Infrastructure for high-quality Arabic typesetting

Yannis Haralambous

Département Informatique, ENST Bretagne
CS 83818, 29238 BREST Cedex 3
France

yannis dot haralambous (at) enst dash bretagne dot fr

1 Introduction

This paper presents what we consider to be the
ideal! (or at least a first step towards the ideal)
infrastructure for typesetting in the Arabic script.
This infrastructure is based on four tools which have
partly been presented elsewhere:

1. the concept of texteme;

2. OpenType (or AAT) fonts. In fact in this pa-
per we will talk about “super-OpenType” which
consists in using static OpenType substitutions
and positionings in dynamic typesetting;

3. Q5 modules: transformations applied to the
horizontal node list before entering the main
loop;

4. an extended version of TEX’s line-breaking
graph for dynamic typesetting.

Textemes have been presented in [12] and [13].
They are atomic units of text extending the notion
of character. A texteme is a collection of key-value
pairs, some of which are mandatory (but may have
an empty value) and others optional or freely de-
finable by the user. Mandatory keys are “charac-
ter” (a Unicode position), “font” (a font identifier)
and “glyph” (a glyph identifier in the given font).
The latter two keys are, in some sense, the com-
mon part between textemes and TEX’s “character
nodes” (quoted because in fact a “character node”
contains only glyph-related information). Hence, a
first application of textemes is to add character data
to “character nodes”. In fact there are other types
of information which we also add to textemes:

e hyphenation: instead of using discretionary
nodes, we add hyphenation-related information
into textemes;

e color;

e horizontal and vertical offset of glyph (leaving
the abstract box “width x (depth + height)”
unchanged);

1 The author has written several papers on the typeset-
ting of Arabic: [6, 7, 8, 9, 10, 15, 16], and has developed
Arabic systems using three different methods: a preproces-
sor (1990), intelligent ligatures (ArabiTEX, using TEX--XET,
1992) and Q; Translation Processes (€1 distribution and Al-
Amal, 1994). The system described in this paper will be the
fourth (and hopefully the last) Arabic system developed by
the author.

e metadata;
e ctc.

We will see how — due to the internal structure
of the Arabic writing system — the concept of text-
eme happens to be particularly useful for text in the
Arabic script.

There is no need to present OpenType and
AAT fonts; the reader can consult [20] or the corre-
sponding Web pages at Microsoft and Apple.

Qs modules have been presented in [14]. The
well-known technique of €2; Translation Processes
(QTPs) is applied at a later stage of text process-
ing inside 9: just before the end graf procedure,
which is called when the complete list of nodes of a
paragraph has been stored in memory, before we en-
ter into the line breaking engine which will examine
this list of nodes and insert active nodes at potential
line breaks.

Qo will output the horizontal list of nodes, in
XML. Since we are using textemes, this horizon-
tal list contains both traditional types of nodes as
well as texteme nodes. External processes will then
transform these XML data and the result is again
read by €2 and replaces the original horizontal list.

Besides the nodes of the horizontal list, €25 also
includes in the XML data global information such as
font name mapping, the current language, etc.

In the next section we will describe the fourth
tool, namely the extended TEX graph.

2 Dynamic typesetting and
an extended graph

When TEX processes a horizontal list, inserts ac-
tive nodes for potential breakpoints, calculates bad-
nesses for each arc of the graph and finally finds
the shortest path (where we consider badness as a
“distance”), glyphs do not change:

e if glyphs are given by “character nodes” then
they are static;

o if they are given by discretionary nodes, then
we have two possibilities: when there is no line
break we have a single node list (possibly con-
taining one or more glyphs) and when there is
a break we have two entirely different lists, the
“pre-break” and the “post-break”. The choice

TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting 167

Yannis Haralambous

depends entirely on the fact whether we break
or not;

e if they are given by ligature nodes, once again
we have two possibilities: when the ligature is
not broken then we have a single static glyph.
When the ligature is broken we return to “char-
acters” (or at least to something which is a bit
closer to the concept of character, even though
it is not exactly a character) and apply the main
loop again to the two parts (before and after
the break), which sometimes results in new lig-
atures. But once again each node list obtained
that way is unique.

In all three cases glyphs either do not change
or their change depends only on a line break close
to them.

Dynamic typesetting is a method of typeset-
ting where glyphs can change during the process
of line breaking, for reasons which may depend on
macrotypographic properties such as justification of
the line or of the entire paragraph, or more global
phenomena like glyphs on subsequent lines touching
each other or to avoid rivers, etc.

Dynamic typography was applied by Gutenberg
in his Bibles. He was systematically applying liga-
tures to optimize justification on the line level. It
is very useful for writing systems using words but
not allowing hyphenation, like Hebrew (where some
letters have large versions without semantic over-
load, these letters have been used mostly at the end
of lines, when printers realized that they are facing
justification problems) or Arabic.

To perform dynamic typesetting with Qo we
are extending the graph of badnesses so that we
can have many arcs between two given nodes, each
one corresponding to a given width (“width” in the
sense of glue, that is a triple —ideal width, maximal
stretch, maximal shrink) and to its badness.

Using an extended graph means applying the
same principle of optimized typesetting on the para-
graph level to paragraphs where glyphs (or glyph
groups) have alternative forms (in the case of groups
we call them “ligatures”). Performing the calculation
of shortest path on such a graph means that the so-
lution will be the best possible paragraph, chosen
among all possible combinations of alternate forms
of glyphs.

Alas, such a calculation can explode combina-
torially. Imagine a paragraph of ten lines, each con-
taining 60 glyphs, that is 600 glyphs in total. Imag-
ine each glyph having two variant forms, that is a
total of three choices for each glyph. No ligatures.
That would already make 3°°° ~ 1.87-1028¢ possible
combinations of glyphs, enough for running 25 until

the next big bang and beyond, for only ten lines of
text ... a perspective which would delight Douglas
Adams if he was still with us.

This is why dynamic typesetting requires a
strategy. Even if choices of glyph variants are mu-
tually independent, one has to define rules to limit
the number of glyph combinations.

For example, a realistic strategy could be the
following:

1. classify glyphs into N width classes (the higher
N the finer the result will be, but the more
calculations we will have to do);

2. whenever we have to choose between glyphs in
the same class, make a single choice, in a ran-
dom manner;

3. if we have many choices for which the sum of the
widths of classes is relatively constant, choose
a single one, randomly.

In other words, we restrict the number of choices
to those that give us different widths on the word
level. Whenever we have different glyph combina-
tions producing the same global width, we use a
random generator to choose a single combination.
This strategy is useful when there is no semantic
overload. One can imagine refined versions where
the combination chosen is not entirely random but
is based on more-or-less strict criteria (for example:
use ligatures preferably at the end of words, or do
not use specific variants in the same word, etc.).

The strategy we have described is based solely
on width criteria. But when many different glyph
versions are designed the chances that some of them
are in conflict (for example, may touch each other)
heavily increases. Due again to combinatorial rea-
sons, we can’t expect the font designer to anticipate
all possible conflicts between glyphs. We need a tool
which will test each combination (for example, test
whether glyphs are touching) and eventually add an
additional penalty to the corresponding arc of the
graph.

This tool can work on an interline level so that
the calculation of global badness is more complex
than just summing up the badnesses of individual
arcs. The extended TEX graph used by 25 will use
binary arithmetic on flags to add additional bad-
nesses to given path choices.

Up to now, very few fonts exist with extremely many
variants (one of which is, for example, Zapfino which
has ten different ‘d’ letters) and in the case of calli-
graphic fonts the document’s author (who becomes
a “calligrapher”) will probably be more interested
in (manually) choosing a beautiful combination of

168 TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting

glyphs than in having the absolutely best justifica-
tion by leaving the choice of glyphs to the machine.

The case of Arabic is different: ligatures are
much more common (especially in traditional writ-
ing styles) and calligraphers have a long tradition of
using them in the frame of a justification-oriented
strategy (see [3]). This is why the extended graph
of TEX will prove especially useful for the Arabic
script.

In the following we describe the infrastructure
necessary for each step of Arabic text processing.

3 Infrastructure for Arabic text processing

3.1 Preliminaries: Dynamicity of
Arabic script

Arabic text justification can be obtained by (in order
of priority):
e using blank spaces of variable width (as in other
scripts);
e enabling or disabling ligatures;
e choosing between alternative forms of glyphs;
e inserting “keshideh” connections between letters
(in systems like [3] and [4] which can produce
curvilinear connections; when the “keshideh” is
simply a straight line segment, its esthetic value
is very doubtful).

Article [3] mentions some additional justifica-
tion methods (curvilinear baseline, typesetting the
last words as interlinear annotations, etc.), which,
in our humble opinion, are less suited for the visual
paradigm of printed text and fall into the category
of manuscript constructions.

3.2 Preliminaries: Texteme properties

The Arabic script functions in such a way that a lot
of information is unwritten and has to be known in
advance by the reader:

e Some letters are systematically connected and
hence can take up to four different forms ac-
cording to their immediate context (in Urdu
script we have up to nine contextual forms).
The form of a glyph can be calculated by con-
textual analysis, but in some cases this calcu-
lation must be overridden: for example, as we
see in fig. 1, an initial letter meem =8 is used
as an abbreviation for mou’annith C.a}c (= fe-
male). This contradicts contextual rules: that
meem normally should be isolated. Unicode
provides a solution for this case: to use a ZERO-
WIDTH JOINER character just after the meem.
We consider Unicode’s solution to be particu-
larly clumsy: a “character” is (according, once
again, to Unicode) the “abstract representation

Infrastructure for high-quality Arabic typesetting

ol s

Abréviations

g el g

dans le texte arabe

Cisa -
O
o =
ol -
s 8

Olg-ly Ol
e Y

Olydly Ol

Figure 1: Abbreviations taken from a French-Arabic
dictionary [1]. Notice on line 5 letter meem in initial
form = instead of isolated form @ which should normally
be used since it is not followed by any other letter. The
same happens with letter heh on line 11.

of a smallest component of written language”
and this can hardly be said for the ZERO-WIDTH
JOINER as used here. Furthermore, when doing
copy-and-paste operations one should be sure
to copy that invisible character, otherwise the
meem will change form. Instead,) inserts
Arabic contextual form inside the texteme, as
a texteme property.

In operating systems there is a dedicated li-
brary (Uniscribe for Windows, Pango for Linux,
ATSUI for Apple) which performs contextual
analysis and then transmits the result to an
OpenType font. This is why OpenType pro-
vides a property for each contextual form (init
for initial, medi for medial, fina for final, isol
for isolated). In our case, the texteme proper-
ties play the role of OpenType property activa-
tors.

e Short vowels, although not always written, can
be very useful for NLP (Natural Language
Processing) applications (indexing, automatic
translation, summarizing, etc.). People like
Ahmed Lakhdar Ghazal in proposing a simpli-
fication of the Arabic script ([10], [18]) consider
nonetheless that vowels should always be ex-
plicitly written in Arabic, to avoid ambiguities.

TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting 169

Yannis Haralambous

Tools like Sakhr’s Diacritizer [19] or other tools
described in [17] can provide the missing vowels.
One can imagine an {23 module based on one of
these technologies for adding textemes for the
missing vowels (all vowels are represented by
Unicode characters) with a “hidden” property
activated.

Some people may consider full vowelization
as archaic. It is true that the average Arabic
reader does not need vowels to understand a
text, except for rare cases (foreign words, etc.),
in which it remains customary to use vowels. By
using “visually hidden” textemes we can provide
linguistically rich text without changing the vis-
ual image of the text and hence people’s reading
practices.

e Most words of Semitic languages are based on
three-letter stems called roots. To analyze a
word morphologically it is mostly sufficient to
find its root and to consider the vowels which
are added to the three letters and eventual pre-
fixes and postfixes. In particular, being in pos-
session of these data is the ideal condition for
proper indexing of Arabic and the first step for
pertinent automatic translation.

Removing prefixes from Arabic words is nec-
essary even for alphabetical sorting: it would
be silly to sort liradzul under letter ‘I’ since it
means in fact “for (li-) a man (radzul)” and the
lemma should be radzul.

Once again the solution is provided by text-
emes: using an NLP tool one can attach proper-
ties such as “first /second /third letter of semitic
root”, “prefix”, “postfix”, etc., to textemes. The
sorter/indexer can then use them to operate
properly.

e In some cases we are not sure about some of
the information described above: ancient Ara-
bic texts have no dots on letters (so that, for
example, letters beh, teh, theh, noon and (in ini-
tial and medial form) yeh are written in exactly
the same way), and even fewer short vowels or
other diacritics. Reading such a text requires
significant human interpretation (as in all an-
cient languages, but even more because of this
particular aspect of Arabic script).

Let us suppose that a scholar considers that a
given letter of his manuscript has a 70% chance
of being intended by its author as a beh, a
29.999% chance of being a teh and a chance in
a million to be a theh. How can we insert this
information into the text itself? Once again, we
can use texteme properties. The same method
can be applied for missing vowels. And one

could develop various visual strategies for rep-
resenting such textemes (color, hypertext links
with pop up windows, etc.).

e Let us leave the semantic area aside and delve
again into purely visual issues. Arabic letters
can be connected by curvilinear segments called
keshideh. But the amount of keshideh autho-
rized between two letters is specified by rules
(see [5], [9] and [16]). A special texteme prop-
erty can be used to store the amount of keshideh
allowed (for example, a floating number be-
tween 0 and 1 or a glue field) after a given text-
eme.

Let us note the fact that keshideh has some-
times a semantic overload: it can be used to em-
phasize or to show metric properties of verses
in poetry. In that case the glue field of the
keshideh property will have a non-zero ideal
value with shrink and stretch values.

This property is important for post-process-
ing: not only do we need a curvilinear stroke
but the glyphs surrounding the keshideh in
some cases get modified so that they smoothly
fit together.

Last but not least there is another aspect of
keshideh: in some cases they may carry short
vowels or diacritics. Indeed there is a Unicode
character for keshideh: ARABIC TATWEEL. This
Unicode character can be used as the base char-
acter for short vowels or diacritics (which are all
combining characters). In that case we will still
use curvilinear keshideh but, again, with a non-
zero ideal width so that there is room enough
to place the diacritic.

We have presented several cases where injecting
extra information into Arabic textemes can prove
useful for Qo processing or for other tasks (sorting,
indexing, etc.). The other advantage of textemes is
that this information will remain in the textual data
and will be available to any subsequent operation.

In any case during step 1 of the process we need
to calculate Arabic contextual forms. This is de-
scribed next.

3.3 Step 1: Hyphenation

It has been said over and over again that Arabic
is not hyphenated. This is true when we refer to
Arabic language, but false when we refer to Arabic
script. Indeed, there is one language written in Ara-
bic script, namely Uighur, which uses hyphenation
just like any European language. Uighur may use
the Arabic script but is not a Semitic language and

170 TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting

el B38ss SLLiS Lijes

St 35

i daece o Gl 5T Sl de L Sl Ll los
silods Lails Ll Lidiies eaws i o Ledll dlo V3 dakops
Sk il Bl o cacclibo oLLlS

ekt e BhaeS ol af L e locd ladjigs sllilS
i peslt cewin Al Wiy 3k plumlily sl i
i)l 0§ coamad cnaas Slnad g Cae e cpanSllS a8 SlinS 0§ SS 8
T md el St ool LES o dlilags pluadyp oG s
c bl 3L

4535 Olamd saiadt w3035 05 s lilil e emid jee M LG ML
oplh diies BLLiS e Sy ol o 80355050 wis
st blely 505 Plaied Gl e bl ol Gl b

s ahs e WU bt o sl L gilenss 1l ubdis

sbidys ey Hadle Ldidis 8 hollis didys i
0§ ey Baede ot il L e L€ Ll Bl R s
SO T PO VIV BN O NSO T UL N SCT - S SUUUE SO
Jo(UELYSUL IVES FUUR LI BUESE J7LI UYL R UPPOVINEI ou [t SUESK U S T S
@j_uu o S8y pae Wl et L el Bl e b e il S
ot

LS K Gl S idge il e L ud e
@;J;,; It oy i b 3e &) byt L1608 Ll o 3hige
bl Bt G lad e e W o

Bl 8 0 35 Bt bl J3jidast LS 8 g Gasge 5L
cibluacs 18 el g Leiylyasl Sus Gie

s lladBi ejis
Geiliial e o Sl s (1L

DVEITA EeipS o BB 12 e [i

Figure 2: A text in Uighur (Universal Declaration of
Human Rights).

hence does not use implicit short vowels: all vow-
els are explicitly written and one can easily identify
syllables and hyphenate words between them.?

Uighur is indeed hyphenated but if we add soft
hyphen characters we risk obstruction of contextual
analysis, which is the next step. It is easier to add
potential breakpoints as texteme properties, as is
done for other languages.

3.4 Step 2: Contextual analysis

This is the step where the forms of Arabic letters are
calculated based on the context. In the (rather rare)
case where the user may want to manually specify
a contextual form he/she just needs to set the cor-
responding texteme feature and to lock it, so that
the contextual analysis module will not be able to
change it.

Contextual analysis should be done on the mod-
ule level rather than on the QTP level because QTPs
transform only the contents of a buffer, so that any
command inserted into an Arabic word will end the

2 It seems that one of the reasons why hyphenation is not
desirable for Ivrit (although used by Israeli newspapers) is
the fact that the absence of short vowels may lead to bad hy-
phenations, a problem which could be solved by vowelization.

Infrastructure for high-quality Arabic typesetting

buffer and will obstruct contextual analysis. For ex-
ample, if we want to colorize a part of an Arabic
word we would normally use a \textcolor com-
mand, but this would enter in conflict with con-
textual analysis and the colorized letter would be
typeset always in isolated form.

Performing contextual analysis on the level of
nodes of the horizontal list allows us to obtain a
much more reliable result.

3.5 Step 2: Hamaza rules

One of the major contributions of ArabTgX (by
Klaus Lagally) to Arabic text processing was the
fact that it considers Arabic script from a grammat-
ical point of view, while Unicode is bound, by its
tenth general principle, to follow legacy encodings
like ASMO, which in turn have been based on the
character set of Arabic typewriters.

There is one case where the difference be-
tween ArabTgEX and Unicode is flagrant: the use of
hamza. This letter represents the glottal stop and
can be represented in four possible ways: as an iso-
lated letter (ARABIC LETTER HAMZA), or carried by
alef (ARABIC LETTER ALEF WITH HAMZA), by yeh
(ARABIC LETTER YEH WITH HAMZA), or by waw
(ARABIC LETTER WAW WITH HAMZA). Four Uni-
code characters for what is in fact a single letter.

The rules of visual representation of hamza are
quite strict:

1. at word begin: hamza is carried by alef;
2. inside a word:

(a) if the hamza is preceded or followed by a
vowel /i/ (short or long), it is carried by
yeh,

(b) otherwise, if it is preceded or followed by a
vowel /u/ (short or long), it is carried by
waw,

(c) if it is preceded by yeh and followed by
short vowel /a/, it is carried by yeh (with
some isolated exceptions where it is carried
by alef),

(d) if rules (a), (b), (c) do not apply and it is
preceded or followed by a short vowel /a/
it is carried by alef,

(e) if rules (a)—(d) do not apply and it is pre-
ceded by a long vowel /a/ it is written
without carrier;

3. at word end: if it is preceded by a short vowel
/i/, /a/ or /u/ then it is carried by the corre-
sponding long vowel; if it is preceded by a long
vowel or a consonant, then it is written without
carrier.

TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting 171

Yannis Haralambous

ArabTgX indeed takes an abstract representa-
tion of hamza as input and calculates the visual rep-
resentation according to the rules (and exceptions)
above. A “hamza module” for €25 could serve either
to facilitate input of Arabic text (but in that case
one should develop the corresponding GUI) or as a
“spelling checker” for the specific grammatical issue.

3.6 Step 3: Bidi algorithm

The bidi algorithm is part of the Unicode specifica-
tion. It deals with the visual representation of mixed
RL (right-to-left) and LR (left-to-right) text. For ex-
ample, if we consider capitals to be Arabic, when
typesetting the sentence “My friend said \i,g.i!”
must the exclamation mark be placed to the right or
to the left of \Sﬁ? In other words: is this excla-
mation mark part of the Arabic sentence 178" or
part of the English sentence “My friend said |[...]|"?
In the first case (“Arabic exclamation mark”) the ex-
clamation mark is placed “after” 178 , and “after”
in Arabic means “to the left of it”. In the other case
it is placed to the right of \’Jg.f&.

The problem here is that the exclamation mark
has no explicit directionality: it may be equally well
considered as being RL or LR. The bidi algorithm
gives a canonical default solution to this problem
and more generally to the way of rendering a para-
graph containing LR, RL as well as neutral (with
respect to directionality) characters.

One may ask: “why does Unicode care about
rendering issues?”’ The reason is that one does not
always want the canonical solution. To change the
order in which blocks of the paragraph are displayed,
one can use special Unicode characters RLE, LRE,
RLO, LRO, PDF, RLM, LRM. This may sound com-
plicated but in the everyday life of an Arabic lan-
guage keyboard user, whenever a paragraph does
not look like he/she expected it, he/she only needs
to insert a character or two among these to obtain
the correct rendering. The bidi algorithm is applied
on-the-fly by WYSIWYG systems.

What happens when such a text is processed by
Q97 The latter just needs to perform the same cal-
culations as to obtain the same results as the WYSI-
WYG system. To do this, one needs to consider the
paragraph as a whole. And this is only possible on
the level of the horizontal list. This is why a sepa-
rate bidi module must be applied, and this is step 3
of the process.

3.7 Step 4: OpenType and
super-OpenType features

In an Arabic rendering process OpenType tables can
fulfill five functions:

1. Supply the glyph corresponding to the pair
(character, contextual form), the form being
provided as an OpenType feature [GSUB table,
lookup of type 1 “single substitution’];

2. Supply grammatical (lam-alif) and esthetic lig-
atures [GSUB table, lookup of type 4 “ligature”];

3. Supply alternative forms for glyphs [GSUB ta-
ble, lookup of type 3 “variant selection”);

4. Kerning between single or ligatured glyphs
[GPOS table, lookup of type 2 “positioning of
a pair of glyphs”];

5. Place short vowels and other diacritics on iso-
lated glyphs or on ligature components [GPOS
table, lookups of types 4 “diacritical marks”
and 5 “diacritical marks on ligatures”).

One could imagine some of these features be-
ing contextual, with or without backtrack and look-
ahead. One could also imagine an Arabic OpenType
font using the lookup of type 3 “cursive attachment”
of the GPOS table.

Clearly these lookups handle most of the com-
plexity of Arabic script. In 5, the GSUB and GPOS
tables of the font are read by corresponding modules,
which will transform the horizontal list of textemes
accordingly.

More precisely, on a first parse of the font we
store the glyphs which start a context or match
a lookup, as well as the maximum length of con-
text (with backtrack and lookahead) for each glyph.
Then, when going through the horizontal list of text-
emes, for each glyph of a texteme we test whether
it is part of a context and then check the following
glyphs up to the maximum length for that glyph.

According to OpenType rules we must stop at
the first lookup which matches the longest string.

What we call “super-OpenType” is the fact that
we take not only the longest string but also all sub-
strings starting by the same glyph, and also that we
process all possible lookup matches and not only the
first in the list. By doing this we store all possible
OpenType transformations so that they produce dis-
tinct arcs in the TEX paragraph builder graph. This
behaviour is only valid when we are doing dynamic
typesetting.

For example, one can imagine four glyphs
91929394 forming a ligature (like the Arabic word
“muhammad”). In a standard OpenType process,
the application would find this ligature and stop.
In super-OpenType we also store all possible “sub-
ligatures” in our texteme: ¢19293, g192, g3ga, etc. as
well as single unligatured glyphs g1, g2, g3, g4. Ev-
ery choice of ligatures and/or single glyphs results
in a different badness calculation for the given line,
and hence is a different arc of our (extended) graph.

172 TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting

The reader may wonder how we deal with hyphen-
ation (although there is only one Arabic script lan-
guage which is hyphenated: Uighur). As hyphen-
ation is performed before OpenType transforma-
tions, we already have “alternative horizontal lists”
(also called “bifurcations”): with and without line
break. We can consider this a split of the hori-
zontal list into two parts: one goes unaltered, and
the other contains the hyphen and a special texteme
property representing a line break. The OpenType
modules go through both parts and apply the neces-
sary transformations, eventually involving the glyph
of the hyphen and special end-of-line or begin-of-line
features ([11]).

Figure 3: The lam-alif ligature as two glyphs.

Let us note en passant an important problem of Ara-
bic fonts: ligatures lam-alif are always drawn as a
single glyph. This is justified by the fact that the
two letters are always connected, but can be quite
problematic when we want to color one of the two
letters. We suggest using the following approach: in-
stead of implementing lam-alif as a single glyph ob-
tained by a type 4 lookup, divide the ligature glyph
in two parts and implement them as variants of the
corresponding glyphs, obtained by type 1 lookups
(“single substitutions”). In that way they can be
colorized separately, but otherwise the visual result
is the same.

This problem occurs only for the lam-alif lig-
ature since in all other cases we deal with esthetic
(and hence non-mandatory) ligatures and one can
simply break the ligature into single and separately
colorizable glyphs.

3.8 Step 5: Fine-tuning

An OpenType font designer is, after all, just a hu-
man being, and cannot possibly anticipate all possi-
ble combinations of glyphs, ligatures, short vowels,

Infrastructure for high-quality Arabic typesetting

diacritics. To face this problem, and knowing that
automatic positioning of Arabic short vowels and
diacritics has been studied extensively [2], one can
adopt at least two approaches:

1. Develop a system which will either refine the
font tables whenever a conflict appears in a
word (for example two letters touching each
other, or a diacritic touching a letter, or a di-
acritic set in such a way that it is not clear
to which letter it belongs) or simply break the
corresponding ligature and return to a non-
ligatured state (where no conflicts occur);

2. Develop a system checking the default (Open-
Type) positioning and correcting it accordingly
(by slightly moving some of the visual compo-
nents). This solution is especially interesting
when one does not have the rights to modify
the font.

This step deals with the latter solution: cor-
recting a posteriori the positioning of Arabic letters,
short vowels and diacritics, obtained by OpenType
transformations. This involves heavy, but well un-
derstood, calculations based on glyph outlines: ob-
tain the glyph outlines, place them at given hori-
zontal and vertical offsets, and check whether they
touch or even come closer than a given € to each
other (with a lot of special cases depending on opti-
cal effects).

Another solution would be to take pixel images
of the various glyphs emboldened (so that we also
catch glyphs getting close without touching), assem-
ble them using the corresponding horizontal and ver-
tical offsets, and find pixels belonging to more than
one glyph.

As always in such cases, a tool as the one
described would need serious optimizations to run
without slowing down the whole typesetting process.
One could imagine a cache mechanism for storing
words that present such problems so that the sys-
tem does not need to do redundant calculations.

There are several ways to proceed for solving
this problem. What we wish to point out is the fact
that in an infrastructure as the one described here, it
is possible to take control of glyphs after they have
been transformed by OpenType rules.?

3.9 Step 6: Extended graph and strategies

We arrive now at the paragraph builder. After hav-
ing gone through the five steps described above,

3 At this level we recommend operating only on the glyph
level. Indeed it would be unwise to change character values
of textemes, but, at the very end, this is up to the user to
decide: he/she has full control over the textemes before they
are transmitted to the paragraph builder.

TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting 173

Yannis Haralambous

we have a horizontal list with, occasionally, variant
glyphs, some of which are logically connected (for
example, when we have a line break). This means
that we have several ways of wandering across the
horizontal list, according to our choices of variant
glyphs and/or line breaks. As in standard TEX we
start defining active nodes and calculate the bad-
ness of (potential) lines brought to the same width.
But in the extended graph we have many graph arcs
sharing the same departure and arrival nodes: as
many as there are combinations of variant glyphs
and activated /de-activated ligatures.

The extended graph is larger than the ordinary
TEX graph, but the process of calculating the short-
est path is the same. Nevertheless we may have
to include logical expressions based on flags corre-
sponding to arcs so that a given path through the
graph may accumulate an extra penalty because
of interline phenomena (lines touching each other,
rivers, etc.).

As already mentioned in the introduction, when
a font provides a large number of glyph variants,
the badness calculation will suffer from combinato-
rial explosion. To avoid this we need to implement
a strategy before entering into the extended graph.
The goal of the strategy is to significantly decrease
the number of arcs between two given nodes, and
nevertheless obtain the smallest possible badness.

This is possible since the badness of a line de-
pends only on widths of glyphs and not on the glyphs
themselves. Which means that if we consider classes
of glyphs of the same width we obtain the same re-
sult and hence need to perform our calculations only
on the class level. Once the optimal classes have
been found, one can simply choose glyphs randomly
in the same class.

But even when using classes of glyphs one can
obtain the same badness by ordering them differ-
ently. For example, a word can be typeset by using a
“wide” class followed by a “narrow” one, or the other
way around: the global width will be the same, and
so will be the badness. The next step of the strat-
egy would be to choose patterns of classes or at least
eliminate arcs based on the same glyph classes but
in different orders.

Let us not forget that besides the combinatorics
of “rigid” widths provided by variant glyphs, we also
have glue, obtained by blank spaces as well as by
keshideh. The precision of classes of glyph widths
must be set in inverse relation to the amount of glue
we can use. The more keshideh and interword glue
we will use the less precision we need since differ-
ences in width between the glyph class and the glyph
actually used will be absorbed by glue.

3.10 Step 7: Post-processing

Multiple master tables have been defined for Open-
Type and then dismissed, as the Multiple Master
format is now officially obsolete. AAT variation ta-
bles have been used only in a single experimental
font (Skia). Graphite does provide continuous vari-
ation of glyphs. In one word: there is nowadays no
glyph variation in font formats.

How do we deal then with keshideh and other
glyph variations which have to be continuous?

A possible solution would be to use a post-
processor: a dvips module which will convert glue
(flagged as “keshideh glue”) into beautiful curvilin-
ear strokes and replace the glyphs surrounding the
keshideh by appropriate variants.

One could imagine a continuous stroke gener-
ator for generating keshideh but also a large set of
predesigned keshideh and surrounding glyphs. The
latter solution has the advantage of using hints, that
can be useful at low resolutions, and should acceler-
ate processing.

3.11 Final result

At the end we obtain textemes containing all the
information accumulated through these seven steps,
as well as the initial information: Unicode charac-
ters, contextual forms, semitic roots, full voweliza-
tion, etc.

References

[1] Mounged de poche. Dar el-Machreq, 1991.

[2] Gabor Bella. An automatic mark positioning
system for Arabic and Hebrew scripts. Master’s
thesis, ENST Bretagne, October 2003.

[3] Mohamed Jamal Eddine Benatia, Mohamed
Elyaakoubi, and Azzeddine Lazrek. Arabic text
justification. TUGboat, 27(2):137-146, 2006.

[4] Daniel M. Berry. Stretching letter and slanted-
baseline formatting for Arabic, Hebrew and
Persian with ditroff/ffortid and dynamic Post-
Script fonts. Software Practice and Experience,
29(15):1417-1457, 1999.

[6] Carl Faulmann. Das Buch der Schrift en-
thaltend die Schriftzeichen und Alphabete aller
Zeiten und aller Vilker des Erdkreises. Druck
und Verlag der kaiserlich-koniglichen Hof- und
Staatsdruckerei, Wien, 1880.

[6] Yannis Haralambous. Arabic, Persian and
Ottoman TEX for Mac and PC. TUGboat,
11(4):520-524, 1990.

[7] Yannis Haralambous. Towards the revival of
traditional Arabic typography. In Proceedings
of the Tth European TgX Conference, Prague,
pages 293-305, 1992.

174 TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting

18]

19]

[10]

[11]

[12]

[13]

[14]

TUGboat, Volume 27 (2006), No. 2— Proceedings of the 2006 Annual Meeting

Yannis Haralambous. Typesetting the Holy
Qur’an with TEX. In Proceedings of the 3rd In-
ternational Conference and Exhibition on Mul-
tilingual Computing, Durham 1992, 1992.
Yannis Haralambous. The traditional Arabic
typecase extended to the Unicode set of glyphs.
Electronic Publishing— Origination, Dissemi-
nation, and Design, 8(2/3):111-123, 1995.
Yannis Haralambous. Simplification of the
Arabic script: Two different approaches and
their implementations. In FElectronic Publish-
ing, Artistic Imaging and Digital Typography,
volume 1375 of Springer Lecture Notes in Com-
puter Science, pages 138-156. Springer, 1998.
Yannis Haralambous. New hyphenation tech-
niques in Qs. TUGboat, 27(1):98-103, 2006.
Yannis Haralambous and Gabor Bella. Inject-
ing information into atomic units of text. In
Proceedings of the ACM Symposium on Docu-
ment Engineering, Bristol, 2005.

Yannis Haralambous and Gabor Bella. Omega
becomes a sign processor. FuroTEX 2005, pages
99-110, 2005.

Yannis Haralambous and Géabor Bella. Open-
belly surgery in Q. TUGboat, 27(1):91-97,
2006.

Infrastructure for high-quality Arabic typesetting

[15]

[16]

[17]

[18]

[19]

[20]

Yannis Haralambous and John Plaice. First ap-
plications of ©2: Adobe Poetica, Arabic, Greek,
Khmer. TUGboat, 15(3):344-352, 1994.
Yannis Haralambous and John Plaice. Multi-
lingual typesetting with 2, a case study: Ara-
bic. In Proceedings of the International Sym-
posium on Multilingual Information Process-
ing, Tsukuba 1997, pages 137-154. ETL Japan,
1997.

Ruhi Sarikaya Imed Zitouni, Jerey S. Sorensen.
Maximum entropy based restoration of Arabic
diacritics. In Proceedings of the 21st Interna-
tional Conference on Computational Linguis-
tics and 44th Annual Meeting of the ACL, Syd-
ney, pages H77-584, 2006.

Ahmed Lakhdar-Ghazal. Pour apprendre et
maitriser la langue arabe. Editions La Porte,
1991.

Sakhr. Diacritizer. http://www.sakhr.com/
Sakhr_e/Technology/Diacritization.htm.

Yannis Haralambous (translated into En-
glish by Scott Horne). Fonts & FEncodings.
O’Reilly & Associates, 2007.

175

