
Babel speaks Hindi

Zdeněk Wagner
Vinohradská 114
13000 Prague 3
Czech Republic
zdenek dot wagner (at) gmail dot com
http://icebearsoft.euweb.cz

Abstract

Babel provides a unified interface for creation of multilingual documents. Un-
fortunately no Indic languages are currently supported, so typesetting in In-
dic languages is based on specialised packages. The most advanced of these
is Velthuis Devanāgar̄ı for TEX, because it already provides Hindi values for
language-dependent strings as well as a macro for a European-style date. A
language definition file for plugging Hindi into Babel has therefore been recently
developed.

The second part of the paper explains differences between Unicode and
Velthuis transliteration. This is important for understanding the tool that can
convert Hindi and Sanskrit documents from MS Word and OpenOffice.org into
TEX via an XSLT 2.0 processor and a Perl script, as well as a method of making
the PDF files searchable.

Finally the paper discusses some possibilities of further development: the
advantages offered by X ETEX and the forthcoming integration of Lua into pdfTEX.

1 Introduction

Packages for typesetting in various Indic languages
in both plain TEX and LATEX have been available
from CTAN for a long time. The authors of these
packages have made substantial efforts to support
the Indic scripts, which present difficulties that can-
not be solved by TEX itself. For example, although
generation of conjuncts and placing dependent vow-
els (matras) to subscripts and superscripts could be
handled as ligatures in TFM files, the form of a con-
junct depends also on language. While conjuncts Ä
(kta) and à (nna) are used in Sanskrit and tradi-
tional Hindi, they are nowadays often replaced with
the half forms ?t and �n, respectively. Such matters
can be solved only by using a preprocessor bound to
a (LA)TEX macro package.

The existing packages are used by indologists
from all over the world as well as by people from In-
dia. It is therefore unfortunate that the packages
support only the script and lack features to sup-
port the language. An exception is the Velthuis De-
vanāgar̄ı for TEX package [1]. Since version 2.13, it
contains definitions for language-dependent strings
as well as a European-style date, and macros for
switching between them and an English version. It
therefore provides a kind of a mini-Babel. The fur-
ther natural development step was to prepare a lan-

guage definition file which will integrate Hindi into
the Babel system.

2 Birth of the Language Definition File

The aim of our work was to enable transparent use
of Hindi in multilingual documents by means of the
standard Babel invocation:
\usepackage[hindi]{babel}

Preparing a language definition file for Babel is
not a difficult task. It involves defining language-
dependent macros such as \chaptername, and the
date macro \today. These definitions were already
present in the Devanāgar̄ı package and they even
properly handled switching between the Bombay,
Calcutta and Nepali variants of the Devanāgar̄ı fonts.
However, placing them into the language definition
file is not enough. Rendering these words in the De-
vanāgar̄ı font requires a lot of special macros. More-
over, as mentioned previously, the Hindi text cannot
be fed directly to TEX— preprocessing is manda-
tory.

It therefore seemed useless to copy the macros
from the Devanāgar̄ı package to the language defini-
tion file and follow the same development in two
different places. It was therefore decided just to
load devanagari.sty and redefine its options as lan-
guage attributes. As a matter of fact, the language

176 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

Babel speaks Hindi

definition file itself without the fonts and the prepro-
cessor would not work at all. Thus the requirement
to have the Devanāgar̄ı package installed does not
pose a real limitation.

The devanagari.sty package already contains
captions and date macros for English. These defini-
tions must not be removed because they are already
documented and their removal might damage legacy
documents. On the other hand these definitions col-
lide with the Babel core.

The package was therefore modified so that the
macros are declared by means of \providecommand
and the definition delayed via \AtBeginDocument.
The macros are thus guaranteed to exist and the
Babel definitions have higher preference no matter
in which order the files are loaded. The language
definition file checks the package version and will
complain if an old version of devanagari.sty is in-
stalled.

As already mentioned, it is not sufficient to ac-
tivate the Hindi language either as the main lan-
guage or by any of the Babel language switching
environments. The text must be enclosed within a
{\dn ...} group, or the preprocessor will not find
it.

3 Unicode vs. Velthuis transliteration

Devanāgar̄ı originates in an ancient Brāhmı̄ script,
and is an abugida. Each consonant (vyanjana) also
represents an inherent following vowel— a in the
case of Devanāgar̄ı. Other vowels are added as di-
acritics in the vicinity of the consonant. Groups of
consonants often form conjuncts, with only a minor-
ity of them written using a virama sign. Initial form
of vowels have a different shape than vowel diacritics
(matras).

Unicode is based on characters. The inherent
a is not encoded. Thus U+0915 represents the k
(ka) syllable (akshara). The syllable Ek (ki) is rep-
resented by the two Unicode characters U+0915 and
U+093F. Reversing the order of glyphs in displayed
output is left to the rendering engine [2].

Independent vowels (initial forms) have distinct
codes, e. g. the code of i (i) is U+0907. The three
characters U+0915 U+094D U+0924 denote a San-
skrit conjunct Ä (kta). However, such a glyph may
not be present in modern Hindi fonts. The render-
ing engine will then display ?t. In order to force
the rendering engine to display the latter form even
though the Sanskrit ligature is present in the font,
zero-width-joiner must be inserted. The Unicode
encoding will then be U+0915 U+904D U+200D
U+0924.

In contrast, the transliteration scheme devel-
oped by Frans Velthuis tries to be as close to schol-
arly practice as possible. Devanāgar̄ı is traditionally
transliterated into the Roman alphabet where long
vowel, retroflex consonants, etc., are marked with
diacritics [10]. The practice varies slightly between
different textbooks and dictionaries. The Velthuis
transliteration is a 7-bit encoding so the text can be
input on a standard US keyboard. Transliteration
is based on pronunciation, although in Hindi a short
a in the middle of words, as well as at the end of
words, is very often not pronounced. The inherent
a in the middle of the word must always be written
but the final short a can be omitted. Thus krnA
must be input as karanaa while Gr can be written
just ghar.

Important aspects of the differences between
these two approaches will be shown in the follow-
ing subsections.

3.1 Conversion into the Velthuis
transliteration

Book production is often a collaborative work of au-
thor(s), editor(s), and a compositor. The authors
rarely supply the texts in TEX; they commonly use
other text editors, mostly MS Word. The first task
is therefore conversion of the supplied manuscript
into TEX. Almost all markup must be removed and
replaced in order to achieve a particular graphical
design.

We have found it is advantageous to open the
manuscript in OpenOffice.org, and then save in its
native format, which is XML. Although various tools
are freely available, they still retain too much of
the author’s markup. Use of TEXML will also re-
quire much work which can hardly be reused in other
books. Since the OpenOffice.org file format is XML,
conversion can be performed by XSLT. A simple
stylesheet can remove nearly all markup, keeping
just boldface, italics and footnotes.

Another difficulty is that some Unicode charac-
ters are not directly available in TEX. Fortunately,
Saxon 8.x [5], which implements XSLT 2.0, offers
character maps, which allow replacement of such
characters with TEX control sequences. However,
this is not enough for the texts in the Devanāgar̄ı
script. If we just convert Unicode characters to cor-
responding Roman letters, all inherent a’s would be
lost.

Although the result of the XSLT transformation
can be fed into TEX, some postprocessing is recom-
mended. Sometimes bold text is entered such that
each character is emboldened separately. Merging

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 177

Zdeněk Wagner

these into a single \textbf command is more eas-
ily done later in a Perl script than directly in the
stylesheet. Also, the whole OpenOffice.org docu-
ment is output on a single line. We need to edit
the resulting file in order to wrap it to a reasonable
width. Without any programming, this can be done
by the Perl Text::Wrap module.

In addition to such formatting issues, we also
split the main job of conversion between XSLT and
Perl. First of all, long vowels can be encoded in
the Velthuis transliteration either by doubling or
by uppercasing. The stylesheet always uses upper-
case for long vowels in order to prevent ambiguities.
For instance, kI will be converted into kaI because
kaii will be rendered as k{i, which is wrong. Empty
braces would also solve the problem, but using up-
percase is easier. The independent vowels are trans-
formed directly into the corresponding letter(s) in
the Velthuis transliteration. The dependent vowels
(matras) are preceded with an equal sign. The con-
sonants are followed by equal signs and the virama
is transformed into an underscore.

Afterwards the Perl script takes its turn. In
the input, each paragraph appears on a single line
to be processed. The first task is to form conjuncts.
This will work for Sanskrit words as well as mod-
ern Hindi, where some ligatures are not used, e. g.
in aX̂XA. The virama will be added by the prepro-
cessor. Conjuncts are created by
while (s/(\{\\dn [^}]*)=_/$1/) {}

In the next step matras are handled. Double
equal signs are simply removed and lone equal signs
denote missing inherent a’s to be added. This is
achieved by the following lines.
while
(s/(\{\\dn [^}]*)==([aAiIuU.eo])/$1$2/) {}

while (s/(\{\\dn [^}]*)=/$1a/) {}

Next, we remove the final inherent a unless we
are converting a Sanskrit document.
while (!$opt_sanskrit &&
s/(\{\\dn [^}]*)a([^.a-zA-Z])/$1$2/) {}

Finally the line is wrapped.
eval {

print wrap(’’, ’’, $_); 1;
} or do {

warn "Warning: $@"; print;
};

3.2 Searchable PDF files

PDF files play an important role as online docu-
ments. Although the chapter and section names
may be placed into outlines and related parts may

be found by hyperlinks, it is also desirable to be
able to search for words and sentences. Here, In-
dic scripts present a big problem. PDF, similar to
PostScript, deals with glyphs, but the field in the
search dialogue accepts Unicode characters. Files
generated by the Devanāgar̄ı package are therefore
unsearchable. X ETEX [13] can use OpenType fonts,
but it turns out that a PDF file created by X ETEX
is not searchable either, although the situation is
not simple. X ETEX can use several engines for PDF
creation and the results differ. OpenOffice.org is
slightly more successful because all simple words
which do not contain conjuncts are searchable.

The key problem stems from the distinction be-
tween glyphs and characters. Mappings between
glyphs and characters can be inserted into so-called
‘ToUnicode’ maps. This feature is already imple-
mented in the cmap.sty package. An experimen-
tal ToUnicode map was therefore developed for the
Velthuis Devanāgar̄ı package. Since pdfTEX inserts
these maps according to the font encoding, each In-
dic script will require its own encoding name for
LATEX. Currently Devanāgar̄ı, Bengali, and Gur-
mukhi use encoding U, and all of them rely on pre-
processors with analogous functionality. In the pres-
ent experimental project, encoding X0900 was used
in order to refer to the corresponding Unicode block.

The dvng fonts contain single characters, liga-
tures and pieces which are glued together by TEX
macros. Single characters and ligatures are directly
mapped to Unicode characters. Half forms of the
consonants are mapped to the corresponding char-
acters followed by a virama. Vattu is added to a
full consonant, therefore it is mapped to the r (ra)
consonant preceded by virama. This makes words
with conjuncts searchable.

Unfortunately it is not possible to solve all prob-
lems. Since PDF works with glyphs, i-matras always
precede the consonants. When searchng such words,
it is necessary to type them into the search field as
they appear, i. e. to write the i-matra in front of
the consonant. Acrobat Reader is also confused by
placing vowel diacritics below or above consonants
as well as by vattus. An extra word boundary is
created. Thus when searching for k� Sl� , two words
k� Sl� must be typed into the search field. The
word X~ Aivr must be entered in a way impossible in
the Velthuis transliteration, namely as two words X~
Aivr. Unicode allows starting a word with a depen-
dent vowel which is, of course, incorrect. This mis-
feature enables making such words searchable. Ex-
tra word boundaries are not formed if the akshara is
drawn as a glyph in the dvng font. The words zknA
and mA/A can be searched for as such. More detailed

178 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

Babel speaks Hindi

information is present in the documentation of the
experimental ToUnicode map [12].

The ToUnicode map is also used when copy-
ing and pasting the text from a PDF file to another
application. It is no surprise that we get into the
same problems. The pasted text will contain extra
spaces after vattu and both short and long u-matras.
Words with i-matras will look visually correct but
their Unicode representation will be wrong. If a
word such as EdSlF is copied and pasted from PDF
and then sent to a sorting algorithm, it will appear
in a nonsensical place, because the program will see
a word starting with i-matra which is not allowed
by Hindi orthography.

4 Future development

The greatest disadvantage of contemporary Velthuis
Devanāgar̄ı for TEX is the necessity of using the pre-
processor. It does not seem so uncomfortable if a
single language document is being prepared. How-
ever, if a trilingual document in Hindi, Bengali and
Panjabi is being typeset, the source file has to be run
through three preprocessors in series. The devnag
preprocessor can handle a few Bengali or Panjabi
words within a Hindi paragraph using angle brack-
ets but not all preprocessors are that advanced. The
necessity of using the preprocessor brings about dif-
ficulties with index creation which have not been
solved yet. Replacing the preprocessor with another
mechanism is thus an important step forward.

The first idea was to reimplement the prepro-
cessor in encTEX [6]. It hooks into TEX’s mouth
and converts input characters to arbitrary tokens
according to the conversion table. Conversion can
be switched on and off by changing the value of
\mubytein. The conversion table can also mod-
ify the file output of \write according to value of
\mubyteout. However, since the conversion acts
upon characters in the TEX’s mouth, it is not possi-
ble to distinguish between characters within words
and characters within control sequences. Reimple-
mentation of the preprocessor in encTEX would thus
be very difficult and the resulting code inefficient.

More promising is integration of the Lua script-
ing language [3] into pdfTEX. The preprocessor can
be reimplemented in Lua and moreover new features
can be added. It will be possible to read texts both
in the Velthuis encoding and in Unicode. It will
also be possible to process documents already run
through the preprocessor so that compatibility will
not be lost. When and if Lua is integrated into
X ETEX, it will be possible to choose between dvng
and OpenType fonts. Having hooks to TEX’s mouth

as well as output in Lua, it will be easier to imple-
ment indexing software in Indic languages.

5 Requirements for multilingual
environment

Multilingual support is required not only in TEX,
but also in the whole operating system. First, it
is necessary to display the Unicode characters cor-
rectly. Groups of consonants with viramas must be
properly combined into conjuncts and matras moved
to the correct place. It is achieved in Linux by one of
the following libraries: ICU [4] and Pango [8]. How-
ever, these libraries are not yet used by all programs.
Even Firefox does not use Pango by default, it must
first be activated by setting MOZ_PANGO_ENABLE=1.
MS Internet Explorer displays Hindi texts correctly.

The text must also be prepared using Unicode.
There remain problems with editors under Linux.
OpenOffice.org, gEdit, and <oXygen/> (XML editor)
[7] work well; yudit is also said to work, but I have
not tried it. Support for Indic scripts in other editors
is still missing.

Input in Indic scripts must, of course, be ac-
cepted in all applications and displayed correctly.
This is a problem with Adobe Acrobat Reader un-
der Windows. I did not manage to enter anything
into the search dialogue directly from the Hindi key-
board in a usable way (it displayed something but
did not search). It is possible to copy and paste
the text from another application but it is displayed
in Unicode sequences. A comparison of Linux and
Windows versions is shown in Figure 1. The Linux
version is more comfortable for users but both search
equally well.

The search facility and copying texts from PDF
require modification in the CMap encoding. Cur-
rently 1:1 and 1:many mappings are available. In
order to be able to reverse the order of glyphs and
handle two part vowels in Dravidian languages, a
many:many mapping is needed. For better under-
standing, a few Devanāgar̄ı and Malayālam sylables
are shown in Table 1.

Table 1: Selected Devanāgar̄ı and Malayālam syllables.

Meaning Devanāgar̄ı Malayālam
d�vnAgrF .2/>2�

ma m .

maa mA .>

mi Em .?

mii mF .@

me m� G.

mo mo G.>

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 179

Zdeněk Wagner

Figure 1: Comparison of search for X~ Aivr (input as X~ Aivr) in Adobe Acrobat Reader 7 in Linux (left) and
Windows XP (right).

6 Conclusion

The paper describes how the Babel module for Hindi
was made. It further presents thoughts concerning
the use of Indic texts as online documents. Tools for
conversion from MS Word and OpenOffice.org into
TEX and for making PDF files with Devanāgar̄ı texts
searchable are presented. These tools are available
from the author’s web page [11].

7 Acknowledgement

The author would like to acknowledge the work
of other developers of the Velthuis Devanāgar̄ı for
TEX, as the package is the base for this project, as
well as Karel Píška for converting the Indic fonts
to the Type 1 format [9]. Special thanks belong
to Anshuman Pandey for translating the language-
dependent strings into Hindi, and John Smith and
Arnošt Štědrý for providing test files created by
X ETEX. The author would also like to acknowledge
Alexandr Babič for running the test under Ubuntu
and Petr Tomášek for explanation of topics related
to font rendering in X. Finally, the author would like
to acknowledge financial support of his attendance
of the TUG 2006 conference by CSTUG and TEX
Users Group.

References

[1] Devanāgar̄ı for TEX.
http://devnag.sarovar.org/.

[2] Joan Aliprand et al. The Unicode Standard,
chapter South Asian Scripts. The Unicode
Consortium, 2003. http://www.unicode.
org/faq/indic.html#5.

[3] Hans Hagen. LuaTEX: Howling to the
moon. TUGboat, 26(2):152–157, 2005.
http://www.tug.org/TUGboat/Contents/
contents26-2.html.

[4] International components for Unicode.
http://icu.sourceforge.net/.

[5] Michael Kay. Saxon, the XSLT and XQuery
processor. http://saxon.sourceforge.net/.

[6] Petr Olšák. encTEX.
http://www.olsak.net/enctex.html.

[7] <oXygen/> XML editor.
http://www.oxygenxml.com/.

[8] Pango. http://www.pango.org/.
[9] Karel Píška. Indic Type 1 fonts for TEX.

CTAN:fonts/ps-type1/indic.
[10] Transliteration pages. http://homepage.

ntlworld.com/stone-catend/translit.htm.
[11] Zdeněk Wagner. My free software.

http://icebearsoft.euweb.cz/sw.php.
[12] Zdeněk Wagner. Searchable PDF with

Devanāgar̄ı texts. http://icebearsoft.
euweb.cz/dvngpdf/.

[13] The X ETEX typesetting system.
http://scripts.sil.org/xetex.

180 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

http://devnag.sarovar.org/
http://www.unicode.org/faq/indic.html#5
http://www.unicode.org/faq/indic.html#5
http://www.tug.org/TUGboat/Contents/contents26-2.html
http://www.tug.org/TUGboat/Contents/contents26-2.html
http://icu.sourceforge.net/
http://saxon.sourceforge.net/
http://www.olsak.net/enctex.html
http://www.oxygenxml.com/
http://www.pango.org/
CTAN:fonts/ps-type1/indic
http://homepage.ntlworld.com/stone-catend/translit.htm
http://homepage.ntlworld.com/stone-catend/translit.htm
http://icebearsoft.euweb.cz/sw.php
http://icebearsoft.euweb.cz/dvngpdf/
http://icebearsoft.euweb.cz/dvngpdf/
http://scripts.sil.org/xetex

	Introduction
	Birth of the Language Definition File
	Unicode vs. Velthuis transliteration
	Conversion into the Velthuis transliteration
	Searchable PDF files

	Future development
	Requirements for multilingual environment
	Conclusion
	Acknowledgement

