Arabic font building for IXTEX

F. Mounayerji, M. A. Naal
Department of Computer Engineering
University of Aleppo, Syria
Fares_Mounayerji (at) hotmail dot com

Abstract

This contribution aims to describe a new solution for building arabic font for
ITEX. We focus on the font generation for Arabic calligraphy. This solution is
based on the determination of control points that gives precise METAFONT code
for the given Arabic font glyph. Using the METAFONT compiler, the new font is
compiled and finally installed on a WTEX distribution.

1 Introduction

The Arabic language is one of the ten most com-
monly used languages worldwide. Over 300,000,000
people living in the Arab world use this language in
everyday and official writing. This creates an im-
portant potential for Arabic text editor users.

KTEX is an elegant and advantageous typeset-
ting program and is strongly recommended for scien-
tific writing. Its capabilities and especially its math-
ematical capabilities are well known.

ITEX uses a logical structure or WYMIWYG
(What You Mean Is What You Get) concept in-
stead of WYSIWYG (What You See Is What You
Get), which makes I¥TEX unique in its approach
for building texts, and building structure-oriented
rather than formatting-oriented text, which reduces
errors and increases concentration on the idea of the
text.

There is a growing interest in globalizing ITEX
by supporting the most important languages all over
the world, and as we know, the Arabic language is
important and widely used, which generates a need
for even more extensive support than that of the ex-
isting ArabTEX and other Arabic support packages.
We also need to give the Arabic user of INTEX more
options, such as font selection, font adding, special
Arabic effects, etc.

Because of all the previous factors mentioned,
we see the importance to expand the support for this
important language.

2 FKTEX Principles
2.1 What is BTEX?

IXTEX is a programming language used to build large
text documents (e.g., books, articles, theses) presen-
tations, etc. We can also use the term IXTEX for a

{ copy }
. ¥
: }al.iaﬂg:ll
editor
: 1
— | 1
y .mf \'l | .tex\':
l\.__.--" | R A
| A | |.:L-!\-15-F"a:kngi
T e M g e g
METAfont—{ven )— TEX ™ 10g))
I
o, 1 L
- \] | e \]'
1\;?1‘ ) | (-avi ) |
- Tdvi
| driv fvizs printer
i 1 rl:.-er SCTEEN
Pt -
— Fonts —'=— Typesetting R

Figure 1: Simplified KTEX system structure

ITEX compiler. Figure 1 shows a simplified view of
the structure of X TEX processing.

2.2 What is a BTEX distribution?

A (B)TEX distribution is a set of folders and files
containing a (I&)TEX compiler, in addition to sup-
porting tools such as a previewer, METAFONT com-
piler, and much more. Some IXTEX distribution is
needed to run I#TEX on a given machine; option-
ally, a front-end like TEXnicCenter or WinEdt can
also be used. KTEX is free and open source soft-
ware, which has led to an enormous number of dis-
tributions, but only a few of them are recognized
worldwide, such as MiKTEX on Microsoft Windows,

238 TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting



MacTEX on Mac OS X, and teTEX which is usually
installed by default on Linux platforms.

Standard distributions follow the TDS (TEX Di-
rectory Structure) conventions, which describe how
to organize a distribution’s files and folders, and in
relation to our main subject of font files, the TDS
specifies where to put the font files such as . pk, .tfm
and .mf.

2.3 METAFONT

METRAFONT is a font building programing language
used to build fonts for (I2)TEX. It has a special syn-
tax to do this, depending on the control points of
the letter and their ordering. A line is drawn pass-
ing between the control points, sometimes a straight
line, and sometimes a curved line [5].

3 The solution

Because of the importance of the Arabic language,
Arabic fonts are important too. Every user should
have the ability to design the font that he wants to
use with his distribution of XTEX. To achieve this
goal we built a solution that permits any character,
or actually any shape, to be processed in different
stages in order to achieve the font as the user wants
it to be. The main stages in achieving this goal are:

e drawing the font on paper,

e scanning the font as an image,

e analyzing the image,

e finding the relations between control points,

e and generating the METAFONTcode.

We will talk about each of these stages in detail in
the following sections.

3.1 Drawing the font on paper
This step is drawing the Arabic character like g, o

or any other characters on paper, respecting Ara-
bic calligraphy. We don’t need to draw the double-
struck letter forms because there is an algorithm to
extract it from the standard form.!

3.2 Scanning the font

This will be a simple procedure of scanning the font
in order to enter it into the computer machine, and
deal with it as a simple colored image.? We also
include applying some changes to the image to be
ready for the next step.

1 It is worth mentioning that we can build our font as a
dynamic font [2] by using the kashida, a curvilinear variable
lengthening of letters along the baseline.

2 Usually black and white, with the font being black and
the background white.

Arabic font building for IMTEX

First stage Transform the image into a grayscale
image, and then into a black and white image.

Next stage Applying certain algorithms in order
to prepare the image for determining the con-
trol points, such as the contour algorithm for
the double-struck letter, and the skeleton al-
gorithm for the standard form, as we can see
in Figure 2.

A

Figure 2: Standard, skeleton and contour

3.3 Analyzing the image

This step will deal with the output image of the
previous step, and it will be responsible for two main
objectives:

e Determining the control points of the letter as
precisely as possible. Since these points will be
used later to build the METAFONT code, this
procedure is the main work here. We will scan
the image line by line until we find a black
point; this point will be the start of the let-
ter (generally but not always — the font could
be composed of lines and curves, separated or
connected). After that, we will move on those
curves and lines point by point, and during
this pass we will save the information that we
get about them in matrices, in order to be used
in a later stage for building the font as it ap-
pears in the image.

e Determining the path between those points is
very important here because we will lose the
original shape of the letter without knowing
the exact path between its control points.>

Figure 3 shows how we handle the standard case
by using the skeleton algorithm, and Figure 4 shows
how we handle the contour case or the double-struck
character.

3.4 Finding the relations between the
control points

This is an important step for simplifying the META-
FONT code, because many relations between the con-
trol points could be found. Simplifying will make the

3 The control points cannot be repeated but the path
points can be repeated.

TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting 239



F. Mounayerji, M. A. Naal

Figure 3: Standard, skeleton and control points

S S

Figure 4: Double-struck and control points

work for building the METAFONT file easier, and the
result more professional. Those relations can vary
from two points or more which have the same x or y,
to two points have a point which fall between them
in three cases:

o 135 =(x1+x2)/2
* Y3 = (y1 +y2)/2
o 23 =(21+ 22)/2

3.5 Generating the METAFONT code

This step will include transforming the results of
the previous steps into code readable by the METR-
FONT compiler. First of all we need to transform
the Cartesian coordinates of the solution environ-
ment into the Cartesian coordinates of the METRA-
FONTcompiler. Secondly we will have to transform
the points of the path into the METAFONT form.
And finally add the METAFONT instructions that
will draw the lines between the previous points.

3.6 Installing the new font

This step actually depends on the particular (I4)TEX
distribution, but we can specify the main stages in

a general way [1]. Assuming that the METAFONT

file is arab.mf:

e From the command line, run
mf ’\mode=ljfour; mode_setup; input arab.mf

e The output files will be arab.tfm and
arab.600gf (or similar).?

e Now you still need to pack the gf file into a
usable format. You do so with this command:

gftopk arab.600gf arab.pk

e And that’s it! Your font is now available to
every IWTEX document whose source is in the
same directory as the font files. T mean here
both file with the extensions .pk and .tfm.
We can also install it permanently, which is a
process that depends on the distribution [3].

References

[1] Christophe Grandsire, The METAFONT tutorial,
Version 0.33.

[2] Mostafa Banouni, Mohamed Elyaakoubi and
Azzeddine Lazrek, Dynamic Arabic Mathemati-
cal Fonts. Preprints for the 2004 Annual Meet-
ing, Xanthi, Greece, pp. 4853, 2004.

[3] TUG Working Group on a TEX Directory Struc-
ture (TWG-TDS), A Directory Structure for
TEX Files, version 1.1, June 23, 2004.

[4] Azzeddine Lazrek, NasX Arabic literal symbols
font, May 2, 2004.

[5] Peter Flynn, Formatting information: A be-
ginner’s introduction to typesetting with ETEX,
2005.

[6] The UK TgX FAQ, Your 396 Questions An-
swered, version 3.15a, date 2005/11/29.

[7] Jeff Clark, FMTEX Tutorial, revised February 26,
2002.

[8] Klaus Lagally, ArabTEX, Typesetting Arabic and
Hebrew, User Manual, Version 4.002, March 11,
2004.

4 The number 600 indicates that the precision is 600 dpi
(dots per inch).

240 TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting



	Introduction
	LaTeX Principles
	What is LaTeX?
	What is a LaTeX distribution?
	Metafont

	The solution
	Drawing the font on paper
	Scanning the font
	Analyzing the image
	Finding the relations between the control points
	Generating the Metafont code
	Installing the new font


