Generating TEX from mathematical content
with respect to notational settings

Elena Smirnova

Ontario Research Centre for Computer Algebra
The University of Western Ontario

London, ON, N6A 5B7, Canada

elena (at) orcca dot on dot ca
http://www.orcca.on.ca/MathML/elena.html

Stephen M. Watt

Department of Computer Science
The University of Western Ontario
London, ON, N6A 5B7, Canada
watt (at) csd dot uwo dot ca
http://www.csd.uwo.ca/"watt.html

Abstract

We describe how to obtain client-preferred notations in TEX generated from the
output of mathematical software environments. Our approach is based on the
fact that most packages can produce MathML or other XML-based formats for
mathematical content. Generating TEX from these allows notational choices to
be applied during the translation process. The particular choices of notation
can be made either at the time TEX is generated or later, by the use of TEX
macros. We show how this approach may be applied to the generation of TEX
from both presentationally- and conceptually-oriented mathematical content and
how MathML may be used in the process. Our implementation conserves the
implicit high-level semantics of macro use in both TEX and MathML. Since the
expressions generated by mathematical software may be quite lengthy, we also
discuss issues that arise in line-breaking.

. =lolx
1 Introduction X e
2BSY YIDB S¢S TP ETE «= NIOHE XXX 2 B e
. Text T 2ot] firestewtorn]2zl B I U @@ === =iz
Most mathematical software systems allow one to e e] |
export expressions in TEX format. For many math-]
. N . . > MathML : - ExportContent(CalculusExpr) ;
ematical ideas there are several choices of notation, \ d3 (1) o
N +3 3 3
and typically the TEX formulae generated by soft- > (ae(’)) PSR [05 0y (@ 4y +x)]i
s

ware systems use the notational conventions selected
by the system designers. These choices might be
quite different from what would be selected by the

o Reaty Memory 536 Time: 1105 Math Mode

(a) Default rendering by Maple

client of the package, if a choice were offered. e e

@ - - &)) [0 feprorcrsicus.orccamatin =] © 6o [[CL

A Getting Started) Latest Headines
cexXplx + ' X+ XXXYY! X+ + X

[oome Y

We are interested in the problem of generating
TEX that respects the notational conventions that
are preferred by the client. To see the difference
between a default and a customized rendering of an
expression, compare the formulae of Figure 1la and
Figure 1b. In most cases it is not possible for a
user to obtain TEX output that uses their preferred
notation. If the user of a computer algebra system
or other mathematical software package wishes to
publish the results of a computation, he or she must

(b) Customized rendering via Mozilla

Figure 1: Two renderings of the same expression.

either accept the presentation offered by the system,
or rewrite the TEX content. In this paper we present

an alternative approach, based on adding notation
preferences to mathematical TEX converters.

TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting 187

Elena Smirnova and Stephen M. Watt

Mathematical Content

Mathematical Internal in TeX format
Software 5 TeX |j:> (as rendered by Math
Package Generator Software)

Mathematical Content
in TeX format
(with notational
preferences)

Mathematical Notati.on
Content in XML Selection
format Tool

Presentation
MathML

Mathematical Content
in TeX format
(with notational
preferences & macro-
definitions conserved)

MathML-TeX
converter

Figure 2: Three ways to generate TEX from a
mathematical software system

There are several ways in which TEX for math-
ematical expressions may be generated from a soft-
ware package such as Maple [1], Mathematica [2],
Axiom [3], Aldor [4], etc. One approach is to make
a direct translation to TEX from the internal ex-
pression representation of the software system. Ex-
porting it to TEX directly from the system will then
produce package-specific presentation of this con-
tent (Figure 2, arrow 1). Another approach may be
taken if the mathematical object has been created in
a web-oriented mathematical environment, such as
with the MONET web-services [5, 6]. In this situa-
tion the expression will most likely be encoded using
some XML-based standard, such as OpenMath [7] or
Content MathML [8]. These formats are supported
by most computer algebra systems as well as many
web browsers and other packages. The objective of
this paper is to demonstrate a flexible technique to
generate of TEX presentation from these XML-based,
semantically-oriented formats.

We explore two manners of producing TEX from
XML formats: The first is to do so directly from
mathematical content, taking into account nota-
tional settings (Figure 2, arrow 2). The second ap-
proach is to use a two-stage conversion (Figure 2,
arrow 3). In this case, MathML — combined with
elements using some extended set of tags—is first
generated from the mathematical content. This ex-
tended MathML is then translated into TEX with
corresponding TEX macros. In this case, high-level
mathematical constructs may be mapped directly to
TEX macros. This ensures that the semantics of the
original expression are conserved in the output TEX
content.

This paper is organized as follows: Section 2
describes how presentation of mathematical content
can be customized using a Notation Selection Tool.
Section 3 describes a MathML to TEX translator
that is used in multi-stage conversion. Section 4 pro-
vides some details of how line breaking is achieved
in the generated TEX. Section 5 presents our conclu-
sions and outlines some possible directions for future
work in this area.

2 Generating presentation from content
using notational preferences

Anyone with more than a passing familiarity with
the subject understands that there is no universal
notation for mathematics. There are mathematical
concepts for which there are several different nota-
tions, and there are notations for which there are
several different mathematical concepts. Figure 3
shows how the choice of different notation can af-
fect the appearance of mathematical content. This
choice of notation is certainly the major determining
factor in how an expression will appear.

2.1 A notation selection tool

In earlier work we described a Notation Selection
Tool [9, 10] designed to control conversion of math-
ematical expressions in XML format. The original
purpose of this tool was to provide a graphical user
interface (Figure 4) for notation selection. The tool
generates an XSLT stylesheet used to transform Con-
tent MathML to Presentation MathML using the de-
sired notational conventions. The stylesheet and the
generated Presentation MathML are determined by
the user’s choice of notation settings.

2.2 Extending the tool for direct
conversion to TEX

In the present work we use a key feature of the Nota-
tion Selection Tool: Its extensible design allows one
to add new translation directions without modify-
ing the software implementation. In particular, we
can add direct conversion of OpenMath and Content
MathML to TEX.

We described in [9] how the Notation Selection
Tool is initialized by a configuration file. This file
is the only component in the design that provides
information about the mathematical concepts that
the converter can handle. It also stores the transfor-
mation rules to be applied for the selected notations.

Because all knowledge of the MathML conver-
sion is contained in this configuration file, it may
also be used to specify conversions involving other
XML formats for input and other XML or text for-
mats for output. Updating the configuration file

188 TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting

Generating TEX from mathematical content with respect to notational settings

[1/sqrt (a*x)+diff (atan(x) ,x$2) }

{

|
'

}

Notation choice 1

Notation choice 2

Notation choice 3

!

I

!

Notation 1 Notation 2 Notation 3
2
(ax) ™ + atan(x)" 1 + d7aretg x 1/ 4D, tan's
Jax dx? (ax)

Figure 3: Generating different notations for the same mathematical content

with new conversion rules, such as with OpenMath
as source and TEX as target, allows the Notation
Selection Tool to perform new conversions accord-
ing to desired rules:

<catalog>
<name> CALCULUS </name>
<itemlist>
<item>
<keyword> PARTIAL DERIVATIVE </keyword>
<content>
OpenMath encoding for mathematical
concept PARTIAL DERIVATIVE
</content>
<choicelist>
<choice>
<!-- The first notation choice for -->
<image src = "pd_1.gif"/>
<keyvalue> 1 </keyvalue>
<presentation>
<converter input = "OpenMath" output="LaTeX">
XSLT template for OpenMath
to BTEX for this notation
</converter>

</p;‘e.>;entation>
</choice>
</c.:}.1<.>icelist>
</item>
</iéémlist>

</catalog>
If the user selects the notation D, for partial differ-
entiation and f’ for ordinary differentiation, then,
instead of obtaining the default output, the Maple
expression shown in Figure 1a will be converted to

$${{\left (\mathop{exp}{\left ({x+3}\right) N\right)}~\prime}\,
{{{{\1left ({x+3F\right)}"{1/3}}) }"{\prime\prime\prime}}\,
{{\mathrm D}_{xxxyyH\left ({{x"y}r+{y x}+{x"3}}\right)1}$$,

which renders as

"
(exp (x + 3))/ ((x+ 3)1/3) Davayy (J:y +y* + ch).

The configuration file may define more than
one output format, for example both KTEX and
MathML. In this case, the conversion rules are se-
lected according to the target format specified by
the user (see Figure 4). This approach is a special
case of that described in [11] for the conversion of
mathematical documents into multiple forms.

2.3 The notation selection tool as a
front-end in multi-stage conversion

We have discussed extension of the Notation Se-
lection Tool by modifying the configuration file to
provide new conversions directly to TEX. We can,
instead, do the translation in a series of stages to
increase flexibility.

We can use the Notation Selection Tool as an
intermediate translation stage generating MathML.
This MathML can then be further processed to pro-
duce TEX. This multi-stage mode of generating TEX
from Content MathML or OpenMath can be spec-
ified by a menu selection in the Notation Selection
Tool. In this mode, the Notation Selection Tool first
generates MathML and then passes it to our config-
urable MathML to TEX converter [12].

This multi-stage process allows the Notation
Selection Tool to generate extended markup (i.e.
MathML and other XML) that may then later be
transformed. To do this, the desired extended mark-
up is placed in the output rules of the configuration
file. This extended markup can use new tags to cap-
ture the semantics of new mathematical concepts
or complex combinations of OpenMath or MathML
constructs. For example, one might use a new XML

TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting 189

Elena Smirnova and Stephen M. Watt

4. Mathematical Notation Selection Tools

Integrals | Intervals | Linear Algebra | Logarithm | Power or Root | Trig |

=101]

Arithmetic [C | Derivatives |
CONTINUED FRACTION: @ gy -+ al-ll- o [an,al,.__] O ay + !a%‘ S
[#]
DIVISION: @ag-h Oalb 03 O bE
MULTIPLICATION: ®agxh O a-b < ab S axhp

Style: ® Radio Button ' Drop Down

Input Stylesheet file: |Z:1F'ROJECTSICVS-ORCCA\MathML\NutationSeIectionTool?,'
Input MathMLIOpentath file: |Z:1PROJECTSICVS-ORCCAIMathMLINutatiDnSeIectionTDDIE\'
Output format |TeX >

Output fil E ZAPROJE] tionTool 2 B
utputfile name IPresentation MathML fction oo rowse
Output Stylesheet file: ziproJE(TeX via MathML TeX comverter... |:tionTool2

| toad || save || fnd || convert || Dispaywitn |[amava |~|| ciose |

Figure 4: The Notation Selection Tool, stand-alone application interface

element to capture the semantics of binomial coef-
ficients or continued fractions, which do not appear
in standard MathML. In such a case, a new trans-
formation rule can be added directly to the config-
uration file of the Notation Selection Tool:

<converter input = "Content MathML" output="LaTeX">
<xsl:template match = "apply/mmlx:choose[position()=1]
[count (child: :*)=2]">
<mmlx:binomial>
<xsl:for-each select = ’mmlx:choose/child::*’>
<xsl:copy-of select=’.’/>
</xsl:for-each>
</mmlx:binomial>
</xsl:template>
</converter>

The output of the XSLT transformation in the
above example will contain Presentation MathML
extended with the new tag mmlx:binomial. The
prefix “mmlx” is defined at the beginning of the gen-
erated XML, and indicates that this element be-
longs to a different namespace than the standard
MathML elements. The resulting element can be
either expanded immediately after the conversion
to obtain a combination of appropriate presentation
markup and semantic annotation (possibly using a
<csymbol> element). Alternatively, it may be car-
ried on to the next step of the translation to TEX,
as described in the next section.

3 MathML to TEX conversion

In earlier work we have explored the question of con-
version between TEX and MathML, using a set of
bidirectional transformation rules [13, 14, 15]. Here
we summarize the aspects of the converter that are
used in notation selection for TEX via MathML.

3.1 Modes of conversion

In [15] we presented a MathML to TEX translator
that converts expressions in MathML representation
to equivalent TEX expressions. The translator sup-
ports conversion at three different levels of content
granularity: (1) entire files, (2) individual expres-
sions and (3) separate objects. The last option al-
lows the user to manipulate stand-alone MathML
and TgX-objects obtained from sources other than
the usual MathML or TEX documents.

To perform the file-level conversion, the trans-
lator processes an entire MathML file and produces
a complete TEX document. The converter can also
handle other XML files containing MathML and re-
place the MathML elements with their TEX equiva-
lents, embedded as CDATA sections, as shown on Fig-
ure 5. This option is useful when our converter is
used as a pre-processor for HTML to IATEX transla-
tors such as html2latex [16]. Thus, from a sequence

190 TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting

Generating TEX from mathematical content with respect to notational settings

of two translations we can produce TEX documents
from HTML web pages containing mathematics.

3.2 Implementation

Even though the most natural choice for implement-
ing a converter for XML-based languages such as
MathML is via XSLT stylesheets, we have taken an-
other approach. The main argument against us-
ing XSLT for this converter was our desire to pro-
vide a symmetric path for the inverse conversion
from TEX to MathML. We chose to organize both
of the translators based on bidirectional mappings
between MathML and TEX constructs. Mapping
rules describe the correspondence between TEX and
MathML patterns in the following format:

<pat:template>
<!-- TeX command with parameters -->
<pat:tex op="\frac" params="\patVAR!{num}\patVAR!{den}"/>

<!-- Corresponding MathML tree -->
<pat:mml op="mfrac">
<mfrac>
<pat:variable name="num"/>
<pat:variable name="den"/>
</mfrac>
</pat :mml>
</pat:template>

Templates, such as the above, are organized
into mapping files. The same file can be used both
for converting from TEX to MathML and vice versa.
The converter tools are implemented in Java and
read one or more mapping files as they are initial-
ized. The converter may be run as a stand-alone
application (Figure 6) or as a web service [12]. The
same configuration file is used to control a trans-
former in the reverse direction [17], from TEX to
MathML. While it is the core Java program that
is carrying out the actual conversion, its behavior is
defined by the selection of mapping files.

This approach provides the converter with the
desired flexibility: none of the conversion rules are
hard-coded and any of them may be updated by
editing the corresponding templates in the mapping
files. The consistency between the two directions of
conversion is preserved, since any of the mapping
files can be used by either of the converters.

New mappings can be added in a similar way.
Whenever a new pattern, such as a TEX macro or
XML template, is introduced, a new template can be
added to a mapping file. This immediately enables
the conversion using a new transformation rule.

3.3 Conserving high-level semantics in
translation

In [13] and in Section 2.3 we have described how
new mathematical constructs can be described with
TEX macros or XSLT template definitions.

Macros are usually used as abbreviations for
lengthy expressions, expressions that are particu-
larly notable, or that appear more than once. These
expressions typically have some meaning that makes
them natural choices for expression by macros.
When converting a mathematical document be-
tween formats, we wish to conserve whatever im-
plicit semantics is captured by the macro markup.
Expanding macros and then converting loses this
information.

In [13] and [18] we showed that rather than ex-
panding all macros to low-level formatting instruc-
tions, in many cases it is possible to map high-
level markup in one setting to corresponding markup
in another, thus conserving implied semantics. We
may arrange that each TEX style or class file have
a counterpart XSLT stylesheet for use with Presen-
tation MathML, and each TEX macro have a corre-
sponding XSLT template definition.

We now give a complete example: Suppose we
are working with documents that involve the Lam-
bert “W” function of two arguments k and z, de-
noted Wi (z). It would be possible to denote this
explicitly as W_k(x) everywhere in a TEX docu-
ment, and as corresponding presentation markup in
a MathML document. We prefer, however, to define
a TEX macro, such as
\newcommand{\LambertW} [2]{W_{#1}\1left ({#2} \right)}

and a corresponding XSLT template

<xsl:template match="mmlx:LambertW">
<mrow>
<msub>
<mo> W </mo>
<xsl:apply-templates
select = ’mmlx:LambertW/child::*[1]"/>
</msub>
<mfenced>
<xsl:apply-templates
select = ’mmlx:LambertW/child::x[2]"/>
</mfenced>
</mrow>
</xsl:template>

We also add a direct mapping rule for \LambertW
and <mmlx:LambertW> to one of the translator map-
ping files:

<pat:template>
<!-- TeX command -->
<pat:tex op="\LambertW"
params="\patVAR!{k} \patVAR!{z}"/>
<!-- MathML element -->
<pat:mml op="mmxl:LambertW">
<mmx1:Lambertw>
<pat:variable name="k"/>
<pat:variable name="z"/>
</mmx1 : LambertW>
</pat :mml>
</pat:template>

Using this mapping, a MathML expression

<mmx1:LambertW>
<mn> 1 </mn>
<mi> z </mi>

</mmx1:Lambertw>

TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting 191

Elena Smirnova and Stephen M. Watt

<?xml version=’1.0’ encoding=’utf-8’7>
<html>
<h1> XHTML + MathML </h1>

<1i>
<math>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<mn>1</mn>
</math>
</1i>
<1li>
<math>
<msubsup>
<mi> A </mi>
<mi> i </mi>
<mi> j </mi>
</msubsup>
</math>
</1i>

</html>

< FEzpression 1

< Fxpression 2

<?xml version=’1.0’ encoding=’UTF-8’ 7>
<html>
<h1> HTML + MathML </h1>

<1li>
<LaTeX xmlns=’orcca.on.ca’> < Ezxpression 1
<! [CDATA[$${x"2}+18311>
</LaTeX>
</1i>
<1li>
<LaTeX xmlns=’orcca.on.ca’> < Fxpression 2
<! [CDATA[$${A_i"j}$3$11>
</LaTeX>
</1i>

</html>

Figure 5: Example of conversion from XHTML with MathML to TEX

will be translated to TEX as \LambertW{1}{z} in-
stead of W_1\left(z\right).

This approach, converting from MathML to
TEX driven by high-level rules, allows a concept-level
translation of user-defined macros. This preserves
mathematical semantics implied by the markup of
the original expression and, most importantly for
the present paper, allows user-preferred notations
to be given by alternative definitions of the target

TEX macros.

4 Automated line breaking

A secondary benefit of using a non-XSLT approach
for conversion from MathML to TEX is that it makes
automated line breaking of long expressions easier.

4.1 Motivation

In general, automated line-breaking of mathemati-
cal expressions is a complex problem and has been
studied by designers of computer algebra systems for
some three decades [19]. MathML browsers, such as
Amaya, MathPlayer and those of the Netscape fam-
ily, either have their own mechanism for line break-
ing in mathematical formulae, or provide a scrolling
region for long expressions. TEX, however, does not
natively support either of these options. Therefore
long TEX formulae generated from MathML may not
fit in the text area of the document. Very often com-

posing a mathematical paper with long formulae will
give results as shown in Figure 7.

Manual line breaking in TEX formulae is viable
only when the size of the expression is relatively
small. However, when MathML content is generated
as output from a mathematical software package, or
when numerous documents are to be converted, this
approach is not sufficient. One solution would be to
use the breqn package [20] to display generated TEX
formulae. There are a number of reasons, however,
why we have elected to provide line-breaking as part
of the TEX generation:

e Generated TEX formulae can be very large, so
a number of line breaking (and page breaking)
issues arise that do not arise with hand-written
equations. In particular, breqn fails to separate
factors of long products with implied multipli-
cation. We can handle these situations better
than a human-oriented package such as breqn.

e Generated TEX formulae can be idiosyncratic,
so providing our own line breaking of equations
gives finer control.

e As part of the TEX generation we have already
performed much of the analysis that is required
for line breaking.

e As a purely practical consideration, not all TEX
environments support the breqn package.

192 TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting

Generating TEX from mathematical content with respect to notational settings

£ MathML -> DOM -> TeX [2:\PROJECTS',CYS-ORCCA'MathML'NotationSelectionTool2!test\C

=10| x|

MathML: :nToolZitestiCal-outxml| M

ing file(s): |xm\;data1mm|0hars.xml| Output TeX: |i0nTO0I21teanaI-0uttex

[MathML Document |~ cnr ona>
¢] 0: =math= avfracs
@ 3 0: <rmrowe= ansup>
9 3 0: <rrows <ano>eHx2Z02; </ mo>

<ann>3 </mn>
</msup>
<mrow>

¢ I 0 =msup=
o= 3 0 =mrow=
o [31: <mo=: '

[»

o= 30 =msup=
o= 1:=mo=: +
o= [2 =msup=

o O 1: <mrawe <ano>6fx2202; </mo>
o= 3 0: =msup= ﬂmSL_lp> .
e sl
¢ 30 «mfrac= </maup>
§ 1 0: <msup= = </mrom>
30 <mo=: 2 </mfrac>
o1 2mn=: 3 nfracs
¢ C31: <mrowe <ansups>
o= 30 =mo=: 3 <wo>∂ </mo> |
¢ 31 =msup= <nni </mns hd
o0 =misx 4]] L]
e temn=:3 83 (\frac (\partial 3} (partial (x"3) }}
[mtace {(ac (\partial"2) (partial{y"2)) }
¢ 093 <mrows {{="yh+{y) +H{z"31 158

o[3 <mo=: + ~||4]

1 >

Output: ® TeX () XML
[_] Concatenate TeX Break lines Page Width [12.0 | Font Size |10 |

Position of operation sign: @ before line break) after line break O duplicate indent after line break

[] verbose mode

‘ Open a MathML File | ‘ Update MathML | | Save to TeX file ‘ | Undo |

Figure 6: The MathML to TEX converter, stand-alone application interface

4.2 Algorithm overview

The subject of line-breaking for mathematical for-
mulae is complex, and a full description of our ap-
proach is beyond the scope of this paper. For the
purpose of this article, we highlight only some of the
important aspects.

In a manner similar to the total-fit approach to
line breaking implemented for TEX paragraphs by
Knuth and Plass [21], our algorithm searches for all
possible breakpoints in a formula and tries to find
the combination of line breaks that will produce the
best global arrangement.

In addition to splitting linear text, the method
must take into account the two-dimensional nature
of mathematical content and also consider the im-
plicit semantics of expressions.

This leads to a number of constraints. For ex-
ample, script sub-expressions may not be separated
from their base expressions. Another common case
is that of juxtaposition: Immediate function argu-
ments should not be separated from the name of the
function, e.g. we must avoid

p(z —y, 2) sin
(2r+1),

but implicit multiplication can be split between the
factors

p(r —y,2)x

sin(2x + 1) .
Juxtaposition is difficult to distinguish, since func-
tion application and implicit multiplication often
have no explicit indication which operation is in-
tended (even though MathML provides invisible op-
erators for this purpose).

In general, every possible breakpoint is assigned

a “penalty” value, so for example, signs and rela-
tions, such as =, =, etc., as well as + and — are usu-
ally given priority over division and multiplication.
Preference is given to breaking a formula closer to
the root of the expression tree than within a branch.
This means that a product of sums will preferen-
tially break at the multiplications, unless the other
penalties make this an overwhelmingly bad choice.

4.3 Customization

In the previous example we saw that when multi-
plication is expressed implicitly, line breaking may
force the addition of an explicit multiplication sign.
This may be represented by a central dot -, times X,

TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting 193

Elena Smirnova and Stephen M. Watt

Yap 2.4.1596 - [MathToTex-showcase.dvi]

T Fle yew Tooks Window Help

=181
=181

288 TFT48L ¢ 000 TT|[BEEHE*OQ
P —

Elena Smirnova and Stephen Watt

Figure 1: Three ways of generating TeX from a Mathematical Software System

first conversion to Presentation MathML using No-

tation Selection Tool and then applying MathML to dit
10 2P @) P @) (P @), PyinG) (P 2)
*ﬁeﬂ!]“(ﬂ(—zﬁ -3 3 +6 3 +2 = -12 = +6 = -6 +4 = +

TEX converter.

3 MathMI to TEX converter

‘This MathML to LaTeX on-line translator converts
MathML representations of math formulae to equiv-
alent TeX expressions. The user may also control
Ene-breaking.

Oneof the main goalsof this converter i to con-
serve high-level semantics during translation. The
user may provide one or more mapping files to spec-
ify how MathML or other XML elements should
be translated. This allows user customization and
transformation of high-level MathML extensions to
TeX macros. (These mapping files are also used for
the TeX to MathML converter.)

The translator supports three kind of conver-
sion:

1. File to fle: to convert an entire

MathML fle into TeX document (-tex file) or
XML file with MathML entries to XML document
(xml file) with embedded TeX

2. Expression to expression: to convert any valid
MathML expression, given as input string.

3. Object to object: allows the user to manipu-

Then the formula (1) yields the following con-
ition

- we have explored topic how to convert between
TeX and MathML using bidirectional mapping files
[Watt LAMC 2002, Watt TUG 2002)

- we have also explored how presentation math can
be generated from content

- most of math software packages nowadays allow
t0 produce TeX from their intemal math represen-
tation, but they do not take into account notation
preferences of the users

- in this paper we explore the subject of adding &
notation-awareness to content math - TeX convert-

ers.
- In particular we present three ways of producing
Tex:

o directly from math content with respect to nota-
tional settings (NST Content MathML/OpenMath
0 TeX)

odirectly from Presentation MathML using the samef]
conversion rules we use in TeX to MathML direction
oin two-stage conversion: Content Math - Presenta-
tion MathML with macro-extensions and then from

Presentation MathML with macros to TeX with macrosl

(Mml macros map directly to TeX macros, this way

Fa

Run-on

formulae

from sources different from standard MathML o the conversation)
TeX files.

Iate individual MathML and TeX-objects obtained the semantics of math expression is preserved during

o
- mapping files
- mirror TeX-MathML bidirectionality
i ties

- preserving of the seman

Line breaking algorithm we have developed for
this purpose is complicated enough to fil a content
of a separate paper. For the purpose of this article,
we would like to mention only its features, such as
semantic-oriented breaking of long expressions, al
lowing to fit not only within a page or column, but

tomake under and over-scripts shorter, manage
expressions under radicals and in fraction numera-
tors and denominators (See example on Fig. 72). a
- examples

1002 August 3, 2006 19:26

(@40)*=6 = {/(@+)" — 42 (2 +)"? 4+ 756 (2 +)'° — 7560 (z +)" + 45360 (z + y)° — 163206 (z +3)" + 326592 (z + 1)’ — 6]

PREPRINT: Proceedings of the 2006 Anmual Meeting

[l(no source specials found) 759,00t Pages 1002 (2nd of 3)

Figure 7: TEX article without line breaking in long formulae.

asterisk * or other operator ®,®,.... Our package
allows the user to specify which is preferred.

Likewise, the positioning of the operator at a
line break can be set to the upper line, the lower
line, or repeated on both lines (see Figure 8). In
addition various indentation styles may be desired
for the multiple lines. These options reflect differ-
ent notational and cultural preferences, and can be
customized by the user of the converter through the
GUI interface or command line.

4.4 Line breaking in sub-expressions

As well as allowing a formula to fit within a given
page or column width, the line breaking algorithm
also handles situations where certain sub-expressions
are too large for conventional line-breaking. These
situations include long scripts (compare Figures 9
and 10), in fraction numerators and denominators
(Figure 11), and expressions under radicals (Fig-
ure 12).

The sizes of the bounding boxes for the folded
sub-expressions are normally calculated automati-
cally, based on an optimal fit in the text area. If
desired, they may instead be specified by the user.
For example, for sub-scripts this is specified as a
maximum ratio of the script width to the width of
the base expression.

r1 — Y2 + 23+
a— % +~7+
f(A) +49(2)

(a) Before break

T1— Y2+ 23
+a— 2 +77
+/(1) +9(2)
(b) After break

1 — Y2 + 23+
+a— 2+ 3+
+f(1) +9(2)

(c) Before and after break

Figure 8: Operator placement at line breaks

For large expressions, line breaking is a true
two-dimensional problem involving box composition.
In this setting, the height and width of individual
terms depend on the choices made in displaying
its sub-expressions. Examples of such nested line
breaking are shown in Figures 10, 11 and 12.

As a practical implementation detail, we use
the array environment to organize multi-line out-
put in mathematical expressions. This is shown in

194 TUGDboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting

Generating TEX from mathematical content with respect to notational settings

> 7.

(5,)E{(,B) | aw>+bzP=m, mERT, a#p, ged(a,b)=1}

Figure 9: Expression without line breaking does not fit
in a text column

> F@g~ (Deli+j,i—j)
ax® + bxf = m, }
m € RT, a # 3,

(i,j)e{(a,ﬁ)
ged(a,b) =1

Figure 10: Adding line breaking in subscript allows the
whole expression to fit in a column

1092 e(+3) /(2 +3) Wo (1.5 + 2.51)x

2@ (2)? 3 4+ 6243 1n (x)y2 +
6203y — 3263 1n (2)°y2 —
12203 1n (z)y — 62073 4
2243 In (ac)2 Y+ 4x(y_3) In (z) +
Y= atin (y)’ —y@ D ain ()’ +
6y*=2zln (y) + 692 1n (y) —
3y@=21n (y)® — 1492 z1n (y)

(.13—|-3)

Figure 11: Line breaking in long fractions

(z + y)14 —42 (z + y)12 +

756 (x +y)'® — 7560 (z 4 y)* +
7| 45360 (z +y)° — 163296 x

(z +y)* + 326592 (z + y)* — 67

(z+y)*—6=

Figure 12: Line breaking in long sub-radical
expressions

the code fragment of Figure 13. Note the command
\displaystyle preceding every new line. This en-
sures rendering of fractions and scripts in display
mode. To see the effect, compare the appearance of
the formula with fractions of Figure 14a and Fig-
ure 14b.

4.5 Open questions

One of the challenges in line breaking is to distin-
guish implicit multiplication and application of un-
specified or user-defined functions. We may assume
function application in the cases of explicit markup
or known functions, such as \mathop{tg} \alpha or
\tan x. In general, however, we need either good
heuristics, non-trivial semantic analysis, or explicit

$3

\begin{array}{1}
\displaystyle A\,\frac{x+y}{3}+{14\,t}"{3}-\\
\displaystyle B\,\frac{a-b}{4}+{12\,t}"{4}+\\
\displaystyle C\,\frac{m+n}{5}+{10\,t} {5}

\end{array}

$3

Figure 13: Encoding of multi-line constructions

T+1 12
A (a+bé3 +14m*>= —
B

= +12nt
(a) In-line style

Ty
(a+10)3

a—>b
B— +12pt
(x—y)3

(b) Display style

A +14m'? —

Figure 14: Array elements (a) without and (b) with
explicit display style.

user markup.

Another challenge, this time from the aesthetic
point of view, is how to arrange mixed expressions,
such as shown in Figure 12, where we decide to
maintain a single baseline for the overall expres-
sion and to align sub-expressions in place, instead
of moving them to separate lines and splitting them
there.

The final issue we mention is the question of
page breaking in the case of multi-page content.
This situation frequently arises with output of com-
puter algebra systems. We have implemented an ap-
proach that takes page size into account, but there
remain a large number of questions with respect to
handling of subexpressions and layout choices.

5 Conclusions and future work

We have explored an alternative approach to gen-
erating TEX expressions from mathematical content
when the content is presented in a conceptually ori-
ented format.

The main idea of our approach is to maintain
the mathematical markup at a high level, either
in TEX or MathML, allowing extended markup for
new mathematical concepts. This allows higher-
level transformations among the formats and allows
late binding of user-specified notational choices.

We have shown how the rendering of mathe-
matical content with TEX can be customized with
our Notation Selection Tool. For this, we considered

TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting 195

Elena Smirnova and Stephen M. Watt

two methods of conversion to TEX: One as a direct
translation using features of the Notation Selection
Tool. The second method was to use MathML ex-
tended with new elements. We showed that the sec-
ond approach offers a more fine-grained control over
the conversion process. It allows implicit seman-
tics of mathematical expressions to be mapped from
MathML template definitions to TEX macros. Ad-
ditionally, it allows a line breaking implementation
suitable for large, generated mathematical expres-
sions.

We continue to explore certain open problems
in the conversion between MathML and TEX. These
include the automatic generation of templates for
mapping rules and XSLT templates for notation con-
versions. We also wish to further investigate en-
hanced expression breaking methods in the pres-
ence of selectable notations. In particular, we intend
to explore generating line-breaking hints for a late
stage line breaker (i.e. one that operates after no-
tation specialization). Another point of interest for
our group in the MathML to TEX conversion area
is in automated generation of TEX style files from
XML cascading style sheets [22].

References

[1] Maple User Manual, Maplesoft, a division of
Waterloo Maple Inc., 2005.

[2] Mathematica, Wolfram Research, Inc., 2004,
http://wuw.wolfram.com.

[3] Richard D. Jenks and Robert Sutor, AXIOM: the
scientific computation system, Springer-Verlag,
New York, 1992.

[4] S.M. Watt, Aldor, pp. 265-270, in Handbook of
Computer Algebra J. Grabmeier, E. Kaltofen,
V. Weispfenning (editors) , Springer Verlag,
Heidelberg, 2003.

[5] Mathematics on the Net, Symbolic Services,
2003, http://wuw.orcca.on.ca/MONET/.

[6] Mike Dewar, Elena Smirnova and Stephen M.
Watt, XML in Mathematical Web Services, Proc.
XML 2005 Conference — Syntax to Semantics,
Nov 14-18, 2005, Atlanta GA, USA, http:
//www.idealliance.org/proceedings/xml05/.

[7] S. Buswell, O. Caprotti, D.P. Carlisle, M.C.
Dewar, M. Gaetano, M. Kohlhase, et al., The
OpenMath Standard 2.0, 2004,
http://www.openmath.org/cocoon/openmath/
standard/om20/index.html.

[8] R. Ausbrooks et al. Mathematical Markup
Language (MathML) Version 2.0 (Second
Edition), World Wide Web Consortium
Recommendation, 21 October 2003,
http://wuw.w3.0rg/TR/2003/
REC-MathML2-20031021.

[9] Elena Smirnova and Stephen M. Watt,
Notation Selection in Mathematical Computing
Environments, pp. 339-355, Proc. Transgressive
Computing 2006: A conference in honor of
Jean Della Dora (TC 2006), April 24-26 2006,
Granada, Spain.

[10] The notation selection on-line tool, 2002,
http://www.orcca.on.ca/MathML/
NotationSelectionTool/.

[11] William Naylor and Stephen M. Watt,
Meta-Stylesheets for the Conversion of
Mathematical Documents into Multiple Formes,
Annals of Mathematics and Artificial Intelligence,
Vol. 38, pp. 325, 2003.

[12] MathML to TEX on-line converter, 2001,
http://www.orcca.on.ca/mathml/texmml/
textomml.html.

[13] Stephen M. Watt, Exploiting Implicit
Mathematical Semantics in Conversion
between TEX and MathML, Proc. Internet
Accessible Mathematical Communication,
(IAMC 2002), July 2002, Lille, France, http:
//www.symbolicnet.org/conferences/iamc02.

[14] S.M. Watt, Conserving Implicit Mathematical
Semantics in Conversion between TEX and
MathML, TUGboat, Vol. 23, No. 1, p. 108, 2002,
http://www.tug.org/TUGboat/Articles/tb23-1/
watt.pdf.

[15] E. Smirnova and S.M. Watt, MathML to TEX
Conversion: Conserving High-Level Semantics
in Translation, International Conference on
MathML and Math on the Web (MathML
2002), June 28-30 2002, Chicago, USA, 2002,
http://www.mathmlconference.org/2002/
presentations/smirnova/.

[16] HTML to WTEX converter, http://www.rpi.
edu/~sofkam/html2latex/1.0/common/doc/
html2latex.html,

[17] TEX to MathML on-line converter,
http://www.orcca.on.ca/mathml/texmml/
mmltotex.html, 2001.

[18] Igor Rodionov and Stephen M. Watt, Content
Faithful Stylesheets for MathML, Ontario
Research Centre for Computer Algebra,
University of Western Ontario, Research Report
TR-00-14, 2000.

[19] John Keith Foderaro, Typesetting MACSYMA
equations, Proc. 2nd. MACSYMA User’s
Conference, June 1979.

[20] Michael Downes, Breaking equations, TUGboat,
Volume 18, No. 3, Proceedings of the 1997
Annual Meeting, 1997, http://www.tug.org/
TUGboat/Articles/tb18-3/tb56down.pdf.

[21] D.E. Knuth and M.F. Plass, Breaking paragraphs
into lines, Software — Practice and Experience,
1981.

[22] Cascading Style Sheets, www.w3.org/Style/CSS/.

196 TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting

http://www.wolfram.com
http://www.orcca.on.ca/MONET/
http://www.idealliance.org/proceedings/xml05/
http://www.idealliance.org/proceedings/xml05/
http://www.openmath.org/cocoon/openmath/standard/om20/index.html
http://www.openmath.org/cocoon/openmath/standard/om20/index.html
http://www.orcca.on.ca/MathML/NotationSelectionTool/
http://www.orcca.on.ca/MathML/NotationSelectionTool/
http://www.orcca.on.ca/mathml/texmml/textomml.html
http://www.orcca.on.ca/mathml/texmml/textomml.html
http://www.symbolicnet.org/conferences/iamc02
http://www.symbolicnet.org/conferences/iamc02
http://www.tug.org/TUGboat/Articles/tb23-1/watt.pdf
http://www.tug.org/TUGboat/Articles/tb23-1/watt.pdf
http://www.mathmlconference.org/2002/presentations/smirnova/
http://www.mathmlconference.org/2002/presentations/smirnova/
http://www.rpi.edu/~sofkam/html2latex/1.0/common/doc/html2latex.html
http://www.rpi.edu/~sofkam/html2latex/1.0/common/doc/html2latex.html
http://www.rpi.edu/~sofkam/html2latex/1.0/common/doc/html2latex.html
http://www.orcca.on.ca/mathml/texmml/mmltotex.html
http://www.orcca.on.ca/mathml/texmml/mmltotex.html
http://www.tug.org/TUGboat/Articles/tb18-3/tb56down.pdf
http://www.tug.org/TUGboat/Articles/tb18-3/tb56down.pdf
www.w3.org/Style/CSS/

	Introduction
	Generating presentation from content using notational preferences
	A notation selection tool
	Extending the tool for direct conversion to TeX
	The notation selection tool as a front-end in multi-stage conversion

	MathML to TeX conversion
	Modes of conversion
	Implementation
	Conserving high-level semantics in translation

	Automated line breaking
	Motivation
	Algorithm overview
	Customization
	Line breaking in sub-expressions
	Open questions

	Conclusions and future work

