TUGboat, Volume 28 (2007), No. 2

Enjoying babel

Enrico Gregorio

1 Introduction

Back in the 1980s, when TEX was making its way in
the world, it was an all-American piece of software.
IMTEX was based on Plain TEX and was even more
American in style.

For instance, Knuth chose to set the DVI refer-
ence point one inch to the right and one inch from
the top of the sheet of paper; maybe this is one
of the design errors in the TEX family of programs.
However, with a judicious setting of \hoffset and
\voffset, users could correctly print TEX output
on A4 paper. He did provide tools for typesetting
European languages (with all their strange accents)
but it was not possible to hyphenate two languages
simultaneously.

Overall, however, the situation was not so nice
for us Europeans. As of today, the European Union
comprises 27 countries and has 22 official languages
(in three different alphabets), not counting Luxem-
burgish and various languages spoken by minorities:
in the UK, besides English, there are Scottish Gaelic,
Scots, Scottish English, Welsh, Irish, Cornish and
Manx; in Spain, besides Castellano, there are Catald
(Catalan, in three different varieties), Galego (Gali-
cian) and Fuskara (Basque) plus some others. There
are many countries where two or more languages
have official status, possibly only in some regions:
this is the case of Italy, where German and French
are official languages in two provinces and Slovenian
is “almost official” in one province.

Version 3 of TEX was hailed with enthusiasm, as
it provided the possibility of hyphenating in 256 lan-
guages simultaneously and its 8 bit design allowed for
extended sets of characters which made it possible
to get rid of explicit accents, with all the related
and well known hyphenation problems: in fact TEX
does not hyphenate a word containing an explicit
accent (past the accent), which is a big nuisance for
languages such as French and German and is intoler-
able for Slavic languages such as Czech and Polish.
By the way: do you know the difference between
sloven¢ina and slovencina??

Earlier than the introduction of TEX 3, Johannes
Braams developed the babel system that permitted
substituting the fixed tags in BTEX like ‘Chapter’
and ‘Table of Contents’ with localized tags for some

1 Slovencina, or slovensky jazyk is the official language
of Slovakia. Slovenscina, or slovenski jezik, is the official
language of Slovenia. They are two different countries of the
EU and do not share a border.

247

European languages. It also provided a method,
based on the package german by Bernd Raichle, for
inputting accented characters while allowing for good
hyphenation.

Of course, before TEX 3, users were limited to
hyphenating one language at a time, and special
versions of the BTEX (or Plain or ApS-TEX) format
had to be prepared. But, at least, one could typeset a
book in Italian where chapters were named ‘Capitolo’
and the table of contents ‘Indice’.

IMTEX 2¢ improved the situation. It supported
package options and the support for babel was inte-
grated by declaring control sequences that contain
the fixed tags: for example, \chaptername expands
to ‘Chapter’ by default, but babel can easily change
its meaning in every language it supports.

The supported languages are many, 44 in the
current version, and not only European. It may be
surprising to learn that at least as many European
languages are not supported. Among the main ones,
Maltese, Lithuanian and Latvian still lack support
(they are all official in the EU); one of the four official
languages of Switzerland, Romansh, is missing. But
Latin, Esperanto and Interlingua are present.

I should mention Thomas Esser and his teTEX
distribution, which made it easy to enable hyphen-
ation rules and format creation for IATEX. The same
idea was used by MiKTEX through a menu. TEX Live,
also based on the teTEX scripts, offers this facility
as well. Moreover, today’s fast computers and large
memories make it possible to enable all available
rules and then forget about the matter.

I'll talk later briefly about Plain TEX or AAS-
TEX users, who are not left in the cold, after all. But
the bulk of the paper is devoted to babel and TEX.

2 Calling babel
The babel package is called as usual:

\usepackage [(languages)] {babel}

where (languages) is a comma separated list of lan-
guages, whose names can be found in Table 1. You
should name all the languages you plan to use in the
document, for example

\usepackage[italian,english] {babel}

if the document has English as its main language,
but some parts of it are written in Italian.

I said that the supported languages are 44, but
the table has more items. Some names are just syn-
onyms (Hungarian and Magyar, for example) and
some denote dialects, that is, languages which share
hyphenation patterns with others (for example, Aus-
trian is a dialect of German, Acadian and Canadien

248 TUGboat, Volume 28 (2007), No. 2
Table 1: List of babel languages
acadian bulgarian frenchb lowersorbian russian
afrikaans canadian galician magyar samin
albanian canadien german malay scottish
american catalan germanb meyalu serbian
australian croatian greek naustrian slovak
austrian czech hebrew newzealand slovene
bahasa danish hungarian ngerman spanish
bahasai dutch icelandic norsk swedish
bahasam english indon nynorsk turkish
basque esperanto indonesian polish ukrainian
brazil estonian interlingua polutonikogreek uppersorbian
brazilian finnish irish portuges welsh
breton francais italian portuguese UKenglish
british french latin romanian USenglish

are dialects of French).? What is a dialect? While
it is basically the same language as another, they
might differ in minor aspects regarding typesetting
rules or fixed tags.

In Portuguese typography, the month name in
a date is capitalized, while Brazilians use lowercase.
In Austria people speak German, but the name of
the first month of the year is Januar in Germany
and Janner in Austria. These two languages can be
called also with the ngerman or naustrian options,
which select the “New Orthography” (Neue Recht-
schreibung) hyphenation.

Other names are there just for backward com-
patibility: this is the case of french and frenchb.
It is sufficient to look at the beginning of babel.sty
to realize what each option does. Let’s look at the
first lines:

\DeclareOption{acadian}{\input{frenchb.1df}}
\DeclareOption{albanian}{\input{albanian.1df}}
\DeclareOption{afrikaans}{\input{dutch.1df}}

Every language option loads a language definition file

Note that every option loads the correspond-
ing LDF and it is this file’s duty to handle double
loadings. We'll see later some examples.

The most important thing to remember about
language options is that the last language loaded is
considered the main language of the document. In
case there is only one it can be specified as a global
option (i.e., as an option to \documentclass); other
packages, such as varioref, understanding that option
can therefore benefit from it. Notice, though, that
varioref does not understand all babel’s aliases. If
there is more than one language, it can happen that
a package does not correctly understand the global
options: the solution is to specify them as local for
each package.’

Don’t specify a language as a global option and
other languages as options to babel. This is a sure
cause for head scratching, trying to figure out what
went wrong. Try, for example
\documentclass[italian]{article}

\usepackage [greek,italian] {babel}

. R X . \begin{document}
with extension .1df (in the following, LDF). We see yyz
from these lines that acadian loads frenchb.1df, \end{document}

and indeed Acadian is for babel a dialect of French.
Similarly, Afrikaans is a dialect of Dutch. Conversely,
Albanian is a language by itself, and it had better be,
since it does not belong to any of the big European
language families; the same is true for Basque.

The name of the LDF for French and its dialects
is frenchb for historical reasons, which apply also
to germanb: since there are packages around named
french and german, the final ‘b’ was to remind users
that they were using babel in the old days when pack-
ages were specified as options to \documentstyle.

2 Of course, Canadien is not a dialect of Canadian.

Do you see what happens? The option italian is
not the last option seen by babel, because global
options are scanned first.

3 Tags

In Table 2 is the list of fixed tags with their definitions
in English. Not all of these tags are used in the
standard classes article, report and book. For example,
\proofname is used by amsthm as the name used in
the \begin{proof} environment. In Table 3 you

3 By the way, while writing this paper I discovered two bugs
in varioref, version 1.4p: \extrasbrazil and \extrasportuges
were misspelled as \extrabrazil and \extraportuges.

TUGboat, Volume 28 (2007), No. 2

Table 2: List of tags in English

\prefacename Preface
\refname References
\abstractname Abstract
\bibname Bibliography
\chaptername Chapter
\appendixname Appendix
\contentsname Contents
\listfigurename List of Figures
\listtablename List of Tables
\indexname Index
\figurename Figure
\tablename Table
\partname Part
\enclname encl

\ccname cc
\headtoname To
\pagename Page
\seename see
\alsoname see also
\proofname Proof
\glossaryname Glossary

Table 3: List of tags in Ukrainian

249

find the same tags with their contents in Ukrainian;
as you can see, different language traditions require
also different tags.

What about changing or improving them? Sup-
pose a document is written part in English and part
in Italian. We would like to define a command to
refer to sections in an abstract way, with text of the
form

As we saw in \secref{sec:a} ...

Abbiamo visto nella \secref{sec:b} ...

in such a way that the command expands to ‘Sec-
tion 2’ in English and to ‘Sezione 2’ in Italian. The
definition is straightforward:

\newcommand{\secref}[1]{\secname~\ref{#1}}

But how to include \secname in the babel tags? It’s
a matter of saying, in the preamble of the document,

\newcommand{\secname}{}

\addto\captionsenglish{’
\renewcommand{\secname}{Section}}

\addto\captionsitalian{’
\renewcommand{\secname}{Sezione}}

We first introduce to IXTEX the command \secname;
it is babel’s job to provide the correct definition when
the user chooses the English or the Italian language:
babel orders BTEX to execute \captions(lang) when-
ever the (lang) is selected and the tags need to be
changed. The \addto trick simply appends the sec-
ond argument (a token list) to the replacement text
of the control sequence given as first argument.

\prefacename Beryn

\refname JlirepaTrypa
\abstractname Anoraris
\bibname Bibmiorpadis
\chaptername Pozain
\appendixname Homarok
\contentsname 3wmicT
\listfigurename Ilepemnik imocTpariiit
\listtablename Tlepemnik TabauIn
\indexname TTokaskauk
\authorname Imennuit mokazkamk
\figurename Puc.

\tablename Tabn.

\partname YHactuna
\enclname BKJIaIKa,

\ccname KOTIist
\headtoname o

\pagename c.

\seename IUB.

\alsoname JIMB. TaKOXK
\proofname Josenenus
\glossaryname CroBHEK TepMiHiB

In the same vein, if we need to change a tag,
say we want ‘Elenco delle illustrazioni’ instead of the
default for \listfigurename, we can say

\addto\captionsitalian{¥%
\renewcommand{\listfigurename}{’
Elenco delle illustrazionil}}

It is better if these definitions to complement
\captions(lang) are given using only 7-bit input, so
that they do not depend on the overall encoding of
the document. In this way you will be able to simply
copy those definitions from one document to another
without worrying about the encoding; this is even
more important if a personal style file is made.

The package has another facility: for each re-
quested (lang), the macro \extras(lang) is defined.
It contains commands to be executed every time the
(lang) is selected. A stupid example could be to
typeset every part in Italian in bright red:

\addto\extrasitalian{\color{red}}

There is a companion macro \noextras(lang)
that contains things to be undone when passing from
a language to another and this change is not pro-
tected by a group or environment. For example, cor-
rect hyphenation in Italian requires that the straight
quote be considered for hyphenation, i.e., it must
have a nonzero \lccode. Otherwise, phrases such
as dell’amicizia would not be hyphenated fully as
del-1’a-mi-ci-zia but only as del-1’amicizia.
Therefore italian.1df contains the instructions

250

\addto\extrasitalian{\lccode‘\’=‘\’}
\addto\noextrasitalian{\lccode‘\’=0 }

because the \1ccode of the straight quote must be
reset to zero for other languages. If we were foolish
enough to choose to typeset Italian in red, we should
undo the choice when returning to other languages,
so that we should say

\newcommand{\defaultcolor}{\color{blackl}}
\addto\noextrasitalian{\defaultcolor}

At \begin{document}, ETEX will execute both
\extras(lang) and \captions(lang), for the default
(lang), so the modifications stated in the preamble
will be active from the beginning.

Other facilities include the setting of dates. For
every language there is a macro \date(lang). When
a different language is selected, I/ TEX executes this
command, which should redefine \today. So, say we
want to use abbreviated month names in Italian: we
issue in the preamble

\renewcommand{\dateitalian}{%

\renewcommand{\today}{%
\number\day~\ifcase\month\or gen.\or
feb.\or ...\or dic.\fi\ \number\year}}

(the definition is incomplete to save space). The
names of the months are not tags, because the date
format can be very different between languages.

4 Language selection

Assume we have made our choice of the languages for
the document. How to change from one to another?
There are many ways, each solving a particular prob-
lem. The main language of the document is selected
implicitly, because KTEX issues a

\selectlanguage{(main-lang)}

command, where (main-lang) is the last chosen lan-
guage option, as seen before.

Such a command can be issued everywhere; it
changes everything to the new language: tags, typo-
graphical choices, shorthands and, of course, hyphen-
ation rules. Therefore, after

\selectlanguage{portuges}

every following chapter will be tagged as ‘ Capitulo’;
after

\selectlanguage{french}

the typographical rules for French will be active. For
example,

\selectlanguage{french}
I1 dit: \og Qu’est-ce que tu veux?\fg

will be typeset as

Il dit : « Qu’est-ce que tu veux? »

TUGboat, Volume 28 (2007), No. 2

The correct spaces before the colon and the question
mark will be automatically inserted, as required by
the French tradition.
The language selection can act on various as-

pects regarding typesetting:

1. tags and dates,

2. typesetting conventions,

3. input conventions,

4. hyphenation.

The command \selectlanguage acts on all four
aspects. The same holds for its environment form
\begin{otherlanguage}. Input such as

\begin{otherlanguage}{turkish}

\end{otherlanguage}

is equivalent to \selectlanguage{turkish}, but
confines the changes to the duration of the environ-
ment, in the usual way. The *-form environment
\begin{otherlanguage*} acts only on typesetting
and input conventions and hyphenation. It has a
command form, for setting a small piece of text:

\foreignlanguage{(lang)}{(text)}
is largely equivalent to

\begin{otherlanguage*}{(lang)}
(text)
\end{otherlanguage*}

but the environment form allows many paragraphs.

The last environment is \begin{hyphenrules};
it acts only on the hyphenation rules. Usually, among
the loaded hyphenation rules there is a set with no
rule at all, commonly called nohyphenation. So, if
we have text in an unsupported language, we can
use this empty set of rules.

5 Other commands

The macro \languagename expands to the name of
the current language. The command \iflanguage
takes as arguments

1. a language name,

2. a token list to be executed if the current lan-
guage is the same as the first argument,

3. a token list to be executed otherwise.

6 Input conventions

Before IXTEX supported 8-bit input via the inputenc
package, people had a hard time with all the en-
codings used by different operating systems. Only
7-bit-clean input was guaranteed to be interpreted
in the same way on all platforms. With TEX 2 it was
even impossible to directly input characters in the
upper half of an 8-bit code page.

TUGboat, Volume 28 (2007), No. 2

During this time, the package german introduced
a convention for inputting accented characters by
preceding them with a double quote:

sch"oner G"otterfunken Stra'"se
ba"cken Schi"ffart

could be used instead of the more awkward

sch\"oner G\"otterfunken Stra{\ssl}e
ba{\ck}en Schi{\ffl}ahrt

after having defined

\def\ck{\discretionary{k-}{k}{ck}}
\def\ff{ff\discretionary{-}{f}{}}

and similar commands for other sequences.

Braams developed this scheme further, making
it easy to define similar shorthands for all languages.
Nowadays, with the development of encodings such
as UTF-8, these conventions are less important. How-
ever, UTF-8 is not yet widespread and is intrinsically
foreign to standard TEX, so occasionally they can
still be useful.

Suppose I have to use a Latin 1 keyboard, but
need to type text in Czech: most of the diacritics
used by Czech are not directly accessible with Latin 1.
Fortunately, it is fairly easy to set up suitable “double
quote” conventions.

The only letters that can take different diacritics
are the ‘e’ (hacek and acute accent) and the ‘v’ (ring
and acute accent). Since Latin 1 keyboards have
vowels with the acute accent, except for ‘y’, we don’t
need anything special for the other five.

Let’s analyze the Czech alphabet. It uses four
kinds of diacritics: the hacek (as in ‘@’), the acute
accent (as in ‘y’), the ring (as in ‘@’) and the apos-
trophe. The hadek is produced with \v; the Czech
support by babel provides \q for the apostrophe and
\w for the the ring.

Let’s decide to use the double quote for inputting
most diacritics. In a . sty file to be loaded after babel
we can write the following code.
\initiate@active@char{"}

\addto\extrasczech{%

\languageshorthands{czech}}
\addto\extrasczech{\bbl@activate{"}}
\addto\noextrasczech{\bbl@deactivate{"}}
\begingroup \catcode‘\"12
\def\x{\endgroup

\def\dq{"}}\x
Here \initiate®@active@char, \bbl@activate and
\bbl@deactivate are standard babel functions; we
add \languageshorthands to \extrasczech in or-
der to declare the use of the defined shorthands. The
last three lines are a trick to define \dq as a double
quote with category code 12.

Then we can write (incomplete for brevity):

251

Table 4: Improved input for Czech or ,Cesko®

A°A "EE "L L " R x X
A A F F MM s S Y Y
B B ¢ G N N "s § w Y
c ¢C HH NN T T 2z Z
w ¢ 1 I 0 O T T vz Z
p D I 1T 6 O u U

"W D J J P P T U

E E X K Q Q "w U "¢
EE L L R R v v m «
a a "e & "7 "r ¥ X X
a a f f m m s S y vy
b b g g n n "s § "y oy
c ¢ h h "n 1 t ot z z
"¢ ¢ i i o o "t f "z %
d d i i 6 o6 u u

"¢ d j j p p @

e e k k qg q "u a "< «
é é 1 1 r r v v ">y

\declare@shorthand{czech}{"c}
{\textormath{\v{c}}{\ddot c}}
\declare@shorthand{czech}{"C}
{\textormath{\v{C}}{\ddot C}}
\declare@shorthand{czech}{"d}
{\textormath{\g{d}}{\ddot d}}
\declare@shorthand{czech}{"D}
{\textormath{\q{D}}{\ddot D}}

\declare@shorthand{czech}{"y}
{\textormath{\’{y}}{\ddot y}}
\declare@shorthand{czech}{"Y}
{\textormath{\’{Y}}{\ddot Y}}
\declare@shorthand{czech}{"z}
{\textormath{\v{z}}{\ddot z}}
\declare@shorthand{czech}{"Z}
{\textormath{\v{Z}}{\ddot Z}}
\declare@shorthand{czech}{"‘}
{\textormath{\quotedblbase}
{\mbox{\quotedblbase}}}
\declare@shorthand{czech}{"’}
{\textormath{\textquotedblleft}
{\mbox{\textquotedblleft}}}
\declare@shorthand{czech}{"<}{\flqq}
\declare@shorthand{czech}{">}{\frqq}

The \declare@shorthand command used here
takes three arguments:

1. a language name,

2. a one or two character sequence, the first of
which must have been declared as we did before,

3. what we want to substitute when TEX sees that
character sequence.

252

TUGboat, Volume 28 (2007), No. 2

Table 5: Warning message for missing hyphenation patterns

Package babel Warning: No hyphenation patterns were loaded for

(babel)
(babel)

The macro \textormath typesets its first argument
in text mode, the second one in math mode. It
is customary to make a double quote combination
equivalent to the math accent \ddot in order to avoid
strange error messages.

We take the occasion to also introduce abbre-
viations for the inverted double quotes in German
style, common in Czech, and also the guillemets
(\flqq and \frqq are babel jargon for them). The
non-obvious choices are "y and "u for the ‘y with
acute accent’ and ‘u with ring’ (and the correspond-
ing uppercase letters). In Table 4 we find a list of
characters along with their input.

Users can define new shortcuts on the fly using
similar commands. The internal commands are more
efficient and can be restricted to one language:

¢ \useshorthands{(chars)}, for introducing new
shorthand characters.

e \defineshorthand, which behaves like the in-
ternal command \declare@shorthand, but it
doesn’t take a language as an argument, only
the shorthand and its definition.

e \aliasshorthand{(char;)}{(chary)} for mak-
ing (chary) a shorthand equivalent to (chary).

Continuing our example, we could add
\aliasshorthand{"}{|}

to \extrasczech and then input "C as |C. Of course
(chary) must have already been defined as a short-
hand.

Sometimes it is necessary to disable a shorthand
character, because of bad interactions with other
packages, notably Xy-pic. This package does its job by
parsing the source looking for special characters. An
activated character is likely to disturb this parsing,
SO users can say
\shorthandoff{(chars)}

\shorthandon{{chars)}
where (chars) is the list of characters to disable or
enable. For example:

\shorthandoff{""}

7 Attributes

Some languages can have attributes, which modify
their behavior. Currently only greek and latin use
this facility. So “Polytoniko Greek” can be chosen
either with

the language ‘Albanian’
I will use the patterns loaded for \language=0 instead.

\usepackage [greek] {babel}
\languageattribute{polutoniko}

or simply by specifying polutonikogreek as the
language.

Latin uses the withprosodicmarks attribute,
which makes ~ and = shorthands to typeset accents
in Latin poetry and specifying the vowel quantities
in order to emphasize the meter. It has also the at-
tribute medievallatin for making the lowercase ‘u’
equivalent to the uppercase ‘V’ and using traditional
ligatures.

8 Problems

The choice of hyphenation rules is done at format
creation, based on the file language.dat. This file
(excluding comments) has the following appearance:

english hyphen.tex
=usenglish

=USenglish

=american

usenglishmax ushyphmax.tex
dumylang dumyhyph.tex
nohyphenation zerohyph.tex
basque xu-bahyph.tex
bulgarian xu-bghyphen.tex

Its format is due to Sebastian Rahtz. Basically it
lists on each line a language name along with the
hyphenation patterns file; a line can consist also of
an equal sign followed by a language name, meaning
that this name is an alias for the preceding two-
item line. At this level, language names are actually
arbitrary strings. It is babel’s job to associate each
of its supported languages with one of these strings.

A problem comes immediately to our attention:
Albanian is supported by babel, but no hyphenation
patterns for it are available. A user saying

\usepackage [albanian] {babel}

will be saluted with a message from TEX which you
find in Table 5.

A warning of the same type would appear for
any language whose hyphenation patterns were not
enabled at format creation time by the system ad-
ministrator. Some distributions like MiKTEX are
pretty conservative in this regard and enable only
a few languages; many questions in the discussion
forums are about this.

TUGboat, Volume 28 (2007), No. 2

In my opinion this is a design error: in fact Al-
banian (or the other non-enabled language) would be
hyphenated using US English rules which are com-
pletely different from those of Albanian. I believe
that no hyphenation is better than wrong hyphen-
ation. Splitting an Italian word like cestino (small
basket) as ces-tino is a bad grammatical error.*

In Albanian the digraph ‘rr’ is considered a
single letter, and must never be divided. And this is
only one of the problems which can arise by allowing
hyphenation with English rules.

All language definition files begin with some-
thing like
\ifx\l@italian\Qundefined

\@nopatterns{Italian}y,

\adddialect\1l@italianO\fi
This could be changed into
\ifx\1l@italian\@undefined

\@nopatterns{Italian},

\ifx\1l@nohyphenation\@undefined

\adddialect\l@italian\@cclv

\else

\adddialect\1l@italian\l@nohyphenation

\fi
\fi
Thus we would associate a non-enabled language
either to the one with no hyphenation patterns by
definition or to language number 255, which is very
likely undefined. The \@nopatterns error message
can be changed by saying that TEX won’t use any
hyphenation.

Users who can’t enable a language, either be-
cause they are not the system administrator or there
is no hyphenation patterns file, can correct this be-
havior themselves by finding in the log file the warn-
ing similar to that of Table 5; immediately after it
they’ll find a line such as

\l@albanian = a dialect from \languageO

The first control sequence is the key to the solution.
It is now sufficient to write, just after loading babel,
\makeatletter

\ifx\1l@nohyphenation\@undefined
\chardef\l@albanian=255

\else

\let\l@albanian=\1@nohyphenation

\fi

\makeatother

Since commands like \selectlanguage{albanian}
execute the command

\language\l@albanian

the trick is done.

4 The kind of error which made our teachers in primary
school shriek in horror.

253

It is important to note that shorthand characters
in a language remain active also in the languages
where they are not used in that way; in those cases
they expand to the character they denote. This is
why they can have unwanted side effects with other
packages.

The reason to keep them active is clear: a lan-
guage changing command can appear in risky places,
for example in the .aux file, as Braams points out
in the babel documentation. The example he makes
is the following: a user could use a shorthand in the
optional argument of a \bibitem command.

However even this doesn’t work. Suppose some-
one writes a document with German as the main
language and parts in English. Assume that in the
bibliography, written in German, we find

\bibitem["UB99]{ub99}

A. "User und E. Benutzer, ‘‘Ein Titel’’.

A reference like \cite{ub99} will come out correctly
in a German context, but not in an English context:
they will print, respectively, [[B99] and ["UB99] (or
["UB99], if OT1 encoding is used). The reference will
consistently be resolved correctly only if the author
writes

\bibitem[\german{"UB99}]{ub99}

(where I've used \german simply as a shortcut for
\foreignlanguage{german}).

9 Double loading

The LDF for Hungarian starts as follows:

\@namedef{captions\CurrentOption}{%
\def\prefacename{E1\H osz\’o0}%
\def\refname{Hivatkoz\’asok}%

\@namedef{date\CurrentOption}{%
\def\today{%
\number\year . \nobreakspace
\ifcase\month\or

after the check for the existence of the hyphenation

patterns in the format. What does this mean?
This LDF is called if Hungarian is requested

with either the option hungarian or magyar. In the

first case, the fundamental macros will be defined as

\captionshungarian

\datehungarian

\extrashungarian

\noextrashungarian

and with the suffix magyar in the second case. Quite
recently, Péter Szab6 has exploited this possibility
with a new implementation of the Hungarian LDF
(http://ctan.org/tex-archive/language/
hungarian/babel).

254

10 Plain TEX users

In principle, it should be possible to use babel with
Plain TEX or formats built upon it like ApS-TEX.
However, this is pretty much undocumented, apart
from the instructions to build a format by running
iniTEX on bplain.tex and \dump. The user inter-
face is not specified.

Recently I wrote a very primitive Plain TEX
package supporting multiple languages. It’s a sub-
stantially simplified version of babel’s machinery and
I will use it to try and illustrate how it works.

First we run iniTEX on a file called hyplain. tex:

\catcode‘\{=1
\catcode‘\}=2
\catcode‘\@=11
\let\orig@input\input
\def\input hyphen {J

\let\input\orig@input \input hyrules }
\orig@input plain
D. E. Knuth has decreed that plain.tex cannot be
modified except for preloaded fonts. But we can al-
ways use some TEX trick; since the file is immutable,
it will contain the line ‘\input hyphen’; at that
point we restore the original meaning of \input and
input hyrules.tex instead of hyphen.tex.

The file hyrules.tex defines the interface com-
mands. The most important is \selectlanguage
which, unlike that of babel, requires two arguments:
a two letter ISO language code and a two letter coun-
try code. For example,

\selectlanguage{en}{US}

\selectlanguage{it}{IT}
\selectlanguage{de}{AT}

would switch, respectively, to American English, to

the Italian of Italy® and to the German of Austria.
Users can also define personal language selection

commands: define command \italiano with

\addalias{\italiano}{it}{IT}

to make it equivalent to \selectlanguage{it}{IT}.
Internally, this command calls \it_IT and similarly
for other combinations. If a language combination is
not defined in the user modifiable file hylang. tex,
a fallback language \zz_ZZ, without hyphenation
patterns, is selected and a warning message is issued.
Two token lists are associated to each language,
similar to the \extras(lang) and \noextras(lang)
of babel and an ‘undo’ token list is maintained. Each
time a language is selected, the following happens:

1. what is in the ‘undo’ token list is executed and
the list is cleared (locally),

5 Italian is an official language also in Switzerland, where
different typography conventions could be used.

TUGboat, Volume 28 (2007), No. 2

2. the parameter \language is given the appropri-
ate value,

3. the extras for the chosen language are executed,

4. the noextras are put in the ‘undo’ token list.

Since assignments to the ‘undo’ token list are lo-
cal, this list will always be loaded with the correct
commands.

The ‘extras’ list for a language ought to set the
left and right hyphenation minima; this setting has
no counterpart in the ‘noextras’ list. Other things,
instead, must be set in both places: for example, the
\lccode setting of the apostrophe for Italian.

Users can modify hylang.tex, adding or delet-
ing languages. It is recommended not to change the
first one, so that we are sure that \language zero
refers always to American English, as in Plain TEX.

The commands are
\definelanguage{xx}{YY}{xxhyph}
\refinelanguage{xx}{YY}

{<something>}{<something>}

\definedialect{yy YV {xx}{XX}
\refinedialect{yy}{YY}
{<something>}{<something>}

where xx is the two letter code of a language (I
suggest ‘nde’ for ‘New Orthography German’) and
XX is the two letter country code. Actually these
codes could be arbitrary strings, but I believe that
we (and babel) would benefit from standardization.

For example, one could write
\definelanguage{fr}{FR}{frhyph}
\definedialect{fr}{CA}{fr}{FR}
to set up for Canadian French. One could use the
nonexistent country code ‘ZZ’ for an unspecified coun-
try: this would be the case for Esperanto.

The macro \refinelanguage refers to the lan-
guage by its codes; then in the third argument one
puts the ‘extras’ and in the fourth the ‘noextras’.
This command can be given as many times as one
desires, since new lists are appended to the existing
ones. The macro \refinedialect is the same as
\refinelanguage. Dialects do not inherit extras:
the interface is primitive, just the way Plain TEX
devotees are used to.

For example, my settings for Italian are these:
\definelanguage{it}{IT}{ithyph}
\refinelanguage{it}{IT}

{\lccode‘\’=¢\"}{\lccode‘\’=0 }

11 Advanced babel programming

babel works in a similar way to HyPlain. It has of
course many more features: for example, functions
to save the meaning of commands or the value of
variables. In the LDF for Italian we can see

TUGboat, Volume 28 (2007), No. 2

\addto\extrasitalian{’
\babel@savevariable\clubpenalty
\babel@savevariable\widowpenalty
\babel@savevariable\finalhyphendemerits
\clubpenalty3000 \widowpenalty3000
\finalhyphendemerits50000000 }%

When the language changes from Italian to another
one, the values of the listed parameters® are restored
and possibly changed again by the new language:
babel uses the ‘noextras’ token list and its internal
mechanism to restore a clean setting and then it
applies the ‘extras’ for the new language. Let’s see
how it’s done:
\def\babel@savevariable#1{\begingroup

\toks@\expandafter{\originalTeX #1=1}J,

\edef\x{\endgroup

\def\noexpand\originalTeX{%

\the\toks@ \the#1\relax}}%
\x}

Let the variable name be \foo. The macro appends
to the replacement text of \originalTeX (which
corresponds to the ‘undo’ list in HyPlain) the tokens
\foo=. This is done inside a group in order to be
sure not to clobber the value of \toks@. The \edef
is done when the value of \toks@ is what has just
been set; after that token list, the present value of
\foo is put. Then \x is executed, which closes the
group and redefines \originalTeX.

A very similar trick is performed when we say
\babel@save\baz, where \baz is a command. First
\baz is made equivalent to a command of the form
\babel@1234 (where 1234 stands for the actual value
of a counter reserved by babel). The same thing
happens as before, so \originalTeX’s replacement
text will end with

\let\baz=\babel01234

(there is no problem in interpreting that strange
token, because it has already entered the scanning
mechanism). Finally, the counter is stepped, provid-
ing a fresh number for the next \babel@save.

We can apply this method to modify the behav-
ior of a command without forcing users to change
their input. A silly example is the following:
\makeatletter
\addto\extrasitalian{%

\babel@save\emph\let\emph\textbf}
\makeatother

In this way, typing \emph{ciao} in an Italian
context would print the word in bold face, while
keeping the abstract nature of the command. This
could be obtained also by

6 The setting of \clubpenalty is wrong, it should refer to
\@clubpenalty. A bug report has been mailed.

255

\let\origemph\emph
\renewcommand{\emph}{/
\iflanguage{italian}

{\textbf}{\origemphl}}
but the method with \babel@save is of course more
robust and does not require a long chain of nested
\iflanguage calls if we need different effects for
several languages.

I've said before that \declare@shorthand takes
as the first argument a language name, but this is
not strictly true. There is the concept of ‘shorthand
group’. In the present version of babel there are
three levels: (1) user, (2) language, and (3) system.
The package checks in that order when it is resolving
a shorthand.

Let’s make an example: German uses the double
quote as a shorthand character, for instance "A to get
‘A’. Tt is not necessary to define every combination
"(char), because there is already a definition of the
active double quote at the system level (it expands
to a double quote, of course).

The default system level shorthands are ", ?,
, and . When an LDF introduces a new short-
hand character, it ought to define its behavior at the
system level. For example the LDF for Esperanto
says
\declare@shorthand{system}{~}{/

\csname normal@char\string~\endcsname}

4

because it uses ~ for shorthands. The same is true
of frenchb.1df, where there is

\declare@shorthand{system}{:}{\string:}

along with similar lines for !, ? and ;. If a user says
\defineshorthand{"A}{\hat{A}}, this shorthand
would take precedence over a possible definition of
"A by the LDF. If the LDF defines a " shorthand,
this takes precedence over the system one.

With the development of input encoding sup-
port, especially Unicode, for TEX these devices are
less useful, because it is possible to input directly any
character. On the other hand, other babel features
remain invaluable.

The most recent versions of pdfTEX allow a
different treatment for the typographic conventions
of French, for example, making it possible to reduce
the number of active characters. Some support for
this is available through the microtype package.

¢ Enrico Gregorio
Dipartimento di Informatica, Settore di
Matematica
Universita di Verona, Italy
Enrico dot Gregorio (at) univr dot it
http://profs.sci.univr.it/~gregorio

