Annals of the History of Computing,
2(2) 130–168 (1980)

Scaling problems can be made much less severe if
numbers carry an exponent as well as integer and frac-
tional parts. We then have:

Floating Point Arithmetic . . . The subject is
not at all as trivial as most people think, and
it involves a surprising amount of interesting
information.

Donald E. Knuth
The Art of Computer Programming:

Seminumerical Algorithms (1998)

However, more than just an exponent is needed; the
arithmetic system also has to be predictable:

Computer hardware designers can make
their machines much more pleasant
to use, for example by providing
floating-point arithmetic which satisfies
simple mathematical laws.

The facilities presently available on most
machines make the job of rigorous error
analysis hopelessly difficult, but properly
designed operations would encourage
numerical analysts to provide better
subroutines which have certified accuracy.

Donald E. Knuth
Computer Programming as an Art

ACM Turing Award Lecture (1973)

5 Why no floating-point arithmetic?

Neither TEX nor METAFONT have floating-point arith-
metic natively available, and as I discussed in my Prac-

tical TEX 2005 keynote address [3], there is a very good
reason why this is the case. Their output needs to be
identical on all platforms, and when they were devel-
oped, there were many different computer vendors,
some of which had several incompatible product lines.

This diversity causes several problems, some of which
still exist:

• There is system dependence in precision, range,
rounding, underflow, and overflow.

• The number base varies from 2 on most, to 3
(Setun), 4 (Illiac II), 8 (Burroughs), 10, 16 (IBM
S/360), 256 (Illiac III), and 10000 (Maple).

• Floating-point arithmetic exhibits bizarre
behavior on some systems:

– x × y 6= y ×x (early Crays);

– x 6= 1.0×x (Pr1me);

– x +x 6= 2×x (Pr1me);

– x 6= y but 1.0/(x − y) gets zero-divide error;

– wrap between underflow and overflow
(e.g., C on PDP-10);

– job termination on overflow or zero-divide
(most).

• No standardization: almost every vendor had
one or more distinct floating-point systems.

• Programming language dependence on
available precisions:

– Algol, Pascal, and SAIL (only real):
recall that SAIL was the implementation
language for the 1977–78 prototypes of TEX
and METAFONT;

– Fortran (REAL, DOUBLE PRECISION, and on
some systems, REAL*10 or REAL*16);

– C/C++ (originally only double, but float
added in 1989, and long double in 1999);

– C# and Java have only float and double

data types, but their arithmetic is badly
botched: see Kahan and Darcy’s How

Java’s Floating-Point Hurts Everyone

Everywhere [28].

• Compiler dependence: multiple precisions can
be mapped to just one, without warning.

• BSD compilers on IA-32 still provide no 80-bit
format after 27 years in hardware.

• Input/output problem requires base conversion,
and is hard (e.g., conversion from 128-bit
binary format can require more than 11500
decimal digits).

• Most languages do not guarantee exact base
conversion.

Donald Knuth wrote an interesting article with
the intriguing title A simple program whose proof

isn’t [29] about how TEX handles conversions between
fixed-point binary and decimal. The restriction to
fixed-point arithmetic with 16-bit fractional parts sim-
plifies the base-conversion problem, and allows TEX to

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 321

Nelson H. F. Beebe

guarantee exact round-trip conversions of such num-
bers.

TEX produces the same line- and page-breaking
across all platforms, because floating-point arithmetic
is used only for interword glue calculations that could
change the horizontal position of a letter by at most a
few scaled points, but as we noted earlier, that is invis-
ible.

METAFONT has no floating-point at all, and gen-
erates identical fonts on all systems.

6 IEEE 754 binary floating-point standard

With the leadership of William Kahan, a group of re-
searchers in academic, government, and industry be-
gan a collaborative effort in the mid-1970s to design a
new and much improved floating-point architecture.
The history of this project is chronicled in an interview
with Kahan [37, 38].

A preliminary version of this design was first im-
plemented in the Intel 8087 chip in 1980, although the
design was not finalized until its publication as IEEE

Standard 754 in 1985 [23].
Entire books have beeen written about floating-

point arithmetic: see, for example, Sterbenz [41] for
historical systems, Overton [35] for modern ones,
Omondi [34] and Parhami [36] for hardware, Gold-
berg [15, 17] for an excellent tutorial, and Knuth [30,
Chap. 4] for theory. I am hard at work on writing two
more books in this area. However, here we need only
summarize important features of the IEEE 754 system:

• Three formats are defined: 32-bit, 64-bit, and
80-bit. A 128-bit format was subsequently
provided on some Alpha, IA-64, PA-RISC, and
SPARC systems.

• Nonzero normal numbers are rational:
x = (−1)s f ×2p , where the significand, f , lies in
[1,2).

• Signed zero allows recording the direction
from which an underflow occurred, and is
particularly useful for arithmetic with complex
(real + imaginary) numbers. The IEEE Standard
requires that

p
−0 evaluate to −0.

• The largest stored exponent represents Infinity
if f = 0, and either quiet or signaling NaN
(Not-a-Number) if f 6= 0. A vendor-chosen
significand bit distinguishes between the two
kinds of NaN.

• The smallest stored exponent allows leading
zeros in f for gradual underflow to subnormal

values.

• The arithmetic supports a model of fast nonstop

computing. Sticky flags record exceptions, and
Infinity, NaN, and zero values automatically

replace out-of-range values, without the need
to invoke an exception handler, although that
capability may also be available.

• Four rounding modes are provided:

– to nearest with ties to even (default);

– to +∞;

– to −∞;

– to zero (historical chopping).

• Values of ±∞ are generated from huge/tiny and
finite/0.

• NaN values are generated from 0/0, ∞−∞,
∞/∞, and any operation with a NaN operand.

• A NaN is returned from functions when the
result is undefined in real arithmetic (e.g.,p
−1), or when an argument is a NaN.

• NaNs have the property that they are unequal
to anything, even themselves. Thus, the
C-language inequality test x != x is true if,
and only if, x is a NaN, and should be readily
expressible in any programming language.
Sadly, several compilers botch this, and get the
wrong answer.

7 IEEE 754R precision and range

In any computer arithmetic system, it is essential to
know the available range and precision. The precisions
of the four IEEE 754 binary formats are equivalent to
approximately 7, 15, 19, and 34 decimal digits. The ap-
proximate ranges as powers of ten, including subnor-
mal numbers, are [−45,38], [−324,308], [−4951,4932],
and [−4966,4932]. A future 256-bit binary format will
supply about 70 decimal digits, and powers-of-ten in
[−315723,315652].

A forthcoming revision of the IEEE Standard will
include decimal arithmetic as well, in 32-, 64-, and 128-
bit storage sizes, and we can imagine a future 256-bit
size. Their precisions are 7, 16, 34, and 70 decimal dig-
its, where each doubling in size moves from n digits to
2n + 2 digits. Their ranges are wider than the binary
formats, with powers of ten in [−101,96], [−398,384],
[−6176,6144], and [−1572932,1572864].

In each case, the range and precision are deter-
mined by the number of bits allocated for the sign and
the significand, and for the decimal formats, by restric-
tions imposed by the compact encodings chosen for
packing decimal digits into strings of bits.

It is highly desirable that each larger storage size
increase the exponent range (many older designs did
not), and at least double the significand length, since
that guarantees that products evaluated in the next
higher precision cannot overflow, and are exact. For ex-
ample, the Euclidean distance

√

x2 + y2 is then trivial

322 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Extending TEX and METAFONT with floating-point arithmetic

to compute; otherwise, its computation requires care-
ful rescaling to avoid premature underflow and over-
flow.

8 Remarks on floating-point arithmetic

Contrary to popular misconception, even present in
some books and compilers, floating-point arithmetic
is not fuzzy:

• Results are exact if they are representable.

• Multiplication by a power of base is always
exact, in the absence of underflow and
overflow.

• Subtracting numbers of like signs and
exponents is exact.

Bases other than 2 or 10 suffer from wobbling pre-

cision caused by the requirement that significands be
normalized. For example, in hexadecimal arithmetic,
π/2 ≈ 1.571 ≈ 1.92216 has three fewer bits (almost one
decimal digit) than π/4 ≈ 0.7854 ≈ c.91016. Careful
coders on such systems account for this in their pro-
grams by writing

y = (x + quarter_pi) + quarter_pi;

instead of

y = x + half_pi;

Because computer arithmetic systems have finite
range and precision, they are not associative, so com-
monly-assumed mathematical transformations do not
hold. In particular, it is often necessary to control
evaluation order, and this may be at odds with what
the compiler, or even a high-performance CPU with
dynamic instruction reordering, does with the code.

The presence of multiple rounding modes also in-
validates common assumptions. For example, the Tay-
lor series for the sine function begins

sin(x) = x − (1/3!)x3 + (1/5!)x5 −·· · .

If x is small enough, because of finite precision, one
might expect that sin(x) could be computed simply as
x. However, that is only true for the default rounding
mode; in other modes, the correct answer could be one
ulp (unit in the last place) higher or lower, so at least
two terms must be summed. Similarly, the mathemat-
ical equivalence −(x y + z) ≡ (−x y − z) does not hold in
some rounding modes. Except for some special num-
bers, it is not in general permissible to replace slow di-
vision with fast multiplication by the reciprocal, even
though many optimizing compilers do that.

Some of the common elementary functions are
odd ones: they satisfy f (x) = − f (−x). This relation
does not in general hold computationally if a round-
ing direction of other than round-to-nearest is in effect.
Software designers are then forced to decide whether

obeying computer rounding modes is more impor-
tant than preserving fundamental mathematical sym-
metries: in well-designed software, symmetry wins.
Nevertheless, in some applications, like interval arith-

metic, which computes upper and lower bounds for
every numeric operation, precise control of rounding
is imperative, and overrides symmetry.

See Monniaux [33] for a recent discussion of some
of the many problems of floating-point evaluation. A
good part of the difficulties described there arise be-
cause of higher intermediate precision in the Intel IA-
32 architecture, the most common desktop CPU family
today. Other problems come from unexpected instruc-
tion reordering or multiple threads of execution, and
the incidence of these issues increases with each new
generation of modern processors.

9 Binary versus decimal

Why should we care whether a computer uses binary
or decimal arithmetic? Here are some reasons why a
switch to decimal arithmetic has advantages:

• Humans are less uncomfortable with decimal
arithmetic.

• In some case, binary arithmetic always gets
the wrong answer. Consider this sales tax
computation: 5% of 0.70 = 0.0349999. . . in all

binary precisions, instead of the exact decimal
0.035. Thus, there can be significant cumulative
rounding errors in businesses with many
small transactions (food, music downloading,
telephone, . . .).

• Financial computations need fixed-point
decimal arithmetic.

• Hand calculators use decimal arithmetic.

• Additional decimal rounding rules (eight
instead of four) handle the financial and legal
requirements of some jurisdictions.

• Decimal arithmetic eliminates most
base-conversion problems.

• There is a specification of decimal arithmetic
subsumed in the IEEE 854-1987 Standard for

Radix-Independent Floating-Point Arithmetic

[21].

• Older Cobol standards require 18D fixed-point.

• Cobol 2002 requires 32D fixed-point and

floating-point.

• Proposals to add decimal arithmetic to C
and C++ were submitted to the ISO language
committees in 2005 and 2006.

• Twenty-five years of Rexx and NetRexx
scripting languages give valuable experience in
arbitrary-precision decimal arithmetic.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 323

Nelson H. F. Beebe

• The excellent IBM decNumber library provides
open source decimal floating-point arithmetic
with a billion (109) digits of precision and
exponent magnitudes up to 999 999 999.

• Preliminary support in gcc for +, −, ×, and
/ became available in late 2006, based on a
subset of the IBM decNumber library.

• The author’s mathcw package [5] provides a
C99-compliant run-time library for binary,
and also for decimal, arithmetic (2005–2008),
with hundreds of additional functions, and
important and useful extensions of the I/O

functions.

• IBM zSeries mainframes got IEEE 754 binary
floating-point arithmetic in 1999, and decimal
floating-point arithmetic in firmware in 2006.

• The IBM PowerPC version 6 chips announced
on 21 May 2007 add hardware decimal
arithmetic, probably the first mainstream
processor to do so in more than four decades.

• Hardware support seems likely in future Intel
IA-32 and EM64T (x86_64) processors, and the
current family members are among the most
widely-used in the world for general-purpose
computing. Other chip vendors will have to
offer similar facilities to remain competitive.

10 Problems with IEEE 754 arithmetic

Despite the many benefits of IEEE 754 floating-point
arithmetic, there are many impediments to its effective
use:

• Language access to features has been slow:
more than 27 years have passed since the Intel
8087, and we are still waiting!

• Programmer unfamiliarity, ignorance, and
inexperience.

• A deficient educational system, both in
academia, and in textbooks, leaves most
programmers with little or no training in
floating-point arithmetic.

• Partial implementations by some vendors deny
access to important features (e.g., subnormals
may flush to zero, IA-32 has only one NaN,
IA-32 and IA-64 have imperfect rounding,
Java and C# lack rounding modes and higher
precisions).

• Long internal registers are generally beneficial,
but also produce many computational surprises
and double rounding [33], compromising
portability.

• Rounding behavior at underflow and overflow
limits is unspecified by the IEEE standards, and
thus, is vendor dependent.

• Overeager, or incorrect, optimizations by
compilers may produce wrong results, and
prevent obtaining similar results across
different platforms, or between different
compilers on the same system, or even from
the same compiler with different options.

• Despite decades of availability of IEEE 754
arithmetic, some compilers still mishandle
signed zeros and NaNs, and it can be
difficult to convince compiler vendors of the
significance of such errors (I know, because I’ve
tried, and failed).

11 How decimal arithmetic is different

Programmers in science and engineering have usually
only had experience with binary floating-point arith-
metic, and some relearning is needed for the move to
decimal arithmetic:

• Nonzero normal floating-point numbers take
the form x = (−1)s f ×10p , where f is an integer,
allowing simulation of fixed-point arithmetic.

• Lack of normalization means multiple storage
forms, but 1., 1.0, 1.00, 1.000, . . . compare
equal, as long as floating-point instructions,
rather than bitwise integer comparisons, are
used.

• Quantization is detectable (e.g., for financial
computations, 1.00 differs from 1.000).

• Signed zero and infinity, plus quiet and
signaling NaNs, are detectable from the
first byte, whereas binary formats require
examination of all bits.

• There are eight rounding modes because of
legal and tax mandates.

• Compact storage formats — Densely-Packed
Decimal (DPD) [IBM] and Binary-Integer
Decimal (BID) [Intel] — need fewer than BCD’s
four bits per decimal digit.

12 Software floating-point arithmetic

It may be better in some applications to have floating-
point arithmetic entirely in software, as Apple once did
with the no-longer-supported SANE (Standard Apple
Numerics Environment) system. Here are some rea-
sons why:

• TEX and METAFONT must continue to
guarantee identical results across platforms.

• Unspecified behavior of low-level arithmetic
guarantees platform dependence.

• Floating-point arithmetic is not associative,
so instruction ordering (e.g., compiler
optimization) affects results.

324 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Extending TEX and METAFONT with floating-point arithmetic

• Long internal registers on some platforms, and
not on others, alter precision, and results.

• Multiply-add computes x × y + z with exact

product and single rounding, getting different
result from separate operations.

• Conclusion: only a single software

floating-point arithmetic system in
TEX and METAFONT can guarantee
platform-independent results.

Software is often best enhanced by connecting two or
more systems with a clean and simple interface:

What if you could provide a seamlessly
integrated, fully dynamic language with a
conventional syntax while increasing your
application’s size by less than 200K on an
x86? You can do it with Lua !

Keith Fieldhouse

If we want to have floating-point arithmetic in TEX
and METAFONT, then rather than modify those stable
and reliable programs, including adding convenient
expression syntax, and a substantial function library,
there is a cleaner, and easier, approach:

• There is no need to modify TEX beyond what
has already been done: LuaTEX interfaces TEX
to a clean and well-designed scripting language
— we just need to change the arithmetic and
library inside lua.

• Scripting languages usually offer a single
floating-point datatype, typically equivalent to
IEEE 754 64-bit double (that is all that the C
language used to have).

• qawk and dnawk are existing extensions by the
author of awk for 128-bit binary and decimal
arithmetic, respectively.

• Modern machines are fast and memories are
big. We could adopt a 34D 128-bit format, or
better, a 70D 256-bit format, instead as default
numeric type.

• The author’s mathcw package [5] is a
highly-portable open-source library with
support for ten floating-point precisions,
including 256-bit binary and decimal.

Two more quotes from the father of the IEEE 754
design lead into our next points:

The convenient accessibility of double-
precision in many Fortran and some Algol
compilers indicates that double-precision will
soon be universally acceptable as a substitute
for ingenuity in the solution of numerical
problems.

W. Kahan

Further Remarks on Reducing Truncation

Errors

Comm. ACM 8(1) 40, January (1965)

Nobody knows how much it would cost to
compute y w correctly rounded for every two
floating-point arguments at which it does
not over/underflow. Instead, reputable math
libraries compute elementary transcendental
functions mostly within slightly more than
half an ulp and almost always well within
one ulp. Why can’t y w be rounded within
half an ulp like SQRT? Because nobody knows
how much computation it would cost. . . . No
general way exists to predict how many extra
digits will have to be carried to compute
a transcendental expression and round it
correctly to some preassigned number of
digits. Even the fact (if true) that a finite
number of extra digits will ultimately suffice
may be a deep theorem.

W. Kahan
Wikipedia entry

We need more than just the basic four operations
of arithmetic: several dozen elementary functions, and
I/O support, are essential.

• The Table Maker’s Dilemma (Kahan) is the
problem of always getting exactly-rounded
results when computing the elementary
functions. Here is an example of a hard case:
log(+0x1.ac50b409c8aeep+8) =

0x60f52f37aecfcfffffffffffffffeb...p-200

There are 62 consecutive 1-bits in that number,
and at least 4×13+62+1 = 115 bits must be
computed correctly in order to determine the
correctly-rounded 53-bit result.

• Higher-than-needed-precision arithmetic
provides a practical solution to the dilemma, as
the Kahan quote observes.

• Random-number generation is a common
portability problem, since algorithms for that
computation are platform-dependent and vary
in quality. Fortunately, several good ones are
now known, and can be supplied in libraries,
although careful attention still needs to be
given to computer wordsize.

• The mathcw library gives platform-independent

results for decimal floating-point arithmetic,
since evaluation order is completely under
programmer control, and identical everywhere,
and the underlying decimal arithmetic is too.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 325

Nelson H. F. Beebe

13 How much work is needed?

I argue that decimal floating-point arithmetic in soft-
ware, isolated in a separate scripting language, is an
effective and reasonable way to extend TEX and META-
FONT so that they can have access to floating-point
arithmetic, and remove the limitations and nuisance
of fixed-point arithmetic that they currently suffer.

It is therefore appropriate to ask what kind of ef-
fort would be needed to do this. In four separate exper-
iments with three implementations of awk, and one of
lua, I took two to four hours each, with less than 3% of
the code requiring changes:

Program Lines Deleted Added

dgawk 40 717 109 165
dlua 16 882 25 94
dmawk 16 275 73 386
dnawk 9 478 182 296
METAFONT in C 30 190 0 0
TEX in C 25 215 0 0

14 Summary

Had the IEEE 754 design been developed before TEX
and METAFONT, it is possible that Donald Knuth
would have chosen a software implementation of bi-
nary floating-point arithmetic, as he later provided for
the MMIX virtual machine [2, 31, 32] that underlies the
software analyses in newer editions of his famous book
series, The Art of Computer Programming.

That did not happen, so in this article, I have
shown how a different approach might introduce deci-

mal floating-point arithmetic to TEX and METAFONT

through a suitable scripting language, for which Lua
[26, 25, 27] seems eminently suited, and has already
been interfaced to TEX and is now in limited use for
production commercial typesetting, and also for docu-
ment style-file design. By selecting high working preci-
sion, at least 34 decimal digits and preferably 70, many
numerical issues that otherwise compromise portabil-
ity and reproducibility of typeset documents simply
disappear, or at least, become highly improbable.

To make this workable, the compilers, the basic
software arithmetic library, the elementary function li-
brary, and the I/O library need to be highly portable.
The combination of the GNU gcc compiler family with
the IBM decNumber library and the author’s mathcw li-
brary satisfy all of these requirements. Within a year
or two, we may therefore expect that decimal floating-
point arithmetic in C could be available on all of the
common platforms, allowing future TEX Live releases
to build upon that foundation, and LuaTEX could be-
come the TEX version of choice in many environments.
LuaMETAFONT and LuaMETAPOST could soon fol-
low.

References

[1] P. H. Abbott, D. G. Brush, C. W. Clark III, C. J. Crone,
J. R. Ehrman, G. W. Ewart, C. A. Goodrich, M. Hack,
J. S. Kapernick, B. J. Minchau, W. C. Shepard, R. M.
Smith, Sr., R. Tallman, S. Walkowiak, A. Watanabe,
and W. R. White. Architecture and software support
in IBM S/390 Parallel Enterprise Servers for IEEE
floating-point arithmetic. IBM Journal of Research

and Development, 43(5/6):723–760, 1999. ISSN
0018-8646. URL http://www.research.ibm.

com/journal/rd/435/abbott.html. Besides
important history of the development of the
S/360 floating-point architecture, this paper has
a good description of IBM’s algorithm for exact
decimal-to-binary conversion, complementing earlier
ones [39, 7, 29, 6, 40].

[2] Heidi Anlauff, Axel Böttcher, and Martin Ruckert.
Das MMIX-Buch: ein praxisnaher Zugang zur

Informatik. (German) [The MMIX Book: A practical

introduction to computer science]. Springer-Lehrbuch.
Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc., 2002. ISBN
3-540-42408-3. xiv + 327 pp. EUR 24.95. URL
http://www.informatik.fh-muenchen.de/~mmix/

MMIXBuch/.

[3] Nelson Beebe. The design of TEX and METAFONT:
A retrospective. TUGboat, 26(1):33–41, 2005. ISSN
0896-3207.

[4] Nelson H. F. Beebe. 25 Years of TEX and METAFONT:
Looking back and looking forward — TUG 2003
keynote address. TUGboat, 25(1):7–30, 2004. ISSN
0896-3207.

[5] Nelson H. F. Beebe. The mathcw Portable Elementary

Function Library. 2008. In preparation.

[6] Robert G. Burger and R. Kent Dybvig. Printing
floating-point numbers quickly and accurately.
ACM SIGPLAN Notices, 31(5):108–116, May 1996.
ISSN 0362-1340. URL http://www.acm.org:

80/pubs/citations/proceedings/pldi/231379/

p108-burger/. This paper offers a significantly
faster algorithm than that of [39], together with a
correctness proof and an implementation in Scheme.
See also [7, 1, 40, 8].

[7] William D. Clinger. How to read floating point
numbers accurately. ACM SIGPLAN Notices, 25
(6):92–101, June 1990. ISBN 0-89791-364-7.
ISSN 0362-1340. URL http://www.acm.org:

80/pubs/citations/proceedings/pldi/93542/

p92-clinger/. See also output algorithms in
[29, 39, 6, 1, 40].

[8] William D. Clinger. Retrospective: How to read
floating point numbers accurately. ACM SIGPLAN

Notices, 39(4):360–371, April 2004. ISSN 0362-1340.
Best of PLDI 1979–1999. Reprint of, and retrospective
on, [7].

[9] William J. Cody, Jr. Analysis of proposals for the
floating-point standard. Computer, 14(3):63–69,
March 1981. ISSN 0018-9162. See [23, 24].

326 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Extending TEX and METAFONT with floating-point arithmetic

[10] Jerome T. Coonen. An implementation guide to a
proposed standard for floating-point arithmetic.
Computer, 13(1):68–79, January 1980. ISSN
0018-9162. See errata in [11]. See [23, 24].

[11] Jerome T. Coonen. Errata: An implementation guide
to a proposed standard for floating point arithmetic.
Computer, 14(3):62, March 1981. ISSN 0018-9162. See
[10, 23, 24].

[12] Jerome T. Coonen. Underflow and the denormalized
numbers. Computer, 14(3):75–87, March 1981. ISSN
0018-9162. See [23, 24].

[13] Charles B. Dunham. Surveyor’s Forum: “What every
computer scientist should know about floating-point
arithmetic”. ACM Computing Surveys, 24(3):319,
September 1992. ISSN 0360-0300. See [15, 16, 45].

[14] W. H. J. Feijen, A. J. M. van Gasteren, D. Gries, and
J. Misra, editors. Beauty is our business: a birthday

salute to Edsger W. Dijkstra. Springer-Verlag, Berlin,
Germany / Heidelberg, Germany / London, UK / etc.,
1990. ISBN 0-387-97299-4. xix + 453 pp. LCCN QA76
.B326 1990.

[15] David Goldberg. What every computer scientist
should know about floating-point arithmetic. ACM

Computing Surveys, 23(1):5–48, March 1991. ISSN
0360-0300. URL http://www.acm.org/pubs/toc/

Abstracts/0360-0300/103163.html. See also
[16, 13, 45].

[16] David Goldberg. Corrigendum: “What every
computer scientist should know about floating-point
arithmetic”. ACM Computing Surveys, 23(3):413,
September 1991. ISSN 0360-0300. See [15, 13, 45].

[17] David Goldberg. Computer arithmetic. In
Computer Architecture—A Quantitative Approach,
chapter H, pages H–1–H–74. Morgan Kaufmann
Publishers, Los Altos, CA 94022, USA, third
edition, 2002. ISBN 1-55860-596-7. LCCN
QA76.9.A73 P377 2003. US$89.95. URL http:

//books.elsevier.com/companions/1558605967/

appendices/1558605967-appendix-h.pdf.
The complete Appendix H is not in the printed
book; it is available only at the book’s Web site:
http://www.mkp.com/CA3.

[18] David Gries. Binary to decimal, one more time. In
Feijen et al. [14], chapter 16, pages 141–148. ISBN
0-387-97299-4. LCCN QA76 .B326 1990. This paper
presents an alternate proof of Knuth’s algorithm [29]
for conversion between decimal and fixed-point
binary numbers.

[19] David Hough. Applications of the proposed IEEE-754
standard for floating point arithmetic. Computer, 14
(3):70–74, March 1981. ISSN 0018-9162. See [23, 24].

[20] IEEE. IEEE standard for binary floating-point
arithmetic. ACM SIGPLAN Notices, 22(2):9–25,
February 1985. ISSN 0362-1340. See [23].

[21] IEEE. 854-1987 (R1994) IEEE Standard for

Radix-Independent Floating-Point Arithmetic. IEEE,
New York, NY, USA, 1987. ISBN 1-55937-859-X.

16 pp. US$44.00. URL http://standards.ieee.

org/reading/ieee/std_public/description/

busarch/854-1987_desc.html. Revised 1994.

[22] IEEE Computer Society Standards Committee.
Working group of the Microprocessor Standards
Subcommittee and American National Standards
Institute. IEEE standard for binary floating-point

arithmetic. ANSI/IEEE Std 754-1985. IEEE Computer
Society Press, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 1985. 18 pp. See [23].

[23] IEEE Task P754. ANSI/IEEE 754-1985, Standard

for Binary Floating-Point Arithmetic. IEEE,
New York, NY, USA, August 12, 1985. ISBN
1-55937-653-8. 20 pp. US$35.00. URL http:

//standards.ieee.org/reading/ieee/std_

public/description/busarch/754-1985_desc.

html; http://standards.ieee.org/reading/

ieee/std/busarch/754-1985.pdf; http:

//www.iec.ch/cgi-bin/procgi.pl/www/iecwww.

p?wwwlang=E&wwwprog=cat-det.p&wartnum=

019113; http://ieeexplore.ieee.org/iel1/

2355/1316/00030711.pdf. Revised 1990. A
preliminary draft was published in the January
1980 issue of IEEE Computer, together with several
companion articles [9, 12, 10, 11, 19, 42, 43]. The
final version was republished in [20, 22]. See also
[44]. Also standardized as IEC 60559 (1989-01) Binary

floating-point arithmetic for microprocessor systems.

[24] IEEE Task P754. ANSI/IEEE 754-1985, Standard

for Binary Floating-Point Arithmetic. IEEE, New
York, August 12 1985. A preliminary draft was
published in the January 1980 issue of IEEE
Computer, together with several companion articles
[9, 12, 10, 11, 19, 42, 43]. Available from the IEEE
Service Center, Piscataway, NJ, USA.

[25] Roberto Ierusalimschy. Programming in Lua.
Lua.Org, Rio de Janeiro, Brazil, 2006. ISBN
85-903798-2-5. 328 (est.) pp.

[26] Roberto Ierusalimschy, Luiz Henrique de Figueiredo,
and Waldemar Celes. Lua 5.1 Reference Manual.
Lua.Org, Rio de Janeiro, Brazil, 2006. ISBN
85-903798-3-3. 112 (est.) pp.

[27] Kurt Jung and Aaron Brown. Beginning Lua

programming. Wiley, New York, NY, USA, 2007. ISBN
(paperback), 0-470-06917-1 (paperback). 644 (est.)
pp. LCCN QA76.73.L82 J96 2007. URL http://www.

loc.gov/catdir/toc/ecip074/2006036460.html.

[28] W. Kahan and Joseph D. Darcy. How Java’s
floating-point hurts everyone everywhere. Technical
report, Department of Mathematics and Department
of Electrical Engineering and Computer Science,
University of California, Berkeley, Berkeley, CA,
USA, June 18, 1998. 80 pp. URL http://www.cs.

berkeley.edu/~wkahan/JAVAhurt.pdf; http:

//www.cs.berkeley.edu/~wkahan/JAVAhurt.ps.

[29] Donald E. Knuth. A simple program whose proof
isn’t. In Feijen et al. [14], chapter 27, pages 233–242.
ISBN 0-387-97299-4. LCCN QA76 .B326 1990.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 327

Nelson H. F. Beebe

This paper discusses the algorithm used in TEX for
converting between decimal and scaled fixed-point
binary values, and for guaranteeing a minimum
number of digits in the decimal representation. See
also [7, 8] for decimal to binary conversion, [39, 40]
for binary to decimal conversion, and [18] for an
alternate proof of Knuth’s algorithm.

[30] Donald E. Knuth. Seminumerical Algorithms,
volume 2 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, USA, third edition,
1997. ISBN 0-201-89684-2. xiii + 762 pp. LCCN
QA76.6 .K64 1997. US$52.75.

[31] Donald Ervin Knuth. MMIXware: A RISC computer

for the third millennium, volume 1750 of Lecture

Notes in Computer Science. Springer-Verlag, Berlin,
Germany / Heidelberg, Germany / London, UK /
etc., 1999. ISBN 3-540-66938-8 (softcover). ISSN
0302-9743. viii + 550 pp. LCCN QA76.9.A73 K62 1999.

[32] Donald Ervin Knuth. The art of computer

programming: Volume 1, Fascicle 1. MMIX, a RISC

computer for the new millennium. Addison-Wesley,
Reading, MA, USA, 2005. ISBN 0-201-85392-2. 134
pp. LCCN QA76.6 .K64 2005.

[33] David Monniaux. The pitfalls of verifying
floating-point computations. Technical report
HAL-00128124, CNRS/École Normale Supérieure, 45,
rue d’Ulm 75230 Paris cedex 5, France, June 29, 2007.
44 pp. URL http://hal.archives-ouvertes.fr/

docs/00/15/88/63/PDF/floating-point.pdf.

[34] Amos R. Omondi. Computer Arithmetic Systems:

Algorithms, Architecture, and Implementation.
Prentice-Hall, Upper Saddle River, NJ 07458, USA,
1994. ISBN 0-13-334301-4. xvi + 520 pp. LCCN
QA76.9.C62 O46 1994. US$40.00.

[35] Michael Overton. Numerical Computing with

IEEE Floating Point Arithmetic, Including One

Theorem, One Rule of Thumb, and One Hundred and

One Exercises. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2001. ISBN
0-89871-482-6. xiv + 104 pp. LCCN QA76.9.M35
O94 2001. US$40.00. URL http://www.cs.

nyu.edu/cs/faculty/overton/book/; http:

//www.siam.org/catalog/mcc07/ot76.htm.

[36] Behrooz Parhami. Computer Arithmetic: Algorithms

and Hardware Designs. Oxford University Press,
Walton Street, Oxford OX2 6DP, UK, 2000. ISBN
0-19-512583-5. xx + 490 pp. LCCN QA76.9.C62P37
1999. US$85.00.

[37] C. Severance. An interview with the old man
of floating-point: Reminiscences elicited from
William Kahan. World-Wide Web document., 1998.
URL http://www.cs.berkeley.edu/~wkahan/

ieee754status/754story.html. A shortened
version appears in [38].

[38] Charles Severance. Standards: IEEE 754: An
interview with William Kahan. Computer, 31(3):
114–115, March 1998. ISSN 0018-9162. URL

http://pdf.computer.org/co/books/co1998/

pdf/r3114.pdf.

[39] Guy L. Steele Jr. and Jon L. White. How to print
floating-point numbers accurately. ACM SIGPLAN

Notices, 25(6):112–126, June 1990. ISSN 0362-1340.
See also input algorithm in [7, 8], and a faster output
algorithm in [6] and [29], IBM S/360 algorithms
in [1] for both IEEE 754 and S/360 formats, and a
twenty-year retrospective [40]. In electronic mail
dated Wed, 27 Jun 1990 11:55:36 EDT, Guy Steele
reported that an intrepid pre-SIGPLAN 90 conference
implementation of what is stated in the paper
revealed 3 mistakes:

1. Table 5 (page 124):

insert k <-- 0 after assertion, and also delete
k <-- 0 from Table 6.

2. Table 9 (page 125):
for -1:USER!("");

substitute -1:USER!("0");

and delete the comment.

3. Table 10 (page 125):
for fill(-k, "0")

substitute fill(-k-1, "0")

[40] Guy L. Steele Jr. and Jon L. White. Retrospective:
How to print floating-point numbers accurately. ACM

SIGPLAN Notices, 39(4):372–389, April 2004. ISSN
0362-1340. Best of PLDI 1979–1999. Reprint of, and
retrospective on, [39].

[41] Pat H. Sterbenz. Floating-point computation.
Prentice-Hall series in automatic computation.
Prentice-Hall, Upper Saddle River, NJ 07458, USA,
1973. ISBN 0-13-322495-3. xiv + 316 pp. LCCN
QA76.8.I12 S77 1974.

[42] David Stevenson. A proposed standard for binary
floating-point arithmetic. Computer, 14(3):51–62,
March 1981. ISSN 0018-9162. See [23, 24].

[43] David Stevenson. A proposed standard for binary

floating-point arithmetic: draft 8.0 of IEEE Task P754.
IEEE Computer Society Press, 1109 Spring Street,
Suite 300, Silver Spring, MD 20910, USA, 1981. 36 pp.
See [23, 24].

[44] Shlomo Waser and Michael J. Flynn. Introduction

to Arithmetic for Digital Systems Designers. Holt,
Reinhart, and Winston, New York, NY, USA, 1982.
ISBN 0-03-060571-7. xvii + 308 pp. LCCN TK7895
A65 W37 1982. Master copy output on Alphatype
CRS high-resolution phototypesetter. This book went
to press while the IEEE 754 Floating-Point Standard
was still in development; consequently, some of the
material on that system was invalidated by the final
Standard (1985) [23].

[45] Brian A. Wichmann. Surveyor’s Forum: “What every
computer scientist should know about floating-point
arithmetic”. ACM Computing Surveys, 24(3):319,
September 1992. ISSN 0360-0300. See [15, 16, 13].

328 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Support for multiple TEX distributions in i-Installer and MacTEX

Richard Koch
2740 Washington St.
Eugene, Oregon, USA
koch (at) math dot uoregon dot edu

http://uoregon.edu/~koch/

Abstract

We discuss a data structure by Gerben Wierda and Jérôme Laurens which makes
it easy to use multiple TEX distributions on Mac OSX.

1 A confession

The wonderful data structure described below was
designed by Gerben Wierda and Jérôme Laurens
and implemented first in Gerben’s i-Installer pack-
age for gwTEX and then later in the various MacTEX
install packages I maintain. When I learned the de-
tails of the design, I was repulsed by its complex-
ity, and opposed it with increasingly vitriolic emails.
Then one day, an email from Jérôme led to a reli-
gious conversion on my part. The data structure
now seems natural, and the Gods have condemned
me to write this article as punishment for opposi-
tion.

2 The problem

TEX GUI applications on the Macintosh, like (my
program) TeXShop, LATEXiT, iTEXMac, BibDesk,
and others, call command line programs to typeset.
A year ago, the standard Mac TEX distribution was
teTEX, as packaged by Gerben Wierda. Therefore
these GUI applications were configured to use that
distribution, and so the applications worked right
out of the box without any configuration.

But in May of 2006, Thomas Esser announced
the end of his support for teTEX. This led to a mad
scramble in the TEX world — some users switched to
the full unmodified TEX Live and others continued
to rely on teTEX. At the international TUG meet-
ing in Marrakesh held in November 2006, Gerben
introduced a new distribution named gwTEX based
on TEX Live. But alarmingly, he also announced
the end of email support for his distribution, and
modified i-Installer so the first dialog which appears
says Unsupported Software in bold letters, fol-
lowed by a paragraph of text which begins “I regret
having to inform you that i-Installer is unsupported
software as of Jan 1, 2007.” Gerben continues to
maintain gwTEX, with a substantial following, and
“unsupported” seems to mean merely that he has
adopted Donald Knuth’s policy of not reading email.
But his message puts new users into panic mode.

Meanwhile, TUG’s Mac OSX Working Group
produced three one-button install packages for TEX,
all based on TEX Live and differing mainly in size.
These packages are available at http://tug.org/

mactex. The first of these, BasicTEX, is a 39.7 MB

package for users with slow download connections;
it installs a surprisingly useful subset of TEX Live
2007. The second, gwTEX, is a 321 MB package
which installs gwTEX; users can use i-Installer to
maintain this distribution. The third, TEX Live
2007, is a 619 MB package which installs the com-
plete 2007 version of TEX Live.

There are also independent distributions based
on teTEX in Fink and in MacPorts.

All of these distributions install in different lo-
cations, so installing one does not overwrite the oth-
ers. For example, BasicTEX is a subset of TEX Live
2007, but installing TEX Live 2007 creates a com-
pletely separate installation rather than upgrading
the BasicTEX installation.

This proliferation of distributions confuses new
users. In early June, a physics graduate student at
the University of Oregon called me after switching
from Windows to a Mac. He set aside a Saturday
to install software. From the web he learned about
the MacTEX full TEX Live distribution and installed
it. Then his lab partners told him to get scientific
applications with Fink, so he installed Fink. Fink
asked him which programs to install, so he said “give
me everything” and unknowingly got a second TEX
distribution. After that, friends suggested learning
TEX by starting with LyX, so he installed that. The
LyX installer told him that it needed to put style
files in /usr/local/gwTeX, so he searched the inter-
net and found gwTEX. In the course of a single af-
ternoon, he had managed to install three complete
TEX distributions on his portable. Everything went
smoothly until a Fink web page explained how to re-
configure TeXShop for teTEX, and he couldn’t figure
out what teTEX was.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 329

Richard Koch

3 The solution

I’ll get to the new data structure in a minute, but
first let me tell you what Jérôme Laurens wrote in
email which led to my religious conversion. Jérôme
told me he had a preference pane for Apple’s System
Preferences which would list available TEX distribu-
tions and allow users to switch from one to another.

Jérôme’s pane lists distributions installed on a
machine. The active distribution is marked in this
list. Click on another distribution to make it active.
This action automatically switches the PATH and
MANPATH variables so Terminal and other shells
use the correct binaries and man pages. It auto-
matically reconfigures all GUI programs to use the
appropriate distribution. For example, TeXShop,
LATEXiT, iTEXMac, and BibDesk switch instantly
to the new distribution. You can open a source
file, typeset, switch distributions with the pane, and
typeset again with the new distribution, all without
restarting the GUI program or even reloading the
source file.

All of the GUI programs I’ve listed are config-
ured by default to use the new data structure, so
they all work right out of the box without any con-
figuration.

Here is the preference pane:

Do you remember our physics student? I told
him “TeXShop is already configured; don’t do any-
thing. Go to System Preferences, open the TeX Dis-
tribution pane, and you’ll see a list of your three
distributions. Switch to the one you want to use.”
Magical, huh?

Jérôme’s panel is automatically installed by i-
Installer when it installs gwTEX, and by all three
MacTEXdistributions. So of course the preference
pane recognizes these distributions. But it also rec-

ognizes legacy distributions written before the pane
existed: Fink’s teTEX, MacPort’s teTEX, Gerben’s
old teTEX, TEX Live 2004, TEX Live 2005, and —
well, there wasn’t any TEX Live 2006.

4 Another problem solved

Developers want the newest versions of computer
software. But many TEX users don’t think that way.
I’ve often heard variants of “I’m in the middle of
two book projects and five papers with coauthors;
don’t talk to me about upgrading TEX.” To some
extent, interest in upgrading depends on the com-
ponent of TEX being used; ConTEXt and X ETEX are
undergoing rapid development and users of these
programs upgrade regularly, while users of LATEX
and pdfTEX are more likely to desire stability over
change.

The TEX Live distribution is upgraded once a
year and each upgrade is installed in a different loca-
tion. So TEX Live users can safely upgrade, knowing
that it is easy to return to their older distribution.
Nevertheless, I’m willing to bet that a very large
percentage of TUG members put the TEX Collec-
tion DVD aside when it arrives because they are in
the middle of a project. I also bet that most of these
folks never retrieve the disk and upgrade.

The problem is that retreating to the old dis-
tribution is not foolproof. It is all too easy to recon-
figure the GUI front end and leave the PATH in Ter-
minal unchanged. Months later such a user might
reconfigure TEX with a Terminal command, only to
discover that the change didn’t “take” in the GUI

program. This is a difficult bug to diagnose.
But Jérôme’s panel completely solves the prob-

lem. Users can retreat to the old distribution with a

330 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Support for multiple TEX distributions in i-Installer and MacTEX

single panel click and be assured that all programs
are configured correctly. Consequently, I’m hoping
that Mac users get in the habit of upgrading as soon
as the new TUG DVD arrives.

5 Some history

When Thomas Esser made his announcement, there
was barely a ripple in the Mac world because “Ger-
ben will take care of it.” But when Gerben an-
nounced end of support, there was an explosion of
concern; several messages on the TEX on Mac OSX

mailing list asked “is this the end of TEX on the
Mac?”

At that point, several people began experiment-
ing with TEX Live. I was one of them. It is com-
mon knowledge that TEX Live is difficult to install;
its install script asks obscure questions like “does
your compiler use BSD calling conventions.” Mind
you, nobody ever told me about this difficulty, but
I somehow knew. And as confirmation, I often talk
to Karl Berry, who currently maintains the install
script, at meetings and he never once asked “why
don’t you Mac guys use TEX Live?”

But anyway, I dug up an old TUG DVD and
ran the script. Gosh. No obscure questions. Very
few questions at all, and then poof, TEX Live was
installed and it ran like a charm.

So I have a complaint about Karl: excessive
modesty. Let me push this complaint by quoting
a similar complaint about the inventor of the the-
ory of electricity and magnetism. Freeman Dyson’s
great essay Missed Opportunities, Bulletin of the
AMS, 1972, is about situations where mathemati-
cians would have made faster progress is they had
paid attention to the physicists. The first case he
discusses is Maxwell’s theory of electricity and mag-
netism. Dyson begins by quoting Maxwell himself,
who said in a lecture “According to a theory of elec-
tricity which is making great progress in Germany,
two electrical particles act on one another directly
at a distance, but with a force which, according to
Weber, depends on their relative velocity, and ac-
cording to a theory developed by Riemann, Lorenz,
and Neumann, acts not instantaneously, but after
a time depending on the distance. The power with
which this theory explains every kind of electrical
phenomena must be studied in order to be appre-
ciated. Another theory of electricity which I prefer
. . . ” and then described his own theory.

Dyson writes “It is difficult to read Maxwell’s
address without being infuriated by his excessive
modesty, which led him to refer to his epoch-making
discovery of nine years earlier as only ‘Another the-
ory of electricity which I prefer.’ How different is his

style from that of Newton, who wrote at the begin-
ning of the third book of his Principia: ‘It remains
that, from the same principles, I now demonstrate
the frame of the System of the World.’ ”

That’s my complaint about Karl. If only we
had known earlier that TEX Live is easy to install!
But to get back to the story —

The three MacTEX install packages mentioned
earlier are based on TEX Live. In particular, the
MacTEX package TEX Live-2007 package the full
TEX Live exactly as it would appear if installed di-
rectly with the TEX Live script. However, there are
several reasons that Mac users should install using
the MacTEX packages. First, the packages modify
PATH and MANPATH, whereas the TEX Live install
script asks users to do this themselves. MacTEX
modifies these variables exactly as Gerben does from
i-Installer and as required by the TEX distribution
data structure, so the MacTEX method is compati-
ble with both gwTEX and this structure.

In addition, the MacTEX packages automati-
cally configure paper size, while the TEX Live scripts
ask users to run a post-installation script.

Finally, the MacTEX packages install Jérôme’s
preference pane and the associated data structures,
while the TEX Live script knows nothing about these
features.

6 How the data structure came about:

A small suggestion from me . . .

When I made MacTEX packages for TEX Live, I ran
into a small problem. TeXShop and the other GUI

programs no longer worked out of the box; they
had to be configured first. To make this easy, I
stole an idea from TEX Live and created a sym-
bolic link /usr/local/texprograms pointing to the
binary directory of the installed distribution. The
idea was that GUI programs would have to be con-
figured just once to use this link, and all installation
packages on the Mac would set the link during in-
stallation. I wrote Gerben and casually asked him
to support the link in i-Installer.

7 . . . and Gerben runs with it

Instead of making this change, Gerben began to look
at the problem from a larger perspective. There are
many things that a GUI application might like to
know about the active TEX distribution. Certainly
it will want to know where the binaries are. But each
TEX distribution contains a lot of documentation,
and the GUI app might well like to find and display
that documentation. Perhaps the GUI app wants to
display man pages too. And recall the LyX installer,
which wanted to install style files in the distribution;

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 331

Richard Koch

it needed to know the location of the distribution’s
main texmf tree.

Gerben proposed a data structure which would
organize and locate all of this information and more.

Let’s return to the simple issue of binary loca-
tion. The trouble is that each distribution handles
this in a slightly different way. In gwTEX, there
are two binary directories, one for Intel binaries and
one for PowerPC binaries. The Intel directory is
i386-apple-darwin-current and the PowerPC di-
rectory is powerpc-apple-darwin-current. TEX
Live works similarly, but the binary directories are
named i386-darwin and powerpc-darwin. Fink
contains universal binaries which work with both
processors, located in /sw/bin. A GUI app might
want to find the binary directory for the processor
of the machine on which it is running; this GUI app
shouldn’t have to know these various naming con-
ventions to do its job.

Once we get this far, the basic idea of Gerben
and Jérôme’s data structure will be clear. For each
distribution, they create a small folder of symbolic
links pointing to actual locations in the distribution.
The names chosen for these links are common for all
distributions rather than names used by a particu-
lar distribution. Thus a GUI app only needs to know
the common names assigned by Gerben and Jérôme
rather than the actual names chosen by a distribu-
tion. In addition, there is a link named DefaultTeX

pointing to the folder of symbolic links for the active
distribution.

Here is how this works in practice. The folder
for each distribution has a subfolder Programs and
inside that folder are two symbolic links i386 and
powerpc. These point to the actual directories con-
taining the Intel and PowerPC binaries for that dis-
tribution. Putting this together, a GUI program
running on an Intel processor will find the binaries
for the currently active distribution in DefaultTeX/

Programs/i386. If the active TEX happens to be
TEX Live 2007, this will yield /usr/local/texlive/

2007/bin/i386-darwin. If the active TEX is Fink’s
teTEX, it will be /sw/bin. That is the simple idea
in a nutshell. (In this explanation I have left out a
few details, so the paths to the links aren’t exactly
these.)

Tthe path to binaries for the active TEX using
the architecture of the current machine is of such im-
portance that Gerben and Jérôme provide a short-
cut: a link /usr/texbin points to DefaultTeX/

Programs/i386 on Intel machines and DefaultTeX/

Programs/powerpc on PowerPC machines. Thus
GUI apps can use /usr/texbin as a path to TEX
binaries. (Thus /usr/texbin replaces my earlier

/usr/local/texprograms.) All the standard GUI

apps on Mac OSX now use this as their default path.
That is why they run right out of the box.

When the structure is installed by i-Installer or
MacTEX, a technical description of the structure is
installed in /Library/TeX/Distributions. It isn’t
necessary for me to give full details here, but let
me say just a little more to indicate the range of
possibilities opened up by the structure. The folder
of links for a particular distribution contains sub-
folders named Doc, Info, Man, Root, AllTexmf, and
others. Doc contains symbolic links to actual fold-
ers in the distribution containing documentation;
the number of such links varies with distribution.
For instance, for TEX Live 2007 the links are called
texmf-dist-doc, texmf-doc, texmf-doc-doc, and
texmf-var-doc. Thus a GUI application can use
DefaultTeX/Doc to discover the entire documenta-
tion tree for the active distribution.

Info contains links to the various GNU Info
files; Man contains links to the various man pages,
and Root contains a link to the folder containing the
entire distribution. AllTexmf contains links to the
various texmf trees of the distribution; for example,
the TEX Live 2007 AllTexmf contains links named
texmf, texmf-dist, texmf-doc, texmf-local, and
texmf-var.

The Macintosh file system has a folder named
/Library containing various Apple and Third Party
data files which apply system wide. The TEX distri-
bution data structure is installed in /Library/TeX,
where TeX is a subfolder created by i-Installer or
MacTEX. At the moment this folder only contains
information about the TEX distribution data, but I
understand that some developers are eyeing it for
other uses. So I don’t recommend throwing it away
cavalierly. The actual distribution symbolic links are
in folders in /Library/TeX/Distributions. There
will be one such folder for each distribution installed
on the machine, together with folders for legacy dis-
tributions even if those aren’t installed.

It is not necessary to clean up the symbolic links
in the data structure if the corresponding distribu-
tion is thrown away, because Jérôme Laurens’ pref-
erence pane is smart and only shows distributions
when the data structure points to something con-
crete. Thus, for instance, it is perfectly ok to entirely
remove TEX Live 2007 using the simple command

sudo rm -R /usr/local/texlive/2007

even though this will leave a stranded data structure
behind. The data structure itself is tiny.

I have now explained all of the key ideas. The
structure and preference pane are quite simple, but I

332 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Support for multiple TEX distributions in i-Installer and MacTEX

use them virtually every day. Because of this struc-
ture,

• GUI apps work right out of the box;

• TEX can safely be upgraded because it’s trivial
to revert if necessary;

• GUI TEX applications may display documenta-
tion in the future.

8 But give us the dirt

You may be saying “Look, I really don’t care about
the data structure. I don’t even use a Mac. I’m here
because I want to hear about the vitriolic email.” If
so, this is the section for you.

Let me say from the start that the disagree-
ments I’m going to describe are in the past — there
was a battle, Gerben and Jérôme were right and I
was wrong. But for your amusement —

When Gerben first designed the data structure,
there was no hint of a preference pane. I didn’t
exactly know how users would switch the default
distribution, but it looked like they were expected
to directly open /Library/TeX/Distributions and
manipulate the folders and data inside it. This made
it urgent that this location contain straightforward
data.

Initially, Gerben’s design was simple, but then
it took an unexpected turn. Gerben and Jérôme
added an extension .texdist to the names of the
folders which contain symbolic links describing ac-
tual distributions; for example, TeXLive-2007 be-
came TeXLive-2007.texdist. Inside this folder
they placed a subfolder named Contents. Further
investigation revealed that most of the .texdist

folders were associated with mirror images in a hid-
den folder; for example, the folder TeXLive-2007.

texdist had a mirror named TeXLive-2007 in a
hidden folder inside /Library/TeX/Distributions.
This mirror folder also contained a Contents folder,
and the Contents in the original TeXLive-2007.

texdist folder proved to be a symbolic link to this
Contents folder in the mirror TeXLive-2007. That
is, the actual symbolic links which described the
distribution were inside the Contents folder in the
mirror folder living in a hidden directory.

Around this time, I realized that I could no
longer explain the data structure in a few sentences
and became alarmed. I have never met Gerben or
Jérôme (or most of my other collaborators), but
Gerben and I have been in email contact for years —
really since the start of OSX — and all of this email
has been pleasant or better. So as I realized the
baroque nature of the developing data, I began com-
plaining.

In growing frustration, I wrote a few people who
weren’t involved in the design and must have won-
dered what the heck I was talking about. One of
those folks was Jonathan Kew, and here’s what I
wrote him:

I shouldn’t be writing you, but I need

someone to "kvetch" to and I don’t want

to pollute the mailing lists. I have just

seen Gerben’s final "link" design. I think

it is a mess. Am I supposed to support

the design in MacTeX?

Gerben will end support of his packages

in January, so we face the possibility of

dealing with multiple TeX distributions on

the Mac. With multiple packages, we need

an easy way to configure GUI applications.

A couple of weeks ago I introduced MacTeX

packages for three distributions and had

each package set a symbolic link

/usr/local/texprograms. When I asked

Gerben to set /usr/local/texprograms in

i-Installer packages, he decided to design

a more complete solution. Fair enough.

KVETCH:

But when it came time to implement

these changes, Gerben lost all sense

of proportion. Am I expected to support

his new baroque design in MacTeX?

Should I use Gerben’s data structure

or just give up and make my

own. Am I taking this too personally? Do I

need to get a life?

Jonathan is a very intelligent fellow. He didn’t
answer this email.

9 A Macintosh secret

Why was the new data structure so complicated?
On the Macintosh, it is possible to trick the

Finder so that it displays a folder as just another
file. The program XCode, which developers use to
write applications, saves projects in this way; each
saved project appears to be a simple file, but if you
hold down the control key while clicking on the file
name, a menu will appear offering to open up the
file and display its contents.

What makes a folder magical in this way? Well,
its name must have an extension, and it must con-
tain a subfolder named Contents.

If such a magical folder lives on a computer,
it will look like any other folder until it is claimed

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 333

Richard Koch

by an application which understands its extension.
When such an application is installed, the magical
folder will suddenly obtain an icon, and clicking on it
will open the associated application instead of open-
ing the folder. Thus magical folders are like the pods
growing in the basements of houses in Invasion of
the Body Snatchers. They are faceless and asleep
until a governing alien application is installed, when
they suddenly obtain a face, wake up, and do the
application’s bidding.

Gerben and Jérôme had decided that the fold-
ers in /Library/TeX/Distributions would be such
magic folders. This explained every complication in
their data structure. But immediately it led to a
key question: what was the alien application they
intended to claim these magical folders? I asked
Gerben this question in an email, and he replied
“I’m just designing the data structure; it is up to
other people to use it.”

10 A suspicion

If you don’t come from the Macintosh world, there is
a key fact in this story that you may not know. I am
the author of a front end for TEX named TeXShop.
Jérôme Laurens is the author of a competing front
end named iTEXMac. Jérôme is my rival. Suddenly
I knew what the alien application was intended to
be! Gerben and Jérôme are both Europeans; clearly
the Europeans were planning to pull the TEX rug
right out from under me!

11 I fight

In a series of increasingly angry emails, I argued
that no front end should interfere with the underly-
ing TEX distribution. Gerben was so caught up in

the data structure design that he found my email
distracting and irritating, and Jérôme ignored me
completely. But suddenly I had an idea. I mod-
ified two lines of code in TeXShop, and suddenly
TeXShop became the alien application claiming the
magical folders. I wrote a final email explaining
what I had done, ending with, “Why can’t you see
that no front end should do what I have done?”

12 Paranoia doesn’t pay

At that point, a magical thing happened. I had
been getting email from Gerben, but nothing from
Jérôme. Now Jérôme managed to get in contact
by an indirect route; and he wrote “Did you know
that the University of Oregon email system has been
rejecting my mail?”

Next Jérôme told me that he always believed
front ends shouldn’t claim .texdist.

After that, Jérôme he told me for the first time
about his TeXDist Preference Pane, which in my
opinion is the key ingredient which makes the data
structure usable by everyone. Finally he said that
he had written a small application which claimed
the magical folders, but all it did was to open the
TeXDist Preference Pane when the user clicked on
a magical folder.

So in a single email, I learned that users could
avoid learning of /Library/TeX/Distributions al-
together, that the magic folders were benign, and
that a preference pane existed which met Apple’s
high standards for simplicity and usability. It was
an exciting day.

First moral: there are fewer evil people in the
world than you may think.

Second moral: Your rivals also have good ideas.

334 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Design decisions for a structured front end to LATEX documents

Barry MacKichan
MacKichan Software, Inc.
barry dot mackichan at mackichan dot com

1 Logical design

Scientific WorkPlace and Scientific Word are word
processors that have been designed from the start to
handle mathematics gracefully. Their design philos-
ophy is descended from Brian Reid’s Scribe,1 which
emphasized the separation of content from form and
was also an inspiration for LATEX.2 This logical de-
sign philosophy holds that the author of a document
should concern him- or herself with the content of
the document, and with identifying the role that
each bit of text plays, such as a header, a footnote,
or a quote. The details of formatting should be ig-
nored by the author, and handled instead by a pre-
defined (or custom) style specification.

There are several very compelling reasons for
the separation of content from form.

• The expertise of the author is in the content;
the expertise of the publisher is in the presen-
tation.

• Worrying and fussing about the presentation is
wasted effort when done by the author, since
the publisher will impose its own formatting on
the paper.

• Applying formatting algorithmically is the eas-
iest way to assure consistency of presentation.

• When a document is re-purposed it can be re-
formatted automatically for its new purpose.
This can happen when a document is put on
the Web in addition to being published, or even
when the author sends the document to a new
publisher.

The most powerful typesetting programs tend
to be programming languages themselves. The two
most prominent examples are PostScript and TEX.
Although these are extremely powerful, they are not
always simple, and they do not separate content
from form. Consequently, there is a migration on
the following plot from the top to the bottom, and
from the left to the right.

1 Brian K. Reid, “Scribe: A Document Specification
Language and its Compiler,” Ph.D. Dissertation,
Carnegie-Mellon University, Pittsburgh, PA, Oct. 1980.

2 Leslie Lamport, LATEX: A Document Preparation
System, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, Second Edition, 1994.

Procedural

Declarative

S
tr

u
c
tu

re
d

U
n

s
tr

u
c
tu

re
d

TeX

PostScript

PDF

LaTeX

Thus, PostScript is a powerful programming
language, but it was later supplemented by PDF,
which is not a programming language, but instead
contains declarations of where individual characters
are placed. PDF is not structured, but Adobe has
been adding a structural overlay. LATEX is quite
structured, but it still contains visible signs of the
underlying programmability of TEX, so I haven’t
quite placed it at the bottom of the plot. The pat-
tern is that power and flexibility generally get sup-
plemented or replaced in some circumstances with
structured and declarative alternatives.

The original design philosophy for Scientific

WorkPlace and Scientific Word was to make visual
word processors that live at the bottom right of
the diagram, and produce their output by generat-
ing LATEX using one of over a hundred typesetting
styles. This is the optimal solution for publishing,
at least when we support a publisher’s style, or
when a publisher’s style uses the same tags as one
of the standard LATEX document types.

2 Enter the customer

Although this philosophy works very well for pub-
lishing, many of our customers want to have greater
control over the appearance of their documents. The

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 335

Barry MacKichan

truth is that not all mathematical documents are
written for publication in a journal. The author
might want to post a document on the Web or to
send out preprints, or to prepare reports that will
not be published, or to prepare handouts for stu-
dents. The cold hard truth is that programs like
Microsoft Word — despite its intellectual roots be-
ing also in Scribe — have over the years encouraged
users to fiddle and futz with formatting. The ex-
perts may all agree that the result is ugly, but the
customer is the one who pays our salaries.

In the past, Scientific Word users had a hard
time if they wanted to change or add to a style.
The advice of our tech support staff has been:

• You don’t want to do that
• You shouldn’t do that
• You can use package X to do that
• You can rewrite the style file

We no longer give the first two responses, and
our users are not going to be able to use the fourth
bit of advice. Due to the large number of useful
packages, we now encourage users to start with a
standard LATEX document type and to use packages.
This works, but it is not the most elegant way to
solve the problem, since you shouldn’t have to write
options for the geometry package in order to change
a margin.

We also allow the user to enter snippets of raw
TEX or LATEX code in what we call a “TEX but-
ton” (which is how we enter “TEX” and “LATEX”)
but this runs counter to the design philosophy, and
can’t address problems when a user wants to change,
for example, how list items are generated (since the
code to be added would be in the middle of code we
have generated).

3 A statement of the problem

This discussion now allows a statement of the prob-
lem we are solving.

1. We want an internal form for our documents
that is both rich and extensible, and a rendering
engine that is rich enough to render a LATEX
document and which is extensible.

2. We want to convert a LATEX document to our
internal form in a way that is extensible and
preferably uses standard, well-documented tools,
and in particular does not require access to our
source code.

3. We want to convert our internal form to LATEX
in a way that is extensible and uses standard
tools, and does not require access to our source
code.

Part of the motivation for not needing access to
our source code is that extending these operations
will be easier for us if it is not necessary to change
and re-build C++ code in order to support a new
tag or to change the behavior of a standard tag.
The other part of the motivation is that if the tools
are standard and well-documented, then advanced
users can make their own changes.

3.1 Internal form of a document

Scientific Word has an internal form that is not
LATEX but looks superficially like LATEX, and we have
an adequate rendering engine for it. However, it is
not extensible — that is, to extend it means rewrit-
ing C++ code and extending the rendering engine.
To avoid this problem and get the extensibility we
need, we choose an internal form that is rich enough
and extensible (and it must also be declarative and
structured). The obvious candidate (at least in this
century) is XML. We are basing future versions of
our software on the Mozilla Gecko rendering engine
for HTML and XML. Tags can be introduced at will,
and CSS (Cascading Style Sheets) are used to deter-
mine how these tags appear on the screen.

Some of the features of Gecko that are very use-
ful to us are:

• The rendering engine is open-source under a li-
cense that allows us to extend it if necessary.

• The rendering engine is rich and powerful (the
program user-interface is in fact a Gecko docu-
ment).

• XML is a standard that is easily converted to
and from LATEX.

• A powerful scripting language is integrated into
Gecko.

• A technology (XBL–XML Binding Language)
allows attaching behavior to (new) XML tags.

• A system of broadcasters and observers simpli-
fies coordinating the behaviors of objects.

• Support for infinite undo and redo is built into
the document-modifying functions.

3.2 Conversion from LATEX

Scientific Word does not process TEX or LATEX files
with TEX. It simply determines the structure of
the file by recognizing tags such as \section and
\subsection. In the past, it has caused problems
when users defined their own macros: we did not
recognize them and loaded the macro invocation as
a TEX button. Beginning with version 5.5 (two years
ago) we now run a version of the TEX macro pro-
cessor, and we evaluate macros defined by the user,
but we do not evaluate macros defined in LATEX or
any of the standard packages. The result should be

336 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Design decisions for a structured front end to LATEX documents

a document that contains only the standard macros,
and which can be read by Scientific Word.

We continue with this same approach in our
new architecture, except that the definitions of the
standard LATEX macros converts them to XML. The
resulting files are complicated, but most of the com-
plication is in some utility macros that make the fi-
nal macros quite easy to understand. Some sample
code from one of these files is:

\def\out@begin@abstract{%

\msitag{^^0a}%

\msiopentag{abstract}{<abstract>}

}

\def\out@end@abstract{%

\msitag{^^0a}%

\msiclosetag{abstract}{</abstract>}

}

This is all that is required to convert the abstract

environment to XML.

3.3 Conversion to LATEX

The conversion to LATEX is done using XSLT (XML

Stylesheet Language Transformations). As the name
implies, XSLT was designed as part of a method of
applying styles to XML objects, which sometimes re-
quires making some transformations or re-ordering
the XML elements. It has evolved into a powerful
standalone transformation language for XML docu-
ments. It can be used to transform XML into XML,
or XML into text, which includes TEX.

For instance, here is the XSLT rule that gener-
ates the abstract environment:

<xsl:template match="abstract">

\begin{abstract}

<xsl:apply-templates/>

\end{abstract}

</xsl:template>

When XSLT finds the <abstract> tag, it first
generates \begin{abstract}, then applies any rules
needed for the content of the tag, and finally gen-
erates \end{abstract} when it reaches the end of
the abstract node. The tag may have attributes,
which might affect the TEX generated, and the rules
can depend on the context of the tag.

The point here is that it is relatively easy to
add support for new tags, or to change the TEX
that gets produced by a tag. In older versions of
our products, these operations took place in com-
piled code, but now they are controlled by text files
that can be replaced or modified without rewriting
or recompiling C++ code. It is now feasible to sup-
port different flavors of TEX for Math Reviews, or
to support something like ConTEXt.

The next section addresses the question of how
you can tailor the on-screen presentation of a tag.

4 Some examples

4.1 Displaying ‘LATEX’ on screen

This is a brief discussion of how you can display
a new tag, such as <latex/>, on the screen. This
is done by using XBL. We’ll skip lightly over the
details.

In a CSS file there is a line that tells Gecko that
special rules apply to this tag:

latex {

-moz-binding: url(

"resource://app/res/xbl/latex.xml#latex");

}

In the file latex.xml, there is a section that
says how to display the tag:

<xbl:content>

<sw:invis><xbl:children/></sw:invis>

<sw:latex2>L<sw:latexa>A</sw:latexa>

<sw:latext>T</sw:latext>

<sw:latexe>E</sw:latexe>X</sw:latex2>

</xbl:content>

Each letter in LATEX (almost) is in a separate
tag, which allows us to change the style for each
letter. Here is the style rule for the ‘A’ (the tag
latexa):

latexa {

font-size: smaller;

position: relative;

bottom: .15em;

left: -0.20em;

}

This rule shrinks the ‘A’ and moves it up and
left. A style rule for the latex2 rule changes the
letter spacing to squeeze them together a bit. The
final result on the screen is:

Actually, what appears in the internal format
is <latex>LaTeX</latex>. The content of the tag
(‘LaTeX’) is thrown away, except when the XML doc-
ument is viewed by some other browser, such as In-
ternet Explorer, or even Firefox. Internet Explorer,
when it sees the -moz-binding statement in the CSS

file will ignore it completely. Firefox will understand
it, but will be unable to find the latex.xml file,
which is internal to our program. As a result, they
will ignore the latex tag and will simply display the
contents. Thus, the above displayed on Firefox will
appear as:

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 337

Barry MacKichan

Of course, the LATEX generated by this tag, no
matter what its content, will be \LaTeX.

4.2 Spaces

LATEX provides a wide choice of spaces, both hor-
izontal and vertical. It is possible to make them
visible by selecting a menu item “Show Invisibles”.
This is accomplished in the same way as the above
example, with special CSS rules to apply in the case
when “Show Invisibles” is on.

5 User interface enhancements

The next two items are not particularly related to
the new architecture for Scientific Word; rather, they
can be looked on as one solution to the problem
of converting a rich keyword-value interface to a
friendlier (to the novice) dialog-based interface. The
result is marginally less powerful, but still allows the
advanced user to get access to almost all the features
of the keyword-value interface.

The dialog shown in figure 1 is for selecting
OpenType fonts. Before the user gets to this point,
he will be warned that if he proceeds, his document
will have to be compiled with X ETEX and therefore
will not be completely portable.

This allows the user to pick the three main
fonts: the main (roman) font, the sans serif font,
and the monospaced font. He can also choose other
fonts and give them names. We have a rtlpara tag
for right-to-left text, and this uses the rtl font, for
which the user has chosen Narkisim.

There are many font attributes, and many are
not widely supported in available fonts, so we have
chosen only two for access by checkboxes: old-style
numerals and swash italics. Other attributes are
accessible, but only by falling back on the keyword-
value interface and clicking on the “Go native” link;
see figure 2.

The first line in the “Go native” box was pro-
vided automatically since the user had clicked on
“Old style nums” and “Swash”. The user added the
next line to use the MinionPro-Bold font as his bold
Roman font rather than the default Semibold. This
interface allows almost complete access to the power
of the fontspec package but gives more casual users
the ability to choose basic fonts easily.

Another dialog interface to package options is
the page layout dialog, as shown in figure 3. Here
the user is adjusting the left margin by pressing or
holding the up or down arrow key in the left margin
width field.

Figure 1: Dialog for selecting OpenType fonts.

6 Conclusion

Scientific WorkPlace and Scientific Word are de-
signed to make it easy for authors to write a beau-
tiful LATEX document with skills they already have.
To keep its simplicity from becoming a limitation,
we have to provide ways for more advanced users to
override the default decisions that Scientific Word

makes. This paper has covered a few of the new
technologies we are using to make a more modular
system, with the interconnections provided by sta-
ble and well-documented standards in a way that
we, or a knowledgeable user, can easily customize.
We expect this new platform to allow us to be more
nimble than before in responding to the changing
needs of our customers, and to serve as a solid base
for the next ten years of development.

338 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Design decisions for a structured front end to LATEX documents

Figure 2: Selecting OpenType font attributes.

Figure 3: Page layout dialog.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 339

MathType 6.0’s TEX input for MS Word and Wikipedia

Paul Topping
Design Science, Inc.
140 Pine Ave.
Long Beach, CA
USA
pault (at) dessci dot com

http://www.dessci.com

Abstract

MathType is well-known for its point-and-click user interface for editing math.
However, some users feel more comfortable typing math using TEX, so in
MathType 6.0 we have added a TEX input mode. This provides the user with
the best of both worlds: TEX for initial entry, point-and-click and drag and drop
for easy editing and manipulation. Since MathType can save equations in several
graphics formats and objects, it provides a direct path from TEX to Microsoft
Word, PowerPoint, and virtually any document or application. Since many blogs
and wikis accept a variant of TEX math syntax and expose it in their web pages,
we are now able to support both authoring and reuse of equations in these en-
vironments. In particular, MathType users can now copy equations out of the
thousands of Wikipedia pages containing equations for use in educational and
research authoring. In addition, MathType users can create equations and paste
them directly into new Wikipedia content.

1 Introduction

Throughout MathType’s 20-year history, it has been
firmly in the point-and-click camp of equation edit-
ing. Because a trimmed-down version has shipped
with Microsoft Office since 1991, it has been used
to type a lot of math. Of course, TEX remains pop-
ular and is heavily used in some scientific commu-
nities. Once a person’s hands “know” TEX, it is
hard for them to imagine typing math any other
way. And, because TEX is free and easy to integrate
into web servers as an equation image generator,
many blog and wiki applications support it. Unfor-
tunately, many people who don’t know TEX struggle
with authoring math in these environments. With
MathType 6.0, we tried to bridge both of these gaps,
bringing TEX input to MathType and allowing peo-
ple who don’t know TEX to more easily work with
wikis and blogs. Since Wikipedia is so popular and
contains many equations authored in TEX, we have
made working with its equations especially easy.

2 Typing TEX in a MathType window

Typing equations using TEX and LATEX math syntax
in MathType is very easy. At any point in building
up an equation, if the user enters a run of text start-
ing with one of the characters $ ^ \, that run will
be treated as TEX input to be converted into math

notation (see Figure 1). The resulting TEX text will
appear in dark grey as opposed to the normal black
of converted math. Hit Enter and the TEX input is
converted into normal MathType equation content
(see Figure 2). Any errors appear in red. Correc-
tions can be made using MathType’s normal point-
and-click editing facilities, or the conversion can be
undone to allow corrections to be made in the orig-
inal TEX. TEX can also be pasted into MathType
via the clipboard.

Figure 1: User types some TEX.

3 Copying equations out of Wikipedia

Wikipedia, the popular online encyclopedia, con-
tains thousands of pages with equations represented

340 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

MathType 6.0’s TEX input for MS Word and Wikipedia

Figure 2: After typing ENTER.

in both HTML and as images. The math is authored
using the Texvc subset of TEX markup with some ex-
tensions for LATEX and AMS-LATEX. If it is simple
enough, TEX input is converted to HTML markup.

Otherwise, an image is generated with the TEX
input stored in the image’s ALT attribute. When an
equation is copied from the web page onto the Win-
dows clipboard, the math notation is made available
to MathType where it is converted to MathType’s
own equation representation. This works with In-
ternet Explorer, Firefox, and any browser that sup-
ports Microsoft’s HTML clipboard format (see Fig-
ures 3 and 4). A stack of HTML and/or TEX equa-
tions can be copied in a single operation.

We have also added a Texvc output transla-
tor allowing equations to be created in MathType,
or copied from equations in Microsoft Word docu-
ments, and pasted into Wikipedia pages.

4 Implementation

MathType’s translation process involves two sepa-
rate translators working together, one for HTML

math and one for TEX. The translators are writ-
ten in a home-grown, rule-based language named
Sevilla after the Spanish restaurant on the lower
floors of Design Science’s Long Beach, California,
offices. Since the translation is defined using rules in
text files, the existing translators can be customized
and entire new translators may be created.

Figure 3: User copies from Wikipedia’s Trigonometry
page, http://en.wikipedia.org/wiki/Trigonometry.

Figure 4: After pasting into MathType.

5 Current status

MathType 6.0 for Windows was released in July
2007. The same technology will also be brought into
a future Macintosh version. In the future, we expect
to be looking at creating smooth interfaces between
MathType and other web-based math environments.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 341

CrossTEX: A modern bibliography management tool

Robert Burgess and Emin Gün Sirer
Cornell University, Ithaca, NY
http://www.cs.cornell.edu/People/egs/crosstex

Abstract

CrossTEX is a new bibliography management tool that eases database mainte-
nance, style customization, and citation. It is based on an object-oriented data
model that minimizes redundant information in bibliographic databases. It en-
ables a work to be cited not only through arbitrarily-assigned object keys but
through semantic information that uniquely identifies the work. It automates
common tasks in order to avoid human errors and inconsistencies in bibliogra-
phies, while providing users with fine-grained control. CrossTEX’s other features
include support for modern reference objects such as URLs and patents, direct
generation of HTML documents, the ability to write styles in a modern program-
ming language, and extensive databases of published works included in the distri-
bution. It is backwards-compatible with existing BibTEX databases, and, overall,
builds on BibTEX’s strengths while fundamentally fixing the design restrictions
that lead to errors in BibTEX-formatted documents.

1 Introduction

Bibliography management and typesetting play a
critical role in publishing. Since its introduction in
1985, BibTEX has become the dominant tool for pro-
fessional bibliography management with LATEX. It
has achieved this dominance due to several good de-
sign decisions, such as tight integration with LATEX,
a human-readable format for bibliographic data-
bases, and overall ease of use. However, two decades
of experience with BibTEX have revealed several
fundamental weaknesses that require re-evaluating
what features a modern bibliography management
system must provide. CrossTEX is such a tool, which
learns from the example of BibTEX and provides
backwards compatibility while moving forward with
new models of bibliographic data and stylistic con-
trol.

1.1 What’s wrong with BIBTEX?

First, BibTEX interprets databases with a single-
table relational model in which every bibliographic
entry contains all of the information that can ap-
pear in it. This redundancy is a challenge to those
who maintain bibliographic databases because they
must correctly look up, enter, and maintain all that
information for every reference; it is easy to enter
or modify entries separately and use slightly differ-
ent versions of the name of a journal, conference, or
even author.

BibTEX’s crossref field provides a simple, spe-

cialized form of “inheritance”, allowing information
to be factored out into a single other object, but
is not a generalized feature — it is insufficient, for
example, for an author who wants to create a bibli-
ography of all of his or her own works, with a com-
mon note or URL associate with each entry. Al-
though @string objects could help prevent spelling
mistakes, there is no practical way around adding
the fields explicitly to each entry.

Furthermore, meeting publication requirements
in a professional setting that requires consistent ab-
breviations, names, and formatting guidelines re-
quires users to edit the database. To abbreviate
a journal name, the user must edit a copy of the
database, find each occurrence of the name, and
change it to the desired value. Even if the data-
base takes advantage of @string objects, a feature
included in BibTEX to attempt to circumvent the
restrictive relational model, the values of the strings
must be changed, because information appears in a
BibTEX-formatted bibliography as it appears in the
database. This fact alone prevents large, common
databases from being useful save for looking up cita-
tion information to copy-and-paste to smaller, per-
document bibliographies that authors must manage.

BibTEX citations within documents are based
on arbitrary keys attached to each entry in the data-
base. In the best case, authors establish site-wide
rules for creating keys from entries so they can cor-
rectly guess the required key based on the publica-
tion information of the article to be cited. This is

342 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

CrossTEX: A modern bibliography management tool

still quite fragile, as a single typo may cause the
wrong work to be cited; when databases have been
assembled by cutting and pasting entries from dif-
ferent sources, the keys are unlikely to follow a con-
vention, and the author must instead look up the
appropriate key for each citation.

BibTEX style files are written in their own, ar-
cane programming language. Few authors or data-
base maintainers have the skill to create or accu-
rately modify a bibliography style to meet require-
ments handed to them by publishers — they must
count on an appropriate style file being provided or
already existing, or they must blindly change one
that is “close” until it seems to produce the correct
typeset appearance.

In addition, BibTEX does not easily permit the
introduction of new kinds of objects. Database
maintainers represent newly emerging referenced
works, such as URLs, and unsupported objects, such
as patents, with the all-purpose @misc object whose
appearance is difficult to control because it is too
general.

Finally, BibTEX provides very little automation
besides formatting the references as specified in the
database. For example, it does not check capitaliza-
tion in titles, ensure that an author’s name appears
consistently, or abbreviate journals. This can lead
to inconsistent spelling, capitalization, or accents for
authors’ names or titles of papers. A modern tool
should be able to automate the tasks of checking and
fixing these common errors by enforcing consistency
by default.

1.2 A modern bibliography tool

We have developed a new bibliographic manage-
ment tool, CrossTEX, that addresses these problems.
It unifies features from modern programming lan-
guages, databases, and bibliography management
tools to solve problems authors and database main-
tainers have struggled with for two decades, and
also adds convenient new features while being com-
pletely backwards-compatible to allow authors to
use old BibTEX databases unmodified.

Authors and maintainers have very different
needs from a tool such as CrossTEX. Authors must
conform to a variety of requirements on appearance,
fields, and formatting, and so must have great flexi-
bility with their bibliographic data. Database main-
tainers, on the other hand, should be able to spec-
ify everything just once, so they need look up and
correctly enter conference locations, author names,
and book editors just once, and can find them in
one place to update and verify. Separating their
jobs is also very important. Authors should need

to do very little searching through the database for
keys, because their concern is writing. Maintainers
should be able to manage databases without concern
for document styles, because independence from in-
dividual documents allows databases to be shared
widely.

CrossTEX is designed not only to enable, but to
encourage large, common databases so that authors
can get on with their writing while the maintain-
ers have clean databases to manage. As a start, it
comes distributed with many large databases of the
papers published at major computer science confer-
ences, converted from the DBLP [13] project.

The most important aspect of CrossTEX is that
an object-oriented model replaces the underlying re-
lational model of BibTEX. Every entry is an object,
which contains fields and ultimately has a value it-
self; in BibTEX, entries have fields, and @string

objects have values, but this notion is not taken to
the level of principle. One object can use the value
of another by assigning its key to a field, by exten-
sion of the syntax for using @strings in BibTEX. In
addition, if the containing object leaves any fields
unspecified, it will inherit them, if possible, from
the other objects it refers to. For example, an ob-
ject representing a conference could specify not only
a value corresponding to the name of the conference,
but include fields such as editor or location. Any ar-
ticles that appear in the conference will simply use
that value as a book title and then automatically in-
herit an editor and location without specifying any-
thing extra. Those very familiar with BibTEX will
note that this is similar to the behavior of the spe-
cial ‘crossref’ field, but has become a part of the way
data is interpreted across the board rather than a
special-purpose feature.

The object-oriented model enables CrossTEX
databases to be concise and easily customized. For
instance, most authors refer to conferences by their
full names in formal journal papers, but abbreviate
them otherwise; in CrossTEX, objects are flexible
and have both long and short values. For exam-
ple, “OSDI” and “Symposium on Operating System
Design and Implementation” are two very different
strings, but they are both names for the same con-
ference. In BibTEX, the database maintainer would
have to choose just one value — but in CrossTEX,
both can appear in the same @conference object,
and the choice can wait until the author chooses
stylistic options for each document.

Objects can also specify fields conditionally.
Some information depends on context, especially
for often-reused objects such as conferences and au-
thors. If the location of a conference changes every

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 343

Robert Burgess and Emin Gün Sirer

year, it can be specified one way for 2006, and an-
other for 2007. Conditional fields are inherited along
with their conditions, allowing richly specified ob-
jects to adapt to the contexts where they are used.
This enables powerful new idioms such as the ability
to express everything about a conference over time
in a single object.

CrossTEX supports new kinds of objects, in-
cluding @url, @patent, and @rfc, that help mod-
ernize databases and allow them to be more precise,
rather than depending on overly permissive, non-
specific @misc objects. Adding other entirely new
objects is easy as well. Due to the more precise
taxonomy authors can apply stylistic options with
better granularity because each kind of object rep-
resents one specific kind of reference.

CrossTEX provides fine-grained control over ev-
ery aspect of the bibliography’s presentation. From
choosing between short and long conference names,
states or journals to abbreviating author names,
capitalizing titles or even pulling out hyperlinks in
fields, the author has control with command-line
switches. The LATEX files need not change at all
and there is no need to write new style files for each
combination of options.

CrossTEX provides new ways to keep track of
citation keys to make them more meaningful and
easier to find and remember. Objects are not re-
stricted to just one key, but can be assigned any
number of shorter or more descriptive keys, and
even extended with new aliases after their defini-
tion. An even more powerful technique inspired by
the NbibTeX [15] project is constrained citation: An
author can cite a paper by Sirer and Walsh in 2006
as \cite{!sirer-walsh:2006} without worrying at
all about what its key is in the database.

In addition to making consistency of data easy
through object inheritance, CrossTEX automatically
enforces consistency in other ways to avoid common
errors in databases, such as inconsistent capitaliza-
tion in titles. By default, it processes each title and
re-capitalizes them to a consistent style that can be
controlled by the author. CrossTEX carefully han-
dles accents in author names, math in titles, and
other complications to maintain consistency and a
professional appearance even if the database is not
perfect.

Maintainers will find many small but potent
features for managing large databases, such as the
ability to piece together many files with @include

statements or specify the same field for groups of ob-
jects with @default. CrossTEX also allows objects
to be updated far from their original definition, to
permit anyone to correct and extend shared data-

bases entirely without copying and pasting, even if
they do not have permission to change the database
itself.

CrossTEX is structured as a drop-in replace-
ment for BibTEX. Simply replace invocations of
bibtex in the typesetting process with crosstex,
and then incrementally update your databases to al-
low more and more consistency and reusability over
time using CrossTEX’s new features. The rest of
this introductory paper will summarize some exam-
ples of these features and how they fit together to
simplify the typesetting process.

2 Objects, inheritance, and conditions

CrossTEX enables a new idiom for managing con-
ference information that exemplifies the usefulness
of its object-oriented model, inheritance, and condi-
tional fields. Information that is always true is speci-
fied first; fields specified in square brackets introduce
conditions, such as a particular year for which the
‘location’ or ‘month’ fields have a particular value.
The result is readable and intuitive, but more im-
portantly collects information into a single object
that can adapt to its context:

@conference{nsdi,

shortname = "NSDI",

longname = "Symposium on Networked System

Design and Implementation",

[year=2007] address=CambridgeMA, month=apr,

[year=2006] address=SanJose, month=may,

[year=2005] address=Boston, month=may,

[year=2004] address=SF, month=mar,

}

The example defines the object nsdi, which
typically has the value “Symposium on Networked
System Design and Implementation” when assigned
to a field. Additionally, however, this object is aware
that if the referring context includes, for example,
the year 2006 and does not already specify an ad-
dress, the address will be assigned SanJose, a ref-
erence to a @location object representing the city
in California. Thus, the papers in the proceedings
of that conference need not specify that information
at all, but simply pull in all redundant information
from nsdi:

@inproceedings{credence,

title = "Experience with an Object Reputation

System for Peer-to-Peer Filesharing",

author = "Kevin Walsh and Emin {G\"un} Sirer",

booktitle = nsdi,

year = 2006,

}

The assignment booktitle = nsdi is like spec-
ifying either booktitle = "NSDI" or booktitle =

344 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

CrossTEX: A modern bibliography management tool

"Symposium . . . ", depending on whether the au-
thor has chosen long or short names to be used
for @conference objects. Additionally, precisely
because the credence object does not specify an
address or month, those fields will appear exactly
as they do in the conference. This concision and
consistency make conferences a perfect example of
CrossTEX’s flexibility from both the perspective of
the database and the author.

Because CrossTEX encourages centralized ob-
jects with a lot of information, it can be very im-
portant to group them into meaningful databases
and include them wherever they are needed with the
@include statement. CrossTEX includes files from a
standard path, including such databases as dates,
locations, conferences-cs (which contains en-
tries such as the one above for many of the important
computer science conferences), journals-cs, and
so forth. The standard database is always included
when CrossTEX begins, which allows the adminis-
trator to include system-wide databases that must
always be available. By default, standard includes
dates (for backwards compatibility with BibTEX
and also because dates are so universally useful)
and the databases containing the default rules for
capitalizing titles.

Databases can also be found in the same direc-
tory as the document being processed. Because that
directory is searched before the system directories,
users can easily supply their own databases, even
a standard database to control their own defaults.
This flexibility allows maintainers and authors to
work together to easily find, re-use, and adapt help-
ful databases.

3 Consistency and automation

Title case is one of the most common inconsisten-
cies when using BibTEX. Often, some papers appear
with lower-case titles, some with all upper-case, and
some with mixed title-case. Entries haphazardly
capitalize key acronyms such as “BGP”, and proper
nouns such as “Internet”.

CrossTEX ensures that all titles follow the same
uniform capitalization standard, even if they appear
in a wild variety of styles in the database. By de-
fault, the first letter of each word will become cap-
italized, the rest lower; this is the system known as
“titlecase”. CrossTEX is very careful to ensure the
titles come out looking “good”: It retains as-is words
in StudlyCaps or CAPITALS, LATEX commands, and
anything in math mode; compound words such as
“Peer-to-Peer” are split into words, capitalized cor-
rectly, and re-assembled; and finally a list of known
phrases are found and formatted. For example, any

appearance of a string that is, regardless of case,
equivalent to “Internet” will be capitalized as “In-
ternet”. CrossTEX determines these phrases at run-
time in using @titlephrase commands:

@titlephrase "USENIX"

@titlephrase "Internet"

The standard include files define certain com-
mon computer science phrases such as these, but
they can appear in any database. Small words, such
as “a”, “an”, “the”, etc. are also handled specially:
They are made lower-case except at the beginning
of the title or after certain punctuation, such as long
dashes or colons. These, too, are determined at run-
time by @titlesmall commands:

@titlesmall "a"

@titlesmall "the"

Again, the standard include files define common
English small words.

Thus an example title with the default capital-
ization might appear as “Aardvark: A System for
Peer-to-Peer BGP Routing on the Internet”, despite
messy or inconsistent capitalization in the database.

CrossTEX provides other capitalization options:
With --titlecase lower, only the first letter of
the title and those following punctuation are capital-
ized, the rest put into lower-case. All of the special
cases for the default title-case still apply. Thus, the
example title would appear as “Aardvark: A system
for peer-to-peer BGP routing on the Internet”.

With --titlecase upper, everything, even
known phrases and small words, are put into upper-
case, thus: “AARDVARK: A SYSTEM FOR PEER-
TO-PEER BGP ROUTING ON THE INTERNET”.
Commands and math mode are still parsed and pro-
tected.

Finally, --titlecase as-is tells crosstex to
allow titles to appear as they are specified in the
database.

This philosophy of enforcing consistency by de-
fault makes it easier to achieve clean, professional
appearance in bibliographies without any interfer-
ence. At the same time, CrossTEX grants the user
control with styles and run-time options and even
fine-grained control over how specific phrases should
appear throughout the bibliography.

4 Default fields

When databases get large and many elements have
very similar fields — if, for example, they are all in
the same conference or have the same informative
category field — the CrossTEX command @default

can help make them more concise and prevent ty-
pos by allowing the maintainer to specify that field

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 345

Robert Burgess and Emin Gün Sirer

just once for the whole group. For example, in the
nsdi.xtx database, which contains the entries for
papers published in NSDI, every entry will obviously
have the same booktitle: nsdi. Because all of the
entries are from the DBLP [13] project, they also
share bibsource fields. Finally, they are grouped in
the database by year. With default values for fields,
maintainers can significantly shorten the database
and save effort and typos with the following (line
break is editorial):

@default booktitle = nsdi

@default bibsource

= "DBLP, http://dblp.uni-trier.de"

@default year = 2004

From this point in the file until the end, entries
will by default contain these default fields where
they are relevant. Because of this factorization and
the inheritance from nsdi, most papers now simply
state author, title, and pages fields. Later in the
file, however, are entries with different years. A new
@default command takes precedence over the first:

@default year = 2003

The booktitle and bibsource defaults are un-
changed, but now the year defaults to 2003. As
with field values inherited from referenced objects,
field values inherited from default definitions have
lower precedence than those specified in the object.
If it is desirable to allow an object to appear with
no year but not use the default, either put it before
the first default specifying the year field, or remove
the default by explicitly assigning @default year

= "". Defaults are easily overridden and serve only
to simplify and shorten the database.

5 Extending objects

Occasionally it is useful to add information to an
object that already exists. For example, an author
must cite a paper that appeared in NSDI 2005, but
the system database only has information about the
NSDI conference up to 2004. Obviously, the best
solution is to add the following line to fill in the
entry in the system conferences database:

[year=2005] address=Boston, month=may,

However, the author might not have permission
to edit the database. Two options come to mind:
Cut-and-paste the nsdi object into some local data-
base with a new name so there is no conflict, or put
the address and month directly into the paper’s en-
try rather than relying on inheritance. Neither is a
good solution. More desirable is to be able to add
information to the nsdi object, even though it has
already been defined in another database, using the
CrossTEX @extend feature:

@extend{nsdi, [year=2005] address=Boston,

month=may}

An @extend entry looks just like an object defi-
nition. However, rather than defining a new object,
CrossTEX will find the specified object and re-build
it with the information provided, retaining its old
fields where they are not changed.

Just as object definitions can specify multiple
keys to alias the same object, so can @extend state-
ments. If any keys specified do not yet refer to an
object, they will be created; however, CrossTEX will
report an error rather than change a key that al-
ready points to a different object than the one be-
ing extended, so it is not possible to accidentally
break extant keys. Authors can take advantage of
this to define shorter, easier-to-remember names for
database objects even when no fields need changing.

6 Constrained citations

CrossTEX borrows from nbibTeX the very useful no-
tion of constrained citation. Constrained citations
enable an author user to cite a work by specify-
ing pieces of information that uniquely identify it.
For instance, consider a reference to a paper writ-
ten by Emin Gün Sirer in 1999 on how to split up
virtual machines, which appeared at SOSP. The au-
thor could search the database for some terms that
will appear in the entry (e.g. 1999, sosp, sirer), copy
the key for the entry, and issue a plain citation using
that precise key. This is what many BibTEX users
do without thinking; however, with constrained ci-
tation, CrossTEX will search on your behalf.

A constrained citation begins with an exclama-
tion point, and specifies a series of colon-separated
terms that identify the reference being cited. Some
examples of constrained citations (line break is edi-
torial):

\cite{!author=sirer:title=virtual:year=1999}

\cite{!author=sirer:title=virtual

:title=machines:year=1999}

\cite{!author=sirer:author=walsh:year=2006}

Colons separate constraints. Each constraint
identifies a field that the reference must have, as well
as a string that should appear somewhere within
that named field. So author=smith will match both
“Smith” and “Smithson”.

Sometimes, multiple constraints apply to the
same field. Specifying the same field multiple times,
as in the second and third examples above, is per-
fectly acceptable, but tedious. Instead, CrossTEX
provides a way to specify multiple constraints for
the same field: Every word separated by a “-” sign
is treated as a separate constraint. Thus the exam-
ples above can appear as:

346 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

CrossTEX: A modern bibliography management tool

\cite{!author=sirer:title=virtual:year=1999}

\cite{!author=sirer:title=virtual-machines

:year=1999}

\cite{!author=sirer-walsh:year=2006}

Multiple constraints within a given field are not
ordered and can appear anywhere in the string, so
“virtual-machines” will match “virtual machines”,
as well as “machines virtual”, and even “building a
machineshop virtually”.

Several shorthands make constrained citations
even easier to specify by providing defaults for field-
names. If the fieldnames are missing, the first con-
straint defaults to “author”. The second constraint
defaults to “title” if the value is not numeric; if it
is, it defaults to “year”. Finally, the last constraint
defaults to “year”. So the examples above can be
even shorter:

\cite{!sirer:virtual:1999}

\cite{!sirer:virtual-machines:1999}

\cite{!sirer-walsh:2006}

Two caveats are worth remembering about con-
strained citations. First, the citation needs to be
uniquely identifiable. If the constraints match more
than one object, CrossTEX prints an error and iden-
tify the matching objects. The author can then
specify more constraints until the reference is cor-
rect or switch to a plain citation based on the search
CrossTEX performed. Second, due to a limitation
in LATEX, referring to the same work through dif-
ferent constraints (e.g. !sirer:virtual:1999 and
!sirer:virtual-machines:1999) will cause Cross-
TEX to flag an error so the citation does not appear
twice in the references section, because LATEX would
think it was two different works. For each work, one
must decide on a set of constraints and use them
consistently throughout a document.

Overall, constrained citations are a convenient
way to cite papers without having to look anything
up; they fit naturally to the way people recall cita-
tions.

7 Extending CrossTEX

CrossTEX is designed to be easy to extend with
only trivial knowledge of Python. New objects or
fields are defined by editing the standard objects
module crosstex.objects, which will be found
wherever CrossTEX’s library files are installed as
crosstex/objects.py.

To create a new field for a particular object
type, find its definition (e.g. the section defining the
@string object begins class string). Most ob-
jects already define some fields; simply copy that
syntax for your own field. To create an entirely new
class @foo which is identical to a current one named

@bar, add the following to the end of the list of ob-
jects:

class foo(bar):

pass # ’pass’ is only necessary

if no fields are defined.

Fields are defined as optional or required by as-
signing them the values OPTIONAL and REQUIRED,
respectively. To make an optional field required or
a required field optional, simply assign it the new
value in the class where you want the change. To
allow a field to inherit its value from another field
in the same object if left blank, assign a string con-
taining the name of the other field. A list containing
OPTIONAL, REQUIRED, and one or more string field
names will be processed and define several sibling
fields and the given requirement level. For example:

class foo(bar):

baz = REQUIRED

blah = OPTIONAL

quux = [REQUIRED, ’baz’, ’blah’]

This defines a new kind of object @foo, which
behaves the same as @bar; additionally, the ‘baz’
field is required, the ‘blah’ field is optional, and the
‘quux’ field is required but if unspecified will try to
take its value from ‘baz’ or ‘blah’ in that order.

Styles are defined in small Python modules in
the style directory in the same place you found
objects.py. There you will find the default styles,
plain.py, full.py, etc. Styles are built up with
small filter functions, many of which are provided
in crosstex.objects. Each field is filtered through
four phases:

• Production, in which an initial value is gener-
ated from the object itself;

• List filtering, if the value is a list;

• List formatting, to turn the list into a string for
the final step; and

• Filtering, in which zero or more filters modify
the value into its final form.

As a starter, consider the following statements taken
from existing styles:

misc._addproducer(emptyproducer, ’label’)

conference._addfilter(proceedingsfilter,’value’)

misc._addfilter(emphfilter, ’fullpublication’,

’booktitle’)

The first line states that the label attribute of
any @misc object (or any object of a type derived
from @misc) can be produced by emptyproducer

if that function returns anything other than None.
(emptyproducer is defined in crosstex.objects

and always returns an empty string, which in the

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 347

Robert Burgess and Emin Gün Sirer

case of labels causes LATEX to default to numeric
citation.)

The second line causes the value of objects de-
rived from @conference to be filtered through a
function that prepends ‘Proceedings of the’ to the
value.

The last line filters the ‘booktitle’ field of ob-
jects derived from @misc, but only when used within
the ‘fullpublication’ field (which happens to be a vir-
tual field defined solely by attaching producers to it).

It is important to note that filters and produc-
ers are applied starting from the most recent, so
later producers will take precedence and later fil-
ters will be nested inside earlier filters. The stan-
dard styles are well-commented and should provide
a good start towards extending CrossTEX with new
stylistic features.

Finally, because CrossTEX also searches for
styles in the same directory as the file being pro-
cessed, one can develop styles without editing any-
thing installed system-wide. This can be useful for
personal, per-paper, or experimental styles, or even
extending CrossTEX without the privileges of the
system administrator.

8 Related work

BibTEX is the dominant tool in the TEX world to au-
tomatically format bibliographies. The correspond-
ing tool in roff typesetting is refer, which uses
a similar relational model and a more concise but
slightly less user-readable database format. refer

also introduced the notion of semantic (constrained)
citation to computer typesetting. nbibTeX [15] is a
true drop-in replacement for BibTEX that supports
the same database language and style files, but adds
support for semantic citations in order to assist mul-
tiple authors working together from a large data-
base. EndNote [3] is a commercial product that
manages databases for Microsoft Word; it uses a
GUI database editor and its own database format,
adapted from that of refer.

Because of BibTEX’s dominance but lack of
easy automation, the community has developed nu-
merous database editors and other tools to sup-
port it. Database editors such as Pybliographer [7],
KBibTEX [6], and JabRef [5] are relevant to Cross-
TEX because they attempt to solve some of the
same problems without changing BibTEX and also
because, since CrossTEX is backwards-compatible
with their BibTEX output, one can take advantage
of both.

Other tools for formatting bibliographies for
publication on the web exist, such as the BibTEX-
XML-HTML [9] project, which provides a tool for

converting bibliographies to HTML documents by
first converting them into XML. xtx2html has the
advantage of integrated styling using the same meth-
ods as styling documents themselves.

Many projects address the need for large cen-
tral databases, including the DBLP [13] project,
which has so far assembled bibliography entries
in BibTEX format for more than 870,000 publi-
cations in computer science, some of which have
been converted to be distributed with CrossTEX.
Other large databases and integrated search en-
gines include CiteSeer [2], Google Scholar [4], and
arXiv [10]. RefDB [8] is an approach to the actual
sharing of databases, which allows users to share
bibliographies over the network using SQL databases
and the RIS bibliography format. However, all of
these efforts are focused on providing authors with
the ability to find a reference in order to copy-and-
paste it into their own local database — in short,
assisting with looking up the information but not
solving the problem of centralizing information be-
cause of the limitations of BibTEX. CrossTEX is
designed to address this problem and allow vast
databases such as these projects to be easily incor-
porated directly into a document, as well as assisting
those who must keep the databases up-to-date.

9 Conclusions

We have presented CrossTEX, a modern bibliog-
raphy management tool based on and replacing
BibTEX. CrossTEX solves a number of problems
in BibTEX, including its relational model that re-
quires duplication of information, the dependence of
presentation details such as abbreviation on choices
made in the database, arbitrary object keys, and an
impenetrable style language.

The primary contribution of CrossTEX is its
object-oriented database language, which brings the
power of inheritance to bear on the goal of specify-
ing information in only one place, to be used and
adapted everywhere it is needed. The many kinds
of CrossTEX objects allow useful fields to be bun-
dled together, assigned both long and short names,
and inherited in different forms throughout the data-
base. New kinds of objects allow precise seman-
tics and self-explanatory databases. Providing full
author names and both long and short versions of
strings allow typesetting-time decisions about style
without modifying the database.

Conditional fields allow data that depend on
context, such as locations of a conference by year, to
be collected together into one place so they are vis-
ible and useful together. Because such conditional
fields are also inherited, objects automatically adapt

348 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

CrossTEX: A modern bibliography management tool

to the contexts in which they are used.
CrossTEX enforces consistency by using a so-

phisticated and flexible algorithm to guarantee con-
sistent capitalization in paper titles and applying
abbreviation decisions across every object. Automa-
tion of tedious tasks such as abbreviation and capi-
talization prevents human error while being easy to
customize.

Backwards compatibility with BibTEX com-
bined with fundamentally new idioms and power-
ful semantics make CrossTEX easier to use and less
error-prone than its predecessor. Overall, Cross-
TEX makes consistency and professional appearance
easy to achieve, both in databases and typeset doc-
uments.

References

[1] CS Bib. http://liinwww.ira.uka.de/

bibliography/index.html. Accessed June
15, 2007. The Collection of Computer Science
Bibliographies.

[2] CiteSeer. http://citeseer.ist.psu.edu/.
Accessed June 15, 2007. Scientific literature
digital library.

[3] EndNote. http://www.endnote.com/.
Accessed June 15, 2007. A PC product
that does what BibTEX does, for Word on
Windows.

[4] Google Scholar. http://scholar.google.

com/. Accessed June 15, 2007. Search engine
dedicated to scientific publications on the
web.

[5] JabRef. http://jabref.sourceforge.net/.
Accessed June 15, 2007. A graphical database
editor for BibTEX based on Java.

[6] KBibTEX. http://www.unix-ag.uni-kl.

de/~fischer/kbibtex/screenshots.html.
Accessed June 15, 2007. A graphical database
editor for BibTEX.

[7] Pybliographer. http://www.pybliographer.

org/. Accessed June 15, 2007. A Python tool
for managing bibliographic databases.

[8] RefDB. http://refdb.sourceforge.net/.
Accessed June 15, 2007. RefDB is a reference
database and bibliography tool for SGML,
XML, and LATEX/BibTEX documents that
allows users to share databases over a
network.

[9] BibTEX-XML-HTML Project. http:

//www.authopilot.com/xml/home.htm.
Accessed June 15, 2007. Transforms BibTEX
databases into HTML by way of XML.

[10] arXiv. http://arxiv.org. Accessed June
15, 2007. E-prints in physics, mathematics,
computer science and quantitative biology.

[11] Donald E. Knuth. The TEXbook.
Addison-Wesley, Reading, Massachusetts,
1984.

[12] Leslie Lamport. LATEX: A Document
Preparation System. 2nd Edition,
Addison-Wesley, 1994.

[13] Michael Ley. DBLP. http://www.

informatik.uni-trier.de/~ley/db/.
Accessed June 15, 2007. DBLP is a huge
effort by a dedicated team that has so far
assembled bibliographic entries for 830,000
publications in computer science. The
databases shipped with CrossTEX are derived
from DBLP.

[14] Oren Patashnik. BibTEXing. February 1988.

[15] Norman Ramsey. NbibTEX. http:

//www.eecs.harvard.edu/~nr/nbibtex/.
Accessed June 15, 2007. The origin of
constrained citation.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 349

Typesetting tables with LATEX

Klaus Höppner
Haardtring 230 a
64295 Darmstadt
Germany
klaus.hoeppner (at) gmx dot de

Abstract

From a LATEXoligist’s point of view, LATEX is a perfect tool to typeset nearly
everything in a beautiful manner. Without any doubt, LATEX can typeset tables,
but it is easy to produce bad tables with ugly lines and text touching the lines.
This talk is intended to introduce how to typeset tables with LATEX on a beginners’
level, mentioning some typographic aspects, showing some packages that help the
author in formatting tables and concluding with how to typeset tables with page
breaks.

1 Basic tables

LATEX already has built-in support to typeset tables.
For beginners it may be a bit confusing, since LATEX
provides two environments: tabular and table. To
typeset material in rows and columns, tabular is
needed, while the table environment is a container
for floating material similar to figure, into which a
tabular environment may be included.

So, let’s have a look how to typeset a simple
table:

\begin{tabular}{lcr}

a & b & c\\

aa & ab & ac\\

aaa & aab & aac

\end{tabular}

will result in

a b c
aa ab ac
aaa aab aac

The rows of the table are divided by LATEX’s
usual \\ command (in some cases, it may be needed
to use \tabularnewline instead, as we will see later
in this article). Columns are separated by &, the
ampersand character.

The required argument of \begin{tabular} de-
fines the basic layout of the table, especially the
alignment of the columns:

l left aligned column

c centered column

r right aligned column

p{〈width〉} paragraph-like column of a predefined
width (with the baseline of the paragraph’s first
line aligned relative to the other cells in the
table row)

The normal space between columns, which is
also added before the first and after the last col-
umn, may be overridden by @{〈sep〉}, where 〈sep〉
is any LATEX code, inserted as the separator. For
illustration, let’s typeset some flight data:

flight no. route
LH 402 Frankfurt–Newark
KL 3171 Amsterdam–Cork
US 1152 San Diego–Philadelphia

Here, the @ command is used twice: The space
that normally would have been inserted left of the
first column is replaced by nothing, thus the table
is left aligned with the surrounding text (compare it
with the first tabular example in this article, you will
see the difference). Additionally, the inter-column
space between the points of departure and destina-
tion is replaced by a dash. So the code used to pro-
duce this table looks as follows (silently introducing
\multicolumn to combine cells):

\begin{tabular}{@{}lr@{--}l}

flight no. & \multicolumn{2}{c}{route}\\

LH\,402 & Frankfurt & Newark\\

KL\,3171 & Amsterdam & Cork\\

US\,1152 & San Diego & Philadelphia

\end{tabular}

2 Extra packages for typesetting tables

Beyond LATEX’s built-in ability to typeset tables,
several extra packages exist. Some of them add new
effects in typography and layout, others simplify the
task of writing the document’s source code. The
packages that I will introduce in this article (and
more that I won’t) are covered in detail in the LATEX

Companion [8].
Here are some important packages for authors

who want to typeset tables:

350 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Typesetting tables with LATEX

array adds paragraph-like columns m{〈width〉} and
b{〈width〉} similar to the p-column, but verti-
cally aligned to the center or bottom. Addition-
ally, the package allows defining command se-
quences to be executed before or after the con-
tents of a column.

tabularx typesets a table with fixed widths, intro-
ducing the column type X that works like a p-
column with automatically calculated width.

booktabs provides fancy commands for horizontal
lines with appropriate spacing above and below.

ctable we won’t discuss this one, but have a look on
CTAN, it’s a modern table package with many
nice features.

2.1 Using array

From my point of view, the most important feature
of array [7] is the new possibility of defining com-
mands that are added automatically before or after
a column’s cell. It saves a lot of typing, making the
source code more concise and more flexible. array

is one of the required LATEX packages, so it must be
part of any LATEX installation.

For a simple example, have a look at the fol-
lowing table:

Command Symbol
\alpha α

\beta β

\gamma γ

The left column displays LATEX commands, be-
ginning with a backslash and using a typewriter font,
while the right columns displays the corresponding
math symbol. Using the array package, the source
code is pretty straightforward:

\begin{tabular}%

{>{\ttfamily\char‘\\}c>{$}c<{$}}

\multicolumn{1}{c}{Command} &

\multicolumn{1}{c}{Symbol}\\

\hline

alpha & \alpha\\

beta & \beta\\

gamma & \gamma

\end{tabular}

As shown in this code, we can now define a
command sequence inside the >{...} preceding the
column type definition. These commands are ex-
ecuted before each cell of that column. Similarly,
using <{...} after the column type defines which
commands to be executed after typesetting the col-
umn’s cells.

In the example above, the first row is different
from the others, since it contains the column titles
that obviously should not be typeset in typewriter

font or math mode. This is handled by ‘abusing’ the
\multicolumn command, which prevents the > and
< command hooks from being applied for these cells.

Another use of these command hooks is typeset-
ting paragraphs in narrow columns. LATEX typesets
these paragraphs left and right justified by default,
but in narrow columns it is often more appropriate
to typeset them using \raggedright. So we might
think of trying the following code:

\begin{tabular}{l>{\raggedright}p{3in}}

Unfortunately this fails when ending the table
rows with the \\ command, with rather weird error
messages about misplaced aligns. The problem is
that \raggedright redefines \\, so it can’t be rec-
ognized as the end of table rows. There are three
solutions for this problem:

1. Use \tabularnewline instead of \\. In fact, it
does no harm to always use this, even when you
don’t have problems with \raggedright.

2. Restore the original definition of \\ by using
the command \arraybackslash, as follows:

\begin{tabular}%

{l>{\raggedright\arraybackslash}p{3in}}

3. Use the ragged2e [9] package. It redefines the
command \raggedright to prevent it from re-
defining \\, so the problem disappears without
any further change to the original code. Addi-
tionally, ragged2e provides the new command
\RaggedRight that typesets the paragraph left
aligned, but doesn’t disable hyphenation.

2.2 Using tabularx

Besides the normal tabular environment, a rarely
used environment tabular* exists. In addition to
the column definition, it takes a table width as ar-
gument. The resulting table is typeset to this width,
but often — surprisingly — it expands the space be-
tween columns.

A more convenient implementation is done by
the tabularx [5] package (another required LATEX
package present in every LATEX installation). This
introduces a column type X for paragraph-like col-
umns whose width is automatically calculated in or-
der to achieve a table of a desired total width. For
example, let’s look at the following:

\begin{tabularx}{\linewidth}{lX}

Label & Text\\

\hline

One & This is some text without meaning,

just using up some space. It is not

intended for reading.\\

...

\end{tabularx}

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 351

Klaus Höppner

This produces a table across the full line width,
where the right column just uses the space remaining
after typesetting the left column:

Label Text
One This is some text without meaning, just

using up some space. It is not intended
for reading.

Two This is another text without meaning,
just using up some space. It’s not in-
tended for reading either.

Three This is yet another text without mean-
ing. Guess what? It’s not intended for
reading. It is just there.

Four How often did I mention that you should
not read this text?

It is possible to use more than one X-column.
By default, all of them are typeset to the same
width, but it is possible to manually adjust how the
available space is divided. Here’s our next example:

Label Text More text
One This is

some text
without
meaning.

This is another text
without meaning, just
using up some space. It
is not meant for reading
either.

This table was produced with the following code:

\begin{tabularx}{\linewidth}%

{l>{\setlength\hsize{0.6\hsize}\raggedright}X%

>{\setlength\hsize{1.4\hsize}\raggedright}X}

Label & Text & More text\tabularnewline

\hline

...

\end{tabularx}

When balancing the column widths manually,
it is important that the \hsize fractions add up to
the number of X-columns, as in the example above,
where 0.6+1.4 = 2. To achieve automatic balancing
of columns, take a look at the tabulary package.

Be aware that the way tabularx parses the con-
tents of a table limits the possibility of defining new
environments based on the tabularx. If you con-
sider doing this, first look at the documentation.

3 Using lines in tables

LATEX provides the possibility of using lines in ta-
bles: vertical lines are added by placing a | at the
appropriate position in the definition of the column
layout, and horizontal lines are added by using the
command \hline.

While using lines in tables can help the reader
in understanding the contents of a table, it is quite
easy to produce really ugly tables like the following:

Label Text More text

One This is
some text
without
meaning.

This is another
text without meaning,
just using up some
space.

Though nobody would typeset this particular
table in real life, it illustrates a general and common
problem — the column titles and the word “another”
in the rightmost column touch the horizontal lines
above them.

As a first step to improve the spacing between
the table rows and the horizontal lines in such cases,
set \extrarowheight to a non-zero length, e. g. to
4 pt. If this isn’t enough, additional adjustment may
be done by adding invisible rules. Here is revised
source code for the above example illustrating both
these points:

\setlength{\extrarowheight}{4pt}

\begin{tabularx}{\linewidth}%

{|l|>{\setlength\hsize{0.67\hsize}}X%

|>{\setlength\hsize{1.33\hsize}}X|}

\hline

\Large Label & \Large Text

& \Large More text\tabularnewline

\hline

\hline

One & This is some text without meaning.

& \rule{0pt}{18pt}%

This is {\huge another} text without meaning,

just using up some space.\\

\hline

\end{tabularx}

we get a somewhat better result:

Label Text More text

One This is
some text
without
meaning.

This is another
text without meaning,
just using up some
space.

Please notice that the \rule used as an addi-
tional spacer was typeset with a horizontal width of
0.4 pt instead of 0 pt (as shown in the code) in order
to make its effect and location visible.

Even after this, the layout of the table still looks
quite poor, e. g. the broken vertical lines between the
double horizonal line. This might be solved with the
package hhline [2], but for typesetting tables with
pretty lines, have a look at the booktabs [6] pack-
age. It starts by giving users a basic piece of advice,
namely to avoid vertical lines, and introduces com-
mands to typeset horizontal lines with appropriate
thickness and spacing. Using booktabs, the source
code for our weird example now looks as follows:

352 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Typesetting tables with LATEX

\begin{tabularx}{\linewidth}%

{l>{\setlength\hsize{0.67\hsize}}X%

>{\setlength\hsize{1.33\hsize}}X}

\toprule

\Large Label & \Large Text

& \Large More text\tabularnewline

\midrule

One & This is some text without meaning.

& This is {\huge another} text without meaning,

just using up some space.\\

\bottomrule

\end{tabularx}

Using this, the result becomes:

Label Text More text

One This is
some text
without
meaning.

This is another
text without meaning,
just using up some
space.

At last, we’ve improved the layout of the table
quite a bit. The content with arbitrary changes of
font size still looks weird, but that’s something for
which the author and not LATEX must be blamed.

For a more realistic example of using rules, here
I present an example from the booktabs manual:

Item

Animal Description Price ($)

Gnat per gram 13.65
each 0.01

Gnu stuffed 92.50
Emu stuffed 33.33
Armadillo frozen 8.99

4 Typesetting tables across multiple pages

The usual tabular(x) environment is restricted to
single-page tables, i. e. no page breaks are allowed
within tables.

However, two extension packages provide sup-
port for typesetting tables across multiple pages,
namely longtable [3] and supertabular [1]. The
main difference between them is that longtable

keeps the column widths the same throughout the
entire table, while supertabular recalculates the
column widths on each page. According to the docu-
mentation, longtable doesn’t work in two- or multi-
column mode, and I didn’t try supertabular on this
case. The syntax of the two packages is different, so
one has to decide which one to use.

Let’s have a look at the general structure of a
longtable:

\begin{longtable}{ll}

Label (cont.) & Text (cont.)\\

\endhead

\multicolumn{2}{l}{This is the first head}\\

Label & Text\\

\endfirsthead

\multicolumn{2}{l}{to be cont’d on next page}

\endfoot

\multicolumn{2}{l}{this is the end (finally!)}

\endlastfoot

One & Some content\\

Two & Another content\\

Three & Yet another content\\

[...]

\end{longtable}

As shown in this source code, the longtable

environment may contain definitions for headers and
footers before the normal content of the table:

\endfirsthead defines what to typeset at the very
first head of the table,

\endhead defines a table head that is used on con-
tinuation pages,

\endfoot defines what to typeset on the foot of the
table if a continuation page follows, and

\endlastfoot defines the foot at the very end of
the table.

I personally prefer longtable simply because
there exists yet another package ltxtable [4], which
combines longtable and tabularx. It provides the
command \LTXtable{〈width〉}{〈file〉}, which reads
a given file containing a longtable environment us-
ing X-columns and typesets it to the requested width.

References

[1] Johannes Braams and Theo Jurriens. The
supertabular package. CTAN:macros/latex/

contrib/supertabular/.

[2] David Carlisle. The hhline package.

[3] David Carlisle. The longtable package.

[4] David Carlisle. The ltxtable package.
CTAN:macros/latex/contrib/carlisle/.

[5] David Carlisle. The tabularx package.

[6] Simon Fear and Danie Els. The booktabs pack-
age. CTAN:macros/latex/contrib/booktabs/.

[7] Frank Mittelbach and David Carlisle. The array
package.

[8] Frank Mittelbach, Michel Goossens, et al. The
LATEX Companion. Addison-Wesley, 2nd edition,
2004.

[9] Martin Schröder. The ragged2e package. CTAN:
macros/latex/contrib/ms/.

Packages [2, 3, 5] are part of the required LATEX tools, avail-
able from CTAN:macros/latex/required/tools.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 353

Programming with PerlTEX

Andrew Mertz, William Slough
Department of Mathematics and Computer Science
Eastern Illinois University
Charleston, IL 61920
aemertz (at) eiu dot edu, waslough (at) eiu dot edu

Abstract

PerlTEX couples two well-known worlds — the Perl programming language and
the LATEX typesetting system. The resulting system provides users with a way to
augment LATEX macros with Perl code, thereby adding programming capabilities
to LATEX that would otherwise be difficult to express. In this paper, we illus-
trate the use of PerlTEX with a variety of examples and explain the associated
Perl code. Although Perl may perhaps be best known for its string manipula-
tion capabilities, we demonstrate how PerlTEX indirectly provides support for
“programming” graphics through the use of additional packages such as TikZ.

1 Introduction

The typesetting capabilities of TEX and LATEX are
well known. Each has the ability to define macros,
adding significant flexibility and convenience. How-
ever, to achieve some effects in TEX requires a level
of expertise many users lack.

Perl [8] is a programming language with par-
ticular strengths in string processing and scripting.
Since it borrows concepts from other languages such
as C and sed, its syntax is likely to be reasonably
familiar to many.

PerlTEX [4] provides a way to incorporate the
expressiveness of Perl directly within a LATEX docu-
ment. In doing so, the computing capabilities of Perl
are coupled with the document preparation abili-
ties present in LATEX. Combining these two systems
has an important outcome: for those who already
know or are willing to learn some of Perl’s rudi-
ments, a number of typesetting tasks become more
convenient to express.

2 A first example

In Chapter 20 of The TEXbook [3], a TEX macro
which generates the first N prime numbers is de-
scribed, where N is a specified parameter of the
macro. This discussion and macro earn Knuth’s
double dangerous-bend symbols, a warning to read-
ers that esoteric topics are under discussion.

It is probably fair to say that the design of such
a macro using the primitives of TEX is a task best
left to experts. A simpler approach uses PerlTEX.
Figure 1 shows the details.

To use this command, we request the prime
numbers within a specified interval. For example,

\perlnewcommand{\listPrimes}[2] {

use Math::Prime::XS "primes";

return join(" ", primes($_[0], $_[1]));

}

Figure 1: Definition of a command, \listPrimes, to
generate prime numbers. The two arguments of this
command specify the desired range of values to be
generated.

\listPrimes{10}{30}

generates the typeset sequence

11 13 17 19 23 29

consisting of the prime numbers between 10 and 30.
Let’s take a closer look at how this is accom-

plished. To begin, we use \perlnewcommand, the
PerlTEX analog of the \newcommand of LATEX. We
thus define a new command, \listPrimes, with two
arguments.

In contrast to the \newcommand of LATEX, Perl
code is placed within the definition portion of a
\perlnewcommand. For the current example,

use Math::Prime::XS "primes";

imports a Perl module which contains a function,
named primes, which is perfectly suited to the task
at hand. Given a pair of values which specify the de-
sired range, this function returns a list of the primes
in that range.

The arguments of \listPrimes are accessed
with the Perl notation $_[0] and $_[1]. Thus,

primes($_[0], $_[1])

yields a list of the desired primes. To complete the
definition of \listPrimes, a single string must be
created from the collection of primes just obtained.

354 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Programming with PerlTEX

This is easily achieved with Perl’s join. Here, we
use a single space to separate adjacent primes.

In this example, the use of an existing Perl func-
tion, primes, avoids “reinventing the wheel”. Since
there are many such functions available, this is one
direct benefit of PerlTEX. A wealth of Perl functions
can be located by consulting CPAN, the comprehen-
sive Perl archive network, found at www.cpan.org.

3 Variations on a theme

Rather than produce one sequence of primes, as in
our first example, now suppose a tabular array of
primes is desired. We will define a new command,
\tablePrimes, with three arguments: the first two
specify the desired range of primes, as before, and
the third argument indicates the number of columns
to be used. For example, the command

\tablePrimes{1}{20}{3}

will produce a table consisting of the primes between
1 and 20, typeset in three columns.

We will show two different definitions for this
command. The first solution uses a direct approach,
illustrating how the looping and conditional control
structures of Perl can be used to generate the re-
quired LATEX code. In the second solution the power
of regular expressions is used to achieve the same re-
sult, avoiding the need for explicit looping and test-
ing.

Before taking up the Perl details, let’s consider
the desired LATEX code to be generated. For the
three-column example above, the following needs to
be generated:

\begin{tabular}{*{3}{r}}

2 & 3 & 5\\

7 & 11 & 13\\

17 & 19 &

\end{tabular}

Of course, this is just a tabular environment consist-
ing of the primes to appear within the table. It is
helpful to think of this as one string, subdivided into
three parts: the beginning of the environment, the
environment content, and the end of the environ-
ment. The first definition of \tablePrimes, shown
in Figure 2, reflects this view.

Consider the final return statement in this def-
inition. Using Perl’s concatenation or dot operator,
three string components are formed to yield the de-
sired tabular environment. In the first component,
$_[2] is used to obtain the value of the third pa-
rameter, the number of columns. Each backslash
which is to appear in the generated LATEX code must
also be escaped in Perl to avoid its usual meaning.
So, for example, \\begin appears in order to ob-

\perlnewcommand{\tablePrimes}[3] {

use Math::Prime::XS "primes";

my $count = 0;

my $primes = "";

foreach my $item (primes($_[0], $_[1])) {

$primes .= $item;

$count++;

if ($count == $_[2]) {

$primes .= "\\\\ \n";

$count = 0;

}

else {

$primes .= " & ";

}

}

return "\\begin{tabular}{*{$_[2]}{r}}\n" .

$primes . "\n" .

"\\end{tabular} \n";

}

Figure 2: Definition of a command, \tablePrimes, to
generate a table of prime numbers.

tain \begin. Without escaping the backslash, Perl
would interpret \b as a backspace. The use of \n in
this return statement ensures that each component
begins on a new line.

At this point in the definition, the Perl variable
$primes contains the string of all primes needed for
the table, with & column separators and \\ row sep-
arators inserted as appropriate. Everything in the
definition prior to the return statement is present
to generate this string.

This portion of the definition is straightforward,
though a few comments might be helpful. The key-
word my is used when Perl variables are introduced
to indicate they are local, which is generally a good
idea to prevent unintended interactions.

The variable $primes begins as an empty string
and grows to include all of the needed values to
appear in the table. Perl’s compound operator .=

is used to append a new value to this string. We
use the foreach construct to iterate over all of the
primes generated, appending each in turn to the
$primes string. Column or row separators are ap-
pended to this string by keeping count of which col-
umn has just been added to the string. As before,
some care is needed regarding the escape character.
For example, \\\\ is used to generate \\.

The second definition for \tablePrimes takes a
different viewpoint of the generation of $strings. A
two-step process is used to generate the value for the
tabular environment. As a first step, a &-separated
string of primes is constructed:

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 355

Andrew Mertz, William Slough

my $primes = join("&",

primes($_[0], $_[1]));

This generates all primes, incorrectly assuming that
the tabular will consist of one very long row. The
second step corrects this assumption by replacing
every kth column separator with a row separator.
This can be achieved using regular expressions:

$primes =~ s/((\d+&){$k}\d+)&/

$1\\\\ \n/g;

Though this might be viewed as somewhat cryptic,
the use of regular expressions is one of the widely
quoted strengths of Perl and can be used, as here,
to concisely describe a pattern substitution. Putting
these ideas together yields the definition shown in
Figure 3.

\perlnewcommand{\tablePrimes}[3] {

use Math::Prime::XS "primes";

Number of ampersands needed per line

my $k = $_[2] - 1;

Build a string of &-separated primes

my $primes = join("&",

primes($_[0], $_[1]));

Insert newlines for each row

$primes =~ s/((\d+&){$k}\d+)&/$1\\\\ \n/g;

Put the pieces together

return "\\begin{tabular}{*{$_[2]}{r}}\n" .

$primes . "\n" .

"\\end{tabular} \n";

}

Figure 3: Alternate definition of \tablePrimes. A
regular expression is used to subdivide the primes into
rows.

4 Layout and processing

The layout of a LATEX document which uses PerlTEX
is straightforward. Within the preamble

\usepackage{perltex}

loads the PerlTEX package. Also in the preamble,
one or more PerlTEX commands are defined with
\perlnewcommand. Within the document environ-
ment, the PerlTEX commands which were defined
can be utilized. Figure 4 shows an example.

Processing a PerlTEX source file requires the
services of both Perl and TEX. This is accomplished
using a script provided with PerlTEX. For example,
the command

perltex foo.tex

\documentclass{article}

...

\usepackage{perltex}

...

\perlnewcommand{\tablePrimes}[3]{

definition

}

\begin{document}

...

\tablePrimes{1}{20}{3}

...

\tablePrimes{1}{20}{4}

...

\end{document}

Figure 4: Sample layout of a LATEX document
intended for PerlTEX. The definition of \tablePrimes

is omitted here.

processes the source file foo.tex. As shown in Fig-
ure 5, this initiates the processing by creating a pair
of communicating processes, one each for TEX and
Perl, ultimately creating the output file.

foo.tex PerlTEX pdfTEX

Perl

foo.pdf

Figure 5: Processing a source file with PerlTEX.

By default, PerlTEX causes the Perl processing
to use a secure sandbox, insulating the user from
potentially dangerous actions, such as removal of
directories or other undesirable system-related ac-
tions. If this is not desired, the command

perltex --nosafe foo.tex

disables the sandbox. Disabling the sandbox is help-
ful when importing Perl modules, accessing files or
the network, and in many other cases.

Introducing Perl code provides new opportuni-
ties for errors. To assist with debugging, PerlTEX
creates a log file with the suffix lgpl which contains
all of the Perl and LATEX code generated during pro-
cessing. Any error messages returned by the Perl
interpreter also appear in this file.

356 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Programming with PerlTEX

5 Graphical output

One appealing feature of PerlTEX is its ability to
interact with other packages. To see an example of
this, consider the triangular array of binomial coef-
ficients — more popularly known as Pascal’s trian-
gle. If a fixed modulus m is selected, each entry
of the triangle can be reduced, modulo m. Each of
the m possible remainder values can be assigned a
color, providing a way to visualize the coefficients as
a multi-colored graphic. A number of very attractive
diagrams of this sort with varying moduli appear in
Chaos and Fractals [5]. In this section, we use TikZ
[6] to take care of the graphical aspects, while using
PerlTEX to generate the numerical values of Pascal’s
triangle.

As a starting point, Figure 6 defines a PerlTEX
command, \pascalMatrix, which generates a tab-
ular array of binomial coefficients. Its single argu-
ment specifies the size of the triangle. (For an ar-
gument n, the rows of the array are numbered 0
through n.) For example, \pascalMatrix{5} yields
the triangular array:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

As in previous examples, the return statement
in this definition is responsible for creating the en-
tire tabular environment. In this case, the variable
$tabularRows contains all of the rows needed for
Pascal’s triangle.

Each iteration of the outer loop appends one
complete row to tabularRows. The inner loop is re-
sponsible for generating row r+1 given the contents
of row r, using a well-known identity for binomial
coefficients:

(

r+1
c

)

=
(

r
c−1

)

+
(

r
c

)

.
Perl supports the syntax of the familiar for

loop of the C programming language, thus allow-
ing a common looping mechanism to be used within
TEX.

Figure 7 gives a graphical view of Pascal’s tri-
angle. In this diagram, a modulus of two has been
used, giving two possible remainders, shown as white
and black. This diagram can be specified using TikZ
as a sequence of \fill statements, as shown in Fig-
ure 8. Each \fill statement is responsible for pro-
ducing one small square of the diagram and specifies
its color, position, and size.

Figure 9 is a revision of \pascalMatrix. Using
this definition, the necessary \fill statements to
generate a graphical form of Pascal’s triangle can

\perlnewcommand{\pascalMatrix}[1] {

my $tabularRows = "";

my @row = (1);

for (my $r = 0; $r <= $_[0]; $r++) {

Output the current row

$tabularRows .= join ("&", @row) .

" \\\\\n";

Generate the next row

my @nextRow = (1);

for (my $c = 1; $c <= $r; $c++) {

push @nextRow,

@row[$c - 1] + @row[$c];

}

push @nextRow, 1;

@row = @nextRow;

}

return

"\\begin{tabular}{*{$_[0]}{c}c}\n" .

$tabularRows .

"\\end{tabular}\n";

}

Figure 6: Generating entries of Pascal’s triangle.

Figure 7: Graphical view of Pascal’s triangle.

\begin{tikzpicture}[scale=0.5]

\fill[black] (0,0) rectangle +(1,1);

\fill[black] (0,-1) rectangle +(1,1);

\fill[black] (1,-1) rectangle +(1,1);

\fill[black] (0,-2) rectangle +(1,1);

\fill[white] (1,-2) rectangle +(1,1);

\fill[black] (2,-2) rectangle +(1,1);

\fill[black] (0,-3) rectangle +(1,1);

\fill[black] (1,-3) rectangle +(1,1);

\fill[black] (2,-3) rectangle +(1,1);

\fill[black] (3,-3) rectangle +(1,1);

\end{tikzpicture}

Figure 8: TikZ code for four rows of Pascal’s triangle.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 357

Andrew Mertz, William Slough

\perlnewcommand{\pascalGraphic}[1]{

my $result = "";

my @row = (1);

my @colors = ("white", "black");

for (my $r = 0; $r <= $_[0]; $r++) {

Output the current row

for (my $c = 0; $c <= $r; $c++) {

$result .= sprintf("\\fill[%s] (%d, %d) rectangle +(1, 1);\n",

$colors[$row[$c]], $c, -$r);

}

Generate the next row

my @nextRow = (1);

for (my $c = 1; $c <= $r; $c++) {

push @nextRow, (@row[$c - 1] + @row[$c]) % 2;

}

push @nextRow, 1;

@row = @nextRow;

}

return $result;

}

Figure 9: Generating a graphical view of Pascal’s triangle, modulo two.

TimeCDT,TemperatureF,Dew PointF,Humidity,Sea Level PressureIn,VisibilityMPH,

Wind Direction,Wind SpeedMPH

12:53 AM,73.0,70.0,90,30.05,10.0,SSW,4.6

1:53 AM,73.0,69.1,87,30.04,9.0,SW,3.5

2:53 AM,72.0,68.0,87,30.04,10.0,West,3.5

additional lines omitted

<!-- 0.122:1 -->

Figure 10: A brief excerpt of weather information obtained from the Weather Underground.

be obtained. For example,

\begin{tikzpicture}[scale=0.1]

\pascalGraphic{31}

\end{tikzpicture}

generates the 32-row graphic of Figure 7.
As might be expected, the definitions for the

two Pascal triangle commands are very similar. In
the graphical version, a single string consisting of the
sequence of \fill statements is built up in $result.
Each of these \fill statements is obtained by a
formatted print statement, appended to $result.
Also, since values within any one row of the trian-
gle are stored modulo two, Perl’s % operator is used.
Both sprintf and the % operator are language fea-
tures shared with C.

6 LATEX documents and the Internet

The LWP∗ Perl library [1] can be used to access data
on the web. With the assistance of PerlTEX, this

∗ LWP is an acronym for ‘Library for WWW in Perl’.

allows information from web sites to be retrieved
and incorporated within a LATEX document.

For example, suppose we wish to access weather
data and display it in either tabular or graphical
form within a LATEX document. This type of pro-
cessing is made possible by LWP and Perl’s support
for regular expressions.

The Weather Underground† is one of many sites
which provides access to historical weather data.
Given an airport code, year, month, and day, it is
possible to retrieve many details about the weather
recorded at the requested location and date. Fig-
ure 10 shows an excerpt of the results of a web re-
quest for June 28, 2007, at the Coles County Memo-
rial Airport, with airport code KMTO. What is im-
portant to know about this request is that

KMTO/2007/6/28

appears as a substring of a lengthy URL. Figure 11
shows how this raw weather data is to be formatted
as a tabular.

† www.wunderground.com

358 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Programming with PerlTEX

Time Temp Dew Point Humidity SL Pressure Vis Wind Dir Wind Speed
12:53 AM 73.0 70.0 90 30.05 10.0 SSW 4.6
1:53 AM 73.0 69.1 87 30.04 9.0 SW 3.5
2:53 AM 72.0 68.0 87 30.04 10.0 West 3.5

Figure 11: An excerpt of formatted weather data.

\perlnewcommand{\getWeather}[4] {

use LWP::Simple;

Form the URL from the airport code, year, month, and day

$id = join"/", @_;

$URL = A URL incorporating $id;

If we have already looked up this day, do nothing

return "" if exists $data{$id};

Otherwise fetch and store the data

$data{$id} = get$URL;

Return nothing as this command only fetches data but

does not cause anything to appear in the document.

return "";

}

Figure 12: A command to fetch the weather data from a web site. The four parameters specify airport code,
year, month, and day.

The data is retrieved and formatted with two
PerlTEX commands: one retrieves the data from the
Web site, the other one performs some text manip-
ulations and formats the data as a tabular. A va-
riety of text substitutions are needed, for example,
to account for HTML tags which are present in the
retrieved data.

The first of these commands, \getWeather, is
shown in Figure 12. This command introduces vari-
ables $id and $data, but does not declare them to
be local, thus making them accessible from the sec-
ond command, \formatWeather. The command

\getWeather{KMTO}{2007}{6}{28}

creates the appropriate URL, accesses the web site
to retrieve the data, and saves the result in the Perl
hash variable $data. This command differs from
the others presented in that the return value is of
no interest: rather, it is the side-effect of storing the
weather data in $data that is desired.

Figure 13 shows the details of \formatWeather.
Weather data is obtained from the web site by in-
voking latex_getWeather, the Perl function cre-
ated from the definition of \getWeather. At this
point, various textual substitutions are made to the
data. For example, the comma-separated values
are adjusted to become ampersand-separated val-

ues, in anticipation of inclusion in a tabular environ-
ment. This command illustrates some of the string-
processing conveniences of Perl.

In this example, information was retrieved from
the Internet. However, data can be obtained from
files, databases, and other sources just as easily.

7 Graphical animations

The animate package [2] provides a convenient way
to create PDF files with animated content consisting
of a sequence of frames, optionally controlled with
VCR-style buttons. We provide a brief example of
the use of this package with a special focus on the
role PerlTEX can play.

One of the environments provided by this pack-
age, animateinline, creates animations from the
typeset material within its body. This might con-
sist of a sequence of TikZ commands which generate
frames of the animation.

In many cases, each frame of an animation can
be viewed under the control of some parameter t.
For example, an animation of a Bézier curve can be
constructed as a sequence of frames controlled by t,
where t varies from 0 to 1.

For the present example, assume there is a com-
mand, \bcurve, with a single parameter t which
yields a graphical image of a single frame. To achieve

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 359

Andrew Mertz, William Slough

\perlnewcommand{\formatWeather}[4] {

Ensure the appropriate weather data has been retrieved

latex_getWeather($_[0], $_[1], $_[2], $_[3]);

$rows = $data{$id};

$rows =~ s/(.*\n){2}//; # Strip the first two lines

Add the headings

$rows = "Time,Temp,Dew Point,Humidity,SL Pressure,Vis," .

"Wind Dir,Wind Speed\n" . $rows;

$rows =~ tr/,/&/; # Commas become alignment tabs

$rows =~ s/\n/\\\\\n/g; # Newlines become the end of a row

$rows =~ s/<.*>//g; # Remove any HTML tags

Return the table

return "\\begin{tabular}{...}\n $rows \\end{tabular}\n";

}

Figure 13: A command to tabulate the weather data obtained from a web site. Notice how the PerlTEX
command \getWeather is invoked.

a smooth animation, what is needed is a sequence of
these frames, with closely spaced values of t. For the
animateinline environment, a sequence such as:

\bcurve{0}%

\newframe%

\bcurve{0.02}%

\newframe%

etc.

is needed to generate the animation.
This sequence can be generated easily with a

PerlTEX command. In doing so, we cover a wide
class of animations, namely, those that can be de-
scribed as a sequence of frames controlled by a single
parameter.

Figure 14 shows the details of a command which
generates a sequence of frames. This command takes
four arguments: the name of the command which
generates a single frame, the starting and ending
values of t, and the total number of frames desired.
For example,

\animationLoop{bcurve}{0}{1}{51}

generates the sequence of 51 frames \bcurve{0.0},
\bcurve{0.02}, . . . , \bcurve{1.0}.

8 Demonstrating algorithms

One way to understand an algorithm is to trace its
actions, maintaining a history of the values being
computed and stored. For some algorithms, this
history can be compactly displayed with a tabular
environment.

Using the beamer package [7], this type of tab-
ular information can be incrementally revealed by

inserting \pause commands at selected locations.
In the context of demonstrating an algorithm, such
pauses can be used to show the effect of one iteration
of a loop.

To illustrate, consider Euclid’s algorithm for
computing the greatest common divisor. At the
heart of this algorithm is a loop which repeats the
following three actions:

r = x % y; x = y; y = r;

The history for this algorithm is a tabular array
with three columns, one for each of the three vari-
ables. A partial history might reveal the following
table, “at rest” at a \pause.

x y r

120 70 50
70 50 20
50 20

Picking up after the \pause, the history grows by
an amount equal to one iteration of the loop:

x y r

120 70 50
70 50 20
50 20 10
20 10

As shown in Figure 15, these types of tabular
environments can be generated with a PerlTEX com-
mand. Since the values in the tabular are being com-
puted by Euclid’s algorithm, it is easy to generate
a wide variety of example histories — and to have
confidence that the values in the table are correct!

360 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Programming with PerlTEX

\perlnewcommand{\animationLoop}[4]{

my $result = "";

my $delta = ($_[2] - $_[1]) / ($_[3] - 1.0);

my $x = $_[1];

for (my $count = 1; $count < $_[3]; $count++) {

$result .= "\\" . $_[0] . "{$x}%\n" .

"\\newframe%\n";

$x += $delta;

}

return $result . "\\" . $_[0] . "{$_[2]}%\n";

}

Figure 14: A command to generate a sequence of frames in a graphical animation.

\perlnewcommand{\euclidAlgorithm}[2]{

my $x = $_[0];

my $y = $_[1];

my $result = "$x & $y & \\pause ";

while ($y != 0) {

my $r = $x % $y;

$result .= "$r \\\\ \\hline \\pause \n";

$x = $y;

$y = $r;

$result .= "$x & $y & ";

$result .= "\\pause " if $y != 0;

}

return

"\\begin{tabular}{c|c|c} \\hline \n" .

"\$x\$ & \$y\$ & \$x \\bmod y\$\\\\ \\hline \\pause \n" .

$result . "\\\\ \\hline \n" .

"\\end{tabular}";

}

Figure 15: A PerlTEX command to generate a tabular history for Euclid’s algorithm.

9 Shuffling an enumerated list

So far, all of the examples presented have focused on
the ability to define new commands with PerlTEX.
However, PerlTEX also provides a mechanism to de-
fine a new environment: \perlnewenvironment. A
command of the form

\perlnewenvironment{foo}{start}{finish}

defines a new environment, named foo. PerlTEX
replaces a subsequent \begin{foo} with the start
text and an \end{foo} with the finish text.

To illustrate, suppose it is desired to typeset a
shuffled enumerated list. In principle, each time the
source text is processed, a different ordering of the
list items could result. To accomplish this, we intro-
duce a new environment, shuffle, and a new com-
mand, \shuffleItem. For example, Figure 16 illus-
trates how this environment can be used to typeset
an enumerated list of the four given items, arranged
in an arbitrary order.

\begin{shuffle}

\shuffleItem{TUG 2007}

\shuffleItem{SDSU}

\shuffleItem{San Diego}

\shuffleItem{California}

\end{shuffle}

Figure 16: An example of the use of the shuffle

environment.

To achieve this behavior, consider the action
required for each item in the shuffle environment.
As shown in Figure 17, each item which appears gets
appended to a variable, @items, which maintains a
list of all items encountered thus far.

The bulk of the work takes place at the conclu-
sion of the shuffle environment. The items that
have been accumulating are now rearranged and an
enumerated list is constructed from this permuted
list. Figure 18 provides the Perl details. The vari-
able @items is undefined as a final step, since a

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 361

Andrew Mertz, William Slough

\perlnewcommand{\shuffleItem}[1]{

push @items, $_[0];

return "";

}

Figure 17: A PerlTEX command which stores one
item of a shuffle environment.

subsequent shuffle environment must start with
a “clean slate” of items. Permuting the list of items
is a simple operation, since there is a Perl library
module well-suited to this task.

Although this implementation of shuffled enu-
merated lists does not allow for nested shuffled lists,
it does nevertheless provide an illustration of the
ability to define new environments within PerlTEX.

\perlnewenvironment{shuffle}

{return "\\begin{enumerate}\n"}

{

use List::Util "shuffle";

@items = shuffle(@items);

my $result = " \\item ".

join("\n \\item ", @items).

"\n\\end{enumerate}";

undef @items;

return $result;

}

Figure 18: A PerlTEX command which stores an
item of a shuffle environment.

10 Summary

TEX provides powerful ways to format text and to
perform general-purpose computations. For many
users, however, the techniques required to access the
computational features of TEX are cumbersome. By
providing a bridge between TEX and Perl, PerlTEX
makes these computations more accessible.

Perl’s widely acknowledged strengths, including
extensive libraries, support for regular expressions,
a rich collection of string primitives, and familiar
control structures, make PerlTEX a natural candi-
date for the LATEX user seeking finer control over
typesetting tasks.

References

[1] Sean Burke. Perl & LWP. O’Reilly, 2002.

[2] Alexander Grahn. The animate package.
http://www.ctan.org/tex-archive/macros/

latex/contrib/animate.

[3] Donald E. Knuth. The TEXbook.
Addison-Wesley, 1986.

[4] Scott Pakin. PerlTEX: Defining LATEX macros
using Perl. TUGboat, 25(2):150–159, 2004.

[5] Heinz-Otto Peitgen, Hartmut Jürgens,
and Dietmar Saupe. Chaos and Fractals.
Springer-Verlag, 2004.

[6] Till Tantau. TikZ and PGF manual.
http://sourceforge.net/projects/pgf/.

[7] Till Tantau. User’s Guide to the Beamer Class.
http://latex-beamer.sourceforge.net.

[8] Larry Wall, Tom Christiansen, and Jon
Orwant. Programming Perl, Third Edition.
O’Reilly, 2000.

362 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

LATEX conversion into normalized forms and speech

Eitan M. Gurari
Ohio State University
gurari (at) cse dot ohio-state dot edu

http://www.cse.ohio-state.edu/~gurari

Abstract

LATEX is an authoring language designed for producing documents through native
TEX compilers. Over the years many other applications have been developed to
accept LATEX inputs via alternative engines programmed from scratch. These
engines are restricted in power to subsets of LATEX features.

The first part of this report shows how TEX4ht can translate general LATEX
constructs into the restricted dialects recognizable by such engines. The jsMath
dialect for rendering LATEX through JavaScript is employed as an example.

An especially significant use of LATEX input was T. V. Raman’s 1994 pioneer-
ing AsTeR program for automatically rendering technical documents into audio.
Newer audio browsers are expected to address XML documents that adhere to the
SSML and ACSS specifications. The second part of this report extends Raman’s
work by showing how TEX4ht can translate LATEX to XML-based representations
that support speech.

1 Applications of LATEX dialects

The LATEX system offers a rich set of high-level fea-
tures for authoring manuscripts, and a powerful en-
gine for typesetting documents. The human friendly
design of the language, in particular within its math-
ematical component, promoted different programs
to choose variants of LATEX as their input languages.
Similarly, the superior typesetting capabilities en-
couraged different tools to offer LATEX for exported
document formats.

For instance, the jsMath utility [2] is dedicated
to rendering restricted LATEX mathematical expres-
sions embedded within HTML files. In doing so it
offers a friendly medium for on-line content manage-
ment. Specifically, information is easy to enter and
edit, a single document file provides for both content
rendering and editing, document files can be accessi-
ble throughout the web as is the case for Wiki pages,
and viewers need not install new software. The pro-
gram is written in JavaScript. Figure 1(a) shows
the jsMath source code for obtaining the output in
Figure 1(b).

As another example, the source mathematical
code of MediaWiki [10] is expressed in LATEX. The
code is channeled to the texvc program [17] for con-
verting the expressions into images.

This material is based upon work supported by the National
Science Foundation under Award No. IIS-0312487. Any opin-
ions, findings, and conclusions or recommendations expressed
in this publication are those of the author and do not neces-
sarily reflect the views of the National Science Foundation.

On the other hand, the Scientific Notebook doc-
ument processing system [15] is an example of a
utility capable of exporting LATEX documents. The
LATEX mathematical code emitted by this program
can be imported into the Duxbury Braille Translator
for embossing the expressions into Nemeth braille [3].

In all of the above examples, only subsets of
the LATEX features are supported. In the first two
examples, minor non-LATEX features are added.

2 A TEX4ht mode for jsMath

The jsMath system supports only a few core fea-
tures of LATEX, and its vocabulary is quite restricted
due to the very limited macro capabilities of the sys-
tem. TEX4ht, on the other hand, is a highly config-
urable converter for TEX-based sources [4]. Hence,
TEX4ht can assume the bulk of the work of process-
ing given files into forms jsMath can handle. To
translate a LATEX file named file.tex into HTML,
with the mathematical expressions converted into
jsMath, one can issue the following command:

htlatex file "html,jsmath" " -cmozhtf"

The jsMath engine recognizes a limited set of
symbol names, but it fully supports Unicode rep-
resentations. The flag ‘-cmozhtf’ requests Unicode
encodings for the majority of the symbols usually
contributed from the (LA)TEX fonts, ignoring the pos-
sibility of using names for the symbols recognized by
the jsMath engine.

Figure 2(a) shows the jsMath output of TEX4ht
for the source of Figure 2(b), and Figure 4(a) ex-

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 363

Eitan M. Gurari

<p> A quadratic equation

ax^2 + bx + c = 0

with

a \neq 0

has the following solution.

</p>

<div class="math">

x = \frac {-b \pm \sqrt{b^2 - 4ac} }

{2a}

</div>

A quadratic equation ax2 + bx + c = 0 with a 6= 0
has the following solution.

x =
−b ±

√
b2 − 4ac

2a

(a) (b)

Figure 1: HTML code with embedded jsMath expressions and its rendering.

<p class="noindent">

A quadratic equation

a{x}^{2} + bx + c = 0

with

a\mathrel{≠}0

has the following solution.

</p>

<div class="math">

x ={ −b ±\sqrt{{b}^{2 }

− 4ac} \over 2a}

</div>

A quadratic equation $ax^2 + bx + c = 0$

with $a \ne 0$ has the following solution.

$$x={-b \pm \sqrt{b^2 - 4ac} \over 2 a}$$

(a) (b)

Figure 2: TEX4ht jsMath output for a LATEX source.

<p class="noindent">

A quadratic equation

 a{x}^{2} + bx + c = 0

with

 a\ne 0

has the following solution.

</p>

<div class="math">

x =\frac{ -b\pm \sqrt{{b}^{2 } - 4ac} }

{2a}

</div> Figure 3: Reconfigured TEX4ht output.

hibits the jsMath code created for the source of Fig-
ure 4(b).

3 A taste of the TEX4ht configurations

The default jsMath configurations of TEX4ht do not
take advantage of the full range of the LATEX fea-
tures permitted by the jsMath utility. As a result,
the jsMath code created by TEX4ht has room for im-
provements with respect to making the code more

friendly for handling by human beings. This sec-
tion demonstrates how TEX4ht can be reconfigured
to produce from the input of Figure 2(b) the output
of Figure 3, as an alternative to the default output
shown in Figure 2(a).

3.1 Using literal characters instead of

Unicode values

When LATEX encounters the minus character ‘-’ in

364 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

LATEX conversion into normalized forms and speech

<div class="math">

W(Φ) = \left \Vert \array{

{ φ

\over ({φ}_{1},{ɛ}_{1})}

& 0

&\mathop{\mathop{…}}

\kern 1.66702pt

& 0

\cr

{ φ{k}_{n2}

\over ({φ}_{2},{ɛ}_{1})}

&{ φ

\over ({φ}_{2},{ɛ}_{2})}

&\mathop{\mathop{…}}

\kern 1.66702pt

& 0

\cr

.&.&.&.&.

\cr

{ φ{k}_{n1}

\over ({φ}_{n},{ɛ}_{1})}

&{ φ{k}_{n2}

\over ({φ}_{n},{ɛ}_{2})}

&\mathop{\mathop{…}}

\kern 1.66702pt

&{ φ{k}_{n\kern

1.66702pt n−1}

\over ({φ}_{n},

{ɛ}_{n−1})}

&{ φ

\over ({φ}_{n},{ɛ}_{n})} }

\right \Vert

</div>

\documentclass{article}

\usepackage{amsmath}

\begin{document}

\[W(\Phi)= \begin{Vmatrix}

\dfrac\varphi

{(\varphi_1,\varepsilon_1)}&

0&\dots&0\\

\dfrac{\varphi k_{n2}}

{(\varphi_2,\varepsilon_1)}&

\dfrac\varphi

{(\varphi_2,\varepsilon_2)}

&\dots&0\\

\hdotsfor{5}\\

\dfrac{\varphi k_{n1}}

{(\varphi_n,\varepsilon_1)}&

\dfrac{\varphi k_{n2}}

{(\varphi_n,\varepsilon_2)}&\dots&

\dfrac{\varphi k_{n\,n-1}}

{(\varphi_n,\varepsilon_{n-1})}&

\dfrac{\varphi}

{(\varphi_n,\varepsilon_n)}

\end{Vmatrix}\]

\end{document}

(a) (b)

W (Φ) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

ϕ
(ϕ1,ε1)

0 . . . 0
ϕkn2

(ϕ2,ε1)
ϕ

(ϕ2,ε2)
. . . 0

. .
ϕkn1

(ϕn,ε1)
ϕkn2

(ϕn,ε2)
. . .

ϕkn n−1

(ϕn,εn−1)
ϕ

(ϕn,εn)

∥

∥

∥

∥

∥

∥

∥

∥

∥

(c)

Figure 4: TEX4ht jsMath output for a LATEX input.

the input, it places in the dvi file a request that
the character will be typeset by the first symbol of
the cmsy font. When TEX4ht encounters the request
while processing the dvi file, it opens an alternative
hypertext font file of its own, named cmsy.htf, and
retrieves the first entry in that file. This entry gives
the Unicode value −.

Given this Unicode value −, the TEX4ht
utility searches for the value in the active encoding

file unicode.4hf. If the value − is not found
in the encoding file, it is inserted as is into the out-
put. If the value is found in the encoding file, the
replacement from the encoding file is instead placed
in the output.

The flag ‘-cmozhtf’ of the command line re-
quests an encoding file that does not include an en-
try for −. Consequently, in the default set-
ting, the Unicode value is placed in the output. The

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 365

Eitan M. Gurari

following steps show how the simple ‘-’ character
can be output instead:

• Make a copy of the following font encoding file,

ht-fonts/mozilla/charset/unicode.4hf

• Add the following record to the new file:

’−’ ’’ ’-’ ’’

• Specify the location of the new encoding file on
the command line. If the file is in the current
directory, the command line can take the fol-
lowing form:

htlatex file "xhtml,jsmath"

3.2 Preventing the expansion of

symbol macros

A redefinition of the control sequences \pm and \ne

in the following manner prevents the expansion of
the symbol macros, respectively, into ‘±’ and
‘\mathrel{≠}’:

\edef\pm{\HCode{\string\pm\space}}

\edef\ne{\HCode{\string\ne\space}}

3.3 Transformations involving rewriting

A translation of the \over operator into the \frac

function can be achieved by introducing the follow-
ing TEX4ht configuration.

\Configure{over}

{\Send{GROUP}{0}{\string\frac\l:brace}}

{\HCode{\r:brace\l:brace}%

\Send{EndGROUP}{0}{\r:brace}}

The configuration relies on capabilities to in-
versely process DVI code into source code. The next
observations provide some insight into how the con-
figuration works:

1. The arguments of a configuration

\Configure{over} {...} {...}

are inserted by TEX4ht immediately before and
after the \over operator.

2. The \Send{GROUP}{0}{...} instruction sends
its argument backward to the start of the cur-
rent group.

3. The \Send{EndGROUP}{0}{...} code delivers
its argument forward to the end of the current
group.

4. The contribution of \Configure{over} to the
code fragment {...\over...} provides the fol-
lowing initial outcome.

{...

\Send{GROUP}{0}{\string\frac\l:brace}

\over

\HCode{\r:brace\l:brace}

\Send{EndGROUP}{0}{\r:brace}

...}

5. After applying the \Send instructions, the code
takes the following form.

{\frac\l:brace ...

\over

\r:brace\l:brace ... \r:brace}

6. The braces ‘{’ and ‘}’ and the \over opera-
tor do not introduce content to the output file.
Consequently, the net contribution is as follows,
where \l:brace and \r:brace produce left and
right braces, respectively.

\frac\l:brace ...\r:brace\l:brace

...\r:brace

4 Speech markup and synthesis

XML and Cascading Style Sheets (CSS) conventions
are commonly and increasingly being used for de-
scribing the desirable rendering of documents into
visual forms. Similar attention is also being given
to the development of analogous standards for ren-
dering documents in audio forms.

The aural conventions are concerned with prop-
erties such as pitches, volumes, rates, and pauses to
be associated with the different parts of the doc-
uments. The conventions are in particular valuable
for introducing annotations that highlight the struc-
tural characteristics of documents.

Of particular interest in this regard are the draft
proposals from the W3C consortium of the Speech
Synthesis Markup Language (SSML) [16] and Au-
ral Cascading Style Sheets (ACSS) [1]. Figures 5(a)
and 5(b), respectively, illustrate the notations in
those proposals. The SSML specifications are based
on, and are similar to, the Java Speech Markup Lan-
guage (JSML) specifications [7].

Emacspeak [13] supports a restricted variant
of ACSS, recognizing the properties of voice-family,
stress, richness, pitch, and pitch-range. The C++

program of Figure 5(c) renders, on the Microsoft
Windows Vista platform, files in SSML format. The
Java program of Figure 5(d) renders JSML files, on
platforms offering a JSML-based implementation to
the Java Speech APIs [6].

5 From LATEX to speech

Audio representations of documents are of great im-
portance for people with print disabilities [14] as in
many cases they have no alternative ways to access
the content of the documents. Yet, documents in au-
dio formats can be also useful for the general public.
For instance, that might be the case for people who
want to listen to a document while driving, or for

366 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

LATEX conversion into normalized forms and speech

<speak> <p>Take a deep breath <break strength="weak"/> then

<prosody rate="-10%">speak slower</prosody>.</p>

<p>Also <prosody volume="loud">raise your voice</prosody>

so everyone will hear you.</p> </speak>

(a)

h1 { voice-stress: strong; voice-rate:-10%; pause-after: 20ms; }

msqrt.before { content: "Square root: " }

msqrt.after { content: "End root. " } (b)

#include <sapi.h>

int main(int argc, char* argv[]){

ISpVoice * synth = NULL;

if (FAILED(::CoInitialize(NULL))){ return 0; }

HRESULT hr = CoCreateInstance(CLSID_SpVoice, NULL,

CLSCTX_ALL, IID_ISpVoice, (void **)&synth);

if(SUCCEEDED(hr)){

int n = strlen(argv[1]);

wchar_t *s = (wchar_t *) malloc(n+1); s[n] = ’\0’;

while(n-- > 0){ s[n] = argv[1][n]; }

hr = synth->Speak(s, SPF_IS_FILENAME | SPF_PARSE_SSML, NULL);

synth->Release();

synth = NULL;

}

::CoUninitialize(); return 0;

} (c)

import javax.speech.*;

import javax.speech.synthesis.*;

import java.net.*;

import java.io.*;

public class Speaker{

public static void main(String args[]) {

try {

Synthesizer synth = Central.createSynthesizer(new SynthesizerModeDesc());

synth.allocate();

synth.resume();

synth.speak(new File(args[0]).toURI().toURL(), null);

synth.waitEngineState(Synthesizer.QUEUE_EMPTY);

synth.deallocate();

}catch(Exception e){

System.err.print("--- ERROR --- "); e.printStackTrace();

} } } (d)

Figure 5: (a) SSML. (b) ACSS. (c) SSML file speaker. (d) JSML file speaker.

authors wishing to “proof listen” their writings in
addition to (or instead of) proof reading.

LATEX documents can be translated by TEX4ht
into files annotated for speech [5]. For the ACSS

speech variant of Emacspeak the requests can be
made with commands similar to the following:

eslatex file

For output in JSML format the calling commands
can be as follows:

jslatex file

TEX4ht configurations similar to those provided
for the JSML and the Emacspeak variant of ACSS

can, and in time will, be also tailored for output
modes in SSML and the W3C version of ACSS.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 367

Eitan M. Gurari

It should be noted that currently no browser
is available for effectively inspecting and navigating
highly structural content in audio mode. In fact,
it is even not clear what features audio browsers
should offer to tackle this issue. Such a deficiency
makes it very difficult to use audio resources to study
technical topics, including those relying heavily on
mathematical notations. In addition, it makes it
difficult to decide what added information TEX4ht
should provide in the translated material to enhance
its accessibility.

Much of the approach for audio rendering of
mathematics is motivated by Nemeth braille and ex-
pressed in MathSpeak [9]. The audio cues for differ-
ent logical elements of data might also be specified
within browsers instead of being provided to them
within the data. MathPlayer [8], for instance, be-
haves so in rendering MathML expressions into au-
dio. LATEX files can be transformed by TEX4ht to
satisfy MathPlayer requirements with commands of
the following form:

mzlatex file "xhtml,mathplayer"

The pioneering work of automatically putting
technical content into audio format is due to T.V.
Raman and assumed the LATEX language for the in-
put data [11, 12].

Acknowledgement

I am grateful to Barbara Beeton, Karl Berry, and
Susan Jolly for their valuable input.

References

[1] Aural style sheets, W3C Working Drafts,
http://www.w3.org/TR/CSS21/aural.html,
http://www.w3.org/TR/css3-speech/.

[2] D. Cervone, jsMath: A Method of Including
Mathematics in Web Pages, http://www.
math.union.edu/~dpvc/jsMath/ and http:

//sourceforge.net/projects/jsmath/.

[3] Duxbury Braille Translator (DBT), Duxbury
Systems, http://www.duxburysystems.com/.

[4] E. Gurari, TEX4ht, http://www.cse.
ohio-state.edu/~gurari/TeX4ht.

[5] E. Gurari, LaSpeak: LATEX and Speech,
http://www.cse.ohio-state.edu/~gurari/

laspeak.

[6] Java Speech API, Sun Microsystems, http:
//java.sun.com/products/java-media/

speech/ (version 1) and http://jcp.org/

en/jsr/detail?id=113 (version 2, proposed
draft, 11 June 2007).

[7] Java Speech Markup Language (JSML),
Sun Microsystems, 1999, http://java.
sun.com/products/java-media/speech/

forDevelopers/JSML/index.html.

[8] MathPlayer, Design Science, http://www.
dessci.com/en/products/mathplayer/.

[9] MathSpeak Core Specification Grammar Rules,
http://www.gh-mathspeak.com/examples/

grammar-rules/.

[10] MediaWiki, http://www.mediawiki.org/
wiki/MediaWiki.

[11] T. V. Raman, An audio view of (LA)TEX
documents, TUGboat 13:3, October 1992,
372–379, http://www.tug.org/TUGboat/
Articles/tb13-3/raman.pdf.

[12] T. V. Raman, Audio System for Technical
Readings (AsTeR), Ph.D. Dissertation,
Cornell University, May 1994, http:
//emacspeak.sourceforge.net/raman/

publications/web-aster/root-thesis.

html, Examples: http://www.cs.cornell.

edu/home/raman/aster/aster-toplevel.

html.

[13] T. V. Raman, Emacspeak—The Complete
Audio Desktop, http://emacspeak.
sourceforge.net/.

[14] Recording for the Blind and Dyslexic,
http://www.rfbd.org/.

[15] Scientific Notebook, MacKichan Software,
http://www.mackichan.com/.

[16] Speech Synthesis Markup Language (SSML),
W3C Working Draft, 11 June 2007, http:
//www.w3.org/TR/speech-synthesis11/.

[17] T. Wegrzanowski, Texvc: TEX Validator and
Converter, http://en.wikipedia.org/wiki/
Texvc and http://meta.wikimedia.org/

wiki/Help:Formula.

368 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Abstracts

(See the ‘Random comments’ column on p. 377 for pub-
lication information on items marked with ‘*’. Ed.)

Three dimensional graphics with Sketch

David M. Allen

Sketch is a 3D scene description translator by Eugene K.
Ressler. Its web page is at http://www.frontiernet.

net/~eugene.ressler.

Sketch is a small, simple system for producing line
drawings of two- or three-dimensional solid objects and
scenes. Sketch produces finely wrought, mathematically
based illustrations with no extraneous detail. It does not
do photo-realistic scenes. The input language is remi-
niscent of PSTricks, so will be easy to learn for current
PSTricks users.

Sketch output was PSTricks code until recently. In
addition to PSTricks, Sketch now understands TikZ/
PGF options (key/value pairs) and generates TikZ out-
put. Some advantages are that TikZ works directly with
pdfLATEX and supports transparency. Happily, the depth
sort hidden surface algorithm used by Sketch is perfectly
compatible with transparent polygons.

This presentation gives a brief overview of Sketch
from the perspective of a beginning user. It gives some
detailed examples that introduce a substantial set of
commands. There are also examples from the Sketch
distribution.

From TEX to XML: The legacy of techexplorer

and the future of math on the Web

Don DeLand

In 1997, IBM Research first released techexplorer, a web
browser plugin for rendering TEX markup directly within
browsers. Since Integre took over techexplorer develop-
ment in 2003 there have been relatively few advances
in browser technology, but tremendous developments in
collaboration tools and other web-based applications.
This talk gives a brief history of the techexplorer project
and explains why its development has shifted away from
TEX to its current focus on native XML/MathML author-
ing. Although delivering math in web browsers continues
to be a frustrating process, “Web 2.0” holds substantial
promise for a new generation of web-based applications
that support mathematics.

Long-time preservation strategies for

TEX-sourced content

Paulo Ney de Souza

The amount of published material in the world has grown
exponentially since Gutenberg’s invention, with a rate of
doubling every 7 1/2 years right now. Electronic pub-
lishing will only increase this rate, posing new challenges
for the long-time preservation of records and usability for
the future.

TEX has changed us into our own typists and even
graphics designers sometimes, but at the same time has
provided the best strategy for preservation of scientific
content we have. This talk will examine some of these
strategies and how MSP — a non-profit scientific pub-
lisher— has used it to improve usability of journals over
time.

LuaTEX Attributes: The new kid on the block*

Hans Hagen

When you switch fonts in TEX, normal grouping keeps
changes to another font local to the group. But there is
more than fonts. Most macro packages provide color
support and in ConTEXt we also support some PDF

related features like outlines and hidden invisible ink.
These features all share a common problem: we need to
keep track of their state in the page stream and across
pages and splitting content also takes some care. A
maybe less obvious example is hyperlinks, which are na-
tively supported by pdfTEX (although ConTEXt does it
slightly differently).

In order to make such features easier (and more ro-
bust) to implement, LuaTEX provides attributes. These
behave like fonts but are by design agnostic as to what
they represent. They travel with the nodes (each node
can have attributes) and it’s up to the macro package to
make sure that the intended behaviour takes place. For
this, Lua code is used in combination with processing
node lists, either by using callbacks or by postprocess-
ing boxes.

In this talk I will explain what attributes are, and
how they can be of use to macro writers.

Zapfino: Hermann’s torture test for TEX*

Hans Hagen

Over the next couple of years TEXies have to explore the
new landscape of OpenType fonts. Most of the imple-
mentation details will be hidden beyond user interfaces
of macro packages. However this does not hide the po-
tential mess that users can invoke when they start en-
abling or disabling features related to fonts.

Thanks to the Oriental TEX project Taco can spend
substantial time on coding LuaTEX which in turn means
that I have lots of testing and protyping on my plate.
We also spend much time on discussing the interfaces
and extensions to the program and due to this as well
as realistic testing LuaTEX develops rapidly. However,
in order to fulfill the requirements of the Oriental TEX
project we need to be able to typeset high quality Arabic.
Since I’m more familiar with Latin and since I had the
Zapfino Pro handwriting font waiting for me in Open-
Type format I decided to use that font as benchmark
for advanced node processing in LuaTEX. It proved to
be a worthy contender. In the process we were able to

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 369

Abstracts

optimize node support in LuaTEX and it also triggered
reimplementing the OpenType tables (from FontForge
format 1 to format 2).

In this presentation I will discuss how we deal with
advanced features that are part of OpenType fonts like
Zapfino. I will also explain how such features are imple-
mented in Lua and TEX code.

CritTEXt: The critical-edition module

for ConTEXt*

Idris Hamid

TEX has become a very important tool in the prepara-
tion of critical editions of texts. In particular, EDMAC

for plain TEX, by Lavagnino and Wujastyk, has come to
the rescue of many an editor of texts (myself included).
In the last two years the LATEX world has produced
at least two general-purpose packages for the prepara-
tion of critical editions: LEDMAC (a port of EDMAC with
even additional features) and ednotes. With its exten-
sive and high-level configurability, typographic flexibil-
ity, and database capabilities— not to mention its user-
friendly and consistent interface — ConTEXt is perhaps
the most natural typesetting platform for a full-featured
and easy-to-use user interface for authors and typeset-
ters who need to produce a sophisticated camera-ready
critical edition. With the maturation of projects like
LuaTEX and Oriental TEX well underway, the capacity
of TEX for even more efficient production and configu-
ration of the highest quality of critical texts in multiple
languages is almost at hand.

This document outlines the high-level interface to
the critical-text editing module for ConTEXt, called Crit-
TEXt. The module is in pre-alpha status and the entire
interface can be expected to undergo extensive changes
in the coming weeks, especially as LuaTEX matures.

On the technical level, preparation of the critical
edition involves three things:

• the main text;

• the apparatus;

• the rest of the book.

The critical edition module we are developing is
concerned primarily with preparing and typesetting the
apparatus. This module is meant to be consistent with
the rest of ConTEXt so that the integration of the ap-
paratus with the main text and the rest of the book is
seamless.

In preparation of the apparatus we distinguish two
things, elemental structure and typographic structure.

1. Elemental Structure:
Each building block of the apparatus, up to and
including the apparatus itself and relevant parts of
the main text, constitutes an element. Given an ele-
ment, it performs a distinct function. For example,
a textual variant of a passage is one element of the
apparatus, the source for that variant is another.

2. Typographic Structure:
Given an element of the apparatus, the editor and/

or typesetter must decide where (layout) and how
(style) to place that element on the page. Will we
use footnotes, endnotes, marginal notes, or a sep-
arate volume entirely for the presentation of the
apparatus? What symbol will we use to separate
the lemma of a given entry class from its associated
comment?

EDMAC and other critical edition packages for TEX
mix elemental structure and typographic structure. In
what follows we try to precisely identify the various com-
ponents of the elemental structure of the critical edition.
Then, when we consider typesetting in ConTEXt, one
may choose a plethora of options for the typographic
structure. This allows for much more flexibility as we
will see. Another advantage of this approach is that it
gives us a framework for easy translation of apparatus
data to and from XML.

The Text Encoding Initiative (TEI) has defined a
special XML schema for critical editions (tei-c.org/
release/doc/tei-p5-doc/html/TC.html). Some parts
of our structure roughly correspond to aspects of the
TEI schema for critical editions. That schema is more
detailed and less precise than we need; for us at this junc-
ture it is more useful to have a clearer and more precisely
defined elemental structure. Then, once the typographic
structure interface is in place, a user can define those el-
ements of the TEI schema that are needed.

Towards an ontology of Arabic-script

typography: An implementation strategy

for Oriental TEX*

Idris Hamid

At the core of the Oriental TEX project is the implemen-
tation of a scheme for typesetting culturally authentic
Arabic-script. Such cultural authenticity has, in gen-
eral, been on the decline since the onset of digital ty-
pography in the Arabic-script world. The coming-of-age
of Unicode as well as the new OpenType font standard is
playing some part in alleviating this situation at the font
level. Yet, although digital typography carries within it
by far much the greater potential for high-quality Arabic
typesetting, Arabic digital typography has yet to meet
the standards set by lead-press typesetting in the Arabic-
script world.

In this document we present the outlines of a new
approach to the ontology or typology of Arabic-script ty-
pography. Ontology is the philosophical study of the cat-
egories of being. In this case, our universe of discourse is
the Arabic script, particularly its typeset instantiation.
An ontology of Arabic-script typesetting, then, identi-
fies and organizes the categories of the manifestation of
Arabic script in the context of typography.

Our analysis is organized along the following lines:

• The three-fold challenge of Arabic-script digital ty-
pography: First-, second-, and third-order analysis
of Arabic script

• A critical examination of Arabic script and Unicode

• First-order analysis of the Naskh script

370 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Abstracts

• Historical overview of Naskh typography

• Second-order analysis of the Naskh script: Macro-
typography

• Third-order analysis of the Naskh script: Micro-
typography

An experimental CTAN upload process

Jim Hefferon

Some improvements to the package upload facility at
CTAN have the potential to make the process smoother.
We’ll talk about some of the features being developed
and tested, and also have a demo.
(This paper will appear in the EuroBachoTEX 2007 pro-
ceedings. Ed.)

The breqn package: revised and revived

Morten Høgholm

The breqn package was originally developed by Michael
Downes of the American Mathematical Society to facil-
itate automatic line-breaking of displayed math expres-
sions. It has recently undergone some restructuring as
part of a thesis project and is now actively maintained
again. This presentation gives an overview of the cur-
rent status of breqn, what it can do and what it can’t
(yet) do, and finally what the immediate, mid-term and
long-term goals are.

About Lua

Roberto Ierusalimschy

Lua is an embeddable scripting language that aims for
simplicity, small size, portability, and performance. Un-
like most other scripting languages, Lua has a strong
focus on embeddability, favoring a development style
where parts of an application are written in a “hard”
language (such as C or C++) and parts are written in
Lua. Currently Lua is used in a vast range of applica-
tions, being regarded as the leading scripting language
in the game industry.

In this talk I will give an overview of the language,
covering not only the technical aspects of the language
but also its origins back in 1993, its evolution, and its
current status.

X ETEX Live

Jonathan Kew

With the release of TEX Live 2007, the X ETEX engine
has “come of age” and entered the mainstream of the
TEX world. X ETEX, which provides built-in Unicode and
OpenType support, is now a standard part of a TEX Live
installation, and thus is readily available to any user who
installs this distribution.

This presentation will show how users can take ad-
vantage of X ETEX to easily use additional fonts in TEX or
LATEX documents, with no complex installation or setup
procedures. It will also show how non-Latin scripts such
as Chinese, Arabic, Devanagari, and many others can be
typeset just as easily as English, thanks to full Unicode
support throughout the system.

In addition, some of the newest developments in
X ETEX (beyond the TEX Live 2007 release) will be dis-
cussed and demonstrated. These include support for the
Graphite rendering technology for complex scripts; ex-
tensions that can simplify Chinese/Japanese character
spacing and mixed-script typesetting; and more com-
plete Unicode math support.
(This paper will appear in the EuroBachoTEX 2007 pro-
ceedings. Ed.)

Everything you wanted to know about PDF but

were afraid to ask

Leonard Rosenthol

If you ever wondered just what makes PDF tick, come to
this presentation by Adobe’s PDF Standards Evangelist.
You’ll learn about the many features of PDF, from page
content to interactive features to 3D, and how it all fits
together. PDF is on track to becoming an ISO standard.

Vistas for TEX

Chris Rowley

This is a polemic in favour of liberating the core type-
setting structures and algorithms around which TEX is
built from the monolithic superstructure of the program
called tex and its derivatives such as xetex, luatex etc.

Although the aims of the programme of activity ad-
vocated here are have a lot in common with those behind
the very exciting and active luaTEX project, the route
I support seems to me to be to be very different from
embedding the whole of the TEX system within such a
vastly more complex monolith (sic), along with its many
intrusions (sic) into but a single instance of the ancient
base rock of TEX! Of course, this is by no means all that
luatex promises to give us, hence the importance and
fascination for me of the approach taken by the luaTEX
project.

Pursuing the paleontological metaphor well beyond
its total collapse, my plan can be thought of as providing
many tools for influencing the evolution of automated
tpesetting without the need to fossilize the perectly pre-
served skeleton of the whole ancestral dinosaur.

Incorporating LATEX text into graphics and

presentations with LATEXiT

Ari Stern

It is often a challenge to combine text created in LATEX
with content from other software, such as graphics and
presentation software, while maintaining a consistent ty-
pographical style; for instance, matching text labels in
mathematical figures to the main text. This demo will
show how this can be done easily using LATEXiT, a free
utility for Mac OSX included with the MacTEX distribu-
tion. Other examples will include 2D and 3D mathemat-
ical figures in Adobe Illustrator, as well as presentations
using Apple Keynote.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 371

372 TUGboat, Volume 28 (2007), No. 3

ConTEXt basics for users: Table macros

Aditya Mahajan

Abstract

ConTEXt has four different table building macros. In
the author’s view the table macros, which are the
oldest of the four, are the easiest to use for simple
tables. This article gives a gentle introduction to
these macros.

1 Introduction

Tables provide visual representation of information;
understanding how to build them in a markup lan-
guage can be difficult and frustrating. To make mat-
ters especially confusing for a new user, ConTEXt
provides four different mechanisms to build tables —
tables, tabulations, line tables, and natural tables—
and the user must decide which one of the four to
use. This can be a difficult decision, because there
is no “one size fits all” solution. Each mechanism
has its own strengths and weaknesses, and the best
match depends on the application.

Tables can get fairly complicated. They can
have fancy horizontal and vertical lines, colored
rows, sophisticated MetaPost backgrounds for cells,
and/or may need to be split across multiple pages.
Some mechanisms are better than others at handling
such advanced features.

However, most users rarely need these features;
for the most part, they just want a simple, publi-
cation quality table. I think that out of the four
table building macros, the table macros, which are
based on Michael Wichura’s TABLE package [1], are
the easiest to use for simple tables.

I should note that this mechanism is no longer
actively developed, and the more modern natural ta-
ble macros are the unofficially recommended choice.
However, I find natural tables to be a bit too verbose.
The table macros take care of the simple tables. If
you need to typeset complicated tables, you need to
look into all the mechanisms and decide which one
suits your needs best.

This article explains the basics of the table

macros. It is cumbersome to separate out the fea-
tures of Michael Wichura’s TABLE package, and
those added or adapted by Hans Hagen in the course
of integrating with ConTEXt. For simplicity of ex-
position and with sincere apologies to Michael, I am
going to refer to all these features as features of Con-
TEXt’s table macros.

2 How to build tables

The basic structure of a table built with the table

macros looks like this:

\starttable[preamble]

\NC . . . \NC \AR % first row

. . . % middle rows

\NC . . . \NC \AR % last row

\stoptable

The preamble indicates the number and format-
ting of the columns. The column formatting is de-
fined by “column specifiers”, separated by vertical
bars |; we also put bars at the beginning and end
of the preamble. These | characters do not indi-
cate vertical lines, as they do in LATEX; they simply
separate columns.

Each column specifier consists of keys, which
are single characters, and the key combination indi-
cates the formatting for that column. The number
of columns is simply the number of column specifiers
(that is, the number of |’s minus one).

The body of the table can contain an arbitrary
number of rows. Each row has the form

\NC cell 1 \NC . . . \NC cell n \NC \AR

The \NC (mnemonic: new column) control se-
quence is the usual column separator, and \AR (mne-
monic: automatic row) is the usual row separator.
Each column separator corresponds to one | in the
preamble.

Let’s consider an example. Suppose we want to
produce the following table:

left center right

23 45 67

Each row consists of three columns, with the
first one left aligned, the second center aligned, and
the last right aligned. The preamble for this table is
[|l|c|r|]. Here l is an abbreviation for left,1 c for
center, and r for right. Each column is as wide as
necessary to accommodate the width of its contents.
The input for the above table is:

\starttable[|l|c|r|]

\NC left \NC center \NC right \NC \AR

\NC 23 \NC 45 \NC 67 \NC \AR

\stoptable

The “extra” \NC’s at the end of each row are
required. Omitting them can lead to hard-to-detect
problems.

3 Specifying column widths

By default, each column is wide enough to accommo-
date the largest entry in that column. This may not

l is actually ell. In the fonts used for this article, it is difficult1

to distinguish l (ell) from 1 (one). To make things easier for
the reader, I will not use the digit 1 (one) in any example.

TUGboat, Volume 28 (2007), No. 3 373

always be desired. If you want to ensure that each
column has a certain minimum width, use w(width)

in the column specifier. For example, if we want the
middle column in the above table to be at least 4 cm
wide, we can specify the preamble as

\starttable[|l|cw(4cm)|r|]

which gives

left center right

23 45 67

On the other hand, if you want to specify a cer-
tain maximum width of a column, use the p(width)

in the column specifier. Such columns are called
paragraph columns. For example, suppose we want
a column to be 5 cm wide:

TUGboat The TUGboat journal is a
unique benefit of joining TUG.
It is currently published three
times a year . . .

We can use the following:

\starttable[|l|lp(5cm)|]

\NC TUGboat

\NC The TUGboat journal ...

\NC \AR

\stoptable

This lp(5cm) key combination gives us left-
justified text, i.e., ragged right. You can also use
rp(5cm) to get right-justified (ragged left) text, and
cp(5cm) to get centered text.

However, in most cases we want such paragraph
columns to be justified. To achieve this we can use
xp(5cm), which gives:

TUGboat The TUGboat journal is a unique
benefit of joining TUG. It is cur-
rently published three times a
year . . .

4 Horizontal and vertical lines

To get horizontal lines that span the width of the
entire table, you can use \HL between the rows where
a line is desired.

By default, the width of the line (a.k.a. “rule”)
is 0.4 pt — TEX’s default for lines. The linewidth
can be controlled by the rulethickness option of
\setuptables. For example, if you want 2 pt thick
lines, use \setuptables[rulethickness=2pt].

The width of a specific line can be increased
using an optional argument to \HL. This argument
must be an integer, and it increases the width of the
current line by that factor. For example:

\setuptables[rulethickness=0.03em]

\starttable[|l|l|r|]

\HL[3]

\NC Animal \NC Desc \NC Cost (\$) \NC \AR

\HL

\NC Gnat \NC per gram \NC 13.65 \NC \AR

\NC Emu \NC stuffed \NC 33.33 \NC \AR

\NC Gnu \NC stuffed \NC 92.50 \NC \AR

\HL[3]

\stoptable

gives

Animal Desc Cost ($)

Gnat per gram 13.65

Emu stuffed 33.33

Gnu stuffed 92.50

Here the first and last lines are 3 ∗ 0.03 em =
0.09 em thick, while the middle line is the default
0.03 em. Notice that the height of the rows around
the horizontal lines is automatically adjusted —
that’s the A in \AR.

Other row specifiers allow manual adjustment
of space: \NR (new row), \SR (single row), \FR (first
row), \MR (middle row), and \LR (last row). Depend-
ing on the surrounding rows, \AR is converted into
one of these row specifiers.

One can use \tracetablestrue to see what
ConTEXt is doing behind the scenes. If we add
\tracetablestrue before calling the above table,
we get:

Animal Desc Cost ($) \SR

Gnat per gram 13.65 \FR

Emu stuffed 33.33 \MR

Gnu stuffed 92.50 \LR

The first row was surrounded by two horizontal
lines, so the \AR in the first row was changed into
\SR (single row). This introduces some space above
and below the row, so that the row is not too close
to the horizontal lines.

The second row has a horizontal line above it,
so the \AR was changed into \FR (first row). This
adjusts the space above the row to provide some dis-
tance from the horizontal line.

The third row does not have a horizontal line
above or below it, so the \AR is changed into \MR

(middle row). This adds normal inter-row space
above and below the row.

The last row had a horizontal line below it, so
the \AR was changed into \LR (last row). This ad-
justs the space below the row to provide some dis-
tance from the horizontal line.

374 TUGboat, Volume 28 (2007), No. 3

The \NR command sequence does not adjust
space at all. It should be used only when such tight
spacing is required.

If you feel that ConTEXt has made a wrong
choice, you can use the desired row separator instead
of \AR to end that particular row in the table.

Vertical lines are rarely considered good typog-
raphy. However, if you insist, use \VL as the column
separator instead of \NC. For example, this input:

\starttable[|l|cw(4cm)|r|]

\HL

\VL left \VL center \VL right \VL \AR

\HL

\VL 23 \VL 45 \VL 67 \VL \AR

\HL

\stoptable

gives

left center right

23 45 67

This also shows that with the w key, the width
of the middle column was increased, in this case with
centered text.

5 Documentation

So far I have shown some very basic features of the
table macros. A few more details of these macros
are documented in the beginner’s manual [2]. How-
ever, the manual does not list all features of these
macros. Documentation of the features inherited
from the TABLE package is available in its own man-
ual, which is sold by PCTEX [3].

Unfortunately, there is no real documentation of
the enhancements, especially with regards to color,
done by ConTEXt. There are a few examples in the
source file core-tab.tex [4], and a few more on the
ConTEXt wiki [5].

So, in the next issue of this series, I will ex-
plain some additional features of table macros, such
as specifying the font style and color of each col-
umn, spanning multiple rows and columns, control-
ling the space between the columns, and splitting
tables across pages.

6 Other mechanisms

To conclude this installment, here is a brief overview
of the other table-building mechanisms mentioned
earlier.

The tabulate macros were added for building
running text aligned blocks like formula legends and
facts. They are capable of automatic width calcula-
tion of paragraph columns (similar to the tabularx

package in LATEX) and splitting across pages. They

are built on the same underlying principle as the ta-

ble macros, and in due time will be backward com-
patible with them. However, at present they do not
support vertical rules and colors. Documentation
and examples of tabulations are given in a MAPS

article [6] by Hans Hagen.
Line tables are experimental macros for build-

ing large tables that can be split horizontally and
vertically. It is possible to repeat table header lines
and entry columns. Unfortunately, these macros are
largely undocumented.

Natural tables are the most configurable table
macros. Their syntax is inspired from HTML tables.
It is possible to change the color, background, and
style of a single cell, row, or column, and of odd or
even rows and columns. It is also easy to use Meta-
Post backgrounds. Again, there is no detailed docu-
mentation, but many examples are present in Hans’s
example document [7]; another interesting example
is Willi Egger’s MyWay [8].

Finally, the pros and cons of each of these mech-
anisms is summarized in an article in the ConTEXt
Garden wiki [9].

Bibliography

[1] Michael Wichura: The TABLE Macro Pack-
age. http://www.pctex.com/kb/47.html.

[2] Hans Hagen: ConTEXt an excursion. http:

//www.pragma-ade.com/show-man-1.htm.
[3] Michael Wichura: PICTEX and TABLE

manual. http://store.pctexstore.com

/maclimprom.html.
[4] Hans Hagen: ConTEXt core macros —

TABLE embedding. http://www.logosrl.

it/context/modules/current/singles

/core-tab_ebook.pdf.
[5] ConTEXt garden — Table.

http://wiki.contextgarden.net/Table.
[6] Hans Hagen: Tabulating in ConTEXt —

text flow tables. NTG MAPS, Spring 1999.
http://www.ntg.nl/maps/pdf/22_28.pdf.

[7] Hans Hagen: Natural tables in ConTEXt.
http://www.pragma-ade.com/general

/manuals/enattab.pdf.
[8] Willi Egger: My Way — Use of natural table

environment. http://dl.contextgarden.

net/myway/NaturalTables.pdf.
[9] ConTEXt garden — Tables Overview.

http://wiki.contextgarden.net/Tables

_Overview.

⋄ Aditya Mahajan
University of Michigan
adityam (at) umich dot edu

TUGboat, Volume 28 (2007), No. 3 375

A roadmap for TEX development

TUG’s TEX Development Fund committee

A foundation has generously provided a substantial
outright grant and an equal matching grant to the
TEX Users Group (TUG) to be used for TEX devel-
opment. Along with these grants, there was a strong
suggestion, with which we fully concur, to create a
“roadmap” of TEX development for allocating these
and future funds.

We do not contemplate a prescriptive roadmap.
No central authority can dictate TEX directions, as
many independent institutions and individuals con-
tribute to TEX’s development. In addition, the avail-
able money is not sufficient to fully fund (and thus
perhaps more strongly direct) major projects.

The TEX user groups do cooperate in many
ways, including coordination of development efforts.
For instance, one major community project is the
Comprehensive TEX Archive Network (CTAN), sup-
ported by the user groups and other institutions.
CTAN amounts to a giant library of user-developed
shared routines, and is the central release point for
TEX updates; the TEX Live and MiKTEX distribu-
tions take the bulk of their material from CTAN.

Overall, we feel our best general strategy for
allocating funding is to select existing efforts that
look especially significant and promising, and which
already involve people who have the necessary skill,
motivation, availability, and a track record of major
TEX accomplishments. We can then give those peo-
ple a financial boost, as well as a nudge of approval,
that we can hope will help them stay motivated and
working, perhaps finishing a little faster and with
greater certainty.

When we look around the TEX world for such
ongoing efforts and people, three activities look es-
pecially exciting to us:

• LuaTEX, http://www.luatex.org/

• TEX Gyre fonts, http://www.gust.org.pl/
projects/e-foundry/tex-gyre/

• X ETEX, http://scripts.sil.org/xetex/

LuaTEX

The LuaTEX effort aims to fulfill the long-held desire
for a general purpose programming language embed-
ded in TEX: the difficulty of coding everything in
TEX macros is well known.

The project is being led by Hans Hagen (devel-
oper of the ConTEXt macro package et al., as well as
president of the Dutch language TEX user group),
Taco Hoekwater (current maintainer of MetaPost
and long-time TEX developer), and Hartmut Henkel

(another long-time developer on pdfTEX and other
projects), with assistance from several others. Gen-
erally speaking, Hans is handling the Lua side of
things, Taco is handling the TEX side of things, and
Hartmut is handling the PDF side of things. The
project is guided to some extent by the successful de-
velopment of pdfTEX, originated by Hàn Thé̂ Thành
(who is consulting to LuaTEX) and subsequently
joined by essentially this same group of people.

The LuaTEX FAQ gives the following criteria
which resulted in Lua being the language chosen for
the project: freely available, portable, straightfor-
ward to embed within pdfTEX, small footprint, easy
to extend with pdfTEX-specific functionality, and
fun to work with.1 In addition to Lua and some of
its libraries, the LuaTEX project intends to include
bidirectional typesetting functionality from Aleph,
have flexible and diverse font support (including
Unicode and OpenType), and integrate MetaPost
as a native graphics capability in the system.

The project has been underway for about two
years, and the first public beta demonstration was
in July 2007 at the TUG 2007 conference: the third
day of the conference included several presentations
relating to LuaTEX.2 A public release is expected
in the summer of 2008, and some early users are
already working with and testing it.

A related project is MPlib: modernizing the
MetaPost implementation to greatly improve graph-
ics support in LuaTEX, among other benefits.

LuaTEX has already received a grant from Col-
orado State University (for support of typesetting
of Oriental languages, which relates to the features
above) and support from the TEX user groups. Con-
tinued funding is critical to maintain progress.

TEX Gyre fonts

The TEX Gyre project aims at extending the 33
base PostScript text fonts (the 35 fonts minus the
two symbol fonts) by adding glyphs and accents to
support all languages using the Latin character set,
and also making them available in OpenType for-
mat. Furthermore, the existing free versions of these
fonts never had enough math capability for the needs
of many TEX users, and so Gyre also plans to add
Unicode-based math — a gargantuan effort.

The people doing this work are Bogus law
Jackowski and Janusz Nowacki of the Polish lan-

1 The FAQ continues, “Lua was the first language to
match all these criteria. The ‘known’ scripting languages
tended to be much too large for our use. Specifically, we
have rejected Java, Perl, Python, Ruby, Scheme on one or
more of those criteria.”

2 http://river-valley.tv/conferences/tex/tug2007

376 TUGboat, Volume 28 (2007), No. 3

guage TEX user group, who developed and con-
tinue to maintain the Latin Modern font family
(http://www.gust.org.pl/projects/e-foundry/
latin-modern), which extend Knuth’s Computer
Modern in just the same way. They have also re-
constituted several other historical typefaces. The
infrastructure for these prior projects is now being
brought to bear on Gyre.

An interesting connection is that the LuaTeX
developers have stated that the Gyre fonts will be a
basic component of the LuaTEX distribution.

To date, the Gyre project has been funded by
the TEX user groups. Again, continued funding is
critical to maintain progress.

X ETEX

X ETEX has been developed by Jonathan Kew of
SIL. It is a modification of Knuth’s TEX engine en-
abling use of Unicode and modern font technologies.
X ETEX thus allows users to ignore the complexities
that typically frustrate a new TEX user (and many
long-time TEX users) when they try to configure
their systems to use fonts not originally built for
use with TEX, i.e., most of the fonts in the world.

X ETEX is substantially a one-man show, and
the product of Jonathan’s efforts is eliciting great
excitement and interest in the TEX world. While
X ETEX was originally developed for Mac OSX sys-
tems, the 2007 release of TEX Live includes X ETEX
binaries for Windows, GNU/Linux, and many other
Unix variants. Jonathan’s presentation on X ETEX
at the TUG 2007 conference is available from the
same web site cited earlier.

While the X ETEX and LuaTEX project are ba-
sically independent, Hans et al. and Jonathan main-
tain contact and see no severe incompatibilities.

Jonathan’s work with X ETEX shows his motiva-
tion and capabilities. However, we have caught the
X ETEX effort at a point where its core functionality
is already complete, and therefore is not a good can-
didate for our limited funding — which brings us to
the next project.

A new front-end

Our donor strongly requested consideration of a
new or updated front end, based especially on ex-
periences working with students. As it turns out,
Jonathan Kew is seeking additional work, and he
is also personally interested in working on such a
front-end project.

Thus, he, Karl Berry, and Richard Koch (who
created and maintains the successful TeXShop front
end for Mac OSX, and is also a new TUG director)
have sketched some approaches for a new front end

and how it could improve on the many extant pro-
grams in this area. Examples: use an existing cross-
platform toolkit (the goal being to appear “native”
to users on any platform); ease importing, conver-
sion, and placement of graphics; ease handling of
errors; automate typeset output refresh to minimize
pain from the edit-compile-preview cycle.

Of course we cannot know precisely how a new
program will turn out, but we are confident that
there is a niche for it, and that Jonathan is the right
person to get the project off the ground.

Other worthy work

There is plenty of other worthy work going on, and
it is not our intention to slight it. However, we feel
it is better to select a few important projects where
funding is known both to be needed and to make
a significant difference, rather than to try to fund
many projects in a smaller way.

Our recommendations

Based on the above, we propose to divide the
grant funds into three parts, allocating one part
to LuaTEX, one part to TEX Gyre, and one part to
initiating a suitable front-end project, making use of
Jonathan Kew’s availability. The proportions will
be determined as the need arises; for instance, if a
particular project receives significant support from
other sources, clearly that could have an impact.

We cannot emphasize enough that we believe
the best way to make use of these funds is to find
motivated and capable people who we can expect to
work in sensible and pragmatic directions — not to
try to guess the best directions and then struggle to
find people to do work not of their own choosing.

TEX Development Fund committee

TUG president Karl Berry is deeply involved in
many areas of the TEX world, including aspects of
core TEX development. Kaja Christiansen is the
vice-president of TUG, has a development back-
ground, maintains TEX (among other things) at the
University of Århus in Denmark, and supports the
TUG web site there. Jim Hefferon is a TUG director
and on the mathematics faculty at Saint Michael’s
College in Vermont, where he runs one of the three
backbone CTAN nodes. Dave Walden is treasurer of
TUG, is an intermediately skilled user of TEX, and
spent his pre-retirement working life contributing
to and leading significant and innovative software
development projects.

⋄ TUG’s TEX Development Fund committee
Info: http://tug.org/tc/devfund

Donations: http://tug.org/donate

TUGboat, Volume 28 (2007), No. 3 377

Random comments

TUGboat Editors

Errata: Lars Hellström, “Writing ETX

format font encoding specifications”,

TUGboat 28:2, pp. 186–197

Owing to a production error, corrections intended
for this article were omitted from the printed ver-
sion; the on-line version incorporates all fixes. We
list below the most egregious omissions.

• p. 191, footnote: Ulrik Vieth’s name should
not be hyphenated; our abject apologies to
Ulrik.

• p. 193, col. 2, line 9: for \endcoding read
\encoding.

• p. 197, ref. [5]: the file reference should be
fontinst.pdf.

• p. 197, ref. [9]: the URL should be http:

//omega.enstb.org/roadmap/doc-1.12.ps.

• p. 197, ref. [10]: the URL should be http:

//www.ntg.nl/maps/pdf/26_27.pdf.

DEK’s periodic bug review

Don Knuth has announced on his TEX web page
(http://www-cs-faculty.stanford.edu/~knuth/
abcde.html) that 2007 will be a “bug review” year.
The last review took place in 2002, and the interval
between reviews is increasing by a year with each
cycle, so the next review won’t occur until 2013.

If you believe you have found a bug, please do
the following:

• check the bug listings and all the errata lists
at CTAN, in the area tex-archive/systems/

knuth/errata;

• create a minimal test file that demonstrates the
error;

• send the test file and a clear description of the
problem to bnb@ams.org as soon as possible, to
get included in the current cycle;

• include a postal address valid through the first
few months of 2008, for delivery of any reward
checks.

Don requires that every bug be vetted by a compe-
tent TEXnician (approved by him) before it is for-
warded to him for review; this process weeds out
quite a few non-bugs or items that have already been
addressed. Then, the collection is organized into
logical categories (The TEXbook, TEX the program,
etc.) so that it will take a minimum of Don’s time.
However, the preparatory steps do take (sometimes
considerable) time, and all the individuals involved

in the process are very busy, so please be thoughtful
and timely in your reports.

When Don reviews the collection, he does so
from a printout of the reports, writes his comments
in pencil on this copy, and returns it to BNB for
transcription and distribution. Because transcrip-
tion can take a very long time, for this cycle Don
will be sending out checks directly. The updated
material will be posted to CTAN as soon as it is
ready.

“Off-site” complement to

TUG 2007 proceedings

Rather than write a paper specifically for these pro-
ceedings, Hans Hagen has chosen instead to create
an on-line document describing the current state of
ConTEXt with LuaTEX — a rapidly moving target
at this moment. Two sections are included in this
issue: the introduction, and a report on using the
Unicode UTF encodings as the basis for the next
generation. (The encoding question has been exam-
ined and experimented with enough that it is rea-
sonably stable.)

The complete document, “ConTEXt: MkII &
MkIV”, can be found via a link at http://www.

pragma-ade.com/overview.htm.

Other comments on the

TUG 2007 proceedings

The work by Idris Hamid, on critical editions and
Arabic script typography, which provided an impor-
tant impetus as well as much of the funding for the
development of LuaTEX, will appear in a separate
monograph, expected to be published by TUG later
this fall.

In lieu of the ConTEXt articles, we are includ-
ing Aditya Mahajan’s next installment of his column
on ConTEXt basics, this one on tables. (In a nice
coincidence, Klaus Höppner’s article in these pro-
ceedings is an introduction to tables in LATEX: en-
joy the comparison.) Aditya’s first installment was
on fonts in ConTEXt, published in TUGboat 28:2
and available online at http://tug.org/TUGboat/

Articles/tb28-2/tb89mahajan.pdf. We are very
pleased that Aditya has undertaken this series, and
expect that future issues will contain more of his
columns on other ConTEXt topics, directed to new
and intermediate users.

TEX Development Fund

A generous contribution from an anonymous foun-
dation has provided a welcome infusion to the TEX
Development Fund as well as a matching grant to

378 TUGboat, Volume 28 (2007), No. 3

encourage donations from other sources. (The De-
velopment Fund is listed on the membership form
among various projects for which contributions are
accepted.) The committee overseeing the fund has
taken this opportunity to develop a “roadmap” to
guide the allocation of grants from the fund. The full
text of the roadmap appears in this issue. Please
read it carefully, and let the Board know if you
have comments or suggestions. And please consider
a contribution to help meet the matching grant:
http://tug.org/donate.

EuroBachoTEX proceedings to be the first

2008 TUGboat issue

The organizers and program committee of EuroTEX
2007 (held in Bachotek, Poland, April 28–May 2,
2007) approached the boards of TUG and all the
European user groups to see if it would be possible
to distribute the proceedings to all their members.
Such distribution would not only reach a wider audi-
ence than a proceedings published only for GUST, it
would also greatly reduce the unit production cost.

The TUGboat editors offered their redactory
services, and TUG will join the other groups in dis-
tributing these proceedings to their members. Work
on the collection is expected to be complete by the
end of the year.

Institutional

Members

Aalborg University, Department
of Mathematical Sciences,
Aalborg, Denmark

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia, Roma, Italy

Center for Computing Sciences,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario Canada

CNRS - IDRIS, Orsay, France

CSTUG, Praha, Czech Republic

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

MacKichan Software,
Washington/New Mexico, USA

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University, Faculty of
Informatics, Brno, Czech Republic

Moravian College, Department
of Mathematics and Computer
Science, Bethlehem, Pennsylvania

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator Center
(SLAC), Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University, Department
of Mathematics, Stockholm, Sweden

University College, Cork,
Computer Centre, Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

Universiti Tun Hussein
Onn Malaysia,
Pusat Teknologi Maklumat,
Batu Pahat, Johor, Malaysia

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Vanderbilt University,
Nashville, Tennessee

2007

Sep 1 – 2 Transylvania TEX Conference,
“Babeş-Bolyai” University
Cluj-Napoca, Romania.
math.ubbcluj.ro/~aga_team/translatex

Sep 12 – 16 Association Typographique Internationale
(ATypI) annual conference, Brighton, UK.
www.atypi.org

Sep 15 DANTE TEX-Tagung, 37th meeting,
Universität Ulm, Germany.
www.dante.de/dante/events/mv37

Sep 18 – 19 Conference on “Non-Latin typeface
Design”, St Bride Library, London,
and the Department of Typography,
University of Reading, UK.
stbride.org/events_education/events

Sep 24 –
Nov 22

Guild of Book Workers 100th Anniversary
Exhibition: A traveling juried exhibition
of books by members of the Guild of
Book Workers. Dartmouth College
Library, Hanover, New Hampshire.
Sites and dates are listed at
palimpsest.stanford.edu/byorg/gbw

Oct 8 GUTenberg Workshop on
Unicode & LATEX, Paris, France.
www.gutenberg.eu.org

Oct 11 – 13 American Printing History Association
2007 annual conference,
“Transformations: The persistence of
Aldus Manutius”, University
of California at Los Angeles and
the Getty Research Institute.
www.printinghistory.org

Oct 13 GuIT meeting 2007 (Gruppo
utilizzatori Italiani di TEX), Pisa, Italy.
www.guit.sssup.it/GuITmeeting/2007

Oct 20 – 22 The Fifth International Conference on
the Book, “Save, Change or Discard:
Tradition and Innovation in the
World of Books”, Madrid, Spain.
b07.cgpublisher.com

TUGboat, Volume 28 (2007), No. 3 379

Calendar

Dec 3 – 5 XML 2007 Conference,, “XML in
Practice”, Boston, Massachusetts.
2007.xmlconference.org

2008

Mar 5 – 7 DANTE 2008, 38th meeting,
Friedrich-Schiller-Universität, Jena,
Germany. www.dante.de/dante2007

May 15 – 16 Seventh annual Friends of
St Bride Library Conference, “Seeking
inspiration: Creative thinking around the
design process”, London, England.
stbride.org/events_education/events

Jul 15 – 19 TypoCon 2008, 10th anniversary, Buffalo,
New York. www.typecon.com

TUG 2008 — TEX’s 30th birthday

University College Cork, Ireland.

Jul 21 – 24 The 29th annual meeting of the TEX
Users Group. www.tug.org/tug2008.

Aug 11 – 15 SIGGRAPH 2008, Los Angeles, California.
www.siggraph.org/events/s2008

Aug 20 – 25 Second International ConTEXt User
Meeting, Kranjska Gora, Slovenia.
meeting.contextgarden.net

Jun 24 – 28 SHARP 2008, “Teaching and Text”,
Society for tne History of Authorship,
Reading and Publishing, Oxford
Brookes University, Oxford.
ah.brookes.ac.uk/conference/sharp2008

Jnn 25 – 29 Digital Humanities 2008, Association of
Literary and Linguistic Computing
/ Association for Computers and
the Humanities, Oulu, Finland.
www.ekl.oulu.fi/dh2008

Sep 16 – 19 ACM Symposium on Document
Engineering, São Paolo, Brazil.
www.documentengineering.org

Status as of 1 September 2007

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at www.tug.org/calendar

TEX Users Group 2008 Conference

University College Cork

Cork, Ireland

21–24 July 2008

http://tug2008.ucc.ie/

✁

TEX’s 30th birthday

Interfaces to TEX

Workshops

Presentations

Hosted by the Human Factors Research Group (http://hfrg.ucc.ie)

20% conference discount

George Grätzer, University of Manitoba, Winnipeg, MB, Canada

�Grätzer�s book is a solution.� - European Mathematical Society Newsletter

For close to two decades, Math into LaTeX has been the standard introduction and complete reference for

writing articles and books containing mathematical formulas. In this fourth edition, the reader is provided

with important updates on articles and books. An important new topic is discussed: transparencies

(computer projections).

Key features of More Math Into LaTeX, 4
th

 Edition:
- Installation instructions for PC and Mac users

- An example-based, visual approach and a gentle introduction with the Short Course

- A detailed exposition of multiline math formulas with a Visual Guide

- A unified approach to TeX, LaTeX, and the AMS enhancements

- A quick introduction to creating presentations with computer projections

From earlier reviews of Math into LaTeX:

�There are several LaTeX guides, but this one wins hands down for the elegance of its approach and

breadth of coverage.� - Amazon.com Best of 2000, Editor�s choice

�A novice reader will be able to learn the most essential features of LaTeX sufficient to begin typesetting

papers within a few hours of time� An experienced TeX user, on the other hand, will find a systematic

and detailed discussion of LaTeX features.�

 - Report on Mathematical Physics

�A very helpful and useful tool for all scientists and engineers.�

 - Review of Astronomical Tools

2007 Approx. 652 pp., 44 illus.

Softcover

� Price: $ 49.95
� Discount price: $ 39.96
ISBN: 978-0-387-32289-6

Mars rover breadboard for ESA’s ExoMars mission 2013, built by

vH&S with industry team (the flowers won’t be there then).

vH&S
SPACE • RESEARCH • INDUSTRY

Happily using pdfTEX, MetaPost, & tools in our space projects.

Study reports · Technical notes · Letters · Advertisements · Shipping documents · Progress reports · PA/QA plans · Code listings ·
Quotations · Minutes of meetings · Posters · User manuals · Bills · Certificates of conformance · Acceptance data packages · Lists of

waivers · Red-tag item tracking records · Age-sensitive item records · Final presentations · Detailed design reports · Test matrices

· Conceptual design reports · Thermal test reports · Calibration data records · Requirements documents · Declared materials lists

· Functional diagrams · Viewgraphs and handouts · Open issues · Failure mode, effects, and criticality analyses · MGSE user

manuals · Physical properties reports · Test plans · Document

lists · Approvals to ship · Project plans · Bench checkout pro-

cedures · Qualification status lists · Non-conformance reports

· Top level drawings · Interface control documents · Connec-

tor mating records · Executive summaries · Experiment user

manuals · EGSE user manuals · Instrument configuration lists

· Software configuration status lists · Structural test reports ·
Schedules · Lists of non-conformance reports · Declared compo-

nents lists · EMC test reports · Patent applications · Lists of

engineering change requests · Contract change notices · Payload

test specification input · Transport, handling, and installation

procedures · Electrical interfaces verification reports · Declared

processes lists · Functional test reports · Vibration test reports

· Metrology reports. . .

von Hoerner & Sulger GmbH
Schlossplatz 8, D-68723 Schwetzingen
http://www.vh-s.de

MacKichan
S O F T W A R E , I N C .

LATEX

LATEX

LATEX

ISBN: 0-321-50892-0

The LATEX Graphics Companion has long been the most

comprehensive guide to making illustrations in LATEX

documents. This completely revised and expanded

edition includes the latest developments in LATEX

graphics. The authors describe the most widely used

packages and provide hundreds of solutions to the most

commonly encountered LATEX illustration problems.

For more information, visit:

www.awprofessional.com/title/0321508920

Michel Goossens, Frank Mittelbach,

Sebastian Rahtz, Denis Roegel, and Herbert Voss

Available at fine bookstores everywhere.

The LATEX
Graphics

Companion
Second Edition

c
Thoroughly

Revised!

The LATEX
Graphics

Companion
Second Edition

Do you need on-site training for LATEX?

Contact Cheryl Ponchin at

cponchin@comcast.net

Training will be customized for your company needs.

Any level, from Beginning to Advanced.

Π Π

Carleton Production Centre

HUMANITIES TYPESETTING

Specialising in Linguistics
Since 1991

613-823-3630 • 15 Wiltshire Circle

Nepean, Ont., Canada • K2J 4K9

∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐

New MathType6 for Windows

• Create equations by typing TeX and insert them into Microsoft Word,

PowerPoint, Wikipedia pages, and 1000's of other applications.

• Save equations as GIF images for blogs and wikis.

• Wikipedia and other wikis contain many equations that can be copied

into MathType, and then into other applications and document types.

Download a free, 30-day evaluation — www.dessci.com

MathType,“The best thing for writing equations since chalk!” and “How Science Communicates” are trademarks of Design Science. All other company and product names are trademarks and/or registered trademarks of their respective owners.

MathType™

The best thing for writing equations since chalk!
™

Design Science, Inc. 140 Pine Avenue, Long Beach, CA 90802, USA Toll-free: 800-827-0685 or 562-432-2920, Fax: 562-432-2857, Email: sales@dessci.com

The information here comes from the consultants
themselves. We do not include information we
know to be false, but we cannot check out any of
the information; we are transmitting it to you as it
was given to us and do not promise it is correct.
Also, this is not an official endorsement of the
people listed here. We provide this list to enable
you to contact service providers and decide for
yourself whether to hire one.

TUG also provides an online list of consultants
at http://tug.org/consultants.html. If
you’d like to be listed, please fill out the form at
https://www.tug.org/consultants/listing.html

or email us at consult-admin@tug.org. To
place a larger ad in TUGboat, please see
http://tug.org/TUGboat/advertising.html.

Kinch, Richard J.

7890 Pebble Beach Ct
Lake Worth, FL 33467
+1 561-966-8400
Email: kinch (at) truetex.com

Publishes TrueTEX, a commercial implementation
of TEX and LATEX. Custom development for
TEX-related software and fonts.

Martinez, Mercè Aicart

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) menta.net

Web: www.edilatex.com/

We provide, at reasonable low cost, TEX and
LATEX typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our
web site.

384 TUGboat, Volume 28 (2007), No. 3

TEX Consultants

Peter, Steve

310 Hana Road
Edison, NJ 08817
+1 (732) 287-5392
Email: speter (at) dandy.net

Specializing in foreign language, linguistic, and
technical typesetting using TEX, LATEX, and
ConTEXt, I have typeset books for Oxford
University Press, Routledge, and Kluwer, and have
helped numerous authors turn rough manuscripts,
some with dozens of languages, into beautiful
camera-ready copy. I have extensive experience in
editing, proofreading, and writing documentation.
I also tweak and design fonts. I have an MA in
Linguistics from Harvard University and live in the
New York metro area.

Veytsman, Boris

2239 Double Eagle Ct.
Reston, VA 20191
+1 (703) 860-0013
Email: borisv (at) lk.net

Web: http://borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions
and much more. I have about twelve years of
experience in TEX and twenty-five years of
experience in teaching & training. I have authored
several packages on CTAN and published papers in
TEX related journals.

olume 28, Number 3—TUG 2007 Conference Proceedings 2007

TUGBOAT Volume 28 (2007), No. 3 TUG 2007 Conference Proceedings

Table of Contents (ordered by difficulty)

Introductory

276 Tim Arnold / TUG 2007: A few words
• informal report from TUG 2007, with photos

350 Klaus Höppner / Typesetting tables with LATEX
• introduction to making tables in LATEX

305 Jonathan Kew / Fonts for every language: SIL’s font projects and the Open Font License
• overview of SIL’s font-related initiatives

372 Aditya Mahajan / ConTEXt basics for users: Table macros
• introduction to making tables in ConTEXt

280 Peter Wilson / Between then and now— A meandering memoir
• review of typography and typesetting from Sumeria to the present

Intermediate

299 Barbara Beeton / The STIX Project — From Unicode to fonts
• supporting mathematics in Unicode, including creating the necessary fonts

342 Robert Burgess and Emin Gün Sirer / CrossTEX: A modern bibliography management tool
• a new bibliography tool written in Python, upward-compatible with BibTEX

314 Hans Hagen / ConTEXt MkIV: Going UTF
• development of Unicode support in LuaTEX

312 Taco Hoekwater / LuaTEX
• an overview of embedding the Lua scripting language into TEX

317 Taco Hoekwater and Hans Hagen / MPlib: MetaPost as a reusable component
• an overview of recasting MetaPost as a shared library

329 Richard Koch / Support for multiple TEX distributions in i-Installer and MacTEX
• a simple preference pane UI to switch between extant Mac OSX TEX distributions

335 Barry MacKichan / Design decisions for a structured front end to LATEX
• XML, XSLT, OpenType, and more as a basis for TEX development

340 Paul Topping / MathType 6.0’s TEX input for MS Word and Wikipedia
• combining point-and-click with typed TEX input in MathType

Intermediate Plus

363 Eitan Gurari / LATEX conversion into normalized forms and speech
• translating LATEX into speech forms such as jsMath, SSML, ACSS

306 William Hammond / Dual presentation with math from one source using GELLMU
• LATEX-like markup that can produce high-quality printed and online output

354 Andrew Mertz and William Slough / Programming with PerlTEX
• combining LATEX and Perl, described in a graduated series of examples

Advanced

319 Nelson Beebe / Extending TEX and METAFONT with floating-point arithmetic
• floating-point history, problems, and futures

Reports and notices

274 TUG 2007 conference information

369 Abstracts (Allen, DeLand, Hagen, Hamid, Hefferon, Høgholm, Ierusalimschy, Kew, Rosenthol, Rowley, Stern)

375 TEX Development Fund committee / A roadmap for TEX development

377 TUGboat Editors / Random notes

378 Institutional members

379 Calendar

380 TUG 2008 announcement

381 Springer: More Math Into LATEX; von Hoerner &Sulger; O’Reilly

382 MacKichan: Scientific WorkPlace, Scientific Word; Addison-Wesley: The LATEX Graphics Companion

383 Cheryl Ponchin Training; Carleton Production Centre; Design Science: MathType6

384 TEX consulting and production services

TUGBOAT

Volume 28, Number 3 / 2007
TUG 2007 Conference Proceedings

TUG 2007 274 Conference program, delegates, and sponsors

276 Tim Arnold / TUG 2007: A few words

Keynote 280 Peter Wilson / Between then and now — A meandering memoir

Fonts 299 Barbara Beeton / The STIX Project— From Unicode to fonts

305 Jonathan Kew and Victor Gaultney / Fonts for every language: SIL’s font projects

and the Open Font License

Electronic Documents 306 William Hammond / Dual presentation with math from one source using GELLMU

Software & Tools 312 Taco Hoekwater / LuaTEX

314 Hans Hagen / ConTEXt MkIV: Going UTF

317 Taco Hoekwater and Hans Hagen / MPlib: MetaPost as a reusable component

319 Nelson Beebe / Extending TEX and METAFONT with floating-point arithmetic

329 Richard Koch / Support for multiple TEX distributions in i-Installer and MacTEX

335 Barry MacKichan / Design decisions for a structured front end to LATEX

340 Paul Topping / MathType 6.0’s TEX input for MS Word and Wikipedia

342 Robert Burgess and Emin Gün Sirer / CrossTEX: A modern bibliography

management tool

LATEX 350 Klaus Höppner / Typesetting tables with LATEX

354 Andrew Mertz and William Slough / Programming with PerlTEX

363 Eitan Gurari / LATEX conversion into normalized forms and speech

Abstracts 369 Abstracts (Allen, DeLand, Hagen, Hamid, Hefferon, Høgholm, Ierusalimschy,

Kew, Rosenthol, Rowley, Stern)

ConTEXt 372 Aditya Mahajan / ConTEXt basics for users: Table macros

TUG Business 375 TEX Development Fund committee / A roadmap for TEX development

377 TUGboat Editors / Random comments

Errata: Lars Hellström, “Writing ETX format font encoding specifications”,

TUGboat 28:2, pp. 186–197;

DEK’s periodic bug review; “Off-site” complement to TUG 2007 proceedings;

Other comments on the TUG 2007 proceedings; TEX Development Fund;

EuroBachoTEX proceedings to be the first 2008 TUGboat issue

378 Institutional members

News 379 Calendar

380 TUG 2008 announcement

Sponsors 381 Springer: More Math Into LATEX; von Hoerner& Sulger; O’Reilly

382 MacKichan: Scientific WorkPlace, Scientific Word;

Addison-Wesley: The LATEX Graphics Companion

383 Cheryl Ponchin Training; Carleton Production Centre; Design Science: MathType6

Advertisements 384 TEX consulting and production services

TUGBOAT Volume 28 (2007), No. 3 TUG 2007 Conference Proceedings

Table of Contents (ordered by difficulty)

Introductory

276 Tim Arnold / TUG 2007: A few words
• informal report from TUG 2007, with photos

350 Klaus Höppner / Typesetting tables with LATEX
• introduction to making tables in LATEX

305 Jonathan Kew / Fonts for every language: SIL’s font projects and the Open Font License
• overview of SIL’s font-related initiatives

372 Aditya Mahajan / ConTEXt basics for users: Table macros
• introduction to making tables in ConTEXt

280 Peter Wilson / Between then and now —A meandering memoir
• review of typography and typesetting from Sumeria to the present

Intermediate

299 Barbara Beeton / The STIX Project— From Unicode to fonts
• supporting mathematics in Unicode, including creating the necessary fonts

342 Robert Burgess and Emin Gün Sirer / CrossTEX: A modern bibliography management tool
• a new bibliography tool written in Python, upward-compatible with BibTEX

314 Hans Hagen / ConTEXt MkIV: Going UTF

• development of Unicode support in LuaTEX

312 Taco Hoekwater / LuaTEX
• an overview of embedding the Lua scripting language into TEX

317 Taco Hoekwater and Hans Hagen / MPlib: MetaPost as a reusable component
• an overview of recasting MetaPost as a shared library

329 Richard Koch / Support for multiple TEX distributions in i-Installer and MacTEX
• a simple preference pane UI to switch between extant Mac OSX TEX distributions

335 Barry MacKichan / Design decisions for a structured front end to LATEX
• XML, XSLT, OpenType, and more as a basis for TEX development

340 Paul Topping / MathType 6.0’s TEX input for MS Word and Wikipedia
• combining point-and-click with typed TEX input in MathType

Intermediate Plus

363 Eitan Gurari / LATEX conversion into normalized forms and speech
• translating LATEX into speech forms such as jsMath, SSML, ACSS

306 William Hammond / Dual presentation with math from one source using GELLMU

• LATEX-like markup that can produce high-quality printed and online output

354 Andrew Mertz and William Slough / Programming with PerlTEX
• combining LATEX and Perl, described in a graduated series of examples

Advanced

319 Nelson Beebe / Extending TEX and METAFONT with floating-point arithmetic
• floating-point history, problems, and futures

Reports and notices

274 TUG 2007 conference information

369 Abstracts (Allen, DeLand, Hagen, Hamid, Hefferon, Høgholm, Ierusalimschy, Kew, Rosenthol, Rowley, Stern)

375 TEX Development Fund committee / A roadmap for TEX development

377 TUGboat Editors / Random notes

378 Institutional members

379 Calendar

380 TUG 2008 announcement

381 Springer: More Math Into LATEX; von Hoerner& Sulger; O’Reilly

382 MacKichan: Scientific WorkPlace, Scientific Word; Addison-Wesley: The LATEX Graphics Companion

383 Cheryl Ponchin Training; Carleton Production Centre; Design Science: MathType6

384 TEX consulting and production services

