Page design in ETEX3

Morten Hggholm
XTEX3 Project

morten dot hoegholm (at) latex dash project dot org

Abstract

Choosing a page layout in KTEX is easy for the user with the help of packages
like geometry and typearea. However, users face various problems when wishing to
change the layout parameters mid-document — something which happens quite
often: title pages, rotated pages (with rotated header and footer), special pages
or spreads including large images, and other situations where manual fiddling is

a difficult and error prone process.

This article describes an interface for defining, storing, and retrieving com-

plete page layouts.

It will take a look under the hood to see how the data

structures and programming constructs provided by the IXTEX3 kernel ease the

programming task.

1 Introduction

Setting and understanding the page layout param-
eters in standard IATEX is not the easiest of tasks.
There is no interface at all so it must be done by
setting all parameters manually and then hope you
got them right. The packages geometry and typearea
both provide an interface for changing the parame-
ters for the entire document but there are situations
where one may wish to use a different layout for just
a few pages of the document:

e Title and back pages, where content is often
centered on the physical page.

e Rotated pages, where some users want to also
rotate header and footer.

e Page spreads containing material crossing page
borders.

Additionally, the ubiquitousness of PDF documents

on the Internet has opened up a new window of op-
portunity: changing page size mid-document.

2 The current solutions

Before trying to figure out a way to deal with page
layout in I#TEX3, it is probably a good idea to take
a closer look at the existing solutions within the
IXTEX 2¢ framework.

2.1 The base distribution

The KTEX kernel doesn’t really have much of an in-
terface when it comes to modifying the layout. The
only way to change anything is to set the dimensions
by hand by means of commands such as

\setlength\paperheight{29.7cm}
\setlength\paperwidth{21lcm}

Using the “raw” KTEX commands like this is not
an ideal interface for a designer. The layout package
from the tools bundle alleviates this a bit by drawing
the layout for you so that you can check if it looks as
intended. This way you may also discover conflicting
settings, as the kernel does not check this itself.

Should one wish to change some parameters
temporarily mid-document their values must either
be stored or the changes done locally. However, the
parameters are global (in the sense that they are set
at the top level in the document preamble) and it
is bad practice to do local changes to global param-
eters. In short: there are no technical hindrances
for the adventurous user to change the parameters
at will but it is at best a tedious and error prone
procedure.

Another problem is that recto and verso pages
are exactly the same except for \evensidemargin
and \oddsidemargin. As a consequence, certain
types of designs become much harder to do in BTEX
than you’d expect. For example, defining a page
layout where every odd page is six lines shorter (be-
cause, say, this is reserved for supplementary text) is
slightly difficult because one has to manually change
the text height from page to page.

2.2 The geometry and typearea packages

The most popular package for changing the page
layout is the geometry package [4]. It provides an
easier interface, one using a (key) = (value) syntax
whereby the designer/user is shielded from the di-
rect form of the INTEX parameters. The syntax is
almost self-explanatory:

TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting 213

Morten Hggholm

\usepackage{geometry}

\geometry{
paper = adpaper ,
textwidth = 6in ,
lines = 42

}

Not surprisingly this makes the textwidth 6in and
puts 42 lines of text on A4 paper. geometry does
not try to enforce typographic rules of thumb on
the user except for choosing margin ratios suitable
for printed books. Other than that, the user is re-
sponsible for everything.

A different approach is taken by the typearea
package from the koma-script bundle [3]. Based on
the document font, it tries to produce a textwidth
of about 60-70 characters and then defines the lay-
out in accordance with good typographic practice,
such as a 1:2 relationship between top and bottom
margin.

For a more in-depth discussion of both geom-
etry and typearea, see [2]. Common to both pack-
ages is that they work only for the entire document:
All settings must be done in the preamble and thus
we have not yet solved one of our initial problems:
changing the parameters mid-document.

3 A new solution

In order to come up with a solution to the problems,
let’s take a step back and look at what sort of areas
may appear on a page.

3.1 The parts of a page

Instead of defining recto and verso pages we will de-
fine one standard page description so that all differ-
ent page types have the same set of parameters, each
parameter corresponding to a letter as shown in Fig-
ure 1. The indices w, h, and s denote width, height,
and separation respectively. The central thing on
the page is the textblock T itself. The textblock
is surrounded on all sides by header, footer, left
area and right area. The left and right areas are
where margin notes may be positioned or as seen
in some designs where the designer uses the right
margin to place captions, section headings etc. and
outside these areas are the actual margins. Finally
the final paper size is often different from the stock
size so we must take this into account too. We can
notice several relationships:

Sy =1L +tr + Puw
Sp=tr +ts+pn
Pw=mr+ Ly +Ls+Ty+ Ry + Rs +mp
ph=mr+ Hp+Hs +Tp + Fs + Fp +mp

These relationships are similar to what can be found
in geometry and ease the task of autocompletion and
error checking.

The output routine will have to know which
values to use and the easiest way is probably to use
a set of global parameters with names such as

\g_page_std_textheight_dim
\g_page_std_textwidth_dim

etc. For those unfamiliar with the IMTEX3 naming
conventions, these are global dimension registers be-
longing to the page module and going by the name
std_(parameter). In a similar manner we will make
each page type have an identical set of parameters,
except these go by names like
\1_page_(type)_textheight_dim
\1_page_(type)_textwidth_dim

etc., i.e., they are local parameters and then the
shipout routine can handle setting the global pa-
rameters to the value of the local ones. Defining
a complete set of parameters for each page type
uses quite a number of dimension registers but since
KTEX3 uses e-TEX (or better) we are not tied to so-
lutions working within the tightly confined space of
the Knuthian TEX engine.

Since we have decided that all page types share
the same parameters, we must also solve the prob-
lem of storing and retrieving parameter values since
they must change between, for instance, recto and
verso pages. For this task we turn our attention to
some of the tools provided by the I¥TEX3 kernel.

3.2 Tools

TEX comes with only a few kinds of registers and
anything dealing with lists must be done in macros.
The tools for list processing in the KTEX 2¢ kernel
are restricted to token lists and comma separated
lists, and even then there are only mapping func-
tions. The KTEX3 kernel alleviates this by both ex-
tending the list of data structures with sequences
and property lists as well as providing a complete
set of tools for each data type: mapping, push/pop
operations, etc. For the problem at hand we will use
property lists.

3.2.1 Property lists

A property list is a list structure consisting of a series
of keys, each with its own information field, of the
form

\(key 1){(info 1)}

\(key 2){(info 2)} ...
For example, a small test file for the cross refer-
encing module of ITEX3 contains a property list
\g_xref_mylabel_plist which expands to

214 TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting

Page design in ETEX3

tr
e - 1t
| mr |
| | |
‘ Hy, Header ‘
Y
H,
tL‘ A A A ‘tR
<—Tme - L,— Ly Tw Ry —r R,——mpr
Ly, g, Rn R
| l l |
| |
| |
| |
| |
| | |
h
| S pn |
| . |
|) |
| |
| |
| |
| |
| F, |
‘ Fh Footer ‘
Y
| |
| |
mp
| |
L _ S IS S
tp

Figure 1: The parts of a page: S is stock size, p is paper size, ¢t are trims, m is margin, T is the text block, L and

R are marginal note areas, and F' and H are footer and header resp.

TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting 215

Morten Hggholm

\xref_name_key {This is a name}
\xref_valuepage_key {1}
\xref_page_key {i}

Property lists are a natural way to store series/col-
lections of information. One such application could
be the babel language strings or, as we shall see, an
array of length registers with saved values.

For our purposes we will store the property lists
with names like \g_page_recto_plist with the fol-
lowing contents:

\1_page_recto_textheight_dim
{\1_page_recto_textheight_dim}

\1_page_recto_textwidth_dim
{\1_page_recto_textwidth_dim}

The reason is that we can have some application set-
ting these parameters locally and then we can use
the extended list processing tools of the I TEX3 ker-
nel to map a function on each info-pair and extract
the data. Here’s a small example of how this is done:

\tlp_gset:Nx \g_page_recto_tlp {
\prop_map_function:NN
\g_page_recto_plist
\page_extract_dimensions:Nn
}
\def_new:NNn\page_extract_dimensions:Nn 2{
\exp_not:N\dim_set:Nn #1{\dim_use:N #2}
}

\tlp_gset:Nx does an \xdef on its second argu-
ment and stores it in the global token list pointer
\g_page_recto_tlp. \prop_map_function:NN is
an expandable mapping operation which places its
second argument in front of each info-pair of the
property list, which is given as the first argument. In
our example this argument is the auxiliary function
\page_extract_dimensions:Nn which is called to
get the current value of the parameter and prepar-
ing it to be set. The end result is a macro containing

\dim_set:Nn\1l_page_recto_textheight_dim
{536.0pt}

\dim_set:Nn\1l_page_recto_textwidth_dim
{310.0pt?}

At the time of the shipout this list is run and then
we also run a simple

\dim_gset:Nn
\g_page_std_textheight_dim
{\1_page_recto_textheight_dim}

\dim_gset:Nn
\g_page_std_textwidth_dim
{\1_page_recto_textwidth_dim}

Note that all of this does not touch the original prop-
erty list, so a number of operations can be performed
by mapping functions onto it. For example, one
could reset all parameters to some special value (typ-
ically negative) and then a second mapping function
could check if all parameters have indeed been set.

3.2.2 Templates

IXTEX3 provides the concept of templates, which are,
in short, parameterized functions. As arguments, a
template takes a list of named parameters given in
the well-known ‘keyval’ syntax plus additional ar-
guments, which are often user input. The template
converts the named parameters into macro or reg-
ister assignments and uses these when running the
actual code in the template. While a template can
be used directly, one often defines various named
instances of a template, which is the template func-
tion run with a specific set of parameters. Defining
and using an instance instead of running the entire
template at runtime is faster in terms of execution
time but also has the advantage that one can store
several different versions of a template and then use
specific instances depending on the needs at hand.

As a small example, let’s imagine a template
type for producing split level fractions such as 3/7.
The template type receives three arguments from
the user:

1. Numerator.

2. Separator. In case of \NoValue, i.e., no argu-
ment, use a default symbol instead.

3. Denominator.

So for this template type one can define several dif-
ferent templates depending on the needs of the user
and the font in question. With fonts not containing
superior and inferior numbers one will have to man-
ually raise and lower the characters whereas more
advanced font sets such as Minion Pro contain these
characters and then one can use a much simpler tem-
plate, which basically just inserts the user input as-
is. Figure 2 shows a complete example of a simple
template and a possible user interface to the tem-
plate using xparse, while Figure 3 shows the result-
ing output. The template defined in this example
uses \textfractionsolidus as the default separa-
tor symbol.

In the example you can see how one can run the
template directly, how to define instances and how
to use instances as part of defining document syntax
with xparse. An interesting observation is that using
the solidus from Times works rather well with Com-
puter Modern instead of the unusually large solidus
found there.

216 TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting

\documentclass[12pt]{article}
\usepackage{template,xparse,textcomp,1l3box}
\CodeStart

\dim_new:N \1l_splitfrac_size_dim

\dim_new:N \l_splitfrac_pre_kern_dim
\dim_new:N \1_splitfrac_post_kern_dim
\box_new:N \1l_splitfrac_tmpa_box
\DeclareTemplateType{splitfrac}{3}
\DeclareTemplate{splitfrac}{text}{3}{

numerator-format = f1 [#1] \splitfrac_numerator_format:n ,
denominator-format = f1 [#1] \splitfrac_denominator_format:n ,
separator-format = f1 [#1] \splitfrac_separator_format:n ,
numerator-scale =n [.6] \l_splitfrac_scale_tlp ,
separator-symbol = n [\textfractionsolidus]

\1_splitfrac_separator_symbol_tlp,

Page design in ETEX3

separator-font = n [\DelayEvaluation{\f@family}] \l_splitfrac_separator_font_tlp ,

separator-pre-kern = 1 [\DelayEvaluation{-.lem}] \l_splitfrac_pre_kern_dim ,
separator-post-kern = 1 [\DelayEvaluation{-.15em}] \l_splitfrac_post_kern_dim

-~

\DoParameterAssignments
\sbox\1_splitfrac_tmpa_box{

\splitfrac_separator_format:n {
\fontfamily{\1l_splitfrac_separator_font_tlp }\selectfont
\IfNoValueTF{#2}{\1_splitfrac_separator_symbol_tlp}{#2}

o3

\mbox{

\dim_set:Nn\1l_splitfrac_size_dim {

\1l_splitfrac_scale_tlp \dim_eval:n{\f@size pt} }

\raisebox{\box_ht:N \1l_splitfrac_tmpa_box -\height }{
\splitfrac_numerator_format:n {

\fontsize{\1l_splitfrac_size_dim }{\baselineskip}\selectfont
#1 })

\kern\1l_splitfrac_pre_kern_dim

\box_use:N \1l_splitfrac_tmpa_box

\kern\1l_splitfrac_post_kern_dim

\raisebox{-\box_dp:N \1l_splitfrac_tmpa_box}{
\splitfrac_denominator_format:n {

\fontsize{\1l_splitfrac_size_dim }{\baselineskip}\selectfont
#3 > } }

}

\DeclareDocumentCommand\splitfrac{mom}{
\IfExistsInstanceTF{splitfrac}{\f@family}
{\UseInstance{splitfrac}{\f@family}}
{\UseTemplate{splitfrac}{text}{}}

{#1{#23{#3}

}

\CodeStop

\begin{document}

\UseTemplate{splitfrac}{text}{}{34}{\NoValue}{15},

\fontfamily{ptm}\selectfont\textonehalf,

\UseTemplate{splitfrac}{text}{
separator-pre-kern=0Opt,
separator-post-kern=0pt}{1}{\NoValue}{2},

\DeclareInstance{splitfracHptm}I{text}{
separator-pre-kern=0Opt,
separator-post-kern=0Opt}

\UseInstance{splitfrac}{ptm}{1}{\NoValue}{2},

\splitfrac{34}{56},

\normalfont

\splitfrac{34}{56},

\UseTemplate{splitfractH text}{
separator-font=ptm,
separator-pre-kern=0pt,
separator-post-kern=0pt}{34}{\NoValue}{15}

\end{document}

Figure 2: Example document for split level fractions using templates.

TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting

217

Morten Hggholm

34/ lp 14 1h 34k 34/ 34
/15y V2, Vo, Vo, 356, /e, Y5

Figure 3: Output from running the example document
shown in Figure 2.

Templates are an integral part of the design as-
pect in TEX3 and worth a closer look; see the doc-
umentation in [1]. We will not discuss them further
here, but this brief introduction should be enough
to give you an idea of the potential. At this point
it should come as no surprise that our present page
layout parameters are well suited for templates.

3.3 Putting the pieces together

We’ve now presented the tools and are ready to de-
fine templates for setting the page layouts. A tem-
plate for setting all parameters is likely to be very
large, so we’ll just show a minimal example. We
define a template type pagelayout which takes one
argument: the name for the page type. Next we
declare the template minimal which has two keys:
textheight and textwidth with default values of
8in and 6.5 in respectively (same as in the standard
BTEX class file minimal). The template then sets the
local parameters for the page type and stores them
in the token list pointer as shown Section 3.2.1. This
simple template setup looks like this:

\DeclareTemplateType{pagelayout}{1}
\DeclareTemplate{pagelayout}{minimal}{1}{
textheight = 1 [8in]
\g_page_std_textheight_dim ,
= 1 [6.5in]
\g_page_std_textwidth_dim ,

textwidth

H
\DoParameterAssignments
\dim_set:cn {1_page_#1_textheight_dim}
{\g_page_std_textheight_dim}
\dim_set:cn {1_page_#1_textwidth_dim}
{\g_page_std_textwidth_dim}
\page_store_page_dimensions:n {#1}

}

Using the template is fairly straightforward. The
defaults are used unless you use a key in which case
the new value is used. For demonstration purposes,
we will make the recto and verso layouts different in
height; the recto is one inch longer than the verso.

\UseTemplate{pagelayout}{minimal}
{ textheight= 9in } {minimal-recto}
\UseTemplate{pagelayout}
{minimal}{}{minimal-verso}
\UsePageLayout{2}
{minimal-recto,minimal-verso}

The \UsePageLayout command instructs BTEX to
switch between two different parameter sets which
are then given as a comma separated list in the sec-
ond argument. The command takes effect on the
following page so it can also be used mid-document.

The attentive reader may have noticed that the
interface presented above does not allow for defining
two page layouts at a time with common margin
ratios etc., as would usually be required. This will be
supported, but it requires a different template type,
taking two arguments. Alternatively, a package like
geometry in its ITEX3 incarnation could easily stick
to the same user interface as it has now and simply
pass the information on to two templates at a time
if two-sided documents are produced.

4 Concluding remarks

The interface for page layouts described in this ar-
ticle exists only as an unreleased prototype at the
time of writing. There is still a bit of work to do
on it, especially in the area of integrating it with
the experimental output routine xor. Currently xor
stands at 5000+ lines so this is something which has
to be done very carefully! When this is done it will
be possible to specify page layouts on a per-page
basis, which is especially useful for float pages.

Other than that we will produce various differ-
ent templates plus provide tools for autocomplete-
tion and error checking. When ready for release it
will be put in our publically available Subversion
(SVN) repository which can be reached by pointing
your SVN client to

http://www.latex-project.org/svnroot/
experimental/trunk/

References

[1] Various authors. IXTEX project web site
directory for experimental code.
http://www.latex-project.org/svnroot/
experimental/trunk.

[2] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, Chris Rowley,
Christine Detig, and Joachim Schrod.

The BTEX Companion. Tools and Techniques
for Computer Typesetting. Addison-Wesley,
Reading, MA, USA, second edition, 2004.

[3] Frank Neukam, Markus Kohm, Axel Kielhorn,
and Jens-Uwe Morawski. The KOMA-Script
Bundle, March 2005.

[4] Hideo Umeki. The geometry package, July
2002.

218 TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting

