
TUGBOAT

Volume 28, Number 2 / 2007

General Delivery 151 From the president / Karl Berry

152 Editorial comments / Barbara Beeton

A pledge of support; Helvetica— 50th anniversary;
Another font anniversary — Souvenir, 93 years;
Another honorary doctorate for Don Knuth;
How to shrink a box as much as possible; How to use a book;
Save the signs!; Practical TEX 2006 recordings

153 A wayward wayfarer’s way to TEX / Stephen Moye

159 ConTEXt user meeting 2007: Epen, March 23–25 / Mojca Miklavec

164 EuroBachoTEX 2007 / Michael Guravage

172 New TEX activities in Korea / Kihwang Lee

Typography 172 Typographers’ Inn / Peter Flynn

Book Reviews 174 Alphabetgeschichten by Hermann Zapf / Hans Hagen and Taco Hoekwater

Fonts 177 An exploration of the Latin Modern fonts / Will Robertson

181 Creation of a PostScript Type 1 logo font with MetaType 1 / Klaus Höppner

186 Writing ETX format font encoding specifications / Lars Hellström

198 ConTEXt basics for users: Font styles / Aditya Mahajan

200 Installing ConTEXt expert fonts: Minion Pro / Idris Samawi Hamid

Software & Tools 210 Hacking DVI files: Birth of DVIasm / Jin-Hwan Cho

Graphics 218 A complex drawing in descriptive geometry / Denis Roegel

Hints & Tricks 229 Glisterings: Paragraphs regular; paragraphs particular; paragraphs Russian /

Peter Wilson

233 The treasure chest / Karl Berry

LATEX 235 LATEX and the different bibliography styles / Federico Garcia

241 Font selection in LATEX: The most frequently asked questions
/ Walter Schmidt

247 Enjoying babel / Enrico Gregorio

Macros 256 Writing numbers in words in TEX / Edward M. Reingold

Abstracts 260 ArsTEXnica: Contents of issues 2–3 (2006–2007)

261 Les Cahiers GUTenberg : Contents of double issue 46–47 (2006)

262 Die TEXnische Komödie: Contents of issues 2006/1–2007/1

263 The PracTEX Journal : Contents of issues 2006-1–2007-2

TUG Business 268 Institutional members

News 269 Calendar

270 TUG 2007 announcement

271 TUG 2008 announcement

Advertisements 272 TEX consulting and production services

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2007 dues for individual members are as follows:
Ordinary members: $85.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group, as well as providing
a discounted group rate and other benefits. For
further information, contact the TUG office or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2007 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not be

reproduced, distributed or translated without the authors’

permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Jon Breitenbucher
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Arthur Ogawa
Steve Peter
Cheryl Ponchin
Samuel Rhoads
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for past board
members.

Addresses

General correspondence,
payments, etc.

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: July 2007]

The Communications of the TEX Users Group

Volume 28, Number 2, 2007

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions
2007 dues for individual members are as follows:

Ordinary members: $85.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership
Institutional membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group, as well as providing
a discounted group rate and other benefits. For
further information, contact the TUG office or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2007 TEX Users Group.
Copyright to individual articles within this publication

remains with their authors, so the articles may not be
reproduced, distributed or translated without the authors’
permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice are

preserved.
Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations
of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President
David Walden∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Jon Breitenbucher
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Arthur Ogawa
Steve Peter
Cheryl Ponchin
Samuel Rhoads
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for past board
members.

Addresses
General correspondence,

payments, etc.
TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 206 203-3960

Electronic Mail
(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web
http://www.tug.org/

http://www.tug.org/TUGboat/

Have a suggestion? Problems not resolved?
The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: July 2007]

A designer knows he has achieved perfection not when
there is nothing left to add but when there is nothing left
to take away.

Antoine de Saint-Exupery
Wind, Sand, and Stars (1939),
translation by Lewis Galantiere

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 28, NUMBER 2 • 2007
PORTLAND • OREGON • U.S.A.

TUGboat

This regular issue (Vol. 28, No. 2) is the second
issue of the 2007 volume year. No. 3 will contain
the TUG 2007 (San Diego) proceedings.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG

store (http://tug.org/store), and online at the
TUGboat web site, http://tug.org/TUGboat. On-
line publication to non-members is delayed up to
one year after an issue’s print publication, to give
members the benefit of early access.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

TUGboat will be publishing one issue of conference
proceedings in 2007. The deadline to receive the
final papers for that issue is August 17, 2007.

Links, locations, and more information about
this and all conferences are available at
http://tug.org/meetings.html.

As always, suggestions and proposals for TUG-

boat articles are gratefully accepted and processed
as received. We encourage submitting contributions
by electronic mail to TUGboat@tug.org.

The TUGboat “style files”, for use with either
plain TEX or LATEX, are available from CTAN and
the TUGboat web site. We also accept submissions
using ConTEXt.

Effective with the 2005 volume year, submission
of a new manuscript implies permission to publish
the article, if accepted, on the TUGboat web site,
as well as in print. If you have any reservations
about posting online, please notify the editors at
the time of submission.

TUGboat Editorial Board

Barbara Beeton, Editor-in-Chief
Robin Laakso, Managing Editor
Karl Berry, Production Manager
Christina Thiele, Associate Editor,

Topics in the Humanities

Production Team
William Adams, Barbara Beeton, Karl Berry
(Manager), Kaja Christiansen, Robin Fairbairns,
Steve Peter, Yuri Robbers, Michael Sofka,
Christina Thiele

Other TUG Publications

TUG is interested in considering additional man-
uscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the TEX community in general. Provision can be
made for including macro packages or software in
computer-readable form.

If you have any such items or know of any
that you would like considered for publication, send
the information to the attention of the Publications
Committee at tug-pub@tug.org.

TUGboat Advertising

For information about advertising rates and options,
including consultant listings, write or call the TUG

office, or see our web page:
http://tug.org/TUGboat/advertising.html

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue should
not be considered complete.

METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.
TEX and AMS-TEX are trademarks of the American

Mathematical Society.

TUGboat, Volume 28 (2007), No. 2 151

General Delivery

From the President

Karl Berry, president (at) tug dot org

TEX development grants

The most exceptional recent news is about fund-
ing for TEX development. We are very excited and
grateful to announce that an anonymous foundation
has contributed $10,000 to TUG to be used to en-
courage advances in TEX development.

Furthermore, our generous donor has made a
second $10,000 available as matching funds, and
so we are seeking other contributors, both insti-
tutional and individual, to contribute a matching
$10,000 (thus making a total of $30,000 available).
Early matching contributions have already reached
$5,000 — we thank CAPDM Limited and many other
donors for their support. To contribute, please see
https://www.tug.org/donate/dev.html.

We expect to use at least some of these funds to
augment existing efforts, rather than starting any-
thing major from scratch. TUG’s TEX Development
Fund committee will have the responsibility for mak-
ing allocations. As part of the gift, we were asked
to develop a basic roadmap for future TEX devel-
opment to help guide where the contributions are
spent. The committee has already solicited input
from some of the major extant TEX development
projects, and will be soliciting additional input.

At the donor’s suggestion, we will also be con-
sidering ways to improve the TEX experience specif-
ically for “ordinary” users, such as students. This
could include enhancements in front end software,
new or improved documentation at that level, and
other projects.

We are enthusiastic about this opportunity, and
very much hope, as does our donor, that the results
will be beneficial for all TEX users.

This is also an appropriate place to mention
again our appreciation for the grant from Colorado
State University, made to Professor Idris Samawi
Hamid, which provided major funding for LuaTEX,
as detailed in the last TUGboat.

http://mirror.ctan.org

Although CTAN has many mirrors around the world,
the main way they have been used is by manually
choosing one — so, more often than not, the back-
bone servers run by DANTE, UK-TUG and TUG end
up getting used. With the surge in downloads from

the new releases of the biggest distributions (TEX
Live 2007, MacTEX 2007, proTEXt, MiKTEX), the
backbones have had to limit traffic rates.

The CTAN team and Randy Kobes at the Uni-
versity of Winnipeg have co-operated on develop-
ing a convenient method for using mirrors. Now,
http://mirror.ctan.org/some/ctan/dir will au-
tomatically redirect to a (hopefully) near-by mirror.
For example, http://mirror.ctan.org/systems/

texlive (a /tex-archive is optional).
The choice of mirror is based on the originating

IP address, out of the pool of mirrors that are known
to be up-to-date. Of course, if there are problems of
whatever kind, you can still choose a mirror your-
self; the canonical list is at http://www.ctan.org/
tex-archive/CTAN.sites.

Incidentally, Randy has created the same ser-
vice for the GNU mirrors, accessible via http://

ftpmirror.gnu.org.
Thanks to Randy and CTAN for making this

available. We plan to use the new mirror.ctan.org

url in TUGboat, where appropriate.

Interview corner

The Interview Corner on the TUG web site (http:
//tug.org/interviews) continues to grow. Recent
interviews come from a wide variety of areas in the
TEX world:

• David Carlisle, a member of the LATEX team
and participant in math-related W3C activities.

• Jin-Hwan Cho, maintainer of dvipdfmx and a
strong supporter of TEX in Korea.

• John Culleton, who runs an indexing and type-
setting business using TEX.

• David Fuchs, one of the original members of the
Stanford TEX project.

• Jonathan Kew, author of X ETEX.
• Haruhiko Okumura, who promotes and sup-

ports the use of TEX in Japan.
• Will Robertson, a relatively new contributor in

the TEX community.
• Nicola Talbot, a LATEX user, teacher, and pack-

age writer.

TUG 2007

The TUG 2007 conference will take place in San
Diego, California, from July 17–20, at San Diego
State University. For the schedule, registration and
accommodation information (inexpensive on-campus
housing is available), and more, visit the conference
web site at http://tug.org/tug2007. Please join
us and an excellent line-up of workshops and speak-
ers. Hope to see you there!

152 TUGboat, Volume 28 (2007), No. 2

Editorial comments

Barbara Beeton

A pledge of support

The American Mathematical Society has a policy of
keeping in print “classic” books formerly published
by the Chelsea Press. One such book, Introduction

to Complex Analysis, by Rolf Nevanlinna and Veikko
Paatero, is about to be republished. As both au-
thors are deceased, their heirs have expressed the
wish, formally agreed for the period of one year
from the publication date, that the royalties be do-
nated “to an organization that advances techniques
for disseminating and publishing mathematical and
scientific information, for example to the TEX Users
Group”. We thank the authors’ heirs for their sup-
port.

Helvetica — 50th anniversary

2007 is the 50th anniversary of the font Helvetica.
Developed at the Haas Type Foundry in München-
stein, Switzerland, by Max Miedinger and Edward
Hoffman, the font was originally called “Neue Haas
Grotesk”, as a revival of older sans serif, or grotesk,
typefaces. Looking toward international distribu-
tion, it was renamed Helvetica, derived from Helve-

tia, the Latin name for Switzerland.
The anniversary is honored by a feature-length

documentary film directed by Gary Hustwit. It has
been screening at film festivals, museums, art schools
and other venues worldwide. I had the pleasure of
viewing it at the Rhode Island School of Design in
April, where it was followed by a Q & A session with
the director. I greatly enjoyed it, and encourage
anyone with even a smidgen of interest in type to
see it.

The film has its own web page, with a schedule
of screenings, clips from the film, and other infor-
mation, at http://www.helveticafilm.com.

Two other sites recognizing this milestone are
Slate at http://www.slate.com/id/2166887/, and
the Toronto Globe and Mail at
http://www.theglobeandmail.com/servlet/

story/RTGAM.20070418.whelvetica18/BNStory.
Happy anniversary, Helvetica!

Another font anniversary —Souvenir,

93 years

Souvenir is more often associated with the 1960s and
’70s, but it was actually designed in 1914 by Morris
Fuller Benton, director of typeface development for
the American Type Founders Company. It wasn’t
particularly successful at its first release, but after

a reimplementation as photo lettering in 1967, with
complementary italic designs drawn by Ed Benguiat,
it became one of the most popular offerings of ITC

(the International Typeface Corporation). Overuse
made it a pariah for a while during the latter years of
the 20th century, but it is being re-examined with
a new appreciation for the wide range of possible
applications.

Souvenir is highlighted at http://www.fonts.
com/FindFonts/HiddenGems/ITCSouvenir.htm.

Another honorary doctorate for Don Knuth

On October 29–31, the University of Bordeaux is
organizing a colloquium in honor of Donald Knuth,
with an honorary doctorate Honoris Causa to be
presented on October 30.

Several notable speakers have been invited; the
topic of the conference is algorithms. For more in-
formation, go to http://knuth07.labri.fr/.

How to shrink a box as much as possible

Here’s a “pracniqne” from Don, “that may or may
not be well known to TEXies:”

If you want to shrink a box as much as pos-
sible, in order to see why TEX refuses to
typeset something on a single line (even with
\looseness=-1), you can use the ”spread”
feature. For example, try

\hbox{a little test}

\hbox spread-1pt{a little test}

\hbox spread-2pt{a little test}

\hbox spread-3pt{a little test}

\hbox spread-4pt{a little test}

In general you can say \hbox spread-100pt,
say; you’ll get an overfull box, but the amount
by which it’s overfull tells you how close you
came. And by eyeballing the result, you may
be able to figure out where it’s safe to kern
away some space.

How to use a book

It’s the middle of the fourteenth century, and you
have just obtained an example of the latest technol-
ogy. . . a book! How do you use it? Go to http://

www.devilducky.com/media/57946/ and observe a
technical support session. It’s a lesson you won’t
soon forget.

Save the signs!

Joe Clark reported on the TYPO-L list the pro-
jected demise of some historic signs designed for the
Toronto Transit Commission. Some of these signs,
now displayed at the St. George station, are the

TUGboat, Volume 28 (2007), No. 2 153

only remaining examples of a redesign by the Cana-
dian graphic designer Paul Arthur from the 1990s,
when the TTC commissioned both new signage and
a user test to see what worked best; all tested groups
(including average riders, non-English speakers, vis-
ually impaired, and low-literacy riders) preferred the
new signs. However, the redesign was never im-
plemented, the prototype signs remained in the St.
George station, and the signage in the Toronto tran-
sit system remains a hodgepodge.

Some of the stations have aged poorly, and re-
pairs are necessary. Current plans include removal
(and destruction) of both the Paul Arthur signs and
others whose design is unique.

It would be quite feasible, given cooperation
from the TTC, to preserve most of the signs as mu-
seum pieces, but public support is needed to encour-
age the Commissioners to prevent the destruction.
Historical notes and details of the write-in campaign
are posted at http://joeclark.org/TTC/.

Practical TEX 2006 recordings

Kaveh Bazargan and his colleagues at River Valley
Technologies have created a multimedia presenta-
tion of the talks from the Practical TEX conference
held at the Busch Campus of Rutgers University in
midsummer 2006.

The recording was experimental, and assorted
hardware problems prevented completion of all pre-
sentations, but most are there with both audio and
video.

The recordings are at http://river-valley.

dreamhosters.com/practex2006/.
Many thanks to Kaveh for envisioning and car-

rying out this project. He hopes to do the same for
this year’s TUG meeting.

⋄ Barbara Beeton

American Mathematical Society

201 Charles Street

Providence, RI 02904 USA

tubboat (at) tug dot org

A wayward wayfarer’s way to TEX

Stephen Moye

1 Introduction

I flatter myself that my introduction to TEX was a
bit unusual, and that it may be just entertaining
enough to share with you. Let me say at the outset
that my training is as a musician: specifically as
an organist (rather like another very distinguished
member of the TEX community. . .), choir director,
and sometime composer — and some would say not
nearly sometime enough.

I received a Bachelor of Music Degree in organ
from Heidelberg College in Tiffin, Ohio, spent three
years studying at the Royal College of Music, Lon-
don, and am now a whisker away from a Master’s
degree in ethnomusicology from Brown University
in Providence, Rhode Island. Everything was going
along smoothly until one day in 1986 when I found
myself in the electronics section of a rather fancy
department store. Little did I know what an inter-
esting turn life would take. . . .

2 The new love of my life

I rounded a corner and came up against a rather
plain display featuring a Mac Plus. Love at first
sight. It was so cute! And it in no way corre-
sponded to my preconceptions of what a computer
was. It took only a second to get accustomed to the
mouse, and in minutes I was drawing (admittedly
crude) pictures using MacPaint. MacWrite was a
revelation: I could type whatever I liked with no
fear of errors as they could be corrected with a sim-
ple backspace! Cool! No more whiteout, no more
punishing re-typing. Way cool! Moreover, this was
my very first experience with a computer.

I am a dyed-in-the-wool Mac user: I’m unhappy
if I’m not surrounded by mice, GUI’s with dialogue
boxes, windows, drop-down menus, and the sleek
styling of the computer itself. Microsoft Windows,
and the even more arcane, mysterious and mantra-
ridden Unix environment are alien to me — or at
least they were until a few years ago.

A few months after I saw it in the store, I had
my very own Mac Plus. A few months after that,

This article is based on a talk given at PracTEX 2006. The

author is an employee of the American Mathematical Soci-

ety, but the opinions of the author in no way represent the

opinions of the AMS.

154 TUGboat, Volume 28 (2007), No. 2

I had an early copy of Aldus Corporation’s Page-
Maker.1 A few months later still, I had an opportu-
nity to see the documents I was designing in Page-
Maker printed on an Apple LaserWriter. I cannot
adequately convey to you the wonder of seeing that
first output (it would probably embarrass me now)
and the sense of empowerment that my humble lit-
tle Mac Plus gave me. Not too long after that I
made the acquaintance of PostScript and the extra-
ordinary Colophon 3 Alphabet created by Adobe in
which PostScript was made to do some wonderful
things. As the original readme file put it, “Our in-
tent in distributing this [material] is to inspire and
inform” and that it did. All you needed at that time
was a $7,000 Apple LaserWriter to see the results!

In 1988 Quark released XPress2 in direct com-
petition to PageMaker. I was interested, so I read
the reviews and ran across one by Charles Seiter
for MacUser magazine. At the very end of the re-
view, he mentioned almost in passing with a teasing,
throw-away manner that, good as the new page lay-
out programs were, they were nothing compared to
the “grand-daddy” 3 of them all, TEX, as exempli-
fied by the program Textures.

3 A revelation

Shock! Why hadn’t I heard of this TEX, or Textures
for that matter? I had to have it! Little, of course,
did I know what awaited me.

I discovered that Textures at that time was sold
by Addison-Wesley. I ordered it and it arrived with
more disks than I could have thought possible, a
slim user’s manual, and, I kid you not, a copy of
The TEXbook. I spent an afternoon installing Tex-
tures, glanced through the user’s guide, and with a
trembling hand, double-clicked on the Textures icon
and was greeted with. . . an empty text editing win-
dow. What do I do now? I turned to The TEXbook

for some illumination. Bad move. The introduction
was a nightmare of sorts: Lies? Jokes? Warning
signs? It wasn’t until a few weeks later that I sorted
things out and actually typeset the story centering
on one Mr. Drofnats.4

It wasn’t long before I created a number of doc-
uments in TEX, PageMaker and XPress in order to

1 Remember that this was in the early, halcyon days of

the Mac, when the PageMaker program resided on one floppy,

and the system software resided on another floppy.
2 Founded in 1981, Quark had in its early days developed

word processor software for the Apple II and Apple III com-

puters.
3 Seiter’s word. I tried to find the original article in the

MacUser archives but was unsuccessful.
4 Until I was preparing this presentation, I had no idea

that his first name was Revinu Jitis. Live and learn.

compare them. Without exception, I was struck by
how much better the type in the TEX sample looked.
From that point on I was hooked, and a true be-
liever.

I grew very much to enjoy TEX as embodied in
Textures: In my childlike näıveté, I thought all TEX
implementations must be like Textures. So, when I
found out about OzTEX I got a copy of that. Boy,
was that a shock. I can’t recall being so befuddled
by anything in my life. The whole thing was a night-
mare, but fonts were the worst. Fontinst? Afm2tfm?
PL files, VF files, FD files? I fled, screaming, back
to the loving, comforting embrace of Textures and
never looked back. I didn’t know it at the time, but
Textures had insulated me against the perilous font
misadventures which are a distinguishing aspect of
TEX.

4 And then I wrote a book

Along the way, I discovered a program called Fontog-
rapher, one of the first commercially available font
editors. Yet again I was overwhelmed by a feel-
ing of empowerment: I could do things easily and
quickly with Fontographer that required tremendous
resources and time in traditional type design. I dig-
itized several Goudy typefaces that were then un-
available, and edited others to my liking.

I started to keep a notebook, a kind of vade

mecum, in which I recorded notes about things I
had discovered, ways of working, tips and techniques
that I did not want to forget. Eventually I kept this
information in a MacWrite document. One day I
was assailed by an attack of hubris and wondered
if others might be able to use this information. . .
maybe I could write a book. . . .

So I worked on the first few chapters, using
plain TEX in Textures, and showed them to Earl
Allen, head of technical support at Altsys, the com-
pany that at that time developed and marketed Font-
ographer. He was very enthusiastic and encouraged
me to finish it and send it to a publisher. I wrote
the rest of the book, and sent a sample chapter to a
company that was suggested to me, MIS:Press, then
a division of Holt.

A few days later I received a call from the pub-
lisher, Paul Farrell. We exchanged pleasantries and
established that we liked each other, for the nonce
anyway. Then the conversation took a serious turn.

He said, “Well, most people on the west coast
use PageMaker and most people on the east coast
use XPress, so what do you use?”

“Uh. . . er. . . ,” I began articulately, “well sir, I
use. . . TEX.”

TUGboat, Volume 28 (2007), No. 2 155

Figure 1: The book

There was a moment of silence so profound on
the other end of the line that I thought the con-
nection had been broken. I was just about to say
something. . .

“Oh my God,” he said, “bitmaps!”
It was a herculean task to convince him that

TEX had evolved far beyond the use of mere bit-
map fonts and that, in fact, he’d already seen the
results with his own eyes in the sample I sent him.
The book, Fontographer: Type by Design, finally ap-
peared in 1995. Sadly, two years later, IDG Interna-
tional bought MIS:Press and promptly destroyed all
copies of all MIS:Press books that it deemed would
not sell in numbers on a par with The Joy of Cook-

ing — all this without ever contacting the authors.
Maybe they did me a favor of sorts: I have seen
copies of the book sell for as much as $300, and an
asking price over $1,000. One other note: My book
and The METAFONTbook share the same Library of
Congress call number and sit beside each other on
the library shelf.

So, my world seemed happy and stable: I au-
thored a book, typeset concert programs, church
bulletins, and all kinds of documents for non-profit
arts organizations. TEX was not about to go away,

and Textures had become a valued tool that would
be around forever. Wouldn’t it?

5 And then there was Mac OSX

Apple has an annoying habit of shaking up both
itself and its loyal customers. OSX is a good exam-
ple of this: It is not just OS 9 in a party dress. It
is radically different to the bone: So different that
OS9 programs (such as Textures, for example) have
to be used in an emulation of OS9 on OSX. Blue
Sky was quick to point out that Textures works just
fine under “Classic” (the name for the emulation of
OS9 in OSX) and in fact that was true, to a point.
What became progressively more irritating as time
went on was having to open up Classic at all. Every
other piece of software I used had been rewritten
for OSX. Equally irritating were Blue Sky’s reas-
surances given over a period of years that an OSX

version was in the works, and expected any day now.
And there were problems. It became increas-

ingly difficult to print reliably from Textures. In ad-
dition, computer typography was moving to Unicode
and OpenType; Textures, operating under OS9, was
stuck using standard PostScript fonts with a mere
256 characters. It is a measure of how wonderful
Textures was that we stuck with it for as long as we
did.

6 “Hey, kid, have I got a job for you. . . ”

The next jog in the road of my journey in TEXland
came from a most unexpected source. A choir mem-
ber, Victoria Ancona, Editor of Book and Journal
Production at the AMS (aka TEX heaven), at the
church for which I was organist and choir director
approached me. She knew of my interest in TEX.
She said to me, in essence, “Boy, have I got a job
for you. . . Do you want to work at the AMS?”

I was dumbfounded and at a loss for words— a
rare occurrence for me. Here I was being offered the
possibility of working in the same environment as
two stellar figures in the TEX world: Mike Downes
and Barbara Beeton. Actually, as I learned later, I
would be working in the very same department, the
Publications Technical Group. I count it a great
loss that I never got to know Mike Downes very
well: Tragically, he died before I was able to work
up the courage to engage him in conversation — my
loss. Getting to know Barbara Beeton has been a
treat, even though I know I try her patience from
time to time. There is so much to learn!

7 As it was in the beginning. . .

I started to see mentions of Dick Koch’s new TEX ed-
itor and previewer called TeXShop, and it sounded

156 TUGboat, Volume 28 (2007), No. 2

interesting. At the time I was still using Textures.
My various projects that I had going at the time did
not really allow me to change my TEX environment.
But it sounded promising and I kept an eye out for
future developments.

They were not long in coming. Word was circu-
lating about Gerben Wierda’s i-Installer, and how it
took care of all the painful details of installing and
maintaining TEX. Better and better. I downloaded
both TeXShop and i-Installer and put them to work.
Lo! and behold, it worked. This was beginning to
look a lot like what Textures was to Mac OS9. My
deepest thanks to Dick and Gerben! But the best
was yet to come. . .

7.1 St. Jonathan and the blessèd X ETEX

One day I read something about Jonathan Kew’s
X ETEX, and it looked almost too good to be true:
Unicode, and the ability to use both AAT and OTF

fonts out of the box. Using this extraordinarily
powerful tool has been a transforming experience,
and has re-energized my interest in TEX. Thanks,
Jonathan!

Figure 2: A “fontflake”: a typographic frolic done
entirely in X ETEX, using its native controls.

7.2 St. Will and the miraculous fontspec

And then there came Will Robertson’s wonderful
fontspec package for X ELATEX. Now, at this point I
have to make a confession: I am a plain TEX per-
son. From my perspective, LATEX has become the
Microsoft Word of the TEX world. In the work that
I have done, fonts are a major design issue, and
the ability to change the typefaces quickly and ef-
ficiently in a given project or series of projects is
an important requirement. Yes, I have spent hours

with fontinst, afm2tfm, fd files, and all the rest of it,
but I do not consider it time well spent. I would also
point out that I have a love-hate relationship with
Computer Modern: sometimes I hate it, at other
times I love to hate it. Will’s fontspec removes, for
me, one of the major barriers to using LATEX, and
for that I’m, well, if not exactly overjoyed, at least
pleasurably intrigued. Thanks, Will!

So, at present, I think I can safely say that I
am back to where I was when Textures was my TEX
tool of choice — indeed, I am much better off, with
many more typographic options at my disposal.

8 . . . is now . . .

Over the years, in addition to the book, I have done
a tremendous amount of work for non-profit arts-
oriented organizations (programs, pamphlets, order
forms, survey forms, and more), and helped a friend
to publish genealogical tables nicely formatted — all
using plain TEX with Textures and more recently
TeXShop. I’ve also burdened the CTAN archives
with a series of type specimens collectively called
typespec.

Figure 3: A sample of one of the typespec specimens
created using plain TEX.

Since coming to the AMS, life has been. . . in-

teresting, to say the least. Not only have I had to

TUGboat, Volume 28 (2007), No. 2 157

develop my Unix skills (as those skills verged on the
ethereally exiguous, this was easy), but I’ve had to
come to terms with something called VMS — ugh.
At present we do all of our production work on VMS,
though this is shortly to change: we hope to move
everything to Unix by the end of this year. This will
be accompanied by a complete reorganization of the
directory structure for processing our materials, and
putting the whole thing under Subversion — oh yes,
we’ve had a lot of fun with that —which will serve
as both version control and online archive. We’ll
have considerably more to say about this, I should
think, at PracTEX 2007.

We are also moving The Notices of the Ameri-

can Mathematical Society away from Quark XPress
and to Adobe InDesign. Notices is the publication
of record for the business of the AMS: membership,
meetings, announcements. It was decided in 1995
to alter the nature of Notices radically: It would
become a glossy, glamorous magazine that would
present current mathematical topics in an attrac-
tive and colorful way, in addition to performing its
original function. The first issue in the new format
appeared in January, 1995. In effect, Notices was
now to become the product of desktop publishing.
This was made possible by the fortuitous appear-
ance of two pieces of software: Quark XPress and
Mathsetter. Mathsetter, for those who don’t know
what it is, is a plugin for XPress (version 4.x only)
that converts TEX math to XPress type; it uses the
Textures TEX engine to do this. Well, Textures is
not exactly what you’d call current at the moment,
and the same may be said of Mathsetter, only more
so. Moving away from XPress and Mathsetter has
meant moving to TEX: all of the math-heavy arti-
cles in Notices are typeset entirely in TEX. This is
rather exciting. It is fascinating, and more than a
little disturbing, to contemplate how vital a piece
of software can become. When we started to look
at alternatives to Mathsetter, it was astounding how
much material passed through it: blurbs on the back
covers of books, catalogue materials, things we post
on the web, marketing and promotional materials
of myriad kinds— and Notices feature articles and
other contributions that use a lot of math.

As if all of that were not enough, we have also
replaced our aging film imagesetter with a brand
new platesetter from basysPrint of Boizenburg, Ger-
many.5 The interesting thing about this piece of
equipment (not counting the fact that it is HUGE:
seven feet square by five feet three inches in height,
and weighing 2.5 tons!) is that it exposes standard,

5 About 100 km east of Hamburg.

inexpensive, conventional printing plates using a
powerful source of ultraviolet light focused through
a solid state chip6 that contains thousands of tiny
little mirrors that focus the light and create an
image on the plate. The chip, alone, costs about
$9,000 to replace, should that ever be necessary.

9 . . . And ever shall be?

Given my life thus far with TEX, I trust that you will
permit me to venture a few observations. Clearly, we
are currently enduring the curse of living in “inter-
esting times”. Whereas we used to live in a sim-
ple world divided between plain TEX and LATEX, we
now face an intimidating array of possibilities: TEX
and LATEX; PDFTEX and PDFLATEX; X ETEX and
X ELATEX; ConTEXt; Omega. . . and on it goes. All
this is wonderful for authors, but a veritable night-
mare of sorts for publishers who have to stream-
line their production for maximum effect, minimum
waste, and quickest turnaround.

As a side note, what can be said for flavors of
TEX goes double for graphics: the dizzying array
of graphics packages (in many versions) that turn
out a profusion of graphics formats is becoming a
real problem to publishers. But that is a subject for
another day. . . .

Our production is based on LATEX: for jour-
nals we require TEX files, and strongly encourage
our authors to use the AMS class files (we typeset
virtually all of our journals inhouse). For books we
require DVI files, though this has begun to shift sig-
nificantly: If the author is willing to do all of the
work to format the book to our standards, we will
accept a PDF for the project. But how many times
have we heard this at the AMS from an author: “I’m
using TeXShop which means I have to give you a
PDF: TeXShop can’t make a DVI file.” 7 Hmmm. . .
Or received PDF files with missing fonts, or PNG or
JPEG files accompanying a DVI file?

And whereas at one time it looked as if PDF

files might be a miraculous problem solver, now we
need to ask which PDF specification: 1.1, 1.2, 1.3,
1.4, 1.5, or 1.6? Or PDF/X-1a or PDF/X-3. . . and,
again, the list goes on. Is the author using the Jaws
PDF tools, or Ghostscript’s, or Adobe’s? And not
all PDFs of the same specification are made equal,
as we all know.

From time to time we get angry emails from ex-
asperated authors (often in sciences with less overt
mathematical tendencies) demanding testily why we

6 Developed by Texas Instruments; also used in large-

screen projection televisions.
7 Note to Dick: could you please add “and dvi” to the

“TeX and Ghostscript” menu item?

158 TUGboat, Volume 28 (2007), No. 2

are still using TEX, a tired, old-fashioned, and awk-
ward tool at best. Surely there is something else,
more modern, more up-to-date that would be more
suitable. Why not Microsoft Word? On those oc-
casions, if I knew how to do a hollow laugh, I’d do
one.

Well, I think it’s a mess, that a catastrophe is
looming as increasing costs, diminishing income, and
tightening timeframes for publishers conflict with in-
creasing pressure to publish as much as possible in
the smallest period of time, using whatever tools
happen to be handy at the moment in the academic
community, and an increasing interest in bypassing
traditional publishing altogether and going right to
the Internet. Working in the field of scholarly pub-
lishing right now is a bit like watching a train wreck
happening in slow motion.

I don’t know the solution to these problems.
Publishers are in a difficult position because they
have workflows that require a limited variety of in-
put for them to produce reliable output in a timely
way. It is my obligation as an author to provide
what the publisher requires, particularly if I want
to be certain that I get what I want. But I’m lucky:
I have wonderful tools at my disposal, and I’m lucky
enough to know how to use them, usually.

In large part, I think we can make a start by
putting well-designed, versatile, and comprehensi-
ble tools into the hands of authors, tools such as
TeXShop and MacTEX; and to provide documenta-
tion that is as good as the software. Not long ago
we dealt with an author, a Mac user, who worked
on an important book for the last ten years, and
used Textures to put it together. At some point he
switched to OSX. His problem was that as OSX de-
veloped and grew, Textures did not. Finally, the sit-
uation became intolerable for him and he asked the
AMS for help. We pointed him in the direction of
TeXShop and i-Installer and gave him some pointers
for getting started. In about two weeks, the work of
ten years was easily handed off to TeXShop with no
problems. Another transformative experience and a
happy author.

In preparing this presentation, I ran across a
wonderful interview with Christina Thiele,8 among
a number of other very interesting interviews on the
TEX Interviews web page. She makes three points,
which I will restate here because they bring what I
have been saying nicely into focus.

First, we have to make TEX easy to install and
maintain. And for goodness’ sake, do let’s fix the

8 http://www.tug.org/interviews/interview-files/

christina-thiele.html

font mess: Using a variety of fonts should not re-
quire an advanced degree in computer science and
the patience of Job. You won’t get a large number of
people to use TEX until it is far more user-friendly,
user-comprehensible, and user-supportable. Don’t
expect anyone necessarily to “RTFM” because, more
often than not, they aren’t going to, at least not all
of it.

Second, I’m sorry to say, we have to abandon
the beautiful documents argument to try to get peo-
ple to use TEX —it just doesn’t work. Until I had
read Christina’s interview, I thought I had been an
inept salesman of TEX’s ability to produce beauti-
ful documents. Fact is, most people just don’t care
about typographic æsthetics. Users want powerful,
effective software that gives the best return on the
time and effort they spend to learn and use it: ty-
pographic niceties are largely irrelevant.

Finally, we have to do anything and everything
within our power to preserve the wonderful, open,
empowering, and helpful nature of the TEX commu-
nity. Everyone and anyone who uses TEX has had
occasion to use comp.text.tex and to come away
from the experience a better TEX user. Help there
is free, and often laced with background information
that is invaluable to help the learner. The TEX Users
Group, I need hardly say, is a magnificent resource
that deserves all the support that we can give it.

10 World without end. Amen.

So it has been a long and never uninteresting road
from 1986 to the present, with lots of challenges
ahead. Yikes! Can it really be twenty-one years?
In some ways it seems like yesterday, in others like
a lifetime ago: Just look at how the Internet alone
has changed our lives and our thinking in a mere
fifteen years. To this day, I never cease to marvel
at, and be grateful for, the intoxicating sense of em-
powerment that I have experienced with the tools on
my computer. I can only hope that everyone might
experience the same joy with the tools that they use.

⋄ Stephen Moye
American Mathematical Society
Publications Technical Group
201 Charles Street
Providence, RI 02940
sgm (at) ams dot org

Organist and Choir Director
Bethany Lutheran Church
116 Rolfe Street
Cranston, RI 02910
stephenmoye (at) mac dot com

TUGboat, Volume 28 (2007), No. 2 159

ConTEXt user meeting 2007: Epen, March 23Ű25

Mojca Miklavec

The 23rd of March was a drippy Friday afternoon, but the rain did not stop TEXies
from using almost all modes of transport to gather in the small village of Epen on the
Dutch-Belgian-German border. Most of the 26 attendees from 11 countries arrived
by plane, train, bus, or car, but a few preferred to roller blade, to buy a new bike
(because the old one broke down on the way to the meeting), or to jump over the
fences all the way from Aachen.

The extremely interesting and packed
schedule meant evening discussions that of-
ten continued into the wee hours of the
morning. And even with the delicious food,
Taco usually had problems interrupting the
lively discussions and wild coding to bring
us down to the dining room before the food
got cold.

Indeed, we hardly had time to breathe
during the meeting. Those who were not in
Epen should regret missing out on the fun!

1 Tutorials

Friday evening started with an excellent tutorial by Taco on how to write a ConTEXt Taco Hoekwater

Writing a

ConTEXt module

module. He led us from the basics of writing a module to the most important aspects,
conventions, tips, and tricks. The tutorial included dozens of pages of documentation
to be published on the wiki. Our assignment was to write a new FIXME module, which
has been on the ConTEXt wishlist for more than a year. Although no module had been
written by the end of the meeting (perhaps because there were too many interesting
talks), the tutorial and documentation should inspire more authors to provide new
high-quality ConTEXt modules.

Two more tutorials followed on Saturday.

Willi Egger

Page layout,

arrangements

and posters

WilliŠs tutorial was not just about setting up a page layout in
ConTEXt, but also dealt with typographical traditions concern-
ing printing, and related technical aspects like the properties of
the paper sheets your book will be printed on.

In the picture you can see Sanjoy Mahajan solving some of the
related questions: how many times do I need to fold this sheet
to get 16 pages? And what is the grain direction of the paper?

In contrast to math where many users can start from their LATEX experience when Hans Hagen

XMLswitching to ConTEXt, XML processing is ConTEXtŠs specialty, and lacks a beginnerŠs
manual. That meant that every single hand was raised when Hans asked about the
interest to listen to his XML tutorial, although it was almost bed-time when it started.

Editor’s Note: First published in MAPS 35, 2007. Reprinted with permission.

160 TUGboat, Volume 28 (2007), No. 2

Willi in action

2 History of typesetting & typesetting of history

The Ąrst talk on Saturday morning was given by Taco Hoekwater, one of the ĄrstTaco Hoekwater

A short history

of ConTEXt

ConTEXt users outside Pragma ADE. It was enjoyable to listen to the summary of
the early revolutionary ideas Hans implemented into his system at a time when some
of the attendees in Epen were still school kids who had only dreamt about owning a
computer.

Coming from a completely different Ąeld than most attendees (humanities), ThomasThomas A. Schmitz

Classical Greek with

ConTEXt

shared his experience of ConTEXt related to typesetting Ancient Greek, struggling
with font-system oddities and limitations of pdfTEX. Is LuaTEX going to offer the
deĄnitive answer to the problems he had to Ąght with?

In contrast to the usual development cycles of ConTEXt and its modules, where docu-Idris Samawi Hamid

Critical editions mentation is lagging way behind the functionality, Idris brought with him a complete
speciĄcation of a yet-to-be-written module for typesetting critical editions with mul-
tiple levels of footnotes, proposing a complete hierarchy of commentaries.

3 Talks from user experience . . .

Mari presented all the problems a newbie faces when switching from Microsoft prod-Mari Voipio

ConTEXting in

MS Windows Ů

a userŠs view

ucts to ConTEXt: no WYSIWYG editor, no drop-down menu with fonts, no copy-paste
to include images, no easy way to create tables . . . Would a Word2ConTEXt tutorial
help?

Sanjoy described how he uses ConTEXt to typeset his mathematics textbook (Street-Sanjoy Mahajan

Typesetting a physics

textbook with ConTEXt

fighting mathematics), covering project structure, page layout, and ĄgureŰtext inte-
gration (Ągure placement).

DuncanŠs company uses ConTEXt for typesetting multilingual documents (including
Arabic) from XML sources, but he showed a great deal of courage when he dared to
make a presentation in PowerPoint during ConTEXt meeting, for which he has been
ŞpunishedŤ appropriately during the live demo.

Duncan Hothersall

Using ConTEXt as part

of a larger system

TUGboat, Volume 28 (2007), No. 2 161

The conference room

4 Useful tools

PatrickŠs presentation of his TextMate extensions for better ConTEXt support could Patrick Gundlach

ConTEXt integration

in the TextMate

editor

be called Şa story of successŤ or Şa good reason why one should attend TEX meetingsŤ.
His Ąrst announcement about the ConTEXt bundle on the mailing list got no reply.
This time, most of the Mac users at the meeting eagerly awaited the upload of the
new bundle, in order to try it on their own computers. The bundle supports syntax
highlighting and auto-completion of all user-level commands. It also provides an
interactive list of arguments that these commands accept, and provides shortcuts for
typesetting and previewing.

Probably tired of the ease of typesetting PDF documents with ConTEXt, he has also Patrick Gundlach

Creating a PDF

document, the

hard way

written support for manual editing of PDF in TextMate, so that cross-reference tables
can be calculated automatically. Interested hackers should ask him for details.

5 Discussions

All attendees agreed that our shelves lacked a well-written ŞThe ConTEXtbookŤ Mojca Miklavec

Documentationand/or (online) Cookbook, but no one volunteered to write it. It was also agreed
that TEXshow is incomplete. Filling the gaps in this area is mostly up to the users.

Some suggested to clean up and improve the wiki pages: to create a site index,
to point to the most important recent changes and advances since the last update of
ConTEXt manual. More samples should be provided, and submitting test Ąles should
be made easier.

Sanjoy Mahajan

Regression

testing

The one who makes few mistakes makes little progress. Because ConTEXt development
is progressing apace, a repository with test suites has been set up, and Sanjoy has been
developing tools to check for broken functionality between different ConTEXt releases.
Simplifying submissions of test cases should be one of the Ąrst steps towards a better
quality control before new Şγ releasesŤ, as some jokingly called them.

162 TUGboat, Volume 28 (2007), No. 2

6 A glimpse into the future

Unfortunately, OpenType fonts are not as openArthur Reutenauer

An introduction to

OpenType fonts

as one would expect them to be, but luck-
ily enough both Hans and Patrick have been
open enough to ideas and requirements for
proper font support in ConTEXt and on the
garden, some of which had secretly been added
to live.contextgarden.net during the night
before presentation, while Patrick himself was
sleeping.

If typesetting Ancient Greek is problematic ŮIdris Samawi Hamid

Oriental TEX what about Arabic? After (mis)using Aleph for
quite some time, Idris claimed that no exist-
ing system was able to meet his requirements to
typeset old Arabic texts, and applied for a grant
at Colorado State University to fund TacoŠs de-
velopment of LuaTEX. Without such a grant,
we would probably not be seeing the rapid de-
velopment of LuaTEX, aiming for the Ąrst beta
release during the TUG conference this year.

We are now eagerly awaiting his next tutorial about writing funding proposals
(hopefully applicable to Euro currency as well).

Hans Hagen,

Taco Hoekwater

LuaTEX,

ConTEXt MkIV,

fonts,

& typescripts

Last but not least, Hans and Taco Ąlled
in the remaining time not already reserved
for other presentations. Although IŠve seen
quite a few of their talks already, they always
keep us surprising with some really special
slides Ů both in visual appearance and con-
tents. The development has been progress-
ing almost at light-speed Ů even during the
conference.

The picture shows a (non-scheduled)
live demonstration of bugĄxing in LuaTEX
during HansŠs tutorial.

The most special thing of the meeting was
that most of us have known each other
from vivid discussions on the mailing list
without ever meeting before. So the in-
troductory discussions that would other-
wise start with platitude phrases asking for
names, location or profession, were usually
replaced by hitting the core of the subject:

ŞWait! You are the one who did . . . !Ť

The meeting was a great success and left a
deep impression on everyone. Most atten-
dees left Epen saying ŞSee you next yearŤ.

How to Ąt Ąve nationalities into one car?
Well, TEXies have lots of experience with
packing boxes. So as long as they go well
with each other, they always Ąnd a solution.

TUGboat, Volume 28 (2007), No. 2 163

7 Invitation to Slovenia I

ConTEXt

S LOVELOVE NIJAThe second ConTEXt user meeting, in 2008, will take place in Slovenia, near the
Slovenian-Austrian-Italian border, and last probably a day or two longer than this one,
in order to leave you more time to discuss the fascinating topics, to exchange ideas,
and to breathe fresh air while sightseeing or doing sport. As the date approaches and
planning crystallizes, the time and location will be announced on the mailing list and
contextgarden.net.

Participants in the ConTEXt 2007 user meeting:

Front row (from left to right): Luigi Scarso (it), Mojca Miklavec (si),
ZoĄa Walczak (pl), Taco Hoekwater (nl), Duncan Hothersall (uk),
Arthur Reutenauer (fr).

Back row: Bernd Militzer (de), Willi Egger (nl), Thomas Engel (de),
David Roderick (uk), Oliver Buerschaper (de), Patrick Gundlach (de),
Mari Voipio (Ą), Steffen Wolfrum (de), Luuk Beurskens (nl),
Alexander S. Berdnikov (ru), Jano Kula (cz), Idris Samawi Hamid (us),
Hans Hagen (nl), David Kastrup (de), Michael Guravage (nl),
Karel Horák (cz).

Missing from the photo: Sanjoy Mahajan (us), Tobias Burnus (de),
Thomas A. Schmitz (de), Jelle Huisman (nl).

⋄ Mojca Miklavec
Slovenia

164 TUGboat, Volume 28 (2007), No. 2

EuroBachoTEX 2007

Michael Guravage

Saturday

Jerzy Ludwichowski, GUST president and confer-
ence organizing committee chair, opened the confer-
ence by welcoming all the participants, and encour-
aged everyone to enjoy the proceedings in the spirit
of the conference Ů ŞPaths to the FutureŤ.

Jerzy Ludwichowski

The Ąrst speaker was Jonathan Kew, who related
the history and current status of X ETEX. After its
initial appearance in the spring of 2004 on Mac OS X,
a version supporting OpenType fonts appeared the
following year. X ETEX for Linux was announced at
BachoTEX 2006, and was quickly followed in June
by a version for Windows. This year marked a mile-
stone for the X ETEX project, in that it became an
integral part of TEX Live distribution.

Key features of the current X ETEX implemen-
tation include its native Unicode support, improved
integration with existing macro packages and its
smart inclusion of hyphenation patterns.

Looking ahead, future releases will support host
operating system fonts (OpenType, TrueType and
PostScript) with no TEX-speciĄc setup. Another
new feature is inter-character tokens Ů inserting ar-
bitrary tokens in-between adjacent characters based
on character classes. This allows one to easily mix
scripts and fonts, or insert spacing to stretch text.
Finally, to better support non-Latin scripts, minor-
ity languages, and scripts not yet in Unicode, X ETEX
will support SILŠs Graphite font system.

Taco Hoekwater began his presentation by an-
nouncing that MetaPost version 1.0 is now available.
New features include Ąle name templates, new color

types, i.e. cmyk, grey-scale and marking-only and
an improved manual. To overcome the various size
limitations of the current implementation, MetaPost
version 1.1 will incorporate dynamic array allocation
and provide greater numeric precision. To obviate
problems with existing input Ąles, this new version
will appear as a separate binary. Finally, in the next
year or so Taco anticipates making MetaPost func-
tionality available as a library.

The title of Hans HagenŠs presentation was ŞBe-
ware of too much tokenspeakŤ. TEX consumes char-
acters which, in turn, become tokens, and then
nodes. Hans gave us a glimpse into how LuaTEX, at
the node list level, is simplifying and streamlining
previously complex pieces of TEX. So much so that
he has been able to retire moderate pieces of exist-
ing ConTEXt code. Consistent with the theme of the
conference, Hans described how LuaTEX provides a
genuine opportunity to embrace the future.

Joanna Ludmişa Ryćko introduced the TEX
Clinic. The clinic began last year at BachoTEX, and
was open to anyone at the conference seeking relief
from a nagging TEX complaint. A number of TEX
clinicians were introduced and put at the disposal of
the participants.

Joanna Ryćko

Johannes Große presented MathPSfrag Ů a tool
that replaces existing labels in Encapsulated
PostScript graphics with LATEX generated labels.
MathPSfrag extends PSfrag, allowing both auto-
matic and Ąne grained manual control over label
content and placement.

Siep Kroonenberg presented her epspdf conver-
sion utility. Written in Ruby and Ruby/Tk, and
using Ghostscript and pdftops, epspdf offers both
command line and graphical user interfaces for a
round-trip conversion between PostScript and PDF.

TUGboat, Volume 28 (2007), No. 2 165

EuroBachoTEX 2007 participants. Not standing, from left: Siep Kronenberg, David Kastrup,
Stanisşaw Walczak, Jonathan Kew, Gra£yna Jackowska, Jerzy Ludwichowski, Ewa Koisar, Joanna Ryćko,
Marek Ryćko, Jakub Zdroik, Michaş Kolany, Hossam A.H. Fahmy, Mojca Miklavec, Frank Küster,
Arthur Reutenauer.

Standing, from left: Wşodzimierz Martin, Ewelina Łuczak, Harald König, Maşgorzata Łuczak,
Stanisşaw Wawrykiewicz, Wojciech Łukaszewicz, Tomasz Łuczak, Jarosşaw Brykalski, Ross Moore,
Taco Hoekwater, John Trapp, Reinhard Kotucha, Hàn Thế Thành Péter Szábo, Sam Guravage,
Michael Guravage, Karel Píška, Hans Hagen, Bram Otten, Bogusşaw Jackowski, Volker RW Schaa,
Agata Wylot, Aleksandra Kaptur, Heiko Oberdiek, Leszek Czerwiński, Marcin Woliński, Jan Ryćko,
Marta Wolińska, Grzegorz Murzynowski, Adam Kolany, Radosşaw Tryc, Dorota Kolany, Norbert Preining,
Ferenc Wettl, Andrzej Borzyszkowski, Dorota Cendrowska, ZoĄa Walczak, Ulrik Vieth, Matrin Schröder,
Dag Langmyr, Ewa Szelatyńska, Jano Kula, Karel Horák, Petr Sojka, Deimantas Galčius, Klaus Höppner,
Natalia Chlebus, Vytas Statulevičius, Atif Gulzar, Alexander Berdnikov.

Photo by Jacek Kmiecik.

ZoĄa Walczak demonstrated several basic and ad-
vanced features of the Portable Graphics Format
(PGF) package. Written by Till Tantau at the Insti-
tute for Theoretical Computer Science at the Uni-
versity of Lübeck, PGF is partitioned in three layers:
system, basic and front-end. TikZ is a front-end for
PGF. It provides access to all the features of PGF,
and is intended to be easy to use. If you look closely
you will see it has borrowed part of its syntax from
both Metafont and PSTricks.

Norbert Preining stood in for Jim Hefferon and
described a new ŚexperimentalŠ procedure for up-
loading software to CTAN. The workĆow includes
upload, approve and install steps resulting in TDS

compliant bundles. A means for updating package
meta-data is also present.

Jean-Michel Hufflen introduced us to XSL-FO,
comparing and contrasting corresponding LATEX
and XSL-FO structures.

Grzegorz Murzynowski introduced gmdoc, a
package for documenting LATEX style Ąles. It dif-
fers from its predecessor by emphasising compact
ŚminimalŠ markup.

Grzegorz Murzynowski continued by describing
his gmverse and gmcontinuo packages. The former
provides right alignment for long and broken lines
of verse. The latter allows typesetting paragraphs
in continuo, marked not with a new line and indent
but continuously, marked with only the ¶ sign.

In the last talk for Saturday, Marek Ryćko argued
for a Ąne, or Ąner, grained component architecture
for TEX functionality. He hopes that focusing on
interfaces to facilitate integration will be the tipping
point for TEX development.

The weather was clear and cool throughout the
week. So it was under the stars and a waxing moon
that, later that evening, we enjoyed the annual bon-

166 TUGboat, Volume 28 (2007), No. 2

Handmade paper projects

Ąre; replete with food, drinks, songs, and of course
Ąre-breathing pyroTEXnics.

Sunday

This year we found the accommodations not quite
ready for guests. For instance, there were no cur-
tains and toilet paper was missing as well. It took
us a while to Ąnd out that all cloth and paper was
being used in the Şmake yourself some paperŤ work-
shop given by Gra£yna Jackowska that ran in
parallel to the talks. As the conferences advanced,
the participants had to become more careful where
they walked because handmade paper was hanging
on trees everywhere.

Andrzej Tomaszewski began the second full day
of talks by describing the various conditions and lim-
itations he encountered while producing ŞThe Mas-
ter of Life Arteries of the Greater Warsaw;Ť a jubilee
book for the Warsaw Municipal Water Authority.

Dorota Cendrowska presented several, oft disre-
garded, design criteria to consider when typesetting
enumerations for inclusion in printed text and mul-
timedia presentations.

Jerzy Ludwichowski described his and Karl

BerryŠs work on consolidating the GUST SOURCE

and NONSOURCE font licences into the single GUST

Font License (GFL). The result is a license that is
legally identical to the LATEX Project Public License
(LPPL), which the FSF and Debian already accept
as a legitimate free software license.

Jean-Michel Hufflen described how MlBibTEX
strives to be a better BibTEX. Starting in 2000, Ml-
BibTEX originally was written in C, but has been
reimplemented recently in Scheme, a Lisp dialect.
Jean-Michel anticipates MlBibTEXŠs Ąrst public re-
lease in May of this year.

Norbert Preining

Next, Jean-Michel Hufflen showed how lexico-
graphical order relations are language-dependent,
and how MlBibTEX addresses this issue in the con-
text of multilingual bibliographies. Bibliography
styles can be unsorted or sorted. However, the bst

languageŠs sort function is suitable for English only.
MlBibTEX uses nbst and Scheme, which together
allows one to sort European languages in correct lex-
icographic order.

David Kastrup described how to download, install
and use the Emacs AUCTEX package. You can re-
trieve the latest version of AUCTEX from

http://www.gnu.org/software/auctex.
And for the stout of heart, the source code for a
pre-release version of Emacs 22 is available from
http://alpha.gnu.org/gnu/emacs/pretest.

Péter Szabó demonstrated dvdmenuauthor, a col-
lection of tools, including pdfLATEX and xpdf, used
to create menus for dvdauthor Ů an excellent low
level tool for creating video DVDs on Unix systems.

Norbert Preining described how the Debian
ŞetchŤ release contains both TEX Live 2005 and
teTEX Ů in parallel Ů and how both system admin-
istrators and regular users can beneĄt from side-by-
side TEX distributions. Norbert concluded with a
preview of TEX Live 2007 and further developments
regarding TEX on Debian.

The presentation of Atif Gulzar and ShaĄq-ur

Rahman, who are from Pakistan, began by explain-
ing how Urdu is used by some sixty million people
in twenty countries. Urdu is based on an Arabic
script with Nastaleeq as its most prevalent writ-
ing style. Nastaleeq is highly contextual Ů written
right-to-left and top-to-bottom. Atif constructed
an Omega virtual font containing 827 glyphs, and
used Omega external OTPs in a two-pass solution

TUGboat, Volume 28 (2007), No. 2 167

Atif Gulzar

to achieve the appropriate ligature placement and
kerning. From the more than twenty thousand valid
ligatures in Urdu, Atif was able to correctly render
and place a subset of approximately seven thousand
ligatures.

Hossam A.H. Fahmy presented his joint paper
with Amir M.S. Hamdy about their aim to cre-
ate a font suitable for typesetting the QurŠan. Using
examples from existing fonts, he explained many of
the problems that one encounters when attempting
to digitize a calligraphic script like Arabic. The sec-
ond part of the talk focused on a detail of that: how
to simulate a real-world pen nib in Metafont.

All the news about pdfTEX version 1.40 was brought
to us by Martin Schröder. Most prominent among
the new features are the ability to create compressed
object streams, support for JBIG2--encoded images,
and the addition of a colorstack à la dvips. The col-
orstack feature is already in use in the new releases
of the hyperref package, and solves the LATEX prob-
lem of the text color disappearing at a page break.

Karel Horák walked us through the history of the
háček Ů or caron, if you prefer Ů in Czech typeset-
ting. He showed us not only an objective histori-
cal progression of the symbol shape, but also many
forms that occur in actual fonts. Some few he con-
sidered good, some more not so good, almost all are
apparently simply hideous and out of touch with
Czech tradition. The likely cause is that the big
font foundries never considered asking a Czech ty-
pographer for an opinion.

Hàn Thế Thành also talked mostly about accents,
but in this case about the ones used in Vietnamese.
The writing system is based on the Latin alphabet,
but it has a great many accented characters to de-
note sounds that are not differentiated in the roman
alphabet. His VnTEX package is a complete solu-

tion for typesetting Vietnamese, including support
for large number of fonts, some of which he created
himself.

Hàn Thế Thành

The day ended with two presentations by Tomasz

Łuczak. The Ąrst talk was about the LyX doc-
ument processor (www.lyx.org), the second about
how to convert wiki markup into TEX source. Unfor-
tunately, both talks were given in Polish, and even
with the simultaneous English translations provided
by kind audience members they were hard to follow.

Monday

There were no lectures scheduled for Monday. In-
stead, we took an excursion to Toruń where we vis-
ited the District Public LibraryŰCopernican Library
and toured the town. After which we drove on to
Cheşmno where we enjoyed a scrumptious dinner
and music before returning home.

Toruń, situated astride the Vistula (Wisla)
river, has been an important regional and trad-
ing center since medieval time. A member of the
Hanseatic League, Toruń boasted a Ćeet of one hun-
dred and Ąfty ships, whose trade allowed ToruńŠs
prosperity to rival that of Brugge, Copenhagen and
London. UNESCO designated the Gothic buildings
of ToruńŠs Old Town a World Heritage Site in 1997.

At the Copernican Library we were treated to a
sample of the treasures of their collection, including
a Ąrst edition of CopernicusŠs ŞRevolutionibus Or-
bium CoelestiumŤ, or ŞThe Revolution of the Heav-
enly OrbsŤ, which appeared in print in 1543. Lastly,
we were shown a recent reproduction of GutenbergŠs
Bible. The exemplar is one of 180 copies, matching
GutenbergŠs original number. Each exemplar was
made using the same materials and techniques as the
originals, including individual letter variations (font

168 TUGboat, Volume 28 (2007), No. 2

Gutenberg Bible exemplar at the
Copernican Library

expansion) that Gutenberg used to achieve aesthetic
interline spacing.

Our tour of ToruńŠs Old Town began at the his-
toric Town Hall under a statue of Nicholas Coper-
nicus with the inscription, ŞHe moved the earth,
and made the sun stand stillŤ. We visited sev-
eral churches and historical landmarks before ending
where we started.

We were running late, so it was late in the after-
noon when we arrived in Cheşmno, a town located
on seven hills, and one of EuropeŠs best examples of
defensive architecture. CheşmnoŠs several churches
date from the thirteenth and fourteenth centuries.
On the fourteenth of February each year, the inhab-
itants ostentatiously celebrate Saint ValentineŠs Day
since the local parish church has kept the saintŠs reli-
quary for many centuries.

After a short stroll through the town, we re-
tired to a local restaurant where we enjoyed a de-
licious buffet dinner. Entertainment was provided
by a group of musicians including Bogusşaw Jack-
owskiŠs daughter.

Tuesday

In the Ąrst presentation Tuesday, Hàn Thế Thành

presented a summary of font-related topics in
pdfTEX. Some, like font expansion and margin kern-
ing, are already documented in the pdfTEX man-
ual. The rest are scattered across README and ex-
ample Ąles, e-mails and mailing lists. For the Ąrst
time, all these topics were brought together in one
place. Topics include adjusting letter and inter-
word spacing, adding additional kerning before or
after certain characters from a font, Unicode support
for browser cut, paste and search actions and sub-
fonts Ů a mechanism for supporting CJK languages.

Our excellent entertainers

Hans Hagen began his presentation by describ-
ing the issues driving the development of ConTEXtŠs
font system, namely switching between different font
styles and sizes, and proper font handling in math
mode. To make font switching easier, ConTEXt can
assemble a collection of different fonts into a sin-
gle structure called a typescript. For example, a
typescript might use palatino-regular as the default
serif font, palatino-sans as the sans font, courier as
the monospace font and euler as the math font. In-
stantiating this typescript would make these fonts
available when using the commands \rm, \ss, \tt,
and $...$ respectively.

Hans Hagen

Hans concluded by describing how the trend to-
ward OpenType fonts, consistent user interfaces and
DTP-like functionality will continue to inform where
and how ConTEXt controls fonts Ů and vice versa.

Taco Hoekwater explained how LuaTEX, with its
native support for OpenType fonts, will obviate the
need for static font metric Ąles. Currently LuaTEX
implements a few dozen callbacks at strategic points
in TEX. When populated, callbacks will override

TUGboat, Volume 28 (2007), No. 2 169

TEXŠs default behaviour with custom code. Taco
demonstrated how, when using OpenType fonts,
LuaTEX callbacks invoke code that extract the font
metric information directly from the OpenType font
itself.

Grzegorz Murzynowski identiĄed two differing
opinions concerning the TEX & Co. logos. The Ąrst
group contends that the font is part of a logo, and
therefore the combination is inviolate. The second
group contends that a logo should be typeset in
the same font as its context. For the latter group
Grzegorz suggests several slight modiĄcations to the
LATEX logo to make it Ąt better with various fonts.

Sam Guravage, the youngest speaker ever to ad-
dress a BachoTEX conference, explained how he uses
TEX for all his school assignments. Sam enumerated
what he found easy in TEX e.g. sectioning and lists,
and what he found difficult e.g. Ągures and error
messages. SamŠs conclusion was that TEX makes his
work look better, and looking better meant higher
grades.

Sam Guravage

David Kastrup began a series of talks by introduc-
ing qstest Ů a LATEX macro package for writing re-
gression tests. The idea is that a user can include a
number of tests in his .dtx Ąles and use pattern and
keyword lists to specify which tests should be run,
either when his package is loaded or while running a
separate test Ąle through LATEX. The qstest pack-
age, together with the dtx documentation format
and docstrip, allows one to integrate unit testing
and documentation in a single .dtx Ąle.

David Kastrup continued with a discussion of the
makematch LATEX macro package. Factored out of
the gstest package, makematch matches patterns
with wildcards against a list of targets.

David Kastrup

David Kastrup concluded his series of talks by
explaining how the bigfoot macro package, origi-
nally written as a footnote apparatus for text-critical
editions, can beneĄt the ordinary LATEX user. For
example, default footnote behavior bypasses TEXŠs
global pagebreak optimization whenever a footnote
does not completely Ąt on one page. In contrast,
footnote breaks in bigfoot are reconsidered for each
possible breakpoint of the main text. This means
TEX will Ąnd the optimum combination of breaks in
main and footnote texts.

Robustness, optimization, color continuity and
paragraph footnotes are just a few reasons why
LATEX users might consider using bigfoot to replace
TEXŠs native footnote apparatus.

Klaus Höppner walked us through the process
of creating PostScript Type 1 fonts from Meta-
Post sources using MetaType1. Created by Bo-
gusşaw Jackowski, Janusz Nowacki and Piotr Strzel-
czyk, MetaType1 is a collection of tools includ-
ing MetaPost, t1utils and AWK; together they
are used to generate PostScript Type 1 AFM, TFM

and PFB Ąles. Though documentation was scarce,
MetaType1 proved to be the correct tool for the job.

Petr Sojka and Michal Růžička explained how
they generated PDF, HTML and XHTML+MathML

output from a single LATEX source Ąle. While
many single-source publishing approaches begin
with XML, the amount of mathematics involved
made TEX the only viable input format. By en-
forcing a strict separation of form and content, and
modifying the TEX4ht sources, the authors were able
to realize individual workĆows for each output for-
mat.

Péter Szabó reĆected on his experience compiling
various conference proceedings Ů including those of
last yearŠs EuroTEX conference. Péter described

170 TUGboat, Volume 28 (2007), No. 2

how the judicious use of procedures and tools can
clarify and simplify the work of authors, editors
and printers. Revision control software, mailing
lists, shell scripts, utilities, instant messaging and
of course TEX, can be combined to realize effective
publication workĆows.

David Kastrup described DocScape Publisher,
an XML-oriented database publishing system from
QuinScape GmbH. At its core, DocScape uses
LATEX, pdfTEX, and David CarlisleŠs xmltex. Cur-
rent applications include Ąnancial reports, a variety
of product catalogs, and online excerpts.

Karel Píška described procedures and programs
he has developed for comparing and viewing font
elements. His workbench can be downloaded from

http://www-ep.fzu.cz/ piska/tfcpr.html.
From this set, Karel demonstrated several tools:

cprpk, cprpkt1, cprpkt1c, cprticpk, cprpkpk:

tools for comparing two bitmapped repre-
sentations of a glyph pair at two different
resolutions.

prfkrn, prfkrna, cpkrn, cpkrna: tools for com-
paring kerning pairs in two (or three) relative
TEX fonts, or in two releases of one font.

prfof, cprof: tools for comparing and prooĄng
outline fonts.

Karel Píška

In his second presentation, Karel Píška applied his
tools to analyze and verify the Latin Modern fonts.
His results included examples of individual letter de-
fects and inconsistencies. Interestingly, he found an
inordinately large number of kerning pairs; the ma-
jority of which he thinks are not relevant to any
language. Through his exacting work, Karel is im-
proving the quality of the fonts we use every day.

Janusz M. Nowacki unveiled his complete set of
Latin glyphs for the Cyklop font. Designed and cast
in lead in Warsaw in the 1920s by J. Idźkowski, Cyk-
lop is a very heavy sans-serif two-element font, Orig-
inally produced only in the oblique form, in sizes
from 8 to 48 pt, Cyklop is used for newspaper titles,
posters, forms, labels and invitations. In addition to
the new Latin glyphs, Janusz has added a complete
new upright variant.

To round out the day, an informal reception was
held in the lecture hall, where participants could
enjoy a glass of wine, pleasant conversation, and an
exhibition of black and white prints taken by Janusz.

Wednesday

Paweş Jackowski presented this yearŠs crop of TEX
beauties and oddities, sixteen in total. You have to
see these pearls to believe them. The entire collec-
tion can be found at:

http://www.gust.org.pl/pearls.

Paweş Jackowski

Ross Moore spoke about his experience typeset-
ting articles for The Journal of The Australian

Mathematical Society. Leveraging the interactive
capabilities of PDF, AMS journal articles, avail-
able free online, now incorporate useful meta data
that readers would otherwise have to research them-
selves.

To enlighten our path to the future, Arthur

Reutenauer recounted TEXŠs recent history. Sub-
titled ŞPax TEXnica Ů The program on which the
sun never setsŤ, Arthur described how, from TEX78
to Aleph, X ETEX and LuaTEX, the various TEX en-
gine extensions and macro packages have gradually
enabled us to typeset every language and script of
the world Ů well, almost.

TUGboat, Volume 28 (2007), No. 2 171

Ulrik Vieth presented an overview of the TEX his-
toric archive, an archive of historic TEX distribu-
tions and packages hosted on the TUG FTP server
(http://ftp.tug.org/historic/). TEXŠs history
spans thirty years now, and while its early history is
well documented, the history of various macro pack-
ages, fonts, and systems like Metafont and MetaPost
must often be pieced together from anecdotal evi-
dence.

After thirty years, the history of TEX remains
an interesting topic of research. The archive con-
tains a wealth of information, but gaps still exist.
Contributions are welcome, especially those about
(pdf)TEX and Latin Modern fonts.

Bogusşaw Jackowski, Jerzy Ludwichowski and
Janusz M. Nowacki described the current status
of the two large font projects being developed by the
TEX user groups: Latin Modern and TEX Gyre.

The Latin Modern fonts project was begun in
2002. Based on Computer Modern, the Latin Mod-
ern family currently consists of seventy-two text and
twenty math fonts, available in both OpenType and
PostScript Type 1 formats.

The Gyre font project that was begun in 2006
aims to supplement the thirty-three URW++ fonts
distributed with Ghostscript to cover all Latin lan-
guages, similar to the LM fonts. Hinting is improved
and Ąles in OpenType format are provided. Exten-
sions to the math capabilities are planned for the
near future.

Here are the TEX Gyre fonts which have already
been given new names:

Original name : Gyre name

Avant Garde : Adventor
Bookman : Bonum

Courier : Cursor
Helvetica : Heros
Palatino : Pagella

New Century Schoolbook : Schola
Times : Termes

Zapf Chancery : Chorus

The Latin Modern and Gyre project pages are
on the http://www.gust.org.pl website, in the
folders /projects/e-foundry/latin-modern and
/projects/e-foundry/tex-gyre.

Recalling Niklaus WirthŠs statement that Şal-
gorithms plus data structures equal programsŤ,
Marek Ryćko demonstrated how to realise Lisp-
like structures and methods in TEX. Marek argued
that a clean and consistent approach to handling
lists of elements will make programming TEX sim-
pler, and TEX programs, i.e. macros, more reliable.

Jerzy Ludwichowski concluded the conference
proceedings by thanking the organizers, authors and
participants. And as a particular encouragement,
the GUST board awarded Sam the award for the best
conference presentation. The award was impressed
on one of the handmade paper sheets.

⋄ Michael Guravage
(with Hans Hagen & Taco Hoekwater)

172 TUGboat, Volume 28 (2007), No. 2

New TEX activities in Korea

Kihwang Lee, Korean TEX Society

The Korean TEX Society (KTS) was founded in Jan-
uary 2007 to promote TEX-related academic activi-
ties in Korea, focusing on research and development
on the Korean TEX environment, Korean typogra-
phy, and user support. The establishment of KTS

marks the creation of an official and stable organi-
zational foundation which can take over and expand
the efforts of the Korean TEX Users Group (KTUG).

KTUG was formed and maintained by a few
dedicated TEX users including Kangsoo Kim (di-
rector), Jin-Hwan Cho, Koaunghi Un, and Dohyun
Kim since 2002. KTUG has played a vital role in
spreading TEX in Korea providing extensive user
support. KTUG put its effort into implementing
and improving the Korean language support in TEX
and Korean typography specialized for Hangul, the
unique writing system of the Korean language. This
effort has been realized as Hangul-ucs, a LATEX pack-
age which can typeset unlimited Korean texts en-
coded in Unicode including archaic Korean texts.
Despite these fruitful achievements, KTUG had in-
herent limits as an unofficial and casual users group
for effectively continuing the development activities.
This, eventually, gave the motivation for establish-
ing KTS. KTUG will keep its existence in the form
of an unofficial and informal user community.

As a big initial move, KTS published the first
issue of The Asian Journal of TEX (AJT) in April.
It is the first TEX-related journal in Asia. The first
issue contains seven inspiring articles written in Ko-
rean. Jin-Hwan Cho, the author of DVIPDFMx and
DVIasm, is taking the role of the editor of AJT.
The editorial board has Hong Feng (chairman of
Chinese TEX Users Group), Kangsoo Kim (director
of KTUG), Werner Lemberg (author of CJK pack-
age), Haruhiko Okumura (maintainer of the biggest
TEX Q&A forum in Japan), C.V. Radhakrishnan
(founder of Indian TEX Users Group), and Hàn Thé̂
Thành (author of pdfTEX) as its members. The sec-
ond issue of AJT featuring articles and notes written
in English is expected to appear in October.

The society is also preparing to host the Asian
TEX Conference under the general theme of “TEX
in the Age of Digital Humanities” in January, 2008.
This event is sponsored by the Kongju National Uni-
versity. KTS is inviting the members of the editorial
board of AJT as plenary speakers of the conference.
Details of the conference will be posted soon.

For more information on KTS and AJT, please
visit the society web site at http://kts.ktug.kr

and the journal web site at http://ajt.ktug.kr.

Typography

Typographers’ Inn

Peter Flynn

1 Web vs Paper

Three years into a long-term project to move an en-
tire organisation’s documentation into a consistent
format, to move their huge web site into a content
management system, and to provide PDF print-on-
demand, a row has broken out between the web de-
signers and the people who until now have managed
the print versions of the documents. Thirty years
of uncontrolled free-for-all has left them with docu-
ments in all kinds of formats, both in terms of the
physical file type and the design layout.

At the core of the dispute is the question, should
the print (PDF) version of a document look the same
as the web (HTML) version? The web designers,
who have produced a nice-looking site, unsurpris-
ingly say yes, print it from the browser with a print
CSS stylesheet, and maintain the layout and the
look-and-feel they have given the site. The publi-
cations people say no, there are things a print doc-
ument needs that a web document does not, and
vice versa, like referenceable page numbers, a spe-
cific typeface, and layout spacing designed for a par-
ticular paper size.

Their current house print style includes a num-
ber of features difficult to achieve consistently in
a browser, such as drop caps, 50% indentation,
hanging punctuation, and context-sensitive running
headers and footers — the kind of stuff routinely fa-
miliar to LATEX users — but the interesting parts
of the debate have centered around the minutiæ.
The publications staff, having for years been used
to working to tolerances of less than 1pt, are aghast
at the rough-and-ready look of browser-printed doc-
uments; the web developers, conscious of the need
to satisfy customers with hugely disparate technolo-
gies, place a high value on the self-adjusting nature
of browser formatting.

What has been refreshing is to see the debate
spread outside the web developers and the publi-
cations office. You see comments in various online
design and typographic forums from time to time
to the effect that ‘no-one is bothered about it these
days’, often used as a justification for sloppy design
or sloppy typesetting. But people do take an in-
terest in the details of typography when they have
something to make comparisons with.

TUGboat, Volume 28 (2007), No. 2 173

It is often said that the objective of typographic
design is to be invisible; that is, you should arrange
things so that the author’s message is conveyed as
effectively as possible, without the reader necessar-
ily being aware that any design has actually gone
on. This is the way most people read. Only people
like us actually spend time checking out the type-
faces and the design. In the Real World OutsideTM,
layout only gets noticed when it gets in the way, and
typefaces get noticed hardly at all.

An average wordprocessor user probably knows
that there are several odd-looking letterforms in her
font menu, and may well have used some of them for
occasional variety in ephemera like birthday invita-
tions and personal correspondence, but letters and
reports get typed in Times New Roman because it
is ‘what everyone else uses’. In the LATEX classes I
teach, I show some enlarged samples of types while
explaining the difference between the web and a
piece of paper, and almost everyone is surprised at
how different they are, and they are shocked that
there are— what is it?— 30,000 typefaces in exis-
tence.

With what we have to choose from, wouldn’t it
be nice if documents formatted for paper did look
different from those printed from the browser dis-
play?

2 Oddities of punctuation

TEX users will be aware of the vast range of signs
and symbols available (see Scott Pakin’s Compre-

hensive LATEX Symbol List on CTAN), especially in
math mode. A user on comp.text.tex asked about
several of the rarely-used punctuation marks like the
asterism (***), the irony mark (?), the doubt mark,
and the certainty mark. I had vaguely heard of the
first two, so I did a little digging.

The asterism actually exists as a Unicode char-
acter, and although it is not implemented in the
UTF-8 packages, it is easily constructed in LATEX:

\newcommand{\asterism}{\smash{%

\raisebox{-.5ex}{%

\setlength{\tabcolsep}{-.5pt}%

\begin{tabular}{@{}cc@{}}%

\multicolumn2c*\\[-2ex]*&*%

\end{tabular}}}}

The value of \tabcolsep needs testing for your sur-
rounding typeface and size, and re-expressing in rel-
ative units.

The irony mark is even easier with the graphicx
package: \reflectbox?, but the other two seem to
be harder to track down. Wikipedia and Stumble-
upon mention them, but without examples. Does
anyone know where to find them?

3 Helvetica

Films about typefaces are rare to the point of non-
existence, so the appearance of Helvetica, a docu-
mentary to mark the typeface’s 50th anniversary
this year, was a red-letter day in the calendar.

Although it is possibly one of the most heavily-
used typefaces in existence (along with Times), it
is a tribute to its designers that it has remained so
popular and effective for so long. It was one of my
first sheets of Letraset, and a recent paean of praise
I read linked from Slashdot (and which I failed to
bookmark and now cannot find!) went on at length
about how suitable it had been found for every pos-
sible application, from corporate web pages to la-
belling the city corporation’s waste facilities. Per-
sonally I prefer Univers, but there is no question
about Helvetica’s popularity.

H E L

V E T

I C A

v e t

i c a

h e l

I C A

H E L

V E T

The web site at http://www.helveticafilm.

com/ has details and links, including the dates of
screenings worldwide (many already sold out). I
write this before it reaches Ireland, and by unfortu-
nate mischance it screens in San Diego a week before
the TUG 2007 conference there this year. Those who
have already seen it have been very enthusiastic.

4 2008 TUG meeting in Cork

I am of course delighted that TUG has chosen Cork
as the site for the 2008 TUG conference. It will
be 18 years since it was last held there, and a lot
has changed. There is a web site at http://tug.

org/tug2008/, and I would like to see plenty of pa-
pers on typography and typographic design —so get
writing!

⋄ Peter Flynn

Textual Therapy Division, Silmaril

Consultants, Cork, Ireland

Phone: +353 86 824 5333

peter (at) silmaril dot ie

http://blogs.silmaril.ie/peter

174 TUGboat, Volume 28 (2007), No. 2

Book Reviews

Alphabet Stories by Hermann Zapf

Hans Hagen & Taco Hoekwater

Hermann Zapf

Introduction

It pays off to be a Dante member! Some time ago
each member received a copy of Hermann ZapfŠs
monograph ŚAlphabetgeschichtenŠ, a gift from Her-
mann himself. For many users of computers the
name ŚZapfŠ may ring a bell because of the om-
nipresent Zapf dingbats fonts. But with Hermann
Zapf being one of the greatest designers of our time,
there is much more to learn about him.

Being an honorary member of Dante, Hermann
is quite familiar with TEX and friends, and he is in
contact with several TEXies. He worked with Don-
ald Knuth on the book Ś3:16Š, a calligraphic master-
piece. He is also responsible for the design of the
Euler font family (we will tell you more about this
in an upcoming issue). In the recent font projects
(Latin Modern and TEX Gyre) we consult Hermann
on matters that we are unsure about.

Two versions

There are two versions of this book, the German
version and an English translation and it is a plea-
sure to have both, especially because they are not
entirely the same. The German version has a few
more pages than the English translation. And not
only because of the language, there are also true dif-
ferences in the contents.

Editor’s Note: First published in MAPS 35, 2007. Reprinted
with permission.

Born on November 8, 1918, Hermann has grown up
in and been a witness to turbulent times. The Ger-
man version sheds more light on how difficult it was
to survive in these times and how much art was lost
in that period. He wrote down nice anecdotes about
this era, for instance how the ability to write in 1 mm
script impressed his army superiors so much that it
kept him out of trouble. Both books have some dif-
ferences in the graphics that go with that period and
in the English version some quotes are shortened.

The English book catches up on its last pages.
Since 1977 Hermann Zapf has been an associate pro-
fessor at the Rochester Institute of Technology. In
the postscript to this version the curator describes
the inĆuence Hermann has had on them in the past
30 years. At the time we write this review, Her-
mann is visiting this institute, where he is involved
in a calligraphic and typographic display on 27 glass
panels surrounding the new facilities.

TUGboat, Volume 28 (2007), No. 2 175

If you manage to lay hands on a copy, you will no-
tice that itŠs printed on thick cream-colored paper
and very well bound in a dark blue hard cover with
gold initials on the front. At the traditional Dante
Christmas Party in 2006 in Darmstadt, Herman told
the audience that nowadays itŠs not trivial to get
such paper in the quantities needed: most paper
plants only produce paper of moderate quality in
any bulk. But here, large quantities of special paper
were needed; keep in mind that he gave away a free
copy to each of the more than 2000 Dante members.

Other interesting differences between the ver-
sions are in paragraph breaks and whitespace. As
with Dutch, German needs a few more words than
English to express ideas, but the general impres-
sion is that the German version is the most infor-
mative. Other subtle differences are in the technical
terms used. The English version qualiĄes Palatino
Sans as Śsans serifŠ, but the German text talks about
ŚGroteskŠ.

A lifetime

One possible reason why Hermann has always been
able to catch up with technology and could adapt
quite well to the transition from lead to computer,
was that originally he wanted to be an ŚElektroinge-
nieurŠ, but calligraphy attracted him more.

Hermann was never stuck on characters only.
The book starts with a colorful full-page illustration
of Ćowers and small beetles.

Also, in his early period he created a few ŚNoten-
schriftenŠ. The book shows many examples of hand-
writing and the grand Ąnale is ZapĄno, which is
available as a OpenType font with many (complex)
features.

Greek, Arabic, you name it . . . he draws it. Among
his most well known fonts are Optima and Palatino.
Both fonts date back half a century when lead was
still leading, but they were recently redesigned to
take advantage of new technologies. Last year a sans
serif family named Palatino Sans was added, and an
Arabic variant is in the making.

The Ąrst Optima was drafted on thousand lire

notes in 1950. In 1975, this font was used for the
Vietnam Veterans Memorial in Washington.

Hermann spent quite some time in the USA, run-
ning his own company there, teaching at several
designer schools and working with Donald Knuth.
He is still associated with the Rochester Institute of
Technology in New York.

In pdfTEX there is a feature that informally is
called Śhz-optimizationŠ. This feature is inspired by
the work of Hermann on the Śhz-ProgrammŠ and
in the book Hàn Thế ThànhŠs work and HermannŠs
communication with Hàn Thế Thành are explicitly
mentioned.

Although an old printing press has a prominent
position in his house in Darmstadt, Hermann has
always been involved in new technologies. He went
from typesetting in lead to using phototypesetters
to computer based typesetting. The ZapĄno font,
that adapts its choice of glyphs to the circumstances,
is a prime example of this. Steve Jobs of Apple
Computers made sure that on this platform ZapĄno
behaves as it should.

176 TUGboat, Volume 28 (2007), No. 2

For those who use the dingbats there is good news
as well. The Zapf Essentials are the improved and
extended version of these symbols. We now Ąnally
have everything available that Hermann originally
had in mind when he began drafting this symbol set.

The book also shows samples of ZapĄno Ink, yet
another innovation. Here color and shades make
their way into the font but we have to wait till the
font technologies are ready for that. The book tells
us that this is being worked on.

The book is typeset in Palatino Nova with displayed
quotations in the brand new Palatino Sans. In the
not too wide margin keywords are typeset. These
are rotated 90 degrees and printed in blue, which
adds a very nice touch to the bookŠs typographic
feel. Especially so where the keyword in question
is actually a font name, because each of those is
typeset in the font that is indicated.

Afterword

At the Dante Christmas Party 2006 we showed Her-
mann some of his work on a digital ink device and
he seemed quite impressed with what new technolo-
gies can provide. However we fully agree with the
following quote from his monograph:

Ein gedruckter Buchstabe und ein schön
gestaltetes Buch sind etwas Beständiges,
Bleibendes im Vergleich zu dem schnellen
Zugriff zu einer Information im Internet
und dessen Flüchtigkeit der Wiedergabe
am Bildschirm. Es ist das etwas schwer
zu beschreibende eigenartige Erlebnis des
Lesers, wenn er ein Buch in seiner Händen
hält. Ein Buch spricht die Sinne an, der
Druck auf dem Papier, das Umblättern der
Seiten, ganz im Gegensatz zu der abstrakten
elektronischen Darstellung eines Textes.1

Both language versions of the monograph can be
ordered directly from the Merchandise section of
the Linotype website, http://www.linotype.com/

26/merchandise.html.
If you prefer to order elsewhere, the ISBN num-

ber is 3-9810319Ű5-4 for ŚAlphabetgeschichtenŠ, or
3-98103129-6-2 for ŚAlphabet StoriesŠ.

⋄ Hans Hagen & Taco Hoekwater
NTG
http://www.ntg.nl

1 The printed letter Ů or a well-designed book Ů is some-
thing very unique compared to the Ćeeting resolution of
a screen and quick access on the Internet. A book offers a
happy feeling in the hands of the reader and is quite differ-
ent from an abstract presentation of text.

TUGboat, Volume 28 (2007), No. 2 177

Fonts

An exploration of the Latin Modern fonts

Will Robertson

Abstract

The Latin Modern fonts are a newly-created set of
fonts with the principal aim of providing glyphs for
as many languages as possible. There is a multitude
of little-known font shapes in the package, however,
and these will be explored here.

1 Introduction

The Latin Modern family is a relatively recent col-
lection of fonts authored by Bogusşaw Jackowski
and Janusz M. Nowacki [1]. They are intended as
the successors to Donald KnuthŠs Computer Modern
fonts for the Unicode age, to provide the means for
typesetting as many languages as possible that use
the Latin-based alphabet. The collection is vast: it
contains 72 text fonts, each containing almost seven
hundred glyphs, at time of writing, with more prob-
able in the future. ThatŠs some 50,000 glyphs in
total! A very small number of the glyphs are shown
in Ągure 1, chosen mostly at random for their inter-
esting shapes. The maths fonts in the collection are
not considered in this article, as they are equivalent
to the Computer Modern fonts they are based on.

The Latin Modern fonts have been created with
the MetaType1 system [2], whose programmatic na-
ture makes the idea of dealing with such a huge num-
ber of glyphs even possible. The number of fonts
in the collection is greater than the BlueSky Com-
puter Modern Type 1 fonts [3] now used by default
by all current LATEX distributions, but fewer than
in the enormous CM-Super collection (which also
provides many glyphs for multilingual typesetting),
whose fonts have been auto-traced from bitmaps and
hence are of slightly inferior quality [4]. With the
most recent releases, OpenType versions of the fonts
have been made available for more general use. In
this article, we shall look at the fonts the Latin Mod-
ern family provides and how they may be accessed
in LATEX.

2 NFSS refresher

To provide context, some brief details of LATEXŠs
font selection scheme are expounded here. Refer
to the documentation [5] for further information.

Editor’s note: Reprinted from The PracTEX Journal 2006-1
(http://tug.org/pracjourn), by permission.

Υ ð ể Þ Ę Ŋ ǻ ằ Ặ Ǽ

Figure 1: Ten of the 50000-odd glyphs in the Latin
Modern collection.

Three main families are deĄned for a document:
the default roman, sans serif, and typewriter fonts.
These are selected with the \rmfamily, \sffamily,
and \ttfamily commands, respectively. Font fami-
lies are requested with \fontfamily{...}; all such
\font... commands (more to be seen) must be fol-
lowed by \selectfont, if nothing else, to perform
the actual font selection.

Variations along two other font axes (other than
family) are possible: series and shape. The series
axis is used to express weight and width, such as
bold or condensed, and combinations thereof. We
will be using the \fontseries{...} command later
to look at various weights of the Latin Modern fonts.
The shape axis is used to express italics and small
caps, among other more esoteric options. We shall
be content in the shape axis to use the commands
\itshape, \slshape, and \scshape1 to choose be-
tween the italic, oblique, and small caps shapes.
Note that when only slanted shapes are available,
\itshape will generally also select them.

How do we discover all the codes used to ex-
press the families, series and shapes for each font?
These are all deĄned within font deĄnition (.fd)
Ąles, which are supplied one per font encoding. The
most common encoding is T1, which provides glyphs
for many, but not all, European languages. To dis-
cover the font shapes available in the Latin Modern
collection, then, these Ąles must be located within
the TEX distribution. They are found in the texmf/

tex/latex/lm directory (where this is located will
be system dependent), and investigation here will
yield all of Latin ModernŠs secrets.

The encodings currently supported by the Latin
Modern fonts in LATEX are: T1, for most European
languages; TS1, a large collection of miscellaneous
symbols to accompany T1. QX, a variant of T1 that
is more suitable for Slavonic languages (also includ-
ing the 	 ligature, cf. fk); LY1, an alternative to
T1 that supports a mixture of common symbols and
accented letters; T5, for Vietnamese; OT1, for em-
ulating TEXŠs original ad-hoc font encoding; OT4,
an obsolete encoding based on OT1 that supports
Polish; IL2, a ŚnonstandardŠ encoding suitable for
Czech fonts; and, L7X, a ŚnonstandardŠ encoding for
Lithuanian.

1 Or \textit{...}, \textsl{...}, \textsc{...}, respec-
tively, which change the font of their argument instead.

178 TUGboat, Volume 28 (2007), No. 2

3 The same-old

Everyone is familiar with the default TEX fonts. The
Latin Modern fonts are selected with, in the pream-
ble,2

\usepackage{lmodern}

\usepackage[T1]{fontenc}

which should make barely any visible changes to al-
ready existing documents; these fonts are an exten-
sion of Computer Modern, not a new design.

To begin, the three default families are shown,
using common LATEX font selecting commands. In
the examples shown in this article, indented entries
indicate that the previous outdented command(s)
are still active.

Roman Perhaps simply because he could, Knuth
included a large amount of variation in the fonts he
designed for TEX. Certainly, no one since has really
matched his efforts. The descendants of his fonts
still bear this curious hallmark: the Latin Mod-
ern Roman family contains both slanted and italic
shapes.

\rmdefault LM Roman
\itshape LM Roman Italic

\slshape LM Roman Oblique

\scshape LM Roman Small Caps

\bfseries LM Roman Bold Extended

\itshape LM Roman Bold Italic Extended

\slshape LMR Bold Oblique Extended

Sans serif Variations here must wait until later;
here are the Śstandard fourŠ. Note that the sans serif
family does not have a true italic, nor small caps.

\sffamily LM Sans

\slshape LM Sans Oblique

\bfseries LM Sans Bold

\slshape LM Sans Bold Oblique

Typewriter The italic shape here is perhaps a lit-
tle unpleasant, and the fact that it has small caps is
quite unusual considering that the sans serif family
does not.

\ttfamily LM Typewriter

\itshape LM Typewriter Italic

\slshape LM Typewriter Oblique

\scshape LM Typewriter Small Caps

\bfseries LM Typewriter Dark

\slshape LM Typewriter Dark Oblique

The majority of the shapes demonstrated above
are available in the Computer Modern fonts (that
is, the current LATEX defaults). The bold (ŚDarkŠ)

2 Change T1 to another option (LY1, QX, T5, etc.), or
combination thereof, depending on which glyphs you re-
quire/which language(s) you are typesetting.

typewriter fonts above, however, are completely new
to Latin Modern. While the original METAFONT

fonts are parameterised such that changes like this
were easily possible, its bitmap output format is very
outdated and rarely used these days.

4 Interlude Ů optical sizes

In the old days of printing, fonts were made of metal
and were literally one to a size. The characters in
a font for the body text of a book would look no-
ticeably different to that same font at a larger size
for titling. Nowadays, computer-based fonts can be
scaled linearly to any size imaginable, but well de-
signed fonts are still made available with variations
based on the intended size of the output. In brief,
the smaller a font is, the less Ąne its intricacies must
be in order to survive the transfer from (possibly
imperfect) printed page or low-resolution screen to
eye. Conversely, a font designed to be large can be
more delicately rendered.

For the original Computer Modern fonts, de-
signed in METAFONT, the optical size could be cho-
sen exactly for any size. Due to constraints on early
computers, speciĄc sizes were chosen as canonical,
which were then inherited when they were converted
to the PostScript Type 1 format. The Latin Modern
fonts, in turn, also preserve these canonical sizes for
all of the ŚmajorŠ shapes, although such a profusion
of optical sizes is almost certainly unnecessary, since
there neednŠt be such a great range of font sizes in
a single document.

The set of optical sizes for Latin Modern Ro-
man is shown in Ągure 2, the largest number for any
of the Latin Modern families. The non-linear na-
ture of the scaling is immediately apparent, and it
is quite clear how the characteristics change from
robust to delicate, most signiĄcantly in the widths
and stroke thicknesses of the characters, as the de-
sign size increases.

The Latin Modern fonts with a range of optical
sizes are: roman upright, italic, oblique, and bold

Latin Modern Roman, design size 5 pt

Latin Modern Roman, design size 6 pt

Latin Modern Roman, design size 7 pt

Latin Modern Roman, design size 8 pt

Latin Modern Roman, design size 9 pt

Latin Modern Roman, design size 10 pt

Latin Modern Roman, design size 12 pt

Latin Modern Roman, design size 17 pt

Figure 2: The optical size range of Latin Modern
Roman, each font at 10 pt.

TUGboat, Volume 28 (2007), No. 2 179

extended; sans upright and oblique; and typewriter
upright. These optical size variations constitute 32
of 69 fonts in the collection.

5 Non-default weights

As previously mentioned, the Latin Modern collec-
tion shares with the Computer Modern fonts some
shapes that are not often used in practice, prob-
ably due to the fact that they canŠt be accessed
with the ŚnormalŠ NFSS commands such as \emph

and \textbf.

5.1 Other bold shapes

A non-extended version of the roman bold exists.
Unfortunately, it is available in but a single design
size (unlike its extended counterpart), and lacks true
italics.

\bfseries LM Roman Bold Extended

\fontseries{b}\selectfont LM Roman Bold

\fontseries{b}\slshape LM Roman Bold Oblique

The sans serif family also has a ŚsecretŠ bold shape:

\sffamily

\bfseries LM Sans Bold

\fontseries{sbc}

\selectfont LM Sans Demi Condensed

\slshape LM Sans Demi Condensed Oblique

5.2 Italic small caps

The slantsc package allows \slshape and \scshape

to be combined in order to select oblique small caps.
(Or \itshape for truly italic small caps if they ex-
ist.) With \usepackage{slantsc}, it is possible to
select

\scshape\slshape LM Roman Oblique Small Caps

\ttfamily\scshape\slshape

LM Typewriter Oblique Small Caps

Oblique or italic small caps are scarce in traditional
typesetting, but their use is becoming more popular
in modern times.

5.3 The new typewriter shapes

Quite recently in the lifetime of the Latin Modern
collection, the typewriter fonts have been supple-
mented with extra shapes, including the ŚTypewriter
DarkŠ fonts previously seen. Also present are light
and condensed light shapes, the latter being a 2

3

reduction in width; that is, 120 characters in con-
densed light will Ąt in the space for 80 regular type-
writer letters. Note that every character in every
weight and shape of the typewriter fonts has the
same width so that the letter grid remains constant
when switching between styles.

\ttfamily

\fontseries{b}

\DeclareFontFamily{T1}{lmtt}{}

\DeclareFontShape{T1}{lmtt}

{m}{n}{<-> ec-lmtl10}{}

\DeclareFontShape{T1}{lmtt}

{m}{\itdefault}{<-> ec-lmtlo10}{}

\DeclareFontShape{T1}{lmtt}

{\bfdefault}{n}{<-> ec-lmtk10}{}

\DeclareFontShape{T1}{lmtt}

{\bfdefault}{\itdefault}{<-> ec-lmtko10}{}

Figure 3: Code to select lightface typewriter by
default. For the T1 encoding; adapt as required for the
other encodings by looking in the ...lmtt.fd files, as
discussed in section 2.

\selectfont LM Typewriter Dark

\slshape LM Typewriter Dark Oblique

\fontseries{l}

\selectfont LM Typewriter Light

\slshape LM Typewriter Light Oblique

\fontseries{lc}

\selectfont LM Typewriter Light Condensed

\slshape LM Typewriter Light Condensed Oblique

One may wonder why the light weights were
produced. As the medium typewriter face is rel-
atively heavy, it does not have much contrast with
the new dark weight; compare the example on page 3
with the one on the previous page. So, in situations
in which the bold face is to be used, the light face
should be selected as the ŚnormalŠ typewriter weight.
See Ągure 3 for preamble code to effect this.

6 Other families

As well as the secret weights mentioned above, there
are entire families in the Latin Modern collection of
which many people may be unaware.

6.1 Sans extended

The family ŚLatin Modern Sans ExtendedŠ (some-
times referred to as ŚSans QuotationŠ due to KnuthŠs
original use for it) is an extended version of the de-
fault sans serif family, intended for use at small font
sizes (its nominal design size is 8 pt).

\renewcommand\sfdefault{lmssq}

\sffamily LM Sans Extended

\slshape LM Sans Extended

\bfseries LM Sans Extended

\slshape LM Sans Extended

The variation in sans bold is interesting with regard
to the condensed sans shown in section 5.1, but the
shapes arenŠt entirely suitable for combination since
they have different x-heights arising from their dif-
ferent design sizes:

Condensed Bold Extended

180 TUGboat, Volume 28 (2007), No. 2

\DeclareFontFamily{T1}{lmvtt}{}

\DeclareFontShape{T1}{lmvtt}

{m}{n}{<-> ec-lmvtl10}{}

\DeclareFontShape{T1}{lmvtt}

{m}{\itdefault}{<-> ec-lmvtlo10}{}

\DeclareFontShape{T1}{lmvtt}

{\bfdefault}{n}{<-> ec-lmvtk10}{}

\DeclareFontShape{T1}{lmvtt}

{\bfdefault}{\itdefault}{<-> ec-lmvtko10}{}

Figure 4: Preamble code to select the lightface
variable width typewriter by default.

6.2 Typewriter proportional

As the era of teletext computers becomes ever more
distant, perhaps the idea of a Ąxed width font can
be thought to be archaic. The Latin Modern Type-
writer family has an accompanying variable width
design, for those who wish to use it:

\renewcommand\ttdefault{lmvtt}

\ttfamily LMTT Proportional

\slshape LMTT Proportional Oblique

\fontseries{l}

\selectfont LMTT Proportional Light

\slshape LMTT Proportional Light Oblique

\fontseries{b}

\selectfont LMTT Proportional Dark

\slshape LMTT Proportional Dark Oblique

It can be seen that here, as in the Ąxed-width type-
writer fonts, every alphabet has the same horizontal
width. Again, if the bold face is to be used for con-
trast, better results will be achieved by selecting the
light face as default. This can be effected in a sim-
ilar manner as before (section 5.3, refer in this case
to t1lmvtt.fd); see Ągure 4.

6.3 Odd shapes

These fonts exist as examples to demonstrate the
Śmeta-nessŠ of the Computer Modern family, in that
obliqueness of the italics and the stem height of the
roman, to name but two parameters in the design,
may be varied orthogonally. Their use is not partic-
ularly widespread.

The Dunhill family is named after the cigarette,
for obvious reasons:

\fontfamily{lmdh}\selectfont Latin Modern Dunhill

\fontfamily{lmdh}\slshape LM Dunhill Slanted

There is also an Śupright italicŠ font, which I
Ąnd quite unusual:3

\fontshape{ui}\selectfont

Latin Modern Unslanted italic

7 Conclusions

This concludes our tour of the different shapes of the
Latin Modern font collection, which are the more
multilingual replacements of the vector Computer
Modern fonts. They have been exhibited in the be-
lief that they are not as well known as they deserve,
for much time and effort has been spent to supple-
ment each of the fonts with hundreds of extra glyphs.

We have seen some shortfalls and awkwardness
with LATEXŠs font selection scheme in being able to
select, in a straightforward manner, the large va-
riety of shapes and weights that the collection of-
fers. Brief examples detailing how to overcome these
problems have been given, but more work is required
for a Ćexible generic solution. In the future, we look
forward to the creation of a better user interface for
this purpose, either speciĄcally for these fonts, or in
general with a ŚnewerŠ font selection scheme.

Bibliography

[1] Bogusşaw Jackowski and Janusz M. Nowacki.
Latin Modern: Enhancing Computer Modern
with accents, accents, accents. TUGboat, 24(1):
64Ű74, 2003. http://www.tug.org/TUGboat/

Articles/tb24-1/jackowski.pdf.

[2] Bogusşaw Jackowski, Janusz M. Nowacki, and
Piotr Strzelczyk. Programming PS Type 1
fonts using MetaType1: Auditing, enhancing,
creating. TUGboat, 24(3):575Ű581, 2003.
http://www.tug.org/TUGboat/Articles/

tb24-3/jackowski.pdf.

[3] Computer Modern and AMSFonts in Type 1
(PostScript) form. http://www.ams.org/tex/

type1-fonts.html.

[4] Vladimir Volovich. CM-Super: Automatic
creation of efficient Type 1 fonts from
METAFONT fonts. TUGboat, 24(1):75Ű78, 2003.
http://www.tug.org/TUGboat/Articles/

tb24-1/volovich.pdf.

[5] LATEX3 Project Team. LATEX 2ε font selection.
http://www.latex-project.org/guides/

fntguide.pdf.

3 This will work in the next release of the Latin Modern
fonts; at time of writing the font exists but the font deĄnition
for LATEX is missing.

TUGboat, Volume 28 (2007), No. 2 181

Creation of a PostScript Type 1 logo font

with MetaType 1

Klaus Höppner

Abstract

MetaType 1 is a tool created by Bogusşaw Jackow-
ski, Janusz Nowacki, and Piotr Strzelczyk for cre-
ating PostScript Type 1 fonts. It uses METAPOST,
t1utils and some AWK scripts to start from a META-
POST source with some special macros, resulting in
the AFM, TFM and PFB Ąles needed to use the font
as any other PostScript font.

MetaType 1 was used to create the Latin Mod-
ern fonts, derived from Computer Modern fonts but
including many more accented characters and nowa-
days part of most TEX distributions. Other new
fonts such as Iwona and Kurier have also been cre-
ated by the developers of MetaType 1.

I came into contact with METAPOST when I
wanted to convert an existing logo font from META-
FONT to PostScript Type 1. Unfortunately there
doesnŠt yet exist a tutorial or cookbook for using
MetaType 1. So I started to play with the example
fonts supplied as part of MetaType 1 and to read the
comments in the source. This tutorial will give an
example and the lessons I learned.

1 Introduction

When Donald E. Knuth invented TEX, he also cre-
ated his own description language for high quality
fonts. It was named METAFONT. So the process
from a TEX source to some paperwork was as fol-
lows: Compile the TEX source to get a DVI Ąle that
contains references to the fonts that were used in the
document Ů in fact the only thing that TEX knows
about a font is its metrics. To produce the docu-
ment on paper, the DVI driver invoked METAFONT

(the program) to convert the METAFONT source of
the font, i. e. the geometrical description of the font
outlines, to a bitmapped font suited for the resolu-
tion and technical details of the printer by using the
METAFONT mode for this special printer.

While this approach works Ąne if you work
alone and just send your documents to your personal
printer, it has some disadvantages if you want to
exchange documents electronically. Normally, dis-
tributing DVI isnŠt the best idea, since it requires
that the recipient has a TEX system installed includ-
ing all fonts that were used in your document Ů not
to mention any graphics included in your document.
So in most cases you will send a PostScript Ąle or
nowadays a PDF Ąle. In this case, all the fonts from
METAFONT sources will be embedded as bitmapped

PostScript Type 3 fonts. When the recipient prints
your document, it may look Ąne, but it may look
poor if the METAFONT mode used to create the bit-
mapped font didnŠt match the printer, and the doc-
ument will probably look very poor on the screen
(especially in old versions of Acrobat Reader).

So when exchanging documents, it is preferable
to embed the fonts as outline fonts. For these, the
usual format used in the TEX world is PostScript
Type 1 (though this is gradually being replaced by
OpenType). The Type 1 format uses a subset of the
well established PostScript language.1

Meanwhile, most of the fonts used in the TEX
world are available as PostScript Type 1 fonts, start-
ing with the Type 1 version of KnuthŠs CM fonts up
to the Latin Modern fonts that augment CM with a
complete set of diacritic characters.

2 MetaType 1

MetaType 1 is the tool that was used to create the
Latin Modern fonts from the METAFONT sources of
CM fonts, and for the creation of completely new
fonts such as Iwona.

MetaType 1 relies on METAPOST, a variant of
METAFONT producing small pieces of PostScript as
output, written by John Hobby. Bogusşaw Jackow-
ski, Janusz Nowacki, and Piotr Strzelczyk wrote a
set of METAPOST macros and added some AWK

scripts to create the input Ąles that can be con-
verted to Type 1 with t1utils. Thus, one advantage
of MetaType 1 is that it uses a source format that is
very similar to the old METAFONT sources.

3 Our example

I came into touch with MetaType 1 when I wasnŠt
satisĄed with the DANTE logo being typeset from
the old METAFONT source with all the disadvan-
tages mentioned above. So I wanted to give Meta-
Type 1 a try to convert the DANTE logo font into
a PostScript Type 1 font.

Fortunately, the DANTE logo font contains just
the characters needed to set the logo:

DANTE
So, it was just Ąve characters for which the META-
FONT source had to be made suitable to be pro-
cessed with MetaType 1.

Unfortunately, I found out that the available
documentation for MetaType 1 was rather limited:
articles from conference talks [1, 2], the commented

1 It is sometimes said that Type 1 fonts are outline fonts
while Type 3 are bitmap fonts. That’s not true, since Type 3
fonts may comprise both outlines and bitmaps.

182 TUGboat, Volume 28 (2007), No. 2

source for the MetaType 1 macros and two sample
fonts that are part of the MetaType 1 distribution.

But in the end, I found my way, and as you
will see, was able to create my own Type 1 font.
To make things a bit simpler for this tutorial, I will
show the steps I made for a small test font with just
two characters, ŞaŤ and ŞtŤ, simpliĄed compared to
the original characters from the DANTE logo font.
Hopefully it will make the presented source more
understandable, even if you havenŠt programmed in
METAPOST before.

3.1 Installation

Installing MetaType 1 was easy enough. I down-
loaded the ZIP archive Ąle from CTAN [3] and copied
the Ąles to the appropriate locations of my lo-
cal texmf tree: the .mp Ąles into metapost/mt1,
the .mft Ąles into mft/mt1, the .sty Ąles into
macros/generic/mt1, and Ąnally the .awk and
.dat Ąles into scripts/mt1.2

The main problem in my case was that Meta-
Type 1 was shipped with a set of DOS batch Ąles
that are used to create the fonts, but I was using
GNU/Linux. So I looked into these Ąles to Ąnd out
what they do Ů in fact they were rather simple, just
calling METAPOST to produce a small PostScript
Ąle for every glyph in the font and then using some
AWK scripts to merge and assemble these Ąles into
a raw PostScript font that is converted into Post-
Script Type 1 with t1asm (part of t1utils). So sev-
eral immediate Ąles and steps are involved, but the
workĆow is straightforward. Eventually, I wrote a
small MakeĄle that does the job on a Unix system,
as shown in listing 3. From this point, I could cre-
ate the TFM, PFB and MAP Ąles for a font with the
command make FONT=myfont.

I also manually created an FD Ąle for using
the font in LATEX. These Ąles could all be installed
into the appropriate locations inside a texmf tree.
Testing of a font is convenient in pdfTEX since one
can use a MAP Ąle locally in a document using the
\pdfmapfile primitive, while for a real font one nor-
mally will install the MAP Ąle using the updmap

script (or equivalent).

3.2 The Ąrst font

After these prerequisites were done, I could start
with my Ąrst font. I copied the Ąle tapes.mp (a
sample font that is part of the MetaType 1 distri-
bution) into myfont.mp, found several settings with
font parameters starting with pf_info_*, changed

2 This location isn’t required since these Ąles aren’t found
by the Kpathsea library, but instead via an environment vari-
able, but at least this location seemed to be meaningful.

Listing 1: First deĄnition of ŞaŤ and ŞtŤ.

encode ("a") (ASCII "a");

introduce "a" (store+utilize) (0) ();

beginglyph("a");

path pa, pb, pc;

z0 = (round_hdist+radius,radius);

z1 = (round_hdist+2radius-strength,0);

pa = fullcircle scaled 2 radius shifted z0;

pb = reverse fullcircle

scaled (2radius-2strength) shifted z0;

pc = unitsquare xscaled strength

yscaled 2radius shifted z1;

Fill pa;

unFill pb;

Fill pc;

fix_hsbw(2radius+round_hdist+hdist,0,0);

endglyph;

encode ("t") (ASCII "t");

introduce "t" (store+utilize) (0) ();

beginglyph("t");

path pa, pb;

z0 = (hdist+3.5strength,1.5strength);

x1 = hdist + 2strength;

x2 = x1 + strength;

y1 = y2 = height;

z3 = (hdist,height-3strength);

pa = z1

-- (halfcircle rotated 180

scaled 3strength shifted z0)

-- (reverse halfcircle rotated 180

scaled strength shifted z0)

-- z2 -- cycle;

pb = unitsquare xscaled 5strength

yscaled strength shifted z3;

Fill pa;

Fill pb;

fix_hsbw(2hdist+5strength,0,0);

endglyph;

them where appropriate (font name, family, creator,
etc.) and kept the rest unchanged.

Then I deĄned the Ąrst two characters accord-
ing to the following rule:

Characters consist of closed paths, filled or
unfilled paths, where filled paths always turn
counter clockwise and unfilled paths always
clockwise.

So when designing the letter ŞaŤ, I deĄned an
outer circle that was Ąlled and then an inner circle
to be unĄlled and then a rectangular shape as ver-
tical stem. And the letter ŞtŤ was just built from a
vertical stem (with a hook at the right bottom) and
a horizontal bar. The deĄnitions for the characters
are shown in listing 1.

TUGboat, Volume 28 (2007), No. 2 183

Please notice in the deĄnition of letter ŞaŤ, that
the path for the outer circle is a (counter clockwise)
fullcircle, while the inner circle is a reverse fullcircle,
since the former one is Ąlled while the latter one is
unĄlled. Filling and unĄlling of the paths is done
by the macros Fill and unFill; these macros warn
you if the turning direction of the path is wrong.

Proofs for the glyphs are produced by compiling
the Ąle myfont.mp with METAPOST. As you can
see, they really do look like an ŞaŤ and a ŞtŤ:

Now letŠs see how the Type 1 font looks:

Something went wrong. After taking a closer
look, it becomes obvious. The regions where Ąlled
paths overlap become unĄlled. This is due to the
fact that Ąlling of paths is done with an exclusive-or
Ąll, i. e. when Ąlling a path, regions inside that are
already black become white. As this isnŠt what we
want to achieve, we formulate another rule to keep
in mind:

Paths must not overlap!

Although it is possible with pure METAPOST to
Ąnd the intersection points of paths to remove over-
lapping parts, this tends to be painful. Since Meta-
Type 1 was used to attach cedilla and ogonek accents
to various characters in the extension of CM to LM,
this painful work of Ąnding the outline of two over-
lapping paths was encapsulated into a macro that is
part of MetaType 1, named find_outlines. LetŠs
see how this macro is utilized for the letter ŞaŤ:

find_outlines(pa,pc)(r);

Fill r1;

It Ąnds the outline of the two overlapping paths pa

and pc, with the result written in the path array
r. The result is an array because the outline of the
paths may consist of more than one path, but in our
case it is just one path, accessible as r1. The same
is applied for the letter ŞtŤ (just the names of the
two paths slightly differ).

When Ąlling the new outlines instead of the
overlapping paths, we now get the following result:

a t
So, obviously Ąnding the outline path for the

ŞtŤ worked, but it failed for the ŞaŤ. Why? Be-
cause in the case of the ŞaŤ, both paths touch in one
point without crossing at the right side of the ver-
tical stem, i. e. they have an intersection point with
the same direction vector. This confuses the macro
that Ąnds the outlines since it doesnŠt know which
path to follow Ů and in this case it chooses wrong.
So, letŠs bear in mind another rule:

Paths must not touch tangentially!

To resolve the problem, we use a simple trick:
Shift the vertical stem a tiny amount to the right,
so that the paths donŠt touch anymore. In META-
POST you can use eps as a tiny positive number (in
mathematics, an arbitrary small number is usually
denoted by ǫ). The following lovely characters are
the result (the METAPOST deĄnitions are shown in
listing 2):

a t
3.3 Kerning

Our glyphs are ready, but a normal font has more
features, such as kerning pairs and ligatures. In the
former case, for a pair of characters the horizontal
spacing between them is changed, while in the latter
case a character pair is replaced by another glyph.

DeĄning a kerning pair in MetaType 1 is sim-
ple. After the deĄnition of the glyphs, we can add
a kerning table. In our case it looks like this:

LK("a") KP("t")(-3ku); KL;

In the list of ligatures and kernings for the letter ŞaŤ
we deĄne a kerning of −3 ku if it is followed by the
letter ŞtŤ to remove the optical gap between them
(the kerning unit ŚkuŠ is deĄned elsewhere in the
METAPOST source). The effect of kerning is shown
in Ągure 1.

Ligatures donŠt make sense for our sample font,
so I leave them out for this tutorial. In principle they
work similarly; you merely deĄne from which slot in
the font the replacement for a speciĄed character
pair is to be taken.

184 TUGboat, Volume 28 (2007), No. 2

Listing 2: DeĄnition of ŞaŤ and ŞtŤ with outlines.

encode ("a") (ASCII "a");

introduce "a" (store+utilize) (0) ();

beginglyph("a");

path pa, pb, pc, r;

z0 = (round_hdist+radius,radius);

z1 = (round_hdist+2radius-strength+eps,0);

pa = fullcircle scaled 2 radius shifted z0;

pb = reverse fullcircle

scaled (2radius-2strength) shifted z0;

pc = unitsquare xscaled strength

yscaled 2radius shifted z1;

find_outlines(pa,pc)(r);

Fill r1;

unFill pb;

fix_hsbw(2radius+round_hdist+hdist,0,0);

endglyph;

encode ("t") (ASCII "t");

introduce "t" (store+utilize) (0) ();

beginglyph("t");

path pa, pb, r;

z0 = (hdist+3.5strength,1.5strength);

x1 = hdist + 2strength;

x2 = x1 + strength;

y1 = y2 = height;

z3 = (hdist,height-3strength);

pa = z1

-- (halfcircle rotated 180

scaled 3strength shifted z0)

-- (reverse halfcircle rotated 180 scaled

strength shifted z0)

-- z2 -- cycle;

pb = unitsquare xscaled 5strength

yscaled strength shifted z3;

find_outlines(pa,pb)(r);

Fill r1;

fix_hsbw(2hdist+5strength,0,0);

endglyph;

3.4 Hinting

When you embed fonts as outline fonts, you leave
the task of rasterizing the glyphs to your output de-
vice (printer or viewer). Unfortunately, this Ąnal
result may look rather poor, especially on low res-
olution devices such as screens. Imagine the letter
ŞHŤ and how it is rasterized into pixels. If weŠre
unlucky, the left and right vertical stem will have
a different width. On a printer with 1200 dpi itŠs
nearly unnoticeable, but on the screen a difference
of one pixel makes it look quite ugly.

To prevent this, high quality fonts use a mech-
anism called ŞhintingŤ to help the rasterizer (e. g.
the PostScript RIP in a printer) to keep vertical or
horizontal stems the same width.

at
at

Figure 1: Our font without (top) and with (bottom)
kerning.

Figure 2: Hinting informations (shaded areas).

MetaType 1 supports hinting by providing the
macros fix_hstem and fix_vstem that try to Ąnd
horizontal or vertical stems of a given width and add
hinting information for them. For example, since we
know that our letters ŞaŤ and ŞtŤ have stems of the
width strength, we add hinting information by

fix_hstem(strength,pa,pb);

fix_vstem(strength,pa,pb);

You can see what hinting information was found
as shaded areas in the proofs (Ągure 2).

4 Conclusions

I found that MetaType 1 is a suitable tool to create
PostScript Type 1 fonts. Though there is a lack of
beginning documentation, I was able to create a Ąrst
font quite quickly by relying on an existing META-
FONT source. Of course, knowledge of METAPOST

or METAFONT is highly desirable. Understanding
hinting is a bit more difficult, but Ąnally possible.

References

[1] Bogusşaw Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, MetaType 1: A MetaPost-based
engine for generating Type 1 fonts, Proc. of
EuroTEX 2001, published in MAPS 26, 2001,
111Ű119.

[2] Bogusşaw Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, Programming PostScript Type 1
fonts using MetaType 1: Auditing, enhancing,
creating, TUGboat, volume 24 (2003), no. 3.

[3] http://mirror.ctan.org/fonts/utilities/

metatype1/

TUGboat, Volume 28 (2007), No. 2 185

Listing 3: Makefile for font creation with MetaType 1.

METATYPE1 = /home/klaus/texmf/scripts/mt1

.PHONY: pfb tfm proof all

all: pfb tfm

proof: $(FONT).pdf

pfb: $(FONT).pfb

tfm: $(FONT).tfm

%.p: %.mp

mpost "\generating:=0; \input $<"

gawk -f $(METATYPE1)/mp2pf.awk \

-vCD=$(METATYPE1)/pfcommon.dat \

-vNAME=‘basename $< .mp‘

%.pn: %.p

gawk -f $(METATYPE1)/packsubr.awk \

-vVERBOSE=1 -vLEV=5 -vOUP=$@ $<

%.pfb: %.pn

t1asm -b $< $@

%.tfm: %.mp

mpost "\generating:=1; \input $<"

%.pdf: %.ps

ps2pdf $< $@

%.ps: %.dvi

dvips -o $@ $<

%.dvi: %.tex

tex $<

%.tex: %.mp

mpost $<

cp $< _t_m_p.mp

mft _t_m_p.mp -style=mt1form.mft

echo ’\input mt1form.sty’ > $@

test -f piclist.tex && cat piclist.tex >> $@

test -f _t_m_p.tex && cat _t_m_p.tex >> $@

echo ’\endproof’ >> $@

Listing 4: The complete font.

% A sample font for PRACTEX2006

input fontbase;

% Global parameters for all characters

size := 1000; depth := 0; math_axis := 1/2size;

radius := 300; hight := 900; strength := 80;

ku := 18; hdist := 3ku; round_hdist := 1ku;

% Font settings

pf_info_familyname "MyFont";

pf_info_fontname "MyFont-Regular";

pf_info_weight "Normal";

pf_info_version "0.01";

pf_info_capheight hight;

pf_info_xheight 2radius;

pf_info_space 10ku;

pf_info_adl size, 0, 0;

pf_info_author "Made by KH for PRACTEX2006"

pf_info_overshoots (1000,10), (0, -10);

pf_info_encoding "at";

pf_info_creationdate;

beginfont

encode ("a") (ASCII "a");

introduce "a" (store+utilize) (0) ();

beginglyph("a");

path pa, pb, pc, r;

z0 = (round_hdist+radius,radius);

z1 = (round_hdist+2radius-strength+eps,0);

pa = fullcircle scaled 2 radius shifted z0;

pb = reverse fullcircle scaled (2radius-2strength)

shifted z0;

pc = unitsquare xscaled strength yscaled 2radius

shifted z1;

find_outlines(pa,pc)(r);

Fill r1;

unFill pb;

fix_hstem(strength,pa,pb,pc);

fix_vstem(strength,pa,pb,pc);

fix_hsbw(2radius+round_hdist+hdist,0,0);

endglyph;

encode ("t") (ASCII "t");

introduce "t" (store+utilize) (0) ();

beginglyph("t");

path pa, pb, r;

z0 = (hdist+3.5strength,1.5strength);

x1 = hdist + 2strength;

x2 = x1 + strength;

y1 = y2 = hight;

z3 = (hdist,hight-3strength);

pa = z1 -- (halfcircle rotated 180

scaled 3strength shifted z0)

-- (reverse halfcircle rotated 180

scaled strength shifted z0)

-- z2 -- cycle;

pb = unitsquare xscaled 5strength yscaled strength

shifted z3;

find_outlines(pa,pb)(r);

Fill r1;

fix_hstem(strength,pa,pb);

fix_vstem(strength,pa,pb);

fix_hsbw(2hdist+5strength,0,0);

endglyph;

LK("a") KP("t")(-3ku); KL;

endfont.

186 TUGboat, Volume 28 (2007), No. 2

Writing ETX format font encoding
specifications

Lars Hellström

Abstract

This paper explains how one writes formal specifi-
cations of font encodings for LATEX and suggests a
ratification procedure for such specifications.

1 Introduction

One of the many difficult problems any creator of
a new typesetting system encounters is that of font
construction — to create fonts that provide all the
information that the typesetting system needs to do
its job. From the early history of TEX, we learn
that this problem is so significant that it motivated
the creation of TEX’s companion and equal META-
FONT, whose implementation proved to be an even
greater scientific challenge than TEX was. It is also
a tell-tale sign that the fonts subtree of the teTEX
distribution is about three times as large as the tex

subtree: fonts are important, and not at all trivial
to generate.

The most respected and celebrated part of font
construction is font design — the creation from prac-
tically nothing of new letter (and symbol) shapes, in
pursuit of an artistic vision — but it is also some-
thing very few people have the time and skill to
carry through. More common is the task of font
installation, where one has to solve the very con-
crete problem of how to set up an existing font so
that it can be used with (LA)TEX. The subprob-
lems in this domain ranges from the very technical
— how to make different pieces of software “talk” to
each other, for example making information in file
format A available to program B — to the almost
artistic — finding values for glyph metrics and kerns
that will make them look good in text — but these
extremes tend to be clearly defined even if solving
them can be hard, so they are not what will be con-
sidered here. Rather, this paper is about a class of
more subtle problems that have to do with how a
font is organised.

The technical name for such a “font organisa-
tion” is a font encoding. In some contexts, font en-
codings are assumed to be mere mappings from a set
of “slots” to a set of glyph identifiers, but in TEX the
concept entails much more; the various aspects are
detailed in subsequent sections. For the moment,
it is sufficient to observe that the role that a font
encoding plays in a typesetting system is that of a
standard: it describes what an author can expect
from a font, so that a document or macro package

can be written that work with a large class of fonts
rather than just for one font family. The world of
(LA)TEX would be very different if papers published
in journal X that is printed in commercial font Y
could not use essentially the same sources as the
author prepared for typesetting in the free font Z.
Fine-tuning of a document (overfull lines, bad page
breaks, etc.) depends on the exact font used, but it
is a great convenience that one can typeset a well-
coded body of text under a rather wide range of
layout parameters (of which the main font family is
one) values and still expect the result to look de-
cent, often even good. Had font encodings not been
standardised, the results might not even have been
readable.

When font encodings are viewed as standards,
the historical states of most (LA)TEX font encodings
becomes rather embarrassing, as they lack some-
thing as fundamental as proper specifications! The
typical origin of a font encoding has been that some-
one creates a font that behaves noticeably different
from other fonts, macro packages are then created
to support this new font, and in time other people
create other fonts that work with the same macros.
At the end of this story the new encoding exists,
but it is not clear who created it, and there is prob-
ably no document that describes all aspects of the
encoding. Later contributors have typically had to
rely on a combination of imitation of previous works,
folklore, and reverse engineering of existing software
when trying to figure out what they need to provide,
but the results are not always verifiable. Further-
more the errors in this area are usually silent — the
classical error being that a ‘$’ was substituted for a
‘£’ (or vice versa) — which means they can only be
discovered through careful proofreading, and then
only if a document even exists which exercises all
aspects of the font encoding. Since font encodings
interact with hyphenation, exhaustive font verifica-
tion through proofreading is probably beyond the
capabilities of any living TEXpert on purely linguis-
tic grounds.

Proper specifications of font encodings makes
the task of font installation — and to some extent
also the task of font design, as it too is subject to the
technicalities of font encodings — much simpler, as
there is then a document that authoritatively gives
all details of a font encoding. This paper even goes
one step further, and proposes (i) a standard for-
mat for formal specifications of (LA)TEX font encod-
ings and (ii) a process through which such specifica-
tions can be ratified as the specification of a partic-
ular encoding. My hope is that future (LA)TEX font
encodings will have proper specifications from the

TUGboat, Volume 28 (2007), No. 2 187

start, as this will greatly simplify making more fonts
available in these encodings, and perhaps also make
font designers aware of the subtler points of (LA)TEX
font design, as many details have been poorly doc-
umented.

The proposed file format for encoding specifica-
tions is a development of the fontinst [6] ETX format.
One reason for this choice was that it is an estab-
lished format; many of those who are making fonts
already use it, even if for a slightly different purpose.
Another major reason is that an ETX file is both a
LATEX document and a processable data file; this is
the same kind of bilinguality that has made the .dtx
format so useful. Finally the ETX format makes it
easy to create experimental font installations when a
new encoding is being designed; fontinst can directly
read the file, but the file can also be automatically
converted to a PostScript encoding vector if that ap-
proach seems more convenient. On the other hand,
there are some features — most notably the promi-
nent role of the glyph names — of the ETX format
that would probably had been done differently in a
file format that was built from scratch, but this is
necessary for several of the advantages listed above.

2 Points to keep in mind

2.1 Characters, glyphs, and slots

One fundamental difference that must be under-
stood is that between characters and glyphs. A
character is a semantic entity — it carries some
meaning, even if you usually have to combine sev-
eral characters to make up even one word — whereas
a glyph simply is a piece of graphics. In printed text,
glyphs are used to represent characters and the first
step of reading is to determine which character(s) a
given glyph is representing.1

In the output, TEX neither deals with charac-
ters nor glyphs, really (although many of its mes-
sages speak of characters), but with slots, which es-
sentially are numbered positions in a font. To TEX,
a slot is simply something which can have certain
metric properties (width, height, depth, etc.) but to
the driver which actually does the printing the slot
also specifies a glyph. The same slot in two different
fonts can correspond to two quite different charac-
ters.

For completeness it should also be mentioned
that the input of TEX is a stream of semantic entities

1 Some PDF viewers also try to accomplish this, but in
general they need extra information to do it right. The
generic solution provided is to embed a ToUnicode CMap

— which is precisely a map from slots to characters — in the
PDF font object.

and thus TEX is dealing with characters on that side,
but the input is not the subject of this paper.

2.2 Ligatures

In typography, a ligature is a glyph which has been
formed by joining glyphs that represent two or more
characters; this joining can involve quite a lot of de-
formation of the original shapes. Examples of liga-
tures are the ‘fi’ ligature (from ‘f’ and ‘i’), the ‘Æ’
ligature (from ‘A’ and ‘E’), and the ‘& ’ character
(from ‘E’ and ‘t’), the latter two of which has evolved
to become characters of their own. For those liga-
tures (such as ‘fi’) that have not evolved to charac-
ters, TEX has a mechanism for forming the ligature
out of the characters it is composed from, under the
guidance of ligature/kerning programs found in the
font.

More technically, what happens is that if the
\char (or equivalent) for one slot is immediately
followed by the \char (or equivalent) for another (or
the same) slot and there is a ligaturing instruction in
the LIGKERN table of the current font which applies
to this slot pair then this ligaturing instruction is
executed. This usually replaces the two slots in the
pair with a single new slot specified by the ligaturing
instruction (it could also keep one or both of the
original slots, but that is less common). TEX has
no idea about whether these replacements change
the meaning of anything, but TEX assumes that it
doesn’t, and it is up to the font designer to ensure
that this is the case.

Apart from forming ligatures in text, the liga-
turing mechanism of TEX is traditionally also em-
ployed for another task which is much more prob-
lematic. Ligatures are also used to produce certain
characters which are not part of visible ASCII — the
most common are the endash (typed as --) and the
emdash (typed as ---). This is a problem because
it violates TEX’s assumption that the meaning is
unchanged; the classical problem with this appears
in the OT2 encoding, where the Unicode character
U+0446 (cyrillic small letter tse) could be
typed as ts, whilst the t and s by themselves pro-
duced Unicode characters U+0442 (cyrillic small

letter te) and U+0441 (cyrillic small letter

es) respectively. TEX’s hyphenation mechanism can
however decompose ligatures, so it sometimes hap-
pened that the tse was hyphenated as te-es, which
is quite different from what was intended. Since this
is such an obvious disadvantage, the use of ligatures
for forming non-English letters quickly disappeared
after 8-bit input encodings became available. The
practice still remains in use for punctuation, how-
ever, and the font designer must be aware of this.

188 TUGboat, Volume 28 (2007), No. 2

For many font encodings there is a set of ligatures
which must be present and replace two or more char-
acters by a single, different character. These liga-
tures are called mandatory ligatures in this paper.

The use of mandatory ligatures in new font en-
codings is strongly discouraged, for a number of rea-
sons. The main problem is that they create un-
healthy dependencies between input and output en-
coding, whereas these should ideally be totally in-
dependent. Using ligatures in this way complicates
the internal representation of text, and it also makes
it much harder to typeset text where those ligatures
are not wanted (such as verbatim text). Further-
more it creates problems with kerning, since the “lig-
ature” has not yet been formed when a kern to the
left of it is inserted. Finally, a much better solution
(when it is available) is to use an Omega transla-
tion process (see [9, Sec. 8–11]), since that is in-
dependent of the font, different translations can be
combined, and they can easily handle even “abbrevi-
ations” much more complicated than those ligatures
can deal with.

2.3 Output stages

On its way out of LATEX towards the printed text, a
character passes through a number of stages. The
following five seem to cover what is relevant for the
present discussion:

1. The LATEX Internal Character Representation
(LICR); see [8], Section 7.11, for a full descrip-
tion. At this point the character is a character
token (e.g. a), a text command (e.g. \ss), or a
combination (e.g. \H{o}).

2. Horizontal material; this is what the character
is en route from TEX’s mouth to its stomach.
For most characters this is equivalent to a sin-
gle \char command (e.g. a is equivalent to
\char 97), but some require more than one,
some are combined using the \accent and
\char commands, some involve rules and/or
kerns, and some are built using boxes that
arbitrarily combine the above elements.

3. DVI commands; this is the DVI file commands
that produce the printed representation of the
character.

4. Printed text; this is the graphical representation
of the character, e.g. as ink on paper or as a
pattern on a computer screen. Here the text
consists of glyphs.

5. Interpreted text; this is essentially printed text
modulo equivalence of interpretation, hence the
text doesn’t really reach this stage until some-
one reads it. Here the text consists of charac-
ters.

In theory there is a universal mapping from
LICR to interpreted text, but various technical re-
strictions make it impossible to simultaneously sup-
port the entire mapping. A LATEX encoding selects
a restriction of this mapping to a limited set which
will be “well supported” (meaning kerning and such
between characters in the set works), whereas el-
ements outside this set at best can be supported
through temporary encoding changes. The encod-
ing also specifies a decomposition of the mapping
into one part which maps LICR to horizontal ma-
terial and one part which maps horizontal material
to interpreted text. The first part is realized by
the text command definitions usually found in the
‘〈enc〉enc.def’ file for the encoding. The second
part is the font encoding, the specification of which
is the topic of this paper. It is also worth notic-
ing that an actual font is a mapping of horizontal
material to printed text.

An alternative decomposition of the mapping
from LICR to interpreted text would be at the DVI

command level, but even though this decomposition
is realized in most TEX implementations, it has very
little relevance for the discussion of encodings. The
main reason for this is that it depends not only on
the encoding of a font, but also on its metrics. Fur-
thermore it is worth noticing that in e.g. pdfTEX
there need not be a DVI command level.

2.4 Hyphenation

There are strong connections between font encoding
and hyphenation because TEX’s hyphenation mech-
anism operates on horizontal material; more pre-
cisely, the hyphenation mechanism only works on
pieces of horizontal material that are equivalent to
sequences of \char commands. This implies that
hyphenation patterns, as selected via the \language
parameter, are not only for a specific language, they
are also for a specific font encoding.

The hyphenation mechanism uses the \lccode

values to distinguish between three types of slots:

1. lower case letters (\lccoden = n),

2. upper case letters (\lccoden /∈ {0, n}), and

3. non-letters (\lccoden = 0).

Only the first two types can be part of a hy-
phenatable word and only lower case letters are
needed in the hyphenation patters. This does how-
ever place severe restrictions on how letters can be
placed in a text font because TEX uses the same
\lccode values for all text in a paragraph and
therefore these values cannot be changed whenever
the encoding changes. In LATEX the \lccode table
is not allowed to change at all and consequently all

TUGboat, Volume 28 (2007), No. 2 189

text font encodings must work using the standard
set of \lccode values.

In ε-TEX each set of hyphenation patterns has
its own set of \lccode values for hyphenation, so
the problem isn’t as severe there. The hyphenation
mechanism of Omega should become completely in-
dependent of the font encoding, although the last
time I checked it was still operating on material en-
coded according to a font encoding.

2.5 Production and specification ETX files

Finally, it is worth pointing out the difference be-
tween an ETX file created for the specification of a
font encoding and one created for being used in ac-
tually producing fonts with this encoding. They are
usually not the same. Although specification ETXs
certainly may be of direct use in the production
of fonts — especially experimental fonts produced as
part of the work on a new encoding — they are usu-
ally not ideal for the purpose. In particular there
is often a need to switch between alternative names
for a glyph to accommodate what is actually in the
fonts, but such trickeries are undesirable complica-
tions in a specification. On the other hand a produc-
tion ETX file has little need for verbose comments,
whereas they are rather an advantage in a specifica-
tion ETX file.

Therefore one shouldn’t be surprised if there are
two ETX files for a specific encoding: one which is a
specification version and one which is a production
version. If both might need to be in the same direc-
tory then one should, as a rule of thumb, include a
‘spec’ in the name of the specification version.

3 Font encoding specifications

3.1 Basic principles

Most features of the font encoding are categorized as
either mandatory or ordinary. The mandatory fea-
tures are what macros may rely on, whereas the ordi-
nary simply are something which fonts with this en-
coding normally provide. Font designers may choose
to provide other features than the ordinary, but are
recommended to provide the ordinary features to the
extent that available resources permit.

Many internal references in the specification are
in the form of glyph names and the choice of these
is a slightly tricky matter. From the point of formal
specification, the choices can be completely arbi-
trary, but from the point of practical usefulness they
most likely are not. One of the main advantages
of the ETX format for specifications is that such
specifications can also be used to make experimen-
tal implementations, but this requires that the glyph

names in the specification are the same as those used
in the fonts from which the experimental implemen-
tation should be built. Yet another aspect is that
the glyph names are best chosen to be the ones one
can expect to find in actual fonts, as that will make
things easier for other people that want to make non-
experimental implementations later. For this last
purpose, a good reference is Adobe’s technical note
on Unicode and glyph names [3]. For most common
glyphs, [3] ends up recommending that one should
follow the Adobe glyph list [2], which however has
the peculiar trait of recommending names on the
form afiiddddd (rather than the Unicode-based al-
ternative unixxxx) for most non-latin glyphs. This
is somewhat put in perspective by [1].

3.2 Slot assignments

The purpose of the slot assignments is to specify
for each slot the character or characters to which
it is mapped. That one slot is mapped to many
characters is an unfortunate, but not uncommon,
reality in many encodings, as limitations in font size
have often encouraged identifications of two charac-
ters which are almost the same. It should be avoided
in new encodings.

Slot assignments are done using the \nextslot

command and a \setslot . . . \endsetslot con-
struction as follows:

\nextslot{〈slot number〉}
\setslot{〈glyph name〉}

〈slot commands〉
\endsetslot

A typical example of this is

\nextslot{65}

\setslot{A}

\Unicode{0041}{LATIN CAPITAL LETTER A}

\endsetslot

which gets typeset as

Slot 65 ‘A’
Unicode character U+0041, latin capital

letter a.

The \nextslot command does not typeset any-
thing; it simply stores the slot number in a counter,
for later use by \setslot. The \endsetslot com-
mand increments this counter by one. Hence
the \nextslot command is unnecessary between
\setslots for consecutive slots. Besides \nextslot,
there is also a command \skipslots which in-
crements the slot number counter by a specified
amount. The argument of both \nextslot and
\skipslots can be arbitrary fontinst integer ex-
pressions (see [5]). All TEX 〈number〉s that survive
full expansion are valid fontinst integer expressions,

190 TUGboat, Volume 28 (2007), No. 2

but for example ‘\~ is not, as \~ is a macro which
will break before the expression is typeset. These
cases can however be fixed by preceding the TEX
〈number〉 by \number, as \number‘\~ survives full
expansion by expanding to 126.

The main duty of the 〈slot commands〉 is to
specify the target character (or characters) for this
slot. The simplest way of doing this is to use the
\Unicode command, which has the syntax

\Unicode{〈code point〉}{〈name〉}

The 〈code point〉 is the number of the character (in
hexadecimal notation, usually a four-digit number)
and the 〈name〉 is the name. Case is insignificant in
these arguments. If a slot corresponds to a string of
characters rather than to a single character, then one
uses the \charseq command, which has the syntax

\charseq{〈\Unicode commands〉}

e.g.

\nextslot{30}

\setslot{ffi}

\charseq{

\Unicode{0066}{LATIN SMALL LETTER F}

\Unicode{0066}{LATIN SMALL LETTER F}

\Unicode{0069}{LATIN SMALL LETTER I}

}

\endsetslot

Several \Unicode commands not in the argument
of a \charseq instead mean that each of the listed
characters is a valid interpretation of the slot.

If a character cannot be specified in terms of
Unicode code points then the specification should
simply be a description in text which identifies the
character. Such descriptions are written using the
\comment command

\comment{〈text〉}

It is worth noticing that the 〈text〉 is technically
only an argument of \comment when the program
processing the ETX file is ignoring \comment com-
mands. This means \verb and similar catcode-
changing commands can be used in the 〈text〉. The
\par command, on the other hand, is not allowed
in the 〈text〉.

The \comment command should also be used
for any further piece of explanation of or commen-
tary to the character used for the slot, if the exposi-
tion seems to need it. There can be any number of
\comment commands in the 〈slot commands〉.

3.3 Ligatures

There are three classes of ligatures in the font encod-
ing specifications: mandatory, ordinary, and odd.
Mandatory ligatures must be present in any font

which complies with the encoding, whereas ordinary
and odd ligatures need not be. No clear distinction
can be made between ordinary and odd ligatures,
but a non-mandatory ligature should be categorized
as ordinary if it makes sense for the majority of
users, and as odd otherwise. Hence the ‘fi’ ligature
is categorized as ordinary in the T1 encoding (al-
though it makes no sense in Turkish), whereas the
‘ij’ ligature is odd.

In the ETX format, a ligature is specified using
one of the slot commands

\Ligature{〈ligtype〉}{〈right〉}{〈new〉}
\ligature{〈ligtype〉}{〈right〉}{〈new〉}
\oddligature{〈note〉}{〈ligtype〉}

{〈right〉}{〈new〉}

The \Ligature command is used for mandatory
ligatures, \ligature for ordinary ligatures, and
\oddligature for odd ligatures. The 〈right〉 and
〈new〉 arguments are names of the glyphs being
assigned to the slots involved in this ligature. The
〈right〉 specifies the right part in the slot pair being
affected by the ligature, whereas the left part is the
one of the \setslot . . . \endsetslot construction
in which the ligaturing command is placed. The
〈new〉 specifies a new slot which will be inserted by
the ligaturing instruction. The 〈ligtype〉 is the ac-
tual ligaturing instruction that will be used; it must
be LIG, /LIG, /LIG>, LIG/, LIG/>, /LIG/, /LIG/>,
or /LIG/>>. The slashes specify retention of the
left or right original character; the > signs specify
passing over that many slots in the result without
further ligature processing. 〈note〉, finally, is a piece
of text which explains when the odd ligature may
be appropriate. It is typeset as a footnote.

As an example of ligatures we find the following
in the specification of the T1 encoding:

\nextslot{33}

\setslot{exclam}

\Unicode{0021}{EXCLAMATION MARK}

\Ligature{LIG}{quoteleft}{exclamdown}

\endsetslot

It is typeset as

Slot 33 ‘exclam’
Unicode character U+0021, exclamation

mark.
Mandatory ligature exclam∗quoteleft →
exclamdown

With other 〈ligtype〉s there may be more names
listed on the right hand side and possibly a ‘⌊’
symbol showing the position at which ligature pro-
cessing will start afterwards.

TUGboat, Volume 28 (2007), No. 2 191

3.4 Math font specialities

There are numerous technicalities which are special
to math fonts, but only a few of them are exhibited
in ETX files.2 Most of these have to do with the TEX
mechanisms that find sufficiently large characters for
commands like \left, \sqrt, and \widetilde.

The first mechanism for this is that a character
in a font can sort of say “If I’m too small, then try
character . . . instead”. This is expressed in an ETX

file using the \nextlarger command, which has the
syntax

\nextlarger{〈glyph name〉}

The second mechanism constructs a sufficiently
large character from smaller pieces; this is known
as a ‘varchar’ or ‘extensible character’. This is ex-
pressed in an ETX file using an “extensible recipe”,
the syntax for which is

\varchar 〈varchar commands〉 \endvarchar

where each 〈varchar command〉 is one of

\varrep{〈glyph name〉}
\vartop{〈glyph name〉}
\varmid{〈glyph name〉}
\varbot{〈glyph name〉}

There can be at most one of each and their order
is irrelevant. The most important is the \varrep

command, as that is the part which is repeated un-
til the character is sufficiently large. The \vartop,
\varmid, and \varbot commands are used to spec-
ify some other part which should be put at the top,
middle, and bottom of the extensible character re-
spectively. Not all extensible recipes use all of these,
however.

As an example, here is how a very large left
brace is constructed:



For \vartop{bracelefttp}
 For \varrep{braceex}


For \varmid{braceleftmid}
 Again for \varrep{braceex}


For \varbot{braceleftbt}

Both \nextlarger and \varchar commands
are like \ligature in that they describe ordinary
features for the encoding; they appear in a speci-
fication ETX file mainly to explain the purpose of
some ordinary character. There is no such thing as
a mandatory \nextlarger or \varchar, but var-
chars are occasionally used to a similar effect. In
these cases, the character generated by the exten-
sible recipe is something quite different from what
a \char for that slot would produce. Thus for the

2 For an overview of the subject, see for example Vi-
eth [10].

slot to produce the expected result it must be ref-
erenced using a \delimiter or \radical primitive,
since those are the only ones which make use of the
extensible recipe. The effect is that the slot has a
semimandatory assignment; the result of \char is
unspecified (as for a slot with an ordinary assign-
ment), but the result for a large delimiter or radical
is not (as for a slot with a mandatory assignment).

Thus some math fonts have an extra section
“Semimandatory characters” between the manda-
tory and ordinary character sections. In that section
for the OMX encoding we find for example

\nextslot{60}

\setslot{braceleftmid}

\Unicode{2016}{DOUBLE VERTICAL LINE}

\comment{This is the large size of the

|\Arrowvert| delimiter, a glyphic

variation on |\Vert|. The

\texttt{braceleftmid} glyph

ordinarily placed in this slot must

not be too tall, or else the

extensible recipe actually

producing the character might

sometimes not be used.}

\varchar

\varrep{arrowvertex}

\endvarchar

\endsetslot

which is typeset as

Slot 60 ‘braceleftmid’
Unicode character U+2016, double verti-

cal line.
This is the large size of the \Arrowvert de-
limiter, a glyphic variation on \Vert. The
braceleftmid glyph ordinarily placed in this
slot must not be too tall, or else the exten-
sible recipe actually producing the character
might sometimes not be used.
Extensible glyph:
Repeated arrowvertex

3.5 Fontdimens

Each TEX font contains a list of fontdimens, num-
bered from 1 and up, which are accessible via the
\fontdimen TEX primitive. Quite a few are also
used implicitly by TEX and therefore cannot be left
out even if they are totally irrelevant, but as one can
always include some extra fontdimens in a font —
the only bounds on how many fontdimens there may
be are the general bound on the size of a TFM file
and the amount of font memory TEX has available —
this is usually not a problem.

192 TUGboat, Volume 28 (2007), No. 2

The reason fontdimens are part of font en-
coding specifications is that the meaning of e.g.
\fontdimen 8 varies between different fonts de-
pending on their encoding; thus the encoding spec-
ification must define the quantity stored in each
\fontdimen parameter. This is done using the
\setfontdimen command, which has the syntax

\setfontdimen{〈number〉}{〈name〉}

The 〈number〉 is the fontdimen number (as a se-
quence of decimal digits where the first digit isn’t
zero) and the 〈name〉 is a symbolic name for the
quantity.

The standard list of symbolic names for font-
dimen quantities appears below; the listed quanti-
ties should always be described using the names in
this list. Encoding specifications that employ other
quantities as fontdimens should include definitions
of these quantities. Those quantities that are de-
fined as “Formula parameter . . . ” have to do with
how mathematical formulae are rendered and are be-
yond our scope here. For exact definitions of these
parameters, the reader is referred to Appendix G of
The TEXbook [7].

acccapheight The height of accented full capitals.

ascender The height of lower case letters with as-
cenders.

axisheight Formula parameter σ22.

baselineskip The font designer’s recommendation
for natural length of the TEX parameter
\baselineskip.

bigopspacing1 Formula parameter ξ9.

bigopspacing2 Formula parameter ξ10.

bigopspacing3 Formula parameter ξ11.

bigopspacing4 Formula parameter ξ12.

bigopspacing5 Formula parameter ξ13.

capheight The height of full capitals.

defaultrulethickness Formula parameter ξ8.

delim1 Formula parameter σ20.

delim2 Formula parameter σ21.

denom1 Formula parameter σ11.

denom2 Formula parameter σ12.

descender The depth of lower case letters with de-
scenders.

digitwidth The median width of the digits in the
font.

extraspace The natural width of extra interword
glue at the end of a sentence. TEX implicitly
uses this parameter if \spacefactor is 2000 or
more and \xspaceskip is zero.

interword The natural width of interword glue
(spaces). TEX implicitly uses this parameter
unless \spaceskip is nonzero.

italicslant The slant per point of the font. Unlike
all other fontdimens, it is not proportional to
the font size.

maxdepth The maximal depth over all slots in the
font.

maxheight The maximal height over all slots in the
font.

num1 Formula parameter σ8.

num2 Formula parameter σ9.

num3 Formula parameter σ10.

quad The quad width of the font, normally approx-
imately equal to the font size and/or the width
of an ‘M’. Also implicitly available as the length
unit em and used for determining the size of the
length unit mu.

shrinkword The (finite) shrink component of inter-
word glue (spaces). TEX implicitly uses this
parameter unless \spaceskip is nonzero.

stretchword The (finite) stretch component of inter-
word glue (spaces). TEX implicitly uses this
parameter unless \spaceskip is nonzero.

sub1 Formula parameter σ16.

sub2 Formula parameter σ17.

subdrop Formula parameter σ19.

sup1 Formula parameter σ13.

sup2 Formula parameter σ14.

sup3 Formula parameter σ15.

supdrop Formula parameter σ18.

verticalstem The dominant width of vertical stems.
This quantity is meant to be used as a measure
of how “dark” the font is.

xheight The x-height (height of lower case letters
without ascenders). Also implicitly available as
the length unit ex.

3.6 The codingscheme

The final encoding-dependent piece of information
in a TEX font is the codingscheme, which is essen-
tially a string declaring what encoding the font has.
This information is currently only used by programs
that convert the information in a TEX font to some
other format and these use it to identify the glyphs
in the font. Therefore this string should be cho-
sen so that the contents of the slots in the font can
be positively identified. Observe that the encoding
specification by itself does not provide enough infor-
mation for this, since there are usually a couple of
slots that do not contain mandatory characters. On
the other hand, it is not a problem in this context
if the font leaves some of the slots (even mandatory
ones) empty as that is anyway easily detected. The
only problem is with fonts where the slots are as-

TUGboat, Volume 28 (2007), No. 2 193

signed to other characters than the ones specified in
the encoding.

For that reason, it is appropriate to assign two
codingscheme strings to each encoding. The main
codingscheme is for fonts where all slots (manda-
tory and ordinary alike) have been assigned accord-
ing to the specification or have been left empty.
The variant codingscheme is for fonts where some
ordinary slots have been assigned other characters
than the ones listed in the specification, but where
the mandatory slots are still assigned according to
the specification or are left empty. The font encod-
ing specification should give the main codingscheme
name, whereas the variant codingscheme name could
be formed by adding VARIANT to the main cod-
ingscheme name.

Technically the codingscheme is specified by
setting the codingscheme string variable. This has
the syntax

\setstr{codingscheme}

{〈codingscheme name〉}

e.g.

\setstr{codingscheme}

{EXTENDED TEX FONT ENCODING - LATIN}

which is typeset as (line break is editorial)

Default s(codingscheme) = EXTENDED TEX

 FONT ENCODING - LATIN

A codingscheme name may be at most 40 charac-
ters long and may not contain parentheses. If the
entire VARIANT cannot be suffixed to a main name
because the result becomes to long (as in the above
example) then use the first 40 characters of the re-
sult.

3.7 Overall document structure

The overall structure of a font encoding specification
should be roughly the following

\relax

\documentclass[twocolumn]{article}

\usepackage[specification]{fontdoc}

〈preamble〉
\begin{document}

〈title〉
〈manifest〉
\encoding

〈body〉
\endencoding

〈discussion〉
〈change history〉
〈bibliography〉
\end{document}

The commands described in the preceding subsec-
tions must all go in the 〈body〉 part of the document,
as that is the only part of the file which actually gets
processed as a data file. The part before \encoding

is skipped and the part after \endencoding is never
even input, so whatever appears there is only part of
the LATEX document. For the purposes of processing
as a data file, the important markers in the file are
the \relax, the \endcoding, and the \endencoding
commands.

The 〈title〉 is the usual \maketitle (and the
like) stuff. The person or persons who appear as
author(s) are elsewhere in this paper described as
the encoding proposers. The 〈title〉 should also give
the date when the specification was last changed.

The 〈manifest〉 is an important, although usu-
ally pretty short, part of the specification. It is a
piece of text which explains the purpose of the en-
coding (in particular what it can be used for) and
the basic ideas (if any) which have been used in its
construction. It is often best marked up as an ab-
stract.

The 〈discussion〉 is the place for any longer
comments on the encoding, such as analyses of dif-
ferent implementations, comparisons with other en-
codings, etc. This is also the place to explain any
more general structures in the encoding, such as
the arrow kit in the proposed MS2 encoding [4]. In
cases where the specification is mainly a formula-
tion of what is already an established standard the
〈discussion〉 is often rather short as the relevant dis-
cussion has already been published elsewhere, but
it is anyway a service to the reader to include this
information. References to the original documents
should always be given.

It might be convenient to include an FAQ sec-
tion at the end of the discussion. This is particularly
suited for explaining things where one has to look
for a while and consult the references to find the
relevant information.

The 〈change history〉 documents how the spec-
ification has changed over time. It is preferably de-
tailed, as each detail in an encoding is important,
but one should not be surprised if it is nevertheless
rather short due to there not having been that many
changes.

The 〈bibliography〉 is an important part of the
specification. It should at the very least include all
the sources which have been used in compiling the
encoding specification, regardless of whether they
are printed, available on the net, merely “personal
communication”, or something else. It is also a ser-
vice to the reader to include in the bibliography
some more general references for related matters.

194 TUGboat, Volume 28 (2007), No. 2

The 〈preamble〉 is just a normal LATEX pream-
ble and there are no restrictions on defining new
commands in it, although use of such commands in
the 〈body〉 part is subject to the same restrictions as
use of any general LATEX command. The preamble
should however not load any packages not part of
the required suite of LATEX packages, as that may
prevent users who do not have these packages from
typesetting the specification. Likewise, the specifi-
cation should not require that some special font is
available. Glyph examples for characters are usually
better referenced via Unicode character charts than
via special fonts.

An exception to this rule about packages is that
the specification must load the fontdoc package, as
shown in the outline above, since that defines the
\setslot etc. commands that should appear in the
〈body〉. This should not cause any problems, as the
fontdoc package can preferably be kept in the same
directory as the collection of encoding specifications
(see below). The specification option should be
passed to the package to let it know that the file
being processed is an encoding specification — oth-
erwise \Ligature and \ligature will get the same
formatting, for one. It is not actually necessary to
use the article document class, and neither must it
be passed the twocolumn option, but it is custom-
ary to do so. In principle any other document class
defined in required LATEX will do just as well.

If you absolutely think that using some non-
required package significantly improves the specifi-
cation, then try writing the code so that it loads the
package only if it is available and provide some kind
of fallback definition for sites where it is not. E.g.
the url package could be loaded as

\IfFileExists{url.sty}{\usepackage{url}}{}

\providecommand\url{\verb}

The \url command defined by this is not equivalent
to the command defined by the url package, but it
can serve fairly well (with a couple of extra overfull
lines as the only ill effect) if its use is somewhat
restricted.

Finally, a technical restriction on the 〈preamble〉,
〈title〉, and 〈manifest〉 is that they must not contain
any mismatched \ifs (of any type) or \fis, as TEX
conditionals will be used for skipping those parts of
the file when it is processed as a data file. If the
definition of some macro includes mismatched \ifs
or \fis (this will probably occur only rarely) then
include some extra code so that they do match.

3.8 Encoding specification body syntax

The 〈body〉 part of an encoding specification must

comply to a much stricter syntax than the rest
of the file. The 〈body〉 is a sequence of 〈encoding
command〉s, each of which should be one of the
following:

\setslot{〈glyph name〉} 〈slots commands〉
\endsetslot

\nextslot{〈number〉}
\skipslots{〈number〉}
\setfontdimen{〈number〉}{〈name〉}
\setstr{codingscheme}

{〈codingscheme name〉}
\needsfontinstversion{〈version number〉}

The \needsfontinstversion command is usually
placed immediately after the \encoding command.
The 〈version number〉 must be at least 1.918 for
many of the features described in this file to be avail-
able, and at least 1.928 if the \charseq command
is used.

The 〈slot commands〉 are likewise a sequence of
〈slot command〉s, each of which should be one of the
following:

\Unicode{〈code point〉}{〈name〉}
\charseq{〈\Unicode commands〉}
\comment{〈text〉}
\Ligature{〈ligtype〉}{〈right〉}{〈new〉}
\ligature{〈ligtype〉}{〈right〉}{〈new〉}
\oddligature{〈note〉}{〈ligtype〉}

{〈right〉}{〈new〉}
\nextlarger{〈glyph name〉}
\varchar 〈varchar commands〉 \endvarchar

where 〈varchar commands〉 is similarly a sequence of
〈varchar command〉s, each of which should be one
of the following:

\varrep{〈glyph name〉}
\vartop{〈glyph name〉}
\varmid{〈glyph name〉}
\varbot{〈glyph name〉}

Finally, one can include any number of 〈comment
command〉s between any two encoding, slot, or var-
char commands. The comment commands are

\begincomment 〈LATEX text〉 \endcomment
\label{〈reference label〉}

The 〈LATEX text〉 can be pretty much any LATEX code
that can appear in conditional text. (\begincomment
is either \iffalse or \iftrue depending on whether
the encoding specification is processed as a data
file or typeset as a LATEX document respectively.
\endcomment is always \fi.) The \label command
is just the normal LATEX \label command; when
it is used in a 〈slot commands〉 it references that
particular slot (by number and glyph name).

TUGboat, Volume 28 (2007), No. 2 195

The full syntax of the ETX format can be found
in the fontinst manual [5], but font encoding speci-
fications only need a subset of that.

3.9 Additional fontdoc features

The \textunicode command is an “in comment
paragraph” form of \Unicode. Both commands
have the same syntax, but \textunicode is only
allowed in “comment” contexts. A typical use of
\textunicode is

\comment{An . . .
. . . this is

\textunicode{2012}{FIGURE DASH}; in . . .
}

which is typeset as

An . . . this is U+2012 (figure dash); in . . .

The fontdoc package inputs a configuration file
fontdoc.cfg if that exists. This can be used to pass
additional options to the package. The only cur-
rently available options that may be of interest are
the hypertex and pdftex options, which hyperlinks
each U+. . . generated by \Unicode or \textunicode
(using HyperTEX or pdfTEX conventions3 respec-
tively) to a corresponding glyph image on the Uni-
code consortium website. To use this feature one
should put the line

\ExecuteOptions{hypertex}

or

\ExecuteOptions{pdftex}

in the fontdoc.cfg file. Please do not include this
option in the \usepackage{fontdoc} of an encod-
ing specification file as that can be a severe annoy-
ance for people whose TEX program or DVI viewers
do not support the necessary extensions.

4 Font encoding ratification

This section describes a suggested ratification pro-
cess for font encoding specifications. As there are
fewer technical matters that impose restrictions on
what it may look like, it is probably more subjective
than the other parts of this paper.

A specification in the process of being ratified
can be in one of three different stages: draft, beta,
or final. Initially the specification is in the draft
stage, during which it will be scrutinized and can
be subject to major changes. A specification which
is in the beta stage has received a formal approval
but the encoding in question may still be subject to

3 One could just as well do the same thing using some
other convention if a suitable definition of \FD@codepoint is
included in fontdoc.cfg. See the fontinst sources [6] for more
details.

some minor changes if weighty arguments present
themselves. Once the specification has reached the
final stage, the encoding may not change at all.

4.1 Getting to the draft stage

The process of taking an encoding to the draft stage
can be summarized in the following steps. Being
in the draft stage doesn’t really say anything about
whether the encoding is in any way correct or useful,
except that some people (the encoding proposers)
believe it is and are willing to spend some time on
ratifying it.

Write an encoding specification The first step
is to write a specification for the font encoding in
question. This document must not only technically
describe the encoding but also explain what the en-
coding is for and why it was created. See Subsec-
tion 3.7 for details on how the document is prefer-
ably organised.

Request an encoding name The second step is
to write to the LATEX3 project and request a LATEX
encoding name for the encoding. This mail should
be in the form of a LATEX bug report, it must be sent
to

latex-bugs@latex-project.org,

and it must include the encoding specification file.
Suggestions for an encoding name are appreciated,
but not necessarily accepted. The purpose of this
mail is not to get an approval of the encoding, but
only to have a reasonable name assigned to it.

Upload the specification to CTAN The third
step is make the encoding specification publicly
available by uploading it to CTAN. Encoding speci-
fications are collected in the

info/encodings

directory (which should also contain the most recent
version of this paper). The name of the uploaded file
should be ‘〈encoding name〉draft.etx’. The reason
for this naming is that it must be clear that the
specification has not yet been ratified.

Announce the encoding When the upload has
been confirmed, it is time to announce the encod-
ing by posting a message about it to the relevant
forums. Most important is the tex-fonts mail-
ing list, since that is where new encodings should
be debated. Messages should also be posted to the
comp.text.tex newsgroup and any forums related
to the intended use of the encoding: an encoding
for Sanskrit should be announced on Indian TEX

196 TUGboat, Volume 28 (2007), No. 2

users forums, an encoding for printing chess posi-
tions should be announced on some chess-with-TEX
user forum, etc., to the extent that such forums ex-
ist.

The full address of the tex-fonts mailing list
is

tex-fonts@math.utah.edu

This list rejects postings from non-members, so you
need to subscribe to it before you can post your
announcement. This is done by sending a ‘subscribe
me’ mail to

tex-fonts-request@math.utah.edu

The list archives can be found at

http://www.math.utah.edu/mailman/
listinfo/tex-fonts

A tip is to read through the messages from a cou-
ple of months before you write up your announce-
ment, as that should help you get acquainted with
the normal style on the list. Please do not send mes-
sages encoded in markup languages (notably, HTML,
XML, and word processor formats) to the list.

Experimental encodings There is a point in go-
ing through the above procedure even for experi-
mental encodings, i.e., encodings whose names start
with an E. Of course there is no idea in ratifying
a specification of an experimental encoding, as it
is very likely to frequently change, but having a
proper name assigned to the encoding and upload-
ing its specification to CTAN makes it much simpler
for other people to learn about and make references
to the encoding.

4.2 From draft to beta stage

The main difference between a draft and beta stage
specification respectively is that beta stage specifi-
cations have been scrutinized by other people and
found to be free of errors. The practical implemen-
tation of this is that a debate is held (in the normal
anarchical manner of mailing list debates) on the
tex-fonts mailing list. In particular the following
aspects of the specification should be checked:

1. Is the encoding technically correct? There are
many factors which affect what TEX does and it
is easy to overlook some. (The \lccodes seem
to be particularly troublesome in this respect.)
Sometimes fonts simply cannot work as an en-
coding specifies they should and it is important
that such defects in the encoding are discovered
on an early stage.

2. Are there any errors in the specification? A
font encoding specification is largely a table and

typos are easy to make. Proofreading may be
boring, but it is very, very important.

3. Is the specification sufficiently precise? Are
there any omissions, ambiguities, inaccuracies,
or completely irrelevant material in the specifi-
cation? There shouldn’t be.

During the debate, the encoding proposers should
hear what other people have to say about the en-
coding draft, revise it accordingly when some flaw
is pointed out, and upload the revised version. This
cycle may well have to be repeated several times be-
fore everyone is content. It is worth pointing out
that in practice the debate should turn out to be
more of a collective authoring of the specification
than a defense of its validity. There is no point in
going into it expecting the worst.

Unfortunately, it might happen that there never
is a complete agreement on an encoding specifica-
tion — depending on what side on takes, either the
encoding proposers refuse to correct obvious flaws
in it, or someone on the list insists that there is a
flaw although there is obviously not — but hopefully
that will never happen. If it anyway does happen
then the person objecting should send a mail whose
subject contains the phrase ”formal protest against
XXX encoding” (with XXX replaced by whatever the
encoding is called) to the list. Then it will be up to
the powers that be to decide on the fate of the en-
coding (see below).

Summarize the debate When the debate on
the encoding is over — e.g. a month after anyone
last posted anything new on the subject — then the
encoding proposers should summarize the debate
on the encoding specification draft and post this
summary as a follow-up on the original mail to
latex-bugs. This summary should list the changes
that have been made to the encoding, what sug-
gestions there were for changes which have not
been included, and whether there were any formal
protests against the encoding. The summary should
also explain what the proposers want to have done
with the encoding. In the usual case this is having
it advanced to beta stage, but the proposers might
alternatively at this point have reached the conclu-
sion that the encoding wasn’t such a good idea to
start with and therefore withdraw it, possibly to
come again later with a different proposal.

In response to this summary, the LATEX-project
people may do one of three things:

• If the proposers wants the encoding specifica-
tion advanced and there are no formal protests

TUGboat, Volume 28 (2007), No. 2 197

against this, then the encoding should be ad-
vanced to the beta stage. The LATEX-project
people do this by adding the encoding to the
list of approved (beta or final stage) encodings
that they [presumably] maintain.

• If the proposers want to withdraw the encod-
ing specification then the name assigned to it
should once again be made available for use for
other encodings.

• If the proposers want the encoding specifica-
tion advanced but there is some formal protest
against this, then the entire matter should be
handed over to some suitable authority, as a
suggestion some technical TUG committee, for
resolution.

Update the specification on CTAN When the
specification has reached the beta stage, its file on
CTAN should be updated to say so. In particular
the file name should be changed from ‘〈encoding
name〉draft.etx’ to ‘〈encoding name〉spec.etx’.

Modifying beta stage encodings If a beta
stage encoding is modified then the revised speci-
fication should go through the above procedure of
ratification again before it can replace the previ-
ous ‘〈encoding name〉spec.etx’ file on CTAN. The
revised version should thus initially be uploaded
as 〈encoding name〉draft.etx, reannounced, and
redebated. It can however be expected that such
debates will not be as extensive as the original
debates.

4.3 From beta stage to final stage

The requirements for going from beta stage to final
stage are more about showing that the encoding has
reached a certain maturity than about demonstrat-
ing technical merits. The main difference in use-
fulness between a beta stage encoding and a final
stage encoding is that the latter can be considered
safe for archival purposes, whereas one should have
certain reservations against such use of beta stage
encodings.

It seems reasonable that the following condi-
tions should have to be fulfilled before a beta stage
encoding can be made a final stage encoding:

• At least one year must have passed since the
last change was made to the specification.

• At least two people other than the proposer
must have succeeded in implemented the en-
coding in a font.

It is quite possible that some condition should be
added or some of the above conditions reformulated.

References

[1] Adobe Systems Incorporated: Adobe
Standard Cyrillic Font Specification, Adobe
Technical Note #5013, 1998; http://
partners.adobe.com/asn/developer/pdfs/
tn/5013.Cyrillic Font Spec.pdf.

[2] Adobe Systems Incorporated: Adobe
Glyph List, text file, 1998, http://
partners.adobe.com/asn/developer/type/
glyphlist.txt.

[3] Adobe Systems Incorporated: Adobe
Solutions Network: Unicode and Glyph
Names, web page, 1998, http://
partners.adobe.com/asn/developer/
type/unicodegn.html.

[4] Matthias Clasen and Ulrik Vieth: Towards
a New Math Font Encoding for (LA)TEX,
March 1998, presented at EuroTEX’98;
http://tug.org/twg/mfg/papers/current/
mfg-euro-all.ps.gz.

[5] Alan Jeffrey, Rowland McDonnell, Ulrik
Vieth, and Lars Hellström: fontinst—font
installation software for TEX (manual), 2004,
ctan: fonts/utilities/fontinst/doc/
fontinst.tex.

[6] Alan Jeffrey, Sebastian Rahtz, Ulrik
Vieth, and Lars Hellström: The fontinst

utility, documented source code, v 1.9xx,
ctan: fonts/utilities/fontinst/source/.

[7] Donald E. Knuth, Duane Bibby
(illustrations): The TEXbook,
Addison-Wesley, 1991; volume A of
Computers and Typesetting.

[8] Frank Mittelbach and Michel Goossens,
with Johannes Braams, David Carlisle,
and Chris Rowley: The LATEX Companion
(second edition), Addison–Wesley, 2004;
ISBN 0-201-36299-6.

[9] John Plaice and Yannis Haralambous:
Draft documentation for the Omega
system, version 1.12, 1999; http://
omega.cse.unsw.edu.au:8080/
doc-1.12.ps.

[10] Ulrik Vieth: Math typesetting in TEX:
The good, the bad, the ugly, in the
proceedings of EuroTEX 2001; http://
www.ntg.nl/eurotex/vieth.pdf.

⋄ Lars Hellström
LATEX3 project

198 TUGboat, Volume 28 (2007), No. 2

ConTEXt basics for users: Font styles

Aditya Mahajan

Abstract

This article presents a summary of different ways of
changing font styles in ConTEXt.

1 Introduction

The TUGboat editors recently invited me to write a
regular column in TUGboat explaining some of the
basic features of ConTEXt. This column is meant
for ConTEXt beginners, and will explain how basic
elements of ConTEXt work. I will explain it from
the practicable point of view, that is, do this, and
you will get this; to understand what is happening
behind the scenes you need to read the ConTEXt
manuals1 and the ConTEXt sources.2

In this Ąrst installment, I will discuss how to
use the various font styles in ConTEXt. Fonts are
one of the most complicated parts of TEX. Fortu-
nately, the macro developers take care of the dirty
stuff, and most of the user interface is clean. Nev-
ertheless, understanding the various options of the
user interface can be intimidating. As a beginner,
one does not want to know all the nitty-gritty de-
tails, but just the basic features. We hope to present
these in this article.

In ConTEXt there are Ąve ways to switch fonts:

1. font style (\rm, \ss, etc.),
2. font size (\tfa, \tfb, etc.),
3. alternative font style (\bold, \sans, etc.),
4. a complete font change (\setupbodyfont,

\switchtobodyfont).

I will brieĆy explain each of these.

2 Font styles

There are three types of font families: serif, sans
serif, and teletype. To switch between these fami-
lies, use \rm for serif, \ss for sans serif, and \tt for
teletype.

Each of these families come in different styles:
upright, bold, italic, slanted, bold-italic, bold-
slanted, and small caps. To switch to a different
style, use \tf for upright, \bf for bold, \it for
italic, \sl for slanted, \bi for bold-italic, \bs for
bold-slanted, and \sc for small-capped.

You can generally combine font families and font
styles, so if you want to switch to bold sans serif, you
can use either \bf\ss or \ss\bf.

There is a font switch \em to emphasize text.

This is somewhat special: it does automatic italic
correction and changes the style depending on the
current font style. For example, if the current font
style is upright, \em switches to slanted; and if the
current font style is slanted, \em switches to upright.

ConTEXt uses the Latin Modern fonts by de-
fault; these fonts look similar to the original Com-
puter Modern fonts, but have a much larger charac-
ter repertoire. As it happens, in the Latin Modern
(and Computer Modern) fonts, the slanted font does
not stand out from the upright font enough for some
tastes; so, many people prefer to use the italic font
for emphasis. To do that use

\definebodyfontenvironment[default][em=italic]

A font switch remains valid for the rest of the group.
So, if you want to temporarily switch to a different
font, use the font style command inside a group.
The easiest way to start a group is to enclose the
text within braces (also called curly brackets), for
example

This is serif text

{\ss This is sans serif}

{\tt and this is typewriter}

which gives (notice the braces in the above lines)

This is serif text
This is sans serif

and this is typewriter

3 Font sizes

Occasionally one needs to change the font size. Con-
TEXt provides two series of commands for that. To
increase the font you can use \tfa to scale the font
size by a factor of 1.2, \tfb to scale by a factor of
(1.2)2 = 1.44, \tfc to scale by (1.2)3 = 1.728 and
\tfd to scale by (1.2)4 = 2.074.

To decrease the font size, you can use \tfx to
scale the font by a factor of 0.8 and \tfxx to scale
by a factor of 0.6. The scale factors can be a func-
tion of the current font size and can be changed by
\definebodyfontenvironment.

For example, if you want \tfa to be equal to
12pt when you are using 10pt font, and be equal to
14pt when you are using 11pt font, then add

\definebodyfontenvironment [10pt] [a=12pt]

\definebodyfontenvironment [11pt] [a=14pt]

The \definebodyfontenvironment command is de-

1 http://pragma-ade.com/show-man-1.htm
2 http://www.logosrl.it/context/modules/

TUGboat, Volume 28 (2007), No. 2 199

scribed in detail in the ConTEXt manual and the
font-ini.tex source Ąle.

Font size can be combined with font styles. As
a shortcut, you can use \bfa to get bold font scaled
by 1.2, \bfx to get a bold font scaled by 0.8 and
similar commands for other font styles.

These font size switches are meant for changing
the font size of a few words: they do not change the
interline spacing and math font sizes. So, if you want
to change the font size of an entire paragraph, use
\switchtobodyfont described below in Section 5.
However, it is Ąne to use them as style directives in
setup commands, that is, using them as an option
for style=... in any setup command that accepts
the style option.

4 Alternative font styles

While learning a document markup language like
ConTEXt, it can be hard to remember all the com-
mands. ConTEXt provides easy to remember alter-
native font styles. So for bold you can use \bold,
for italic you can use \italic, for slanted you can
use \slanted, and so on. You can probably guess
what the following do:

\normal \slanted

\boldslanted \slantedbold

\bolditalic \italicbold

\small \smallnormal

\smallbold \smallslanted

\smallboldslanted \smallslantedbold

\smallbolditalic \smallitalicbold

\sans \sansserif

\sansbold \smallcaps

In addition, the commands \smallbodyfont and
\bigbodyfont can be used to change the font size.

These alternative font styles are pretty smart.
You can either use them as font style switches inside
a group, or as a font changing command that takes
an argument. For example,

This is {\bold bold} and so is \bold{this}.

gives

This is bold and so is this.

These alternative font styles can also be used for all
style=... options, and while using them as style
options, you can just give the command name, for
example:

\setuphead[section][style=bold]

5 Complete font change

If you need to change to a different font size
and take care of interline spacing, you can use
\switchtobodyfont. For example, to switch to
12pt you can use \switchtobodyfont[12pt].

ConTEXt provides two relative sizes, called ŚbigŠ
and ŚsmallŠ. So, to go to a bigger font size, you
can use \switchtobodyfont[big] and to go to a
smaller font size, \switchtobodyfont[small]. The
exact sizes that are used for big and small can be
set using \definebodyfontenvironment.

The \setupbodyfont command accepts all the
same arguments as \switchtobodyfont. The dif-
ference between the two is that \setupbodyfont

also changes the font for headers, footers and other
page markings, while \switchtobodyfont does not.
So you should use \setupbodyfont for global font
deĄnitions to apply to the whole document, and
\switchtobodyfont for local font changes. The ef-
fect of \switchtobodyfont can be localized within
a group as usual.

6 Different typefaces

So far we have discussed style and size changes
within a given typeface family. If you want to use
a different typeface altogether, such as Times or
Palatino, the Pragma web site has recipes covering
all the commonly available typefaces,3 while a sepa-
rate manual describes how to write support for new
typefaces.4 (For the latter, see also Idris HamidŠs
article in this issue of TUGboat.)

The recipes as given work with the standalone
ConTEXt distribution, but not with TEX Live et
al.5 To use the recipes with other distributions,
try adding one of \usetypescript[berry][ec] or
\usetypescript[adobekb][ec].

7 Conclusion

There are many other ways of choosing font styles
in ConTEXt. If these basic styles do not satisfy your
needs, have a look at the manual, or ask on the
ConTEXt mailing list.6

⋄ Aditya Mahajan
University of Michigan
adityam (at) umich dot edu

3 http://pragma-ade.com/general/manuals/showfont.pdf
4 http://pragma-ade.com/general/manuals/mfonts.pdf
5 http://pragma-ade.com/general/technotes/tfmetrics.pdf

explains why ConTEXt uses separate font metrics, and gives
some differences between the sets.

6 http://wiki.contextgarden.net/ConTeXt_Mailing_Lists

200 TUGboat, Volume 28 (2007), No. 2

Installing ConTEXt expert fonts: Minion Pro

Idris Samawi Hamid

Abstract

Installing fonts for ConTEXt can be an intimidating
business. In this issue we take on a real monster:
a collection of Adobe Minion Pro expert fonts. We
hope our installation of this collection will provide
an illustrative example for ConTEXt users, and help
to ease the pain of installing new fonts (if you can
install Minion Pro, Myriad Pro and Poetica, you can
install just about anything!).

1 Introduction

Fonts can be a messy business in TEX (and, by ex-
tension, ConTEXt), and itŠs easy to get intimidated.
One reason for this is TEXŠs Ćexibility; TEX allows
you to create very sophisticated ways to take ad-
vantage of a font and to create, from one or more
given font families, typeface collections tailored to
your needs. Another reason is a (hopefully tempo-
rary) lack of standardization of map and encoding
Ąles between pdfTEX, dvips, and dvipdfmx. This
second reason is not really a ConTEXt problem per
se, though it certainly affects getting fonts working
in ConTEXt.

Furthermore, ConTEXt handles fonts and font
families by means of typescripts; these can be a
bit disorienting to someone coming from LATEX and
the New Font Selection Scheme (NFSS). On the
other hand, after initial hesitation (having myself
migrated from the LATEX world), I have concluded
that the typescript approach is much more powerful
and transparent than NFSS.

For a present book project, I decided to use a
very complicated set of fonts from Adobe: Min-
ion Pro (roman or serif), Myriad Pro (sans serif)
and Poetica (calligraphy); all by Robert Slimbach.
This set also includes a number of expert fonts with
non-standard encodings. Together Ů and aside from
mathematics Ů this set can provide a very nice alter-
native to the Computer/Latin Modern family, and
one particularly suited for the humanities. These
fonts also provide some of the few really excellent
examples of multiple master (mm) technology, by
Adobe. The promise of mm font technology was to
provide a means of creating a series of Ąnely opti-
cally scaled styles and alternative of a font from a
single font Ąle.1

Editor’s Note: First published as a ConTEXt MyWay issue.
Reprinted with permission.

On the other hand, despite its promise the system
was never widely used and Adobe apparently no
longer fully supports it.

In the present experiment we will focus on in-
stalling Minion Pro. I will not attempt to Ąne tune
the weights; I will just use the defaults (mostly two
weights per variation, plus a semibold style).2

There is also a Minion Pro Opticals family, which
I received recently. Although this tutorial is based
on the older Minion Pro familiar to advanced LATEX
users, Appendix 1 explains how to set up Min-
ion Pro Opticals. It should be easy to follow for
anyone who has read the earlier sections, and pro-
vides a nice example of a truly advanced typescript.

Our work may be divided into three parts:

1. preparing the raw fonts;
2. installing the fonts; and
3. conĄguring typescripts and map Ąles to use

the fonts.

Ok, letŠs get to work!

2 Preparing the fonts

Fonts generally will come in one of three forms:
Type 1 (*.pfb), TrueType (*.ttf), or OpenType
(*.otf). TEX was generally restricted to Type 1
fonts till recently. pdfTEX supports the other two to
some degree. dvipdfmx supports large Type 1 Ąles
(>256 characters per font); I donŠt know the status
of its present or planned support for the other two.

Some fonts (like standard Type 1 fonts) contain
only a standard palette of 256 character-slots. In
general, such fonts do not contain expert characters
or glyphs such as Śff Š, ŚffiŠ, and ŚfflŠ. Given a standard
font, we need to combine information from at least
one other corresponding font to get a complete and
professional typeface for that standard font. There
are three ways to prepare the raw fonts for installa-
tion. One may use:

1. the fontinst package (for Type 1 *.pfb’s);
2. FontForge (formerly PfaEdit) (for Type 1

*.pfb’s); and
3. pre-prepared fonts, with standard, expert,

and variant glyphs all in one font (TrueType
and, more and more, OpenType).

1 For details, see ŞDesigning Multiple Master TypefacesŤ, by
Adobe: http://partners.adobe.com/public/developer/
en/font/5091.Design_MM_Fonts.pdf.

2 We use the expressions Śstyle’, Śvariation’, and Śfamily’ in
the senses employed in ConTEXt: the Manual, page 91.
Adobe Minion Pro is a font family or typeface family, ro-
man and sans serif are styles, bold and italic are style vari-
ations. In the ConTEXt world, the expression Śtypeface’
is often used to mention a user-deĄned collection of fonts,
often drawn from various families.

TUGboat, Volume 28 (2007), No. 2 201

If your fonts are already in a pre-prepared format,
then you may just skim the Ąrst two subsections
below.

2.1 fontinst

ConTEXt has its own font installation script,
TEXfont. From page 1 of the TEXfont manual
(mtexfont.pdf):

The script only covers ŚnormalŠ fonts. . . Spe-
cial fonts, like expert fonts, assume a more in
depth knowledge of font handling. We may
deal with them in the future. The more de-
manding user can of course fall back on more
complicated tools like fontinst.

Although written in plain TEX, the interface to
fontinst is somewhat LATEX-oriented. So its syn-
tax largely follows the NFSS. This is no problem for
ConTEXt: we only need the virtual fonts and tfmŠs
produced by fontinst, and we ignore the *.fd Ąle.
Below we outline the procedure for preparing the
fonts for installation using fontinst.3

Assuming that you are starting with 256-
character Type 1 fonts, you may rename them ac-
cording to the older Berry convention.4 We donŠt
need that convention with todayŠs operating systems
but we will use it as a starting point. This is since
LATEX already has a setup for Minion Pro that uses
the Berry fontname scheme and some readers may
already have the raw fonts in this format.

The Minion Pro that I have contains 31 fonts.
Here is a descriptive listing of the Type 1 Minion Pro
family (continued lines are editorial):

pmnb7d.pfb Minion Bold Oldstyle Figures
pmnb8a.pfb Minion Bold
pmnb8x.pfb Minion Bold Expert

pmnbi7d.pfb Minion Bold Italic Oldstyle Figures
pmnbi8a.pfb Minion Bold Italic
pmnbi8x.pfb Minion Bold Italic Expert

pmnc7d.pfb Minion Black Oldstyle Figures
pmnc8a.pfb Minion Black
pmnc8x.pfb Minion Black Expert

pmnr8a.pfb Minion Regular
pmnr8x.pfb Minion Regular Expert
pmnrc8a.pfb Minion Regular Small Caps

& Oldstyle Figures

pmnrd8a.pfb Minion Regular Display
pmnrd8x.pfb Minion Regular Display Expert
pmnrdc8a.pfb Minion Regular Display Small Caps

& Oldstyle Figures

pmnrdi8a.pfb Minion Italic Display
pmnrdi8x.pfb Minion Italic Display Expert
pmnrdic8a.pfb Minion Italic Display Small Caps

& Oldstyle Figures
pmnrdiw8a.pfb Minion Italic Display Swash

pmnri8a.pfb Minion Italic
pmnri8x.pfb Minion Italic Expert
pmnric8a.pfb Minion Italic Small Caps

& Oldstyle Figures
pmnriw8a.pfb Minion Italic Swash

pmnrp8a.pfb Minion Ornaments

pmns8a.pfb Minion Semibold
pmns8x.pfb Minion Semibold Expert
pmnsc8a.pfb Minion Semibold Small Caps

& Oldstyle Figures

pmnsi8a.pfb Minion Semibold Italic
pmnsi8x.pfb Minion Semibold Italic Expert
pmnsic8a.pfb Minion Semibold Italic Small Caps

& Oldstyle Figures
pmnsiw8a.pfb Minion Semibold Italic Swash

Let us begin our analysis of Minion; we need to make
a few decisions. WeŠll just make a note of them for
later; it helps to stay organized with all the account-
ing involved in the typescripts:

We Ąrst note that, aside from the ornamental
font, there are 5 main style variations: medium,
semibold, bold, black, and italic. Medium has a dis-
play version, italic has a display version, bold has
an italic version, and semibold has an italic version,
for a total of nine variations. We need to make some
sense of this in terms of optical scaling. For our fu-
ture typescript, we will initially group some of these
as follows:

• For \tf, letŠs try medium for sizes < 17.3pt,
and medium display for sizes ≥ 17.3pt;

• For \bf, try bold for sizes ≥ 8pt, and black
for sizes ≤ 8pt (there is no display size for
bold). Similarly for \bi;

• For \it, we try italic for sizes < 17.3pt, and
italic display for sizes ≥ 17pt;5

• We will leave semibold as its own alterna-
tive, although I did once try treating semi-

3 For a wealth of information about fontinst and vir-
tual fonts, see Alan Hoenig’s book TEX Unbound. A
more recent and up-to-date manual is The Font Instal-
lation Guide, by Philipp Lehman. It is available in
CTAN:/info/type1fonts/fontinstallationguide.

4 For details, see Hoenig, pages 132Ű134, and Lehman,
pages 11Ű13.

5 This is all intentionally experimental. Lehman, page 63,
has more professional suggestions, but I think it’s impor-
tant to reĆect for ourselves. Probably you will one day have
to install a font where no one has made predeterminations
about this sort of thing.

202 TUGboat, Volume 28 (2007), No. 2

bold (\sb) as an option for small or caption-
sizes (≤ 8pt). I think this was a failure, but
the reader should try it and judge for himself.

The rest of our choices will be analogous.
We also note the following, based on a direct

examination of these fonts:

• Based on the above grouping, small caps will
be available in both weights for \tf and for
\it, but not for \bf (sigh) or \bi. Oddly,
semibold has both a small caps variation and
a small caps italic variation. According to
Lehman (page 63), semibold is the actual de-
fault bold weight; maybe heŠs right.6

• For a given optical size (as tentatively deĄned
above), old style Ągures are available in both
the expert font and in the old style Ągures
font;

• For some reason, Minion Bold Oldstyle Fig-
ures as well as Minion Bold Italic Oldstyle
Figures have no small caps; each are identical
to Minion Bold and Minion Bold Italic re-
spectively, except for the numerals. The other
styles use small caps in their old style Ągures
versions;

• It is our intention to make old style numer-
als the default for our entire typeface collec-
tion; this makes sense in the humanities, in
my view;7

• For all Ąve primary variations (\tf, \it, \bf,
\bi, and \sb) and their derivatives, we will
try
− using the expert fonts for both old Ągures

and expert ligatures;
− using the old style Ągures fonts for

small caps only (\tf and \it);
Although we could just default to old style

Ągures for \bf and \bi, for purposes of con-
sistency we will, for the time being, treat all
four typefaces equally in this regard. You can
always change this. . .

• The most difficult task to accomplish the
above is dealing with the expert fonts in this
collection. They share a non-standard encod-
ing vector. We need to make our typeface
collection default to the expert ligatures and
to the old style numerals.

Preparing the raw fonts for installation involves
making a fontinst Ąle makeminion.tex like the fol-
lowing:

\input fontinst.sty

\installfamily{T1}{pmn}{}
\installfonts

% minionr
\installfont{minionr10} {pmnr8a,pmnr8x,latin}

{T1j}{T1}{minion}{m}{n}{}
\installfont{minionr17} {pmnrd8a,pmnrd8x,latin}

{T1j}{T1}{minion}{m}{n}{}

% minioni
\installfont{minioni10} {pmnri8a,pmnri8x,latin}

{T1j}{T1}{minion}{m}{it}{}
\installfont{minioni17} {pmnrdi8a,pmnrdi8x,latin}

{T1j}{T1}{minion}{m}{it}{}

% minionb
\installfont{minionb10} {pmnb8a,pmnb8x,latin}

{T1j}{T1}{minion}{b}{n}{}
\installfont{minionbl10} {pmnc8a,pmnc8x,latin}

{T1j}{T1}{minion}{b}{n}{}

% minionbi
\installfont{minionbi10} {pmnbi8a,pmnbi8x,latin}

{T1j}{T1}{minion}{m}{bi}{}

% minionsc
\installfont{minionsc10} {pmnrc8a,latin}

{T1j}{T1}{minion}{m}{sc}{}
\installfont{minionsc17} {pmnrdc8a,latin}

{T1j}{T1}{minion}{m}{sc}{}

% minionisci
\installfont{minionsci10} {pmnric8a,latin}

{T1j}{T1}{minion}{m}{sc}{}
\installfont{minionsci17} {pmnrdic8a,latin}

{T1j}{T1}{minion}{m}{sc}{}

% minionsb
\installfont{minionsb10} {pmns8a,pmns8x,latin}

{T1j}{T1}{minion}{sb}{n}{}

% minionsbi
\installfont{minionsbi10} {pmnsi8a,pmnsi8x,latin}

{T1j}{T1}{minion}{sb}{it}{}

% minionsbsc
\installfont{minionsc8} {pmnsc8a,latin}

{T1j}{T1}{minion}{sb}{sc}{}
\installfont{minionsci8} {pmnsic8a,latin}

{T1j}{T1}{minion}{sb}{sc}{}

% minionisw
%\installfont{minionswi10} {pmnriw8a,latin}
% {T1j}{T1}{minion}{m}{it}{}
%\installfont{minionswi17} {pmnrdiw8a,latin}
% {T1j}{T1}{minion}{m}{it}{}

6 On the other hand, Minion Pro Opticals has small caps for
bold, and the official documentation seems to indicate that
the default bold is, indeed, Minion Bold.

7 In The Elements of Typographic Style, Bringhurst enjoins:

Use titling [upright] figures with full caps, and text
[old style] figures in all other circumstances.

TUGboat, Volume 28 (2007), No. 2 203

%\installfont{minionsbswi10}{pmnsiw8a,latin}
% {T1j}{T1}{minion}{sb}{it}{}

% miniono
%\installfont{miniono10} {pmnrp8a,latin}
% {T1j}{T1}{minion}{m}{n}{}
\endinstallfonts
\bye

Let us look brieĆy at the Ąrst \installfont line
(see Hoenig or Lehman for details):

• \installfont {minionr10}

The name of our virtual font is minionr10;
• {pmnr8a,pmnr8x,latin}

Our standard font is pmnr8a, expert font
is pmnr8x, and latin.mtx is the default
fontinst metric Ąle that deĄnes at least 401
glyphs found in Latin alphabets (see Hoenig,
page 180);

• {T1j}{T1}{minion}{m}{n}{}

The encoding file is t1j.etx (Cork with
oldstyle numerals), general encoding is T1
(cork), family is minion, series is medium,
shape is normal, and size is left empty. This
is all NFSS terminology.

We have intentionally organized makeminion.tex to
be analogous to our future typescript Ąle. Also, we
have commented out the swash and ornament lines.
This is because I personally prefer to deal with the
preparation, installation, and conĄguration of each
of these two in its own directory, separate from the
main fonts. So in the /swash subdirectory the Ąle
makeminionsw.tex will contain only the swash lines,
and /ornaments will contain only the ornament line.
Looking ahead, we will have three separate type-
script classes: main, swash, and ornament. Because
writing advanced typescripts requires a lot of care-
ful accounting, it is better to keep these classes sep-
arate. If you donŠt believe me, try doing everything
that follows in the conĄguration stage in a single
typescript. YouŠll see!

In the LATEX version, the Ąnal fonts are given
names like pmnr9e instead of minionr10. Since we
donŠt have to deal with NFSS and old encodings, we
can happily dispense with that here.

In retrospect, I prefer to avoid fontinst. There
is a very limited number of pre-made *.etx Ąles,
though you can make your own. But if you have a set
of 256-character-slot Type 1 fonts, the next method
will make our life a bit easier later, as youŠll see. On
the other hand, if you really need dvips, then you
may need to go the fontinst route (dvipdfmx works
Ąne with the next method).

2.2 FontForge

While I was working with fontinst, the thought oc-
curred to me: is there some way we can merge the
expert and standard fonts into a single font Ąle, so
we can just use TEXfont (you will soon see why
this makes things easier)? I tried FontLab: no such
feature. Fontographer? Foiled again. Then I looked
at the open source FontForge (formerly PfaEdit).8

For Windows users, there is a version for Cygwin.
ItŠs deĄnitely worth installing a minimal Cygwin to
have FontForge; instructions are on the FontForge
site.

In FontForge, open pmnr8a.pfb. Then go to the
menu ELEMENT => MERGE to choose the correspond-
ing expert font, pmnr8x.pfb. FontForge will add
every character with a different name to the origi-
nal glyph palette. Then save this new font to min-

ionr10.pfb. You must repeat this for all standard
fonts that have an expert companion. You can use
makeminion.tex in the above subsection on fontinst
to identify the correspondences and correct names.
For those fonts that have no expert companion, just
copy and rename them to our scheme.

A nice thing about FontForge is that it is script-
able. So those who are familiar with that can write a
script so that FontForge can do all of this in batch.
That skill is a bit beyond me, so I just did it the
point-and-click way. Look up ŞscriptingŤ in the
FontForge documentation.

2.3 Pre-prepared fonts

If you have OpenType or TrueType versions of the
fonts you are set. If you need to use Aleph (ℵ, which
cannot use *.ttf/*.otf files), or need dvipdfmx,
then you need to convert each font to Type 1.9 DonŠt
worry about the 256-character-slot limit for Type 1
fonts; it wonŠt affect things for us. To follow along
easily, save copies of your OpenType Minion Pro
fonts to the names we are using here.

3 Installing the fonts

First, we must have the afm Ąles for all the raw
fonts. You can generate them with any decent font-
editing software. There is an afm-generation util-
ity, getafm, that comes with TEX Live, but it does
not procure the proper kerning info. A package
of metrics for the Adobe Type Classics for Learn-

8 Available here: http://fontforge.sourceforge.net/ .
9 One may use FontForge for this. There is also a tool

cfftot1 provided by lcdf (http://www.lcdf.org/type/)
but it can not, as far as I can tell, generate an *.afm Ąle.
But see Appendix 1.

204 TUGboat, Volume 28 (2007), No. 2

ing suite (including Minion Pro) is available from
http://www.lcdf.org/type/.

3.1 fontinst

A long batch Ąle can handle most of the work.
(Available from the author or in the ConTEXt My-
Way version of this article.) Once you have gener-
ated the Ąles and directories, you can install them in
your local tree or in /texmf-fonts, which ConTEXt
uses. You will also need a proper map Ąle, which
is where I made my big mistake with fontinst. For
dvips I used lines like this:
pmnr8a pmnr8a <pmnr8a

But I discovered that I needed lines like this (line
break is editorial):
pmnr8a Minion-Regular

"TeXBase1Encoding ReEncodeFont " <8r.enc <pmnr8a.pfb

Walter Schmidt has provided a complete LATEX
package for Minion: http://mirror.ctan.org/

fonts/psfonts/w-a-schmidt/pmn.zip. For de-
tails see this package. Between this and Tutorial VI

of LehmanŠs Guide you will learn all you need to
know about installing Minion Pro, as well as a lot
about fontinst. In any case, I much prefer using
TEXfont. Our installation in TEXfont will involve
multiple encodings. To do this in fontinst you may
have to write your own *.etx Ąles, etc, endure a lot
of debugging, and so forth. Make your life easy and
get FontForge.

3.2 TEXfont: Type 1, TrueType

or OpenType

Let us begin by making three temporary directories:

• /main: Put all Minion pfbŠs and afmŠs here;
• /swash: Put the swash fonts

minionswi10.pfb, minionsbswi10.pfb,
and minionswi17.pfb here;

• /ornament: Put the ornament font
miniono10.pfb and metric Ąle here.

Here we set our encoding vectors for Minion Pro. We
will use the texnansi encoding as our base, though
you can easily choose another (like ec) if you like.
Actually, we will use the Ąle texnansi-lm.enc, in
/texmf-local/fonts/enc/dvips/lm, as our base
Ąle, because it is easier to edit than texnansi.enc.
Just make sure to remove all *.dup extensions. For
example, change /OE.dup to /OE.

Now we create a few encoding Ąles (all go into
/main except the last two). From careful study these
examples, you can easily make your own special en-
codings at will. Note: each encoding Ąle must have

precisely 256 character lines, not counting the begin-
ning line and the ending line:

• texnansi-axo.enc

The preĄx texnansi is important; it tells
us that texnansi encoding is our foundation.
The string ŚaxŠ stands for ŚAdobe ExpertŠ and
the ŚoŠ stands for Śold style numeralsŠ. This
encoding Ąle will be used to create and in-
stall a virtual font that defaults to old style
numerals. Simply replace the lines

/zero
/one
...
/nine

with

/zerooldstyle %/zero etc.
/oneoldstyle
...
/nineoldstyle

The comments just remind us of the origi-
nal characters we are replacing. Change the
beginning line to /enctexnansiaxo[. There
are a couple of minor quirks to keep in mind.
The batch Ąle mentioned earlier has the full
texnansi-axo.enc; changes from the original
texnansi.enc are noted. For example, there
is no dotless ŚjŠ in either the Adobe standard
or expert encodings, at least not with Min-
ion Pro.10

• texnansi-axu.enc

This encoding Ąle will be used to create and
install a virtual font that defaults to upright
numerals. Use the default numeral characters
from texnansi.enc.

• texnansi-axs.enc

This encoding Ąle will be used to create and
install a virtual font that defaults to superior
numerals. Use /zerosuperior, etc.

• texnansi-axi.enc

This encoding Ąle will be used to create and
install a virtual font that defaults to inferior
numerals. Use /zeroinferior, etc.

• texnansi-axuc.enc

This encoding Ąle will be used to create and
install a virtual font that defaults to upright
numerals and small caps. The small caps

10 There is a free tool, t1dotlessj, that creates a dotless-Śj’
Type 1 font from an existing standard font:
http://www.lcdf.org/type/t1dotlessj.1.html .
You may then use FontForge to merge this with your main
font (preferable), or go through fontinst.

TUGboat, Volume 28 (2007), No. 2 205

fonts that come with Minion Pro all default
to old style numerals, and these numerals are
encoded with the upright character names.
Take texnansi-axu.enc and replace

/a
/b
...

with

/Asmall
/Bsmall
...

and so forth. Using this particular encoding
is only good for those standard fonts with
small caps in the corresponding expert font.
For example, Minion Bold Expert has no
small caps (although Semibold Expert does).
Basically you will be replacing all of the orig-
inal small caps fonts with non-small caps big
fonts encoded with small caps glyphs. We will
say more about this below, in the section on
typescripting.

• texnansi-ao.enc and texnansi-aw.enc

We make encodings for the swashes and orna-
ments. The ornaments take up 23 slots corre-
sponding to A through W; the swashes take
up A through Z. The /space slot is the only
other one kept in place; Ąll up the rest with
/.notdefŠs, e.g.,

/.notdef
/.notdef
/.notdef
/ornament1 %/A,
/ornament2 %/B
/ornament3 %/C, etc

for ornaments, and

/.notdef
/.notdef
/.notdef
/A
/B
/C
/D % etc.

for swashes.

There are lots of other possibilities, like an encoding
that uses text-fractions and so forth. You are now
in control!

It is now time to install. TEXfont will do most
of the work, but you have to install the encoding Ąles
by hand. It would be nice if TEXfont could do this

for us as well. In the meantime, copy the encoding
Ąles to /texmf-fonts/fonts/enc/dvips/minion.
Do not forget to install the encoding Ąles!

Now we are ready to install our main fonts with
TEXfont. The directory /main should have the
*.pfb Ąles, the *.afm Ąles, and the encoding Ąles
(or you can pre-install the encoding Ąles and run
texhash). From each of the three respective direc-
tories, issue the corresponding commands from the
following:

texfont --ma --in --en=texnansi-axo --ve=adobe \
--co=minion --show

texfont --ma --in --en=texnansi-axu --ve=adobe \
--co=minion --show

texfont --ma --in --en=texnansi-axs --ve=adobe \
--co=minion --show

texfont --ma --in --en=texnansi-axi --ve=adobe \
--co=minion --show

% texfont --ma --in --en=texnansi-axuc --ve=adobe \
% --co=minion --show
% uncomment for small caps with upright numerals.

Do texfont --help to see the meaning of each of
the above switches. The above commands use ab-
breviated versions (Ąrst two letters) of these op-
tions.11

Now you will Ąnd four pdf Ąles in /main:

• texnansi-axo-adobe-minion.pdf,
• texnansi-axu-adobe-minion.pdf,
• texnansi-axs-adobe-minion.pdf, and
• texnansi-axi-adobe-minion.pdf.

Take a look at these; they include beautiful font
charts of your encodings. Also visit the map Ąles in
/texmf-fonts/map/pdftex/context. Peruse espe-
cially the way the virtual fonts and tfm Ąles fonts
are named. ItŠs verbose but very easy to read and
systematic.

Did you remember to install the encoding Ąles?

4 ConĄguration

4.1 The texnansi-axo typeface collection

Now we need a set of typescripts that can handle
our main Minion font collection: letŠs call them
type-mino.tex, type-minu.tex, type-mins.tex,
and type-mini.tex. The four are almost identi-
cal so we will choose one of them to analyze in de-
tail, namely type-mino. Each typescript will have

11 Adam Lindsay pointed out to me that you may also use
the --variant option (e.g., --va=texnansi-axo instead of
--en. Then there may be no need to install the encoding
Ąles: just use [encoding=texnansi] in the typescripts.

206 TUGboat, Volume 28 (2007), No. 2

Ąve main parts: font mapping, general names, font

sizes, map loading, and final typefaces. Let us deal
with each of these in turn.

4.1.1 Font mapping

We map the raw fonts to easy-to-understand names.
We are not mapping directly to the pfbŠs, but rather
to the virtual fonts.

% We need a few switches: I don’t guarantee
% they don’t conflict with other commands;-)
\definestyle [italicsmallcaps,smallcapsitalic]

[\si] []
\definestyle [black] [\bk] []
\definestyle [semiboldroman,semibold] [\sb] []
\definestyle [semibolditalic] [\st] []
\definestyle [semiboldsmallcaps] [\sp] []
\definestyle [semiboldsmallcapsitalic] [\stp] []

% Regular serifs, > 8pt, < 17.3pt
\starttypescript[serif] [miniono] [texnansi-axo]

\definefontsynonym [Minion10]
[texnansi-axo-minionr10]

\definefontsynonym [Minion17]
[texnansi-axo-minionr17]

\definefontsynonym [MinionItalic10]
[texnansi-axo-minioni10]

\definefontsynonym [MinionItalic17]
[texnansi-axo-minioni17]

\definefontsynonym [MinionBold10]
[texnansi-axo-minionb10]

\definefontsynonym [MinionBlack]
[texnansi-axo-minionbl10]

\definefontsynonym [MinionBoldItalic]
[texnansi-axo-minionbi10]

\definefontsynonym [MinionCaps10]
[texnansi-axu-minionsc10]

\definefontsynonym [MinionCaps17]
[texnansi-axu-minionsc17]

\definefontsynonym [MinionItalicCaps10]
[texnansi-axu-minionsci10]

\definefontsynonym [MinionItalicCaps17]
[texnansi-axu-minionsci17]

\definefontsynonym [MinionSemiBold]
[texnansi-axo-minionsb10]

\definefontsynonym [MinionSemiBoldItalic]
[texnansi-axo-minionsbi10]

\definefontsynonym [MinionSemiBoldCaps]
[texnansi-axu-minionsbsc10]

\definefontsynonym [MinionSemiBoldItalicCaps]
[texnansi-axu-minionsbsci10]

\stoptypescript

Note that we map to the upright-encoded fonts for

the six fonts with small caps. This is because the
small caps fonts each default to old style numerals,
but those numerals are encoded in the font with up-
right names. Furthermore, the small caps fonts do
not have corresponding experts. So the small caps
virtual fonts in texnansi-axo encoding have no nu-
merals at all.

On the other hand, the texnansi-axu encoded
small caps virtual fonts will display old style numer-
als because those numerals are encoded in the font
with upright names. The rest will display upright
numerals. This inconsistency is wholly due to the
manufacturer of the original raw fonts.

Similarly, the typescript for texnansi-axu en-
coded fonts will need to map small caps to the
texnansi-axuc encoded fonts, if full consistency is
desired. The texnansi-axuc encoded fonts do not
need their own typescript, since they are meant to
supplement texnansi-axu.12

Note the option [miniono]. For type-minu.tex

it should be [minionu] (with a ŚuŠ) and so forth.

4.1.2 General names

This part may seem redundant right now, but it will
make sense when we add the Myriad Pro collection.
That is a sans serif, while Minion is a serif, so this
helps keep things clear and organized.

\starttypescript[serif] [miniono] [name]

\definefontsynonym [Serif] [Minion10]
\definefontsynonym [Serif17] [Minion17]

\definefontsynonym [SerifItalic10] [MinionItalic10]
\definefontsynonym [SerifItalic17] [MinionItalic17]

\definefontsynonym [SerifBold10] [MinionBold10]
\definefontsynonym [SerifBlack] [MinionBlack]

\definefontsynonym [SerifBoldItalic]
[MinionBoldItalic]

12 In type-minu.tex, replace the raw font names in these
lines:

\definefontsynonym [MinionCaps10]
[texnansi-axu-minionsc10]

...
\definefontsynonym [MinionSemiBoldItalicCaps]

[texnansi-axu-minionsbsci10]

with the corresponding names from the texnansi-axuc:

\definefontsynonym [MinionCaps10]
[texnansi-axuc-minionr10]

...
\definefontsynonym [MinionSemiBoldItalicCaps]

[texnansi-axuc-minionsbi10]

TUGboat, Volume 28 (2007), No. 2 207

\definefontsynonym [SerifCaps10] [MinionCaps10]
\definefontsynonym [SerifCaps17] [MinionCaps17]

\definefontsynonym [SerifItalicCaps10]
[MinionItalicCaps10]

\definefontsynonym [SerifItalicCaps17]
[MinionItalicCaps17]

\definefontsynonym [SerifSemiBold] [MinionSemiBold]

\definefontsynonym [SerifSemiBoldItalic]
[MinionSemiBoldItalic]

\definefontsynonym [SerifSemiBoldCaps]
[MinionSemiBoldCaps]

\definefontsynonym [SerifSemiBoldItalicCaps]
[MinionSemiBoldItalicCaps]

\stoptypescript

4.1.3 Font sizes

This is where we implement optical scaling (what
little there is, anyway). If you have Minion Pro Op-
ticals, you will have more choices. The following
typescript will give you the needed insight to imple-
ment your own scheme for optical scaling.

Note that in the Ąrst line of this section of
our typescript, we have mapped Minion10, not to
Serif10, but to just Serif. ConTEXt treats the
Serif font as the default or empty font; if it is not
deĄned, in a few cases ConTEXt will fall back to a
typeface where it is deĄned (generally Latin Mod-
ern).13

\starttypescript [serif] [miniono] [size]

\definebodyfont [9pt,10pt,11pt,12pt,14.4pt]
[rm]
[tf=Serif sa 1,
sc=SerifCaps10 sa 1,
it=SerifItalic10 sa 1,
si=SerifItalicCaps10 sa 1]

\definebodyfont [4pt,5pt,6pt,7pt,8pt]
[rm]
[tf=Serif sa 1,
sc=SerifCaps10 sa 1,
it=SerifItalic10 sa 1,
si=SerifItalicCaps10 sa 1,
bf=SerifBlack sa 1]

\definebodyfont [17.3pt,20.7pt,24.9pt]
[rm]
[tf=Serif17 sa 1,
sc=SerifCaps17 sa 1,
it=SerifItalic17 sa 1,
si=SerifItalicCaps17 sa 1]

\definebodyfont [9pt,10pt,11pt,12pt,14.4pt,
17.3pt,20.7pt,24.9pt]

[rm]
[bf=SerifBold10 sa 1]

\definebodyfont
[24.9pt,20.7pt,17.3pt,14.4pt,12pt,11pt,10pt,
9pt,8pt,7pt,6pt,5pt,4pt]

[rm]
[bi=SerifBoldItalic sa 1,
sb=SerifSemiBold sa 1,
st=SerifSemiBoldItalic sa 1,
sp=SerifSemiBoldCaps sa 1,
stp=SerifSemiBoldItalicCaps sa 1]

\stoptypescript

Some of these switches are newly deĄned (like \sp),
and the ConTEXt mechanism for enlarging and re-
ducing the size of a given style variation will not
work. We need to deĄne them for completeness. See
pages 129Ű131 of ConTEXt: the Manual for details.
ItŠs really quite straightforward, just a bit tedious
and verbose, so we leave it as an exercise for the
reader.14 See also the typescript in Appendix 1.

Choosing optical sizes is an area that needs ex-
perimentation to get right. For example, does the
black font really work at small bold sizes?

4.1.4 Map loading

Here we load our map Ąles, created during installa-
tion.

\starttypescript[map] [miniono] [texnansi-axo]
\loadmapfile[texnansi-axo-adobe-minion.map]
\loadmapfile[texnansi-axu-adobe-minion.map]
\stoptypescript

We also use the texnansi-axu map for small caps as
discussed above. The type-minu.tex Ąle will also
need to load the texnansi-axuc map Ąle, if you
have installed and desire to have small caps with
upright numerals.15

13 My thanks to Adam Lindsay for pointing this out.
14 Here is one example to get you started:

\definebodyfont
[24.9pt,20.7pt,17.3pt,14.4pt,12pt,
11pt,10pt,9pt,8pt,7pt,6pt,5pt,4pt]

[rm]
[sp=SerifSemiBoldCaps sa 1,
spa=SerifSemiBoldCaps scaled \magstep1, % or sa a
spb=SerifSemiBoldCaps scaled \magstep2, % or sa b
spc=SerifSemiBoldCaps scaled \magstep3, % or sa c
spd=SerifSemiBoldCaps scaled \magstep4] % or sa d
...

15 That is, in type-minu.tex you will need to declare some-
thing like this:

\starttypescript[map] [minionu] [texnansi-axu]
\loadmapfile[texnansi-axu-adobe-minion.map]
\loadmapfile[texnansi-axuc-adobe-minion.map]
\stoptypescript

208 TUGboat, Volume 28 (2007), No. 2

4.1.5 Final typefaces

This is where we put it all together, our Minion type-
face collection. We also deĄne those fonts that do
not come with Minion, Myriad, or Poetica, such as
math fonts (we use Euler) and monospaced (we use
Latin Modern). Note the ŚoŠ suffix in what follows.
Such identifying suffixes will be needed in the other
typescript Ąles as well as well.

While very powerful and transparent, typescripts
are quite sensitive to these kinds of seemingly minor
accounting issues, so be careful.

\starttypescript[ADOBEMiniono]

\definebodyfontenvironment
[adobeminiono]
[default]
[interlinespace=2.6ex]

\definetypeface [adobeminiono]
[rm] [serif] [miniono] [miniono]
[encoding=texnansi-axo]

% Configure Myriad and Poetica later, then uncomment
%\definetypeface [adobeminiono]
%[ss] [sans] [myriado] [myriado]
%[encoding=texnansi]

%\definetypeface [adobeminiono]
%[cg] [calligraphy] [poetica] [poetica]
%[encoding=texnansi]

\definetypeface [adobeminiono]
[mm] [math] [euler] [default]
[encoding=texnansi,rscale=0.89]

\definetypeface [adobeminiono]
[tt] [mono] [modern] [default]
[encoding=texnansi,rscale=0.99]

\stoptypescript

We found that the non-Minion fonts used in our
typeface collection, such as Euler math fonts and
Latin Modern monospaced, need to be scaled. That
is what the rscale=<scale factor> option does for
us. We also note that Minion needs a smaller inter-
line space factor than the usual 2.8ex. We may need
to do some more testing in this regard, though 2.6ex

seems to work well for the Minion design.
Be aware that ConTEXt sets up \em with the

slanted (\sl) style variation by default. But Min-
ion Pro does not come with a slanted font. So \em

will not work unless you map one of your fonts Ů
see the previous section on size deĄnitions Ů to \sl.
Declare

\setupbodyfontenvironment[default][em=italic]

either in your typescript or in your style or environ-
ment Ąle. It may not be such a good idea to deĄne it

in the typescript, because you could get odd results
depending on the order your typescripts are scanned
during compilation (assuming youŠve set up \em dif-
ferently somewhere else).

Now write the above set of typescripts to a Ąle,
type-mino.tex. We can now test our typescript so
far. Here is a test Ąle:

% output=pdf interface=en

\usetypescriptfile[type-mino]
\usetypescript[ADOBEMiniono]
\switchtotypeface[adobeminiono]%

\starttext
This is a test of Minion in \CONTEXTT. 1234\par
\bf This is a test of Minion in \CONTEXTT. 1234\par
\it This is a test of Minion in \CONTEXTT. 1234\par
\bi This is a test of Minion in \CONTEXTT. 1234\par
\sc This is a test of Minion in \CONTEXTT. 1234\par
\si This is a test of Minion in \CONTEXTT. 1234\par
\sb This is a test of Minion in \CONTEXTT. 1234\par
\stp This is a test of Minion in \CONTEXTT. 1234\par

\switchtotypeface[adobeminionor]
{\tf ABCDEFGHIJKLMNOPQRSTUVW \par}\blank

\switchtotypeface[adobeminionsw]
{\sw ABCDEFGHIJKLMNOPQRSTUVW \par}\blank
\stoptext

5 Post-dvi processing

Unfortunately, inconsistencies between pdfTEX,
dvips, and dvipdfmx mean we have to do more work
if we need post-dvi processing for any reason (this
is the case with ℵ, for example).

5.1 dvipdfmx

You will need to write at least one map Ąle for your
collection. Look at, e.g., texnansi-axo-adobe-

minion.map. Change the syntax from (line break
is editorial)

texnansi-axo-raw-minionr10 Minion-Regular 4
<minionr10.pfb texnansi-axo.enc

to
texnansi-axo-raw-minionr10 texnansi-axo minionr10

Now, to make your map Ąle available to
dvipdfmx, you can add a line like
f minion-dvipdf.map

to the Ąle /texmf-local/fonts/dvipdfm/config/

config, or you can invoke your map Ąle from the
command line:
dvipdfmx -f minion-dvipdf.map

5.2 dvips

If you need to use dvips, you may have to go the

TUGboat, Volume 28 (2007), No. 2 209

fontinst route. See Tutorial VII of LehmanŠs Guide

for a very thorough discussion of preparing map Ąles
for dvips with fontinst.

Best wishes for painless font installation in ConTEXt!

6 Acknowledgements

I would like to especially thank Hans Hagen, Adam
Lindsay, Thomas A. Schmitz, Ralf Stubner, and oth-
ers from the ConTEXt mailing list for their help and
assistance during the struggle to prepare this article.

Appendix 1 Minion Pro Opticals

As I was Ąnishing this article I received the com-
plete Minion Pro Opticals set, in OpenType format.
This set is more internally coherent than the older
version we used for this tutorial. It contains six
style variations: medium or regular, semibold, bold,
italic, semibold italic, and bold italic. The black
style variation is apparently gone. Each style vari-
ation comes in four optical sizes: normal, caption,
subhead, and display. Each font has a standard 256-
character encoding, plus a set of old style numerals,
superiors, inferiors, a set of small caps (we have bold
small caps now!), ornaments and hundreds of other
alternates. There is no dedicated small caps or or-
naments font. Each italic font has a large palette of
swashes, many more than the original swash fonts.
There are also Greek, Cyrillic, and lots of alternate
or fancy ligatures. This is really much better than
the original set.

Our encodings prepared earlier will suffice with
a few changes (and you can always make your own):

• texnansi-axo.enc, texnansi-axu.enc,
texnansi-axs.enc, and texnansi-axi.enc

will stay the same;
• For small caps we need texnansi-axoc.enc

for small caps with old style numerals. Just
modify texnansi-axuc.enc and replace the
default numerals with the old style ones;

• texnansi-aw.enc will have to change
/Aswash to /A.swash, etc. The italics font
also offer lots of swash capitals with accents.
Some of these swashes do not have a corre-
sponding entry in the standard encoding: for

example, there is no /Ebreve in the standard
encoding to match /Ebreve.swash. So if you
want the esoteric swashes you will have to
pick and choose how you want to encode this
within a 256-character context.

One idea about swashes: since they are
now part of the full italic fonts, treat them
like small caps, and encode them in the same
/a--/z band of the encoding. This was much
harder to accomplish in the old fonts.

• The ornamentsŠ names in texnansi-ao.enc

have to be changed: /ornament1 becomes
/orn.001, etc., up to /orn.023. An identical
set of ornaments is present in every font, so
you can also encode ornaments like a small
caps font if you like.

Installation is just as before. Convert fonts to *.pfb

(with *.afm), place in a separate directory with your
encodings, then run TEXfont for as many encodings
as you like.16

The typescript Ąles are mostly as before: the
only really interesting difference is the much better
optical scaling. According to the Minion Pro Op-
ticals documentation, the intended optical scaling
spectrum is as follows:

• Caption: 6Ű8.4 point
• Normal (Regular): 8.5Ű13 point
• Subhead: 13.1Ű19.9 point
• Display: 20+ point

For small caps, one may choose to write a separate
typescript Ąle and typeface collection, in which case
one has to switch fonts to use small caps. Or one
can integrate, e.g., the small caps fonts into the up-
right numerals typescript Ąle. Experiment to get the
combination that works best for you.

Enjoy!

⋄ Idris Samawi Hamid
Colorado State University
ishamid (at) colostate dot edu

16 For an alternative approach, see Adam Lindsay’s ŞOpen-
Type installation basics for ConTEXtŤ in The PracTEX
Journal 2005-02: http://tug.org/pracjourn/. It makes
use of the cfftot1 utility mentioned in footnote 9.

210 TUGboat, Volume 28 (2007), No. 2

Software & Tools

Hacking DVI files: Birth of DVIasm

Jin-Hwan Cho

Abstract

This paper is devoted to the first step of developing a
new DVI editing utility, called DVIasm. Editing DVI

files consists of three parts: disassembling, editing,
and assembling. DVIasm disassembles a DVI file to
a human-readable text format (more flexible than
DTL), and assembles the output back to a DVI file.

DVIasm is useful for people who have a DVI file
without TEX source, but need to modify the doc-
ument. It enables us to put a preprint number, a
watermark, or an emblem on the document with-
out touching the TEX source. DVIasm is attractive
to even a TEX expert who wants to modify a few
words in his document more than a hundred pages
long.

We discuss in the paper how DVIasm supple-
ments TEX. The current version supports only the
standard DVI file format as in DVItype and DTL.
The next versions will support 16-bit TEX exten-
sions including Omega, pTEX, and X ETEX.

1 Introduction

Have you ever heard of DVI, not the Digital Visual
Interface1 but the DeVice-Independent file format?
In past years, every TEX user knew what DVI is and
used DVI utilities to view and print TEX results.
However, in recent times, TEX users have paid at-
tention to DVI less and less because pdfTEX outputs
directly to the PDF2 file format. It is true without
doubt that PDF is more powerful than DVI in al-
most all aspects. Then, do we have to obsolete DVI

as PostScript is gradually replaced by PDF?
The DVI file format was designed by David R.

Fuchs in 1979, in contrast to the release of PDF ver-
sion 1.0 in 1993. It is intended to be both compact
and easily interpreted by a machine [4, §14]. The
most powerful aspect of DVI compared to PDF is

Editor’s note: Reprinted from The PracTEX Journal 2007-1
(http://tug.org/pracjourn), by permission.

1 A video interface standard designed to maximize the
visual quality of digital display devices such as flat panel LCD

computer displays and digital projectors [Wikipedia, http:

//en.wikipedia.org/wiki/DVI].
2 PDF (Portable Document Format) is an open file format

created and controlled by Adobe Systems, for representing
two-dimensional documents in a device independent and reso-
lution independent fixed-layout document format [Wikipedia,
http://en.wikipedia.org/wiki/PDF].

nothing but simplicity. Imagine the speed of three
previewers of DVI, PostScript, and PDF, and com-
pare also the file size of the three different file for-
mats. Furthermore, simplicity enables us to control
DVI files in various ways. One of these is to edit DVI

files directly — the main object of this paper.
There are many applications of editing DVI files.

The most critical situation is when we have a DVI

file without TEX source, but we want to modify or to
add something to the document. A technical editor
may want to put a preprint number on each paper
without touching the TEX source. He may also want
to put a watermark or an emblem on every paper.

Editing a DVI file is much faster for a TEX
novice than learning TEX, when all he wants to do is
to add some decorations to his document, and is not
familiar with TEX codes. It may even be attractive
to a TEX expert who wants to modify a few words
in a long document.

Since a DVI file consists of binary data, it must
be converted to a human readable format to inspect
and edit its contents. The original DVI utility is
DVItype [4], written by Donald E. Knuth in 1982. It
has two chief purposes: to validate DVI files, and to
give an example for developers of DVI utilities [4, §1].
DVItype is a nice utility to inspect the contents of a
DVI file because of its human readable text output.
However, it lacks any procedure for converting the
output back to a DVI file.

A true DVI editing utility is the Device-indepen-
dent Text Language (DTL) package [5] developed
by Geoffrey Tobin. It includes two utilities dv2dt

and dt2dv for converting from DVI to DTL and vice
versa. It is notable that there is a one-to-one cor-
respondence between DTL and DVI, and that DTL

does not require TFM (font metric) files, in contrast
to DVItype. However, DTL is not flexible for or-
dinary TEX users. For example, users must choose
the correct command from r1 to r4 according to the
width of the move to the right. Moreover, the lat-
est version of DTL was released in 1995, and so it
does not support extended DVI formats generated
by Omega3 or Japanese pTEX.4

The development plan for a new DVI editing
utility, called DVIasm, consists of three phases. This
paper is devoted to the first step, where DVIasm is
introduced with several examples. The current ver-
sion of DVIasm supports only the standard DVI file
format, like DVItype and DTL, but is more flexible
than DTL.

3 An extension of TEX by John Plaice and Yannis Hara-
lambous, http://omega.enstb.org.

4 ASCII Nihongo TEX by ASCII Corporation, http://www.
ascii.co.jp/pb/ptex/index.html.

TUGboat, Volume 28 (2007), No. 2 211

In the second phase we will focus on 16-bit char-
acters, for instance, Chinese, Japanese, Korean, and
Unicode, to support Omega, pTEX, and the subfont
scheme5 which enables us to use 16-bit characters in
TEX and pdfTEX. In the final phase, DVIasm will
communicate with the Kpathsea library, so that it
will read font metric information from TFM, OFM,
JFM, TrueType, and OpenType font files. DVIasm
will also support X ETEX6 which reads font metric
information directly from the font file itself.

2 Prerequisite

2.1 Download and installation

The current version of DVIasm is written in the
Python programming language.7 Why Python not
C? The main reason is that Python does not re-
quire compiling and linking to get an executable
file. Thus, DVIasm consists of a single Python pro-
gram dviasm.py in a human-readable text format
and it can run on any platform in which Python is
installed. If speed-up is required later, some parts
of DVIasm will be translated into C.

The development of DVIasm is controlled by
Subversion, a popular version control system, and
all revisions of DVIasm can be downloaded at [2].
From now on we assume that dviasm.py is in the
working directory. The basic usage of DVIasm will
be output if the option --help is specified as follows:

python dviasm.py --help

2.2 Creating a DVI file without TEX

For our first example, let’s suppose we have saved
following three lines as hello.dump. (The number
at the beginning of each line is just the line number
for reference and should not be typed.)

1 [page 1 0 0 0 0 0 0 0 0 0]

2 fnt: cmr10 at 50pt

3 set: ’Hello, World!’

Then run the following command:

python dviasm.py hello.dump -o hello.dump.dvi

to get a new DVI file, hello.dump.dvi. Its contents
are shown in Figure 1(a).

5 The subfont scheme is a way of splitting a set of 16-bit
characters into groups of 256 characters or less, the number
of characters that TFM format can accommodate [3].

6 A typesetting system based on a merger of TEX with
Unicode and Mac OSX font technologies, by Jonathan Kew,
http://scripts.sil.org/xetex.

7 Python is a dynamic object-oriented programming lan-
guage that runs on almost all operating systems. Just type
‘python’ and hit the return key in the terminal to check
whether Python is already installed or not. If not installed,
visit the official website http://www.python.org.

(a) hello.dump.dvi

(b) hello.dvi

Figure 1: DVI result generated by (a) DVIasm and
(b) TEX.

All DVI files in this paper are converted to PDF

with DVIPDFMx8 version 20061211. The DVI result
can also be converted to PostScript with Dvips,9

or viewed on the screen with the DVI previewers,
xdvi,10 dviout,11 or yap.12

In the input, each page begins with the opening
square bracket followed by the string ‘page’ (with-
out a colon), ten numbers, and the closing square
bracket. Among the numbers the first one usually
stands for the page number. In the second line the
DVI command ‘fnt:’ selects the Computer Modern
font, cmr10 scaled at 50 pt. In the last line the text
‘Hello, World!’ is typeset by the command ‘set:’.

2.3 Disassembling a DVI file

We now try to disassemble a DVI file. First, make a
TEX file hello.tex consisting of the following:

\nopagenumbers \font\fnt=cmr10 at 50pt

\noindent\fnt Hello, World! \bye

and run TEX (not LATEX) to get hello.dvi. The
result is shown in Figure 1(b).

8 A DVI to PDF converting utility by Shunsaku Hirata
and Jin-Hwan Cho, http://project.ktug.or.kr/dvipdfmx/.
It is an extension of DVIPDFM written by Mark A. Wicks,
http://gaspra.kettering.edu/dvipdfm/.

9 A DVI to PostScript converter by Tom Rokicki, http:

//www.radicaleye.com/dvips.html.
10 A DVI previewer in X Window system by Paul Vojta,

http://math.berkeley.edu/~vojta/xdvi.html.
11 The most popular DVI previewer in Japan that supports

pTEX, http://akagi.ms.u-tokyo.ac.jp/dviout-ftp.html.
12 The DVI previewer in the MiKTEX system by Christian

Schenk, http://www.miktex.org.

212 TUGboat, Volume 28 (2007), No. 2

1 [preamble]

2 id: 2

3 numerator: 25400000

4 denominator: 473628672

5 magnification: 1000

6 comment: ’ TeX output 2007.01.24:1740’

7

8 [postamble]

9 maxv: 667.202545pt

10 maxh: 469.754990pt

11 maxs: 2

12 pages: 1

13

14 [font definitions]

15 fntdef: cmr10 (10.0pt) at 50.0pt

16

17 [page 1 0 0 0 0 0 0 0 0 0]

18 push:

19 down: -14.0pt

20 pop:

21 down: 643.202545pt

22 push:

23 down: -608.480316pt

24 push:

25 fnt: cmr10 (10.0pt) at 50.0pt

26 set: ’Hello,’

27 right: 16.666687pt

28 set: ’W’

29 right: -4.166702pt

30 set: ’orld!’

31 pop:

32 pop:

33 down: 24.0pt

Code 1: Output of disassembling hello.dvi with
DVIasm.

One may easily find two points of difference be-
tween (a) and (b) in Figure 1. The first is the lo-
cation of the text,13 and the other one is the bar
for the Polish letters l and L14 in (a) instead of the
blank space in (b).

Looking at the figures closely, one more differ-
ence can be found: there is no kerning between the
two characters ‘W’ and ‘o’ in (a). The kerning in-
formation is stored in TFM files; the implication is
that DVIasm would need to communicate with the
Kpathsea library to fetch the information. Thus,
DVIasm no longer works if the whole TEX system is
not installed. This is the reason why DTL and the
current version of DVIasm do not require TFM files.

13 The upper left corner of the paper has the coordinate
(−1 in,−1 in), since the default x- and y-offsets are both one
inch as usual. So the reference point of ‘H’ is the origin (0,0)
in Figure 1(a). However, it is common to place the upper left
corner of ‘H’ at the origin as in Figure 1(b).

14 The ASCII code of the blank space is 32, and glyph at
position 32 in cmr10 is the bar for Polish l and L.

1 [page 1 0 0 0 0 0 0 0 0 0]

2 putrule: 1cm 0.5pt

3 putrule: 0.5pt 1cm

4 push:

5 down: -14.0pt

6 pop:

7 ... (skip) ...

Code 2: Put a mark at the origin (0,0).

To see the exact differences, let us disassemble
hello.dvi with DVIasm by running

python dviasm.py hello.dvi

to get the output15 shown in Code 1. One can see
four new commands, ‘push:’, ‘pop:’, ‘right:’, and
‘down:’. An amount to move follows ‘right:’ and
‘down:’ as an argument. The meaning of these two
commands seems clear.

However, there are two things to keep in mind.
First, the coordinate system of DVI is different from
the standard Cartesian coordinate system16 used in
PostScript and PDF. In DVI the x-coordinate in-
creases from left to right, like Cartesian coordinates,
but the y-coordinate increases from top to bottom,
the opposite of Cartesian coordinates. Second, all
positions in DVI are specified relatively, not abso-
lutely. It is not possible in DVI to give a command
like “go to the coordinate (100 pt, 100 pt).” Only
‘right:’ and ‘down:’ are allowed in DVI.

Then how do we move to a specific position in
DVI? We can use the two commands ‘push:’ and
‘pop:’. The command ‘push:’ stores the current po-
sition in the stack, and ‘pop:’ restores the position
saved in the stack to the current position.

3 DVI commands

Let’s now assume that the lines in Code 1 from the
17th line to the end are saved as hello.dump. The
first example is to put some mark at the origin (0,0).

15 DVIasm always outputs to standard output if the -o

option is not specified.
16 The Cartesian coordinate system is used to determine

each point uniquely in a plane through a pair of numbers
(x, y), usually called the x-coordinate and the y-coordinate
of the point [Wikipedia, http://en.wikipedia.org/wiki/

Cartesian_coordinate_system].

TUGboat, Volume 28 (2007), No. 2 213

command argument description

set: string draw [string] and move to the right by the total width of the string

put: string draw [string] without moving to the right

setrule: length1 length2 draw a box with width [length2] and height [length1] and then move
to the right by [length2]

putrule: length1 length2 draw a box with width [length2] and height [length1] without moving
to the right

push: save the current position to the stack

pop: restore the position in the stack to the current position

right: length move to the right by [length]
move to the left if [length] is negative

down: length move down by [length]
move up if [length] is negative

fnt: name at length select the font [name] scaled at [length]
[name] does not allow spaces

xxx: string DVI special command to be processed by DVI utilities; see the next
section

Figure 2: DVIasm commands.

command argument description

w: length the same as right:, but [length] is stored in the ’w’ variable

x: length the same as right:, but [length] is stored in the ’x’ variable

y: length the same as down:, but [length] is stored in the ’y’ variable

z: length the same as down:, but [length] is stored in the ’z’ variable

w0: move to the right by the length in the ’w’ variable

x0: move to the right by the length in the ’x’ variable

y0: move down by the length in the ’y’ variable

z0: move down by the length in the ’z’ variable

Figure 3: DVIasm move commands.

This is achieved by inserting two lines after the first
line, as in Code 2.

DVI has only two commands for drawing graph-
ics, ‘putrule:’ and ‘setrule:’. Both commands
draw a box filled with black. The first and the sec-
ond arguments indicate the size of the height and
the width of the box, respectively. (Do not con-
fuse the order of height and width!) The command
‘setrule:’ is the same as ‘putrule:’ except for
moving to the right by the amount of the width af-
ter drawing the box.

The next example is to put a box filled with red
under the text. Since DVI has no color command,
Code 3 uses the special command ‘xxx:’ that will
be explained in the next section.

Exercise. Put the red box over the string to hide
the overlapped part of the text.

Figures 2 and 3 give the input commands sup-
ported by DVIasm. There are two types of argu-
ments, string and length. The string type consists
of a text string surrounded by either apostrophes (’)
or double quotation marks ("). It has the same for-

8 ... (skip) ...

9 down: -608.480316pt

10 xxx: ’color push rgb 1 0 0’

11 putrule: 10pt 4in

12 xxx: ’color pop’

13 push:

14 ... (skip) ...

Code 3: Put a box filled with red under the text.

mat as the Python string type.17 The length type is
either an integer or a floating point number followed

17 We can input any 8-bit character with hexadecimal
value hh by ’\xhh’. Thus, ‘\\’ must be used to type the
escape character ‘\(backslash)’.

214 TUGboat, Volume 28 (2007), No. 2

1 [page 1 0 0 0 0 0 0 0 0 0]

2 xxx: ’papersize=6in,3in’

3 putrule: 1cm 0.5pt

4 putrule: 0.5pt 1cm

5 push:

6 down: -14.0pt

7 pop:

8 ... (skip) ...

Code 4: Resize the page of Code 3.

by unit (e.g., sp, pt, bp, mm, cm, in).18 If no unit
is specified, the number is in units of sp by default.
The argument of ‘fnt:’ is exceptional. The name
of the font is given without apostrophes.

4 DVI specials

We saw all the DVI commands in the previous sec-
tion, and we may note that there are no commands
for color, graphics, or transformations in DVI. But
we already know that they are possible in TEX. How
do they work?

The answer is the DVI special command ‘xxx:’.
It is the only way for TEX to communicate with DVI

utilities. However, each DVI utility supports its own
DVI specials. For example, neither DVIPDFM nor
DVIPDFMx support a PostScript literal special con-
taining PostScript code. On the other hand, almost
none of the PDF specials work with Dvips.

In this section we introduce common DVI spe-
cials and show some examples using DVIasm. The
material in this section is based on the author’s talk
at the TUG 2005 conference [1].

4.1 Page specials

There are two kinds of page specials. Code 4 is an
example of the first, specifying a page size; it resizes
the previous example (Code 3).

papersize=[width],[height] changes the size

of whole pages. But it has no effect on the paper
size that can be changed by the command line option

18 1 in = 2.54 cm = 25.4 mm = 72 bp = 72.27 pt, and
1 pt = 216 sp = 65, 536 sp

1 [page 1 0 0 0 0 0 0 0 0 0]

2 xxx: ’landscape’

3 putrule: 1cm 0.5pt

4 putrule: 0.5pt 1cm

5 push:

6 down: -14.0pt

7 pop:

8 ... (skip) ...

Code 5: Landscape orientation.

or by the configuration file (supported by Dvips∗,19

DVIPDFM, and DVIPDFMx).

pdf:pagesize width [length] height [length]

changes the size of the page containing this special
(supported by DVIPDFM∗(?) and DVIPDFMx).

Code 5 shows an example of the second kind
of page special: landscape paper orientation, rather
than portrait.

landscape swaps the width and the height of the

paper size (supported by Dvips∗, DVIPDFM, and
DVIPDFMx).

4.2 Color specials

All of the common color specials originated with
Dvips. In the specials below, color values can be
specified in various ways (Code 6):

• cmyk [c] [m] [y] [k]

• rgb [r] [g] [b]

• hsb [h] [s] [b]

• gray [g]

• or a predefined color name.

The value of each color component is a num-
ber between 0.0 and 1.0. We refer to [6, pp. 12–13]
and [1, p. 11] for PDF color specials, which are easier
to understand than PostScript color specials.

19 ∗ denotes the original source of the feature, and (?)
means that the behavior looks mysterious or buggy.

TUGboat, Volume 28 (2007), No. 2 215

1 [page 1 0 0 0 0 0 0 0 0 0]

2 xxx: ’background cmyk .183 .054 0 0’

3 down: 643.202545pt

4 push:

5 down: -608.480316pt

6 xxx: ’color push LimeGreen’

7 push:

8 fnt: cmr10 (10.0pt) at 50.0pt

9 set: ’Hello,’

10 right: 16.666687pt

11 xxx: ’color push rgb 0 0 .625’

12 set: ’W’

13 xxx: ’color pop’

14 right: -4.166702pt

15 set: ’orld!’

16 pop:

17 xxx: ’color pop’

18 pop:

Code 6: Example of coloring background and text.

background [PScolor] sets a fill color for the

background (supported by Dvips∗, DVIPDFM, and
DVIPDFMx).

color push [PScolor] saves the current color

on the color stack and sets the current color to the
given one (supported by Dvips∗, DVIPDFM, and
DVIPDFMx).

color pop pops a color from the color stack and

sets the current color to be that color (supported by
Dvips∗, DVIPDFM, and DVIPDFMx).

color [PScolor] clears the color stack, and saves
and sets the given color (supported by Dvips∗, DVI-

PDFM(?), DVIPDFMx).

[page 1 0 0 0 0 0 0 0 0 0]

down: 150bp

xxx: ’psfile=tiger.eps rhi=1500

llx=17 lly=171 urx=617 ury=771 clip’

right: 150bp

xxx: ’psfile=tiger.eps rhi=750

llx=17 lly=171 urx=617 ury=771

angle=45 clip’

right: 75bp

xxx: ’psfile=tiger.eps rwi=1500 rhi=750

llx=17 lly=171 urx=617 ury=771 clip’

right: 150bp

xxx: ’psfile=tiger.eps rwi=750 rhi=1500

llx=17 lly=171 urx=617 ury=771 clip’

Code 7: Manipulating an image. (Line breaks are
editorial.)

4.3 Image specials

The special ‘psfile’ is used for including an EPS

(PostScript) graphics file. EPS files contain bound-
ing box information. For example, the bounding box
of the EPS file in the following example20 is

%%BoundingBox: 17 171 567 739

Four options llx, lly, urx, and ury specify the clip-
ping area of the EPS file, and two options rwi and
rhi (0.1 bp unit) are used to resize the clipped area.

psfile=[name] hsize=[num] vsize=[num]

hoffset=[num] voffset=[num]

hscale=[num] vscale=[num] angle=[num]

llx=[num] lly=[num] urx=[num] ury=[num]

rwi=[num] rhi=[num] [clip]

Although Dvips∗, DVIPDFM, and DVIPDFMx all
recognize psfile, neither DVIPDFM nor DVIPDFMx
have internal PostScript interpretation support, so
they cannot process EPS files without Ghostscript
or another PostScript “distiller” available.

However, both DVI utilities support JPEG and
PDF image files, which are not processed by Dvips.
The PDF image special for JPEG and PDF images

20 Namely tiger.eps, which can be found in the examples

directory of Ghostscript, the most popular free software in-
terpreter (available under the GPL) for PostScript and PDF.
See http://www.ghostscript.com for more information.

216 TUGboat, Volume 28 (2007), No. 2

has reader-friendly syntax. We refer to [6, p. 13]
and [1, pp. 12–14] for examples.

pdf:image width [length] height [length]

depth [length] rotate [num]

scale [num] xscale [num] yscale [num]

bbox [ulx] [uly] [lrx] [lry]

matrix [a] [b] [c] [d] [x] [y] ([name])

(Supported by DVIPDFM∗(?) and DVIPDFMx).

4.4 Transformation specials

AAAA
It is possible in LATEX
to rotate and scale
text and figure. But
Dvips has no trans-
formation special
for this purpose.
Instead, it enables
us to insert literal
PostScript code.

" [PScode] inserts literal PostScript code sur-
rounded by a gsave and grestore pair, so that it
will have no effect on the rest of the document (sup-
ported by Dvips∗ only).

ps:[PScode] inserts literal PostScript code with-

out gsave and grestore (supported by Dvips∗ only).
The code for the example above follows (line

breaks in the long specials are editorial):

[page 1 0 0 0 0 0 0 0 0 0]

xxx: ’papersize 2in,2in’

xxx: ’" Goldenrod newpath 0 0 moveto 50 0 lineto

0 0 50 0 90 arc closepath fill’

xxx: ’" Dandelion newpath 0 0 moveto 0 50 lineto

0 0 50 90 180 arc closepath fill’

xxx: ’" Apricot newpath 0 0 moveto -50 0 lineto

0 0 50 180 270 arc closepath fill’

xxx: ’" Peach newpath 0 0 moveto 0 -50 lineto

0 0 50 270 0 arc closepath fill’

xxx: ’color gray 1’

fnt: ptmr8r at 50pt

xxx: ’ps:gsave’

put: ’A’

xxx: ’ps:currentpoint currentpoint translate

90 rotate neg exch neg exch translate’

put: ’A’

xxx: ’ps:currentpoint currentpoint translate

90 rotate neg exch neg exch translate’

put: ’A’

xxx: ’ps:currentpoint currentpoint translate

90 rotate neg exch neg exch translate’

put: ’A’

xxx: ’ps:grestore’

On the other hand, DVIPDFM and DVIPDFMx
have a PDF transformation special for rotation and
scaling, etc. Note that literal PDF code is used in
the following example.

AAAA
pdf:btrans [same options as pdf:image]

applies the spec-
ified transforma-
tion to all subse-
quent text (sup-
ported by DVI-

PDFM∗ and
DVIPDFMx).

pdf:etrans

concludes the ac-
tion of the imme-
diately preceding pdf:btrans special (supported by
DVIPDFM∗ and DVIPDFMx).

pdf:content [PDFcode] inserts literal PDF code

surrounded by a q and Q pair, so it will have no
effect on the rest of the document (supported by
DVIPDFM∗ and DVIPDFMx).

pdf:literal [PDFcode] inserts literal PDF code

without the q and Q pair (supported by DVIPDFMx∗

only).
Here is the PDF implementation of the figure

above (again, line breaks are editorial):

[page 1 0 0 0 0 0 0 0 0 0]

xxx: ’papersize 2in,2in’

xxx: ’color Goldenrod’

xxx: ’pdf:content 0 0 m 50 0 l

50 25 25 50 0 50 c f’

xxx: ’color Dandelion’

xxx: ’pdf:content 0 0 m 0 50 l

-25 50 -50 25 -50 0 c f’

xxx: ’color Apricot’

xxx: ’pdf:content 0 0 m -50 0 l

-50 -25 -25 -50 0 -50 c f’

xxx: ’color Peach’

xxx: ’pdf:content 0 0 m 0 -50 l

25 -50 50 -25 50 0 c f’

xxx: ’color gray 1’

fnt: ptmr8r at 50pt

put: ’A’

xxx: ’pdf:btrans rotate 90 scale .5’

put: ’A’

xxx: ’pdf:btrans rotate 90 scale 2’

put: ’A’

xxx: ’pdf:btrans rotate 90 scale 2’

put: ’A’

xxx: ’pdf:etrans’

xxx: ’pdf:etrans’

xxx: ’pdf:etrans’

(This figure is not quite circular, compared to the
previous PostScript one, since that would require
much longer code.)

To this point, we have discussed common DVI

specials, mostly originated by Dvips. There are also
many PDF specials not yet mentioned. DVIPDFM

originates almost all PDF specials, and its manual [6]

TUGboat, Volume 28 (2007), No. 2 217

is a good source. Moreover, the present author dis-
cussed at TUG 2005 [1] how differently the three DVI

utilities, Dvips, DVIPDFM, and DVIPDFMx behave
on the same special command.

5 Conclusion

Imagine that one has a DVI file without TEX source,
but wishes to modify or to add something to the doc-
ument. For example, a technical editor may want to
put a preprint number on each paper, which was not
fixed at the time of writing. He may also want to
put a watermark or an emblem on every paper.

We also imagine a TEX novice who wants to
include some decorations in his document, but has
trouble writing TEX code. Is it the best advice for
him to learn TEX? It might be — if he has enough
time. If not, DVIasm is an alternative. In fact, he
may learn DVI commands more quickly than TEX
commands. DVIasm may even be attractive to a
TEX expert who wants to modify a few words in a
long document.

DVIasm is written for these purposes, as a sup-
plement to TEX and its extended versions. Of course,
DVIasm is not an alternative to TEX! Neither line
breaking nor page breaking is (or ever will be) sup-
ported.

As mentioned at the beginning of the paper,
DVIasm development is in its first phase. The next
paper will discuss how to support 16-bit characters
in DVIasm. Any comments are welcome, and will be
helpful to improve the program.

References

[1] Jin-Hwan Cho, Practical Use of Special
Commands in DVIPDFMx, TUG 2005,
International Typesetting Conference. Wuhan,
China. http://project.ktug.or.kr/
dvipdfmx/doc/tug2005.pdf

[2] Jin-Hwan Cho, The DVIasm Python script.
http://svn.ktug.or.kr/viewvc/dviasm/

?root=ChoF

[3] Jin-Hwan Cho and Haruhiko Okumura,
Typesetting CJK languages with Omega. TEX
XML, and Digital Typography, Lecture Notes
in Computer Science 3130 (2004), 139–148.

[4] Donald E. Knuth, The DVItype processor
(Version 3.6, December 1995). http:
//ctan.org/tex-archive/systems/knuth/

texware/dvitype.web.

[5] Geoffrey Tobin, The DTL Package (Version
0.6.1, March 1995). http://ctan.org/
tex-archive/dviware/dtl/.

[6] Mark A. Wicks, DVIPDFM User’s Manual
(Version 0.12.4, September 1999). http:
//gaspra.kettering.edu/dvipdfm/

dvipdfm-0.12.4.pdf.

⋄ Jin-Hwan Cho
Department of Mathematics
The University of Suwon
Republic of Korea
chofchof (at) ktug dot or dot kr

218 TUGboat, Volume 28 (2007), No. 2

Graphics

A complex drawing in descriptive geometry

Denis Roegel

Abstract

This article describes the reproduction of a complex
drawing in descriptive geometry. The original plate
was published by Théodore Olivier in 1842 and rep-
resents the meshing of two gears on skew axes. The
drawing was analyzed and redone in METAPOST,
and the construction illustrates a number of typical
features of that programming environment.

1 Introduction

The French geometer Gaspard Monge (1746–1818)
developed “descriptive geometry”, and this discipline
flourished during the 19th century, at the same time
as the industrial revolution, and the construction
of machines, buildings, and other masterpieces of
architecture.

Geometry, and in particular descriptive geom-
etry, is a wonderful application for METAPOST en-
thusiasts (Goossens, Mittelbach, Rahtz, Roegel, and
Voß, 2007). METAPOST makes it possible to draw
lines and curves in a very exact way, and at the same
time relate different parts of a drawing to each other,
as they should be in descriptive geometry.

In this article, I go into the details of the con-
struction of a complex drawing, taken from the work
of Théodore Olivier (1793–1853), one of Monge’s
best followers. Olivier was a former student of the
École Polytechnique and went on to do groundbreak-
ing work in the geometrical theory of gears. In
1829 he was one of the founders of the École Cen-
trale des Arts et Manufactures. One of his most
important books is his Théorie géométrique des en-
grenages (Olivier, 1842), where exact drawings for
gearings are produced in an almost purely geometri-
cal way. Application of this theory led to the many
models found in the Musée des arts et métiers in
Paris.

One of the chapters in his book is devoted to the
meshing of wheels with non-intersecting axes, and
my purpose is to show how Olivier’s corresponding
drawing (figure 1) can be produced with a tool such
as METAPOST. But this article is neither meant as
an introduction to the theory of gears, nor to the
rules of descriptive geometry. I will focus only on
geometrical relations, without always stating why
things are so or not. I am taking the vantage point
of an engineer who has some drawing to produce, of

which he/she knows the geometrical relationships,
but the grounds for these relationships will not be
essential in our analysis. The reader interested in
more details may consult Olivier’s book or other
books on the theory of gears.

Figure 2 shows the final figure produced with
our code.

2 Olivier’s plate

Olivier writes (Olivier, 1842, p. 118) that the plate
represents the original-scale working-drawing which
was used to manufacture the gearing-model to trans-
mit rotation motion between two axes not in the
same plane and having an angle of 30◦ between them.

LT (figure 2) represents the “ground line” (ligne
de terre). The axis A of the wheel — carrying twenty-
four cylindrical teeth with circle involute shapes —
is vertical; its projections are Ah and Av.

The axis A1 of the wheel —carrying eighteen
helical teeth— is in the vertical projection plane; its
projections are A1 and Ah

1 or LT .
The middle lines M and M1 are, on the vertical

projection plane, the vertical traces of the two planes
dividing the rings to cut in equal parts.

These lines M and M1 intersect at Xv which is
the vertical projection of the line X, intersection of
the two planes dividing the rings in equal parts.

The wheel attached to the inclined axis A1 was
turned around the line X, in order to bring this
wheel into a horizontal position.

It is in this horizontal position that the wheel
carrying eighteen teeth is represented by the working
drawing.

T is a vertical plane tangent to the cylinders H
and H1. The vertical line Y v is in the plane T .

For each wheel, the outer circle shows the base
circle of the involutes. The inner circle shows how
far the teeth from the other wheel penetrate one
wheel.

Olivier’s plate is also reproduced in von Seherr-
Thoss’s book on the development of gearing technol-
ogy (von Seherr-Thoss, 1965, p. 120), but the draw-
ing was redone and some errors were not corrected
(figure 3).

3 Involute cylindrical and helical teeth

3.1 Involute teeth

Figure 4 shows the construction of the involute curve
of a circle. It is straightforward to obtain its carte-
sian equations which are:

xM = r(cos θ + θ sin θ)

yM = r(sin θ − θ cos θ)

with θ being expressed in radians.

TUGboat, Volume 28 (2007), No. 2 219

Figure 1: Olivier’s plate, with a frame measuring 35cm × 42.5cm (Olivier, 1842). Note that a tooth is missing
on the lower wheel.

The following METAPOST code returns a path
for an involute tooth. The three parameters of the
macro involute_tooth are the radius r of the base
circle, an angle a for truncating the involute, and the
angular step s for θ. It turns out that s = 20 gives
an excellent approximation of the involute curve.
RAD=3.14159/180; % conversion degrees -> radians

vardef involute_tooth(expr r,a,s)=

save p,t;

path p;

p=(r,0)

for i=1 step s until 90:

..(r*(cosd(i) + RAD*i*sind(i)),

r*(sind(i) - RAD*i*cosd(i)))

endfor;

t=xpart(p intersectiontimes

(origin--(3r*dir(a))));

(subpath(0,t) of p)

enddef;

Two more macros are defined for the linear parts
of the cylindrical teeth of the lower wheel:
vardef cyl_full_tooth(expr r,a,b)=

save p,L;path p;pair L;

p=involute_tooth(r,a,20);

L=point length(p) of p;

(p--(L rotated b)--(r*dir(a+b)))

enddef;

vardef cyl_full_tooth_x(expr r,a,b,c)=

save p,L;

path p;pair L;

p=involute_tooth(r,a,20);

L=point length(p) of p;

((L rotated b)--(r*dir(a+b+c)))

enddef;

3.2 Tooth contact

Teeth can be put in contact easily, provided the
shapes of the curves to put in contact and the point
of contact are known. We then only needed to find
out how much the standard teeth curves need to be
rotated.

In the example below, two involutes p1 and p2

are defined, and the angles a and b (from the centers
of the respective circles) between the horizontal and
the contact of the involutes with circles correspond-
ing to the final contact are determined. Then the
two involutes are merely rotated according to these
two angles (see figure 5):

p1=involute_tooth(v,25,5);p2=p1 shifted z2;

a=angle(p1 intersectionpoint

circle(z1,.5arclength(z1--z2)));

b=angle((p2 intersectionpoint

circle(z2,.5arclength(z1--z2)))-z2);

draw p1 rotated -a;

draw p2 rotatedaround(z2,180-b);

220 TUGboat, Volume 28 (2007), No. 2

Ah

L Ah
1 T

c

A′h
1

Xv

A1

Y h
1 − H T

Ligne milieu (M)

Lign
e milie

u (M
1
)

Y h

lh

ih

Av

o1

Xh

A′
1

o′1

p
p′

iv

q′ q

i′v

l′v

lv

Y v Y ′va

b

l′h

i′h

β = 30◦

Projection verticale

Plan de la Roue
portant les dents hélicöıdales

Plan de la Roue
portant les dents cylindriques

Figure 2: The entire figure (except the ancillary drawings within the frame) reproduced from Olivier’s plate.

3.3 Helical teeth with involute profiles

The teeth in Olivier’s upper (helical) wheel are ob-
tained from the envelope of the tangents to a helix
(see figure 6). The intersections of the envelope with
planes orthogonal to the cylinder axis are circle in-
volutes. This can be proved easily: let the helix
equation be

M =





r cos θ
r sin θ

aθ





A tangent vector to the helix in M is

dM

dθ
=





−r sin θ
r cos θ

a





A point T (α) of the tangent has the coordinates

T (α) =





r cos θ − αr sin θ
r sin θ + αr cos θ

aθ + αa





Taking aθ + αa = 0, we obtain α = −θ and
therefore the intersection with the plane z = 0 is

I(θ) =





r(cos θ + θ sin θ)
r(sin θ − θ cos θ)

0





TUGboat, Volume 28 (2007), No. 2 221

Figure 3: Seherr-Thoss’s reproduction of Olivier’s
drawing (von Seherr-Thoss, 1965, p. 120). The most
obvious changes are the German labels, but actually,
as a close examination shows, the whole drawing was
redone.

O A
M

B

r

θ

Figure 4: The construction of an involute.

which is exactly the equation of the involute de-
scribed above. The intersection with any other plane
z = h also gives an involute, of course.

4 The construction

Olivier’s drawing is reconstructed as follows:

4.1 Units

All the dimensions are expressed as multiples of a
conventional unit, so that it becomes easy to scale
the figure afterwards. In this case, the unit u was
1 cm on the original drawing. Changing the unit still

A BO

(a) Two involute teeth.

A BO

(b) The two rotated teeth meeting in O.

Figure 5: The contact of two involute teeth.

I

ξ

Figure 6: Helical tooth with involute profiles. The
tooth is generated by an involute I moving along a
helix ξ. (In this drawing, the four non-working faces
of the tooth have been made planar.)

affects the drawing, in that text and line widths are
usually not changed when the unit is changed (but
they could be taken into account).
numeric u;

u=5mm;

4.2 Useful macros

A few useful macros are defined, in particular a
shortcut for a circle of center c and radius r:

222 TUGboat, Volume 28 (2007), No. 2

Xv

251

0

232

231

229

230

233

228

227

226
223

225

211

212

210

100

221

224

222

p1

p2

p11

p12

p0

p7

tangency plane T

p3

101

102

202

207

p4

p5

1

236

12

245

246

244
243

11

201

239

235

238

R1

R

cylinder H

cylinder H1 (rotated)

A1 = H1 axis (non rotated)

200

Figure 7: Step 1. The distance D = z0 − z200 is the shortest distance between the axes A and A1.

def circle(expr c,r)=

(fullcircle scaled 2r shifted c)

enddef;

% pathpoint(p) is some point on

% (point 0 of p, point 1 of p)

def pathpoint(text p)=

whatever[point 0 of p,point 1 of p]

enddef;

4.3 General layout

We start with the general layout of the figure, and
its various parameters. The number of teeth of the
lower (cylindrical) wheel is na = 24, whereas the
number of teeth of the upper (helical) wheel is nb =

18. The angle between the two wheel axes is β =
30◦. The (shortest) distance between the two axes
is d0.

On figure 7, the “ground line” is p0; this sep-
arates the horizontal projection (bottom) from the
vertical projection (top). Below the p0 line, we see
two wheels, one with a vertical axis A (located at
z0), and another with an inclined axis A1. How-
ever, on the horizontal projection, the wheel was
first turned, so that its axis in fact is also vertical.
The base cylinders of the two wheels therefore ap-
pear as circles on the horizontal projection.

p0 is also the (horizontal) projection of the A1

TUGboat, Volume 28 (2007), No. 2 223

axis and point z200 is the projection of the point on
A1 which is at the closest distance from A.

na=24; % number of teeth of wheel 0

nb=18; % 1

beta=30; % angle between the wheel axes

z0=origin; % center of wheel 0

d0=23.3u; % distance between the axes of the wheels

z200-z0=d0*up;

The two cylinders H (lower wheel) and H1 (up-
per wheel) are provided with teeth and these teeth
are positioned on two bands. The (vertical) projec-
tions of the teeth for H are located between p0 and
p7, whereas those for H1 are located between p4 and
p5. The position of these bands determines the con-
tact between the two wheels and is a parameter of
the drawing. The intersection of the median planes
of these bands is a line X whose vertical projection is
z201 = Xv. We use d1 and d2 as parameters locating
Xv. The line p0 can now be defined.

d1=2.9u; % distance from X to the line LT

d2=4.55u; % distance from X to the vertical A^v

z201-z200=(d2,d1);z210-z200=d1*up;

z203=z200+6u*left;

z204=z200+25u*right;p0=z203--z204; % LT line

The radii r1 and r2 of the two cylinders depend
both on the number of teeth and on the angle be-
tween the two axes. These values will serve as base
radii for the teeth’s involute curves, but teeth will be
undercut below these base radii for deeper meshing.
The undercut radii are r11 and r21. Finally, z1 is
the intersection between X and the tangency plane
common to the two cylinders H and H1. The (hor-
izontal) projection of this tangency plane T is p1.

r1=d0/(1+(nb/na)/cosd(beta)); % radius of wheel 0

r2=d0-r1; % radius of wheel 1

r11=11.7u; % inner radius of wheel 0

r21=9.6u; % inner radius of wheel 1

z1=(x201,r1);

z2=z0+r1*up+15.2u*left;

z3=z0+r1*up+22u*right;

p1=z2--z3; % tangent between the wheels

The upper wheel is rotated around X by an
angle β and the horizontal projection of its center
is z100. The intersection of p3 and A1 is z220. The
(vertical) projection of the point on A1 closest to A
is z219. Finally, we compute z202 and z207, a segment
parallel to A1 and going through Xv.

z100=whatever[z0,z1]

=whatever[z200,z200+right];

z220=z201+(x100-x201)*dir(beta);

z219=whatever[z200,z210]

=whatever[z220,z220+dir(90+beta)];

z202=whatever[z201,z201+z219-z220]

=whatever[z210,z219];

z207=whatever[z202,z201]

=whatever[z200,z100];

Two contours p101 and p102 are now determined
for the purpose of framing or clipping parts of the
drawing under construction: p101 frames the whole
drawing, and p102 frames the upper part. These
contours will be used to hide parts of the teeth, as
in Olivier’s original plate.
% contours:

z301=z0+1.3r1*left;

z302=(xpart(point 1 of p0),y0);

z303=(x302,y100+1.3r2);

z304=(x301,y303);

% frame for the whole drawing:

p101=z301--z302--z303--z304--cycle;

z251=(x0,y303); % vertical edge

% contour for clipping the upper teeth:

z305=(x303,y100);

z306=(x304,y100);

p102=z301--z302--z305--z306--cycle;

The lines M , M1 (dividing the teeth bands) and
their parallels are now easily defined:
p2=(xpart(point 0 of p0),y210)

--(z201+4(z201-z210)); % M

p3=(z220+2(z220-z201))--(z201-2(z220-z201)); % M1

p4=p3 shifted (d1*dir(90+beta)); % parallel to M1

p5=p3 shifted (d1*dir(-90+beta)); % parallel to M1

p7=p2 shifted (d1*up);

Next we define p6 (the A1 axis) using z221 and
z222. This axis being partly drawn dashed, we in-
troduce two intermediate points z223 and z223.
z221=.4[z219,z220];z222=(z220+.65(z220-z219));

p6=z221--z222; % A1 axis

z223=p6 intersectionpoint p4;

z224=p6 intersectionpoint p5;

The projection of the rotated axis A1 is p8:
z101-z100=z100-z102=r2*up;

p8=z101--z102;

The contacts between the helical teeth of the
upper wheel and the cylindrical teeth of the lower
wheel are vertical segments which are parallel to A,
and one of them is the segment (z228, z233). Since
the upper wheel is rotated for the drawing, the seg-
ments need to be rotated too. A number of arcs on
figure 7 show the points and their position after rota-
tion. For instance, z223 (intersection of axis A1 and
p4) becomes z225. For the main contact between the
wheels, we define points z226 (p), z227 (p′), z228 (iv),
z229 (q′), z230 (q), z231 (i′v), z232 (l′v) and z233 (lv).
The segment p9 = l′v − i′v is the vertical projection
of the main rotated contact.

The vertical line through Xv is tangent to one
of the cylindrical teeth. The next vertical tangent to
the right is at a distance which is the circumference
of the lower wheel divided by na. The intersection
with LT is z234. The contact segment on the upper
band is (z236, z238). The horizontal projection of
that contact is point z12 on the cylinder tangency
line.

224 TUGboat, Volume 28 (2007), No. 2

Figure 8: Excerpt of Olivier’s plate: contact
segments. The arc at the lower right corner seems
incorrect.

z225=p8 intersectionpoint p7;

% rotation arcs

z226=z201+d1*dir(90+beta); % p

z227=z201+d1*up; % p’

z228=whatever[z201,z201+up]

=whatever[z226,z226+dir(beta)]; % i^v

z229=z201+d1*down; % q’

z230=z201+d1*dir(-90+beta); % q

z231=z228 rotatedaround(z201,-beta); % i’v

z232-z201=z201-z231; % 232=l’v

z233-z201=z201-z228; % 233=l^v

p9=z232--z231; % l’v - i’v

At a given time, several teeth are in contact. In
our case, three teeth are in contact. We call these
teeth 1, 2 and 3. The segment p9 is the contact for
the second lower tooth.

z234=z229+(2*3.14159*r1/na)*right;

% intersection with p4 (=upper line parallel to M1)

z236=pathpoint(p4)=z234+whatever*up;

% intersection with p5 (=lower line parallel to M1)

z238=(z236--z234) intersectionpoint p5;

z12=(x236,y0+r1); % contact with lower tooth

p10 is the rotated contact segment for the third
tooth. It is obtained by translating the second con-
tact segment.
z235=z236 rotatedaround(z201,-beta); % end of arc

% parallel to l’v-i’v:

p10=p9 shifted (z235-z231);

z239=point 0 of p10; % p10=z239--z235

z238 is used to define the two lines p11 and p12.
z241=(z236--z12) intersectionpoint p2;

232

231

p1

p0

p7

245

244

239

235

111 112
113

114
115

116

Figure 9: Step 2. Involutes tangent to the vertical
lines going through z111, . . . , z116.

% parallel to M going through ‘a’:

p11=p2 shifted (z241-z238);

% parallel to M going through ‘b’:

p12=p2 shifted (z238-z241);

z211 and z212 are the intersections of p11 and
p12 with the vertical projection of A:
z211=p11 intersectionpoint (z0--z219); % a

z212=p12 intersectionpoint (z0--z219); % b

The vertical tangent to the first tooth, going
through z242, is obtained from the two other tan-
gents (going through z229 and z234). z11 is the con-
tact with the first tooth on the tangency line T .
z242=z229-(z234-z229);

% intersection with p11:

z243=(x242,y241+(y241-y238));

z11=(x242,y0+r1);

p13=z11--z243; % vertical tangent to lower tooth 1

Next we rotate the contact segment and obtain p14.
z244=z243 rotatedaround(z201,-beta);

% parallel to l’v-i’v:

p14=p9 shifted (z244-z231);

z245=point 0 of p14; % p14=z245--z244

z246=z245 rotatedaround(z201,beta);

4.4 Tangents to the lower teeth

The three contact segments have the horizontal pro-
jections z11, z1 and z12. The intersections of these
segments with the planes whose (vertical) projec-
tions are p4 and p5 are located on involutes, as shown
in figure 6. These involutes are actually tangent to
a line orthogonal to the (horizontal) projection of
the contact segment, as one can easily see. The six
involutes under consideration go through the points
z111, . . . , z116 (figure 9).
% tangent 1 with upper tooth 1:

z111=(x245,y0+r1);p15=z245--z111;

z112=(x244,y0+r1);p16=z244--z112; % tang. 2/tooth 1

z113=(x232,y0+r1);p17=z232--z113; % tang. 1/tooth 2

z114=(x231,y0+r1);p18=z231--z114; % tang. 2/tooth 2

z115=(x239,y0+r1);p19=z239--z115; % tang. 1/tooth 3

z116=(x235,y0+r1);p20=z235--z116; % tang. 2/tooth 3

TUGboat, Volume 28 (2007), No. 2 225

Figure 10: Excerpt of Olivier’s plate: upper teeth construction.

111

112

p55
p56

p57

p61

d4

d5

109 122

123

124
126

d6

127

128
129

130

131

132

245

244

100

Figure 11: Step 3. Construction of the upper teeth: the lines (123,126) and (112,111) are two of the generating
lines of the surface making up the helical teeth.

4.5 Construction of the upper wheel teeth

Figure 10 shows a detail of Olivier’s plate. The con-
struction of the upper teeth is shown in figure 11.
On this figure, the main helical tooth is bounded by
two involute curves, p55 and p56. These two curves
are obtained as follows.

We know that p55 goes through z111 and that
p56 goes through z112. We start with an involute
curve p51 on the upper wheel. We obtain a point
z105 on p51, at exactly the distance d4 between z111

and z100. This point z105 is then used to rotate p51

in such a way that it goes through z111, the new
path being p52:
p51=involute_tooth(r2,10,20) shifted z100;

d4=arclength(z100--z111);

z105=p51 intersectionpoint circle(z100,d4);

p52=p51 rotatedaround

(z100,angle(z111-z100)-angle(z105-z100));

Similarly, we obtain p54 going through z112:
p53=involute_tooth(r2,5,20) shifted z100;

d5=arclength(z100--z112);

226 TUGboat, Volume 28 (2007), No. 2

z106=p53 intersectionpoint circle(z100,d5);

p54=p53 rotatedaround

(z100,angle(z112-z100)-angle(z106-z100));

The two involutes p52 and p54 extend below the
tangency line, and we cut them so that they end at
that line. We now have three edges of the projected
tooth: p55, p56 and p57.
p55=p52 cutafter circle(z100,d4);

p56=p54 cutafter circle(z100,d5);

p57=z111--z112;

The other faces of the tooth are non-working,
and they can be determined in different ways, taking
into account the way they are manufactured and the
material used. The tooth thickness is a parameter
of the drawing and we determine z109 by rotating
z111 of a certain angle.
z109-z100=(z111-z100) rotated 2.5; % empirical

z122 is obtained as an intersection of a circle
going through z112 and a line parallel to p57 and
going through z109. However, although this makes
it easy to draw the figure, it produces a face which
is not planar. Since Olivier did so in his plate, we
reproduced it. In figure 6, however, we made sure
the corresponding face is planar.
p58=z111--z109;

z110-z112=z109-z111;

z121-z110=z110-z109;

z122=(z109--z121) intersectionpoint circle(z100,d5);

p59=z109--z122;

p60=z112--z122;

z124 is obtained as the intersection of the base
circle with a parallel to (z109,z100) going through
z122. As a consequence, the face which is opposite
the working-face can be made planar.
z123=point 0 of p56;

z124=(z122--(z122+(z100-z109)))

intersectionpoint circle(z100,r2);

p61=z122--z124;

And when the wheels turn, the contact segment
shifts from the outside to the inside of the tooth,
or in the opposite direction. When the contact oc-
curs at the base radius, the contact segment which
is involved is the segment (z123, z126), and z126 is
computed as follows:
z126=p55 intersectionpoint

(z123--(z123+(z100-z123) rotated 90));

p62=z123--z126;

We now cut the tips of the helical teeth, in order
to limit their projection inside the cylindrical wheel.
We compute a radius d6 based on the value of r11

measured on Olivier’s plate. p63 is the circle for the
maximum extent of the helical teeth.
r10=arclength(z0--z100);

d6=.99(r10-r11);

p63=circle(z100,d6);

Using the previous circle, we cut a part of the
helical tooth. For that, we determine three points:
z127=p55 intersectionpoint p63;

z128=p57 intersectionpoint p63;

z129=p59 intersectionpoint p63;

Then, we define several paths. p64 is the arc
going from z127 to z129. p65 is the part of p55 that is
left once we cut what goes beyond p63. p66 and p67

are two more edges produced by this cut.
p64=the_arc(z127,z100,

angle(z129-z100)-angle(z127-z100));

p65=p55 cutafter p63;

p66=z128--z112;

p67=z129--z122;

The macro the_arc is defined as follows:
vardef the_arc(expr s,c,a)=

save p,t;

path p;

p=if a<0:reverse fi

fullcircle rotated (angle(s-c))

scaled (2arclength(s--c)) shifted c;

t=xpart(p intersectiontimes

(c--(c+2(s-c) rotated a)));

(subpath(0,t) of p)

enddef;

Several points are defined for the purpose of
drawing the line from z100 to the tip z109:
z130=(z109--z100) intersectionpoint

circle(z100,r21);

% dashed line to the tip of the upper tooth (1):

p68=z109--z130;

z131=(z109--z100) intersectionpoint p63;

z132=(z109--z100) intersectionpoint circle(z100,r2);

% dashed line to the tip of the upper tooth (2):

p69=z131--z132;

Finally, we construct a contour for the whole
upper wheel (figure 12). This contour is made of
the three paths p71, p64, p70, and these paths are
repeated to form the contour p73:
% construction of a contour for drawing

% the dashed lines of the lower teeth:

p70=p67 cutafter (p55 rotatedaround(z100,(360/nb)));

p71=p65 cutbefore

(p67 rotatedaround(z100,-(360/nb)));

p72=p64--p70--(p71 rotatedaround(z100,(360/nb)));

% contour to hide the lower teeth:

p73=p72 for i=1 upto nb-1:

--(p72 rotatedaround(z100,i*(360/nb)))

endfor--cycle;

Four additional paths are defined for the variant
teeth shown for the upper wheel in Olivier’s plate:
p74=p65 cutafter

(p67 rotatedaround(z100,-(360/nb)));

p75=p55 cutbefore

(p67 rotatedaround(z100,-(360/nb)));

p76=p62 cutbefore

(p61 rotatedaround(z100,-(360/nb)));

p77=p62 cutafter

(p61 rotatedaround(z100,-(360/nb)));

TUGboat, Volume 28 (2007), No. 2 227

p70

p71

p64

Figure 12: Step 4. Construction of the upper wheel contour.

4.6 Construction of the lower wheel teeth

The lower teeth are easier to draw, since they are
purely cylindrical (figure 13). They are positioned
in the same way as the involutes for the upper teeth.
In other words, the involutes are rotated in such a
way that the contact occurs on z1. The teeth shapes
are made of two paths, p22 and p24, and the same
technique is applied for both. Only the macro used
is not the same.
p21=cyl_full_tooth(r1,5,2);

d3=arclength(z0--z1);

z14=p21 intersectionpoint circle(origin,d3);

p22=p21 rotated (angle(z1)-angle(z14));

% second part of the tooth:

p23=cyl_full_tooth_x(r1,5,2,1);

p24=p23 rotated (angle(z1)-angle(z14));

Finally, the lower teeth are partly hidden by
drawing them all and then using the hiddenpath
macro.
def draw_lower_teeth=

for i=-5 upto 7: % Olivier forgot the case i=7

draw p22 rotatedaround(origin,i*(360/na));

draw p24 rotatedaround(origin,i*(360/na));

% we remove what lies inside p73:

hiddenpath(p22 rotatedaround(origin,i*(360/na)),

p73,dashtype(1));

hiddenpath(p24 rotatedaround(origin,i*(360/na)),

p73,dashtype(1));

endfor;

enddef;

The hiddenpath macro is defined as follows.
hiddenpath(under,over)(dt) draws that part of

the path “under ” which is within path “over ” with
dashes of type “dt”.
vardef hiddenpath(expr under,over)(text dt)=

save p,q;

picture p,q;

p=image(draw under);clip p to over;

undraw p;

q=image(draw under dt);

clip q to over;

draw q;

enddef;

and the various dashes are obtained with:
def dashtype(expr n)=

if n=0: dashed withdots

elseif n=1: dashed evenly

elseif n=2: dashed

dashpattern(

on 6bp off 2bp on 1bp off 2bp on 1bp off 2bp)

elseif n=3: dashed

dashpattern(on 6bp off 2bp on 1bp off 2bp)

fi

enddef;

5 Drawing the figure

Given all the previous definitions, drawing the figure
is pretty straightforward, and we won’t describe it
in detail. We will merely give an insight into the
hatched line LT and the clipping of parts of the
drawing.

The hatched line LT is drawn with the macro:
vardef hatch(expr p,n,l)=

save A,B;

pair A,B;

A=point 0 of p;B=point 1 of p;

228 TUGboat, Volume 28 (2007), No. 2

p73

p22p22

p24

Figure 13: Step 5. Lower wheel teeth construction, and dashing.

for i=0 upto n:

draw (i/n)[A,B]--((i/n)[A,B]+l*dir(-45));

endfor;

enddef;

and 400 marks are produced with a call to
hatch(p0,400,.2u);

Clipping the upper wheel may be seen as tricky,
especially if parts of the lower wheel have been pre-
viously drawn, and we want to retain them. The
solution is to save the current picture in a picture
variable, then to reset the current picture, to draw
the upper wheel, then to clip it, and finally to re-
draw the saved picture. This is summarized in the
following macro:
vardef draw_upper_wheel=

save oldpic;

picture oldpic;

oldpic=currentpicture;

currentpicture:=nullpicture;

draw_upper_teeth;

draw_upper_wheel_structure;

clip currentpicture to p102; % we cut beyond p102

draw oldpic;

enddef;

6 Conclusion

We were able to produce a very faithful copy of
Olivier’s original plate. We think that we identi-
fied two errors in Olivier’s drawing (or rather in the
etching which was made from his drawing). First,
the wheel with cylindrical teeth is obviously missing

one tooth in Olivier’s drawing. Second, the arc be-
tween points z224 and z100 is incorrectly represented.

Other than that, reproducing Olivier’s figure
has provided an understanding that would be diffi-
cult to reach by merely gazing at the drawing. By
reproducing it, one is led to find the relationships
between the parts, and, in particular, to try to min-
imize the number of parameters, such that the figure
becomes as general as possible.

References

Goossens, Michel, F. Mittelbach, S. Rahtz,
D. Roegel, and H. Voß. The LATEX Graphics
Companion, Second Edition. Addison-Wesley,
2007.

Olivier, Théodore. Théorie géométrique des
engrenages destinés à transmettre le mouvement
de rotation entre deux axes situés ou non situés
dans un même plan. Paris: Bachelier, 1842.

von Seherr-Thoss, Hans Christoph. Die
Entwicklung der Zahnrad-Technik: Zahnformen
und Tragfähigkeitsberechnung. Berlin:
Springer-Verlag, 1965.

⋄ Denis Roegel
LORIA, BP 239
54506 Vandœuvre-lès-Nancy
FRANCE
roegel (at) loria dot fr

http://www.loria.fr/~roegel

TUGboat, Volume 28 (2007), No. 2 229

Glisterings

Peter Wilson

Whose waves do glister by the Queen’s
bright beams.
Which makes them murmure as they passe
away.

Poems and Fancies, Margaret Cavendish

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

In recent times there seems to have been a spate
of questions on the comp.text.tex newsgroup about
controlling paragraphs.

for life’s not a paragraph
and death I think is no parenthesis.

since feeling is first, e e cummings

1 Paragraphs regular

The typical paragraph in a LATEX document is type-
set like:

The typical paragraph in a LATEX document
looks like this, with the first line indented other-
wise lines are set left and right justified except for
the last line which is set ragged right.

The indent at the start of a paragraph is given
by the length \parindent. To temporarily achieve
a paragraph with no indentation of the first line put
\noindent at the start of the paragraph.

The other regular available paragraph shapes
are ragged left (flush right), ragged right (flush left)
and centered (each line is centered).

On occasions it is useful to be able to set a
‘hanging paragraph’ where more than one line is in-
dented. TEX provides two commands for specifying
such a paragraph (the hanging package [7] provides
these in a more LATEX-like manner).

\hangindent〈length〉 specifies a ‘hanging inden-
tation’ and \hangafter〈num〉 specifies the number
of hung lines. If 〈num〉 is positive hanging inden-
tation is applied to lines 〈num〉+1, 〈num〉+2, . . . ,
while if negative hanging indentation is applied to
the first 〈num〉 lines of the paragraph. When 〈length〉
is positive the indentation applies to the lefthand
end of the lines and when it is negative the right-
hand ends are indented.

\hangindent=3pc\hangafter=-2

Following the above incantation the first
two lines of this paragraph are indented

at the left by the given amount. You can use these
commands in a LATEX document.

Note that you have to repeat the hanging specifica-
tion for each hung paragraph.

LATEX has an internal command \@hangfrom

that it uses for several purposes, such as the internal
code for section titles. An author-friendly version of
this is:

\makeatletter % unless in a .cls or .sty file

\newcommand*{\hangfrom}[1]{%

\setbox\@tempboxa\hbox{{#1}}%

\hangindent \wd\@tempboxa

\noindent\box\@tempboxa}

\makeatother % unless in a .cls or .sty file

Using \hangfrom{〈text〉} at the start of a paragraph
produces a paragraph where the second and further
lines are indented with respect to the first by the
width of 〈text〉. For instance, the code below pro-
duces the result following.

\hangfrom{\Longrightarrow\space\space}Here

we get a paragraph that is hung in

relation to its first element, which can

sometimes be useful.

=⇒ Here we get a paragraph that is hung in rela-
tion to its first element, which can sometimes
be useful.

Much more exotically you can get very odd look-
ing paragraphs.

For more symbolic para-
graph shapes like this one,

TEX provides the \parshape

command. For LATEX users this is
provided in a more friendly

fashion via Donald Ar-
seneau’s shapepar

package [1]. Use this kind
of paragraph very, very

rarely, and only then
if you really cannot avoid

it as it is a typesetting curiosity.
This one has been made using

the shapepar package and the
\nutshape specification.

The shapepar package provides several shape
specifications, and there are programs which will au-
tomatically generate shape specifications.

230 TUGboat, Volume 28 (2007), No. 2

Table 1: LATEX’s paragraph settings
regular raggedleft raggedright centered

\leftskip \Zeroskip \Flushglue \Zeroskip \Flushglue

\rightskip \Zeroskip \Zeroskip \Flushglue \Flushglue

\parfillskip \Flushglue \Zeroskip \Zeroskip \Zeroskip

For precept must be upon precept; precept
upon precept; line upon line; line upon line;
here a little, and there a little.

Isiah, ch. 28, v 10

2 Paragraphs particular

Besides \hangafter, \hangindent and \parshape,
TEX provides 4 parameters1 for controlling the shape
of regular paragraphs. The length \parindent sets
the initial indentation of the first line. \leftskip

and \rightskip are inserted at the start and end
of each line, and \parfillskip is put at the end
of the last line; these last three macros are akin
to LATEX’s concept of rubber lengths. By chang-
ing these you can obtain some particular kinds of
paragraph shapes. Assuming that:

\Zeroskip = 0pt plus 0pt minus 0pt

\Flushglue = 0pt plus 1fil

then LATEX’s settings for its regular paragraph styles
are given in table 1.

By adjusting the parameters you can arrange
that the middle lines of a paragaph have a particu-
lar shape, while the first and/or last lines can have
different forms. For instance:

\newcommand*{\justlastragged}{%

\leftskip=0pt plus 1fil

\rightskip=-\leftskip

\parfillskip=\leftskip

\parindent=0pt}

Following a \justlastragged declaration para-
graph(s) will look like the example below.

The shape of this paragraph is not too strange. It
is flush left and right, except for the last line which

is ragged left.

Another particular paragraph shape is one with
the lines flush left and right, except for the last
which is to be centered, as in:

The lines in this paragraph, with the normal
indentation of the first line, should be flush left
and right except for the last line which should be

centered.

1 There are really 5 parameters, the fifth being \everypar

which is inserted between the indent and the start of the first
line. Change this only if you really know what you are doing.

This can be achieved by using the declaration
\centerlastline before the paragraphs(s) in ques-
tion:

\newcommand{\centerlastline}{%

\leftskip=0pt plus 1fil

\rightskip=0pt plus -1fil

\parfillskip=0pt plus 2fil}

For no initial indentation put \noindent at the start
of the paragraph’s text.

\newcommand*{\raggedrightthenleft}{%

\leftskip=0pt plus 1fill

\rightskip=0pt plus 1fil

\parfillskip=0pt

\everypar{\hskip 0pt plus -1fill}%

\parindent=0pt}

After a \raggedrightthenleft declaration the
first line of any paragraph will be ragged right and
all the other lines will be set ragged left. This looks
odd to me.

This is a strangely shaped paragraph. The
paragraph’s first line is ragged right and all the

remaining lines are ragged left.

One way or another the paragraph layouts de-
pend on the amount of what Knuth terms ‘glue’ (I
think, though, that ‘spring’ would be a more evoca-
tive term) at the start and end of each line (the val-
ues of fil). For fuller explanations of glue see the
TEXbook [5, ch. 12] or, in my view, more accessibly
by Victor Eijkhout [3, ch. 8, 16–18].

In the definition of the last macro the \leftskip
has a glue (spring) of strength 1fill, which is in-
finitely stronger than the \rightskip with strength
1fil, so normally a line will get pushed to the right.
The last line has a \parfillskip of 0pt, which
will not affect the end of the line. The first line
of the paragraph has a springiness of -1fill from
the \everypar and a springiness of 1fill from the
\leftskip, which cancel each other out, leaving the
spring of 1fil at the right of the line, and conse-
quently the line gets pushed to the left.

Nikos Platis [6] wanted to ensure that some
words at the end of a paragraph were right justi-
fied — if there was not enough space on the current
line for them then they should be moved to the next

TUGboat, Volume 28 (2007), No. 2 231

line while leaving the current line ragged right. That
is either:

A short line. Text at right

or

A much longer line than the first one.
Text at right

Several solutions were given but the one ini-
tially proposed by Knuth in The TEXbook [5, p.106]
and submitted by Dirk Schlimm turned out to be
the most robust in Nikos’ tests. In LATEX terms:

\newcommand*{\atright}[1]{{%

\unskip\nobreak\hfil\penalty50

\hskip2em\hbox{}\nobreak\hfil#1

\parfillskip=0pt\finalhyphendemerits=0\par}}

and putting \atright{〈text〉} at the end of a para-
graph ensures that 〈text〉 is flush right.

Another often occuring request is how to ensure
that the last line of a paragraph is ‘not too short’.

Following the declaration \nottooshort, which
I have defined as

\newdimen\parabout

\newdimen\about

\about=2em

\newcommand*{\nottooshort}{%

\parabout=\hsize

\advance\parabout -\about

\leftskip=0pt plus 0pt minus 0pt

\rightskip=\leftskip

\parfillskip=\parabout minus \parabout

\parindent=2em}

then the last lines of paragraphs will be at least ap-
proximately \about long.

The last line in this paragraph should not be
too short, for a suitable definition of short. 1 2 3 4

The last line in this paragraph should not be
too short, for a suitable definition of short. 1 2
3 4 5

With short paragraphs, like the examples, the
overall effect might not look as good as you might
expect. The situation improves with more lines.

Peter Flynn [4] answered Mark’s question posed
below by providing code for what he termed a ‘spring
margin’, noting that very few systems provided it.

Hi, I’d like
left- and
right-justified
text on the
same line.
e.g., some text
here. . .

. . . and some text over here.
I’ve tried tabularx and
TabularC, but they are

not precise enough to line
up with the margins. Any

suggestions? Thanks, Mark

The above was produced, with appropriate re-
placements for the ..., by

\spring{0.3}{0.6}%

{Hi, I’d like left- ...}%

{\dots and some text ...}

where \spring is a slight extension of Peter’s code.
The first two arguments are the fractions of the over-
all line allocated to the left and right texts; the sum
of these must be less than 1. The second pair of
arguments are the left and right texts.

\newcommand{\spring}[4]{%

\par\noindent\hbox to\columnwidth{\vtop{%

\hsize=#1\columnwidth\flushleft#3\par}\hss

\vtop{\hsize=#2\columnwidth\flushright#4\par}}}

I have seen legal documents where each line must
be filled at the right so that no extra words can be
added later.

This last example was created based on the fol-
lowing code.

\let\origpar\par

\newcommand*{\parrule}{%

\hrule height 2.2pt depth -1.8pt\relax}

\newcommand*{\lastlinerule}{%

\unskip\nobreak\space

\leaders\parrule\hskip\Flushglue

\vadjust{}{\parfillskip=0pt\origpar}}

If you have many paragraphs of this kind then
following a

\let\par\lastlinerule

all paragraphs will potentially have the last line filled
with a rule. Be aware that LATEX considers many
things to be paragraphs so you could be in for some
surprises. To revert back to the regular paragraphs
specify:

\let\par\origpar

Alternatively, do something along these lines:

\begingroup

\let\par\lastlinerule

A ruled paragraph ...

Another one...

Even more...

\endgroup

The end of a paragraph is normally signalled
by either a blank line or the \par command. For
an isolated ruled paragraph, just end the text with
\lastlinerule instead of \par or a blank line.

3 Paragraphs Russian

A while after I had completed this column I was
going through old papers, trying to winnow those

232 TUGboat, Volume 28 (2007), No. 2

that were no longer useful. Doing this I came across
an old issue of Baskerville—The Annals of the UK
TEX Users’ Group which included an article about
Russian-style paragraphs [2]. Apparently in the Rus-
sian typographic tradition the last line of a multi-
line paragraph must be either at least as long as the
\parindent and have at least \parindent space at
the end, or it must be flush left and flush right.

This requirement can’t be fulfilled by any sim-
ple adjustment of the paragraph setting parameters.

The article ended with two solutions. The first,
shown below, was by Peter Schmitt. The basic tech-
nique is to end each paragraph by (glue + hbox +

glue), where the empty hbox spans \parindent, the
(glue+hbox) ranges from \parindent to (\hsize -
\parindent) and the (hbox+glue) covers (\hsize-
\parindent) to \hsize, where \hsize is the line
length. According to TEX rules, a linebreak may
occur either before the glue+hbox or just after the
hbox, in either case giving the paragraph a final
blank line, which has to be backed up over.

\def\Srussianpar{\ifhmode \unskip

\hskip-2\parindent minus -2\parindent

\hskip\hsize minus\hsize

\hbox{\hskip\parindent}%

\hskip0pt \hbox{\strut}%

\hskip-\parindent

\hskip\hsize plus\parindent

\vadjust{\nobreak\vskip-\baselineskip}%

\parfillskip0pt

\origpar

\fi}

How this looks in practice is shown below, with
\parindent set to 2em, together with the definition
\let\par\Srussianpar.

The last line in this paragraph should conform
to the Russian typesetting tradition. 1 2 3 4

The last line in this paragraph should conform
to the Russian typesetting tradition. 1 2 3 4 5

The last line in this paragraph should conform
to the Russian typesetting tradition. 1 2 3 4 5 6

The last line in this paragraph should conform
to the Russian typesetting tradition. 1 2 3 4 5 6 7

The last line in this paragraph should conform
to the Russian typesetting tradition. 1 2 3 4 5 6 7 8

The last line in this paragraph should conform
to the Russian typesetting tradition. 1 2 3 4 5 6
7 8 9

The last line in this paragraph should conform
to the Russian typesetting tradition. 1 2 3 4 5 6 7
8 9 0

The second solution was by Donald Arseneau:

\def\Arussianpar{\ifhmode \unskip

\strut\vadjust{}\nobreak

\discretionary{}%

{\hbox{\hskip2\parindent

\vrule depth 273sp

width 0sp height \ht\strutbox}}%

{\hbox{\hskip\parindent}}%

\hskip-2\parindent minus 2\parindent

\hskip\hsize minus\hsize

\kern0pt\parfillskip0pt

\origpar

\ifdim\prevdepth=273sp

\nobreak

\vskip-2\baselineskip

\hbox{\strut}%

\fi

\fi}

This works in approximately the same manner
as Peter Schmitt’s but it does not always produce
an unwanted extra blank line. A rule with a unique
depth small enough to be invisible on the page is
inserted with the glue items. If the break is such that
this is left on the last line, which will be otherwise
empty, it can be detected from the \prevdepth value
and the line backed up.

References

[1] Donald Arseneau. shapepar.sty, 2002. (Avail-
able on CTAN in latex/macros/generic/

shapepar).

[2] David Carlisle and Peter Schmitt. Russian para-
graph shapes. Baskerville, 6(1):13–15, February
1996.

[3] Victor Eijkhout. TEX by Topic, A TEXnician’s
Reference. Addison-Wesley, 1991. ISBN 0–201–
56882–9. (Available at http://www.eijkhout.

net/tbt/).

[4] Peter Flynn. Re: simultaneous justification
in latex. Post to comp.text.tex newsgroup,
20 September 2006.

[5] Donald E. Knuth. The TEXbook. Addison Wes-
ley, 1984.

[6] Nikos Platis. Justify at right margin or in next
line. Post to comp.text.tex newsgroup, 21 Au-
gust 2006.

[7] Peter Wilson. The hanging package, April
2004. (Available on CTAN in latex/macros/

contrib/hanging).

⋄ Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries dot press (at) earthlink dot net

TUGboat, Volume 28 (2007), No. 2 233

The Treasure Chest

This is a list of selected new packages posted to
CTAN (http://ctan.org) from January–June 30,
2007, with descriptions based on the announcements
and edited for brevity.

Entries are listed alphabetically within CTAN

directories. A few entries which the editors subjec-
tively believed to be of especially wide interest or
otherwise notable are starred; of course, this is not
intended to slight the other contributions!

Hopefully this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

fonts

* GFS in fonts

Support for Greek Font Society fonts: Artemisia,
Bodoni, Complutum, Didot, Epigrafica, NeoHel-
lenic, Porson, and Solomos.

kpfonts in fonts

Full set of new fonts for typesetting text and math,
based on URW Palladio.

linuxlibertine in fonts

The Linux-Libertine project supports several al-
phabets (including Latin, Cyrillic, Greek and He-
brew) in a variety of shapes.

tex-gyre in fonts

The ongoing TEX Gyre project extends many free
fonts from URW and other sources.

graphics

pdftex.def in graphics/pdftex

This single-file package provides support for LATEX
graphics and color in pdfTEX. It has received many
recent updates.

pst-fractal in graphics/pstricks/contrib

A PSTricks package for drawing Julia sets, Mandel-
brot sets, the Sierpinski triangle.

pst-qtree in graphics/pstricks/contrib

A wrapper around PSTricks providing easy syntax
for trees.

sketch in graphics

Sketch translates 3d scenes expressed in a fairly
powerful PSTricks-like language to both PSTricks
and TikZ/PGF.

info

Math_into_LaTeX-4 in info/examples

A short course to help you get started quickly with
LATEX, including detailed instructions on how to in-
stall LATEX under Windows or Mac OS X.

pdf-forms-tuturial in info

Tutorial on creating PDF forms using pdflatex,
hyperref and insdljs.

sommer in info/templates

Document templates by Jörg Sommer.

language

japanese in language/japanese

Adds functionality of a Japanese option in Babel.

mnhyphn in language/hyphenation

Mongolian hyphenation, with babel support.

macros/generic

fenixpar in macros/generic

Handle \everypar and, in general, token registers
that need to restore themselves.

macros/latex/contrib

aeb_tilebg in macros/latex/contrib

Tile a rectangular graphic as page background.

animate in macros/latex/contrib

Creating PDF animations.

bookest in macros/latex/contrib

An extension of the book class.

* cleveref in macros/latex/contrib

Automatic cross-reference formatting, according to
label type.

cmdstring in macros/latex/contrib

Reliable \string on commands.

colorwav in macros/latex/contrib

Get an RGB set for a wavelength of visible light.

dlfltxb in macros/latex/contrib

Various macros either used for creating Introduk-

tion til LATEX or presented in the book as code tips.

doi in macros/latex/contrib

Ensure correct hyperlinks to dx.doi.org.

ecv in macros/latex/contrib

A fancy Curriculum Vitae class.

* elatex in macros/latex/contrib

Toolbox of programming facilities geared primarily
towards LATEX class and package authors. (Its name
is not meant to imply that it patches the LATEX
kernel; it does not.)

fancytooltips in macros/latex/contrib

Define tooltips with arbitrary TEX or graphics ma-
terial.

234 TUGboat, Volume 28 (2007), No. 2

gcard in macros/latex/contrib

Arrange text on a sheet to fold into a greeting card.

glossaries in macros/latex/contrib

Create glossaries and acronym lists.

gmeometric in macros/latex/contrib

Support \geometry of the geometry package inside
{document}.

inversepath in macros/latex/contrib

Calculate relative inverse (../) file paths.

jj_game in macros/latex/contrib

A LATEX class to construct Jeopardy-like games.

leading in macros/latex/contrib

Define leading via a length (cf. \linespread).

memexsupp in macros/latex/contrib

Experimental memoir support.

mlist in macros/latex/contrib

Exploring separation of form and content for math
constructs.

oberdiek in macros/latex/contrib

This bundle from Heiko Oberdiek includes many
new packages and updates.

philosophersimprint in macros/latex/contrib

Typesetting articles for the online journal Philoso-

phers’ Imprint.

qstest in macros/latex/contrib

Bundle for unit tests and pattern matching.

sdrt in macros/latex/contrib

Produce the “Box notation” of SDRT and DRT.

simplecv in macros/latex/contrib

Simple class for a curriculum vitae.

songs in macros/latex/contrib

Create beautiful song books for your church or fel-
lowship.

synproof in macros/latex/contrib

Easy drawing of syntactic proofs (a.k.a. derivations)
in modern logic.

texilikecover in macros/latex/contrib

Create covers similar to those of GNU Texinfo.

trivfloat in macros/latex/contrib

A simple way to define new float types in LATEX.

umthesis in macros/latex/contrib

Dissertation class for the University of Michigan.

unroman in macros/latex/contrib

Convert from roman numerals to Arabic numbers.

verbatimcopy in macros/latex/contrib

Small package to perform a verbatim copy of one
text file and save it in another.

xfor in macros/latex/contrib

Allow prematurely terminating a \@for loop.

xnewcommand in macros/latex/contrib

\protected or \global macros via \newcommand.

xoptarg in macros/latex/contrib

Expandable macros that take an optional argument.

macros/xetex

arabxetex in macros/xetex/latex

An ArabTEX-like interface for Arabic script type-
setting with X ETEX.

bidi in macros/xetex/latex

Typesets bidirectional texts with X ETEX.

xgreek in macros/xetex/latex

Typesets Greek using X ETEX, with all the options
of the babel Greek support.

support

* mkjobtexmf in support

Records and copies files used in a given run, for
archiving or speed.

latexpaper in support

Python script to calculate LATEX settings for arbi-
trary font and page sizes.

tab4tex in support

Preprocessor for tabular tables.

TUGboat, Volume 28 (2007), No. 2 235

LATEX

LATEX and the different bibliography styles

Federico Garcia

1 Introduction

Although I chose ‘style’ for the title of this article,
it is perhaps best to specify right away that the ar-
ticle is not devoted to styles of formatting entries
in a final bibliography list (i.e., a ‘style’ in BibTEX
terms, as defined by the .bst file). Rather, we will
be looking at the different types of in-text citation:
citation by footnote, by parenthesis labels, or by
brackets. The citation style admittedly determines
certain aspects of the entry-formatting style, but the
two things are pretty much independent, and an ar-
ticle such as this one can focus on only one of them.

The twofold thesis of this article is that there
are three main citation styles (the ones mentioned:
footnote, brackets, and parentheses), and that LATEX
in 2007 provides virtually complete support for all
of them. Today (but not five years ago) it is the
case that the choice of citation style is not subject to
what the software allows, but is really up to the user
(within certain limits at least, since institutions —
journals, etc. — influence the decision by enforcing
one style or another).

In this circumstance, it seems like a good idea
to carry out a survey of the three families of bibli-
ographical citation and their support in LATEX, and
that is my purpose here.

The present article stems from a talk I gave at
the 2006 Practical TEX conference.

2 The three main style families

It is curious how proponents of each of the three
styles — usually — ‘don’t like’ the other styles. They
(we) tend to have strong ideas about why one of the
styles (our own, usually) is best, and seldom stop
to reflect how it is that whole groups of intelligent
people have a directly opposite opinion. One thing
is for sure: styles are roughly chosen according to
discipline. As a result, in our upbringing we are
usually exposed to one of the styles far more than
the others. We get used to it, and then the others,
when we encounter them, do feel a little odd. We
conclude, naturally enough, that we don’t like them.

But the truth is that there are good reasons
why each of the styles exists and is used. In this
section I try to make some of these reasons explicit.
I won’t hide the fact that I lean strongly toward the

footnote-style, but I will try to do the others some
kind of ‘objective’ justice.

3 Bracket styles

LATEX’s native support for bibliographical referenc-
ing is directed exclusively toward the family of bib-
liography styles where the citation is done through
brackets: something like ‘[1]’ or ‘[Cas44]’.

This family of styles, most familiar for LATEX
users, has one immediate advantage: the expres-
sion in brackets makes sense both as a parenthetical
comment and within the sentence proper. In other
words, one can equally make direct reference to a
publication (as in ‘see [2]’ or ‘[3] is a good reference
for. . . ’) or simply add the reference as a clarification
(as in ‘this has already been proven [2]’).

Another advantage is that the brackets can be
freely used in conjunction with parentheses, so that
the form of the actual reference does not depend on
the context. It is equally admissible to say ‘I once
read a book [2] where. . . ’ and ‘I saw once (in a book
that I read [2]) that. . . ’

This efficiency of the brackets is the main rea-
son why this family of bibliography styles needs only
one command name: \cite. This, and the fact that
it is the natural behavior of LATEX, means that I
need to say little more about this style. (In fact,
what I have already said was basically for purposes
of comparison.)

4 Author-year styles

4.1 Introduction

When the proof of a theorem makes reference to a
previously proven theorem, the author and the pub-
lication date of the previous paper are not crucial
to the argument. Whoever might be interested in
that proof in itself can consult the final list of ref-
erences, and start the search. But for the purposes
of the original argument, things like the author, the
title, and year of the references are, generally, of no
consequence in this kind of discourse.

On the other hand, if an author is referring to
previous essays on — say — ethical perception of en-
vironmental issues, then information on who wrote
those previous essays, when they were written, and
even what they are called, can be absolutely crucial
to the argument. After all, in this context it is not
the same to quote a French postmodern philosopher
as to quote a study by the Department of Defense.

It is in these contexts that the bracket cita-
tion style is truly insufficient. This kind of disci-
pline — let’s call them ‘the humanities’ — has come
to adopt widely an alternative kind of citation, gen-

236 TUGboat, Volume 28 (2007), No. 2

Some philosophers of science have claimed that science progresses as life

\citeaffixed (notably Kuhn 1996, Koestler 1959). Kuhn started his conceptual trip with his explo-

\citeyear ration of the Copernican Revolution (1957). At virtually the same time, at the other

\citeasnoun side of the Atlantic, the same trip was documented in Koestler (1959). In musicology,

Leo Treitler expresses very similar views (1984, 1989, 1999). Kuhn’s ‘paradigms’ were

(\citename...) directly addressed by musicians since 1991 (McClary).

There was and is, of course, opposition to Kuhn, whose ideas were always shunned

by mainstream philosophy of science. Most virulent of all was the criticism by

Imre Lakatos (1970). In musicology, this criticism has no direct offspring, but the other

\cite extreme, the ‘anarchy of knowledge’ (Feyerabend 1978), finds parallels in the diverse

\possessivecite manifestos of postmodernist musicology, for example Tomlinson’s (1984).

Figure 1: harvard sample

erally known as author-year citation. It consists ba-
sically of embedding some of the crucial information
(the author and the year) into the label of the ci-
tation: instead of ‘[1]’, one would have ‘(Cassirer,
1944)’.

Note that one of the native LATEX bracket styles,
alpha, is a compromise between the two things —
in ‘Cas44’, Cas is the first three letters of the last
name, and 44 is the year. However, even in this case,
alpha is oriented more towards the sciences than the
humanities: what if one cites Nietzsche, who wrote
in the 1800s?

In any case, the most relevant difference be-
tween this style and the LATEX default is that — for
unknown reasons, I might add — author-year styles
use regular parentheses instead of brackets.

This has a wealth of interesting consequences.
Parentheses, unlike brackets, have a meaning other
than bibliography, and, alas, the two meanings col-
lide. I can say ‘this has already been argued (Cas-
sirer, 1944)’. But things like ‘for this issue see (Cas-
sirer, 1944)’ or ‘(Cassirer, 1944) is a good reference
for. . . ’ are funny. Even funnier results are produced
by citations within parentheses: “I saw once (in a
book I read (Cassirer, 1944)) that. . . ”

Thus, these styles tend to feature a number of
variations to the way sources are actually cited, de-
signed to solve the dilemmas of grammar and aes-
thetics illustrated above. So:

• This has already been argued (Cassirer, 1944).
• For this issue see Cassirer, 1944.
• Cassirer (1944) is a good reference for. . .
• I read once a book (Cassirer, 1944) where. . .
• I saw once (in a book I read [Cassirer, 1944])

that. . .

The choice of the right kind of citation is proba-
bly beyond complete automation. That means that

it is the user who has to choose. And, in turn, this
means that many different commands have to be
available. In fact, LATEX packages that support this
family of styles have an unusually large number of
citation commands.

4.2 Samples

I will refer to three particular packages, all very suc-
cessful, that support author-year citation: harvard,
achicago, and natbib.

Appearing at the top of this and the following
two pages, we show samples of how they work, ar-
ranged so that direct comparison is possible. The
notes on the left are the commands that create the
relevant citations in each of the packages. The cita-
tions are underlined to make them more prominent
(i.e., the underlining is not an effect of the packages
themselves). The reader might want to take a mo-
ment to glance at these samples and get the feeling
of the differences and the similarities between the
three packages.

As can be readily seen, translation between the
three is pretty straightforward. But it is interesting
to see the different command names that the three
authors chose for the several citation variants.

4.2.1 harvard

In harvard (the first, seminal one, by Peter Williams
and Thorsten Schnier, final version 1994), the nam-
ing follows a ‘logical’ or ‘grammar-oriented’ model:
citations are qualified by the grammatical function
of the label in the sentence. When the citation is a
noun, you use \citenoun; when something has to be
affixed to the parenthesis before the citation proper,
you type \citeaffixed (for ‘suffixes’, additions af-
ter the citation, the optional argument of \cite is
used).

TUGboat, Volume 28 (2007), No. 2 237

Some philosophers of science have claimed that science progresses as life

\citeNP (notably Kuhn 1996, Koestler 1959). Kuhn started his conceptual trip with his explo-

\citeyear ration of the Copernican Revolution (1957). At virtually the same time, at the other

\citeN side of the Atlantic, the same trip was documented in Koestler (1959). In musicology,

Leo Treitler expresses very similar views (1984, 1989, 1999). Kuhn’s ‘paradigms’ were

(\citeA...) directly addressed by musicians since 1991 (McClary).

There was and is, of course, opposition to Kuhn, whose ideas were always shunned

by mainstream philosophy of science. Most virulent of all was the criticism by

Imre Lakatos (1970). In musicology, this criticism has no direct offspring, but the other

\cite extreme, the ‘anarchy of knowledge’ (Feyerabend 1978), finds parallels in the diverse

Tomlinson’s \citeyear manifestos of postmodernist musicology, for example Tomlinson’s (1984).

Figure 2: achicago sample

4.2.2 achicago

Matt Swift, who wrote achicago (last version 2001),
chose a ‘form’ criterion: the names of his commands
follow what it is that the citation needs (the au-
thor? the year?), whether or not parentheses should
be added (all commands have a \...NP version for
‘No-Parenthesis’), and so on. The package does not
handle pre-citation notes (like the expression ‘no-
tably’ in the sample) directly, but using these no-
parenthesis commands the user can achieve similar
effects.

achicago is a full-fledged package with, quite in-
triguingly, several extra-bibliography odds and ends.
Quotations are no longer typeset \small, and \emph

translates not to \textit but to \textsl. These
things can be a little annoying when one is following
uses set by someone else (journals, professors, etc.).
On the other hand, the BibTEX that accompanies
the package (the file achicago.bst) is amazingly
comprehensive, providing fields for such notions as
translator, original title, etc. In his introduction to
the package the author enters the discussion of the
pros and cons of each family of styles. More about
this later.

4.2.3 natbib

The wonderful natbib package (by Patrick Daly, last
version 2006) is the definitive word on author-year
bibliography styles with LATEX. It builds on the har-
vard experience and offers a most complete set of
customization possibilities. Extra features include
an easy conversion to bracket labels, a useful system
of ‘aliases’, control over punctuation and capital-
ization, and continued two-way support with pack-
ages like hyperref. The older packages harvard and
achicago are very dear to me personally, but for users
new to this family of styles I see no reason to rec-

ommend any package other than natbib.
The commands in natbib are named somewhat

more capriciously than in its predecessors. There
is no plain \cite (!). Instead of this, \citep is
intended for parenthetical citations and \citet for
citations within the text (the ones that would be
‘noun’ citations). Both commands support two op-
tional arguments, for notes within the parentheses
to either side of the citation itself.

4.3 Advantages and disadvantages of
author-year

Oren Patashnik (creator of BibTEX, and one who
clearly doesn’t like author-year labels) has even ar-
gued that this citation style “encourages the pas-
sive voice and vague writing”. With Matt Swift (in
his introduction to achicago), I have to say I’m not
sure. But there is no denying that the parentheti-
cal labels interrupt the flow of reading. The same
reasons that in certain contexts make this style bet-
ter than bracket labels — i.e., that the author and
the year are crucial information in some kinds of ar-
gument — can be held actually against it. In these
contexts, the title is also crucial: suppose you quote
someone like Foucault; is this an interview, a popu-
larizing essay, or a rigorous book? What the reader
is to do with the citation certainly depends on this.
And in that case, the reader is forced to put his fin-
ger in the book, and thus go search for the entry in
the final reference list.

Or what about different editions of books, or
reprints of articles? What is one to do with a cita-
tion like ‘(Descartes, 1949)’? If information about
the publication is important, citations like ‘[1]’ are
insufficient, but ‘(Adorno, 1976)’ is insufficient too,
and sometimes even misleading.

One might then ask why it is that these styles

238 TUGboat, Volume 28 (2007), No. 2

Some philosophers of science have claimed that science progresses as life

\citep (notably Kuhn 1996, Koestler 1959). Kuhn started his conceptual trip with his explo-

\citeyearpar ration of the Copernican Revolution (1957). At virtually the same time, at the other

\citet side of the Atlantic, the same trip was documented in Koestler (1959). In musicology,

Leo Treitler expresses very similar views (1984, 1989, 1999). Kuhn’s ‘paradigms’ were

(\citeauthor...) directly addressed by musicians since 1991 (McClary).

There was and is, of course, opposition to Kuhn, whose ideas were always shunned

by mainstream philosophy of science. Most virulent of all was the criticism by

Imre Lakatos (1970). In musicology, this criticism has no direct offspring, but the other

\citep extreme, the ‘anarchy of knowledge’ (Feyerabend 1978), finds parallels in the diverse

Tomlinson’s \citeyearpar manifestos of postmodernist musicology, for example Tomlinson’s (1984).

Figure 3: natbib sample

are so widely standardized today. Well, there is a
clear reason for their early appeal: unlike numeric
references, and unlike footnotes, a late change to a
manuscript does not require going over the whole
thing to update numbers and cross references. This
was extremely relevant in typewriter, WordStar or
WordPerfect times (I imagine — I’m just too young
to have experienced it myself!). It may even be rele-
vant today, taking on the risks of stereotyping, with
Word users, whose vast majority is not aware that
this can be automated. In any case, this ‘advantage’
is of course rendered meaningless by the computers
of today, and in particular by TEX.

In fact, it is a little ironic that further develop-
ment of computerized document preparation is even
turning this advantage of author-year styles into a
hindrance: more and more, citations are expected
to be interactive hyperlinks. This, today, implies an
enormous difference between typing (say, with the
natbib package)

...(notably Tomlinson’s [1984]).

and typing
...(notably Tomlinson’s

[\citeyear{tomlinson1}]).

The first, easy to remember and type, won’t pro-
duce a link. If you want the link, and today you
certainly do, you have to use the second — and then
the effort of taking care of the punctuation, com-
mand sequence, and key, seems a little like. . . like
using a tank to kill a fly.

So, beyond the often unsurmountable institu-
tional pressure — journals, professors, etc. — I really
see no reason to use author-year styles. Above all
today, that — my main point in this article — soft-
ware has advanced to a point where all alternatives
are equally well supported.

5 Footnote citations

Maybe not for pure mathematics, but in other con-
texts (certainly including the history of mathemat-
ics) I would say there is no better option than foot-
note citation. LATEX has supported this since 2002,
with the appearance of opcit. This package will
translate \cite into \footnote (unless it occurs in-
side one), and append the information of the refer-
ence into the footnote.

The first time a publication is cited, the infor-
mation will be full: author, title, journal/publisher,
address, year, etc. Further citations of the same
work, however, will abbreviate the reference into
the last name, followed by the traditional ‘op. cit.’
(Latin for ‘cited work’). Moreover, if the same cita-
tion occurs in two successive footnotes, it will sim-
ply say ‘Idem’ (‘same’). The optional argument to
\cite will be appended after the information (either
full or abbreviated), separated by a comma.

opcit provides a starred version \cite* that
omits the author’s name (often redundant in foot-
notes). On the other hand, if there are several works
by the same author, in which case ‘op. cit.’ can be
ambiguous, a mechanism to assign ‘aliases’ to the
works (the ‘hereafter’ mechanism) is provided.

6 opcit 2

opcit was written by this author, and its first version
dates from 2002. In 2006 I uploaded the second
version of the package, with a complete BibTEX style
(the first one was very limited). This second version,
which owes a lot to comments and suggestions by
several users, and in particular those of John Scott,
fixes minor problems of the first version, and adds
some extra features, notably:

• The ability to omit certain information in the

TUGboat, Volume 28 (2007), No. 2 239

footnotes but not in the final reference list. This
can be used to omit an article’s page numbers
when a ‘[p. 12]’ optional argument follows, or to
omit the second part of the title, information on
series, original edition dates, etc. — information
that is not really needed in the footnotes.

• ‘op. cit.’ expressions and other ‘aliases’ can be
hyperlinks to the footnote where the work was
first cited.

• Citations can be reset (for example, at the be-
ginning of chapters) so that a post-citation will
again cite the information in full.

• Support for cross referencing between entries
through BibTEX’s field crossref.

6.1 Additions to opcit 2

The second version of opcit has been generally well
received and, as far as I can judge, widely used.
Some users have already made comments and sug-
gestions, and in two cases they have contributed
some pieces of code that fix or improve a couple of
opcit’s current features. These additions, mentioned
in this section, will be included in a third release I’m
working on (hopefully for the summer of 2007), but
for the moment they are in beta testing.

6.1.1 Hereafter improved

Eric Rauchway, a devoted “fan” of opcit, wrote to
me some months ago about getting the “hereafter”
of articles not italicized. (“Hereafter” is the user-
defined reference to a previously cited source, that
replaces the default op. cit. It is useful when there
are citations of several works by the same author.
It is desirable that articles’ hereafters are not itali-
cized, while those of books are.) He and his friend
Kevin Bryant have found a solution to this, and I
will include their find in a following release. The so-
lution involves modified versions of both opcit.sty

and opcit.bst. If interested, please write to me
(federook@gmail.com) to get the modified files.

6.1.2 Name-swapping

The second release of opcit swaps the first and last
name of authors for the final reference list (so that
the footnote says “Ernest Gellner”, but the final list
says “Gellner, Ernest”). However, in some cases this
it is desirable to keep the regular order: for example
for Dante Alighieri. (Also, there is a problem when
the author is Aristotle, since opcit doesn’t really
know what to swap, and inserts a spurious floating
comma.) Patrick Gardner contributed the following
solution “which might be of use to others who are
using opcit for ancient and medieval authors” (like
he is himself):

"\newBibCommand{\SwapNames[2]}{#1 #2}%

{#2\ifx\@empty#1\else, #1\fi}"

write$ newline$

This should replace line 946 (the begin.bib

function) of opcit.bst. With this, opcit will han-
dle “Aristotle” correctly, and putting the full name
“Dante Alighieri” between braces in the bib file will
then prevent name swapping.

6.2 The future of opcit

The main problem still facing opcit is a very hard-to-
understand (for me, anyway) conflict with endnote,
the package that collects the notes to be printed at
the end of the document/chapter. It really would
be nice to be able to turn endnotes on and off with-
out further changes. (The fascinating discussion
on footnotes-or-endnotes resembles that of the bib-
liography styles in that the opposing sides really
hate each other; again, both have good arguments
to their cause, but ‘the truth’ probably lies in a
context-dependent approach.) I succeeded once in
creating a list of endnotes from opcit footnotes, but
the solution was far from robust, and did not really
throw light on how to address the problem.

On the other hand, there are ideas and work go-
ing on regarding other compatibility issues of opcit.
With the release of the second version, the package
secures LATEX support for footnote-style bibliogra-
phy. . . in English. But use with other languages is
not directly implemented. This not only requires
the modification of the BibTEX style (so that par-
ticles like ‘in’, ‘chapter’, etc. are translated), but
also might bring about problems with babel. For
example, José Luis Rivera from Mexico has identi-
fied conflicts with the latter’s spanish option, and
has started working on complementing opcit with a
Spanish BibTEX style, which possibly involves some
tweaking to opcit itself.

The implementation of opcit in languages other
than English will hopefully involve other users as
well, and is, as I see it, the most important future
extension of the package.

7 Other important things to mention

7.1 Some hybrid approaches

For the sake of completeness, a couple of packages
should be mentioned that provide a kind of ‘bridge’
between the three main families of styles:

alpha was already mentioned to be a compromise
between labels like ‘[1]’ and labels like ‘(Cas-
sirer, 1944)’: it gives ‘[Cas44]’. See page 236.
In the same vein, natbib has the option of type-
setting labels in either of the two forms (and

240 TUGboat, Volume 28 (2007), No. 2

also as superscripts).

cite makes bracket labels appear as superscripts,
almost as footnote marks (although between
[and] and without an actual footnote). The
package (which also has other nice features) is
extremely sophisticated, but has almost no doc-
umentation (it dates from before the doc pack-
age for LATEX documentation). As a result, it
has come to be, in effect, obsolete. Even Sebas-
tian Rahtz, when trying to provide support for
it in hyperref, had to give up trying to under-
stand it.

footbib goes one step further than cite: the super-
scripted labels do actually point to a footnote.
However, it is not a footnote in the full sense:
it follows its own numbering, and in case there
are also ‘regular’ footnotes in the page, the two
sets are separated from each other.

7.2 custom-bib

This package is not directly related to the thesis of
this article, but it does seem odd to omit it from a
general discussion of the possibilities of bibliography
in LATEX.

custom-bib — the latest version at this writing
is dated April 27th of 2007 — is another wonderfully
ingenious TEX program by Patrick Daly (the author
of natbib) that helps the user create a totally cus-
tomized BibTEX style (i.e., a .bst file). Here we
are back to the normal meaning of ‘style’: the set
of rules that govern the appearance of the entries
in the final reference list — whether the title is ital-
icized, the journal number typeset in boldface, etc.

The package works in a straightforward way.
Once there is a makebst.tex file in the system —
you might have to create it by running TEX on the
file makebst.ins— the user runs TEX or LATEX on it:
latex makebst.tex

Then the program will simply ask (!) how you
want to format your entries, and from it create a
BibTEX style. It is a truly amazing use of TEX’s
interactive capabilities, which are usually overlooked
(since interactivity is not exactly what document
preparation is about, after all).

The package is tailored towards the first two
style-families described above: brackets (called ‘nu-
merical’ in custom-bib) and author-year. Use for
opcit, I anticipate, would require some extra hack-
ing on the .djb file (an intermediate step between
makebst.tex and the final .bst file), but in princi-
ple the main difficulties here would arise from the
lack of documentation in opcit about custom-bib,
and maybe the other way around as well. That
is, opcit includes some directions on how to cus-

tomize the .bst file, but these directions assume
familiarity with BibTEX’s programming language —
and this familiarity is precisely what custom-bib is
supposed to spare the user.

In any case, I am a newcomer to custom-bib,
so not the most qualified to discuss these matters
deeply. The package is mentioned here as the won-
derful tool it is for deeper-than-surface bibliography
handling in LATEX.

8 Conclusions

I have to finish by pointing out some facts that
have come to my attention since I presented a ver-
sion of this article at PracTEX 2006. For example,
José Luis Rivera told me that the Modern Language
Association, which is in effect the main legislator
(and champion) of author-year styles, has indeed
addressed the issue of some funny things like cit-
ing ‘(Aristotle, ca. −340)’. They allow a variation
of style that can be called ‘author-title’: (Aristotle,
Nicomachaean Ethics). Even for modern authors,
as in ‘(Derrida, Postcards)’, this has been accepted
and even encouraged. This certainly is a response
to the problem that often the title of a work is more
crucial than the year.

The discussion can go on and on (is it the title
itself, or the fact that the work is so well-known?
how does this depend, once again, on context?), but
one thing that has to be said is that, as far as I
know, LATEX has not seen any direct efforts in this
direction. The MLA, certainly, has adopted this rel-
atively recently (mid-90s is José Luis’s recollection).

I cannot claim that the discussion in the previ-
ous pages is comprehensive or complete. However,
I hope that the points raised above are not obvious
or trivial (they weren’t to me when I started think-
ing of all this), and feel that the topic is interesting,
if nothing else because it shows how, here too, one
little change or decision leads to more and more. In
fact, people who have seen drafts of this article tend
to respond rather quickly and very ‘personally’ (as
in “personally, I hate footnotes”, or “I totally agree
with this or that. . . ”). The topic, touching on uses
that habit has ingrained to the point that they enter
the realm of taste, seems to reach everybody and
raise very deep opinions in them. So, besides the
arguably ‘useful’ fact that this article might make
readers aware of possibilities that were previously
unknown to them, I hope it has also provided some
enjoyment.

⋄ Federico Garcia
http://www.fedegarcia.net

federook (at) gmail dot com

TUGboat, Volume 28 (2007), No. 2 241

Font selection in LATEX:
The most frequently asked questions

Walter Schmidt

Abstract

This article tries to answer the three most popular
questions regarding font selection in LATEX, primar-
ily providing guidance through the existing docu-
mentation.

1 Basic commands

Having read any LATEX introduction of your choice
(for instance, [1]), you should be familiar with the
basic commands for font selection. To start with,
let’s summarize them once again.

These declarations let you choose among three
pre-defined font families:

\rmfamily roman (i.e., serifed)
\sffamily sans serif
\ttfamily monospaced (“typewriter”)

Within each font family, the following declarations
select the “series” (i.e., darkness or stroke width),

\mdseries regular
\bfseries bold

and the “shape” (i.e., the form of the letters):

\upshape upright
\slshape slanted

\itshape italic
\scshape Caps and Small Caps

These commands are “declarations”, i.e., they
remain in effect until the end of the current group
or environment. For each declaration there exists a
text-generating command as a counterpart; it type-
sets only its argument in the desired style; for in-
stance, \textsf corresponds to \sffamily. See,
e.g., [1], chapter 3.1 and appendix C.15.1.

Family, series and shape can be combined, e.g.,
\bfseries\itshape results in bold italic type. No-
tice, however, that not every possible combination
is required to exist; for instance, many font families
are lacking small caps.

This scheme is called NFSS (New Font Selec-
tion Scheme), and its official documentation [2] is
available in every LATEX system as a DVI or PDF

document fntguide.dvi or .pdf.

2 How can I change the default fonts for
the whole document?

Most likely, you will already recognize the three de-
fault font families used by LATEX:

Editor’s note: Reprinted from The PracTEX Journal 2006-1
(http://tug.org/pracjourn), by permission.

roman: Computer Modern Roman
sans serif: Computer Modern Sans Serif

monospaced: Computer Modern Typewriter

Outside the world of TEX, these font families
are far from popular, so the question asked in the
title of the present section is perhaps the “top of the
FAQs”.

The families selected by \rmfamily, \sffamily
and \ttfamily are determined by the corresponding
macros \rmdefault, \sfdefault and \ttdefault.
You can use the well-known \renewcommand to al-
ter them—provided that you know the name of the
desired font family. For instance, try adding:

\renewcommand{\rmdefault}{ptm}

to the preamble of a document. ptm is the name
under which the font family “Times” is installed in
your LATEX system, so all (roman) text in your ex-
ample document should change from CM Roman to
Times. (Most likely, you will now ask the question
how to learn the name of a font family: please, be
patient, it will be answered in the next section.)

If, however, there is any piece of maths in your
example, you will notice that changing \rmdefault

does not affect formulas. In the above case, they
will still be typeset using the CM math fonts, which
do not blend well with Times.

Changing the math fonts requires more effort
than simply redefining a few macros. That’s why
alternative math fonts are usually accompanied by
a macro package: loading the package makes all
changes needed to replace the default (CM) math
fonts; in many cases these packages take care of
redefining \rmdefault appropriately, too. For in-
stance, to change both text and formulas to Times,
you would in fact add the following line to your doc-
ument preamble, rather than the one given above:

\usepackage{mathptmx}

There are also macro packages that change only one
of the text fonts, but provide additional features
such as scaling.

This raises a few questions: You need to know
which alternative fonts besides Computer Modern
are available in your LATEX system at all, you need
to know the “LATEX names” of the font families you
want to use, and you need to know if there are any
related macro packages available. These issues lead
us to the next section:

3 Which font families are available in my
LATEX system?

There is a minimum set of alternative fonts that
must always be available besides Computer Mod-

242 TUGboat, Volume 28 (2007), No. 2

ern; the related collection of macro packages is often
referred to as the “PSNFSS collection”. In particu-
lar, it supports the popular typefaces Times, Hel-
vetica, Palatino and Charter (and a few others),
and it supports math fonts that suit Times and
Palatino. The related documentation [3] is avail-
able in every LATEX distribution as a PDF file named
psnfss2e.pdf, usually in the directory doc/latex/

psnfss. Reading this document is strongly recom-
mended. It tells the ‘family names’ of the supported
fonts (such as ptm above), and explains the usage of
the related macro packages. (See [3], tables 1 and 3.)

Everything that goes beyond the PSNFSS col-
lection is, strictly speaking, optional; i.e., only the
documentation of your particular TEX distribution
can tell you which fonts are shipped with the system,
and where the related documentation is installed.

Most contemporary TEX distributions provide
(almost) all free text and math fonts that are avail-
able from CTAN; a good overview of the most popu-
lar ones is given in chapter 7 of the LATEX Compan-

ion [4].
Further font families that have been made avail-

able for use with LATEX are summarized in [5].

4 How can I change the fonts to be used
for certain parts of the document?

A popular request is to customize the style of cer-
tain elements of the document; for example, the font
used in section headings and/or captions. The style
of these elements, including the font choice, is deter-
mined by the document class you are using. Unfor-
tunately, the standard classes (article, report, book)
do not by default provide any means for this kind of
customization.

One solution is to use extra packages that add
the required functionality; the most popular ones are
the packages titlesec [6] and sectsty [7] to change
the style of the section headings, and caption [8]
to control the style of the captions of figures and
tables. Use of these packages is described in detail
in the related documentation.

Newer, alternative document classes often go a
different way. The KOMA-script classes [9] as well
as the Memoir class [10] provide various means for
customization. As an example, let’s take a look at
the interface of the KOMA classes to control the style
of section headings:

By default, the KOMA classes use the bold se-
ries of the sans-serif font family to typeset headings.
To change this, the command

\setkomafont{sectioning}{...}

is provided. Its second argument is to contain all

declarations to be applied when the section head-
ings are typeset. A frequent requirement is to use
the bold series of the roman font family instead (as
in the standard classes), and additionally to apply
\boldmath, so that mathematical elements in sec-
tion headings are emboldened, too. Doing this is
straightforward with the KOMA classes:

\setkomafont{sectioning}

{\rmfamily\bfseries\boldmath}

Analogously, the style of captions can be controlled
via the command \setkomafont{caption}{...}.

Typically, with these extra packages and classes
it becomes a matter of a single line of LATEX com-
mands to change the formatting of many parts of
the document.

5 Conclusion

At first sight, font selection in LATEX looks like a
relatively complex issue, because it differs funda-
mentally from font handling in “classical” DTP pro-
grams. Yet, it isn’t hard when you look in the docu-
mentation, and in this article we have tried to show
some concise pointers.

References

[1] Leslie Lamport: LATEX: A Document Prepara-

tion System, 2nd edition. Addison Wesley, 1994.

[2] LATEX3 Project Team (Ed.): LATEX 2ε font se-
lection. Part of the LATEX online documentation,
file fntguide.pdf

[3] Walter Schmidt: Using common Postscript fonts
with LATEX. Part of the LATEX online documen-
tation, file psnfss2e.pdf

[4] Frank Mittelbach et al.: The LATEX Companion,
2nd edition. Addison Wesley, 2004.

[5] TEX Users Group: Fonts and TEX. http://tug.
org/fonts

[6] Javier Bezos: The titlesec and titletoc packages.
http://ctan.org/tex-archive/macros/

latex/contrib/titlesec/

[7] Rowland McDonnell: The sectsty package.
http://ctan.org/tex-archive/macros/

latex/contrib/sectsty/

[8] Axel Sommerfeldt: The caption package.
http://ctan.org/tex-archive/macros/

latex/contrib/caption/

[9] Markus Kohm: The KOMA-script bundle.
http://ctan.org/tex-archive/macros/

latex/contrib/koma-script/

[10] Peter Wilson: The Memoir class.
http://ctan.org/tex-archive/macros/

latex/contrib/memoir/

TUGboat, Volume 28 (2007), No. 2 243

The memoir class

Peter Wilson

Abstract

The memoir class is essentially the book and report
classes with lots of bells and whistles as it includes
the functions of over 30 popularly used packages.
It can also simulate the appearance of article class
documents and provides a basis for producing the
typewritten-like manuscripts which some publishers
ask for.

1 Introduction

For nearly 20 years I was involved in using LATEX to
produce camera-ready copy of International Stan-
dards, in particular ISO 10303 (STEP). As the stan-
dard grew — it now consists of thousands of pages
spread across many publications — and ISO and var-
ious committees kept changing their minds about
what they wanted, I grew increasingly frustrated
with having to keep modifying the internals of the
class and packages that I had developed. Separately
I became interested in book design and felt that
there was a need for a class that would support lay-
out experiments. I worked on this in a desultory
fashion for several years and eventually produced
something that I felt might be generally useful.

The memoir class was first released in 2001 and
since then has proven to be reasonably popular. The
class can be used as a replacement for the book
and report classes, by default generating documents
virtually indistinguishable from ones produced by
those classes. The class includes options to produce
documents with other appearances; for example an
article class look or one that looks as though the
document was produced on a typewriter with a sin-
gle font, double spacing, no hyphenation, and so on.
In the following I use the term ‘standard classes’ to
denote the book and report classes and, when appro-
priate, the article class as well.

The memoir class includes the functionality of
many packages, for instance the tocloft package for
controlling the table of contents and methods simi-
lar to the fancyhdr package for designing your own
headers. The built-in package functions are mainly
related to document design and layout; memoir does
not touch upon areas like those covered by the ba-
bel or hyperref packages or any related to typeset-
ting mathematics. On the other hand it is easy to
configure a work produced with memoir to meet a
university’s thesis layout requirements.

memoir has improved substantially since it was
first released — over 50 LATEXers have provided code

or suggestions for improvements. The class is in-
cluded in the TEX user groups’ TEX distributions
and the latest version of the class and its support-
ing documentation is always available from CTAN

at latex/contrib/memoir.

2 General considerations

The class is a large one consisting of about 10,000
lines of LATEX code documented in a 400 page report;
there is no need for most users to look at this [4].
There is a separate comprehensive User Manual [3]
which runs to about 300 pages and from time to time
an Addendum [5] is released noting extensions to the
class; at the moment this runs to about 70 pages.
There is also the memexsupp package by Lars Mad-
sen [2] which provides some extra facilities for the
class.

Altogether the documentation for memoir runs
to some 800 pages and it is impossible to cover ev-
erything in a short, or even a long, article.

The first part of the Manual discusses some
aspects of book design and typography in general,
something that I haven’t come across in the usual
LATEX books and manuals. This is intended to pro-
vide a little background for when you design your
own printed documents.

memoir provides slightly enhanced facilities for
creating title pages but in my view it is better to
create your own layout for a title page. To aid in this
I have created some 25 examples of title pages that
can be used as a starting point for your design [6].
These were produced using regular LATEX facilities
and are not dependent on memoir.

The standard classes provide point options of
10, 11, or 12 points for the main body font. memoir
extends this by also providing 9, 14, and 17 point
options. The width of the text block is automati-
cally adjusted according to the selected point size to
try and keep within generally accepted typograph-
ical limits for line lengths; you can override this if
you wish. The class also provides easy methods for
specifying the page layout parameters such as the
margins — both the side margins and those at the
top and bottom of the page; the methods are simi-
lar to those of the geometry package.

The page layout facilities also include meth-
ods, like those provided by the fancyhdr package,
for defining your own header and footer styles, and
you can have as many different ones as you wish. In
fact the class provides seven styles to choose from
before you have to resort to creating your own. The
styles are all displayed in the Manual.

Sometimes it is useful, or even required, to place
trimming marks on each page showing the desired

244 TUGboat, Volume 28 (2007), No. 2

size of the final page with respect to the sheet of
paper that is used in the printer. This is provided
by the showtrims option. A variety of trim marks are
provided and you can define your own if you need
some other kind.

2.1 Sectioning styles

Handles are provided for designing and using your
own styles for chapter titles and such. The class
comes with over 20 predefined chapter styles ranging
from the default look to a style that mimics that
used in the Companion series of LATEX books. There
is even one which uses words instead of numerals for
chapter numbers. The Manual shows examples of at
least six of these styles and about 30 are shown in
Lars Madsen’s collection [1].

For those who like putting quotations near chap-
ter titles the epigraph environment can be used.

The options for changing \section and lower
level titles are more constrained, but generally speak-
ing document design, unless for advertisements or
other eye-catching ephemera, should be constrained.

Sometimes, but particularly in novels, a sec-
tional division is indicated by just leaving a blank
line or two between a pair of paragraphs, or there
might be some decorative item like three or four
asterisks. Commands are available for typesetting
such anonymous divisions.

In the standard classes, sectioning commands
have an optional argument which can be used to
put a short version of the section title into the table
of contents and the page header. memoir extends
this with a second optional argument so you can
specify one short version for the contents and an
even shorter one for page headers where space is at
a premium.

2.2 Captions

memoir incorporates the code from my ccaption pack-
age which lets you easily modify the appearance
of figure and table captions; bilingual captions are
available if required, as are captions placed at the
side of a figure or table or continuation captions
from, say, one illustration to another. Captioning
can also be applied to ‘non-floating’ illustrations or
as legends (i.e., unnumbered captions) to the regular
floats. The captioning system also supports subfig-
ures and subtables along the lines of the subfig pack-
age, plus letting you define your own new kinds of
floats together with the corresponding ‘List of . . . ’.

3 Tables

Code from the array, dcolumn, delarray and tabularx
packages is integrated within the class. To improve

the appearance of rules in tabular material the book-
tabs package is also included.

Multipage tabulations are often set with the
longtable or xtab packages, which can of course be
used with the class. For simple tabulations that may
continue from one page to the next, memoir offers a
‘continuous tabular’ environment. This doesn’t have
all the flexibility provided by the packages but can
often serve instead of using them.

More interestingly, but more limited, the class
provides ‘automatic tabulars’. For these you pro-
vide a list of simple entries, like a set of names, and
a number of columns and the entries are automati-
cally put into the appropriate column. You choose
whether the entries should be added row-by-row, like
this with the \autorows command:

\autorows{c}{5}{l}{one, two, three, four,

five, six, seven, eight, nine, ten,

eleven, twelve, thirteen }

one two three four five
six seven eight nine ten
eleven twelve thirteen

Or if you use the \autocols command the en-
tries are listed column-by-column, like this:

\autocols{c}{5}{l}{one, two, three, four,

five, six, seven, eight, nine, ten,

eleven, twelve, thirteen }

one four seven ten thirteen
two five eight eleven
three six nine twelve

4 Verse

The standard classes provide a very simple verse

environment for typesetting poetry. This is greatly
extended in memoir. For example in the standard
classes the verse stanzas are at a fixed indentation
from the left margin whereas memoir lets you con-
trol the amount of indentation so that you can make
a poem appear optically centered within the tex-
twidth.

Stanzas may be numbered, as can individual
lines within a poem. There is a special environment
for stanzas where lines are alternately indented. Also
you can define an indentation pattern for stanzas
when this is not regular as, for example, in a limerick
where the 3rd and 4th of the five lines are indented
with respect to the other three as shown below.

\indentpattern{00110}

\begin{verse}

\begin{patverse}

There was a young man of Quebec \\

TUGboat, Volume 28 (2007), No. 2 245

Who was frozen in snow to his neck. \\

When asked: ‘Are you friz?’ \\

He replied: ‘Yes, I is, \\

But we don’t call this cold in Quebec.’

\end{patverse}

\end{verse}

There was a young man of Quebec
Who was frozen in snow to his neck.

When asked: ‘Are you friz?’
He replied: ‘Yes, I is,

But we don’t call this cold in Quebec.’

It is not always possible to fit a line into the
available space and you can specify the particular
indentation to be used when a ‘logical’ verse line
spills over the available textwidth, thus forming two
or more typeset ‘physical’ lines. On other occasions
where there are two half lines the poet might want
the second half line to start where the first one fin-
ished, like this:

\begin{verse}

Come away with me. \\

\vinphantom{Come away with me.} Impossible!

\end{verse}

Come away with me.
Impossible!

5 End matter

Normally appendices come after the main body of a
book. The class provides various methods for intro-
ducing appendices at the end, or you can place one
or more appendices at the end of selected chapters
if that suits you better.

memoir also lets you have more than one index
and an index can be set in either the normal double
column style or as a single column which would be
more appropriate, say, for an index of first lines in
a book of poetry. The titles of any bibliography or
indexes are added to the table of contents, but you
can prevent this if you wish.

The class provides a set of tools for making glos-
saries or lists of symbols, the appearance of which
can, of course, be easily altered. The makeindex

program is used to sort the entries. An example
is shown in the current version of the Addendum.
A recent addition to the class provides configurable
end notes which can be used as well as, or instead
of, footnotes.

6 Miscellaneous

As already noted, the Manual for memoir runs to
some 300 pages and we cannot cover everything in a

short article. Suffice it to say that hooks and macros
are provided for most aspects of document layout;
for instance, footnotes can be as normal, typeset
in two or three columns, or all run into a single
paragraph. There is a \sidenote macro which is
a non-floating \marginpar as well as the \sidebar

macro for typesetting sidebars in the margin, start-
ing at the top of the text block. You can create
new verbatim-like environments, read and write in-
formation in external files, design your own style
of \maketitle, convert numbers to words, reserve
space at the bottom of a page, and so on and so
forth.

7 Packages

Most packages work with the memoir class, the main
exception being the hyperref package. This pack-
age modifies many of the internals of the standard
classes but does not cater for all of the differences
between memoir and the standard ones. If you wish
to use hyperref with memoir then you must use the
memhfixc package1 after using hyperref. For exam-
ple:

\documentclass[...]{memoir}

...

\usepackage[...]{hyperref}

\usepackage{memhfixc}

...

\begin{document}

However, if you have a version of hyperref dated
2006/11/15 or after, hyperref will automatically call
in memhfixc so that you don’t have to do anything.

The memoir class includes code either equiva-
lent to, or extensions of, the following packages; that
is, the set of commands and environments provided
by memoir is at least that of these packages:
abstract, appendix, array, booktabs, ccaption,
chngcntr, chngpage, dcolumn, delarray, enumerate,
epigraph, framed, ifmtarg, ifpdf, index, makeidx,
moreverb, needspace, newfile, nextpage, parskip,
patchcmd, setspace, shortvrb, showidx, tabularx,
titleref, titling, tocbibind, tocloft, verbatim, verse.

The memoir class ignores any \usepackage or
\RequirePackage related to these. However, if you
want to specifically use one of these packages rather
than the integrated version then you can do so. For
argument’s sake, suppose you really want to use the
titling package; you can do this:

\documentclass[...]{memoir}

\DisemulatePackage{titling}

\usepackage{titling}

The memoir class incorporates a version of the
setspace package, albeit using different names for the

1 memhfixc is supplied as part of the memoir distribution.

246 TUGboat, Volume 28 (2007), No. 2

macros. The package enables documents to be set
double spaced but leaves some document elements,
like captions for example, single spaced. To do this
it has to make some assumptions about how the doc-
ument class works. I felt that this kind of capability
should be part of the class and not depend on as-
sumptions. In the particular case of the setspace
package, even with the standard classes, there can
be some unexpected spacing around displayed mate-
rial; this has not occurred with memoir’s implemen-
tation.

The class also provides functionality similar to
those provided by the following packages, although
the commands are different: crop, fancyhdr, geom-
etry, sidecap, subfigure, titlesec. You can use these
packages if you wish, or just use the capabilities of
the memoir class.

Sometimes a class or package may define a com-
mand that is also, differently, defined by a succeed-
ing package. As an example, assume that you want
to use the memoir class together with the pack pack-
age but they have both defined \amacro. There are
several ways of dealing with this.

1. Discard the class’s definition:

\documentclass[...]{memoir}

% kill the class definition

\let\amacro\undefined% or \relax

\usepackage{pack}

and pack’s version of \amacro is used from now
on.

2. Discard the package’s definition:

\documentclass[...]{memoir}

% save the class definition

\let\memamacro\amacro

\let\amacro\undefined

\usepackage{pack}

% restore the class definition

\let\amacro\memamacro

and memoir’s version of \amacro is used from
now on.

3. Keep both definitions:

\documentclass[...]{memoir}

\let\memamacro\amacro

\let\amacro\undefined

\usepackage{pack}

and after this use \memamacro for memoir’s ver-
sion and \amacro for pack’s definition. But
this solution doesn’t always work, as you might
not know when the particular versions must be
used, or it is impossible to partition the uses.

A last resort is to ask the authors that one or
the other macro names be changed; however, for
good reasons, neither may be willing to do this.

References

[1] Lars Madsen. Various chapter styles
for the memoir class, July 2006. http:

//mirror.ctan.org/info/latex-samples/

MemoirChapStyles/MemoirChapStyles.pdf.

[2] Lars Madsen. The Memoir Experimental
Support Package, February 2007.
http://mirror.ctan.org/latex/macros/

contrib/memexsupp.

[3] Peter Wilson. The Memoir Class for
Configurable Typesetting: User Guide, 2004.
http://mirror.ctan.org/latex/macros/

contrib/memoir/memman.pdf.

[4] Peter Wilson. The LATEX memoir class for
configurable book typesetting: Source code,
2005. http://mirror.ctan.org/latex/

macros/contrib/memoir/memoir.pdf.

[5] Peter Wilson. Addendum: The Memoir Class
for Configurable Typesetting: User Guide,
2007. http://mirror.ctan.org/latex/

macros/contrib/memoir/memmanadd.pdf.

[6] Peter Wilson. Some Examples of Title Pages,
2007. http://mirror.ctan.org/info/

latex-samples/titlepages.pdf.

⋄ Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries dot press (at)

earthlink dot net

TUGboat, Volume 28 (2007), No. 2 247

Enjoying babel

Enrico Gregorio

1 Introduction

Back in the 1980s, when TEX was making its way in
the world, it was an all-American piece of software.
LATEX was based on Plain TEX and was even more
American in style.

For instance, Knuth chose to set the DVI refer-
ence point one inch to the right and one inch from
the top of the sheet of paper; maybe this is one
of the design errors in the TEX family of programs.
However, with a judicious setting of \hoffset and
\voffset, users could correctly print TEX output
on A4 paper. He did provide tools for typesetting
European languages (with all their strange accents)
but it was not possible to hyphenate two languages
simultaneously.

Overall, however, the situation was not so nice
for us Europeans. As of today, the European Union
comprises 27 countries and has 22 official languages
(in three different alphabets), not counting Luxem-
burgish and various languages spoken by minorities:
in the UK, besides English, there are Scottish Gaelic,
Scots, Scottish English, Welsh, Irish, Cornish and
Manx; in Spain, besides Castellano, there are Catalá
(Catalan, in three different varieties), Galego (Gali-
cian) and Euskara (Basque) plus some others. There
are many countries where two or more languages
have official status, possibly only in some regions:
this is the case of Italy, where German and French
are official languages in two provinces and Slovenian
is “almost official” in one province.

Version 3 of TEX was hailed with enthusiasm, as
it provided the possibility of hyphenating in 256 lan-
guages simultaneously and its 8 bit design allowed for
extended sets of characters which made it possible
to get rid of explicit accents, with all the related
and well known hyphenation problems: in fact TEX
does not hyphenate a word containing an explicit
accent (past the accent), which is a big nuisance for
languages such as French and German and is intoler-
able for Slavic languages such as Czech and Polish.
By the way: do you know the difference between
slovenčina and slovenščina?1

Earlier than the introduction of TEX 3, Johannes
Braams developed the babel system that permitted
substituting the fixed tags in LATEX like ‘Chapter’
and ‘Table of Contents’ with localized tags for some

1 Slovenčina, or slovenský jazyk is the official language

of Slovakia. Slovenščina, or slovenski jezik, is the official

language of Slovenia. They are two different countries of the

EU and do not share a border.

European languages. It also provided a method,
based on the package german by Bernd Raichle, for
inputting accented characters while allowing for good
hyphenation.

Of course, before TEX 3, users were limited to
hyphenating one language at a time, and special
versions of the LATEX (or Plain or AMS-TEX) format
had to be prepared. But, at least, one could typeset a
book in Italian where chapters were named ‘Capitolo’
and the table of contents ‘Indice’.

LATEX2ε improved the situation. It supported
package options and the support for babel was inte-
grated by declaring control sequences that contain
the fixed tags: for example, \chaptername expands
to ‘Chapter’ by default, but babel can easily change
its meaning in every language it supports.

The supported languages are many, 44 in the
current version, and not only European. It may be
surprising to learn that at least as many European
languages are not supported. Among the main ones,
Maltese, Lithuanian and Latvian still lack support
(they are all official in the EU); one of the four official
languages of Switzerland, Romansh, is missing. But
Latin, Esperanto and Interlingua are present.

I should mention Thomas Esser and his teTEX
distribution, which made it easy to enable hyphen-
ation rules and format creation for LATEX. The same
idea was used by MiKTEX through a menu. TEX Live,
also based on the teTEX scripts, offers this facility
as well. Moreover, today’s fast computers and large
memories make it possible to enable all available
rules and then forget about the matter.

I’ll talk later briefly about Plain TEX or AMS-
TEX users, who are not left in the cold, after all. But
the bulk of the paper is devoted to babel and LATEX.

2 Calling babel

The babel package is called as usual:

\usepackage[〈languages〉]{babel}

where 〈languages〉 is a comma separated list of lan-
guages, whose names can be found in Table 1. You
should name all the languages you plan to use in the
document, for example

\usepackage[italian,english]{babel}

if the document has English as its main language,
but some parts of it are written in Italian.

I said that the supported languages are 44, but
the table has more items. Some names are just syn-
onyms (Hungarian and Magyar, for example) and
some denote dialects, that is, languages which share
hyphenation patterns with others (for example, Aus-
trian is a dialect of German, Acadian and Canadien

248 TUGboat, Volume 28 (2007), No. 2

Table 1: List of babel languages

acadian

afrikaans

albanian

american

australian

austrian

bahasa

bahasai

bahasam

basque

brazil

brazilian

breton

british

bulgarian

canadian

canadien

catalan

croatian

czech

danish

dutch

english

esperanto

estonian

finnish

francais

french

frenchb

galician

german

germanb

greek

hebrew

hungarian

icelandic

indon

indonesian

interlingua

irish

italian

latin

lowersorbian

magyar

malay

meyalu

naustrian

newzealand

ngerman

norsk

nynorsk

polish

polutonikogreek

portuges

portuguese

romanian

russian

samin

scottish

serbian

slovak

slovene

spanish

swedish

turkish

ukrainian

uppersorbian

welsh

UKenglish

USenglish

are dialects of French).2 What is a dialect? While
it is basically the same language as another, they
might differ in minor aspects regarding typesetting
rules or fixed tags.

In Portuguese typography, the month name in
a date is capitalized, while Brazilians use lowercase.
In Austria people speak German, but the name of
the first month of the year is Januar in Germany
and Jänner in Austria. These two languages can be
called also with the ngerman or naustrian options,
which select the “New Orthography” (Neue Recht-
schreibung) hyphenation.

Other names are there just for backward com-
patibility: this is the case of french and frenchb.
It is sufficient to look at the beginning of babel.sty
to realize what each option does. Let’s look at the
first lines:

\DeclareOption{acadian}{\input{frenchb.ldf}}

\DeclareOption{albanian}{\input{albanian.ldf}}

\DeclareOption{afrikaans}{\input{dutch.ldf}}

Every language option loads a language definition file
with extension .ldf (in the following, LDF). We see
from these lines that acadian loads frenchb.ldf,
and indeed Acadian is for babel a dialect of French.
Similarly, Afrikaans is a dialect of Dutch. Conversely,
Albanian is a language by itself, and it had better be,
since it does not belong to any of the big European
language families; the same is true for Basque.

The name of the LDF for French and its dialects
is frenchb for historical reasons, which apply also
to germanb: since there are packages around named
french and german, the final ‘b’ was to remind users
that they were using babel in the old days when pack-
ages were specified as options to \documentstyle.

2 Of course, Canadien is not a dialect of Canadian.

Note that every option loads the correspond-
ing LDF and it is this file’s duty to handle double
loadings. We’ll see later some examples.

The most important thing to remember about
language options is that the last language loaded is
considered the main language of the document. In
case there is only one it can be specified as a global
option (i.e., as an option to \documentclass); other
packages, such as varioref, understanding that option
can therefore benefit from it. Notice, though, that
varioref does not understand all babel’s aliases. If
there is more than one language, it can happen that
a package does not correctly understand the global
options: the solution is to specify them as local for
each package.3

Don’t specify a language as a global option and
other languages as options to babel. This is a sure
cause for head scratching, trying to figure out what
went wrong. Try, for example
\documentclass[italian]{article}

\usepackage[greek,italian]{babel}

\begin{document}

XYZ

\end{document}

Do you see what happens? The option italian is
not the last option seen by babel, because global
options are scanned first.

3 Tags

In Table 2 is the list of fixed tags with their definitions
in English. Not all of these tags are used in the
standard classes article, report and book. For example,
\proofname is used by amsthm as the name used in
the \begin{proof} environment. In Table 3 you

3 By the way, while writing this paper I discovered two bugs

in varioref, version 1.4p: \extrasbrazil and \extrasportuges

were misspelled as \extrabrazil and \extraportuges.

TUGboat, Volume 28 (2007), No. 2 249

Table 2: List of tags in English
\prefacename Preface
\refname References
\abstractname Abstract
\bibname Bibliography
\chaptername Chapter
\appendixname Appendix
\contentsname Contents
\listfigurename List of Figures
\listtablename List of Tables
\indexname Index
\figurename Figure
\tablename Table
\partname Part
\enclname encl
\ccname cc
\headtoname To
\pagename Page
\seename see
\alsoname see also
\proofname Proof
\glossaryname Glossary

find the same tags with their contents in Ukrainian;
as you can see, different language traditions require
also different tags.

What about changing or improving them? Sup-
pose a document is written part in English and part
in Italian. We would like to define a command to
refer to sections in an abstract way, with text of the
form
As we saw in \secref{sec:a} ...

...

Abbiamo visto nella \secref{sec:b} ...

in such a way that the command expands to ‘Sec-
tion 2’ in English and to ‘Sezione 2’ in Italian. The
definition is straightforward:

\newcommand{\secref}[1]{\secname~\ref{#1}}

But how to include \secname in the babel tags? It’s
a matter of saying, in the preamble of the document,

\newcommand{\secname}{}
\addto\captionsenglish{%

\renewcommand{\secname}{Section}}
\addto\captionsitalian{%

\renewcommand{\secname}{Sezione}}

We first introduce to LATEX the command \secname;
it is babel’s job to provide the correct definition when
the user chooses the English or the Italian language:
babel orders LATEX to execute \captions〈lang〉 when-
ever the 〈lang〉 is selected and the tags need to be
changed. The \addto trick simply appends the sec-
ond argument (a token list) to the replacement text
of the control sequence given as first argument.

Table 3: List of tags in Ukrainian
\prefacename Вступ
\refname Лiтература
\abstractname Анотацiя
\bibname Бiблiоґрафiя
\chaptername Роздiл
\appendixname Додаток
\contentsname Змiст
\listfigurename Перелiк iлюстрацiй
\listtablename Перелiк таблиць

\indexname Покажчик

\authorname Iменний покажчик

\figurename Рис.

\tablename Табл.

\partname Частина

\enclname вкладка

\ccname копiя

\headtoname До

\pagename с.

\seename див.

\alsoname див. також

\proofname Доведення

\glossaryname Словник термiнiв

In the same vein, if we need to change a tag,
say we want ‘Elenco delle illustrazioni’ instead of the
default for \listfigurename, we can say

\addto\captionsitalian{%
\renewcommand{\listfigurename}{%

Elenco delle illustrazioni}}

It is better if these definitions to complement
\captions〈lang〉 are given using only 7-bit input, so
that they do not depend on the overall encoding of
the document. In this way you will be able to simply
copy those definitions from one document to another
without worrying about the encoding; this is even
more important if a personal style file is made.

The package has another facility: for each re-
quested 〈lang〉, the macro \extras〈lang〉 is defined.
It contains commands to be executed every time the
〈lang〉 is selected. A stupid example could be to
typeset every part in Italian in bright red:

\addto\extrasitalian{\color{red}}

There is a companion macro \noextras〈lang〉
that contains things to be undone when passing from
a language to another and this change is not pro-
tected by a group or environment. For example, cor-
rect hyphenation in Italian requires that the straight
quote be considered for hyphenation, i.e., it must
have a nonzero \lccode. Otherwise, phrases such
as dell’amicizia would not be hyphenated fully as
del-l’a-mi-ci-zia but only as del-l’amicizia.
Therefore italian.ldf contains the instructions

250 TUGboat, Volume 28 (2007), No. 2

\addto\extrasitalian{\lccode‘\’=‘\’}
\addto\noextrasitalian{\lccode‘\’=0 }

because the \lccode of the straight quote must be
reset to zero for other languages. If we were foolish
enough to choose to typeset Italian in red, we should
undo the choice when returning to other languages,
so that we should say

\newcommand{\defaultcolor}{\color{black}}
\addto\noextrasitalian{\defaultcolor}

At \begin{document}, LATEX will execute both
\extras〈lang〉 and \captions〈lang〉, for the default
〈lang〉, so the modifications stated in the preamble
will be active from the beginning.

Other facilities include the setting of dates. For
every language there is a macro \date〈lang〉. When
a different language is selected, LATEX executes this
command, which should redefine \today. So, say we
want to use abbreviated month names in Italian: we
issue in the preamble

\renewcommand{\dateitalian}{%
\renewcommand{\today}{%
\number\day~\ifcase\month\or gen.\or
feb.\or ...\or dic.\fi\ \number\year}}

(the definition is incomplete to save space). The
names of the months are not tags, because the date
format can be very different between languages.

4 Language selection

Assume we have made our choice of the languages for
the document. How to change from one to another?
There are many ways, each solving a particular prob-
lem. The main language of the document is selected
implicitly, because LATEX issues a

\selectlanguage{〈main-lang〉}

command, where 〈main-lang〉 is the last chosen lan-
guage option, as seen before.

Such a command can be issued everywhere; it
changes everything to the new language: tags, typo-
graphical choices, shorthands and, of course, hyphen-
ation rules. Therefore, after

\selectlanguage{portuges}

every following chapter will be tagged as ‘Capítulo’;
after

\selectlanguage{french}

the typographical rules for French will be active. For
example,

\selectlanguage{french}
Il dit: \og Qu’est-ce que tu veux?\fg

will be typeset as

Il dit : « Qu’est-ce que tu veux ? »

The correct spaces before the colon and the question
mark will be automatically inserted, as required by
the French tradition.

The language selection can act on various as-
pects regarding typesetting:

1. tags and dates,
2. typesetting conventions,
3. input conventions,
4. hyphenation.

The command \selectlanguage acts on all four
aspects. The same holds for its environment form
\begin{otherlanguage}. Input such as
\begin{otherlanguage}{turkish}

...

\end{otherlanguage}

is equivalent to \selectlanguage{turkish}, but
confines the changes to the duration of the environ-
ment, in the usual way. The *-form environment
\begin{otherlanguage*} acts only on typesetting
and input conventions and hyphenation. It has a
command form, for setting a small piece of text:

\foreignlanguage{〈lang〉}{〈text〉}

is largely equivalent to

\begin{otherlanguage*}{〈lang〉}
〈text〉
\end{otherlanguage*}

but the environment form allows many paragraphs.
The last environment is \begin{hyphenrules};

it acts only on the hyphenation rules. Usually, among
the loaded hyphenation rules there is a set with no
rule at all, commonly called nohyphenation. So, if
we have text in an unsupported language, we can
use this empty set of rules.

5 Other commands

The macro \languagename expands to the name of
the current language. The command \iflanguage
takes as arguments

1. a language name,
2. a token list to be executed if the current lan-

guage is the same as the first argument,
3. a token list to be executed otherwise.

6 Input conventions

Before LATEX supported 8-bit input via the inputenc

package, people had a hard time with all the en-
codings used by different operating systems. Only
7-bit-clean input was guaranteed to be interpreted
in the same way on all platforms. With TEX 2 it was
even impossible to directly input characters in the
upper half of an 8-bit code page.

TUGboat, Volume 28 (2007), No. 2 251

During this time, the package german introduced
a convention for inputting accented characters by
preceding them with a double quote:
sch"oner G"otterfunken Stra"se
ba"cken Schi"ffart

could be used instead of the more awkward
sch\"oner G\"otterfunken Stra{\ss}e
ba{\ck}en Schi{\ff}ahrt

after having defined
\def\ck{\discretionary{k-}{k}{ck}}
\def\ff{ff\discretionary{-}{f}{}}

and similar commands for other sequences.
Braams developed this scheme further, making

it easy to define similar shorthands for all languages.
Nowadays, with the development of encodings such
as UTF-8, these conventions are less important. How-
ever, UTF-8 is not yet widespread and is intrinsically
foreign to standard TEX, so occasionally they can
still be useful.

Suppose I have to use a Latin 1 keyboard, but
need to type text in Czech: most of the diacritics
used by Czech are not directly accessible with Latin 1.
Fortunately, it is fairly easy to set up suitable “double
quote” conventions.

The only letters that can take different diacritics
are the ‘e’ (haček and acute accent) and the ‘u’ (ring
and acute accent). Since Latin 1 keyboards have
vowels with the acute accent, except for ‘y’, we don’t
need anything special for the other five.

Let’s analyze the Czech alphabet. It uses four
kinds of diacritics: the haček (as in ‘č’), the acute
accent (as in ‘ý’), the ring (as in ‘ů’) and the apos-
trophe. The haček is produced with \v; the Czech
support by babel provides \q for the apostrophe and
\w for the the ring.

Let’s decide to use the double quote for inputting
most diacritics. In a .sty file to be loaded after babel

we can write the following code.
\initiate@active@char{"}

\addto\extrasczech{%

\languageshorthands{czech}}

\addto\extrasczech{\bbl@activate{"}}

\addto\noextrasczech{\bbl@deactivate{"}}

\begingroup \catcode‘\"12

\def\x{\endgroup

\def\dq{"}}\x

Here \initiate@active@char, \bbl@activate and
\bbl@deactivate are standard babel functions; we
add \languageshorthands to \extrasczech in or-
der to declare the use of the defined shorthands. The
last three lines are a trick to define \dq as a double
quote with category code 12.

Then we can write (incomplete for brevity):

Table 4: Improved input for Czech or „Česko“

A A
Á Á
B B
C C
"C Č
D D
"D Ď
E E
É É

"E Ě
F F
G G
H H
I I
Í Í
J J
K K
L L

"L Ľ
M M
N N
"N Ň
O O
Ó Ó
P P
Q Q
R R

"R Ř
S S
"S Š
T T
"T Ť
U U
Ú Ú
"U Ů
V V

X X
Y Y
"Y Ý
Z Z
"Z Ž

"‘ „
"’ “

a a
á á
b b
c c
"c č
d d
"d ď
e e
é é

"e ě
f f
g g
h h
i i
í í
j j
k k
l l

"l ľ
m m
n n
"n ň
o o
ó ó
p p
q q
r r

"r ř
s s
"s š
t t
"t ť
u u
ú ú
"u ů
v v

x x
y y
"y ý
z z
"z ž

"< «
"> »

\declare@shorthand{czech}{"c}

{\textormath{\v{c}}{\ddot c}}

\declare@shorthand{czech}{"C}

{\textormath{\v{C}}{\ddot C}}

\declare@shorthand{czech}{"d}

{\textormath{\q{d}}{\ddot d}}

\declare@shorthand{czech}{"D}

{\textormath{\q{D}}{\ddot D}}

...

\declare@shorthand{czech}{"y}

{\textormath{\’{y}}{\ddot y}}

\declare@shorthand{czech}{"Y}

{\textormath{\’{Y}}{\ddot Y}}

\declare@shorthand{czech}{"z}

{\textormath{\v{z}}{\ddot z}}

\declare@shorthand{czech}{"Z}

{\textormath{\v{Z}}{\ddot Z}}

\declare@shorthand{czech}{"‘}

{\textormath{\quotedblbase}

{\mbox{\quotedblbase}}}

\declare@shorthand{czech}{"’}

{\textormath{\textquotedblleft}

{\mbox{\textquotedblleft}}}

\declare@shorthand{czech}{"<}{\flqq}

\declare@shorthand{czech}{">}{\frqq}

The \declare@shorthand command used here
takes three arguments:

1. a language name,

2. a one or two character sequence, the first of
which must have been declared as we did before,

3. what we want to substitute when TEX sees that
character sequence.

252 TUGboat, Volume 28 (2007), No. 2

Table 5: Warning message for missing hyphenation patterns

Package babel Warning: No hyphenation patterns were loaded for
(babel) the language ‘Albanian’
(babel) I will use the patterns loaded for \language=0 instead.

The macro \textormath typesets its first argument
in text mode, the second one in math mode. It
is customary to make a double quote combination
equivalent to the math accent \ddot in order to avoid
strange error messages.

We take the occasion to also introduce abbre-
viations for the inverted double quotes in German
style, common in Czech, and also the guillemets
(\flqq and \frqq are babel jargon for them). The
non-obvious choices are "y and "u for the ‘y with
acute accent’ and ‘u with ring’ (and the correspond-
ing uppercase letters). In Table 4 we find a list of
characters along with their input.

Users can define new shortcuts on the fly using
similar commands. The internal commands are more
efficient and can be restricted to one language:

• \useshorthands{〈chars〉}, for introducing new
shorthand characters.

• \defineshorthand, which behaves like the in-
ternal command \declare@shorthand, but it
doesn’t take a language as an argument, only
the shorthand and its definition.

• \aliasshorthand{〈char1〉}{〈char2〉} for mak-
ing 〈char2〉 a shorthand equivalent to 〈char1〉.

Continuing our example, we could add

\aliasshorthand{"}{|}

to \extrasczech and then input "C as |C. Of course
〈char1〉 must have already been defined as a short-
hand.

Sometimes it is necessary to disable a shorthand
character, because of bad interactions with other
packages, notablyXY-pic. This package does its job by
parsing the source looking for special characters. An
activated character is likely to disturb this parsing,
so users can say

\shorthandoff{〈chars〉}
\shorthandon{〈chars〉}

where 〈chars〉 is the list of characters to disable or
enable. For example:

\shorthandoff{"^}

7 Attributes

Some languages can have attributes, which modify
their behavior. Currently only greek and latin use
this facility. So “Polytoniko Greek” can be chosen
either with

\usepackage[greek]{babel}
\languageattribute{polutoniko}

or simply by specifying polutonikogreek as the
language.

Latin uses the withprosodicmarks attribute,
which makes ^ and = shorthands to typeset accents
in Latin poetry and specifying the vowel quantities
in order to emphasize the meter. It has also the at-
tribute medievallatin for making the lowercase ‘u’
equivalent to the uppercase ‘V’ and using traditional
ligatures.

8 Problems

The choice of hyphenation rules is done at format
creation, based on the file language.dat. This file
(excluding comments) has the following appearance:

english hyphen.tex

=usenglish

=USenglish

=american

usenglishmax ushyphmax.tex

dumylang dumyhyph.tex

nohyphenation zerohyph.tex

basque xu-bahyph.tex

bulgarian xu-bghyphen.tex

...

Its format is due to Sebastian Rahtz. Basically it
lists on each line a language name along with the
hyphenation patterns file; a line can consist also of
an equal sign followed by a language name, meaning
that this name is an alias for the preceding two-
item line. At this level, language names are actually
arbitrary strings. It is babel’s job to associate each
of its supported languages with one of these strings.

A problem comes immediately to our attention:
Albanian is supported by babel, but no hyphenation
patterns for it are available. A user saying

\usepackage[albanian]{babel}

will be saluted with a message from TEX which you
find in Table 5.

A warning of the same type would appear for
any language whose hyphenation patterns were not
enabled at format creation time by the system ad-
ministrator. Some distributions like MiKTEX are
pretty conservative in this regard and enable only
a few languages; many questions in the discussion
forums are about this.

TUGboat, Volume 28 (2007), No. 2 253

In my opinion this is a design error: in fact Al-
banian (or the other non-enabled language) would be
hyphenated using US English rules which are com-
pletely different from those of Albanian. I believe
that no hyphenation is better than wrong hyphen-
ation. Splitting an Italian word like cestino (small
basket) as ces-tino is a bad grammatical error.4

In Albanian the digraph ‘rr’ is considered a
single letter, and must never be divided. And this is
only one of the problems which can arise by allowing
hyphenation with English rules.

All language definition files begin with some-
thing like
\ifx\l@italian\@undefined

\@nopatterns{Italian}%

\adddialect\l@italian0\fi

This could be changed into
\ifx\l@italian\@undefined

\@nopatterns{Italian}%

\ifx\l@nohyphenation\@undefined

\adddialect\l@italian\@cclv

\else

\adddialect\l@italian\l@nohyphenation

\fi

\fi

Thus we would associate a non-enabled language
either to the one with no hyphenation patterns by
definition or to language number 255, which is very
likely undefined. The \@nopatterns error message
can be changed by saying that TEX won’t use any
hyphenation.

Users who can’t enable a language, either be-
cause they are not the system administrator or there
is no hyphenation patterns file, can correct this be-
havior themselves by finding in the log file the warn-
ing similar to that of Table 5; immediately after it
they’ll find a line such as
\l@albanian = a dialect from \language0

The first control sequence is the key to the solution.
It is now sufficient to write, just after loading babel,
\makeatletter

\ifx\l@nohyphenation\@undefined

\chardef\l@albanian=255

\else

\let\l@albanian=\l@nohyphenation

\fi

\makeatother

Since commands like \selectlanguage{albanian}
execute the command
\language\l@albanian

the trick is done.
4 The kind of error which made our teachers in primary

school shriek in horror.

It is important to note that shorthand characters
in a language remain active also in the languages
where they are not used in that way; in those cases
they expand to the character they denote. This is
why they can have unwanted side effects with other
packages.

The reason to keep them active is clear: a lan-
guage changing command can appear in risky places,
for example in the .aux file, as Braams points out
in the babel documentation. The example he makes
is the following: a user could use a shorthand in the
optional argument of a \bibitem command.

However even this doesn’t work. Suppose some-
one writes a document with German as the main
language and parts in English. Assume that in the
bibliography, written in German, we find

\bibitem["UB99]{ub99}
A. "User und E. Benutzer, ‘‘Ein Titel’’.

A reference like \cite{ub99} will come out correctly
in a German context, but not in an English context:
they will print, respectively, [ÜB99] and ["UB99] (or
[”UB99], if OT1 encoding is used). The reference will
consistently be resolved correctly only if the author
writes

\bibitem[\german{"UB99}]{ub99}

(where I’ve used \german simply as a shortcut for
\foreignlanguage{german}).

9 Double loading

The LDF for Hungarian starts as follows:
\@namedef{captions\CurrentOption}{%

\def\prefacename{El\H osz\’o}%

\def\refname{Hivatkoz\’asok}%

...

\@namedef{date\CurrentOption}{%

\def\today{%

\number\year.\nobreakspace

\ifcase\month\or

...

after the check for the existence of the hyphenation
patterns in the format. What does this mean?

This LDF is called if Hungarian is requested
with either the option hungarian or magyar. In the
first case, the fundamental macros will be defined as
\captionshungarian

\datehungarian

\extrashungarian

\noextrashungarian

and with the suffix magyar in the second case. Quite
recently, Péter Szabó has exploited this possibility
with a new implementation of the Hungarian LDF

(http://ctan.org/tex-archive/language/
hungarian/babel).

254 TUGboat, Volume 28 (2007), No. 2

10 Plain TEX users

In principle, it should be possible to use babel with
Plain TEX or formats built upon it like AMS-TEX.
However, this is pretty much undocumented, apart
from the instructions to build a format by running
iniTEX on bplain.tex and \dump. The user inter-
face is not specified.

Recently I wrote a very primitive Plain TEX
package supporting multiple languages. It’s a sub-
stantially simplified version of babel’s machinery and
I will use it to try and illustrate how it works.

First we run iniTEX on a file called hyplain.tex:
\catcode‘\{=1

\catcode‘\}=2

\catcode‘\@=11

\let\orig@input\input

\def\input hyphen {%

\let\input\orig@input \input hyrules }

\orig@input plain

D. E. Knuth has decreed that plain.tex cannot be
modified except for preloaded fonts. But we can al-
ways use some TEX trick; since the file is immutable,
it will contain the line ‘\input hyphen’; at that
point we restore the original meaning of \input and
input hyrules.tex instead of hyphen.tex.

The file hyrules.tex defines the interface com-
mands. The most important is \selectlanguage
which, unlike that of babel, requires two arguments:
a two letter ISO language code and a two letter coun-
try code. For example,
\selectlanguage{en}{US}

\selectlanguage{it}{IT}

\selectlanguage{de}{AT}

would switch, respectively, to American English, to
the Italian of Italy5 and to the German of Austria.

Users can also define personal language selection
commands: define command \italiano with

\addalias{\italiano}{it}{IT}

to make it equivalent to \selectlanguage{it}{IT}.
Internally, this command calls \it_IT and similarly
for other combinations. If a language combination is
not defined in the user modifiable file hylang.tex,
a fallback language \zz_ZZ, without hyphenation
patterns, is selected and a warning message is issued.

Two token lists are associated to each language,
similar to the \extras〈lang〉 and \noextras〈lang〉
of babel and an ‘undo’ token list is maintained. Each
time a language is selected, the following happens:

1. what is in the ‘undo’ token list is executed and
the list is cleared (locally),

5 Italian is an official language also in Switzerland, where

different typography conventions could be used.

2. the parameter \language is given the appropri-
ate value,

3. the extras for the chosen language are executed,
4. the noextras are put in the ‘undo’ token list.

Since assignments to the ‘undo’ token list are lo-
cal, this list will always be loaded with the correct
commands.

The ‘extras’ list for a language ought to set the
left and right hyphenation minima; this setting has
no counterpart in the ‘noextras’ list. Other things,
instead, must be set in both places: for example, the
\lccode setting of the apostrophe for Italian.

Users can modify hylang.tex, adding or delet-
ing languages. It is recommended not to change the
first one, so that we are sure that \language zero
refers always to American English, as in Plain TEX.

The commands are
\definelanguage{xx}{YY}{xxhyph}

\refinelanguage{xx}{YY}

{<something>}{<something>}

\definedialect{yy}{YY}{xx}{XX}

\refinedialect{yy}{YY}

{<something>}{<something>}

where xx is the two letter code of a language (I
suggest ‘nde’ for ‘New Orthography German’) and
XX is the two letter country code. Actually these
codes could be arbitrary strings, but I believe that
we (and babel) would benefit from standardization.

For example, one could write
\definelanguage{fr}{FR}{frhyph}

\definedialect{fr}{CA}{fr}{FR}

to set up for Canadian French. One could use the
nonexistent country code ‘ZZ’ for an unspecified coun-
try: this would be the case for Esperanto.

The macro \refinelanguage refers to the lan-
guage by its codes; then in the third argument one
puts the ‘extras’ and in the fourth the ‘noextras’.
This command can be given as many times as one
desires, since new lists are appended to the existing
ones. The macro \refinedialect is the same as
\refinelanguage. Dialects do not inherit extras:
the interface is primitive, just the way Plain TEX
devotees are used to.

For example, my settings for Italian are these:
\definelanguage{it}{IT}{ithyph}

\refinelanguage{it}{IT}

{\lccode‘\’=‘\’}{\lccode‘\’=0 }

11 Advanced babel programming

babel works in a similar way to HyPlain. It has of
course many more features: for example, functions
to save the meaning of commands or the value of
variables. In the LDF for Italian we can see

TUGboat, Volume 28 (2007), No. 2 255

\addto\extrasitalian{%

\babel@savevariable\clubpenalty

\babel@savevariable\widowpenalty

\babel@savevariable\finalhyphendemerits

\clubpenalty3000 \widowpenalty3000

\finalhyphendemerits50000000 }%

When the language changes from Italian to another
one, the values of the listed parameters6 are restored
and possibly changed again by the new language:
babel uses the ‘noextras’ token list and its internal
mechanism to restore a clean setting and then it
applies the ‘extras’ for the new language. Let’s see
how it’s done:
\def\babel@savevariable#1{\begingroup

\toks@\expandafter{\originalTeX #1=}%

\edef\x{\endgroup

\def\noexpand\originalTeX{%

\the\toks@ \the#1\relax}}%

\x}

Let the variable name be \foo. The macro appends
to the replacement text of \originalTeX (which
corresponds to the ‘undo’ list in HyPlain) the tokens
\foo=. This is done inside a group in order to be
sure not to clobber the value of \toks@. The \edef
is done when the value of \toks@ is what has just
been set; after that token list, the present value of
\foo is put. Then \x is executed, which closes the
group and redefines \originalTeX.

A very similar trick is performed when we say
\babel@save\baz, where \baz is a command. First
\baz is made equivalent to a command of the form
\babel@1234 (where 1234 stands for the actual value
of a counter reserved by babel). The same thing
happens as before, so \originalTeX’s replacement
text will end with

\let\baz=\babel@1234

(there is no problem in interpreting that strange
token, because it has already entered the scanning
mechanism). Finally, the counter is stepped, provid-
ing a fresh number for the next \babel@save.

We can apply this method to modify the behav-
ior of a command without forcing users to change
their input. A silly example is the following:
\makeatletter

\addto\extrasitalian{%

\babel@save\emph\let\emph\textbf}

\makeatother

In this way, typing \emph{ciao} in an Italian
context would print the word in bold face, while
keeping the abstract nature of the command. This
could be obtained also by

6 The setting of \clubpenalty is wrong, it should refer to

\@clubpenalty. A bug report has been mailed.

\let\origemph\emph

\renewcommand{\emph}{%

\iflanguage{italian}%

{\textbf}{\origemph}}

but the method with \babel@save is of course more
robust and does not require a long chain of nested
\iflanguage calls if we need different effects for
several languages.

I’ve said before that \declare@shorthand takes
as the first argument a language name, but this is
not strictly true. There is the concept of ‘shorthand
group’. In the present version of babel there are
three levels: (1) user, (2) language, and (3) system.
The package checks in that order when it is resolving
a shorthand.

Let’s make an example: German uses the double
quote as a shorthand character, for instance "A to get
‘Ä’. It is not necessary to define every combination
"〈char〉, because there is already a definition of the
active double quote at the system level (it expands
to a double quote, of course).

The default system level shorthands are ", ’,
‘, and ~. When an LDF introduces a new short-
hand character, it ought to define its behavior at the
system level. For example the LDF for Esperanto
says

\declare@shorthand{system}{^}{%
\csname normal@char\string^\endcsname}

because it uses ^ for shorthands. The same is true
of frenchb.ldf, where there is

\declare@shorthand{system}{:}{\string:}

along with similar lines for !, ? and ;. If a user says
\defineshorthand{"A}{\hat{A}}, this shorthand
would take precedence over a possible definition of
"A by the LDF. If the LDF defines a " shorthand,
this takes precedence over the system one.

With the development of input encoding sup-
port, especially Unicode, for TEX these devices are
less useful, because it is possible to input directly any
character. On the other hand, other babel features
remain invaluable.

The most recent versions of pdfTEX allow a
different treatment for the typographic conventions
of French, for example, making it possible to reduce
the number of active characters. Some support for
this is available through the microtype package.

⋄ Enrico Gregorio

Dipartimento di Informatica, Settore di

Matematica

Università di Verona, Italy

Enrico dot Gregorio (at) univr dot it

http://profs.sci.univr.it/~gregorio

256 TUGboat, Volume 28 (2007), No. 2

Macros

Writing numbers in words in TEX

Edward M. Reingold

We present TEX macros to write integers, even ex-
tremely large integers, in words according to the
American English nomenclature [2, pp. 12 and 22–
24], [3, p. 1549]; the method here is easily adapted
to the British English nomenclature, or that of other
languages. The imaginative nomenclatures of [1, pp.
14–15] or [4, pp. 311–312] are also easy to accom-
modate with the ideas presented here. Although
macros for writing numbers in words are already
available on CTAN, none of them has the generality
of those presented here. Our approach, which covers
the full range of American English, (−1066, 1066), is
based on [6, sec. 8.1]; [5, p. 6] has a similar method.

We want to be able to capitalize the first word
produced, as well as insert spaces, commas, and hy-
phens between words appropriately. Because the
words produced are written by various macros and
at various levels of recursion, we centralize the pro-
duction of text by calling a macro \@String that
does the actual insertion of the word into the out-
put. We use global flags to indicate whether the
next word produced will be the first word (which
should not be preceded by a space and which may
need to be capitalized),

\def\@firstwordtrue{%

\global\let\if@firstword\iftrue}

\def\@firstwordfalse{%

\global\let\if@firstword\iffalse}

and similar global variables to indicate whether a
capital letter is needed,

\def\@capitalfirstwordtrue{%

\global\let\if@capitalfirstword\iftrue}

\def\@capitalfirstwordfalse{%

\global\let\if@capitalfirstword\iffalse}

\@capitalfirstwordfalse

or whether a hyphen or comma is needed,

\def\@needhyphentrue{%

\global\let\if@needhyphen\iftrue}

\def\@needhyphenfalse{%

\global\let\if@needhyphen\iffalse}

\def\@needcommatrue{%

\global\let\if@needcomma\iftrue}

\def\@needcommafalse{%

\global\let\if@needcomma\iffalse}

\@needcommafalse

The macro that inserts a word into the output then
is

\def\@String#1{%

\if@firstword

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\if@capitalfirstword

\Capitalize{#1}%

\@capitalfirstwordfalse

\else

{#1}%

\fi}%

{\if@needhyphen

{-#1}%

\else

\if@needcomma

{, #1}%

\@needcommafalse

\else

{ #1}%

\fi

\fi}%

\@firstwordfalse}

where capitalization is done by

\def\Capitalize#1{%

\edef\@tempa{#1}%

\expandafter\@capitalize

\expandafter{\@tempa}\@EndOfString}

\def\@capitalize#1{%

\ifx\@EndOfString#1%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{}{\@@capitalize#1}}

\def\@@capitalize#1#2\@EndOfString{%

\uppercase{#1}#2}

Numbers less than twenty are idiosyncratic, so
we handle them with a case statement:

\def\Small@Number#1{% Less than 20

\relax

\ifcase#1

\@String{zero}\or

\@String{one}\or

\@String{two}\or

\@String{three}\or

\@String{four}\or

\@String{five}\or

\@String{six}\or

\@String{seven}\or

\@String{eight}\or

\@String{nine}\or

\@String{ten}\or

\@String{eleven}\or

\@String{twelve}\or

\@String{thirteen}\or

\@String{fourteen}\or

\@String{fifteen}\or

\@String{sixteen}\or

\@String{seventeen}\or

\@String{eighteen}\or

\@String{nineteen}%

TUGboat, Volume 28 (2007), No. 2 257

\else

\errmessage{Small number out of range}

\fi}

We need some scratch counters to do our work:

\newcount\@number

\newcount\@@number

\newcount\@@@number

\newcount\@millenary

We use \Medium@Number to handle numbers smaller
than 1000:

\def\Medium@Number#1{% At most three digits

\@number=#1\relax

\ifnum\@number>99

\@@number=\@number

\divide\@@number by 100

\Small@Number{\the\@@number}%

\@String{hundred}%

\multiply\@@number by 100

\advance\@number by -\@@number

\fi

% \@number is now \number mod 100

\ifnum\@number>19

\@@number=\@number

\divide\@@number by 10

% \@@number is now the tens digit

\@Decade{\the\@@number}%

\multiply\@@number by 10

\advance\@number by -\@@number

% \@number is now the ones digit

\@needhyphentrue

\fi

% \@number is now 19 or less

\ifnum\@number>0

\Small@Number{\the\@number}%

\fi

\@needhyphenfalse}

where the “decade” is written by

\def\@Decade#1{%

\ifcase#1

\errmessage{Decade out of range}\or

\errmessage{Decade out of range}\or

\@String{twenty}\or \@String{thirty}\or

\@String{forty}\or \@String{fifty}\or

\@String{sixty}\or \@String{seventy}\or

\@String{eighty}\or \@String{ninety}%

\else

\errmessage{Decade out of range}

\fi}

Some usage requires the word “and” after the word
“hundred”, especially for the rightmost three dig-
its of a number (for example, “one hundred and
twenty”); this would require another global variable
and a slight modification of \Medium@Number.

Numbers with four or more digits are handled
recursively. To express n × 1000i in words, we

express ⌊n/1000⌋ × 1000i+1 in words,

express n mod 1000 in words, and
write the name of 1000i in words.

The last step, writing the name of 1000i, is done
with

\def\@Millenary#1{%

\ifcase#1\or

\@String{thousand}\or

\@String{million}\or

\@String{billion}\or

\@String{trillion}\or

\@String{quadrillion}\or

\@String{quintillion}\or

\@String{sextillion}\or

\@String{septillion}\or

\@String{octillion}\or

\@String{nonillion}\or

\@String{decillion}\or

\@String{undecillion}\or

\@String{duodecillion}\or

\@String{tredecillion}\or

\@String{quattuordecillion}\or

\@String{quindecillion}\or

\@String{sexdecillion}\or

\@String{septendecillion}\or

\@String{octodecillion}\or

\@String{novemdecillion}\or

\@String{vigintillion}%

\else

\errmessage{Number too large for words}

\fi

\ifnum#1>0 \@needcommatrue\fi}

A “vigintillion” (1063) is as high as American nomen-
clature goes; this is far larger than a TEX counter
can go, but we are aiming high! With \@Millenary

we translate our recursive structure into

\def\Big@Number#1#2{%

\@@number=#2\relax % number to be written...

\@millenary=#1\relax % times this power of 1000

\ifnum\@@number>0

\@@@number=\@@number

\divide\@@@number by 1000

\begingroup% Preserve \@millenary value

\advance\@millenary by 1

\Big@Number{\the\@millenary}%

{\the\@@@number}%

\endgroup

\multiply\@@@number by 1000

\advance\@@number by -\@@@number

% \@@number is now #2 mod 1000

\ifnum\@@number>0

\Medium@Number{\the\@@number}%

\@Millenary{#1}%

\fi

\fi}

Calling \Big@Number produces #2 × 1000#1 in
words, so the initial call to \Big@Number should have

258 TUGboat, Volume 28 (2007), No. 2

a first parameter of zero. Thus we write the public
macros

\def\inwords#1{%

\edef\@tempa{#1}%

\expandafter\@inwords\expandafter{\@tempa}}

\def\Inwords#1{%

\@capitalfirstwordtrue

\edef\@tempa{#1}%

\expandafter\@inwords\expandafter{\@tempa}%

\@capitalfirstwordfalse}

where

\def\@inwords#1{%

\@firstwordtrue

\@needcommafalse

\@needhyphenfalse

\ifnum#1<0

\@String{minus}%

\@number=-#1\relax

\Big@Number{0}{\the\@number}%

\else\ifnum#1=0

\Small@Number{0}%

\else%

\Big@Number{0}{#1}%

\fi\fi}

For example, \inwords{-1234567890} produces

minus one billion, two hundred thirty-four
million, five hundred sixty-seven thousand,
eight hundred ninety

and \Inwords{31415926} produces

Thirty-one million, four hundred fifteen thou-
sand, nine hundred twenty-six.

The size limitation of TEX count registers, 231−
1, means that we get an error in trying to write
8018018851 in words (Conway and Guy [1, p. 15]
call this “Knuth’s number”, the first prime number
in the alphabetic ordering of the natural numbers [5,
p. 4]). To write larger numbers in words we need to
use the recursive structure of \Big@Number without
resorting to count registers. This means that we
have to trap a minus sign and ignore leading zeros,
before we can split the number into the rightmost
three digits and everything to their left. Hence we
redefine

\def\Inwords#1{%

\@capitalfirstwordtrue

\inwords{#1}%

\@capitalfirstwordfalse}

\def\inwords#1{%

\@firstwordtrue

\@needhyphenfalse

\Trap@Minus{#1}}%

where

\def\Trap@Minus#1{%

\edef\@tempa{#1}%

\expandafter\@Trap@Minus%

\expandafter{\@tempa}\@EndOfString}

\def\@Trap@Minus#1{%

\ifx\@EndOfString#1%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{}{\@@Trap@Minus#1}}

\def\@@Trap@Minus#1#2{%

\ifx\@EndOfString#2%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\ifx#1-%

\errmessage{Orphan minus sign}%

\else

\Small@Number{#1}\fi}%

{\@@@Trap@Minus#1#2}}

\def\@@@Trap@Minus#1#2\@EndOfString{%

\ifx#1-%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\@String{minus}%

\@TrapLeadingZeros{#2\@EndOfString}}%

{\@TrapLeadingZeros{#1#2\@EndOfString}}}

traps a leading minus sign and then traps leading
zeros with the similar

\def\@TrapLeadingZeros#1{%

\ifx\@EndOfString#1%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{}{\@@TrapLeadingZeros#1}}

\def\@@TrapLeadingZeros#1#2{%

\ifx\@EndOfString#2%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\Small@Number{#1}}%

{\@@@TrapLeadingZeros#1#2}}

\def\@@@TrapLeadingZeros#1#2\@EndOfString{%

\ifx0#1%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\@TrapLeadingZeros{#2\@EndOfString}}%

{\@numberinwords{0}{#1#2\@EndOfString}}}

before calling a version of \Big@Number that avoids
the use of count registers by splitting a number into
the rightmost three digits and everything else:

\def\@numberinwords#1#2{%

% #1 = power of 1000

% #2 = the next token, either

% a digit or \@EndOfString

\ifx\@EndOfString#2%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{}{\@@numberinwords{#1}{}#2}}

\def\@@numberinwords#1#2#3#4{%

% #1 = power of 1000

% #2 = string digits so far,

% excluding the final one, #3

TUGboat, Volume 28 (2007), No. 2 259

% #3 = the next digit

% #4 = the next token, either another

% digit or \@EndOfString

\ifx\@EndOfString#4%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\Small@Number{#3}\@Millenary{#1}#2}%

{\@@@numberinwords{#1}{#2}#3#4}}

\def\@@@numberinwords#1#2#3#4#5{%

% #1 = power of 1000

% #2 = string digits so far,

% excluding the final two, #3#4

% #3#4 = the final two digits so far

% #5 = the next token, either another

% digit or \@EndOfString

\ifx\@EndOfString#5%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\Medium@Number{#3#4}\@Millenary{#1}#2}%

{\@@@@numberinwords{#1}{#2}#3#4#5}}

\def\@@@@numberinwords#1#2#3#4#5#6{%

% #1 = power of 1000

% #2 = string digits so far,

% excluding the final three, #3#4#5

% #3#4#5 = the final three digits so far

% #6 = the next token, either another

% digit or \@EndOfString

\ifx\@EndOfString#6%

\expandafter\@firstoftwo\else

\expandafter\@secondoftwo\fi

{\@millenary=#1\relax

\advance\@millenary by 1

\@numberinwords{\the\@millenary}

{#2\@EndOfString}%

\advance\@millenary by -1

\ifnum#3#4#5>0

\Medium@Number{#3#4#5}%

\@Millenary{#1}%

\fi}%

{\@@@@numberinwords{#1}{#2#3}#4#5#6}}

Given this machinery, we can write Knuth’s
number using \inwords{8018018851}, eight billion,
eighteen million, eighteen thousand, eight hundred
fifty-one, and 2×1063+2×1036+2×1012+2293, the
last prime in alphabetical order [5, p. 12], two vig-
intillion, two undecillion, two trillion, two thousand,
two hundred ninety-three. Or,

2219 = 842498333348457493583344221469363

458551160763204392890034487820288,

which in words is

Eight hundred forty-two vigintillion, four
hundred ninety-eight novemdecillion,
three hundred thirty-three octodecillion,
three hundred forty-eight septendecillion,
four hundred fifty-seven sexdecillion, four

hundred ninety-three quindecillion, five
hundred eighty-three quattuordecillion,
three hundred forty-four tredecillion, two
hundred twenty-one duodecillion, four
hundred sixty-nine undecillion, three
hundred sixty-three decillion, four hundred
fifty-eight nonillion, five hundred fifty-one
octillion, one hundred sixty septillion,
seven hundred sixty-three sextillion, two
hundred four quintillion, three hundred
ninety-two quadrillion, eight hundred ninety
trillion, thirty-four billion, four hundred
eighty-seven million, eight hundred twenty
thousand, two hundred eighty-eight.

A final note: to number pages in words in LATEX
we need to \protect the call, as in:

\renewcommand*{\thepage}

{Page \protect\inwords{\c@page}}

Acknowledgments The author is grateful to Na-
chum Dershowitz for pointing out various errors in
the original macros, and to both him and Peter Wil-
son for suggesting the inclusion of appropriate hy-
phens and commas.

References

[1] John H. Conway and Richard Guy. The Book of
Numbers. Springer-Verlag, New York, 1996.

[2] Philip J. Davis. The Lore of Large Numbers. Yale
University, New Haven, CT, 1961.

[3] Philip B. Gove. Webster’s Third New Interna-
tional Dictionary of the English Language. Mer-
riam, Springfield, MA, 1961.

[4] Donald E. Knuth. Supernatural numbers. In
David A. Klarner, editor, The Mathematical
Gardner, pages 310–325. Wadsworth, Boston,
1981.

[5] Donald E. Knuth and Allan A. Miller. A pro-
gramming and problem-solving seminar. Tech-
nical Report STAN-CS-81-863, Department of
Computer Science, Stanford University, Stan-
ford, CA, June 1981.

[6] Edward M. Reingold and Ruth N. Reingold.
PascAlgorithms. Scott, Foresman and Company,
Glenview, Illinois, 1988.

⋄ Edward M. Reingold
Department of Computer Science
Illinois Institute of Technology
10 West 31st Street
Chicago, Illinois 60616-2987
USA
reingold (at) iit dot edu

260 TUGboat, Volume 28 (2007), No. 2

ArsTEXnica

Contents of issues 2–3 (2006–2007)

Editor’s note: ArsTEXnica is the journal of guIt,
the Italian TEX user group. The journal’s web site
is http://www.guit.sssup.it/arstexnica.

ArsTEXnica #2, October 2006

Massimiliano Dominici and Maurizio W.

Himmelmann, Editoriale [From the editor];
pp. 3–4

A short note about the third meeting of the
Italian TEX User Group (guIt).

Enrico Gregorio, Codici di categoria [Category
codes]; pp. 5–14

TEX works with token lists formed when it reads
characters from a .tex document. Understanding
the tokenization procedure is important if one wants
to modify the usual behavior of TEX. In this respect
the notion of category code attached to a character
is fundamental.

Chiefly interesting are the active characters. I
will give an application of them, which exploits some
of the new features of ε-TEX.

[Translation by the author]

Gustavo Cevolani, Libretti in LATEX [Booklets
in LATEX]; pp. 15–30

The first part of the article shows the main
methods LATEX has to print brochures, booklets and
real books. The second part presents some code ex-
amples and the related results, in addition to con-
sidering some alternative methods.

[Translation by G. Pignalberi]

Lapo Mori, Tabelle su LATEX 2ε: pacchetti e
metodi da utilizzare [Tables in LATEX 2ε: packages
and methods to be used]; pp. 31–47

This article aims at providing the background
to create and correctly format tables using LATEX 2ε.
I’ll aim for this objective by analyzing the usual
problems dealt with while creating tables and the
proposed solutions; I will mainly focus on which
package is better to use in a given circumstance. I
will present examples for every case and, when nec-
essary, I will redirect you to the package’s manuals.

[Translation by G. Pignalberi]

Kaveh Bazargan and CV Radhakrishnan,
Removing vertical stretch — mimicking traditional
typesetting with TEX; pp. 48–53

(Published in TUGboat 28:1.)

Jean-Michel Hufflen, mlBibTEX’s
architecture; pp. 54–59

This paper descibes the architecture of mlBib-
TEX, our reimplementation of BibTEX focusing on
multilingual features. Making precise the organisa-
tion and modules of this architecture allows us to
show how mlBibTEX works and focus on the differ-
ences between mlBibTEX and BibTEX from a con-
ceptual point of view. We also explain why this
implementation using the Scheme programming lan-
guage allows users to scrutinise the result of inter-
mediate steps.

Onofrio de Bari, GNU Emacs e AUCTEX per
LATEX [GNU Emacs and AUCTEX for LATEX];
pp. 60–64

This article aims at collecting information and
tools useful to use the GNU Emacs editor along with
the AUCTEX extension to edit LATEX documents,
presenting instructions and advice never translated
into Italian, although available in other languages.

First I introduce the GNU Emacs editor, its
logic structure and the instructions to give it to
make it easy to use with TEX and LATEX; then I
will do a detailed analysis of the AUCTEX and the
preview-latex software modules, useful when editing
source code and previewing the document.

[Translation by G. Pignalberi]

Salvatore Palma, Test interattivi di matematica
e fisica on-line: il LATEX come strumento di
sviluppo [On-line mathematics and physics
interactive tests: LATEX as development tool];
pp. 65–70

During the school year 2005/06, on my school
site, I started building a project aimed at giving
my students mathematics and physics supplemen-
tary lessons and material. In my works I mainly use
University of Akron’s Prof. D.P. Story’s AcroTEX
and Prof. C.V. Radhakrishnan’s pdfscreen.

[Translation by G. Pignalberi]

Jerónimo Leal, Esperienze didattiche con LATEX:
un corso di edizioni critiche [Didactic experiences
with LATEX: a critical editions course]; pp. 71–74

This article gives some personal experiences on
the organization of a LATEX course aimed at print-
ing critical editions, in two parts. First, the prepa-
ration: choosing the distribution, choosing the edi-
tor, preparing the lessons, the examples and the ex-
ercises, advertising and subscribing; then, the real
course: sending the lessons, installing the package,
verifying the understanding and analyzing the re-
sults; finally, the production: sending the lessons,
installing it, learning test and results analysis.

[Translation by G. Pignalberi]

TUGboat, Volume 28 (2007), No. 2 261

Massimiliano Dominici and Pier Daniele

Napolitani, Edizione con LATEX delle opere di
Francesco Maurolico [A LATEX edition of the works
of Francesco Maurolico]; pp. 75–82

The Maurolico Project was started some years
ago to publish, both in print and as electronic docu-
ments, the critical edition of Francesco Maurolico’s
(1494–1575) work. Within the project, a system
called MAURO-TEX was built; it is able to obtain
HTML output, intended for the publication on the
Internet, and standard LATEX output, intended as an
intermediate format to PDF and PostScript, starting
from a LATEX-like mark-up language.

MAURO-TEX is undergoing a complete revision.
We are moving the section related to text coding to
XML; in addition, as soon as we started printing the
work, we got feedback that helped us thoroughly
revise the macros LATEX uses to generate the PDF

and PostScript output.

Roberta Tucci, L’edizione critica di un’opera
matematica: MAURO-TEX e METAPOST

[Mathematical works’ critical editions:
MAURO-TEX and METAPOST]; pp. 83–87

This article is in three parts: the first collects
some philological problems that usually arise when
starting a mathematical work’s critical edition; the
second part describes the MAURO-TEX and META-
POST tools chosen to edit the critical edition; the
third and last part briefly shows the result obtained
using the mentioned tools.

[Translation by G. Pignalberi]

ArsTEXnica #3, April 2007

Massimiliano Dominici, Editoriale [From the
editor]; p. 3

A short overview of the present issue.

Frank Mittelbach, Gianluca Pignalberi

and David Walden, Intervista a Frank
Mittelbach [Interview with Frank Mittelbach];
pp. 4–12

Both the Free Software Magazine (FSM, http:
//www.freesoftwaremagazine.com) and the TEX
Users Group (TUG, http://www.tug.org/)) both
like to publish interviews. Recently, Gianluca Pig-
nalberi of FSM and Dave Walden of TUG both ap-
proached Frank Mittelbach about interviewing him.
Rather than doing two separate interviews, Mittel-
bach, Pignalberi, and Walden decided on a com-
bined interview in keeping with the mutual interests
already shared by FSM and TUG.

Claudio Beccari, LATEX e la cesura delle parole
in fin di riga [LATEX and word hyphenation at line
breaks]; pp. 13–20

This tutorial explains how TEX (the program)
typesets paragraphs, possibly by hyphenating words
at line breaks.

Specifically, this tutorial should explain LATEX’s
(actually TEX’s) strange behavior in certain circum-
stances when it apparently refuses to correctly break
lines. If there is some error, unfortunately this is al-
ways a human one, and it is due to an insufficient
understanding of TEX’s procedures and algorithms.

Lapo Filippo Mori, LATEXpedia: il futuro della
documentazione su LATEX [LATEXpedia: the future
of LATEX documentation]; pp. 21—26

(Published in The PracTEX Journal 2007-1.)

Lapo Filippo Mori, Scrivere la tesi di laurea
con LATEX 2ε [Writing a thesis with LATEX 2ε];
pp. 27—45
The goal of this article is to provide the tools to write
a thesis with LATEX 2ε. The article analyzes the
problems that are usually encountered while writ-
ing a thesis and their solution; a particular emphasis
is on the packages to use in each case. The topics
are not examined in depth and, when necessary, the
reader is referred to specific literature or to the man-
ual of the suggested packages.

Salvatore Schirone, La tipografia nel taschino.
Presentazione del sistema OPS4guIt [Typography in
the pocket: Overview of OPS4guIt]; pp. 46–51

OPS4guIt is an open source portable USB LATEX
system for Windows (9x, ME, XP), freely available
on the Internet. OPS4guIt provides a fully working
LATEX system always at hand, so that one can com-
pile one’s own .tex source files on any computer. In
the present article I will introduce OPS4guIt for the
first time, and I will describe its structure and how
to install and customize it.

[Translations by the authors.]

Les Cahiers GUTenberg

Contents of double issue 46–47 (April 2006)

Editor’s note: Les Cahiers GUTenberg is the jour-
nal of GUT, the French TEX user group. Their web
site is http://www.gutenberg.eu.org.

Issue 46–47 reprints a number of articles from
the EuroTEX 2003 (Brest) conference. This proceed-
ings was published as TUGboat 24:3, and is avail-
able online at http://tug.org/TUGboat/Articles/
tb24-3.

262 TUGboat, Volume 28 (2007), No. 2

Die TEXnische Komödie

Contents of issues 2006/1–2007/1

Editor’s note: Die TEXnische Komödie is the jour-
nal of DANTE e.V., the German-language TEX user
group. The journal’s web site is
http://www.dante.de/dante/DTK/.

2006/1

Interview with Donald E. Knuth, Freude,
die ein Maler empfindet [The joy a painter feels];
pp. 6–10

Donald Knuth has written more than a dozen
books as well as the TEX typesetting system. He
attained cult status among computer scientists with
his multivolume magnum opus The Art of Computer

Programming. Knuth, born in 1938 in Milwaukee,
Wisconsin, started the book even before he finished
studying mathematics at the California Institute of
Technology.

The work was ranked by the science journal
The American Scientist among the twelve most im-
portant scientific publications of the 20th century—
yet it remains unfinished. Technology Review spoke
with Knuth on the occasion of an honorary doctor-
ate from ETH Zürich.

Markus Kohm, Farbig hinterlegte Kopfzeilen mit
KOMA-Script [Colored backgrounds in headers
with KOMA-Script]; pp. 11–18

When, in July 2005, scrpage2 acquired the
ability to color lines in headers and footers, the next
logical question was, “Can I also color the entire
background of the header?” Although the author
of this article thinks that lines and colors in head-
ers give them too much weight, the answer is, “Of
course.”

Ulrike Fischer, Trennhilfen [Hyphenation help];
pp. 19–24

In the documentation of babel.sty -" is ex-
plained as “an explicit hyphen sign”. This is wrong:
-" normally inserts no hyphen. This error inspired
me to take a more thorough look at the word divi-
sion and hyphenation commands.

Herbert Möller, Die GaPFilL-Methode zur
Erzeugung von LATEX-picture-Umgebungen [The
GaPFilL method for creating LATEX picture
environments]; pp. 25–43

Drawing programs or geometry software and
Perl filter programs are used to conveniently cre-
ate even complicated figures with the LATEX picture
environment. The filter programs parse PostScript
files and generate LATEX code ready for use. The
method will be explained via two filter programs for

the geometry software Cabrigéomètre II. The first
program requires only the ebezier package, and
thus the output is driver independent. The second
filter also supports the new package pict2e.

2006/2

The EuroTEX 2005 proceedings (previously sent to
TUG members for 2006).

2006/3

Ulrich Schwarz, Was hinten herauskommt
zählt: Counter Aliasing in LATEX [The result is
what counts: Counter aliasing in LATEX]; pp. 6–11

For certain purposes it can be interesting to
have several counters that have different name and
thename representations, but share a counter value.
We investigate this using as examples hyperref and
the theorem environment.

Michael Niedermair and Markus Kohm,
Marginalien, da wo man sie haben will! [Marginal
notes where you want them]; pp. 12–17

In mailing lists and newsgroups one often reads
of problems that marginal notes don’t appear where
one wants them, or that they have pushed footnotes
to another page, or that marginal notes are needed
where they can’t be placed. The marginnote pack-
age is here to help.

2006/4

Stephen G. Hartke, Eine Übersicht freier
Mathematikfonts für TEX und LATEX [An overview
of free mathematical fonts for TEX and LATEX];
pp. 17–36

(Published in The PracTEX Journal 2006-1.)

Jan Weichold, Typographische Inszenierungen
mit Textstrichen [Typographic productions with
dashes]; pp. 37–39

Typography — including LATEX —recognizes a
variety of dashes. The problem of hyphens and hy-
phenation has already been discussed in Die TEX-

nische Komödie. But which dash should be used
for which case? A question that is unfortunately
incorrectly answered in many cases.

Jürgen Fenn, Online-Bibliographien nutzen
mit BibTEX [Using online bibliographies with
BibTEX]; pp. 40–46

This article introduces the use of online bibli-
ographies that offer data in BibTEX format. Several
solutions are presented, among them the mab2bib

converter, with which you can convert databases
from MAB format to BibTEX.

TUGboat, Volume 28 (2007), No. 2 263

Rolf Niepraschk, Tipps und Tricks: Vom
LATEX-Dokument zum einfachen Text-format [Tips
and Tricks: From a LATEX document to a simple
text format]; pp. 47–49

In connection with documenting a LATEX pack-
age, I wanted to have a list of previous corrections
(\changes entries). For fast orientation, I wanted
this as a file in simple text format in which format-
ting of the original was kept as much as possible. In
the following, I show one way to do this.

Rolf Niepraschk, Tabulatoren ganz einfach
[Tabbing made easy]; pp. 50–51

LATEX, with the tabbing environment, makes
tabbing possible in a manner similar to that of a
typewriter, but the syntax conflicts with the accent
macros. A package tabto, by Donald Arseneau, pro-
vides an alternative.

2007/1

Georg Verweyen, Von Gänsefüßen,
Trottellummen und Doppelmöwchen [About
Gänsefüßen, Trottellummen and Doppelmöwchen];
pp. 7–12

From handwritten marks, printing has evolved
various forms of quotation marks. The naming as
well as the use of these symbols is guided by various
conventions. This article tries to throw some light
on a gaggle of geese, sea gulls, and guillemots.

[Ed. note: the terms for quotation marks in the

title all have to do with birds; literally, “goosefeet”,

“guillemots”, and “double sea gulls”.]

Hans Hagen, Jerzy B. Ludwichowski, and
Volker RW Schaa, The New Font Project: TEX
Gyre; pp. 12–20

(Published in TUGboat 27:2.)

Canon Deutschland, Digitale Druckvorstufe
[Digital prepress]; pp. 21–39

Just about 20 years ago, more precisely in the
year 1984, the page description language PostScript
began a complete transformation of the production
processes in prepress. All areas have been affected,
beginning with typesetting, through layout, graph-
ics, photo manipulation, to print preparation, in-
cluding imposition, makeup, and exposure. Today
all production steps run digitally.

Lars Madsen, Vermeidet eqnarray! [Avoid
eqnarray!]; pp. 40–49

(Published in The PracTEX Journal 2006-4.)

[Translations by Steve Peter.]

The PracTEX Journal 2006-1–2007-2

The PracTEX Journal is an online publication of the
TEX Users Group. Its web site is http://tug.org/

pracjourn. All articles are available there.

The PracTEX Journal 2006-1, 2006-02-18

(Theme issue on fonts.)

Lance Carnes, From the editor

From the readers, Feedback

Robin Laakso, Invitation to PracTEX’06

Tamye Riggs, Typographic opportunities
This introductory article describes the current

market in digital type, offers some insights on the
use of different typefaces, and offers some tips for ev-
eryone interested in typefaces, both novice and expe-
rienced users. Several on-line typeface resources are
given, including type foundries, font development
tools, and typographic organizations, conferences,
and discussion groups.

Walter Schmidt, Font selection in LATEX
(Published in this issue.)

Gerben C. Th. Wierda, Thomas A. Schmitz

and Adam T. Lindsay, Mac OS X fonts in pdfTEX
Installing a new font with your TEX installation

can be a challenging task. This article documents an
attempt to provide an automated solution for users
running TEX on Apple’s OS X. Using the fonts de-
scribed here will only be possible for those who run
this operating system; the way of making these fonts
work with TEX should be of interest for all users.
The article’s level can be described as intermediate
to advanced; it assumes some previous knowledge of
TEX and fonts.

Mike Spivak, The MathTime Professional Fonts:
Or, How I Wasted the Last Twenty Years of My
Life

I am a computer innocent who, through a se-
ries of historical accidents, ended up writing the
amstex macro package, and a font design innocent
who, through desperation for fonts that I was willing
to use for my Calculus and Differential Geometry

books, ended up designing the MathTime Profes-
sional fonts. It is a sobering reflection that these ac-
tivities seem to have occupied a significant amount
of my time during the last 20–25 years.

Will Robertson, An exploration of the Latin
Modern fonts
(An updated version appears in this issue.)

264 TUGboat, Volume 28 (2007), No. 2

Helmer Aslaksen, Chinese TEX: Using the
CJK LATEX package, Unicode TrueType fonts and
pdfTEX under Windows

The goal of this article is to help users with no
past experience with CJK (Chinese, Japanese, Ko-
rean) typesetting to include some pieces of CJK text
in a TEX document using the CJK LATEX package,
TrueType fonts and pdfTEX under Windows.

Stephen Hartke, A survey of free math fonts for
TEX and LATEX

We survey free math fonts for TEX and LATEX,
with examples, instructions for using LATEX pack-
ages for changing fonts, and links to sources for the
fonts and packages.

David Walden, Travels in TEX Land: Using the
Lucida fonts

This paper describes buying, installing, and be-
ginning to use the Lucida fonts. Then it describes
some more exploration in the world of fonts in the
context of the Lucida fonts.

The Editors, Ask Nelly:

• Which fonts can be accessed from the TEX
Live distribution just using usepackage?

• What is the difference between fonts and
typefaces?

• Which are the best fonts for typesetting math?

The Editors, Distractions: Name-that-Font

The PracTEX Journal 2006-2, 2006-05-17

Lance Carnes, From the editor

From the readers, Feedback

Robin Laakso, Invitation to PracTEX’06

Thomas A. Schmitz, Presentations in ConTEXt
TEX is an excellent tool to produce PDF pre-

sentations. This paper will show you how to use
ConTEXt for writing presentations, and it will teach
you to prepare a single source file that can output a
presentation, a lecture manuscript, or a handout, if
you adapt one single switch. The article is suitable
for beginners in ConTEXt but it should also have
interesting things for more advanced users.

Jan Hlavacek, Ipe —A graphics editor for LATEX
This article talks about the author’s experi-

ences with the Ipe graphics editor. This graphics
tool, which runs on Windows, Linux, and MacOSX,
is well-suited to preparing graphics for LATEX docu-
ments. The main features of Ipe are described, as
well as some advanced usage. A similar editor, VRR,
is also described briefly.

Stephen J. Eglen, Introduction to “A short
example of how to use LATEX for scientific reports”

This short article summarises my reasons for
writing a short LATEX document to act as a template
for scientific reports. This document was used as
a basis of practical sessions with Masters students
who wished to learn to use LATEX for their reports.
The outcome was quite successful in that many more
students are now using LATEX for their reports, often
using the document as a template.

D.V.L.K.D.P. Venugopal, My experience with
learning and teaching LATEX

The present article deals with the author’s ex-
perience in learning LATEX independently and dis-
seminating the knowledge acquired through a one
week structured course to research scholars in a uni-
versity system.

Andy Roberts, In My Opinion: LATEX isn’t for
everyone but it could be for you (with responses)

This article by Andrew Roberts appeared last
summer in OSNews.com. While the merits of LATEX
Andy points out are familiar to most PracTEX Jour-
nal readers, the follow-on comments from readers
pointed out some of LATEX’s (and TEX’s) weaknesses.

David Walden, Travels in TEX Land: LATEX for
productivity in book writing

My column in this issue summarizes why I use
LATEX and gives examples of some productivity ben-
efits of using LATEX to write books.

The Editors, Ask Nelly:

• What is different when I click on the pdfLATEX
rather than the LATEX icon in WinEdt?

• How do I convert a document to a publisher’s
requirements for double-spacing, line numbers,
and figures on their own pages?

• How do I interrupt an enumerate environment
and then continue it later in the document?

The Editors, Distractions: Sudoku ABC;
Winners of type quizzes

The PracTEX Journal 2006-3, 2006-08-15

Dave Walden, From the editor

From the readers, Feedback

Compiled by Dave Walden, Report on
PracTEX’06

Will Robertson, Productivity with macros and
packages

LATEX’s advantages in productivity, for me, are
due to its ability to be customised. The first half

TUGboat, Volume 28 (2007), No. 2 265

of this article discusses small macros written to ease
document production, with some examples of how I
use macros to save time and effort. Then, I briefly
cover a selection of packages that provide a whole
heap of functionality that other people have kindly
implemented.

Yuri Robbers, Markus Kohm and Rasmus

Pank Roulund, Replacing LATEX2ε standard
classes with KOMA-Script

KOMA is a complete replacement of the stan-
dard LATEX2ε classes. It is aimed more at Euro-
pean typography, but is easily configurable. Some
of KOMA’s extensions and ways to configure doc-
ument layout are also available in other document
classes, such as the LATEX2ε standard. This paper
discusses just a few parts of KOMA, especially those
that have to do with page layout and with writing
letters.

Peter Wilson, The memoir class
(An updated version appears in this issue.)

Didier Verna, LATEX curricula vitae with the
CurVe class

CurVe is a LATEX2ε class for writing curricula
vitae (cv). It provides a set of commands to create
headers, rubrics, entries in these rubrics, etc. CurVe
will then format your cv with a consistent layout
while you can just concentrate on the contents. The
layout of a CurVe cv is highly customizable. CurVe
also has a very special feature known as the flavor
mechanism: it is able to manage different “flavors”
(versions) of your cv simultaneously. CurVe is dis-
tributed under the terms of the LPPL. This paper
describes the features available in version 1.11.

Joe Hogg, ConTEXt starters
This article presents two beginning projects us-

ing ConTEXt. The first project is a letterhead that
can be used for business and personal correspon-
dence mailed in an envelope with an address pane.
The second project is a four-page brochure done by
the Botany Committee for Ape Awareness Day last
November at the Los Angeles Zoo and Botanical
Gardens.

D.V.L.K.D.P. Venugopal, Creating pocket-size
books using LATEX

This article deals with creating pocket-sized
books of A7 size using LATEX in a quick and dirty
method.

David Walden, Travels in TEX Land:
Experiences refining page layout for a book

In this column I describe my experience with
taking final steps of turning a book manuscript into
a published book.

D.V.L.K.D.P. Venugopal, Book review:
Formatting Information— A beginner’s

introduction to typesetting with LATEX, by
Peter Flynn

The reviewer sees Peter Flynn’s Formatting In-

formation as a more practical introduction to LATEX
than many other popular introductions.

The Editors, Ask Nelly:

• What are the differences among MiKTEX,
ProTEXt, and LATEX?

• How do I add change bars?

The Editors, Distractions: LATEX wordplay—
3 crosswords; math font quiz answers

The PracTEX Journal 2006-4, 2006-11-30

Lance Carnes, From the editor

From the readers, Feedback

The Editors, News from around

Sindhu Singh, Our Introduction to LATEX
This report presents the experiences of three

participants in a LATEX course given by D.V.L.K.D.P.
Venugopal at Banaras Hindu University in India (see
http://tug.org/pracjourn/2006-2/venugopal).
This popular course, which runs for one week, was
conducted three times in the year 2006. The three
participants discuss their initial reaction to LATEX,
and compare it to other formatting systems.

Jim Hefferon, What I wish I had . . . when I was
a lad: Using LATEX resorces
(Published in TUGboat 28:1.)

Peter Flynn, Rolling your own Document Class:
Using LATEX to keep away from the Dark Side
(Published in TUGboat 28:1.)

Boris Veytsman, Design of presentations: Notes
on principles and TEX implementation
(Published in TUGboat 28:1.)

Jürgen Fenn, Managing citations and your
bibliography with BibTEX

This article gives a brief introduction to man-
aging citations and to preparing a list of references
with BibTEX. Techniques for writing a bibliography
file and its use in a document are presented for first-
time BibTEX users. Strategies and tools for simpli-
fying work are also described. No attempt, however,
is made to provide an in-depth introduction. The ar-
ticle concludes with a critical note on the future of
BibTEX and a list of references for further reading.

Elizabeth Dearborn, TEX and medicine
(Published in TUGboat 28:1.)

266 TUGboat, Volume 28 (2007), No. 2

Boris Veytsman and Leila Akhmadeeva,
Drawing medical pedigree trees with TEX and
PSTricks
(Published in TUGboat 28:1.)

Paul Blaga, Using XY-pic
This is the first of two papers aiming to de-

scribe the use of the facilities of the package XY-pic
for constructing commutative diagrams. We tried
to use in a systematic way the “learning by exam-
ples” approach, without entering into the details of
different constructions or trying to describe in an
exhaustive way all the possibilities. The final goal is
to provide the reader with enough knowledge to be
able to construct by himself complicated diagrams.
This first paper describes the basic possibilities of
XY-pic, which are provided by the kernel of the as-
sociated language, but it also explores many of the
opportunities provided by the extension arrow.

Federico Garcia, Capabilities of PDF

interactivity
(An updated version appeared in TUGboat 28:1.)

Troy Henderson, A beginner’s guide to
MetaPost for creating high-quality graphics
(Published in TUGboat 28:1.)

Aditya Mahajan, Creating homework
assignments using ConTEXt

This article shows how to create a ConTEXt en-
vironment file to typeset homework assignments and
their solutions. The same source file can be used to
generate two versions: without and with the solu-
tions.

Lars Madsen, Avoid eqnarray!
Whenever the eqnarray environment appears

in a question or an example of a problem on the
comp.text.tex newsgroup or the texhax mailing
list there is a good chance that someone will tell
the poster not to use eqnarray. This article will
provide some examples of why many of us consider
eqnarray to be harmful and why it should not be
used.

David Walden, Travels in TEX Land: Using your
favorite editor with TEX

In this column in each issue Dave Walden muses
on his wanderings around the TEX world. In this
column he is joined in his meandering by Yuri Rob-
bers. Walden discusses the benefits of the fact that
one can use the editor of one’s choice with TEX and
the various system built on top of TEX, and Rob-
bers lists a number of editors that are optionally
available.

Dimitrios Filippou, Book review: A. Syropoulos
et al., Digital Typography Using LATEX

The book Digital Typography Using LATEX was
published by Springer-Verlag in 2002, but has been
mostly ignored by the LATEX community. However,
Syropoulos and his co-authors have put lots of effort
in creating a very good guide for the novice and the
aspiring TEXnician. Despite some objections on how
the book is structured, it can be said that Digital

Typography Using LATEX is a very good, if not ex-
cellent, everyday guide for producing beautiful doc-
uments.

The Editors, Distractions: Two TEX-themed
crossword puzzles

The PracTEX Journal 2007-1, 2007-02-20

Yuri Robbers, From the editor

From the readers, Feedback

The Editors, News from around

Claudio Beccari, Graphics in LATEX
This tutorial describes some facilities offered by

LATEX and its extension packages for producing line
art graphics directly in the source document. Some
of these facilities are standalone, in the sense that
they do not require functionalities of external pro-
grams, while others rely on external programs.

Andrew Mertz and William Slough, Graphics
with PGF and TikZ
(Published in TUGboat 28:1.)

Dirk Baechle, Square concepts
The following text contains some basic chess

concepts and advice, presented in the form of tasks.
It was prepared [. . .] using the program ChessTask,
and is aimed at hobby players of any strength. The
given positions are all taken from my own games for
the chess club SK Soltau, so they are not constructed
examples but actually happened. While the tasks
themselves are kept rather terse, I try to elaborate
things a bit further when I unveil the correct moves
at the end of the article. So even if you did not find
the solution in first place, you can hopefully learn
from the additional information.

Yuri Robbers and Annemarie Skjold,
Creating book covers with PSTricks

The title and the cover of the book are the very
first impressions a potential reader is likely to get
from a book. It is therefore of utmost importance
to make sure these impressions are good ones. This
paper will give some general notes on cover design,

TUGboat, Volume 28 (2007), No. 2 267

and some specific notes on implementing such de-
signs using PSTricks.

Paul Blaga, Commutative diagrams with
XY-pic — II. Frames and matrices

This is the second article dedicated, essentially,
to the use of XY-pic for constructing commutative
diagrams. By using the same kind of approach as in
the first part, we focus now on frames, matrices and
other extensions of the kernel language.

Manjusha S. Joshi, Create trees and figures in
graph theory with PSTricks

Drawing trees and figures in the mathematical
area of graph theory is a requirement for researchers
and teachers. This includes loops, arcs, nodes, and
weights for edges. This article aims to get started
with PSTricks by keeping two commands in mind,
viz. pstree and psmatrix. Using the most useful
options of these commands the reader can draw tree
diagrams, loops, node labels, and add weights to
edges. Once the diagrams are completed they can be
added to a TEX file. With a little working knowledge
about drawing figures in graph theory the reader can
then produce his or her own.

Lapo Filippo Mori, LATEXpedia: The future of
LATEX documentation

Software documentation is a very important
success factor for open source software because it
bolsters its diffusion. People who start learning
LATEX and even intermediate users often complain
about LATEX documentation: it is hard to find an up-
dated, complete and well structured resource. This
article evaluates advantages and disadvantages of
the different sorts of resources for LATEX documen-
tation available and proposes a new kind of docu-
mentation source: a free-content, web-based ency-
clopedia, LATEXpedia.

Lapo Filippo Mori, Tables in LATEX2ε:
Packages and methods

This article aims to provide the tools to cor-
rectly create tables in LATEX2ε. This objective is
pursued analyzing the typical problems that users
find creating tables and possible solutions; particu-
lar emphasis is on the packages to be used. Exam-
ples are given for each case.

Enrico Gregorio, Babel, how to enjoy writing
in different languages
(Published in this issue.)

Jin-Hwan Cho, Hacking DVI files
(Published in this issue.)

Bob Neveln and Bob Alps, Writing and
checking complete proofs in TEX
(Published in TUGboat 28:1.)

David Walden, Travels in TEX Land: The
post-typesetting phase of producing a book

In this column I give a final report on the book
project I last discussed in TPJ issue 2006-3, discuss
“self-publishing” at some length, and mention some
of my other recent activities in TEX Land.

S. Parthasarathy, The “hacking for learning”
paradigm in LATEX —Some thoughts by a
long-time LATEX user

This article argues a case for making hacking
an accepted way of learning. It uses the example
of LATEX to show why hacking is not so bad as it is
made out to be. It also gives some warnings on the
downside of hacking-for-learning.

The Editors, Ask Nelly: How do I create
European style spacing within numbers?

The Editors, Distractions: Some chess problems
created in LATEX

The PracTEX Journal 2007-2, 2007-06-10

Paul Blaga, From the editor

From the readers, Feedback

The Editors, News from around

Paul Blaga, PracTEX Journal: Making an
electronic journal with web tools, wiki, and version
control

This paper describes how an issue of TPJ is
made up, and focuses on the software tools used.
The tools used are the wiki, the subversion version
control system, and Perl scripts. One of the goals
of TPJ, and the reason for using these tools, is to
create an environment where a small team of vol-
unteers can put together an online journal with a
minimum of time and work.

Yuri Robbers, PDFpages for editors and
publishers

There are many ways in which the PDFpages
package by Andreas Matthias can be helpful to edi-
tors. An obvious one is collating several papers into
one. This paper will describe a few of the many
ways in which PDFpages can make life easy for the
editor and publisher.

Federico Garcia, LATEX and the different
bibliography styles

(Published in this issue.)

268 TUGboat, Volume 28 (2007), No. 2

S. Parthasarathy, Demystifying LATEX
bibliographies

In this essay, we will try to explore and explain
the vexing problem of including bibliographic ref-
erences in LATEX documents (reports, papers, the-
ses, etc.). There is a plethora of literature on this
subject. Unfortunately, these materials are focused
on LATEX’s experts, and driven to a developer-level
point of view. This current paper will examine bib-
liographies from a common user’s point of view, try-
ing to pass by only the essentials of this very vast
and involved bibliographic topic. The author hopes
that this paper will make LATEX enjoyable for more
people.

David Walden, Travels in TEX Land: Trying
ConTEXt

In this column I focus on my initial efforts to
learn and use ConTEXt.

The Editors, Ask Nelly:

• How do I create footnotes to tables without
developing an ulcer in the process?

• What is a good way to create subfigures within
one float?

• How do I typeset a critical edition?

The Editors, Distractions — From Shakespeare,
with Love

Institutional

Members

Aalborg University, Department
of Mathematical Sciences,
Aalborg, Denmark

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia, Roma, Italy

Center for Computing Sciences,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario Canada

CNRS - IDRIS, Orsay, France

CSTUG, Praha, Czech Republic

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

MacKichan Software,
Washington/New Mexico, USA

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University, Faculty of
Informatics, Brno, Czech Republic

Moravian College, Department
of Mathematics and Computer
Science, Bethlehem, Pennsylvania

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator Center
(SLAC), Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University, Department
of Mathematics, Stockholm, Sweden

University College, Cork,
Computer Centre, Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

Universiti Tun Hussein
Onn Malaysia,
Pusat Teknologi Maklumat,
Batu Pahat, Johor, Malaysia

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Vanderbilt University,
Nashville, Tennessee

2007

Jun 4 –
Aug 3

Rare Book School, University of Virginia,
Charlottesville, Virginia. Many one-week
courses on type, bookmaking, printing,
and related topics. For information, visit
http://www.virginia.edu/oldbooks.

Jun 8 NTG 39th meeting, Utrecht, Netherlands.
For information, visit
http://www.ntg.nl/bijeen/bijeen39.html.

Jun 18 –
Jul 27

Guild of Book Workers 100th Anniversary
Exhibition: A traveling juried exhibition
of books by members of the Guild of Book
Workers. The Bridwell Library, Southern
Methodist University, Dallas, Texas.
Sites and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

TUG 2007

Practicing TEX,

San Diego, California.

Jul 17 Workshops (free for attendees).

Jul 18 – 20 The 28th annual meeting of the TEX
Users Group. For information, visit
http://www.tug.org/tug2007.

Aug 1 – 5 TypeCon 2007, Seattle, Washington.
For information, visit
http://www.typecon.com/.

Aug 5 – 9 SIGGRAPH 2007, San Diego,
California. For information, visit
http://www.siggraph.org/s2007/.

Aug 6 – 10 Extreme Markup Languages 2007,
Montréal, Québec. For information, visit
http://www.extrememarkup.com/extreme/.

Aug 28 – 31 ACM Symposium on Document
Engineering, University of Manitoba,
Winnipeg, Canada. For information, visit
http://www.documentengineering.org/.

Sep 1 – 2 Transylvania TEX Conference,
“Babeş-Bolyai” University Cluj-Napoca,
Romania. For information, visit http://

math.ubbcluj.ro/~aga_team/translatex/.

Sep 12 – 16 Association Typographique Internationale
(ATypI) annual conference, Brighton, UK.
For information, visit
http://www.atypi.org/.

TUGboat, Volume 28 (2007), No. 2 269

Calendar

Sep 15 DANTE TEX-Tagung, 38th meeting,
Universität Ulm, Germany.
For information, visit http://

www.dante.de/dante/events/mv37/.

Sep 18 – 19 Conference on “Non-Latin typeface
Design”, St. Bride Library, London,
and the Department of Typography,
University of Reading, UK.
For information, visit
http://stbride.org/

events_education/events/.

Sep 24 –
Nov 22

Guild of Book Workers 100th Anniversary
Exhibition: A traveling juried exhibition
of books by members of the Guild of
Book Workers. Dartmouth College
Library, Hanover, New Hampshire.
Sites and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Oct 8 GUTenberg Workshop on Unicode &
LATEX, Paris, France. For information,
visit http://www.gutenberg.eu.org/.

Oct 11 – 13 American Printing History Association
2007 annual conference,
“Transformations: The persistence of
Aldus Manutius”, University of California
at Los Angeles. For information, visit
http://www.printinghistory.org/.

Oct 13 GuIT meeting 2007 (Gruppo
utilizzatori Italiani di TEX),
Pisa, Italy. For information, visit
http://www.guit.sssup.it/

GuITmeeting/2007/.

Oct 20 – 22 The Fifth International Conference on
the Book, “Save, Change or Discard:
Tradition and Innovation in the World of
Books”, Madrid, Spain. For information,
visit http://b07.cgpublisher.com/.

2008

TUG 2008 — TEX’s 30th birthday

University College Cork, Ireland.

Jul 21 – 24 The 29th annual meeting of the TEX
Users Group. For information, visit
http://www.tug.org/tug2008.

Status as of 1 June 2007

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at http://www.tug.org/calendar/.

TUG 2007: Practicing TEX

Workshops and presentations on

LATEX, TEX, MetaPost,

ConTEXt, LuaTEX,
and more

July 17–20, 2007

San Diego State University

San Diego, California, USA

http://tug.org/tug2007

tug2007@tug.org

Keynote address: Peter Wilson,

The Herries Press

Further information

Conference attendees will enjoy an opening night reception and an (optional)
banquet one evening. Coffee and lunch will be served each day of the meeting.
Located on the campus of San Diego State University, an easy trolley ride from
downtown San Diego. Inexpensive campus housing is available.

Conference fee, hotel, and other information is available on the web site.

Sponsorship

We thank the sponsors: the German-speaking TEX users group DANTE e.V.,
von Hoerner & Sulger GmbH, MacKichan Software, and Adobe Systems Inc.
have provided generous support; San Diego State University is our host; and
special thanks to the many individual contributors.

If you’d like to support the conference, promote TEX products and services, or
otherwise provide sponsorship, see the web site for donation and advertising options.

Hope to see you there! Sponsored by the TEX Users Group

TEX Users Group 2008 Conference

University College Cork

Cork, Ireland

21–24 July 2008

http://tug2008.ucc.ie/

✁

TEX’s 30th birthday

Interfaces to TEX

Workshops

Presentations

Hosted by the Human Factors Research Group (http://hfrg.ucc.ie)

The information here comes from the consultants
themselves. We do not include information we
know to be false, but we cannot check out any of
the information; we are transmitting it to you as it
was given to us and do not promise it is correct.
Also, this is not an official endorsement of the
people listed here. We provide this list to enable
you to contact service providers and decide for
yourself whether to hire one.

TUG also provides an online list of consultants
at http://tug.org/consultants.html. If
you’d like to be listed, please fill out the form at
https://www.tug.org/consultants/listing.html

or email us at consult-admin@tug.org. To
place a larger ad in TUGboat, please see
http://tug.org/TUGboat/advertising.html.

Kinch, Richard J.
7890 Pebble Beach Ct
Lake Worth, FL 33467
+1 561-966-8400
Email: kinch (at) truetex.com

Publishes TrueTEX, a commercial implementation
of TEX and LATEX. Custom development for
TEX-related software and fonts.

Martinez, Mercè Aicart
Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) menta.net

Web: www.edilatex.com/

We provide, at reasonable low cost, TEX and
LATEX typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990. For more information visit our
web site.

272 TUGboat, Volume 28 (2007), No. 2

TEX Consultants

Peter, Steve
310 Hana Road
Edison, NJ 08817
+1 (732) 287-5392
Email: speter (at) dandy.net

Specializing in foreign language, linguistic, and
technical typesetting using TEX, LATEX, and
ConTEXt, I have typeset books for Oxford
University Press, Routledge, and Kluwer, and have
helped numerous authors turn rough manuscripts,
some with dozens of languages, into beautiful
camera-ready copy. I have extensive experience in
editing, proofreading, and writing documentation.
I also tweak and design fonts. I have an MA in
Linguistics from Harvard University and live in the
New York metro area.

Veytsman, Boris
2239 Double Eagle Ct.
Reston, VA 20191
+1 (703) 860-0013
Email: borisv (at) lk.net

Web: http://borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions
and much more. I have about twelve years of
experience in TEX and twenty-five years of
experience in teaching & training. I have authored
several packages on CTAN and published papers in
TEX related journals.

olume 28, Number 2 2007

TUGBOAT Volume 28 (2007), No. 2

Table of Contents (ordered by difficulty)

Introductory

152 Barbara Beeton / Editorial comments
• typography and TUGboat news

151 Karl Berry / From the President
• TEX development grants; http://mirror.ctan.org; interviews; TUG’07

172 Peter Flynn / Typographers’ Inn
• web vs. paper, punctuation oddities, Helvetica, TUG’08 in Cork

153 Stephen Moye / A wayward wayfarer’s way to TEX
• recollections of one humanities TEX user’s adventures in TEXLand

174 Hans Hagen and Taco Hoekwater / Alphabetgeschichten by Hermann Zapf
• review of Zapf’s memoir, with several illustrations

198 Aditya Mahajan / ConTEXt basics for users: Font styles
• introduction to the different ways of changing font styles in ConTEXt

177 Will Robertson / An exploration of the Latin Modern fonts
• Latin Modern includes some novel font families as well as the designs from Computer Modern

241 Walter Schmidt / Font selection in LATEX: The most frequently asked questions
• basics of font selection and the three top questions

243 Peter Wilson / The memoir class
• introduction to the memoir class for customizable document creation

Intermediate

233 Karl Berry / The treasure chest
• selected new CTAN packages from January through June 2007

235 Federico Garcia / LATEX and the different bibliography styles
• bracketed, author-year, and footnote citation styles and LATEX packages

181 Klaus Höppner / Creation of a PostScript Type 1 logo font with MetaType1
• tutorial for implementing a font with MetaType1

247 Enrico Gregorio / Enjoying babel
• introductions, usage, and extensions to babel

Intermediate Plus

210 Jin-Hwan Cho / Hacking DVI files: Birth of DVIasm
• creating DVI files from a simple text format; discussion of specials

186 Lars Hëllstrom / Writing ETX format font encoding specifications
• writing font encoding specifications for LATEX, and a suggested ratification procedure

256 Edward M. Reingold / Writing numbers in words in TEX
• writing integers, including very large ones, in words

Advanced

200 Idris Samawi Hamid / Installing ConTEXt expert fonts: Minion Pro
• preparing, installing, and configuring Minion Pro for ConTEXt

218 Denis Roegel / A complex drawing in descriptive geometry
• rendering a classic gear drawing in MetaPost

229 Peter Wilson / Glisterings
• Paragraphs regular; paragraphs particular; paragraphs Russian

Contents of other TEX journals

260 ArsTEXnica: Contents of issues 2–3 (2006–2007)

261 Les Cahiers GUTenberg : Contents of double issue 46–47 (April 2006)

262 Die TEXnische Komödie: Contents of issues 2006/1–2007/1

263 The PracTEX Journal: Contents of issues 2006-1–2007-2

Reports and notices

164 Michael Guravage / EuroBachoTEX 2007
• report and photos from the 2007 European TEX conference

172 Kihwang Lee / New TEX activities in Korea
• notice of the founding of the Korean TEX Society

159 Mojca Miklavec / ConTEXt user meeting 2007: Epen, March 23–25
• report and photos from the first ConTEXt conference

269 Calendar

268 Institutional members

270 TUG 2007 announcement

271 TUG 2008 announcement

272 TEX consulting and production services

TUGBOAT

Volume 28, Number 2 / 2007

General Delivery 151 From the president / Karl Berry

152 Editorial comments / Barbara Beeton

A pledge of support; Helvetica— 50th anniversary;
Another font anniversary — Souvenir, 93 years;
Another honorary doctorate for Don Knuth;
How to shrink a box as much as possible; How to use a book;
Save the signs!; Practical TEX 2006 recordings

153 A wayward wayfarer’s way to TEX / Stephen Moye

159 ConTEXt user meeting 2007: Epen, March 23–25 / Mojca Miklavec

164 EuroBachoTEX 2007 / Michael Guravage

172 New TEX activities in Korea / Kihwang Lee

Typography 172 Typographers’ Inn / Peter Flynn

Book Reviews 174 Alphabetgeschichten by Hermann Zapf / Hans Hagen and Taco Hoekwater

Fonts 177 An exploration of the Latin Modern fonts / Will Robertson

181 Creation of a PostScript Type 1 logo font with MetaType 1 / Klaus Höppner

186 Writing ETX format font encoding specifications / Lars Hëllstrom

198 ConTEXt basics for users: Font styles / Aditya Mahajan

200 Installing ConTEXt expert fonts: Minion Pro / Idris Samawi Hamid

Software & Tools 210 Hacking DVI files: Birth of DVIasm / Jin-Hwan Cho

Graphics 218 A complex drawing in descriptive geometry / Denis Roegel

Hints & Tricks 229 Glisterings: Paragraphs regular; paragraphs particular; paragraphs Russian /

Peter Wilson

233 The treasure chest / Karl Berry

LATEX 235 LATEX and the different bibliography styles / Federico Garcia

241 Font selection in LATEX: The most frequently asked questions / Walter Schmidt

247 Enjoying babel / Enrico Gregorio

Macros 256 Writing numbers in words in TEX / Edward M. Reingold

Abstracts 260 ArsTEXnica: Contents of issues 2–3 (2006–2007)

261 Les Cahiers GUTenberg: Contents of double issue 46–47 (2006)

262 Die TEXnische Komödie: Contents of issues 2006/1–2007/1

263 The PracTEX Journal : Contents of issues 2006-1–2007-2

TUG Business 268 Institutional members

News 269 Calendar

270 TUG 2007 announcement

271 TUG 2008 announcement

Advertisements 272 TEX consulting and production services

TUGBOAT Volume 28 (2007), No. 2

Table of Contents (ordered by difficulty)

Introductory

152 Barbara Beeton / Editorial comments
• typography and TUGboat news

151 Karl Berry / From the President
• TEX development grants; http://mirror.ctan.org; interviews; TUG’07

172 Peter Flynn / Typographers’ Inn
• web vs. paper, punctuation oddities, Helvetica, TUG’08 in Cork

153 Stephen Moye / A wayward wayfarer’s way to TEX
• recollections of one humanities TEX user’s adventures in TEXLand

174 Hans Hagen and Taco Hoekwater / Alphabetgeschichten by Hermann Zapf
• review of Zapf’s memoir, with several illustrations

198 Aditya Mahajan / ConTEXt basics for users: Font styles
• introduction to the different ways of changing font styles in ConTEXt

177 Will Robertson / An exploration of the Latin Modern fonts
• Latin Modern includes some novel font families as well as the designs from Computer Modern

241 Walter Schmidt / Font selection in LATEX: The most frequently asked questions
• basics of font selection and the three top questions

243 Peter Wilson / The memoir class
• introduction to the memoir class for customizable document creation

Intermediate

233 Karl Berry / The treasure chest
• selected new CTAN packages from January through June 2007

235 Federico Garcia / LATEX and the different bibliography styles
• bracketed, author-year, and footnote citation styles and LATEX packages

181 Klaus Höppner / Creation of a PostScript Type 1 logo font with MetaType1
• tutorial for implementing a font with MetaType1

247 Enrico Gregorio / Enjoying babel
• introductions, usage, and extensions to babel

Intermediate Plus

210 Jin-Hwan Cho / Hacking DVI files: Birth of DVIasm
• creating DVI files from a simple text format; discussion of specials

186 Lars Hellström / Writing ETX format font encoding specifications
• writing font encoding specifications for LATEX, and a suggested ratification procedure

256 Edward M. Reingold / Writing numbers in words in TEX
• writing integers, including very large ones, in words

Advanced

200 Idris Samawi Hamid / Installing ConTEXt expert fonts: Minion Pro
• preparing, installing, and configuring Minion Pro for ConTEXt

218 Denis Roegel / A complex drawing in descriptive geometry
• rendering a classic gear drawing in MetaPost

229 Peter Wilson / Glisterings
• Paragraphs regular; paragraphs particular; paragraphs Russian

Contents of other TEX journals

260 ArsTEXnica: Contents of issues 2–3 (2006–2007)

261 Les Cahiers GUTenberg : Contents of double issue 46–47 (April 2006)

262 Die TEXnische Komödie: Contents of issues 2006/1–2007/1

263 The PracTEX Journal: Contents of issues 2006-1–2007-2

Reports and notices

164 Michael Guravage / EuroBachoTEX 2007
• report and photos from the 2007 European TEX conference

172 Kihwang Lee / New TEX activities in Korea
• notice of the founding of the Korean TEX Society

159 Mojca Miklavec / ConTEXt user meeting 2007: Epen, March 23–25
• report and photos from the first ConTEXt conference

269 Calendar

268 Institutional members

270 TUG 2007 announcement

271 TUG 2008 announcement

272 TEX consulting and production services

