
TUGBOAT

Volume 27, Number 2 / 2006
TUG 2006 Conference Proceedings

General Delivery 110 Karl Berry / From the president

111 Barbara Beeton / Editorial comments

TUG2006; Chuck Bigelow goes to RIT;
DEK in the news again;
Corrigendum: TUGboat 21:2;
Out-of-copyright books on the Web;

Fonts 112 John Owens / The installation and use of OpenType fonts in LATEX

Hints & Tricks 119 Peter Wilson / Glisterings: Address lists, animated books

121 Timothy Hall / Brackets around anything

Omega 125 Alex A.J. / Typesetting Malayalam using Ω

TUG 2006 127 Conference program, delegates, and sponsors

131 Taco Hoekwater / TUG 2006 report

Multilingual
Document
Processing

137 Mohamed Jamal Eddine Benatia, Mohamed Elyaakoubi and Azzeddine Lazrek /

Arabic text justification

147 Youssef Jabri / The Arabi system—TEX writes in Arabic and Farsi

159 Hossam A.H. Fahmy / AlQalam for typesetting traditional Arabic texts

154 Mustapha Eddahibi, Azzeddine Lazrek and Khalid Sami / DadTEX —A full Arabic interface

167 Yannis Haralambous / Infrastructure for high-quality Arabic typesetting

176 Zdeněk Wagner / Babel speaks Hindi

Philology 181 Apostolos Syropoulos / LATEX as a tool for the typographic reproduction of ancient texts

Electronic
Documents

187 Elena Smirnova and Stephen M. Watt / Generating TEX from mathematical content

with respect to notational settings

197 Adrian Frischauf and Paul Libbrecht / DVI2SVG: Using LATEX layout on the Web

LATEX 202 Claudio Beccari / LATEX2ε, pict2e and complex numbers

213 Morten Høgholm / Page design in LATEX3

Software & Tools 219 Hans Hagen / MKII–MKIV

228 Jonathan Kew / Unicode and multilingual typesetting with X

E

TEX

Fonts 230 Hans Hagen, Jerzy B. Ludwichowski and Volker RW Schaa / The New Font Project:

TEX Gyre

234 Karel Ṕı̌ska / Outline font extensions for Arabic typesetting

238 F. Mounayerji, M. A. Naal / Arabic font building for LATEX

241 Chris Rowley / Everything we want to know about Font Resources

Bibliographies 243 Jean-Michel Hufflen / Names in BIBTEX and mlBIBTEX

Abstracts 254 Abstracts (Beeton, Bujdosó, Feuerstack, Hagen, Hoekwater, Ludwichowski, Wierda)

256 MAPS : Contents of issues 33–34 (2005–06)

258 ArsTEXnica: Contents of issue 1 (2006)

258 Biuletyn GUST : Contents of issues 22–23 (2005–06)

News 263 Calendar

264 EuroBachoTEX 2007 announcement

265 Onofrio de Bari / The 3rd Annual GuIT Meeting

266 Charles Goldie / UKTUG sponsors day of LATEX

TUG Business 266 Institutional members

267 TUG membership form

Advertisements 268 TEX consulting and production services

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2006 dues for individual members are as follows:
Ordinary members: $85.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group, as well as providing
a discounted group rate and other benefits. For
further information, contact the TUG office or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2006 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, and may not be reproduced,

distributed or translated without their permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Jon Breitenbucher
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Arthur Ogawa
Steve Peter
Cheryl Ponchin
Samuel Rhoads
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for past board
members.

Addresses

General correspondence,
payments, etc.

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: December 2006]

The Communications of the TEX Users Group

Volume 27, Number 2, 2006

TUG 2006 Conference Proceedings

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions
2006 dues for individual members are as follows:

Ordinary members: $85.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $95 per year,
including air mail delivery.

Institutional Membership
Institutional membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group, as well as providing
a discounted group rate and other benefits. For
further information, contact the TUG office or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2006 TEX Users Group.

Copyright to individual articles within this publication
remains with their authors, and may not be reproduced,
distributed or translated without their permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice are
preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,
except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President
David Walden∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Jon Breitenbucher
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Arthur Ogawa
Steve Peter
Cheryl Ponchin
Samuel Rhoads
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for past board
members.

Addresses
General correspondence,

payments, etc.
TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 206 203-3960

Electronic Mail
(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web
http://www.tug.org/

http://www.tug.org/TUGboat/

Have a suggestion? Problems not resolved?
The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: December 2006]

TUGBOAT Volume 27 (2006), No. 2 TUG 2006 Conference Proceedings

Table of Contents (ordered by difficulty)

Introductory
111 Barbara Beeton / Editorial comments

• typography and TUGboat news
110 Karl Berry / From the President

• some TUG activities and information for 2006
230 Hans Hagen, Jerzy B. Ludwichowski and Volker RW Schaa / The New Font Project: TEX Gyre

• enhancing the free fonts from URW et al. to support more scripts, analogous to Latin Modern

Intermediate
202 Claudio Beccari / LATEX2ε, pict2e and complex numbers

• extending the graphics of the pict2e package via complex number manipuulation
137 Mohamed Jamal Eddine Benatia, Mohamed Elyaakoubi and Azzeddine Lazrek / Arabic text justification

• survey of historical methods of Arabic text justification, and a recommended algorithm
213 Morten Høgholm / Page design in LATEX3

• using LATEX3 features to ease and generalize page layout definitions
147 Youssef Jabri / The Arabi system — TEX writes in Arabic and Farsi

• an Arabic package for TEX needing no preprocessor, integrated with Babel
228 Jonathan Kew / Unicode and multilingual typesetting with X ETEX

• extended abstract demonstrating Arabic typesetting with X ETEX
238 F. Mounayerji and M. A. Naal / Arabic font building for LATEX

• outline of procedure for building Arabic fonts from scratch
112 John Owens / The installation and use of OpenType fonts in LATEX

• also discusses basics of accessing new fonts from LATEX
241 Chris Rowley / Everything we want to know about Font Resources

• brief discussion and open-ended questions on modern fonts and typesetting engines
181 Apostolos Syropoulos / LATEX as a tool for the typographic reproduction of ancient texts

Intermediate Plus
125 Alex A.J. / Typesetting Malayalam using Ω

• installation and use of a new Omega package to support Malayalam
154 Mustapha Eddahibi, Azzeddine Lazrek and Khalid Sami / DadTEX — A full Arabic interface

• TEX-based localization of documents to Arabic
197 Adrian Frischauf and Paul Libbrecht / dvi2svg: Using LATEX layout on the Web

• math formulas on the Web via DVI to SVG conversion
159 Hossam A.H. Fahmy / AlQalam for typesetting traditional Arabic texts

• enhancements to ArabTEX for Arabic, especially for typesetting the Qur’an
219 Hans Hagen / MKII–MKIV

• integration of LuaTEX with ConTEXt for graphics, I/O, networking, and more
121 Timothy Hall / Brackets around anything

• placing braces of any size and any angle for labeling within a figure
234 Karel Ṕı̌ska / Outline font extensions for Arabic typesetting

• discussion of FontForge and MetaType1 for Arabic fonts
176 Zdeněk Wagner / Babel speaks Hindi

• Hindi support in Babel via devnag, and Unicode vs. Velthuis transliteration
119 Peter Wilson / Glisterings

• empty arguments; clear to even page; capitalizing first characters

Advanced
167 Yannis Haralambous / Infrastructure for high-quality Arabic typesetting

• Supporting Arabic with new features in Ω2

243 Jean-Michel Hufflen / Names in BibTEX and MlBibTEX
• parsing names in bibliographies in a robust and extensible way

187 Elena Smirnova and Stephen M. Watt / Generating TEX from mathematical content
with respect to notational settings

• respecting users’ wishes for TEX output of mathematical notation

Contents of other TEX journals
256 MAPS: Contents of issues 33–34 (2005–06)
258 ArsTEXnica: Contents of issue 1 (2006)
258 Biuletyn GUST: Contents of issues 22–23 (2005–06)

Reports and notices
128 TUG 2006 conference information
254 Abstracts (Beeton, Bujdosó, Feuerstack, Hagen, Hoekwater, Ludwichowski, Wierda)
263 Calendar
264 EuroBachoTEX 2007 announcement
265 Onofrio de Bari / The 3rd Annual GuIT Meeting
266 Charles Goldie / UKTUG sponsors day of LATEX
266 Institutional members
268 TEX consulting and production services

TUGBOAT

Volume 27, Number 2 / 2006
TUG 2006 Conference Proceedings

General Delivery 110 Karl Berry / From the president

111 Barbara Beeton / Editorial comments

TUG2006; Chuck Bigelow goes to RIT;
DEK in the news again;
Corrigendum: TUGboat 21:2;
Out-of-copyright books on the Web;

Fonts 112 John Owens / The installation and use of OpenType fonts in LATEX

Hints & Tricks 119 Peter Wilson / Glisterings: Address lists, animated books

121 Timothy Hall / Brackets around anything

Omega 125 Alex A.J. / Typesetting Malayalam using Ω

TUG 2006 127 Conference program, delegates, and sponsors

131 Taco Hoekwater / TUG 2006 report

Multilingual
Document
Processing

137 Mohamed Jamal Eddine Benatia, Mohamed Elyaakoubi and Azzeddine Lazrek /

Arabic text justification

147 Youssef Jabri / The Arabi system—TEX writes in Arabic and Farsi

159 Hossam A.H. Fahmy / AlQalam for typesetting traditional Arabic texts

154 Mustapha Eddahibi, Azzeddine Lazrek and Khalid Sami / DadTEX —A full Arabic interface

167 Yannis Haralambous / Infrastructure for high-quality Arabic typesetting

176 Zdeněk Wagner / Babel speaks Hindi

Philology 181 Apostolos Syropoulos / LATEX as a tool for the typographic reproduction of ancient texts

Electronic
Documents

187 Elena Smirnova and Stephen M. Watt / Generating TEX from mathematical content

with respect to notational settings

197 Adrian Frischauf and Paul Libbrecht / DVI2SVG: Using LATEX layout on the Web

LATEX 202 Claudio Beccari / LATEX2ε, pict2e and complex numbers

213 Morten Høgholm / Page design in LATEX3

Software & Tools 219 Hans Hagen / MKII–MKIV

228 Jonathan Kew / Unicode and multilingual typesetting with X

E

TEX

Fonts 230 Hans Hagen, Jerzy B. Ludwichowski and Volker RW Schaa / The New Font Project:

TEX Gyre

234 Karel Ṕı̌ska / Outline font extensions for Arabic typesetting

238 F. Mounayerji, M. A. Naal / Arabic font building for LATEX

241 Chris Rowley / Everything we want to know about Font Resources

Bibliographies 243 Jean-Michel Hufflen / Names in BIBTEX and mlBIBTEX

Abstracts 254 Abstracts (Beeton, Bujdosó, Feuerstack, Hagen, Hoekwater, Ludwichowski, Wierda)

256 MAPS : Contents of issues 33–34 (2005–06)

258 ArsTEXnica: Contents of issue 1 (2006)

258 Biuletyn GUST : Contents of issues 22–23 (2005–06)

News 263 Calendar

264 EuroBachoTEX 2007 announcement

265 Onofrio de Bari / The 3rd Annual GuIT Meeting

266 Charles Goldie / UKTUG sponsors day of LATEX

TUG Business 266 Institutional members

267 TUG membership form

Advertisements 268 TEX consulting and production services

TUG2006 Proceedings

Marrakesh, Morocco

November 9–11, 2006

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITORS AZZEDDINE LAZREK

KARL BERRY

VOLUME 27, NUMBER 2 • 2006

PORTLAND • OREGON • U.S.A.

110 TUGboat, Volume 27 (2006), No. 2

General Delivery

From the President

Karl Berry

As I write this at the end of November 2006, perhaps
the largest outstanding project is the next edition of
TEX Live; work is ongoing, and we hope it will be
completed by the end of the year. If you can help
build, document, test, or assist in any other area,
please see http://tug.org/texlive. Meanwhile,
other recent news follows.

The Utopia fonts freely available (again)

As old-timers may recall, Adobe made the Utopia
font family freely available many years ago. Un-
fortunately, the precise wording of the original li-
cense was ambiguous as to whether modified ver-
sions could be redistributed. I am happy to re-
port that Adobe has now clarified the wording in
a slightly revised agreement with TUG; the fonts
were always intended to be free (as in freedom).
So Utopia will reappear in the next edition of TEX
Live, and are already included in current MiKTEX
and gwTEX updates. The Utopia family has been
extended by several other packages, such as vnTEX
and fourier-GUT, so this is especially welcome news.

Major thanks go to Terry O’Donnell at Adobe
for having the patience to shepherd this through the
management there. The specific wording and other
details, as well as the fonts themselves (which are en-
tirely unchanged from the original release), are avail-
able at http://tug.org/fonts/utopia, and from
CTAN in fonts/utopia.

Colorado State University grant

Another bit of good news: Colorado State Univer-
sity has awarded a grant of over $40,000 for a new
incarnation of pdfTEX, which will include support
for Arabic typesetting and OpenType as well as the
Lua embedded language.

The implementation effort is being led by Taco
Hoekwater, in conjunction with the MetaPost and
pdfTEX teams. Professor Idris Samawi Hamid of

CSU (Philosophy Department) was the instigator of
the grant, and we thank Dr. Hamid and his insti-
tution. Please find more information in a separate
editorial in this issue, and in the previous issue of
TUGboat. Taco’s recent installment in the Inter-
view Corner feature of the TUG web site, http://

tug.org/interviews includes an overview of these
projects.

Further TUG joint memberships

TUG now offers joint memberships with DANTE e.V.
and DK-TUG; thanks to their respective member-
ships for supporting this, and to Klaus Höppner and
Kaja Christiansen for leading the respective efforts.

These new joint memberships are essentially the
same as the agreements with NTG and UK-TUG

which go back many years. Links to the joint mem-
bership pages are at http://tug.org/join.html.

We are very happy in general to be part of a new
level of co-operation among all the TEX user groups.
We have been working closely together both admin-
istratively, on conference planning and publications
as well as these joint memberships, and technically,
with the large TEX Collection releases, the TEX Gyre
font (see the article by Hans Hagen et al. elsewhere
in this issue), and other projects.

Board addition and election

Finally, I am happy to announce that Jon Breit-
enbucher has joined the TUG board. Jon joins us
from the College of Wooster in Ohio, where he has
been working to spread TEX usage among students
and staff. His report will soon be published in the
Practical TEX 2006 proceedings issue of TUGboat.

If you are interested in running for the TUG

board or president, 2007 will be a TUG election year.
Nominations for these openings are now invited; the
deadline to receive nominations is 1 February 2007.
Please see http://tug.org/election for informa-
tion and forms. (Since a few people have asked —
barring unforeseen events, I expect to run for an-
other term as president.)

Thank you all for supporting TEX and TUG.

⋄ Karl Berry
president@tug.org

TUGboat, Volume 27 (2006), No. 2 111

Editorial Comments

Barbara Beeton

TUG 2006

TUG 2006 was a great success, as you can read from
Taco’s report later in this issue. Marrakesh was a
whole new experience for me, my first visit to the
African continent; the sounds and smells were, in
varying degrees, familiar (I’m always willing to try
a new cuisine, and am a long-time devotee of inter-
national folk music), but the sights were new, and
certainly so were the customs. I wasn’t really pre-
pared for such a garden spot in the middle of what
I expected to be semi-desert.

I brought home many memories — and a deter-
mination to learn how to make mint tea. I learned
that a cape I’ve owned and loved for years is indeed a
genuine Tuareg garment; we saw one in the museum
that was woven to the same pattern. And I discov-
ered, no surprise, that bargaining with merchants is
something better learned when young; alas, I’m not
ready to be taught that new trick.

And it was good to see so many old friends, and
make some new ones as well. Although the num-
ber of participants was not so large, the enthusiasm
evoked by a spirited discussion of how to extend TEX
to generate documents of superb calligraphic qual-
ity was as high as I’ve ever encountered at a TUG

meeting.
I’d like to extend my personal thanks publicly

to Azzeddine Lazrek for his hospitality, making the
experience so enjoyable for my husband and myself.
Thanks, Azzeddine!

Chuck Bigelow goes to RIT

Charles Bigelow has been named as the next Mel-
bert B. Cary Professor at the Rochester Institute of
Technology. This prestigious chair was previously
held by Alexander Lawson and Hermann Zapf.

Chuck had been contemplating teaching again,
so this opportunity came at a very auspicious time.
He plans first to offer a course on the history, theory,
and technology of typefaces and fonts, followed by
an advanced course on newspaper typography (not
only types and fonts, but also usage and the ty-
pographic image and identity of a newspaper) and
later, advanced typography seminars on other top-
ics, such as how typography contributes to the ex-
perience of super markets, chain stores, and the rest
of our marketed civilization.

Together with Don Knuth, Chuck established a
master’s program in digital typography at Stanford
in 1982, and has taught and lectured extensively.

Together with Kris Holmes, he created the Lucida
family, one of the first fonts that optimized typog-
raphy for output on personal computers and lower
resolution printers. Bigelow & Holmes are also re-
sponsible for some of the first TrueType fonts, in-
cluding many of Apple’s “city” fonts.

Best wishes to Chuck in his new position. And
thanks to Jill Bell, who provided much of this infor-
mation to the TYPO-L discussion list.

DEK in the news again

A delightful illustrated profile appeared in The Stan-
ford Magazine last spring, recounting what Don
Knuth is up to these days.

Read it at http://www.stanfordalumni.org/

news/magazine/2006/mayjun/features/knuth.

html

Corrigendum: TUGboat 21:2

In an article on Thai fonts by Werner Lemberg (21:2
(2000), pages 113–120), a reader fluent in Thai en-
countered an example that contained a serious typo.
The error has been corrected in the version posted
on the TUG web site. Thanks to Werner for assis-
tance in patching this up.

Out-of-copyright books on the Web

As of the end of August, the Google Book Search
makes it possible for readers to download out-of-
copyright books to be read at your own pace. The
collection is diverse, including well-known classics as
well as more obscure gems.

Go to books.google.com and select the “Full
view” radio button to find out what books can be
downloaded. The collection continues to grow as
more and more of the world’s books are digitized.

This site also contains many books which are
still protected by copyright. These books can be
searched as well, but only a few sentences surround-
ing your search term will be displayed, just enough
to enable you to determine whether you’ve found
what you’re looking for.

You may also be interested in Project Guten-
berg, http://www.gutenberg.org, a longstanding
effort which has made over 19,000 books with ex-
pired copyrights freely available.

Happy reading.

⋄ Barbara Beeton
American Mathematical Society
201 Charles Street
Providence, RI 02904 USA
bnb (at) ams dot org

 TUGboat, Volume  (), No. 

Fonts

�e installation and use of OpenType fonts in LATEX

John D. Owens

Abstract

�e emerging file standard in digital typography is the
OpenType font standard, jointly developed by Microso

and Adobe. OpenType fonts are natively supported by
several popular operating systems and have many fea-
tures and advantages that make them desirable for high-
quality typography. However, OpenType fonts are not
natively supported by the standard TEX engine. �is ar-
ticle is a practical guide to installing OpenType fonts for
use as text fonts in LATEX.

�e steps to install anOpenType font for use in LATEX
are:

. For each OpenType font file, and for each combina-
tion of attributes for that font file, generate and in-
stall font metric and encoding files.

. Next, for each font family, generate and install a font
description (.fd) file that maps LATEX font selection
commands to the installed font files.

. Finally, write and install a style (.sty) file that allows
the user to select the font and its options for use
within TEX.

We begin by discussing font background, the TEX font
handling scheme, and existing font tools, then describe
each of the three steps above in detail.

 Font basics and font families

�e advanced typographic features of the OpenType font
format have motivated its widespread use in a variety of
demanding applications. Before we dive into supporting
OpenType in TEX, however, let’s take a step back and look
at our eventual goal. As a TEX user, we are less inter-
ested in using just a single font with a single set of options
and more interested in using a font family: a collection of
compatible font variants, usually from the same typeface,
that can be used together. For instance, we might want to
group together a plain and an italic form of a particular
typeface into a family. Wemight want to make small caps
available in our family as well, or perhaps incorporate
several different weights or optical sizes. Once we have
defined our font family, we would then like to ask TEX to
enable the entire family with a single command. As an ex-
ample, this document is typeset in an Adobe OpenType
Minion Pro font family with old-style figures, with code

Editor’s note: Due to the nature of this article, it is typeset in
the Adobe Minion and Adobe Myriad typefaces. We thank Adobe for
permission to use these fonts in both the print and web publications.

In different files Within one OpenType file

weight (light, black) kerning (VAVAV vs. VAVAV)

width (abc vs. abc) ligatures (fi vs. fi)

optical size figure style ( vs. 1234)

variant (e.g. italics) S C

Table : Font features provided by differentOpenType files (le
)

and within a single OpenType file (right).

segments typeset in Adobe’s OpenTypeMyriad Pro, using
the following LATEX commands:

\usepackage{minion}

\usepackage[tt,sf,lining,scale=0.92]{myriad}

What are the different typeface alternatives that can be
part of our font family? (Gelderman provides an intro-
duction to typeface characteristics [].) We can group
possible alternatives into several broad categories, and
then indicate how OpenType handles each category.

Our first four categories are weight, width, optical
size, and variant. �e weight of a typeface refers to the
thickness of the strokes that constitute its glyphs. A font
designer may also vary a typeface’s width relative to its
height. �e major advantage of vector font formats (such
as OpenType, PostScript Type , and TrueType) is their
ability to be scaled to any size. However, type designers
have found that themost visually appealing fonts are ones
that are designed for a particular size range, called an op-
tical size. Finally, the standard upright “roman” style for
fonts is not the only possible style. Font users may also
desire italic or oblique or outline forms of a particular
typeface, which together are termed variants. In LATEX’s
New Font Selection Scheme (NFSS), the combination of
weight and width is called series and the variant is called
shape; we use this terminology in Section ..

In OpenType, each unique combination of weight,
width, optical size, and variant is associated with a sep-
arate font file. As an example, the Adobe Kepler type-
face has several alternatives in each of these categories.
Kepler features six weights (light, regular, medium, semi-
bold, bold, and black), each with four widths (condensed,
semicondensed, regular, and extended). Most of Kepler’s
combinations of weight and width feature four optical
sizes (from smallest to largest, caption, regular, subhead,
and display), and each weight-width-optical-size combi-
nation has both an upright and italic variant. �us it is lit-
tle wonder that Kepler’s many combinations require 
different OpenType files. And a
er we catch our breath to
consider all the typographical options already available to
us, we dive into a single OpenType file to find still more
options.

In addition to the categories that require different
files, the OpenType font format also allows a single font

TUGboat, Volume  (), No.  

file to specify a variety of other features. Not all of these
features are currently supported inTEX, butmany of them
are. For instance, the kerning feature adjusts the spaces
between pairs of glyphs. Enabling ligatures replaces pairs
of glyphs like ‘f ’ and ‘i’ with a single ‘fi’ glyph. Besides
kerning and ligatures, the two classes of OpenType fea-
tures that we cover in this article are the choice of figure
styles (for example, old-style [] vs. lining [01234])
and S C.

Table  summarizes the features provided by differ-
ent OpenType files and within an OpenType file. With
this overview of the many typeface alternatives that we
would like to assemble into families, we can turn to how
TEX interacts with fonts.

 TEX font handling

In modern operating systems such as Microso
 Win-
dows and Apple MacOSX, applications that use Open-
Type fonts can read font information directly from the
OpenType file. TEX, on the other hand, stores font infor-
mation in a variety of files, and the complexity of creating
and installing these files is themajor reason that font han-
dling has traditionally been a tricky task in TEX.

�e OpenType font format can contain font data in
either of two formats, Adobe PostScript Type  or True-
Type. In this section we describe the font files that are
associated with Type  and Type--flavored OpenType
fonts. To support a Type  font, TEX requires the fol-
lowing files, each with its own function, with file loca-
tions specified by the TEX Directory Structure standard.
More detailed descriptions of these formats can be found
in Alan Hoenig’s TEX Unbound [] and Chapter  of the
second edition of�e LATEX Companion [].

TFM “TEX Font Metrics” (tfm) files describe the dimen-
sions of each character (glyph), along with a few
font-wide parameter, which together are used by
TEX to perform layout.

PFB For Type  fonts, “Printer Font Binary” (pfb) files
contain Adobe PostScript Type  procedures that
describe the shape of each glyph. �ese procedures
are included by the output driver (for example, the
dvips or pdftex program) in the output file (for ex-
ample, PostScript or PDF).

VF “Virtual Font” files provide a mapping between the
glyphs in the tfm files and the glyph order used by
TEX (which is, in turn, specified with the encoding
file, below). �ey are not needed for all fonts.

ENC Encoding files specify an ordering of glyphs called
the “font-encoding vector”. While typeset docu-
ments in English might require only the glyphs
in TEX’s default “” font-encoding vector (used
by Computer Modern Roman, for example), other
languages or scripts need more or different glyphs.

In this article, we use the “” encoding, an alter-
native to  developed by  that is well-suited
for Type--flavored fonts. (Among other advan-
tages, the  encoding maps directly to Adobe’s
font encoding and thus requires no virtual fonts.)

MAP Finally, the map files tie the above files together.
map files (and map file formats) are specific to
output drivers and associate tfm and Type  font
names with pfb files, which contain the shapes of
glyphs in those fonts.

Only when these files have been properly installed for a
particular font, and system databases updated, can TEX
then typeset glyphs from that font in a document.

Writing all these files by handwould be both tedious
and error-prone, so two excellent pieces of so
ware have
automated the font installation process.

• fontinst [], by Alan Jeffrey, Rowland McDonnell,
and Lars Hellström, automates the installation of
PostScript Type  fonts into TEX. Philipp Lehman’s
font installation guide [] is an outstanding tutorial
for fontinst.

However, fontinst does not offer access to Open-
Type features. Also, fontinst scripts are written in
TEX, and are challenging for non-experts to write
and use.

• Eddie Kohler’s otftotfm [], part of his LCDF Type-
tools suite, creates and installs the required TEX files
(tfm, pfb, vf, enc, and map) from OpenType font
files. Note that otftotfm generates PostScript Type
 fonts from OpenType; please ensure that the legal
license for your fonts allows such a format conver-
sion. otftotfm is a command-line tool that accepts a
set of options and applies them to a single OpenType
font file.

Section  describes two tools built around otfto-

tfm that both automate calls to otftotfm across mul-
tiple font options and also create the necessary TEX
fd and sty support files.

In this article, we focus on otftotfm as the underlying
tool that translates OpenType fonts into a TEX-readable
form. We also focus on the procedure for setting up text
fonts. �e setup for math fonts requires additional com-
mands described in Chapter .. of �e LATEX Com-
panion []. �e next section outlines how otftotfm in-
stalls OpenType fonts, and the remainder of the article
describes how to extend otftotfm to handle multiple font
files and font families and how tomake the installed fonts
available to TEX users.

 OpenType to TEX

�e first step in making OpenType fonts available to TEX
users is to deposit the various font files into the TEX in-
stallation for each variant in the font family. We begin by

 TUGboat, Volume  (), No. 

showing how otftotfm installs a single font, using Adobe
Minion Pro’s Semibold Italic font as an example.

otftotfm -a -e texnansx -fonum -fkern -fliga \

MinionPro-SemiboldIt.otf \

LY1-MinionPro-SemiboldIt-onum

Let’s analyze this example. -a is the magic “auto-
matic” flag, automatically installing the relevant TEX font
files from Section  (tfm, pfb, vf, enc, andmap) into their
proper locations within the TEX directories. -e texnansx

specifies the encoding file for the  encoding. �ree
OpenType features (old-style numerals, kerning, and lig-
atures) are requested with the -f flags, and the final two
arguments are the names of the OpenType input font file
and the output font name. �e otftotfm manual explains
these options in detail, and also enumerates available
OpenType features [].

Extending otftotfm to more input fonts and more
variants is straightforward: simply call otftotfm for each
and every combination of desired features. For complex
variant combinations and fully featured font families, the
number of calls to otftotfm can exceed many hundreds.
�e tools described in Section  automate this process.

LCDF’s otfinfo tool [] can identify the supported
OpenType features for any OpenType font file, but which
features are interesting for TEX users?

• �ekerning (kern) and ligature (liga) features should
always be turned on if available.

• OpenType fonts may support several kinds of nu-
merals; onum (old-style numerals) and lnum (lin-
ing numerals) can both be supported in TEX and are
commonly requested typographic features.

• S C are enabled by the smcp feature.

• Superior (sups) and inferior (sinf) figures are useful
for footnotes, inline fractions, and scientific typeset-
ting; swashes (swsh) are more DECORATIVE alter-
natives to standard characters.

�e otftotfm web page [], in “otftotfm examples”,
contains examples of more advanced OpenType features,
but as we note in Section , more advanced features rarely
have high-level support in TEX or LATEX. In this article
we concentrate on the overall installation procedure for
OpenType fonts and support ofmore basic features; read-
ers in need of more advanced features may consider the
ConTEXt environment [] or X ETEX [].

A
er otftotfm finishes installing all font files into
TEX, texhash and updmap must be called to make TEX
aware of the new installation. Now, the new fonts are
available for typesetting in TEX—but how? �e next sec-
tion describes how to instruct TEX to use the correct font.
TEX uses the “font description” file for this purpose.

 Font description (fd) files

A font description file is a TEX source file that maps in-
stalled font file names to font attributes as used in (LA)TEX.
Typically, each font family is described by a single fd file.
As we previously mentioned, these techniques are appli-
cable to text fonts; math fonts require additional com-
mands [].

Only two TEX commands are necessary in an fd file.
�e first declares a font family, and the second declares
a specific font within that font family. We’ll look at them
one at a time.

. \DeclareFontFamily

�e \DeclareFontFamily command indicates that a certain
font family is available in a certain encoding scheme. �e
names of encoding schemes are fixed (as mentioned be-
fore, we use  in this paper), but the name of the font
family is arbitrary. �emost well-known naming scheme
is Karl Berry’s fontname scheme [], which concatenates
a unique three-letter code for each typeface with a one-
letter suffix that indicates the font family (Section .).
(�is naming scheme is required when using nfssext.sty,
described in the next section.)

Let us continuewith theMinion-Pro-with-old-style-
numerals example; Minion is abbreviated pmn, and font
families associated with old-style numerals are desig-
nated by j (more details about what constitutes a font
family are in Section .). �e resulting command is:

\DeclareFontFamily{LY1}{pmnj}{}

�e third argument to \DeclareFontFamily is less o
en
used; it can contain special options for font loading and
is explained in�e LATEX Companion [].

. \DeclareFontShape

�e \DeclareFontShape command associates a particular
font with a particular combination of encoding, font fam-
ily, series, and shape, a classification which we previously
discussed in Section . To classify the particular Adobe
Minion font we installed in Section , we invoke the fol-
lowing -argument command:

\DeclareFontShape{LY1}{pmnj}{sb}{it}{

<-> LY1-MinionPro-SemiboldIt-onum}{}

�e first four arguments are the classification; the fi
h
argument is the font file(s) associated with that classifi-
cation; and the last argument is used in a similar way to
the third argument of \DeclareFontFamily. �is particu-
lar command associates the combination of  encod-
ing, Minion-with-old-style-numerals font family, semi-
bold series (sb), and italic shape (it) with the installed
font named LY1-MinionPro-SemiboldIt-onum. Note this
font name is (necessarily) identical to the output name in
the command we invoked in Section .

TUGboat, Volume  (), No.  

With only these two commands, you can specify a
completely functional fd file. �ree additional commands
are useful, however, for a more fully featured family.

Optical size variants Now, what’s the <-> symbol be-
fore the font name (in the above \DeclareFontShape ex-
ample)? It’s the size range and indicates the font sizes as-
sociated with that font name. <-> is actually a special case
of the more general notation <n-m>, meaning “use this
font only for point sizes greater than or equal to n and up
to m”. Removal of n or m removes the bound, so <-> in-
dicates a match for all font sizes. With this notation, the
extension to multiple font files for a particular combina-
tion at different sizes (necessary for optical size variants)
is straightforward:

\DeclareFontShape{LY1}{pmnj}{sb}{it}{

<6-8.4> LY1-MinionPro-SemiboldItCapt-onum

<8.4-13> LY1-MinionPro-SemiboldIt-onum

<13-19.9> LY1-MinionPro-SemiboldItSubh-onum

<19.9-72> LY1-MinionPro-SemiboldItDisp-onum}{}

Font substitution What happens if you’re missing a
particular variant for a font family? �e sub command
allows the substitution of one variant for another. For in-
stance, few font families feature a slanted (oblique) vari-
ant, so fd files o
en substitute italic for slanted if slanted
is requested. �e following command asks for any refer-
ence, at any size, to semibold-slanted in our font family
to be satisfied instead by semibold-italic.

\DeclareFontShape{LY1}{pmnj}{sb}{sl}{

<-> sub * pmnj/sb/it}{}

Besides substituting italic for slanted, substituting
bold for bold-extended is also common, as in the exam-
ple below for the normal (n) shape.

\DeclareFontShape{LY1}{pmnj}{bx}{n}{

<-> sub * pmnj/b/n}{}

Scaling Finally, \DeclareFontShape permits a font to be
automatically scaled through the size command,¹ which
is invoked by placing the scaling factor in brackets be-
tween the size range and the filename. �e example below
instructs TEX to typeset Minion’s semibold italic variant
at  of its natural size.

\DeclareFontShape{LY1}{pmnj}{sb}{it}{

<-> [0.95] LY1-MinionPro-SemiboldIt-onum}{}

. Naming shape and series

�e de facto standard for the abbreviation strings associ-
atedwith shape and series in fd files is described by LATEX’s
“New Font Selection Scheme” (NFSS) []. Any choice

¹ �is is most common when two different typefaces that do not
match in size are used together in a document; in the next section we
expose this capability to the document author.

W NFSS 

light l

book m

regular m

medium mb

demibold db

semibold sb

bold b

black eb

W NFSS 

condensed c

narrow n

semicondensed sc

regular —
semiextended sx

extended x

V NFSS 

normal (upright) n

italic it

slanted sl

oblique sl

outline ol

small caps sc

small caps + italic si

Table : A selection ofNFSS codes for font weights, widths, and

variants. From Lehman [].

for shape and series abbreviation strings, includingNFSS,
must work together with the font selection commands
in Section . Philipp Lehman’s tutorial contains a fairly
complete mapping between weight, width, and variant
names and NFSS encodings []; we reproduce common
encodings in Table .

Lehman presents the following algorithms for gen-
erating the series and shape abbreviations used in \De-

clareFontShape. First, the weight andwidth are combined
to create “series”. If both weight and width are “regular”,
the series is set tom; otherwise the series is set to the con-
catenation of the weight andwidth codes, ignoring “regu-
lar” if present. Creating the shape is also straightforward:
if the variant is “regular”, the shape is n, otherwise the
shape is the concatenation of all variant codes, with the
exception of small-caps and italics. �is shape is instead
designated si, and font selection using si is described in
Section ...

. Font families

Some font features do not fit into the series-shape scheme.
�e most common of these features is numerical figure
types, which may vary as lining (1234), old-style (),
superior (¹²³⁴), inferior (₁₂₃₄), and so on. To handle font
selection with different styles of figures in TEX, typically,

 TUGboat, Volume  (), No. 

each type of figures generates its own font family. To gen-
erate the name of the font family, the three-letter font des-
ignation has a one-letter suffix appended to its -letter
font name. Lining figures are associated with no suffix
or with x, the “expert” suffix; old-style figures are j; supe-
riors receive 1 and inferiors 0; and so on. �us the Min-
ion (pmn) font family with lining figures is pmnx; Minion
with old-style figures is pmnj; and so on. Section ..
shows how to perform font selection with different font
families.

 Style files

At this point we have installed our fonts into TEX (Sec-
tion ) and categorized them by family, shape, and series
(Section ). �e final step is to make those fonts available
to the TEX document author as text fonts. �e tools de-
scribed in Section  automate the creation of the sty files
that contain the commands in this section.

. Selecting a font family

�e default “roman” (text) font family is defined by the
TEX variable \rmdefault. Redefining \rmdefault to another
font family (as named by \DeclareFontFamily) resets the
roman font family. For instance, the command below sets
the current font family to our example font family, Adobe
Minion with old-style figures.

\renewcommand*{\rmdefault}{pmnj}

In fact this is all we need to do to use our new font
family. (Similarly, we set the default sans serif font fam-
ily by setting the variable \sfdefault, and the typewriter
family with \ttdefault.) However, rather than using one
of these commands directly in TEX files, it’s typical to in-
stead wrap it in a style file and invoke \usepackage on
that style file to perform this declaration. Aminimal (but
complete) style file calledminion.sty for LATEXε that uses
the  encoding follows.

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{minion}[Minion Pro OSF v0.99a 9/06]

\RequirePackage[LY1]{fontenc} % uses LY1 encoding

\renewcommand*{\rmdefault}{pmnj}

\endinput

. Selecting between multiple font families

What if we’d like to use the same style file to supportMin-
ion font families with both old-style (pmnj) and lining
(pmnx) figures? We use a package option to choose be-
tween the two font families:

\usepackage[oldstyle]{minion}

or

\usepackage[lining]{minion}

�eextended style file that supports these options is:

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{minion}[Minion Pro OSF v0.99b 9/06]

\RequirePackage[LY1]{fontenc} % uses LY1 encoding

\DeclareOption{lining}{\renewcommand*{%

\rmdefault}{pmnx}}

\DeclareOption{oldstyle}{\renewcommand*{%

\rmdefault}{pmnj}}

\ExecuteOptions{oldstyle}

\ProcessOptions*

\endinput

. Selecting font variants

Now we know how to select a given font family, which
may feature a large number of font weights, widths, and
variants within it. Once we have selected a font family,
how can we direct TEX to select from our many alter-
natives within that font family, such as boldface, italic,
small-caps, and so on? �e answer is to change the cur-
rent series and shape.

While the low-level TEX commands (\fontseries and
\fontshape) directly change the current series and shape,
LATEX’s higher-level commands aremore commonly used.
Most LATEX users know that \textbf selects boldface; LATEX
implements this internally by setting the font series to
\bfdefault, which is in turn defined as bx. Similarly, \textit
(italics) utilizes italics by setting the font shape to \itde-

fault, defined as it. And \textsc (small caps) sets the shape
to \scdefault, defined as sc.

We can use similar techniques to add more selec-
tion commands for more features that are not part of the
LATEX core set of commands. Philipp Lehman’s font in-
stallation guide is an excellent tutorial for this task []; it
carefully constructs and explains a style file of NFSS ex-
tensions, nfssext.sty. We now take a closer look at how
to support alternate weights and how nfssext.sty supports
small caps with italics and switching between old-style
and lining figures.

.. Supporting alternate weights

By default, LATEX supports a bold (\textbf) weight com-
mand. Let’s say we feel the default bold is a little too dark,
and we’d like to use semibold-condensed instead. We can
accomplish this with a single line in our sty file:

\renewcommand*{\bfdefault}{sbc}

And now we like semibold-condensed so much, we’d like
to add it as a new command, \textsb.

\newcommand\sbdefault{sbc}

\DeclareRobustCommand\sbseries

{\not@math@alphabet\sbseries\mathsb

\fontseries\sbdefault\selectfont}

\DeclareTextFontCommand{\textsb}{\sbseries}

For simple features, declaring a default value, a Robust-
Command, and a TextFontCommand suffice to make the
feature available within TEX.

TUGboat, Volume  (), No.  

.. Supporting small caps with italics

Lehman points out that italics and small caps are both
in the same “variant” category, so the built-in \textit and
\textsc commands do not work harmoniously together.
Barring changes to the core LATEX font selection prim-
itives, text set to both italic and small-caps would only
preserve the innermost setting.

nfssext.sty remedies this problem by declaring an si

shape, analogous to it and sc, and its associated selection
commands:

\newcommand*{\sidefault}{si}

\DeclareRobustCommand{\sishape}{%

\not@math@alphabet\sishape\relax

\fontshape\sidefault\selectfont}

It then changes the italic and small-caps commands to
check the current shape before setting the new shape.
Only if the current shape is italic and the new shape is
small-caps, or vice versa, does it set the new shape to si.
(Recall that we assigned the si code to small-caps + italic
variants in Section ..)

T  is properly  small-cap, italic text.
{\textsc{The \textit{result}} is \textit{properly

\textsc{nested}} small-cap, italic text.

.. Supporting old-style and lining figures

Section . showed how to choose old-style or lining fig-
ures by default. However, it may be useful to have one
as the default and use the other via an explicit command.
In nfssext.sty, the new commands \textos selects old-style
figures and \textln lining figures. In this article, for in-
stance, old-style is the default, so 1234\textln{1234} results
in 1234.

Because each style of figures is associated with a dif-
ferent font family, using an alternate figure style requires
changing the family. nfssext.sty accomplishes this task as
follows. Switching to lining figures for the font named
abc first tries font family abcx then font family abc, using
the TEX primitive \selectfont; switching to old-style fig-
ures switches to font family abcj. Fortunately this com-
plexity is all hidden inside nfssext.sty.

 Tools

For anyOpenType font installation into TEX, the vital tool
is otftotfm []. However, otftotfm only installs from a sin-
gle OpenType font file with a single set of options, while
users typically would like to install an entire family of
OpenType font files with all available options. In addi-
tion, otftotfm does not address the problem of creating fd
or sty files.

To address these issues, Marc Penninga wrote au-

toinst [] and John Owens wrote otfinst [], both of
which wrap around otftotfm to install entire TEX font
families. �e two tools have far more similarities than

differences and should suffice for most users; the au-
thors’ use of Perl (autoinst) or Python (otfinst) may make
the difference for programmers familiar with one or the
other.

Among the features supported by both tools are:

• A command-line interface that takes one or more
OpenType font files as arguments;

• Installation of font families with the following fea-
tures if present: roman and italic text; small-caps;
lining, old-style, superior, and inferior figures; and
swashes;

• nfssext.sty font selection commands;

• Support of optical sizes; and

• Auto-generation and installation of sty and fd files.

Some of the differences are that autoinst also sup-
ports numerators, denominators, upright swash, and ti-
tling text, and generates ornaments, while otfinst sup-
ports a scaling option at runtime. otfinst uses fontname

naming, while autoinst is more verbose in its naming
scheme. Finally, otfinst uses the metadata associated with
each OpenType font to determine the font’s characteris-
tics, while autoinst extracts the characteristics from the
font’s filename.

. Other tools

Geoffrey Washburn’s otftofd [] automates the process
of creating fd files fromOpenType fonts. Washburn indi-
cates that it, like autoinst, is designed primarily for Adobe
font conventions. otftofd is a shell script written in the
Caml Shell and uses otftotfm.

�e MinionPro TEX package [] provides extensive
TEX support files for Adobe Minion, including compre-
hensive options for figure types, encodings, ornaments,
letterspaced small caps, and calligraphic, math, black-
board, and Greek fonts. �e MinionPro distribution was
built using otftotfm and thus contains all TEX support
files without the need for the steps described in this ar-
ticle. MinionPro includes a package called fontaxes that
extends (and partially replaces) NFSS’s rigid classification
of font attributes.

 Conclusions

�is article has described the steps necessary to useOpen-
Type fonts in TEX: use otftotfm to install TEX font metric
and encoding files; build a font description file for each
font family; and build a style file for convenient font se-
lection in a document.

OpenType handling in TEX is still far from ideal,
however. Systems like X ETEX [] use OpenType fonts na-
tively with truly impressive results, and native OpenType
support is slated for future versions of pd
ex []. How-
ever, equally important are the other components of TEX
that relate to font selection and invocation.

 TUGboat, Volume  (), No. 

• NFSS is insufficient to elegantly describe the wide
variety of available font attributes. �e combination
of weight and width into series is awkward, multi-
ple variants may combine into a single shape, and
features such as figure styles are not covered at all.
�e ideal font selection scheme not only includes
all variants of a typeface but also allows simple, or-
thogonal selection of any set of typeface features,
and transparent substitution when features are not
present. New, flexible approaches such as fontspec
in X ETEX [] and MinionPro’s fontaxes are encour-
aging steps toward such a scheme.

• Even within NFSS the codes are not standardized.
Lehman’s scheme appears to be widely used, how-
ever, which is encouraging.

• Even for simple features, font selection is wholly
nonstandardized and non-orthogonal. Selection of
alternate widths is not possible without low-level
commands, the default italic and small caps com-
mands do not work together because LATEX’s default
handling of the “variant” category does not address
multiple variants, and using non-standard but de-
sirable selection commands such as \textln in shared
files is discouraged because a default TEX installation
does not support them.

• Finally, while many advanced OpenType features
can be supported in TEX’s font files, invoking those
features with high-level commands is a much more
troublesome task. For most features beyond the ba-
sic ones, TEX and LATEX have no standardized sup-
port at the author level (or, in many cases, no sup-
port at all). Features like ornaments, contextual al-
ternates, and discretionary ligatures would benefit
from a discussion about how they can be invoked by
the programmer in a standard way.

Acknowledgements Many thanks to Karl Berry for en-
couraging me to write this article and for his helpful
suggestions along the way. Eddie Kohler’s tools greatly
ease the task of OpenType support in TEX, and I also
thank Eddie for his prompt and thorough answers to my
many questions about his tools. Karl Berry and Philipp
Lehman were both quite helpful in understanding font-

name and how it’s used within the TEX world. �e use
of Philipp’s nfssext.sty was vital in the development of
otfinst. �omas Phinney, Geraldine Wade, and Michael
Duggan provided fonts for testing, and �omas secured
permission to use Adobe fonts for the article itself. Fi-
nally, thanks also to Nelson Beebe, Stephen Hartke, Oleg
Katsitadze, Eddie Kohler, Marc Penninga, Will Robert-
son, and Michael Zedler for their thoughtful comments
on the article during the review process.

References

[] Karl Berry. Filenames for fonts. TUGboat,
():–, November .
http://www.tug.org/fontname.

[] Achim Blumensath, Andreas Bühmann, and
Michael Zedler. MinionPro, September .
http://www.ctan.org/tex-archive/fonts/minionpro/.

[] Maarten Gelderman. A short introduction to
font characteristics. TUGboat, ():–, June
.

[] Taco Hoekwater. Opening up the type. TUGboat,
():–, .

[] Alan Hoenig. TEX Unbound. Oxford University
Press, New York, NY, .

[] Alan Jeffrey, Rowland McDonnell, and Lars
Hellström. fontinst: Font installation so
ware for
TEX, December .
http://www.tug.org/applications/fontinst/.

[] Jonathan Kew. �e X ETEX typesetting system,
. http://scripts.sil.org/xetex.

[] Eddie Kohler. LCDF type so
ware, .
http://www.lcdf.org/type/.

[] Philipp Lehman. �e font installation guide,
December . http://www.ctan.org/tex-archive/

info/Type1fonts/fontinstallationguide/.

[] Adam T. Lindsay. OpenType installation basics
for ConTEXt. �e PracTEX Journal, (), April
.

[] Frank Mittelbach and Michel Goossens. �e
LATEX Companion. Addison-Wesley, Boston, MA,
second edition, .

[] John Owens. otfinst, . http://www.ctan.org/

tex-archive/fonts/utilities/otfinst/.

[] Marc Penninga. fontools, . http:

//www.ctan.org/tex-archive/fonts/utilities/fontools/.

[] Will Robertson. Advanced font features with
X ETEX—the fontspec package. TUGboat,
():–, .

[] LATEX Project Team. LATEXε font selection, June
. http://www.ctan.org/tex-archive/macros/

latex/doc/fntguide.pdf.

[] Geoffrey Washburn. ot
ofd, . http:

//www.ctan.org/tex-archive/fonts/utilities/otftofd/.

⋄ John D. Owens

Department of Electrical and

Computer Engineering

University of California

One Shields Avenue

Davis, CA  USA

jowens (at) ece dot ucdavis dot edu

http://www.ece.ucdavis.edu/˜jowens/

TUGboat, Volume 27 (2006), No. 2 119

Hints & Tricks

Glisterings

Peter Wilson

Remember still that the loftier minde
That in this world doth seek to glister so,
Blowne on this rock by fonde vainglorious
winde,
Falls headlong down to everlasting wo.

The Ship of safegarde, (1569)
Barnabe Googe

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

Addresses are given to us to conceal our
whereabouts.

Reginald in Russia,
Saki

1 Address lists

For many a year I have been promising my wife that
I would print labels for the envelopes for our Christ-
mas cards. I even went as far as buying some soft-
ware to run on an OS that went out of date in the
last century. This year (2005) I have at last salved
this part of my conscience with the aid of LATEX and
Boris Veytsman’s EnvLab package [1].

After some experiments I created a package file,
myenvlab, that gave me the setup that I wanted.
I found that I had to use the EnvLab’s \SetLabel
command to adjust the address spacing to match the
sheets of labels that I was planning to use. I also or-
ganised things so that each label could be framed by
an \fbox and I could then print a page of addresses
onto an ordinary sheet of paper to check if the spac-
ing was correct for the real label sheets. For further
information consult the package documentation.

% file myenvlab.sty

\usepackage[avery5160label,

noprintbarcodes,

nocapaddress]{envlab}

%% Subtract 0.1 inch from vertical dimensions!!

\SetLabel{4.19in}{1.23in}{0.73in}{0.16in}%

{0.19in}{2}{7}

\newif\ifboxlabel

\let\oldPrintLabel\PrintLabel

\renewcommand{\PrintLabel}[1]{%

\ifboxlabel

\fbox{\oldPrintLabel{#1}}%

\else

\oldPrintLabel{#1}%

\fi}

\boxlabeltrue

\endinput

The myenvlab package could then be used in a
file like the one below to print out a set of address
labels, where the \add macro defined the name and
address for a label.

% file xmas.tex

\documentclass[12pt]{letter}

\usepackage{myenvlab}

%%\boxlabelfalse

\newcommand{\add}[1]{%

\mbox{}\mlabel{\mbox{}}{#1}}

\newcommand{\UK}{UNITED KINGDOM}

\startlabels

\begin{document}

\add{John Doe \\

98765 931st St \\ Someplace YN 12345}

\add{A N Other \\

The House \\ The Road \\ Town \\ \UK}

% etc., etc.

\end{document}

Having printed out sheets of labels it occurred
to me that probably other labels would be required
at other times. My wife was also talking about start-
ing a new address book because the current one was
becoming illegible due to many deletions, changes,
and additions. I was toying with the idea of subvert-
ing BibTEX into an address database but fortunately
hesitated before having the joy of programming with
the BibTEX language. I now keep all the addresses
in a file that looks like this, where I specify a macro
for each name and address, and any other personal
details that might be of interest:

% file addresslist.tex

%%% \add{name}{address}{telephone}{email}{notes}

\newcommand*{\UK}{UNITED KINGDOM}

\newcommand*{\DoeJ}{\add{John Doe}%

{98765 931st St \\ Someplace YN 12345}%

{(981) 123--4567}%

{\url{jd576@email.moc}}%

{birthday 01/01/01}}

\newcommand*{\OtherAN}{\add{A N Other}%

{The House \\ The Road \\ Town \\ \UK}%

{+44 1273 5798 8975}%

{\url{ano@ano.org}}%

{dog: Fido}}

% etc., etc.

\endinput

Using a suitable definition for \add, which in
this case puts the various arguments into a mini-
page, I can print an address book by:

% file addressbook.tex

\documentclass[12pt,twocolumn]{article}

120 TUGboat, Volume 27 (2006), No. 2

\usepackage{url}

\newcommand{\add}[5]{%

\begin{minipage}{\linewidth}\raggedright

#1 \\ #2 \\ #3 \\ #4 \\ #5 \end{minipage}%

\\[\baselineskip]}

\begin{document}

\input{addresslist}

\DoeJ

\OtherAN

% etc., etc.

\end{document}

With a different definition for \add, which here just
uses the first two arguments, namely the name and
address, I can print labels by:

% file xmas.tex

\documentclass[12pt]{letter}

\usepackage{url}

\usepackage{myenvlab}

\newcommand{\add}[5]{%

\mbox{}\mlabel{\mbox{}}{#1\\#2}}

\startlabels

\begin{document}

\input{addresslist}

\DoeJ

\OtherAN

% etc., etc.

\end{document}

Now, here, you see, it takes all the running
you can do, to keep in the same place. If
you want to go somewhere else, you must
run at least twice as fast as that.

Through the Looking Glass,
Lewis Carroll

2 Animated books

While sorting through some old files I found a piece
written by Jeremy Gibbons for his Hey — it works!
column but which was not published before he handed
his baton over to me. Jeremy kindly gave me per-
mission to include it here.

When I was a child, my father used to make
little booklets, each page with a slightly different
picture; flicking through the booklet quickly makes a
‘movie’. Recently James Willans from York asked on
comp.text.tex how to achieve this effect in LATEX,
and a Michael Liebling answered. Here I show a
simpler version of Liebling’s approach.

First you need a collection of little pictures; the
following assumes that they are all the same size.
I used METAPOST to generate a running man in
different positions. Here is a representative sample:

The METAPOST file running.mp to create these fig-
ures is linked from the TUGboat web page http://

tug.org/TUGboat/Contents/contents27-1.html.
Next we compute the page number modulo the

number of different pictures:

\def\compute@modulus#1#2{%

\@tempcnta=#2\relax

\divide\@tempcnta by #1\relax

\multiply\@tempcnta by #1\relax

\multiply\@tempcnta by -1\relax

\advance\@tempcnta by #2\relax}

So for example \compute@modulus{12}{\thepage}

computes the page number modulo twelve.
We also work out how far to move the image on

each page, dividing the difference between the text
width and the image width by the number of pages:

\newcount\pagecount

\pagecount=100

\setbox0=\hbox{%

\includegraphics[scale=0.5]{running.0}}

\newdimen\distance

\distance\textwidth

\advance\distance by -\wd0

\divide\distance by \pagecount

Finally, we use the plain page style, and put
the right image in the right place on each page:

\newdimen\offset

\def\@oddfoot{%

\offset=\distance

\multiply\offset by \thepage

\hskip\offset

\compute@modulus{12}{\thepage}%

\includegraphics[scale=0.5]%

{running.\the\@tempcnta}%

\hfil}

\let\@evenfoot\@oddfoot

All that remains is to generate the right number
of pages:

\loop

\mbox{} \newpage

\ifnum \pagecount>0

\advance\pagecount by -1

\repeat

References

[1] Boris Veytsman. Printing Envelopes and Labels
in LATEX 2ε: EnvLab Package User Guide, June
1996. Available on CTAN in latex/macros/

contrib/envlab.

⋄ Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries dot press (at) earthlink dot

net

Brackets around anything

Timothy Hall

Introduction

It is often the case when labeling terms in a figure
that the label itself cannot be placed so that it
refers to an unambiguous term in the figure. For
example, consider the label h in Figure 1.

z0

z1

z2

h

Figure 1: Ambiguous label h

Does the h refer to the segment between points
z0 and z1, or only between points z0 and z2? It
would be clearer if there were a bracket explicitly
delineating the term in the figure corresponding to
h, such as that found in Figure 2.

z0

z1

z2

h

Figure 2: Clear label h

The placement of a bracket around terms of interest
in a figure may be accomplished through the use
of the following flexible and easy to use general
purpose METAPOST

1 definition.

1. def sbrack(suffix r,s,d) text c=

2. save a,v;

3. numeric a;

4. pair v;

1 Note that, except for the withcolor modifier,
this definition could also be a METAFONT definition,
should the need ever arise.

TUGboat, Volume 27 (2006), No. 2 121

5. a=angle(z.r-z.s);

6. v=0.5[z.r,z.s]+((d*pt,0)

7. rotated (a+90));

8. draw z.r{dir (a+90)}

9. ..{dir (a+90)}v{dir (a-90)}

10. ..{dir (a-90)}z.s

11. withcolor c;

12. enddef;

Its syntax is

sbrack(#,#,size)color

where the first # is the bracket’s starting point,
the second # is the bracket’s ending point, and
size is the distance (in standard METAPOST points)
from the midpoint between the starting and ending
points to the “vertex” of the bracket (the distance
being measured perpendicular to the line segment2

between the two points). The color refers to the
drawing color3 of the bracket, and may be specified
by a standard name, such as “red,” or by an RGB

triple, such as (1, 0, 1) for magenta, or by any
other representation recognized by the METAPOST

modifier withcolor.
Note that the order of the points listed in the

definition is important. The sbrack utility always
draws the bracket to the right as it progresses from
the starting point to the ending point. So if the
bracket in Figure 2 were drawn by

sbrack(1,0,36)red;

then the use of

sbrack(0,1,36)red;

would draw the bracket on the other side of the line
(see Figure 3).

z0

z1

z2

h

Figure 3: Bracket on other side

2 A line segment need not be part of the figure
for the midpoint to be calculated; see Figure 5.

3 For black and white printers and displays, the
withcolor modifier will result as a “shade of gray”
rendering of the corresponding color.

Placement of labels

The label h in Figure 2 was placed by

label.lft(%

btex h etex,

0.5[z0,z1]

+((40pt,-6*sind(angle(z1-z0))*pt)

rotated(angle(z1-z0)+90)));

Since the vertex of the bracket was placed 36 points
from the line (in this particular case), this label is
placed to the left of the vertex by an additional 4
points (for a total of 40 points). The term involving
the sine (in degrees) ensures that the label will be
“pointed to” by the curvature of the path around
the vertex of the bracket.

The label h in Figure 3 was placed by

label.lft(%

btex h etex,

0.5[z0,z1]

+((40pt,4*sind(angle(z0-z1))*pt)

rotated(angle(z0-z1)-90)));

which only differs from before in the order of
the points (z0 and z1 are interchanged), and that
positive 4 is used instead of negative 6, and the
rotation angle is 180 degrees from the previous form.
The choice of 4 or 6 is subjective and depends on the
particular circumstances where it is used4 (and on
the preferences of the user). However, the positive
and negative signs, as well as the +90 degrees and
−90 degrees choice in the rotation, must be used
correctly depending on which side the bracket is
drawn. Using the wrong values will result in (a)
the label being on the opposite side as the bracket,
or (b) the label being significantly misaligned, and
therefore distracting.

The label itself may be rotated to align con-
sistently with the bracket itself. For example, in
Figure 4, the label was produced by

label.lft(%

btex $\left\|\rho\right\|$ etex,z3)

rotatedabout(z3,angle(z0-z1)-90);

where z3 is the vertex of the bracket.5 The complete
METAPOST code for this example is instructional, as
it combines several aspects of displaying a bracketed
figure.

4 In the example given, the nature of the ascender
on the left side of the letter “h” is the primary reason
for using 4 rather than 6.

5 Note rotatedabout or rotatedaround must
be used, rather than rotated.

122 TUGboat, Volume 27 (2006), No. 2

z0

z1

‖ρ‖

Figure 4: TEX Label

1. beginfig(4);

2. pickup pencircle scaled1pt;

3.

4. z0=(0,0);

5. z1-z0=(0.50in,-1.00in);

6. z3=0.5[z1,z0]

7. +((12pt,2*sind(angle(z0-z1))*pt)

8. rotated(angle(z0-z1)+90));

9.

10. draw z0..0.5[z0,z1]..z1;

11. sbrack(0,1,12)red;

12.

13. pickup pencircle scaled4pt;

14. drawdot z0;

15. drawdot z1;

16.

17. label.top(btex z_0 etex,z0);

18. label.bot(btex z_1 etex,z1);

19. label.lft(%

20. btex $\left\|\rho\right\|$etex,z3)

21. rotatedabout(z3,angle(z0-z1)-90);

22. endfig;

Straight line segments are not required for
sbrack to work properly, since its definition only
requires non-identical points, a spacing measure,
and a drawing color (see Figure 5). None of these
parameters have a default value. Note that it is
up to the individual user to place the brackets and
labels drawn by sbrack so that they do not interfere
with any other terms in the figure.

Summary example

Figure 6 summarizes the flexibility of the sbrack

METAPOST definition. It is drawn by the following
program:

z0

z1

ga
p

Figure 5: Indicator Label

x

d

z

r

a

h

β

ψ

Figure 6: Summary Example

1. beginfig(6);

2. path pth[];

3. pickup pencircle scaled1pt;

4. pth[1]=halfcircle scaled4in;

5.

6. z0=(0,0); z1-z0=(0,2in);

7. z1’-z1=(0,0.5in); z1’’=0.5[z1,z1’];

8. z2-z1’=(2in,0);

9. pth[2]=quartercircle scaled1/2in

10. rotated180 shifted z2;

11. z2’-z2=(0,-1in); z3-z2=(0,1in);

12. z4=pth[1] intersectionpoint (z0--z3);

13. z5’-z2=(-1/8in,0); z5’’-z2=(0,1/8in);

14. z5’’’-z2=(0,-1/8in);

15. z6=pth[2] intersectiontimes (z0--z2);

16. pth[3]=subpath (0,x6) of pth[2];

17. pth[4]=subpath (x6,2) of pth[2];

18.

19. draw halfcircle scaled 4in;

TUGboat, Volume 27 (2006), No. 2 123

20. draw z1’--z2; draw z0--z1;

21. draw z0--z2; draw z2--z3;

22. draw z0--z3;

23. draw z2--z2’ dashed evenly scaled2;

24. draw z1--z1’ dashed evenly scaled2;

25. draw z5’--(x5’,y5’’)--z5’’;

26. draw z5’--(x5’,y5’’’)--z5’’’;

27. draw pth[3]; draw pth[4];

28. sbrack(1’,1,12)red;

29. sbrack(3,4,24)green;

30. sbrack(0,2,36)(1,0,1);

31. sbrack(1’,2,24)(0,1,1);

32. sbrack(2,3,24)red;

33. sbrack(1,0,24)blue;

34.

35. pickup pencircle scaled4pt;

36. drawdot z0; drawdot z1; drawdot z1’;

37. drawdot z2; drawdot z3; drawdot z4;

38.

39. label.top(btex x etex,

40. 0.5[z1’,z2]+((40pt,

41. -6*sind(angle(z1’-z2))*pt)

42. rotated(angle(z1’-z2)+90)));

43. label.rt(btex d etex,

44. 0.5[z0,z2]+((40pt,

45. 4*sind(angle(z0-z2))*pt)

46. rotated(angle(z0-z2)+90)));

47. label.rt(btex z etex,

48. 0.5[z2,z3]+(24pt,0));

49. label.lft(btex r etex,

50. 0.5[z0,z1]-(24pt,0));

51. label.lft(btex a etex,

52. z1’’-(12pt,0));

53. label.lft(btex h etex,

54. 0.5[z3,z4]+((24pt,

55. -4*sind(angle(z3-z4))*pt)

56. rotated(angle(z3-z4)+90)));

57. label.lft(btex β etex,

58. point 3*x6/4 of pth[2]);

59. label.bot(btex ψ etex,

60. point (1+x6/2) of pth[2]);

61. endfig;

Technical note

The term d in the sbrack definition is actually not
a suffix as it is labeled. It is a text argument;
indeed, a numeric that is joined with *pt to form the
x-value of a pair. However, the syntax of sbrack
usage is simplified, i.e., made to be of shortest
character length, by placing d with the suffixes,
rather than as a separate text or expression. To
wit:

def sbrack(suffix r,s)(text d)text c =

is cumbersome, not only for the redundant use of
text, but also because the syntax would then be

sbrack(0,1)(24)red;

and for

def sbrack(suffix r,s)(text d,c) =

the calling syntax would be

sbrack(0,1)(24)(red);

both of which require more characters than the
given definition. In fact, using expr in place
of text would be inappropriate, since neither d

nor c should be evaluated. However, if a further
development or enhancement were made to the
sbrack definition to allow d to be a variable, then
the use of expr, in this context, would be not only
appropriate, but required.

Further development and enhancements

A user may, of course, change any of the parameters
found in the definition of sbrack, such as changing
the relative position of the vertex (perhaps 75%
of the way from the starting point to the ending
point).

124 TUGboat, Volume 27 (2006), No. 2

Another possibility is redefining the position
of the label (relative to the vertex) to be on the
opposite side of the vertex as is now given. In this
way, the label would appear between the bracket
and a line segment between the defining points.

Yet another value-added enhancement would be
for the macro to calculate a default bracket spacing
value, perhaps in such a way that the bracket does
not “collide” with the term it is enclosing, and does
not interfere with any other terms in the figure.

Some intriguing results come from adding ten-

sion statements to the curves generated by the draw

command, as well as explicitly defining the control
points of a curve in terms of the label position. Any
such further developments and enhancements may
be incorporated into the sbrack definition to meet
any particular METAPOST (or METAFONT) need.

⋄ Timothy Hall

PQI Consulting

P.O. Box 425616

Cambridge, MA 02142-0012

http://www.pqic.com/TUG/baa.htm

TUGboat, Volume 27 (2006), No. 2 125

Omega

Typesetting Malayalam using Ω

Alex A.J.

Abstract

This paper explains the installation and usage of
a package for typesetting the Malayalam language
using the Ω system. This package supports both
the Traditional (Old Lipi) and Reformed (New Lipi)
Malayalam scripts and provides two font families.
The ΩTPs and macros are explained in detail.

Introduction

Typesetting Malayalam with TEX was first imple-
mented by Mr. Jeroen Hellingman, who developed
a package for plain TEX. In this package, Malayalam
text is written in an ASCII transliteration scheme,
which in turn was converted into proper TEX source
using a preprocessor written in C. He also developed
a primitive METAFONT for both the Traditional and
Reformed Malayalam scripts.

A new and improved package for LATEX was
written by Alex A.J. in 2003. Two professional qual-
ity fonts were provided along with proper hyphen-
ation and many other improvements. However, it
still used the original preprocessor and translitera-
tion scheme from Hellingman’s package.

Using a preprocessor has several disadvantages.
First of all, there are two source files, a .mm file
(the LATEX source file with transliterated Malayalam
text) and a .tex file which is produced by the pre-
processor. There is no control over hyphenation; the
preprocessor simply put discretionary hyphens after
every character. It was necessary to use an external
editor to delete unwanted hyphens.

The Ω system, developed by John Plaice and
Yannis Haralambous, has proven to be a useful so-
lution for Indic language typesetting. It supports
the Unicode standard and accepts UTF-8 encoded
text as input files. Thus the use of a preprocessor is
entirely avoided and Malayalam text can be directly
processed by Ω.

Installation and usage

The package is available as a tarball and can be in-
stalled using the installation script provided with it.
It can also be downloaded from CTAN. The pack-
age contains a number of ΩTPs, two font families in
Type 1 format, and additional files supporting other
commercial fonts etc.

To typeset Malayalam text, you simply use the
command \mal inside a group, and enter your text
using a UTF-8 enabled editor, such as Yudit (http:
//yudit.org).

ΩTPs in detail

This is a technical description of the ΩTPs included
in this package. It assumes some knowledge of Ω
and Malayalam script.

mal-uni01.otp In this short ΩTP, a ‘soft hyphen’
(@"0D4F) is added to every Malayalam syllable, us-
ing lines like the following:

{consonant}{depA} => \1 \2 @"0D4F ;

{consonant}{depi} => \1 \2 @"0D4F ;

{consonant}{depI} => \1 \2 @"0D4F ;

...

The current Unicode standard does not pro-
vide slots for Malayalam ‘Cillu letters’. The gen-
eral practice among developers is to use ZWJ and
ZWNJ to differentiate between Cillu letters and nor-
mal virama forms. The government of Kerala has
proposed assigning code positions 0D7A, 0D7B, 0D7C,
0D7D and 0D7E to the five Cillu letters. In this ΩTP,
the ZWJ forms are mapped to the above locations
using the following lines:

@"0D23 {virama}{zwj} => @"0D7A @"0D4F ;

@"0D28 {virama}{zwj} => @"0D7B @"0D4F ;

...

@"0D33 {virama}{zwj} => @"0D7E @"0D4F ;

mal-uni02.otp In this (also short) ΩTP, unwant-
ed hyphen characters are removed in several places:
before anuswara, visarga, Cillu letters, and others.
Hyphens at the end of words are also removed.

The final stage In this stage, the Unicode loca-
tions are mapped to character positions in the actual
fonts. Four ΩTPs are provided with the package en-
abling the use of many font families. Two of them,
mal-uni2keli.otp and mal-uni2rch.otp provides
typesetting in the Malayalam Reformed Script (]q-

Xob do]o) using the Keli (tIfn) and Rachana (c-
N\) font families. mal-uni2oldrch.otp provides
Traditional Malayalam script (]kb do]o) from the
Rachana family. It is explained below in detail. The
final ΩTP, mal-uni2ism.otp, supports over 35 Ma-
layalam font families from the Indic language soft-
ware ‘CDAC ISM Publisher’.

mal-uni2rch.otp First of all, the ligature expres-
sions (Ir½¸cº³) are identified and mapped to the
corresponding glyph in the font. For example, the
line:

{ka}{virama}{ka} => "\<183>" ;

126 TUGboat, Volume 27 (2006), No. 2

identifies the sequence ‘I + m + I’ and produces
the ligature ‘·’, which is glyph 183 in the Rachana
font.

One thing to note is that ligatures coming along
with dependent vowels in which a character is placed
to the left of the ligature (in the above example: t·,
u·, tt·, t·n, and u·n) must have entries before
the plain ligature (·).

Similarly, all ligatures that are present in the
font file have corresponding lines in this ΩTP.

Next, the dependent vowels are mapped to ap-
propriate locations in the font with the following:

{depA} => "n" ;

{depi} => "o" ;

{depI} => "p" ;

{depu} => "q" ;

{depU} => "r" ;

{deprr} => "s" ;

...

{consonant}{depe} => <= "t" \1 ;

{consonant}{depE} => <= "u" \1 ;

...

The dependent form of ‘c’ gets special treat-
ment similar to the above (for example, I + m + c

= }I).
Finally, the independent vowels and consonants

are mapped to glyphs in the font with lines like the
following:

{a} => "A" @"0D4F ;

{A} => "B" @"0D4F ;

{i} => "C" @"0D4F ;

{I} => "\<164>" @"0D4F ;

...

{ka} => "I" ;

{kha} => "J" ;

{ga} => "K" ;

{gha} => "L" ;

...

The fake Unicode character 0D4F, which is used
as a soft hyphen, is replaced with a TEX discre-
tionary hyphen.

@"0D4F => "\-" ;

Producing UTF-8 Indic TEX files

One main objective of developing this package was
that the user must be able to see Malayalam text as
the source file is prepared.

Although OpenOffice supports Malayalam and
produces decent UTF-8 text, the character display
is very primitive; most of the dependent vowels are
shown on the wrong side of the characters they are
associated with. The same is true of the standard
editor Vim.

A decent solution is the Yudit editor developed
by Gaspar Sinai. It uses OpenType fonts for dis-
playing text and comes with many transliteration
schemes for almost all Indic languages. Writing a
new transliteration scheme is also very easy. This
package includes support for using Yudit to pre-
pare Malayalam TEX source files using a phonetic
transliteration scheme.

Fonts

Two font families are included in this package in
Type 1 format. The first one is Keli (tIfn) whose
character set includes Malayalam Reformed script
(New Lipi). The second one, Rachana (cN\) con-
tains more than 900 glyphs in six font files. This
font enables typesetting in the Traditional Mala-
yalam script (Old Lipi).

Conclusion

Ω seems to be capable of handling all the complexi-
ties involved in typesetting Indic languages. Having
UTF-8 support makes it all the easier for developers
to write ΩTP’s for any given font. Another advan-
tage is that any UTF-8 compatible editor can be used
for creating source files.

We hope this article will help developers to cre-
ate support for other Indic languages.

This work was supported in part by the TEX
Development Fund (http://tug.org/tc/devfund).

⋄ Alex A.J.

Lilly Dale

Mukkolakkal, Nedumangad P.O.

Thiruvananthapuram-695541

India

indicTeX (at) gmail.com

http://sarovar.org/projects/malayalam

TUG 2006 — schedule
Wednesday
November 8

15:00 registration
16:00 tour around Marrakesh monuments in open bus

Thursday
November 9

08:00 registration
08:30 Khalid Sami, UCAM-FSSM Welcome

09:00 break
Morning session chair: Hans Hagen

09:30 Thomas Feuerstack, Klaus Höppner ProTEXt, a complete TEX system for beginners

10:10 Taco Hoekwater MetaPost developments — autumn 2006

10:50 Jean-Michel Hufflen Names in BIBTEX and mlBIBTEX

11:25 Gerben Wierda, Renée Van Roode TEX Live — Life with TEX

12:00 lunch

Afternoon session chair: Nelson H. F. Beebe

14:00 Hans Hagen OpenMath and MathML in practice

14:40 Jerzy B. Ludwichowski TEX producing legal documents

15:20 Zdeněk Wagner Babel speaks Hindi

16:00 break
17:30 guided tour of Marrakesh medina/old city and Jamee El-Fna place

Friday
November 10

Morning session chair: Jonathan Kew

08:30 Yannis Haralambous Infrastructure for typesetting high-quality Arabic

09:15 Youssef Jabri The Arabi system — TEX writes in Arabic and Farsi

10:00 break
10:15 Hossam A.H. Fahmy AlQalam for typesetting traditional Arabic texts

10:50 Mustapha Eddahibi,
Azzeddine Lazrek, Khalid Sami

DadTEX — A full Arabic interface

12:00 lunch

Afternoon session chair: Barbara Beeton

14:40 Jonathan Kew Unicode and multilingual typesetting with X
E

TEX

15:20 Mohamed Jamal Eddine Benatia,
Mohamed Elyaakoubi,
Azzeddine Lazrek

Arabic text justification

16:00 break
16:15 round table: Arabic typography moderator: Yannis Haralambous

17:30 city tour of Marrakesh

Saturday
November 11

Morning session chair: Robin Laakso

08:30 Claudio Beccari LATEX2ε, pict2e and complex numbers

09:15 Morten Høgholm Page design in LATEX3

10:00 break
10:15 Hans Hagen, Jerzy Ludwichowski,

Volker RW Schaa
The New Font Project: TEX Gyre

10:50 Karel Ṕı̌ska Outline font extensions for Arabic typesetting

11:25 Chris Rowley, Frank Mittelbach Everything we want to know about modern

font technologies

12:00 lunch

Afternoon session chair: Klaus Höppner

14:00 Elena Smirnova, Stephen M. Watt Generating TEX from mathematical content with respect

to notational settings

14:40 Adrian Frischauf, Paul Libbrecht dvi2svg: Using LATEX layout on the Web

15:20 Hans Hagen LuaTEX and ConTEXt versions

16:00 break
16:15 Gyöngyi Bujdosó TEX, typography & art together

16:30 Barbara Beeton How to create a TEX journal: A personal journey

16:15 round table: Mathematics on the Web moderator: Stephen M. Watt

19:00 banquet at Chez Ali

Sunday
November 12

08:00 Excursion to Essaouira
(Speakers are in bold.)

TUG 2006

Sponsors

Cadi Ayyad University CSTUG DANTE e.V. GUTenberg Faculty of Sciences
Pole of Competences STIC TEX Users Group

Thanks to all! Thanks also to all the speakers and participants, without whom there would
be no conference. Special thanks to the FSSM Communication Service and Computer
Sciences Department for providing local assistance, and to Duane Bibby for the (as always)
excellent drawing.

Program committee

C. Beccari, PT, Italy

K. Berry, TUG, USA

H. Hagen, Pragma ADE, Netherlands

Y. Haralambous, ENSTB, France

K. Höppner, DANTE, Germany

B. Hughes, UM, Australia

A. Lazrek, UCAM-FSSM, Morocco

A. Lindsay, Lancs Uni, UK

S. Peter, Beech Stave Press, USA

J. Plaice, UNSW, Australia

B. Raichle, US, Germany

K. Sami, UCAM-FSSM, Morocco

V. RW Schaa, DANTE, Germany

C. Swanepoel, UNISA, South Africa

A. Syropoulos, GTF, Greece

Organizing committee

K. Berry, R. Laakso, TUG, USA

M. El Adnani, A. Lazrek,

K. Sami, UCAM-FSSM, Morocco

Participants

Claudio Beccari, Politecnico di Torino, Italy
claudio dot beccari (at) polito dot it

Nelson H. F. Beebe, University of Utah, USA

beebe (at) math dot utah dot edu

Barbara Beeton, American Mathematical Society,
USA bnb (at) ams dot org

Mohamed Jamal Eddine Benatia, Ibn Youssef
School, Morocco benatiamje (at) yahoo

dot fr

Gyöngyi Bujdosó, University of Debrecen,
Hungary bujdoso (at) inf dot unideb

dot hu

Marc Dehon, Ibn Ghazi School, Morocco
majdi sam (at) yahoo dot fr

Mustapha Eddahibi, Cadi Ayyad University,
Morocco m dot eddahibi (at) ucam dot ac

dot ma

Mohamed Elyaakoubi, Cadi Ayyad University,
Morocco m dot elyaakoubi (at) ucam dot

ac dot ma

Hossam A. H. Fahmy, Cairo University, Egypt
hfahmy (at) arith dot stanford dot edu

Thomas Feuerstack, FernUniversität, Germany
Thomas dot Feuerstack (at) FernUni-Hagen

dot de

Adrian Frischauf, German Research Center for
Artificial Intelligence, Germany adrianf (at)

activemath dot org

Steve Grathwohl, Duke University Press, USA

grath (at) duke dot edu

Hans Hagen, Pragma ADE, The Netherlands
pragma (at) wxs dot nl

Yannis Haralambous, ENSTB, France
yannis.haralambous (at) enst-bretagne

dot fr

Hartmut Henkel, Von Hoerner & Sulger, Germany
hartmut henkel (at) gmx dot de

Taco Hoekwater, Elvenkind BV, The Netherlands
taco (at) elvenkind dot com

Morten Høgholm, LATEX3 Project, Denmark
morten dot hoegholm (at) latex-project

dot org

Klaus Höppner, DANTE e.V., Germany klaus

(at) dante dot de

Brian Housley, University of Berne, Switzerland
brian dot housley (at) gccs dot ch

Jean-Michel Hufflen, University of Franche-Comté,
France hufflen (at) lifc dot univ-fcomte

dot fr

Youssef Jabri, Mohammed I University, Morocco
yjabri (at) ensa dot univ-oujda dot ac

dot ma

Steffen Kernstock, WPT Kernstock, Germany
s dot kernstock (at) kernstock dot com

Jonathan Kew, SIL International, UK

jonathan kew (at) sil dot org

Reinhard Kotucha, Hannover, Germany
reinhard dot kotucha (at) web dot de

Robin Laakso, TEX Users Group, USA office

(at) tug dot org

Azzeddine Lazrek, Cadi Ayyad University,
Morocco lazrek (at) ucam dot ac dot ma

Jerzy B. Ludwichowski, Nicolas Copernicus
University, Poland Jerzy.Ludwichowski

(at) uni dot torun dot pl

Karel Ṕı̌ska, Academy of Sciences, The Czech
Republic piska (at) fzu dot cz

Arthur Reutenauer, GUTenberg, France arthur

dot reutenauer (at) gmail dot com

Jon Riding, Oxford Brookes University, UK jon

dot riding (at) plenumorganum dot org

dot uk

Renée van Roode, R & A, The Netherlands
Renee dot van dot Roode (at) rna dot nl

Chris Rowley, Open University, UK C dot A dot

Rowley (at) open dot ac dot uk

Khalid Sami, Cadi Ayyad University, Morocco
k sami (at) ucam dot ac dot ma

Volker RW Schaa, DANTE e.V., Germany
volker (at) dante dot de

Elena Smirnova, University of Western Ontario,
Canada elena (at) orcca dot on dot ca

Vytas Statulevicius, VTEX Ltd., Lithuania
vytas (at) vtex dot lt

Ina Talandiene, VTEX Ltd., Lithuania ina (at)

vtex dot lt

Sigitas Tolusis, VTEX Ltd., Lithuania sigitas

(at) vtex dot lt

Zdeněk Wagner, Ice Beare Soft, The Czech
Republic wagner (at) cesnet dot cz

Stephen M. Watt, University of Western Ontario,
Canada watt (at) csd dot uwo dot ca

Gerben Wierda, R & A, The Netherlands
Gerben.Wierda (at) rna dot nl

Conference information

The TEX Users Group’s twenty-seventh annual meeting and conference is organized in
collaboration with the Computer Science Department of the Faculty of Sciences Semlalia,
Cadi Ayyad University, located in Marrakesh, Morocco. About thirty talks are expected
to be held over three days, starting on November 9th, 2006. More than forty people are
expected to attend the conference, coming from diverse places: Algeria, Canada, the Czech
Republic, Denmark, Egypt, France, Germany, Greece, Hungary, Italy, Lithuania, Morocco, the
Netherlands, Poland, Switzerland, Syria, the United Kingdom, and the United States.

Topics

After TUG 2003 in USA (Hawaii), TUG 2004 in Europe (Xanthi, Greece), TUG 2005 in
Asia (Wuhan, China), TUG 2006 is, for the first time, held in North Africa (Marrakesh,
Morocco). The theme of the meeting is Digital Typography & Electronic Publishing:
Localization & Internationalization.

Our goal is to focus on the new challenges presented by the rapidly growing desire for best
localization. Indeed, processing of multilingual e-documents is now needed beyond the limits
of traditional cultural areas. The TEX environment’s localization of languages using an
Arabic-alphabet based script are examples of such concerns. Of course, a wealth of material on
various other topics and projects will also be presented. This theme gave us the opportunity to
welcome contributions outside the strict scope of TEX.

Talks and proceedings

We tried to organize the sessions by gathering talks in similar areas of interest. Day one
will focus on aspects of the TEX overall environment, discussing various distributions,
important programs, and applications. For the second day, we concentrate on the topic of
Arabic typography and typesetting. The final day brings together topics from the web, fonts,
and LATEX.

Preprints will be available at the meeting. The final proceedings will be an issue of TUGboat,
as usual, and will be published shortly after the conference.

The drawing

Duane Bibby’s TEX lion and its small computer companion help set the context of the
conference. The Lion is dressed as an Arab Calligrapher entering a dome in the island of Africa
from a large Andalusian gate. The word TEX is mirrored and some Arabic Indic numbers are
there to remind that the conference is held in a country which writes in Arabic.

We can also notice the Koutoubia tower (1184–1199). The minaret (tower) is the most famous
monument of Marrakesh. It was used as the architectural model for the famous Giralda tower
of Sevilla (Spain) and for the Hassan tower of Rabat also. The tower’s name is derived from
the Arabic al-Koutoubiyyin (librarians), since it was surrounded by sellers of manuscripts and
calligraphers.

Of course, the palm tree adds a final grace note.

Thanks

First, we must thank all the members of the organizing and programme committees for their
kind and helpful discussions and encouragement. We also thank Karl Berry for his work
preparing the conference (he was unfortunately unable to attend, and sends his regrets). We
also owe thanks to Barbara Beeton — despite not being listed on the formal committees, she
was always present and always helpful. Finally, we thank Khalid Sami for his invaluable help.

Best regards,

Azzeddine Lazrek
Conference chair

TUG 2006 Report

Taco Hoekwater
taco (at) elvenkind dot com

Abstract

After TUG 2003 in America (Hawaii, USA), TUG 2004 in Europe (Xanthi,
Greece), TUG 2005 in Asia (Wuhan, China), TUG 2006 was held in Africa, more
precisely in Marrakesh. Processing multilingual e-documents went beyond the
limits of its traditional cultural areas and new horizons in the internationaliza-
tion of TEX were explored.
Keywords: TUG 2006, Marrakesh, Arabic, international user meeting

Introduction

The TEX User Group’s 27th annual meeting and
conference was organized in collaboration with the
Computer Science Department of the Faculty of Sci-
ences Semlalia, Cadi Ayyad University, located in
Marrakesh, Morocco. About thirty talks were given
over three days, starting on November 9th, 2006.
The conference was attended by more than forty
people from all over the world.

The main topic and subtitle of the conference
was: ‘Digital Typography & Electronic Publishing:
Localization & Internationalization’. It follows that
there was a large focus on Arabic typography, but
even so, a number of interesting presentations on
altogether different subjects were given. A short day
by day overview follows.

Wednesday November 8, arrival

Hans Hagen and I arrived (together with a few other
people) at the airport of Marrakesh late in the morn-
ing, where we were picked up and chauffeur-driven
to our hotel. Luckily, the hotel was only a few hun-
dred meters away from the conference location, but
that did not stop us from taking more than an hour
to walk over there.

There was no official program for this day, but
because many of the international attendants ar-
rived in the morning and early afternoon, the lo-
cal organization had thoughtfully scheduled a tour
of Marrakesh city by (open) double-decker bus. As
luck would have it, during this tour we had the only
rainfall of the entire week, so we all got wet and had
to hurry inside the bus. But from then on, we had a
steady plus 20 degrees Celsius and lots of sunshine,
so no complaints about the weather.

Thursday November 9, day 1

The day started early, with the official welcoming
speeches starting at half past eight. We were wel-

comed by Boumedine Tanouti of UCAM (the univer-
sity itself) and Mohssine Belkoura from FSSM (the
hosting faculty), and of course by TUG.

The first talk of the day was by Thomas Feuer-
stack and Klaus Höppner, who presented “ProTEXt,
a complete TEX system for beginners”. Most Win-
dows-using readers will have seen the ProTEXt disk
in previous years’ TEX Collection. The very easy to
install and use TEX system based on MiKTEX and
TEXnicCenter will of course also be included this
year. They are still looking for a Dutch translator
for the installation manual, so if you want to help
them out, please send me a message.

Next was my presentation of the new develop-
ments for the upcoming MetaPost release. The most
important news is that MetaPost can now do font
re-encoding and subset-ting. You can read about
that in the previous (EuroTEX) issue of TUGboat.

Jean-Michel Hufflen talked about the use of per-
son names in his program MlBibTEX versus the tra-
ditional BibTEX. MlBibTEX (‘Ml’ stands for ‘Multi-
lingual’) features much improved input and handling
of people’s names. His quite colorful slides demon-
strated a number of problematic names along with
their usage in MlBibTEX.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 131

Taco Hoekwater

Hans Hagen, OpenMath

The other two Dutch people present were Renée
van Roode and Gerben Wierda, and together they
talked about ‘TEX Live — Life with TEX’. Renée
gave a very nice overview of the past six years that
Gerben has been working on the i-Installer and i-
Packages for gwTEX. After that, Gerben took over
with a more technical explanation of what the i-
Installer does. It came as bit of a shock to most
of us that the last slide was titled ‘I Quit’. Other
people will continue to work on TEX for Mac OS X,
but Gerben will be sorely missed.

Moroccan lunches are not be taken lightly. Or
perhaps I should say: Moroccan lunches cannot be
taken in lightly. The food was excellent all through
the conference, and especially so the lunches. These
were served in a restaurant that was situated behind
an unadorned garden door in a residential street.
Considering the outstanding quality (and quantity)
of the food served there, it is no surprise that they
keep it a well guarded secret!

The afternoon program began with Hans Hagen
telling everybody about the Mathadore project. The
Dutch Mathadore project uses OpenMath to pro-
vide courseware for secondary education, and this
content is typeset by ConTEXt after an intermediate
conversion to MathML using an XSLT script that is
part of the ConTEXt distribution.

Next up, Jerzy Ludwichowski talked about how
Copernicus University in Toruń uses TEX to handle
the admission forms for students. These legal doc-
uments are generated automatically from the base
data in the administrative system, handling tens of
thousands of admissions each year, with a minimum
of effort.

The last talk of the day was Zdeněk Wagner:
Babel speaks Hindi. The presentation described how

The Souks

Yannis Haralambous

the Babel module for Hindi was made, and it showed
some of the problems associated with typesetting
Hindi. For instance, in this script letters are re-
ordered in the output, creating the need for a pre-
processor to facilitate the input.

In the evening, there followed another visit to
the old city of Marrakesh. We did a walk through
the Souks, and returned to the hotel by means of
horse and carriage.

Friday November 10, day 2

Friday was completely focused on Arabic typogra-
phy. The first talk was by Yannis Haralambous. His
talk, ‘Infrastructure for high-quality Arabic typeset-
ting’ kicked off the day by unveiling the plans for
Arabic typesetting support in the coming Ω2. He
showed us the planned data structure and the al-
gorithmic steps that will be used to produce high
quality output in a large number of different lan-
guages that use the Arabic script.

Youssef Jabri then talked about ‘The Arabi sys-
tem — TEX writes in Arabic and Farsi’. Arabi is a

132 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

TUG 2006 Report

newly arrived package that provides Arabic script
support for LATEX without the need for an exter-
nal preprocessor or a special TEX extension. It adds
support for the Arabic and Farsi languages to Babel,
it comes with a set of suitable fonts, and it under-
stands a number of different input encodings. Sup-
port for Tifinagh, Syriac and even Urdu is planned
for the near future.

Karel Ṕı̌ska demonstrated some interesting tech-
niques that can be used to improve existing font
technologies. The focus of ‘Outline font extensions
for Arabic typesetting’ was on using a dynamic rep-
resentation of the glyph shape so as to allow run-
time generation of curvilinear kashida connections
instead of the rule-based fillers that are common to-
day.

After the break, Hossam Fahmy introduced us
to his system that aims at typesetting the Qur’an:
AlQalam (“the pen” in Arabic). The system evolved
out of modifications to ArabTEX. Much work is still
needed, especially in the area of fonts, but also when
it comes to low-level support from the typesetting
program. Nevertheless, the intermediate results are
already quite impressive.

Have you ever felt the need to key in LATEX
commands in your native language? Well, if you are
speaking Arabic, now you can! Mustapha Eddahibi
presented ‘DadTEX — A full Arabic interface’. This
project makes it possible for Arabic-speaking peo-
ple who are not familiar with the English language
to use LATEX. This project also involves Azzeddine
Lazrek and Khalid Sami from UCAM.

Next in line was Taco Hoekwater, acting as
stand-in for Idris Hamid. He summarized the Ori-
ental TEX project, its objectives and time-line. He
also explained the relationship between this project,
which is sponsored by Colorado State University
(USA), and the pdfTEX successor LuaTEX, as well
as upcoming MetaPost versions.

After yet another impressive lunch, Jonathan
Kew demonstrated some of the multi-lingual capa-
bilities of X ETEX. Besides a set of ‘prepared earlier’
slides, he also gave an impressive live demonstra-
tion. The second part of his talk was all about the
growing Unicode math support in X ETEX. This will
no longer need special TEX fonts but is now able
to use the new Unicode support found in the latest
OpenType fonts.

Mohamed Elyaakoubi presented research on the
justification of Arabic text. Hyphenation of words
has been forbidden in Arabic for centuries. Various
other methods of justification are used instead, like
stretching intermediate connectors between letters
and the use of an elaborate system of ligatures and

Jonathan Kew

Mohamed Benatia, calligraphing participants’ names

alternative letter forms. The paper corresponding
to this talk was a joint effort with Azzeddine Lazrek
and the calligrapher Mohamed Benatia, who kindly
calligraphed the phonetic representation of all of our
names in Arabic.

Officially, this was to have been the last talk of
the day, but to kick off the round table discussion
that followed, Yannis Haralambous presented a set
of slides showing all the various languages that use
Arabic script and the enormous amount of variation
that can be found therein. After that, the round
table discussion followed. This was attended by a
fair number of local students as well as TEX-ies.

Saturday November 11, day 3

Claudio Beccari began the final day of talks, talking
about the use of pict2e, a fairly recent addition
to the LATEX repertoire of drawing packages. The
focus was on how you can use complex numbers to
simplify drawing.

LATEX3, and especially page design, was high-
lighted by Morten Høgholm. Because he received

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 133

Taco Hoekwater

many general questions in preceding days, he also
explained quite a bit about the project infrastruc-
ture and the internals of the upcoming LATEX3. Al-
though there is still no release date, but the code is
ready enough that interested people are requested
to beta-test the new system.

After the coffee break, there was a session on
fonts. It started with Jerzy Ludwichowski who pre-
sented the TEX Gyre font project.

Macintosh users can be proud of the fact that
the i-Installer already has support for the first three
font families that came out of this project, because
in the next slot, Gerben actually built the required i-
Packages as a demonstration of how to use i-Installer
‘from the other side’.

At this point, a presentation was squeezed in.
Yannis Haralambous made a brave attempt to re-
place Apostolos Syropoulos based on his slides enti-
tled ‘LATEX as a tool for the typographic reproduc-
tion of ancient texts’. For a large number of ancient
scripts, this talk explained some of the problems re-
lated to the script and how well it can be typeset
using current LATEX. Yannis worked hard to com-
pensate the missing author by showing examples he
had found of the scripts in question.

For ‘Everything we want to know about modern
font technologies’, Chris Rowley turned his presen-
tation into a panel session, made possible by the
presence of many font experts. He had prepared
some questions and after discussing them briefly, a
lively discussion followed. Among the topics dis-
cussed were the fundamental differences between the
typesetting of Western scripts (by pasting together
glyphs) and the Arabic script which is still strongly
rooted in the calligraphic world, something not triv-
ial to do with computers. The discussion ended with
musings about the potential of using MetaPost as an
integral part of TEX, enabling the use of dynamically
generated fonts.

Hurray, after that it was time for lunch again!
Following that, Elena Smirnova talked to us about
generating TEX from mathematical content while
honoring notational preferences. To this end, they
convert from an extended form of Content MathML

to Presentation MathML or TEX input, using a spe-
cific notation style that can be selected by the user
using a simple GUI interface. The conversion appli-
cation itself is controlled by an XML-based catalog
of possible presentations and conversions.

‘dvi2svg: Using LATEX layout on the web’ was
presented by Adrian Frischauf. He convincingly dem-
onstrated that you can create really good looking
math in web pages by converting the TEX-generated
DVI file into SVG, and then serving the SVG to the

One of the many fantastic lunches.

web browser. The biggest (perhaps only) drawback
of this approach is that right now, it needs a sepa-
rate plug-in to be installed in order to view the page.
The built-in support inside web browsers is not yet
good enough to handle complex text native.

Hans Hagen talked about the impact of Lua-
TEX on ConTEXt. He gave an overview of the status
quo of the LuaTEX project and gave some examples
of how and where Lua comes into play.

After the coffee break and the traditional group
photograph, the final session started with a continu-
ation of Gyöngyi Bujdosó’s talk from EuroTEX 2006.
‘TEX, typography & art together’ focused on the
typographical side of a TEX- and typographical e-
learning system that is being developed in Hungary.
This second half of the system revolves around a
database containing typefaces, paintings, page lay-
outs, and information about their designers.

More than twenty-five years of TUGboat his-
tory were summarized by Barbara Beeton in the fi-
nal presentation of TUG 2006. Barbara presented
a large number of examples that were scanned in
from previous volumes as an aid in explaining how
the current layout came to be.

Several talks had dealt with the more trendy
ways of coding (XML) and presenting math (web,
dynamic, right-left). In the final discussion Stephen
Watt challenged the audience to come up with vi-
sions and requests concerning coding and represent-
ing math as well as current and future demands of
accessing math on the web. Being a member of
the forums that discuss these items in relation to
standards, the author triggered discussion and also
invited the audience to bombard him with emails
regarding the subject.

That night was the banquet, held at a special
place called ‘Chez Ali’. After dinner, a special per-
formance was held in the center courtyard of the

134 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

TUG 2006 Report

complex. At the end of that there were fireworks
and a ritual burning of the TEX Users Group logo!

Sunday November 12, excursion and closing

Even though the last talk was on Saturday, almost
everybody stayed around for the excursion to Es-
saouira on Sunday. Perhaps in part because the ban-

quet was the night before, so that is a trick worth
remembering. After the crowded and metropolitan
Marrakesh, it was nice to see a town that was per-
haps just as commercial, but much, much smaller in
scale.

When we got back to the hotel in the evening,
the time had come to officially close the conference.
Many words of thanks were spoken there already,
but let me repeat again: a big thank you to the
local organization and especially Azzeddine Lazrek.
It has been a great TUG conference!

(A sampling of conference photos are below, courtesy of
Hartmut Henkel and Volker Schaa. Many more are at
http://bel.gsi.de/tug2006/. Ed.)

Back row: Yannis Haralambous, Arthur Reutenauer, Hartmut Henkel, Mustapha Eddahibi, Jon Riding, local
participant, Sigitas Tolusis, Vytas Statulevicius, Adrian Frischauf.

Second from back row: Hans Hagen, Steffen Kernstock, Morten Høgholm, Chris Rowley, Karel Ṕı̌ska, local
participant, Steve Grathwohl, Jerzy Ludwichowski, Khalid Sami, Thomas Feuerstack, Klaus Höppner.

Second from front row: Claudio Beccari, Taco Hoekwater, Ina Talandiene, Nelson H.F. Beebe, Brian Housley,
Jonathan Kew, Jean-Michel Hufflen, Reinhard Kotucha, Hossam Fahmy.

Front row: Youssef Jabri, Zdeněk Wagner, Stephen Watt, Elena Smirnova, Barbara Beeton, Mohamed Elyaakoubi,
Gyöngyi Bujdosó, Azzeddine Lazrek.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 135

Taco Hoekwater

Other participants not in the group photo:
Volker RW Schaa (first in back row),
Robin Laakso (last in front row), Marc Dehon,
Mohamed Jamal Eddine Benatia.

Conversing after another fabulous lunch.

Official opening: Khalid Sami (organizing committee),
Barbara Beeton (TUG), Boumedine Tanouti (UCAM

vice-president), Mohssine Belkoura (FSSM Vice-doyen),
and Azzeddine Lazrek (conference chair).

Double-decker bus tour on arrival day.

Jemaa el-Fna, guided tour of the old city.

Excursion to Essaouira, on the coast.

Closing remarks and thank-yous to all.

136 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Arabic text justification

Mohamed Jamal Eddine Benatia,

Mohamed Elyaakoubi and Azzeddine Lazrek
Department of Computer Science,
Faculty of Science, University Cadi Ayyad
P.O. Box 2390, Marrakesh, Morocco

Phone: +212 24 43 46 49 Fax: +212 24 43 74 09
lazrek (at) ucam dot ac dot ma

http://www.ucam.ac.ma/fssm/rydarab

Abstract

Justification of Latin script based texts is carried out by handling of hyphenation
and insertion of inter-word glue, which can be stretched or shrunk to some extent.
Due to the cursive nature of Arabic writing, text justification in Arabic has a quite
different logic. So, the classical algorithms of text justification must be completely
revised. Justification in Arabic typography has traditional processes inspired by
calligraphy manuals. Words are flexible: on the one hand, a word can be resized
through stretching some letters in a curvilinear way; on the other hand, it can
be shrunk via ligatures so that the width of a given letter group is decreased.

العربي النص محاذاة
برامجyات تعتمد شابه ما أو اللاتyني بالحرف الكتابة في النص محاذاة لاجراء ملخص:
خاصة نحwية لقwاعد طبقا الايسر، للهامش المحاذية الكلمات تقطyع النص معالجة
wفه العربي الخط أما التقلyص. أو للتمطyط قابلة فراغات وزرع النص، بلغة
تقضي الكتابة قwاعد دامت ما بعضها عن الكلمة حروف بفصل يسمح لا ممشwق
مرونة يتyح بالمقابل ولكنه فyه مألwف غyر أمر الكلمات تقطyع أن كما بذلك
الكشyدة استعمال بwاسطة انسyابي بشكل الحروف وتمديد الكلمات حجم تمطyط
عمwديا. وتداخلها الحروف تراكب بwاسطة الكلمات طwل تقلyص يتyح أنه كما
يختلف العربي بالخط الكتابة في النص محاذاة تحقyق أسلwب أن يعني هذا كل
من المحاذاة لwغارثمات مراجعة وأن اللاتyني بالحرف الكتابة في نظyره عن تماما

منه. مناص لا أمر أصلها

1 Justification in Latin typography

A good many methods to make paragraphs on a
page be visually homogeneous have been developed.
The majority of these methods have already been
implemented in TEX. The hyphenation and jus-
tification algorithm divides a paragraph into lines
in an optimal way, as regards time complexity as
well as the visual result obtained [6]. The process-
ing spreads out beyond the paragraphs, to reach the
level of the page in its totality.

1.1 Typographical hyphenation

Typographical hyphenation is the breaking of words
when they come at the end of a line and would over-
flow into the margin. In general, word breaking hap-
pens at syllable boundaries.

In the beginning, the hyphenation of words was
done by hand. In 1983, F. M. Liang [8] published a
sophisticated method to find nearly all the suitable

places to insert hyphens in a Latin script based writ-
ten word. The method is controlled by an organized
tree structure of tries, containing a list of hyphen-
ation patterns. Combinations of letters which allow,
or prohibit, the word-breaking are listed, and pri-
orities to breakpoints in letter groups are assigned.
Patterns reflect the hyphenation rules of a given lan-
guage. So there will be as many pattern tree struc-
tures as there are normative languages. This is the
algorithm Donald E. Knuth chose to implement in
TEX.

1.2 Spacing

To give a line the flexibility it needs, a space or its
equivalent can presumably be inserted between each
pair of words. Therefore, some of these spaces are
transformed into line ends. Others are transformed
into variable sized spaces called glue. The glue has a
normal size that can be stretched or shrunk. When a
paragraph intended to have a justified right margin

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 137

Mohamed Jamal Eddine Benatia, Mohamed Elyaakoubi and Azzeddine Lazrek

Figure 1: Special morphology

is composed with TEX, the glue widths of each line
are adjusted so that lines end almost at the right
margin. Generally, the last line of a paragraph is an
exception, and does not have to end at the margin.

Given this, it is always an extremely difficult
task to obtain a uniform typographical gray. The
main reason is the impossibility of ensuring an equal
inter-word space in different lines. The composition
accidents of rivers and alleys are uncomfortable for
the reader, and irregular spaces catch his attention.

A solution for such problems has been imple-
mented by Hàn Thé̂ Thành [11]. Instead of (or as
well as) changing inter-word spaces to justify text
lines, the widths of characters are slightly modified.
So, better inter-word spacing can be obtained and
space elasticity can be limited. This width modi-
fication is implemented through horizontal scaling
of fonts in pdfTEX. If it is employed parsimoniously
and wisely, this method can appreciably improve ap-
pearance of the typography produced by TEX.

2 Justification in Arabic typography

Arabic writing is cursive in its printed form as well
as in its handwritten form. The letters’ morphol-
ogy changes according to their position in the word,
according to the surrounding letters, and in some
cases, according to the word’s meaning (for exam-
ple, ALLAH and Mohamed when it indicates the
prophet’s name in Figure 1). The alternative po-
sitions then depend on the typeset words. The end
of a given glyph is tied to the beginning of the fol-
lowing glyph, with no possible break.

Remark:
All figures and the table are written from right to
left according to Arabic writing direction.

2.1 Kashida

The genuine connections between Arabic letters are
curvilinear strokes that can be stretched or shrunk
according to the writing context. Such curve is called
kashida, tamdid, madda, maT, taTwil, or iTalah.
This variable-sized connection between letters is spe-
cific to Arabic alphabet based writing. The kashida
is used in various circumstances:

Figure 2: An Arabic word with kashida

• emphasis: to mark an important piece of a
word. The kashida will then mark the sound
elongation;

• legibility: to give a better character layout on
the baseline, and to lessen the cluttering at the
joint point between two successive letters of the
same word;

• aesthetics, to embellish the writing of a word;

• justification, to justify a text line.

The example in Figure 2 shows a composition of an
Arabic word; the arrows indicate the kashidas, with
various degrees of extensibility.

There are mandatory elongations, allowed elon-
gations and prohibited elongations. The typograph-
ical quality of a text is determined, among other
things, by the absence of mandatory elongations or
the presence of prohibited elongations.

In terms of Arabic text justification, the kashida
is a typographical effect that allows the lengthening
of letters in some carefully selected points of the line,
with determined parameters, in order to produce the
left alignment of a paragraph. The good selection of
characters to be stretched is called tansil.

2.2 Current typesetting systems

In terms of text processing tools, the curvilinear
kashida is, generally, still beyond what the majority
of typesetting systems can afford. The kashida is
not a character in itself, but an elongation of some
character parts while keeping rigid the body’s char-
acter. It is not a simple horizontal scaling to widen
character width. Instead of performing a kashida,
the majority of typesetting systems proceed by in-
serting a rectilinear segment between letters; the re-
sulting typographical quality is unpleasant. Due to
the lack of adequate tools, the solution consists of
inserting a glyph, that is, an element of a font. So,
rather than computing (say) parameterized Bézier
curves in real time, a ready-to-use character is in-
serted. Moreover, whenever stretching is performed
by means of a parameterized glyph coming from an
external dynamic font, the current font context is
changed.

Curvilinear extensibility of characters can be af-
forded by certain systems through the a priori gener-
ation of curvilinear glyphs for some predefined sizes.

138 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Arabic text justification

Figure 3: Presence of
Noon-Meem ligature
(Source: Holy Quran writ-
ten by the calligrapher
Alhaj Hafez Mohamed
Amin Alrochdi, scrutinized
and revised by General
Directorate of Endowments,
Baghdad, p. 649.)

Figure 4: Absence of
Noon-Meem ligature

❾←✱✮←✰+✫
Figure 5: Contextual and aesthetic transformations

Beyond these sizes, the system will choose curvilin-
ear primitive and linear fragments. Of course, this
will violate the curvilinear shape of letters and sym-
bols composed at large sizes [3, 9, 10].

A better approach consists of building a dy-
namic font [4, 7], through parameterizations of the
composition procedure of each letter. The intro-
duced parameters indicate the extensibility size or
degree. To handle the elongations, a letter is decom-
posed into two parts: the static body of the letter
and the dynamic part, capable of stretching.

2.3 Ligatures

The cursive nature of Arabic writing implies, among
other things, a wide use of ligatures [5]. Indeed,
Arabic writing is rich in ligatures. Some ligatures
are mandatory and obey grammatical and contex-
tual rules [5]. Others are optional and exist only
for aesthetic reasons, legibility and/or justification.
Moreover, the connection of letters, in the course
of writing cursively, can lead to the introduction of
implicit contextual ligatures. An explicit ligature is
the fusion of two, three, or even more, graphemes.

Some aesthetic ligatures result in some read-
ing ambiguity. So, precise texts such as the Holy
Quran are sometimes written without such ligatures.
Figure 3 shows an example of such ambiguity: the
Noon-Meem ligature can be confused with the ini-
tial form of the letter Ghain. Figure 4 shows the
text without the ligature.

Generally, the ligature width is shorter than the
width of the fused grapheme group. For example,

the aesthetic ligature ❾ in Figure 5 is 9.65031pt

wide, whereas the ligature given by simple contex-
tual substitutions ✱✮ is rather wide (14.754pt).

The control of ligature behavior, by the conver-

❞♠❤✷ տ

❞♠✩ ←− ✰+❝+★+❝
❞★ ւ

Figure 6: Various levels of ligatures

sion of implicit ligatures into aesthetic ones, brings
some flexibility to the word. So, it can be adapted to
the available space on the line. The example in Fig-
ure 6 shows three ligature levels: mandatory simple
substitutions, aesthetic ligatures of second degree,
and finally, aesthetic ligatures of third degree. The
two last ligature levels provide shrinking possibilities
of the same word.

The use of aesthetic ligatures of second and
third degree has to take into consideration the con-
straints of legibility.

A typesetting system should take into account
three levels of recourse to ligatures. In the first
level, there are only implicit contextual ligatures and
mandatory grammatical ligatures of second degree.
This level is recommended for textbook composi-
tion, where it is necessary to avoid any collision be-
tween characters and/or any reading ambiguity. In
a second level, some aesthetic ligatures of second
degree can be used. This level is recommended for
composition of books for the general public. The
third level, where the use of aesthetic ligatures of
higher degrees is allowed and liberties in graphic ex-
pressions can be taken, is possible in special circum-
stances.

The use (or not) of the explicit ligatures to im-
prove the justification should take into account the
graphic environment and the block regularity of the
concerned text. In calligraphy, when an aesthetic
ligature is used, there is no obligation to use this
ligature in all text occurrences. The justification
problem can be resolved by the use of kashidas in a
text containing only implicit ligatures.

The use of ligatures to justify lines is not solely
an Arabic writing characteristic. Adolf Wild [12],
the Gutenberg museum conservator in Mainz, exam-
ined the Gutenberg Bible from a typographical point
of view. At the level of lines, justification was made
via ligatures, instead of today’s variable spaces.

2.4 Other practices

The baseline (satr alkitabah) is the line on which let-
ters stand to form words and therefore phrases. In
Arabic writing, the baseline is a virtual line. The
characters as well as the words do not stay directly

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 139

Mohamed Jamal Eddine Benatia, Mohamed Elyaakoubi and Azzeddine Lazrek

Figure 7: Kursy in ta‘lyq style (Source: Badai‘ Alkhat
Al‘arabi, p. 372, Naji Zine Eddine Almasref)

on a static line with a fixed reference. The letters
flow in an interactive way with the surrounding let-
ters. They change not only their shape, but also
their position with respect to an imaginary baseline.
Letters as well as words are free from any absolute
reference. Thereby, the letters as well as the words
may be tangled. According to Ibn Muqlah [1], good
composition implies three types of interacting forces
among letters and words:

• tarsif, the junction of the conjoint letters, where
each letter seeks the point of join with the pre-
ceding letter;

• ta’lif, the addition of letters in isolated form,
where the isolated letter seeks to fill the blank
left by the typeface of their neighboring letters;

• tastir, the words’ ruling, so that they are held
horizontally.

From another standpoint, positioning variations of
letters and words are at the origin of the chairs
kursy-s [2] theory, that introduces a number of bear-
ing lines. According to different versions of this the-
ory, the number of these lines can vary from two to
five, or even seven lines. The heights between lines
vary according to authors of this theory and can not
be respected in practice. Apparently, this theory is
used more in style ta‘lyq, as in Figure 7. Thereby,
we can wonder to what extent we can formalize this
concept for a possible automation thereof.

Nevertheless, we can say that for justification,
calligraphers do use the tangling possibilities of let-
ters and words, as in Figure 8, and inter-word space
shortening as additional or alternative methods in-
stead of kashidas. The same text was written by
two calligraphers and won a prize in the IRCICA1

2004 competition. The composition in Figure 9 by
M. T. Alubaidy used more spacing and entangle-

1 http://www.ircica.org/

Figure 8: Words tangle

Figure 9: Justification favoring the use of increasing
spaces

Figure 10: Justification favoring the use of kashida

ment, while A. Alabdo in Figure 10 favored more
kashida.

Calligraphers also build on other practices for
justification, such as:

• word heaping; this consists of putting certain
words above others — especially, the word Allah
above the preceding word (see the end of the
seventh line of Figure 11);

140 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Arabic text justification

Figure 11: Heaping words and hyphenating fragments

Figure 12: Word hyphenation

• moving the broken fragment above the hyphen-
ated word, as in the last word of the fourth line
in Figure 11;

• word hyphenation, as in Figure 12;

• word hyphenation in margin; this is an expul-
sion of hyphenated fragments to the line’s mar-
gin, instead of the following line, as in Fig-
ure 13;

• decreasing of some words at the end of a line,
as in Figures 14 and 15;

• curving of the baseline, as in Figure 16.

Since the 10th century, hyphenations at ends of
lines have been strictly prohibited. This was prob-
ably due to the cursive structure of the Arabic lan-
guage, and to the possible absence of vocalization
signs. There are even sentences which it is advised
not to hyphenate (ex. salla ALLAH elyh w sallam).
If word hyphenation was accepted in Arabic, legibil-
ity would be considerably affected.

Nowadays, only the famous caesura at hem-
stitch boundary is allowed. Regarded as a pause,

Figure 13: Expulsion in margin of hyphenated frag-
ment (Source: Holy Quran written by Yakout Almusta‘simy

with style Ryhany and Kufy in Iran museum)

Figure 14: Decreasing of words at end of line

Figure 15: Decreasing of words at end of line (Source:

Badai‘ Alkhat Al‘arabi, p. 372, Naji Zine Eddine Almasref)

Figure 16: Curving of the baseline

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 141

Mohamed Jamal Eddine Benatia, Mohamed Elyaakoubi and Azzeddine Lazrek

Figure 17: Caesura at hemstitch boundary

Figure 18: Stretching Lam

Figure 19: Simple Lam

this does not affect legibility since the hyphenated
word is still held on the same line, as shown in Fig-
ure 17. There is also a stretching letter, shown in
Figure 18, which is not allowed anymore, Figure 19.

2.5 Diacritic/metric dot

The qalam used to produce the calligraphic style
Naskh is a piece of reed like a flute mouthpiece,
shown in Figure 20. The reed’s head shape corre-
sponds to the graphic style that the qalam or feather
will offer. For example, in the Naskh style the shape
is beveled, and in the Maghreby style it is pointed.
The feather’s head in Naskh style is a flat rectangle.
During the operation of writing, it has to be main-
tained with an inclination angle of approximately
70◦ with a virtual baseline.

The diacritic dot which appears as a tilted
square is the typographical unit marked by the

Figure 20: Qalam of Arabic calligraphy

Figure 21: Diacritic dots positioning
(Source: Holy Quran written by the calligrapher Alhaj
Hafez Mohamed Amin Alrochdi, Scrutinized and revised by
General Directorate of Endowments, Baghdad, p. 43.)

{✛✗✑} = [✑]

{✬★✤} = [✤]

{✲ ✰} = [✰]
{✶ ✴} = [✴]

{✼✸} = [✸]

{❄❀} = [❀]

{●❈} = [❈]

{❖❑} = [❑]

{r ❤✛✗✑} = [✑̄]

Figure 22: Letter clusters

feather in use.
The system of diacritic dots plays a leading se-

mantic role. Indeed, certain letters are characterized
by the presence, number and positions of dots. The
basic glyph ① gives rise to several letters accord-
ing to the number of diacritic dots which appear
above or below: ✑, ✗, and ✛. Similarly, the
glyph★ provokes several letters according to pres-
ence and position of the dot with respect to the basic

glyph: ★, ✬ and ✤(noted as [✤] in Figure 22).
In the case of a succession of letters carrying two di-
acritic dots, the dots may interfere with each other.
They can thus be placed horizontally one next to the
other, or vertically one above the other, according to
the available space above or below the basic glyph,
as in Figure 21, or — even better — to stretch letters
for better spacing. Moreover, according to the style,
the size of the diacritic sign also changes according
to the stretching size, also seen in Figure 21.

The importance of the diacritic dot goes be-
yond its phonetic role. This dot is also the mea-
sure unit used for regularizing the dimensions and
the metrics of glyphs. Ibn Muqlah2 specified let-
ter measurements in metric dots. In order to give

2 Abou Ali Ben Mohamed Ben Ali bnou Muqlat [272–328
A.H./886–940 A.D.], a native of Shiraz and a minister of the
Abbasid caliph in Baghdad, was one of the first theorists of
Arabic calligraphy. His contribution to this art was not the
invention of a new script but the application of systematic
rules that determine the surface area and proportions of the
individual letter-shapes with respect to one another.

142 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Arabic text justification

Figure 23: Arabic letter Alef metrics

homogeneity to letters, he includes all the Arabic
letters in a circle of six dots diameter, the Alef let-
ter height. Figure 23 shows the metric of the Arabic
letter Alef in metric dot. Of course, this notion re-
mains relative and approximate; the dot position in
the line and the position of dots among them lead
to differences among calligraphers.

2.6 Allographs

The allographs are the various shapes that a letter
can take while keeping its place in the word: iso-
lated, initial, median or final. Letters can have addi-
tional shapes even though, grammatically, there are
only four shapes. Allometry is then the study of allo-
graphs: shape, position, context, etc. Generally, the
election of an allograph responds to aesthetic needs.
So, this choice is left to the writer. However, the
use of an allograph is sometimes desired and even
recommended. The letter’s shape should change ac-
cording to the letters in the neighborhood and, in
some cases, according to the presence of kashida.
Some examples:

• the median form of the letter Beh should take
a more acute shape if it interposes two spine
letters:

• the initial form of Beh can take three allograph
shapes, according to its following letter:

• the initial form of the letter Hah may take the
shape of lawzi Hah whenever it precedes an as-
cending letter:

• the initial form of the letter Ain should take the
shape of finjani Ain when it is followed by an
ascending letter:

• the initial form of the letter Hah as well as the
final form of the letter Meem change their mor-
phological forms in the presence of kashida:

• the letter Kaf changes its morphological shape
in the case of stretching and should be changed
into zinadi Kaf:

3 Proposition for Arabic justification

As we have seen, to perform text justification, Ara-
bic writing provides various techniques coming from
its handwriting traditions. These techniques are not
based on the insertion of variable spaces between
words. So, unpleasant spaces are avoided and a bal-
anced aspect can result.

The present study will be restricted to a for-
malism of the problem of text justification in the
calligraphic style Naskh. For reasons of legibility,
the Naskh style has been adopted in typesetting
since the first attempts of computerization and stan-
dardization of Arabic typography. The Naskh style
stands between the difficult Thuluth style and easy
Ruq‘a style. Our choice for the Naskh style is also
motivated by the fact that some calligraphic styles,
such as the Ruq‘a style, do not allow the use of
kashida. Other styles, such as the kufi style, have
a geometrical structure which goes beyond the rules
of feather and metric dot, while still other styles use
letters stretching only for aesthetic purposes. On
the other hand, the Nasta‘liq and Diwani styles are
more generous with number of kashidas: a word of
three letters can indeed receive two elongations.

3.1 Breaking a paragraph into lines

Before using ligatures or kashida to justify lines, a
system has to first break paragraphs into lines. A
legitimate place to break a sequence of words into
lines is a position in a place that gives a good length.
Therefore, it may be the border of the last word of
a horizontal list which generates a width equal to or
less than the value of the line width. Or the border
of the last word of a horizontal list which generates

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 143

Mohamed Jamal Eddine Benatia, Mohamed Elyaakoubi and Azzeddine Lazrek

a width higher than the value of the line width and,
through the use of ligatures of second degree, the
width of the list can be decreased to result in a value
equal to or less than the line width. In general,
there are several legitimate breaking places, and the
badness of each possibility should be considered so
that the best one can be chosen.

3.2 Elongation presence

In the following, we will focus on justification us-
ing kashidas. Making a system eager to stretch a
letter leads to overcoming constraints of determi-
nation of the extensibility places with the required
parameters. In this context, letter stretching obeys
a set of calligraphic rules. These rules can be found
in [1] and/or some Arabic treatises on calligraphy
and practices.

The Arabic alphabet is composed of 28 letters:

✲ ✰ ✬ ★ ✤✛✗✑ ✆
●❄❈❀✼✸ ✶ ✴

r ♥ ❥ ❤ ❝ ❴ ❬ ❲❙❖❑
Before giving an account of the rules in detail,

let’s look first at some general rules of kashida:

• The first letter of a word composed only of two
letters may not be stretched, but the second
letter can be stretched;

• No more than one letter in the same word can
be stretched;

• On a given line, generally only one word can be
stretched (the albasmalah sentence in Figure 24
is an exception — there, the first word is always
stretched);

• The use of the kashida is recommended where
there is a succession of spine letters, to remove
reading ambiguity. In particular, the letter Seen
should always be followed by an elongation of
two metric points;

• A word ending with the letter Yeh [q]3 cannot
be stretched. The presence of kashida in this
case generates a new letter qantara. On the
other hand, it is better to stretch a word when
it ends with a pronoun: final letter Heh [❧]. In
this case, the kashida should be placed before
the last character.

Now, let us consider the rules concerning where
to use kashidas, their number and their degree of ex-
tensibility. According to the most general rules we

3 Brackets are used throughout to indicate a letter family,
standing for any glyph which shares this root form, differing
only in the number of dots.

Figure 24: Stretching of letter Seen in albasmalah

have found, it is advised to use the kashida in the
middle of the word. In words composed of four or
six letters, the kashida is to be put down on the level
of the second or third letter of the word respectively.
In the following, we proceed first by generalizations;
we classify words according to their number of let-
ters, and enumerate occurrences where stretching is
allowed.

Words with two letters: It is strictly prohibited
to stretch a word with two letters, except in the

case of or . Though it represents only

one letter, the initial form of the letter Seen [✺]
can be regarded as a succession of three glyphs:
[③] [③] [②].

Words with three letters: Usually, the kashida
is omitted in a word composed of three let-

ters. Words such as and cannot

be stretched. On the other hand, in the al-
basmalah, the word bismi ❞✻✓ should always

be stretched in the level of its letter Seen, as
in Figure 24; this elongation was not imposed
previously, as in Figure 12.

According to Imad Eddine Ibn Al‘afif’s4 opin-
ions, one can stretch a word composed with

three letters when the first letter is a ❑, ❈,

[✸] or [✤]. According to Azzeftaoui,5 one can
proceed with an elongation if the last letter is
an Alef or a Lam. If we decide to stretch such a
word, the kashida should be performed on the
level of the second letter.

Words with four letters: Words with four letters
are the most susceptible to be stretched, and it
is preferable to put down kashida on the level
of the second letter. However, one should not

stretch words like: , , and ✒❜❘✙.
Words with five letters: For this case also, the

treatises show differences. While Ibn Al‘afif for-
bids the use of kashida in a word of five letters

4 The opinions of ‘afif Eddine Mohamed Alhalabi Achirazi
were a reference in the Alqalqashandi’s treatise of calligraphy.
One of his disciples was his son Imad Eddine Mohamed.

5 Abou Mohamed Ben Ahmed Azzeftaoui was born in 750
A.H. and passed away in 806 A.H. He was taught calligraphy
by Chams Eddine Mohamed Ben Ali Bnou Abi Raquiba.

144 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Arabic text justification

Precede

♥ ❥ ❤ ❝ ❴ ❬ ❲ ❙ [❑] [❈] [❀] [✸] [✴] [✰] [✤] [✑] ✆ Isolated

1 1 1 −1 +1 −1 −1 −1 1 5 [✑]

−1 −1 −1 −1 −1 −1 −1 +1 −1 −1 −1 −1 [✤]

−1 −1 2 −1 2 2 −1 −1 −1 1 2 2 1 −1 −1 2 1 3 [❈][❀][✸]

−1 −1 −1 −1 −1 +1 −1 −1 −1 −1 [❑]

−1 −1 −1 −1 +1 −1 −1 −1 1 1 ❲❙
−1 −1 −1 −1 −1 −1 −1 1 1 −1 −1 3 ❬
−1 −1 −1 −1 −1 −1 3 ❴

−1 −1 −1 −1 −1 −1 −1 1 1 1 −1 −1 ❝
−1 −1 −1 −1 1 ❥

Figure 25: Chart of allowed extensions, by context

as such word cannot be divided into two equal
parts, Ibn Khalouf affirms that elongation on
the second letter of the word in this case is ad-
vised and necessary.

Words with more than five letters: For this
case, the general rules of letter successions in
Figure 25 are the norm.

3.3 Elongation places

Some special care is necessary to examine histor-
ical calligraphic compositions from a typographical
point of view. Many calligraphers went beyond some
established rules. They used kashidas generously
when they were remunerated by the page so that
they were better paid [2].

The heavy use of elongations at the line end
is the preferred method for Ibn Wahid.6 For Ibn
Al‘afif [1], elongation is best at the end of a line, it
can be tolerated in the beginning, and it is forbidden
in the middle.

The propositions of the treatises on the legiti-
mate kashida places show differences in some details.
While Ibn Al‘afif allows letter elongation in the mid-
dle of line only when absolutely necessary, Alchirazi
does not have objections.

In terms of justification, the heavy use of the
kashida at the end of a line by Ibn Wahid and Ibn
Al‘afif is due to a particular reason: calligraphers
can estimate the elongation only when nearing the

6 Charaf Eddine Mohamed Bnou Charif Bnou Youssef Az-
zary, known as Ibn Wahid, was born in Damascus in 647 A.H.
He studied in Iraq and lived in Egypt. He was one of Yacout
Almousta’simi’s disciples.

limit of a line. The kashida is triggered by the dis-
tance to the end of line.

The superposition of two elongations on two
consecutive lines can be seen only as a defect, even
by Ibn Al‘afif. To avoid the “stairs” effect resulting
from such superposition, a uniform typographical
grid can be advised.

3.4 Degree of extensibility

The degree of extensibility of stretchable letters de-
pends on some contextual elements:

• the nature of the letter to stretch;

• the position of the letter in the word;

• the position of the word in the line.

In order to speed up the processing, the letters will
be grouped into families. The glyphs of each family
undergo the same contextual treatment as well as
the same extensibility rules.

Figure 25 gives the degree of extensibility in
metric dot of each letter according to its context.
For example: ”The elongation of letter Beh is au-
thorized, if it is followed by Dal, and it is prohibited,
if it follows Seen”.

Let us recall that the letters {✆, [✰], [✴], ♥} are
never stretchable.

In some cases, several possibilities of treatment
arise. We will focus on the most widespread and
simplest ones.

Notice that:

• in boxes, each number ı represents the interval
[ı,12] in metric dots;

• an empty box represents a prohibited elonga-
tion;

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 145

Mohamed Jamal Eddine Benatia, Mohamed Elyaakoubi and Azzeddine Lazrek

• the plus sign means an allowed and approved
elongation;

• the minus sign means an allowed but not ap-
proved elongation, in a number of these cases,
one could use ligatures instead of kashidas.

3.5 Process

Here is our proposed method for justifying Arabic
text:

• break the paragraph into lines with a specific
width;

• compute the badness of the individual line;

• refer to the contextual table to determine all
legitimate kashida places;

• establish priorities for kashida points;

• distribute the lines’ badness as parameters of
kashida;

• generate curvilinear kashida with determined
parameters;

• stretch letters in the selected points.

4 Conclusion

The justification in Arabic writing differs from other
writing systems on at least two points. First, for
centuries, hyphenation of words has not been al-
lowed. Second, Arabic is endowed with a particular
tool for justification, the kashida. If historical trea-
tises on calligraphy provide us with a list of tech-
nical specifications, our work consists of checking
the agreement among these treatises and the gen-
eral use in current manuscripts, and then attempt-
ing to build a formalism of the degrees of the letters’
extensibility according to their context.

Acknowledgements:
Thanks to Barbara Beeton, Karl Berry, and Khalid
Sami for their editorial corrections and contribu-
tions.

References

[1] Abi Al-abas Ahmed Ibn Ali Al-qanqachandi
(821h/1418). Sobh al-a’cha fi sna’t al-incha.
Version copied from edition Al-amiriat with
corrections and a detailed indexing. Ministry
for the culture and national orientation,
general Egyptian institution of production,
edition, impression and distribution.

[2] Vlad Atanasiu. Le phénomène calligraphique à
l’époque du sultanat mamluk. PhD thesis,
2003.
http://www.atanasiu.freesurf.fr/thesis.

[3] Zeev Becker and Daniel Berry. triroff, an
adaptation of the device-independent troff

for formatting tri-directional text. Electronic
Publishing — Origination Dissemination and
Design, 2(3):119–142, October 1989.

[4] Daniel M. Berry. Stretching letter and
slanted-baseline formatting for Arabic,
Hebrew and Persian with ditroff/ffortid

and dynamic PostScript fonts. In Software —
Practice & Experience, number 29:15, pages
1417–1457, 1999.

[5] Yannis Haralambous. Tour du monde des
ligatures. Cahiers Gutenberg, 22:69–80, 1995.

[6] Yannis Haralambous. Voyage au centre de
TEX : composition, paragraphage, césure.
Cahiers Gutenberg, 44-45:3–53, 2004.

[7] Azzeddine Lazrek. CurExt, Typesetting
variable-sized curved symbols. In EuroTEX
2003: 14th European TEX Conference,
TUGboat 24:3, pages 323–327, Brest, France,
2003. http://www.ucam.ac.ma/fssm/

rydarab/doc/communic/curext.pdf.

[8] Liang, Franklin Mark. Word Hy-phen-a-tion
by Com-put-er. PhD thesis, 1983.
http://tug.org/docs/liang.

[9] Thomas Milo. ALI-BABA and the 4.0 Unicode
Characters — Towards the Ideal Arabic
Working Environment, New input output
concepts under Unicode. In EuroTEX 2003:
14th European TEX Conference, TUGboat

24:3, pages 502–511, Brest, France, 2003.

[10] Johny Srouji and Daniel M. Berry. Arabic
formatting with ditroff/ffortid. In
Electronic Publishing — Origination
Dissemination and Design, volume 5, pages
163–208, 1992.

[11] Hàn Thé̂ Thành. Améliorer la typographie de
TEX. Cahiers Gutenberg, actes du congrès
GUT’99, 32, 1999.

[12] Adolf Wild. La typographie de la Bible de
Gutenberg. Cahiers Gutenberg, 22:5–15, 1995.

146 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

The Arabi system ﴾ العربي ﴿ نظام —
TEX writes in Arabic and Farsi

Youssef Jabri

École Nationale des Sciences Appliquées,

Oujda, Morocco

yjabri (at) ensa dot univ-oujda dot ac dot ma

Abstract

In this paper, we will present a newly arrived package on CTAN that provides
Arabic script support for TEX without the need for an external pre-processor.
The Arabi package adds one of the last major multilingual typesetting capabilities
to Babel by adding support for the Arabic عربي and Farsi فارسي languages.
Other languages using the Arabic script should also be more or less easily imple-
mentable.

Arabi comes with many good quality free fonts, Arabic and Farsi, and may also
use commercial fonts. It supports many 8-bit input encodings (namely, CP-1256,
ISO-8859-6 and Unicode UTF-8) and can typeset classical Arabic poetry.

The package is distributed under the LATEX Project Public License (LPPL),
and has the LPPL maintenance status “author-maintained”. It can be used freely
(including commercially) to produce beautiful texts that mix Arabic, Farsi and
Latin (or other) characters.

ملخص

إلى جنباً واللاتينية العربية الحروف استعمال إمكانية يتيح نظام العربي رزمة
الحروف. لتصفيف TEX « تيخ » نظام باستعمال واحد مستند في جنب

تيخ نظام مع فارسي) و اللغتين(عربي استعمال إمكانية تضيف العربي رزمة
، المرونة من كبير بقدر ويتمتع محمولا بكونه يتميز النظام فهذا ، البداية ومنذ
إلى يحتاج لا أنه إلى إضافة . منإضافات إنجازه تم ما معظم مع للاستعمال قابل لأنه
مصحوباً حالياً العربي ÂمÂيقد . الكلمة في الحروف أشكال لتحديد خارجي معالج أي
تأتي التي الخطوط من عدد استعمال يمكنه كما الاستعمال حرة خطوط بمجموعة
ولا مجاني العربي فإن ، تيخ لنظام بالنسبة الحال هو كما . مثلاً ويندوز نظام مع

. الاستعمال عناء إلا مuستaعمiله يكلف

1 Introduction

The development of Arabi
1 was a response to the

absence of a package that manipulates the Arabic
script and fulfills the following requirements:

1. LATEX2ε and Babel compliant, this combina-
tion format/package being the most widely used
in our opinion when mixing different languages.

2. The possibility of using 8-bit input text includ-
ing already existing Arabic texts, on different
systems.

3. Able to use existing, commercial and free, beau-
tiful Arabic fonts.

1 The name of the package should not be misunderstood.
It is not designed to support only the Arabic language, but all
languages that use the Arabic script. Technically speaking,
for Babel, they will all be considered as dialects of Arabic.

4. Free (as in freedom), meaning a license like the
GNU GPL or LPPL.

Arabi comes with an extensive user manual; this
article gives a general overview of the system.

2 Typesetting Arabic with TEX: the

existing possibilities

TEX and the Arabic script have a long history.
One might imagine that enabling TEX to write

in both directions Right-to-Left (R2L) and Left-to-
Right (L2R) with an Arabic font suffices to typeset
Arabic with TEX.

Unfortunately, although such an extended TEX
may perhaps be used to typeset a R2L language like
Hebrew, this is far from sufficient for a complex
script like Arabic, where the shapes of the glyphs

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 147

Youssef Jabri

depend on the context, and may take many forms
(at least four forms for the majority of Arabic char-
acters even in the simplest2 cases).

Many early attempts have been made; they all
relied on a preprocessor that does the contextual
analysis (also known as the shaping algorithm).

One attempt, not widely known, due to Terry
Regier from the University of California, Berkeley,
dating from December 1990, relied on the famous
macros of D. Knuth and P. MacKay:

%The lines below are from Knuth and MacKay

% TUGboat vol.8, #1, page 14.

\font\revrm=xbmc10 \hyphenchar\revrm=-1

\catcode‘\|=\active

\def|#1|{{\revrm \reflect#1\empty\tcelfer}}

\def\reflect#1#2\tcelfer{\ifx#1\empty\else%

\reflect#2\tcelfer#1\fi}

to do the reflection, after a preprocessor has done a
rough contextual analysis.

The pioneering work by Knuth and MacKay
[11], who implemented the TEX bidirectional algo-
rithm (which is unrelated to the Unicode Bidirec-
tional Algorithm; the latter implicitly chooses the
directions of the text) and added to TEX the four
primitives (\beginL, \endL, \beginR and \endR)
made things much better!

Some early attempts were also carried out by
Y. Haralambous, who used the new extended en-
gine TEX--XET. This includes the non-free Al-Amal3

(1992, [6]), and the free ArabiTEX 4 (April 1995).
The most widely used system at present is prob-

ably K. Lagally’s ArabTEX [13]. It is a package for
writing Arabic in several languages using the Ara-
bic script. It consists of a TEX macro package and
one Arabic Naskhi-like font. ArabTEX will run with
Plain TEX and LATEX; and work with any TEX en-
gine, because it uses its own bidirectional algorithm.
So, no preprocessor is needed! This makes it a little
slow but with today’s computer power, this is not
really a problem. Its real drawback lies in the fact
that the macros apparently depend heavily on the
glyphs of the font it uses, making it quite impossi-
ble to use any other fonts that may be available to
the user.

For courageous users, there also exist two more
powerful systems

• Ω by Y. Haralambous and J. Plaice, and

• X ETEX by J. Kew, if you have the right system
and the right fonts.

2 Through typographical simplifications. Some aspects of
traditional Arabic typography are described in [5].

3 We did not review it, as it was not available to the public
as far as we know.

4 The source and a DOS executable of the preprocessor
were available through the French TUG.

3 Arabic script specifics

The Arabic script is one of the most widely used
scripts on earth. It dominates in Arabic countries,
of course, but has a special place for all Muslims
because it’s the script used to write the Koran, the
holy book of Muslims.

The Arabic script, like all other Semitic lan-
guages, is written from Right-to-Left.

Another important aspect of the Arabic script
is that no hyphenation is needed, or allowed at all.
So, no hyphenation patterns are needed for any lan-
guages that uses the Arabic script. In very old Ara-
bic documents, words could be split after a non-
connecting character, while characters that connect
were never split. In modern Arabic, hyphenation is
forbidden completely. This makes it more difficult
to get justification when long words occur at the
end of a line, but Arabic is also cursive and has (in
modern fonts mimicking the handwritten forms) a
special character called kashida or tatweel (keshideh
is a Farsi word that means stretch) that may be used
between adjoining characters to make the word be-
come longer. An example is the following word:
مثال that may be written to occupy longer مثـال
and longer مـثـال and much more longer space
.مـثـــال

3.1 The Arabic alphabet

The Arabic alphabet is caseless, but most letters
have either two or four forms. The different forms
are used according to the letter’s position in the
word (initial, medial, final and isolated). The al-
phabet is constituted in its basic form by

• 28 consonants (29 if we count the hamza). But
the number of 28 characters can exceed easily
1000 glyphs per font if all ligatures are present!

Isolated Initial Medial Final

ب ب ب ب
ج ج ج ج
ع ع ع ع
ه ه ه ه

Table 1: Some characters’ contextual forms

• Seven diacritical marks specifying the vowels.
They are not used in typical Arabic texts but
appear in poetry, textbooks for people learning
the Arabic language, and some religious texts.
They can be typed and then at the moment of
compiling the document, can be either included
or omitted according to the author’s wish! The

148 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

The Arabi system ﴾ العربي ﴿ نظام — TEX writes in Arabic and Farsi

three basic ones are called fatha, damma and

kasra: iــ uـــــ aــــ ; the sukun ْــ is used

for the absence of vowels; and there are three
tanwin forms written by doubling the three ba-

sic ones: ٍــ ٌـــ ًــــ ـ .

The vowel marks are written somewhat like
accents in the Latin script. Above, the drawn
line represents the baseline, with the vowels that
appear above the line being typeset above let-
ters, while those below the line are typeset be-
low letters.

3.2 Arabic typography

This aspect of Arabic merits much investigation and
so much can be said about it. But in order not to
be too lengthy, we will just cite three points.

In the classical Arabic literature, there are no
typographical styles like bold, italic, etc. Different
classical typefaces are used instead (req’a, naskhi,
thuluth, etc.) to distinguish between different log-
ical parts of the text. In modern literature, that
depends heavily on computers made by people who
are either unaware of the rules of Arabic typography
or do not have enough time or money to develop
such possibilities, we use more and more boldface
and italics (slanted to the wrong side many times,
unfortunately).

Concerning spacing and punctuation, there is
a lot of change between books published early in
this century by mechanical means and some more
recent ones typeset using computer programs. It
seems that different editors adopted different rules.
Some use English or French rules, while others insert
space before and after each sign — which was the
rule in the older texts!

In general, in Arabic texts, enumerated lists use
the abjad system using letters, in a particular order,
instead of numbers, but numbered lists are used also.

4 The Arabi system

The two main problems faced when typesetting Ara-
bic with TEX are managed by Arabi as follows.

1. The bi-directional capability supposes that the
user has a TEX engine providing the four primi-
tives \beginR, \endR, \beginL and \endL. This
is the case with the TEX--XET and ε-TEX en-
gines.

2. The contextual analysis does not need/use any
pre-processor; this is done completely in the

fonts, using the (quite limited) ligature possi-
bilities of METAFONT.

This second point is the whole secret of Arabi’s com-
patibility with most available packages. We tried to
shorten TEX coding to deal with the specifics of the
Arabic script as much as we could, to avoid eventual
conflicts and clashes with other code.

The system is also compatible with all other for-
mats, such as plain or ConTEXt. This too is because
the whole contextual analysis is done in the fonts!

4.1 Input and font encodings

Typesetting Arabic and Farsi texts with TEX implies
the use of special input and output encodings, so we
need to use the standard packages inputenc and
fontenc.

We use two special font encodings. For Arabic,
we use LAE for Local Arabic Encoding, while for Farsi
we use LFE that stands for Local Farsi Encoding.
These two encoding are not final. Some character
positions may change, and some empty slots will be
filled with new characters.

Concerning the input encoding, the user simply
creates an ordinary LATEX file, in which he can use 8-
bit Arabic characters, typed visually on some system
that supports the Arabic script.

For now, the Arabi system supports the following
input code pages:

1. Arabic Windows CP-1256 for Arabic and Farsi.

2. ISO-8859-6 for Arabic, not suitable for Farsi be-
cause many Farsi characters are missing.

3. The multibyte Unicode UTF-8 (ISO-10646) for
Arabic and Farsi.

4.2 What has been done so far?

Currently, with Arabi you can typeset correctly, while
mixing the Arabic and Latin scripts, according to
the context:

• Footnotes, appearing on the right side of the
page.

• Lists, both itemized and enumerated. The stan-
dard enumerate environment uses the abjad

system mentioned earlier.

• Floats are typeset with the right caption form
and the appropriate entry is added to the table
of contents.

Moreover, Arabi takes care of the bidirectional for-
matting of sectioning, chapters, (sub-)sections, etc.,
according to the context. And the tables (of con-
tents, figures and tables) are typeset all according
to one global text direction, which is the main text
direction as specified by the user. This is meant to

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 149

Youssef Jabri

\documantclass{article}

\usepackage[cp1256]{inputenc}

\usepackage[arabic ,english]{babel}

\begin{document}

\selectlanguage{arabic}

، الرحيم الرحمن االله بسم
\\

الاستخارة في عشر السادس الفصل

هم اذا القران من السورة يعلمنا كما الامر في الاستخارة يعلمنا االله رسول كان قال جابر عن البخاري صحيح في
من واسالك بقدرتك واستقدرك بعلمك استخيرك اني اللهم ليقل ثم الفريضة غير من ركعتين فليركع بالامر احدكم
ويسمى الامر هذا ان تعلم كنت ان اللهم الغيوب علام وانت اعلم ولا وتعلم اقدر ولا تقدر فانك العظيم فضلك
شر الامر هذا ان تعلم كنت وان فيه لي بارك ثم لي ويسره لي فاقدره امري وعاقبة ومعاشي ديني في لي خير حاجته
مسند وفي به ارضني ثم كان حيث الخير لي واقدر عنه واصرفني عني فاصرفه امري وعاقبة ومعاشي ديني في لي
ابن سعادة ومن االله استخارة ادم ابن سعادة من قال انه ص النبي عن وقاص ابي بن سعد حديث من احمد الامام
قال وقد االله قضى بما سخطه ادم ابن شقوة ومن االله استخارة تركه ادم ابن شقوة ومن االله قضى بما رضاه ادم

وتعالى سبحانه
[\textmash{

االله على فتوكل عزمت فاذا الامر في وشاورهم
}]

امرهم ارشد الى هدوا الا االله وجه يبتغون قوم تشاور ما قتاده وقال
\L{This is a simple example of Arabic text you may want to type}

العالمين. رب الله والحمد تم
\end{document}

Figure 1: Sample Arabi input

be the one that dominates your text, either an Ara-
bic (script) document with small amounts of Latin
text included, or a Latin one that contains Arabic.

Arabi has also a limited, but almost good, capa-
bility of vocalizing. Some more work needs to be
done in that direction. Things would have been cer-
tainly better if METAFONT had more powerful lig-
ature possibilities! But if you use X ETEX and have
the right fonts, then things are certainly better.

The package also comes with extensive, and, we
hope, clear documentation.

4.3 Current status

At the time of this writing, Arabi is at version 1.0, and
already included in some distributions like MikTEX
and BakomaTEX.

The latest version is always available from the
CTAN archives. You should find it at
CTAN:tex-archive/language/arabic/arabi

As mentioned earlier, the package is distributed
under the LPPL, and has the status “author-main-
tained”. It can be used freely (including commer-
cially) to produce beautiful texts that mix Arabic
with characters from other scripts.

Figure 1 shows a sample Arabi input document,
and figure 2 the corresponding output.

4.4 Babel compliance

Arabi is fully LATEX2ε and Babel compliant. It pro-
vides almost all the language-dependent strings for
the Arabic and Farsi languages and can generate
automatically the official Jalali calendar. The Farsi
captions and the code for the Farsi date are from
the FarsiTEX system.5 Moreover, all Babel language
switching commands apply.

5 The FarsiTEX system seems unfortunately still not avail-
able with LATEX2ε. We hope that the Farsi support offered
by Arabi and the Farsi fonts from the Farsi web project that
come with Arabi will be useful to all Farsi users.

150 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

The Arabi system ﴾ العربي ﴿ نظام — TEX writes in Arabic and Farsi

، الرحيم الرحمن االله بسم
الاستخارة في عشر السادس الفصل

السورة يعلمنا كما الأمر في الاستخارة يعلمنا االله رسول كان قال جابر عن البخاري صحيح في
أستخيرك إني اللهم ليقل ثم الفريضة غير من ركعتين فليركع بالأمر أحدكم هم إذا القران من
اعلم ولا وتعلم اقدر ولا تقدر فانك العظيم فضلك من وأسألك بقدرتك وأستقدرك بعلمك
وعاقبة ومعاشي ديني في لي خير حاجته ويسمى الأمر هذا أن تعلم كنت إن اللهم الغيوب علام وأنت
ومعاشي ديني في لي شر الأمر هذا أن تعلم كنت وان فيه لي بارك ثم لي ويسره لي فاقدره أمري
مسند وفي به أرضني ثم كان حيث الخير لي واقدر عنه واصرفني عني فاصرفه أمري وعاقبة
ومن االله استخارة ادم ابن سعادة من قال انه ص النبي عن وقاص أبي بن سعد حديث من احمد الإمام
سخطه ادم ابن شقوة ومن االله استخارة تركه ادم ابن شقوة ومن االله قضى بما رضاه ادم ابن سعادة
قتادة وقال االله﴾ على فتوكل عزمت فإذا الأمر في ﴿وشاورهم وتعالى سبحانه قال وقد االله قضى بما
This is a simple example of Arabic text أمرهم ارشد إلى هدوا إلا االله وجه يبتغون قوم تشاور ما

العالمين. رب الله والحمد تم you may want to type

Figure 2: Sample Arabi output

4.5 Compatibility

The Arabi package has been tested successfully with
packages such as parshape, poster, pstricks (and
many of its derivatives), and, to our great surprise
and pleasure, ArabTEX. It has been tested also on
a Mac OSX system with the teTEX distribution and
TeXShop (see figure 3).

4.6 Arabic fonts

One of the good features in Arabi is its ability to
use any existing fonts that the underlying TEX en-
gine can access. Arabi comes with a collection of
Arabic and Farsi GNU fonts from, respectively, the
Arabeyes and Farsi Web projects. The TFM files of
some widely available commercial fonts are also in-
cluded in the distribution, but the user still has to
manage telling his engine where to find the corre-
sponding font.

One remark to make here is that when prepar-
ing the vector encoding files for the different fonts,
we learned that there is no standard. Even some
corporations who produce and distribute applica-
tions and fonts that support the Arabic script for
many years use so many names for the same glyphs
that we arrived at the conclusion that one can never
know what will be found when the font is opened!

5 Some bells and whistles

Arabi comes also with an experimental module that
produces a transliteration of Arabic texts. No
counterpart has been done for Farsi yet.

When texts are in general not fully vowelized,
the transliteration cannot be expected to be correct.
Moreover, when writing using some 8-bit input en-
coding there is absolutely no way to distinguish be-
tween long vowels ا ي و and the letters alif, yaa and
waw. Neither, it is possible to write correctly the
hamza when on ֓alif , wāw, or yā֓.

To use it, just load the package translit as
with any other package, and type Arabic text in 8
bits in a Latin context, that is, without issuing a
command that switches to the Arabic language.

1 ֓abw āl֒lā֓ ālm֒ry المعري العلاء أبو 1

2 matnuN mubārakuN مuبارÁكٌ مaتنٌ 2
3 h. ǧ mbrwr مبرور حج 3

Table 2: A little example of transliteration

Classical poetry, in both Arabic and Farsi, is
formatted in two “parallel” verses that begin and
end at the same positions. When verses are too
short, they are written closer to the (vertical) center
of the page, as in the next example. Arabi relies on
the same idea6 of spreading the keshida glyph used
by ArabTEX.

6 A contribution by the author to ArabTEX a long time
ago. ArabTEX uses a variable width horizontal “line” while
we stack the kashida glyph the necessary number of times to
get the right width!

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 151

Youssef Jabri

Figure 3: Arabi running on Mac OS

﴾ العجم لامية في الطغرائي قال ﴿

ــه صاحب هم يثني ــة السلام حب
بالكســل المرء المعــاليويغري عن

ــا نفقـ فاتخذ ــه إليـ جنحت فإن
واعتــزل الجو في الأرضأوسلمــا في

لوكــانفيشرفالمأوىبلــوغمنى
الحمــل دارة الشمسيومــا تبرح لم

النــاسكذبهم وشأنصدقــكعند
بمعتـــدل معوج يطـــابق وهل

ولا عليــه يخشى لا ملكالقنــاعة
والخــول الأنصــار إلى فيه يحتــاج

لهــا ثبات لا بدار البقــاء ترجو
منتقـــل غير بظـــل سمعت فهل

Figure 4: Some Arabic poetry

6 The limits and the problems

The main limit seems to be the capacity of the TFM

format:

• First in its 256-glyph limit, which certainly is
not a sufficient number for a modern font, not
to talk about an Arabic one!

• And second in the very limiting way it han-
dles ligatures. In a script like Arabic, three-
character ligatures are the rule, while there are
even four letter ligatures, e.g., .محمد But if we
also want to manage diacritics, which we can
recall play in Arabic the role of vowels in Latin
languages, things become even worse.

There is also an important ε-TEX issue, that
the R2L direction is not supported in Mathematics.
So we have to rely on some script à la Knuth and
MacKay to reverse the characters and the words.

7 The future for Arabi

Concerning the future developments of Arabi. In
these early times, we focus on keeping it alive and

152 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

The Arabi system ﴾ العربي ﴿ نظام — TEX writes in Arabic and Farsi

bringing it to maturity by correcting any bug that
appears and completing the already existing func-
tions, as no one is perfect. Let us cite the poet
al-mutanabbi : المتنبي الطيب أبو قال

ــاً ــ عيب الناس عيوب في أر ولم
ــام ــ التم على القادرين كنقص

Please do not hesitate to forward suggestions,
questions, or comments on Arabi. Thanks for your
interest.

References

[1] B. Esfahbod and R. Pournader. FarsiTEX and
the Iranian TEX community. TUGboat 23(1),
41–45, 2002.

[2] J. Braams. Babel, a multilingual style-option
system for use with LATEX’s standard
document styles. TUGboat 12(2), 291–301,
1992.

[3] J. Braams. An update on the Babel system.
TUGboat 14(1), 60–61, 1993.

[4] Michel Goossens and Frank Mittelbach, with
Johannes Braams, David Carlisle, and Chris
Rowley. The LATEX Companion.
Addison-Wesley, 2nd edition, 2004.

[5] Y. Haralambous. Towards the revival of
traditional Arabic typography . . . through
TEX. Proceedings of the EuroTEX’92
conference, Prague, 1992.

[6] Y. Haralambous. Typesetting the Holy Qur’ān
with TEX. Proceedings of the 2nd
International Conference on Multilingual
Computing (Latin and Arabic script),
Durham, 1992.

[7] A. Hoenig. TEX Unbound: Strategies for
Fonts, Graphics, and More. Oxford University
Press, 1998.

[8] D.E. Knuth. The TEXbook. Addison-Wesley,
Reading, MA, USA, 1986.

[9] D.E. Knuth. The METAFONTbook.
Addison-Wesley, Reading, MA, USA, 1986.

[10] D.E. Knuth. Virtual Fonts: More fun for grand
wizards. TUGboat 11(1), 13–23, April 1990.

[11] D.E. Knuth and P. MacKay. Mixing
right-to-left texts with left-to-right texts.
TUGboat 8(1), 14–25, April 1987.

[12] A. Lakhdar-Ghazal. Caractères arabes
diacritiques selon l’ASV-CODAR (pour
imprimer les langues arabes). Institut
d’Études et de Recherches pour l’Arabisation,
Rabat, 1993.

[13] K. Lagally. ArabTEX —Typesetting Arabic
with vowels and ligatures. Proceedings of the
EuroTEX92 conference, Prague, 1992

[14] K. Lagally. ArabTEX Arabic and Hebrew,
(Draft) User Manual Version 4.00. March 11,
2004.

[15] L. Lamport. LATEX: A Document Preparation
System: User’s Guide and Reference Manual.
Addison-Wesley, Reading, MA, USA, second
edition, 1994.

[16] P. MacKay. Typesetting problem scripts.
BYTE 11(2), 201–218, 1986.

[17] The FarsiTEX Project.
http://www.farsitex.org/

[18] The FarsiWeb Project.
http://www.farsiweb.info/

[19] Institute of Standards and Industrial Research
of Iran. http://www.isiri.com

[20] Microsoft. Free download of the Arabic font
pack, arafonts.exe.
http://office.microsoft.com/arabicregion/

Downloads/2000/arafonts.aspx

[21] X ETEX web site and mailing list.
http://scripts.sil.org/xetex

[22] The Unicode standard.
http://www.unicode.org/

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 153

DadTEX — A full Arabic interface

Mustapha Eddahibi, Azzeddine Lazrek and Khalid Sami
Department of Computer Science,
Faculty of Science, University Cadi Ayyad
P.O. Box 2390, Marrakesh, Morocco
Phone: +212 24 43 46 49 Fax: +212 24 43 74 09
lazrek (at) ucam dot ac dot ma

http://www.ucam.ac.ma/fssm/rydarab

Abstract

This paper presents a TEX-based way to localize LATEX documents for natural
languages with a script based on the Arabic alphabet. So, native speakers of
such natural languages who do not know English can use and understand LATEX.

خالصة عربyة واجهة - ضادتخ
هذا يتyح النصwصالشهyر. لتنضyد تخ لنظام كاملا تعريبا المقال يعرضهذا ملخص:
للذين يتyح الذي الامر خالصة. عربyة بلغة المدخل النص تحرير إمكانyة التعريب
كنظرائهم لyتخ برنامج استعمال إمكانyة الانجلyزية اللغة استعمال يستطyعwن لا
البرنامج يقدمه ما غرار على رفyعة تنضyد جwدة ذوات نصwص على والحصwل

الاصلي.

1 Introduction

Although the typesetting system TEX was originally
designed especially for composition of mathemati-
cal documents, it has become a very fine system for
typesetting documents in many other fields. The
Arabic alphabet–based scripts are some of the lin-
guistic contexts where the use of TEX has been pro-
gressively adapted. Many projects, including Arab-
TEX1 [4], MlTEX,2 Omega3 [3], ε-TEX,4 Aleph, and
others, as multilingual systems, have been interested
in typesetting documents containing simple Arabic
text. The system RyDArab5 has been dedicated to
the composition of mathematical expressions in var-
ious notations used in Arabic, depending on the cul-
tural context.

At first, TEX was intended for document com-
position in English. It was based on the ASCII

1 ArabTEX is a multilingual computer typesetting sys-
tem developed by Klaus Lagally: http://www.informatik.

uni-stuttgart.de/ifi/bs/research/arab_e.html
2 MlTEX was developed by Michael Ferguson
3 Omega is a 16-bit enhanced version of TEX developed by

John Plaice and Yannis Haralambous: http://omega.enstb.

org/
4

ε-TEX is an extended TEX including the features of
TEX--XET, developed as part of the NTS project by Peter
Breitenlohner under the aegis of DANTE e.V. during 1992:
http://www.ctan.org/tex-archive/systems/e-tex/

5 RyDArab is a system for typesetting mathematics in
an Arabic notation: http://www.ucam.ac.ma/fssm/rydarab/

system/zip/rydarab.zip

encoding. To allow direct data entry for partic-
ular letters of Latin languages, a set of packages
(inputenc, Babel,6 . . .) have been proposed. The
application encTEX7 [5], compatible with the stan-
dard 8-bit TEX, allows the encoding of input/output
in UTF-8.

Initially, Arabic document composition was per-
formed through Arabic/Latin transliterations. That
is, the input of Arabic text was done with Latin
characters corresponding to Arabic alphabet glyphs.
The glyph transliterations are accompanied by the
application of a set of contextual operations to find
suitable glyphs. This is necessary because, besides
its right-to-left writing direction, Arabic writing is
cursive and letters have several shapes according
to their positions in the word: initial, median, fi-
nal, isolated (e.g.,). The Omega and

ArabTEX systems were interested in direct Arabic
text input; i.e., text is directly typed in an Ara-
bic text editor. This operation is performed using
transliteration tables to translate Arabic text from
the text editor encoding to the encoding used by the
typesetting system.

6 Babel provides multilingual support for TEX. It’s de-
veloped by Johannes L. Braams: http://www.ctan.org/

tex-archive/macros/latex/required/babel/babel.pdf
7 encTEX allows full UTF-8 processing in standard 8-bit

TEX. It’s developed by Petr Oľsák: http://www.olsak.net/

enctex.html

154 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

DadTEX — A full Arabic interface

Until now, however, there is no system that
allows composing Arabic documents completely in
Arabic. So, the development of a mechanism com-
pletely based on TEX to do so was an open ques-
tion. Therefore, we developed an interface, called
DadTEX,8 that allows creation of LATEX documents
in Arabic. The goal was to allow Arabic users, who
don’t know English, to compose LATEX documents
containing only Arabic letters, with the addition of
control characters like \, $, . . . and of course with
Latin text for bilingual documents.

Mathematical documents in an Arabic nota-
tion, composed with RyDArab and CurExt,9 can
so be typeset directly. In order to save the seman-
tic meaning of mathematical commands and envi-
ronments, it was natural to translate the RyDArab
and CurExt macros. Of course, those translations
are not enough. In TEX, besides the commands for
mathematical objects, there are many commands
that specify the mathematical content of the text,
such as the theorem environment.

With these translations, Arabic users now hope
that one need not use commands like \chapter, in
a standard article. Clearly, if commands are also lo-
calized, it will be easy to understand their meaning;
further, customization of command names allows
TEX to be tailored to local pedagogical approaches.

Also, using English based commands with Ara-
bic text is a source of ambiguity. Some problems
with TEX source editing with bidirectional lines are:

Text selection: selections can be made either in log-
ical or visual mode. Selections in logical mode
are accompanied by discontinuities which is a
direct consequence of bidirectionality and that
leave the user feeling uncomfortable, while vis-
ual mode selections lead to content ambiguity.

Character positions: in a bidirectional line, the end
and beginning of a run of Arabic text are vis-
ually in the same place.

Semantic ambiguity: characters without explicit
direction inherit the direction of the preceding
text. This misleads the reader of the source
about the meaning of the expression. E.g., the
command \catcode‘\ب =11 will be displayed
as the incorrect \catcode‘\11=ب.

8 Dad is an Arabic letter. Its sound doesn’t exist in many
languages, showing the Arabic language’s phonetic precision.
In the Arabic literature, the Arabic language is often called
the Dad language.

9 CurExt is a variable-sized curved symbols type-
setting system: http://www.ucam.ac.ma/fssm/rydarab/

system/zip/curext.zip

With DadTEX,10 such problems can be avoided by
using only Arabic text and minimizing bidirectional
text in source documents.

The RyDArab system has already made some
steps in the way of TEX localization, by adding com-
mands for automatic date generation with Arabic
month names and Arabic numbers. Further steps to
be done in this field include exploiting the linguis-
tic and regional properties from the system settings
and getting notational preferences (such as units,
currency, . . .).

2 DadTEX system

2.1 Process

At the beginning of this work, we thought of creat-
ing an application to convert Arabic text in a source
document into its transliterated version using the
same correspondences as those used in the translit-
erations. The program would read the source text
character by character and translate each element
into its equivalent. When a control character is met,
the program would operate differently, by seeking in
a commands dictionary the equivalent of this com-
mand.

This mechanism is similar to the one used in
FarsiTEX11 [1]. FarsiTEX translates Persian text
to transliterated text via an application program
ftx2tex. Commands are written with Latin charac-
ters but are rendered from right to left. For example,
\begin{document} is written as {document}begin\.

This method, based on the use of an applica-
tion to translate a localized source file, presents sev-
eral drawbacks. For instance, it is not direct; it
generates a supplementary file to be processed in-
stead of the original source file. So, the compila-
tion time is increased. Likewise, additional memory
and free space are required. Therefore, the method
adopted in DadTEX is based on a direct use of TEX
through translation of commands into Arabic. The
source file is compiled directly. This makes it pos-
sible to avoid the use of a supplemental application
that could eventually limit the use of DadTEX across
platforms.

Such command name translation is not suffi-
cient when using some systems, such as RyDArab.

10 DadTEX is developed within the framework of global
project “Al-khawarizmy”, acting in the general field of local-
ization of e-documents and tools: http://www.ucam.ac.ma/

fssm/rydarab/system/zip/dadtex.zip
11 FarsiTEX is a Persian/English bidirectional typesetting

system: http://www.farsitex.org/

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 155

Mustapha Eddahibi, Azzeddine Lazrek and Khalid Sami

Indeed, RyDArab is based on transliteration of indi-
vidual letter-based alphabetical symbols [2]. There-
fore, it becomes necessary to redefine the correspon-
dences using Arabic characters. This operation has
to take into account the particular encoding used.

Various systems of numbers are used in Arabic
alphabet-based writings: the Arabic numbers no-
tation system called Arabic or occidental numbers,
used in North African Arabic countries; Arabic-Indic
numbers, used in Middle Eastern Arabic countries;
and Persian numbers, used in Iran. In TEX, num-
bers are used to control document component sizes,
an action’s frequency, etc. In this work, only the
syntactic aspect of numbers will be discussed, the
semantic would be in the scope of a future DadTEX
version.

The method used in DadTEX is not specific
to Arabic language, or languages with an Arabic
alphabet–based script. It can be generalized on one
hand to any right-to-left writing system, and on the
other hand to any non-ASCII encoded documents.
This system would alleviate the learning burden im-
posed on non-English speaking people.

2.2 Structure

For purposes of simplification, the first version of
DadTEX is intended to be used with ArabTEX or
Omega. Documents using DadTEX should be en-
coded either in the ISO-8859-6 encoding system for
ArabTEX or UTF-8 for Omega. Other encoding sys-
tems can be used, as long as they are compatible
with ArabTEX or Omega.

DadTEX is composed of four files:

dadalpha.tex: here, ISO-8859-6 Arabic charac-
ters are declared as letters using the primitive
\catcode. In TEX, command names are com-
posed of a control character \ followed by char-
acters with category code equal to 11.

dadbody.tex: a set of commands used in document
bodies are declared.

dadpreamb.sty: a set of commands used in doc-
ument preambles are declared. The encoding
system in use is defined here.

dadadapt.tex: DadTEX users can add their own
commands. It is like a dictionary containing vo-
cabulary that can be augmented whenever new
keywords are established. Putting them in a
separate dictionary allows for flexible transla-
tion.

DadTEX is platform independent; it can be used
in both Windows and Linux. It is extensible, i.e.,
the user can add new commands. It is also flexible;
all command names can be modified. The core of

Figure 1: Arabic document source using ArabTEX

TEX and LATEX are not modified. In fact, DadTEX
operates like an interface between the Arabic script
user and the typesetting system. The mechanism
used makes it possible to translate command names
for all TEX packages available without limitations.

Figures 1–4 show examples of a TEX document
both with and without DadTEX.

2.3 In action

Besides the DadTEX system, an adapted text editor,
named DadNass,12 has been developed to simplify
typing of document source, calling TEX commands
and running applications.

In spite of the Arabic interface for composition
of TEX documents, some problems related to the
debugger and to error messages remain. Error mes-
sages from the TEX core or from loaded packages are
still displayed in English. Since DadTEX is based on

12 http://www.ucam.ac.ma/fssm/rydarab/system/zip/

dadnass.zip

156 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

DadTEX — A full Arabic interface

Figure 2: Output document in DVI

Figure 3: Normal equivalent of the document source

Figure 4: Simple Arabic document source using
Omega

translation of command names only, error messages
are always the same.

2.4 Encoding

DadTEX can be used with any encoding system ca-
pable of representing the Arabic alphabet, as long
as the encoding is supported by the packages in use.
In this version, we used ISO-8859-6 instead of UTF-
8 because the ArabTEX system still has some prob-
lems when it is used with UTF-8. The encoding sys-
tem recommended13 to represent Arabic text under
Unix is ISO-8859-6.

In ISO-8859-6, Arabic characters are encoded
in one byte. It is thus easy to set their category
code into 11. The assignment is done by using a
text editor that supports ISO-8859-6 encoding (e.g.,
\catcode‘\ب =11). If the encoding used to encode
Arabic text is UTF-8, then Arabic characters are
presented using two bytes, and the use of a text
editor that supports UTF-8 will lead to errors, be-
cause \catcode is intended to be used with only
one-byte characters. For example, instead of using
the command as follows \catcode‘\ ا =11, charac-
ters should be divided into two visible bytes (Ø and
§ in the case of the Alef) using an ASCII text ed-
itor. Thus, we use the following: \catcode‘\Ø=11

and \catcode‘\§=11. However, in the case of the
Omega system, the hexadecimal code can be used
directly: \catcode‘^^^^0627=11.

Currently available multilingual TEX typeset-
ting systems require declaring a text’s linguistic en-
vironment. For example, the Arabic text begins
with the command \begin{arab} and ends with
\end{arab}. This way allows TEX to use the suit-
able font and change the writing direction. This
is in contrast with browsers, where no specific dec-
laration of the language is required, thanks to an
advanced level of use of Unicode’s bidirectionality
algorithm, and to the possibility of using available
fonts instead of being tied to only one font. This
is due to the multilingual nature of TrueType fonts.
Indeed, all Unicode characters can be presented in
a single TrueType font.

2.5 Document structure

The structure of DadTEX documents is similar to
that used in LATEX.

The document starts with the Arabic command

, equivalent to \documentclass with
the translation of the class name (e.g., article to

13 “Arabization of graphical user interfaces”, by Franck
Portaneri and Fethi Amara:
http://www.langbox.com/staff/arastub.html

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 157

Mustapha Eddahibi, Azzeddine Lazrek and Khalid Sami

). These classes and options specify the basic
structure for a document.

Next, we can find commands like ,
equivalent to the command \usepackage, which in-
structs LATEX to load some external commands gath-
ered in a package.

One can possibly use other commands that will
be applied before \begin{document}, for example,
commands that act on the document layout.

The command is the Arabic trans-
lation of the command \begin{document} which
marks the end of the preamble and declares, as its
name indicates, that the document starts here.

The DadTEX system is not intended to be lim-
ited to Arabic script composition packages; all TEX
commands can be translated. Indeed, a document
can simultaneously contain text in Arabic and in
other languages. For this reason, the beginning of
the document is distinguished from the beginning of

the Arabic environment. The command
is used to declare the beginning of the Arabic envi-

ronment. For each command (\begin) there

is a corresponding (\end) command that in-
dicates the end of the environment.

For the Omega-based DadTEX version, the first
line of the document is not the Arabic equivalent of
the command \documentclass. Instead, the Ara-

bic source begins with the command ,
equivalent to the commands that change ΩCP list,
which will allow to conversion of the input docu-
ment encoding into that used by the font, e.g., OT1
or T1. However, there are still some technical prob-
lems with using Omega and DadTEX with RyDArab
to compose Arabic mathematical expressions.

2.6 Compilation

Instead of directly compiling the source document
composed by the user, we use the combination of
following compilation options:

latex \RequirePackage{adapt}

\input myfile.tex -job-name myfile

3 Conclusion

DadTEX allows the TEX user who does not know En-
glish to use command names and parameters written
in his mother tongue. So, TEX can be more user-
friendly and understandable and, therefore, more
widely used among Arabic-speaking people. Con-
versely, such users can thus be more concerned with
and interested in TEX development.

In a future version of DadTEX, it will be very
interesting to add support for the Arabi system [6].
Indeed, compared to ArabTEX, Arabi can be used
with other packages with fewer restrictions.

Acknowledgements:
Thanks to Barbara Beeton and Karl Berry for their
editorial corrections and contributions.

References

[1] Behdad Esfahbod and Roozbeh Pournader.
FarsiTEX and the Iranian TEX Community.
TUGboat 23:1, pages 41–45, Proceedings of the
2002 TUG Annual Meeting, Trivandrum, India,
2002.

[2] Mostafa Banouni, Azzeddine Lazrek
et Khalid Sami. Une translittération
arabe/roman pour un e-document. In 5e

Colloque International sur le Document
Électronique, pages 123–137, Conférence
Fédérative sur le Document, Hammamet,
Tunisi, 2002.

[3] Yannis Haralambous and John Plaice.
Multilingual Typesetting with Ω, a Case Study:
Arabic. In Proceedings of the International
Symposium on Multilingual Information
Processing, pages 137–154, Tsukuba, 1997.

[4] Klaus Lagally. ArabTEX — Typesetting Arabic
with vowels and ligatures. In EuroTEX’92,
Brno, Czechoslovakia, 1992.

[5] Petr Oľsák. Second Version of encTEX: UTF-8
Support. TUGboat 24:3, pages 499–501,
Proceedings of the EuroTEX 2003 Meeting,
Brest, France, 2003.

[6] Youssef Jabri. The Arabi system — TEX writes
in Arabic and Farsi. In this volume,
pp. 147–153.

158 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

AlQalam for typesetting traditional Arabic texts∗

Hossam A. H. Fahmy
Electronics and Communications Department,

Faculty of Engineering, Cairo University, Egypt

hfahmy (at) arith dot stanford dot edu

Abstract

AlQalam (“the pen” in Arabic) is our freely available system intended for type-
setting the Qur’an, other traditional texts, and any publications in the languages
using the Arabic script. From a typographical point of view, the Qur’an is one
of the most demanding texts. However, there is a long historical record of excel-
lent quality materials (manuscripts and recent printings) to guide the work on a
system to typeset it. Such a system, once complete, can easily typeset any work
using the Arabic script, including those with mixed languages.

1 Characteristics of Arabic typography

The Arabic alphabet has been adopted for use by
many languages in Africa and Asia, including Ara-
bic, Dari, Farsi, Jawi, Kashmiri, Pashto, Punjabi,
Sindhi, Urdu, and Uyghur. The Arabic script is
also used for a number of other languages either to
present how the language used to be written histor-
ically (as for Turkish) or how some write it in an
unofficial manner (as for Hausa in western Africa).

Similar to the Latin alphabet, with its adop-
tion by several languages, the Arabic alphabet has
acquired new symbols to represent the sounds that
do not exist in Arabic. In contrast to the Latin
alphabet that has dots only on the ‘i’ and ‘j’, the
Arabic alphabet uses dots extensively, both above
and below the letter shapes, to distinguish the dif-
ferent characters. This explicit distinction between
the different letters in written text using dots was in
itself an addition to the original script, which had no
dots. In the original Arabic script, the distinction
between �✁ ✂ ✄ ☎ ✆ (house) and �✁ ✝✂ ☎ ✆ (girl) when repre-
sented as ✁ ✂ ☎ was understood from the context. In
general, the symbols developed for other languages
follow the same idea as Arabic and use more dots (up
to four) and special marks on the original shapes of
the Arabic letters.

Arabic being a semitic language, usually only
the consonants are written in a word. The equiva-
lent of short vowel sounds are written as additional
marks on top of the letters. Obviously, the different
languages have different vowels and need different
symbols to mark them. In addition to that, since the
geographical area covered by the Arabic script his-
torically is quite vast, different regions of the world

∗ A project under the author’s supervision. This paper

combines the material presented at two conferences: Euro-

TEX2006 and TUG2006.

developed different symbols. The result that we see
today is a plethora of additional marks developed
historically.

A beginner learns that Arabic is written from
right to left and must practice writing each letter
and its connection rules to other letters. Because of
this cursive nature, any letter may connect to the
previous and following letters. Hence, a beginner
learns the general four basic forms of a letter: at
the start of a word, at the middle, at the end, and
isolated. The simplest example of this rule is the
equivalent of ‘b’ in Arabic: ✞ ✆✟✁✠✆ ✡ ✆ ☎ ✆ . A reader
with a sensitive eye will notice that the four shapes
of the same letter differ in their width, height above
the line, and depth below it. The same structural
shape is used for the equivalent of ‘t’ (�✞ �✁ �✡ �☎),
and ‘th’ (

☛✞ ☛✁ ☛✡ ☛☎). The equivalent of ‘n’ and
‘y’ share the same shapes as ‘b’ in the initial and
medial forms (✝✡ ✝☎ and ✡ ✄ ☎ ✄) but not in the final or
the isolated forms (✝☞ ✝✌ and ✍ ✄✏✎ ✄). In many writ-

ing styles, both traditional calligraphic scripts and
typographical fonts, the final and isolated forms of
‘y’ are written without dots as (✍ ✎).

In traditional Arabic writing styles (but with
the exception of thuluth, riqā‘, and tawq̄ı‘ [12]), the
letters ✑✓✒✕✔✗✖ and their siblings with dots or marks
do not connect to the following letter but only to the
preceding one.

The cursive nature of the Arabic script adds an-
other characteristic: many letters combine together
to produce new shapes as in ✘ ✆✚✙✜✛ ✖ becoming ✘ ✆✣✢ ✤ ✖ .
In the Latin script this phenomena occurs infre-
quently and when it happens, a ligature is used to
improve the appearance of the problematic letter
combinations such as ‘ff’ and ‘ffl’. In Arabic ty-
pography, on the other hand, the presence of com-
bined letters is abundant but optional in many cases.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 159

Hossam A. H. Fahmy

Haralambous [1] gives a long list (still not exhaus-
tive) of possible ‘ligatures’ in Arabic. While speak-
ing about the history of Arabic typography, Milo [8]
explains that “each letter can have a different ap-
pearance in any combination, something that can
only be crudely imitated with ligatures”. According
to Milo [8], most modern books present the con-
nected letter groups “as ‘ligatures’ and ‘artistic ex-
pressions’ without so much as a hint at traditional
morphographic rules”. In 1990, MacKay [7] dis-
cussed the range of context evaluation in Arabic and
concluded that clusters of four, five, six, and some-
times more letters may combine into a unique shape.
MacKay then proposed the use of virtual fonts with
TEX as an adequate solution.

Another feature in the Arabic script is its re-
liance on subtle changes to the letter shape to aid
the reader in identifying the beginning and end of
each letter within a combination. The letter � has
three “teeth” (vertical pen strokes) similar to the
teeth in ☎ ✆ and

�☎ . When � is connected to ☎ ✆ , the tail
of the � may be elongated to alert the reader to the
correct grouping of the teeth. Furthermore, the two
words ✁ ✡ ✆ � and ✁✄✂ �☎ present different heights for the

teeth of the ☎ ✆ and
�☎ to help the reader as well. This

difference in width and height is a type of encoding
to prevent a misreading of the word and to aid the
trained eye in quickly catching the letter combina-
tion.

That encoding helps in other cases as well. If
for any reason the dots fade away, a reader faced
with ✁✄✂ ☎ can guess its correct origin. This encoding

to emphasize the different letters by raising some
teeth is essential in words such as �✁ ✝✂ ✡ ✄ ✂ ✆ �☎ and �✁ ✡ ✆ ✂ ✆ ✂ �☎ .
However, the raising of the teeth is only possible by
investigating the group of letters. So the height of
the tooth for ✝✡ in �✁ ✝✂ ✡ ✄ ✂ ✆ �☎ and �✁ ✝✡ ✂ ✆ �☎ is not a feature of
the individual letter but of the whole combination.
The same goes for the height of the dot on top of
that same letter as in ✘ ✙ ✆ ✝✡ ✝✂ � or ✝✌ ✝✆ � .

In traditional (manual) writing, the “skeleton”
of the letter combination is written first, then the
dots and the other marks are provided. So, a writer
probably progresses from the skeleton to the dotted
to the vocalized form as ✌ ✆ � → ✝✌ ✝✆ � → ✝ ✝✌✟✞ ✝✆ ✠� .

In the Arabic script, a good calligrapher justi-
fies the lines mainly by using optional ligatures or
wider forms of some letters and not by stretching
the spaces between the words, as is done with the
Latin script. The use of optional ligatures and wider
forms is the preferred method in high quality works.
Another method is to add an elongation to the tail
of some letters by using the tat.w̄ıl or kash̄ıdah sym-

bol ‘ ✡ ’ such as ✁✠✆ ✡ ✆ ☛☞☛✌☛ � instead of ✁✣✆ ✂ ✆ � . This second
method has been widely abused in newspapers and
low quality materials using mechanical typewriters.

The Arabic script has a large number of writing
styles that were developed historically to accommo-
date the different languages and different purposes.
Latin scripts use bold, italic, or larger fonts for sec-
tion headings and for emphasis. Traditional Arabic
writings vary the typeface instead. The printings
of the Qur’an as well as of most books almost al-
ways use the naskh typeface for the main body. The
headings, the introductory materials, and the back
materials frequently use other typefaces such as the
thuluth, ta‘l̄ıq, and ruq‘ah.

To summarize, the Arabic script has its own
unique requirements for typesetting:

1. Arabic is written from right to left.

2. Characters in general have four different forms
(initial, medial, final, and isolated).

3. These forms are of different width, height, and
depth.

4. The shape of a specific form depends on its
context. For example, the height of the teeth
(the vertical stroke at the start of the charac-
ter) changes to help the reader to distinguish
this character from its neighbors.

5. There are additional marks (mostly for short
vowels) that are put on top or below the char-
acter.

6. The horizontal and vertical location of the dots
and marks on the characters is not always at
the same position but depends on the charac-
ter and its context.

7. Almost any letter of the script may enter into
a ligature and those ligatures may be up to six
letters long.

8. Ligatures and variable width forms of the let-
ters are used to justify the lines.

9. Several typefaces are needed for special mate-
rials in a work of good quality.

With all of these issues, to find a suitable posi-
tion for the dots and marks on the letter combina-
tions is sometimes a real challenge even for a human,
let alone a machine.

2 Automated typesetting of Arabic

The Arabic script does not enjoy the same luxury
that Latin script has when it comes to automated
typesetting on computers. Milo correctly asserts [8]
that the use of individual letters as the building

160 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

AlQalam for typesetting traditional Arabic texts

block is not suitable for Arabic. Both MacKay [7]
and Milo [9] argue that a layered approach is a bet-
ter solution. In such a layered approach, some basic
elements are provided in the font to represent the
skeleton of some letter combinations, an individual
letter’s skeleton, or even a part of a letter. These
elements are combined first to give the correct skele-
ton of the word with all the needed shaping for the
teeth or other style requirements. On top of that
skeleton, a second layer for the dots is added. Then,
the vowel marks and any other marks come in sub-
sequent layers. Milo [10] developed a system with a
layered approach for his company, DecoType. It is a
proprietary system used by a number of commercial
software tools. Due to its proprietary nature, the
full details and the extent of the capabilities of this
system are not widely known.

Our goal is to provide a freely available system
capable of typesetting the Qur’an, other traditional
texts, and any publications in the languages using
the Arabic script. From a typographical point of
view, the Qur’an is one of the most demanding texts.
However, there is a long historical record of excellent
quality materials (manuscripts and recent printings)
to guide the work on a system to typeset it. Such a
system, once complete, can easily typeset any work
using the Arabic script including those with mixed
languages.

Knuth and MacKay [4] were the first to present
a working solution for including right-to-left text
(for Arabic and Hebrew) in the TEX family. Their
proposed TEX-XET system is an extension of TEX
that produces an extended DVI file. The enhanced
mode of ε-TEX allows bidirectional text processing
and produces regular DVI files, but ε-TEX does not
provide any Arabic fonts or any specific function-
alities that ease the typesetting of Arabic books.
Within the TEX extensions, both Ω [3] and Arab-
TEX [5, 6] have been used for Arabic and have met
some of the basic requirements to varying degrees.

With the historical trend to extend TEX, Ω
evolved as an implementation allowing multilingual
text processing. As an offshoot of the work on Ω,
the Al-Amal system [1] was an early attempt to
typeset the Qur’an specifically. Unfortunately, it is
not freely available and its output (as shown in the
example published in the paper describing it) falls
short of the desires of a native reader.

Due to its various attractive features, Ω was the
first choice to achieve our goal. However, the result
of our early experiments with the available Arabic
font provided with Ω and with the system itself were
not satisfactory. Ω in its current state does not eas-
ily lend itself to the layered approach described ear-

lier. The modification of Ω is not an easy task since
it is a very large system and such a modification
means the creation of a new system that is not com-
patible with the existing base of TEX. The newer
developments to Ω [2] — once they are stable, widely
available, and documented — should be a great help
in implementing the layered approach necessary for
typesetting high quality texts in Arabic.

Lagally in ArabTEX [6] preferred to stay within
the stable TEX standard and perform all the nec-
essary processing with TEX macros. That decision
allowed ArabTEX to be portable to any TEX imple-
mentation. However, ArabTEX had to compromise
on the issue of line breaking. Although not a simple
program, ArabTEX is confined to a number of style
files each performing a specific task. ArabTEX im-
plements a layered approach where each character
is represented by a skeleton and additional modi-
fiers (dots and vowels). For high quality work, the
font provided with ArabTEX still needs improve-
ments but it is an acceptable start. ArabTEX uses
the LATEX license and hence we changed the name
of our work to AlQalam (‘the pen’ in Arabic).

3 Implementation

As a start, AlQalam grows out of modifications to
ArabTEX [5, 6]. Hence, it inherits ArabTEX’s good
features:

• All the necessary processing is done with TEX
macros which allows it to be portable to any
TEX implementation.

• Although still in need of many improvements,
the font provided with ArabTEX is the best
available within the TEX family.

• The shapes of the letters change with their
context (teeth are raised and automatic de-
tection of many ligatures).

• A layered approach is used.

Although the use of TEX macros brings the virtue
of portability it also brings severe limitations:

• ArabTEX had to compromise on the issue of
line breaking and justification. For right-to-
left text, ArabTEX is forced to handle the line
breaking itself, using a slow and complicated
algorithm, thus bypassing one of the best parts
of TEX for the Latin script.

• ArabTEX analyzes the character combinations
to decide on ligatures using TEX macros as
well. This analysis using macros is

– less efficient than the ligature tables used
for the Latin script in METAFONT; and

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 161

Hossam A. H. Fahmy

– limits the extent of the search for alterna-
tive letter combinations. In Arabic, four,
five, six, and sometimes more letters may
combine into a unique shape [7].

4 Specific needs of the Qur’an

Our goal of typesetting the Qur’an and traditional
texts implies a few more challenging requirements
in addition to those for general Arabic typesetting.
To assist the reader in recitation, several indicators
for vowels, joints, text structure, and pausing loca-
tions have historically been added to the text of the
Qur’an. We present here a few symbols.

Signs of pause � ✝✁ �✂☎✄ ✛ ✖ �✞✝✆ ✞✠✟☛✡✌☞ :

• The ✍ sign: the reader may continue but
it is better to pause.

• The ✎ sign: it is allowed to pause but it is
better to continue.

• The waqf jā’iz sign ✏ : equally good to
pause or continue.

Additional diacritics :

• Ra’s khā’ ✑ ✒ ✓✒ ✔ corresponds to sukūn.

• The madda ‘ ✕ ’ appears in the Qur’an on

many letters such as in ✕✖ ✕✗ ✡ ✄✙✘ ✕✚ .
• The small ‘✛ ’ in

✜ ✛ ✢ ✞ ☎ ✆
✞

✞✣ ✞✤✦✥★✧☛ ✩ ✠☎ ✄ ✝☞ ✞✪ ✖✙✫ and ‘ ✬ ’ in✜ ✠ ✝✌ ✧✂ ✠✭ ✬✠✮ ✞✯ ✝✡ ✡ ✞
✠✢ ✞✰✱ ✛ ✲ ✖ ✞✑✳✫ .

Furthermore, there are different “narrations” of
the Qur’an that differ in the pronunciation in some
locations and hence lead to a plethora of additional
marks needed. The vast majority of the printed
copies of the Qur’an are in the narration known as
Hafs. Only three other narrations (with their special
marks for the special pronunciations) are printed in
the whole Muslim world. The remaining narrations
(sixteen remaining for a total of twenty) are still in
manuscript form.

Fig. 1 shows an example of the four narrations
that exist in print. To make the comparison easier,
we present the same two lines from the four nar-
rations written by the same calligrapher. A simple
look at the first word (top right in each example)
reveals some of the different symbols needed. Those
additional symbols fit well in a layered approach but
would be quite difficult to accommodate otherwise.
The ✴✶✵ symbol appearing on the first word of the

topmost narration is a pausing sign.
The use of transliteration for a purely Arabic

document that is several hundred pages long is ob-
viously neither practical nor desirable. Hence, the

Hafs ✖ ✝✷ ✭

Warsh
☛✸ ✒ ✑

Qālūn ✝☞ ✄ ✛ ✆ �✂

Al-dūr̄ı ✍ ✒ ✑ ✯ ✛ ✖
Figure 1: The first two lines of surat al-ra‘d: an exam-

ple from the four printed narrations.

default assumption for AlQalam is an input file with
the characters coded in Unicode. Bi-directional ed-
itors such as emacs and gedit (we used both) are
good options. Editors have their own limitations
though. If a symbol has a Unicode point associated
with it but there is no key combination mapped to
that symbol or no glyph in the editor’s font to rep-
resent it, another facility must be used. In a case
such as ✎ the user might supply the Unicode value
as ^^db^^96. AlQalam interprets this code as be-
longing to the “signs of pause” category, then raises

it to its correct position such as in ✹ ✠✰�✺ ✞✢ ✧✤ ✲ ✖ . The im-
provement of the input method is one of the major
steps in future developments.

Another feature of typesetting the Qur’an is
the use of colors. In some printings, certain letters,
marks, or sometimes complete words take a different
color usually to remind the reader of a pronuncia-
tion rule. Educational texts for young children also
often use color encoding schemes to stress new read-
ing concepts and to help train their eyes in picking
up the distinctive features of the script. A complete
system for dealing with the Arabic text should be
able to color a piece of a letter combination or some
specific marks.

162 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

AlQalam for typesetting traditional Arabic texts

5 New features in AlQalam

The first version of AlQalam, which became avail-
able by the end of 2005 and was presented at Euro-
TEX 2006, introduced many additional symbols to
the font to enable the typesetting of quotations from
the Qur’an. It also added an additional layer in
typesetting Arabic text for the pausing marks of the
Qur’an. Three features must exist in this layer:

• the correct vertical and horizontal positioning
of those marks on the underlying word;

• the ability to stack some marks on top of each
other; and

• the scalability of those marks when the size of
the underlying text is scaled.

The first version of AlQalam implemented the con-
cept of the additional layer but was deficient in re-
gards to the three features just mentioned.

5.1 Positioning the marks

The different pausing marks vary in their sizes and
shapes. They are raised on top of words that vary
in their heights as well. The second sample from the
top in Fig. 1 has four words followed by the same
pausing sign � . Its vertical position in✁ ✁ ✆

✞
✂☛ ✞�✡ ✄

✞
✧✛✆☎✝ and

✁ ✠✰�✺ ✞✢ ✧✤ ☎✞ ✖
is different because of the underlying text.

Two primitive algorithms existed in the initial
version of AlQalam.

1. Raise the pausing sign at a predefined height
from the baseline regardless of the height of
the underlying text. The worst case is when a
sign with a descender such as ✞ comes on top
of a diacritic mark on a high letter. With a
fixed height we get:

✞✤ ✞✟ ✞�✷ ✧✛ ✖ ✆ ✞✠ ✞ ✝✡ ✧✑ ✞✤ ✞�☎☞☛ ✖ ✑ ✠✤ ✞✆ ✆ ✞✌ ✤ ✕✟ ✕ ✛ ✖ →
✍

✞✤ ✞✟ ✞�✷ ✧✛ ✖
✍ ✆ ✞✠ ✞ ✝✡ ✧✑ ✞✤ ✞�☎

✍ ☛ ✖ ✑ ✠✤ ✞✆ ✆ ✞✌✏✎✤ ✕✟ ✕ ✛ ✖
using this first method.

2. Raise the pausing sign by a fixed height above

the diacritics on top of the character. This
second method results in

✠✰�✺ ✞✢ ✧✤ ☎✞ ✖ ✞✤ ✞✟ ✞�✷ ✧✛ ✖ ✆ ✞✠ ✞ ✝✡ ✧✑ ✞✤ ✞�☎ ✧✑ ✠
✞

✰✡ ✆
✞ ✞✤ ☎ ✆

✞
→

✁ ✠✰�✺ ✞✢ ✧✤ ☎✞ ✖ ✁ ✞✤ ✞✟ ✞�✷ ✧✛ ✖
✁ ✆ ✞✠ ✞ ✝✡ ✧✑ ✞✤ ✞�☎ ✁ ✧✑ ✠

✞
✰✡ ✆

✞ ✞✤ ☎ ✆
✞

where � has a varying vertical position.

Human calligraphers, in contrast, use neither of
these methods. In the current implementation, we
attempt to come closer to what is done in the best of
the art. Calligraphers never lower the pausing marks
below certain limits. Hence, AlQalam now starts by
raising any pausing sign a minimum height depend-
ing on the current font size. If the underlying text is

high enough so that an overlap occurs, the pausing
mark is raised further. It is important to note that
AlQalam now allows more than one mark to appear
on top of a word. The new algorithm is not linked
to the diacritic mark, as in the second method men-
tioned above, but can handle any underlying text,
be it a diacritic mark or another pausing mark. The
new algorithm thus yields:

✹ ☛ ✖ ✑ ✠✤ ✞✆ ✆ ✞✌ ✁ ✠✰�✺ ✞✢ ✧✤ ☎✞ ✖
✒

✁ ✆
✞
✂☛ ✞�✡ ✄

✞
✧✛ ✲ ✖
✞✤ ✕✟ ✕ ✛ ✖ ✹ ✞✤ ✞✟ ✞�✷ ✧✛ ✖ ✹ ✆ ✞✠ ✞ ✝✡ ✧✑ ✞✤ ✞�☎ ✁ ✧✑ ✠

✞
✰✡ ✆

✞ ✞✤ ☎ ✆
✞

for the case of a single mark and✒✓ ✆ ✞ ✝☎ ✯
✞

✞�✂ ✧✤ ✞✰✞ ✞✕ ✂✎ ✞✔ ✧✡ ✞✪
✖

for the case of multiple marks.
As for the third new feature of scaling, if the

user writes

\RL{\vsmaller ✞✤ ✞✟ ✞�✷ ✧✛ ✖^^db^^96 \larger

✞✤ ✞✟ ✞�✷ ✧✛ ✖^^db^^96 \larger ✞✤ ✞✟ ✞�✷ ✧✛ ✖^^db^^96 \larger

✞✤ ✞✟ ✞�✷ ✧✛ ✖^^db^^96 \larger ✞✤ ✞✟ ✞�✷ ✧✛ ✖^^db^^96 \larger

✞✤ ✞✟ ✞�✷ ✧✛ ✖^^db^^96 \larger ✞✤ ✞✟ ✞�✷ ✧✛ ✖^^db^^96 \larger

✞✤ ✞✟ ✞�✷ ✧✛ ✖}
the output is✕ ✖✗ ✖✘ ✖✙✚ ✛✜✣✢✣✤ ✥✦ ✥✧ ✥★✩ ✪✫✭✬ ✎ ✮✯ ✮✰ ✮✱✲ ✓✳✵✴ ✹ ✞✤ ✞✟ ✞�✷ ✧✛ ✖

✍ ✶✷ ✶✸ ✶✹✺ ✻✼✾✽❀✿ ❁❂ ❁❃ ❁❄❅ ❆❇❉❈❀❊ ❋● ❋❍ ❋■❏ ❑▲ ▼ ❊ ❋● ❋❍ ❋■❏ ❑▲ ▼
which is easily achieved, since the height at which
the pausing mark is positioned depends on the font
size.

It is obviously not desirable to type sequences
such as ^^db^^96 throughout the input file. An edi-
tor capable of understanding user-defined shortcuts
may be used to ease this task. The user can just
type the shortcut key and the editor puts the cor-
rect UTF-8 code into the file. Furthermore, to help
all users, we also assigned some shortcuts for marks
that appear frequently in the Qur’an, such as the
dagger alif

✂◆ ❖ for which the user types ‘!’ instead of
‘^^d9^^b0’. Our system now translates the ‘!’ and
the other shortcuts on the fly to the corresponding
UTF-8 code before processing the file. Here are the
shortcuts currently enabled in AlQalam:

type ← mark type ← mark type ← mark

3 ←

✞◆P❖ 2 ←

✒ ◆✾❖ 1 ← ✹ ◆P❖
6 ← ◗◆P❖ 5 ← ❘ ◆✾❖ 4 ← ❙ ◆P❖
9 ← ❚ ◆P❖ 8 ← ◆ ❯ ❖ 7 ←

❯◆✾❖
! ←

✂◆P❖ . ← ◆ ❱ ❖ 0 ← ☛◆P❖
^ ← ❲ * ← ❳ + ← ❨

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 163

Hossam A. H. Fahmy

✞✰ ✝✌ ✄
✞
✂☛ ✞✛ ✞✑ ✠✰�✺ ✞✢ ✧✤ ✲ ✖ ✞� ✰☎ ✆

✞
✞✰✒ ✝✌ ✞ ✞

✞� ✧✡ ✄ ✞✛ ✖✪
✞

✞✁ ✝✤
✞
✝☎

✠✪
✖ ✕✍ ✝✯

✞
✞✰✛ ✲ ✖ ✑ ✒

✁ ✆
✞
✂☛ ✞�✡✾✄

✞
✧✛ ✲ ✖ ✠�✁ ✂☛ ✞☎ ✄ ✖ ✞✂ ✞� ✧✄ �☎

✞
✞✤ ✕✟ ✕ ✛ ✖

✤
✞

✧☛ ✡ ✄ ✞ ✝✗ ☎ ✆
✞
�✞ ✞
✂ ✞✄ ✂☛ ✞✟ ✞✰✂ ✛ ✲ ✖ ✞✁ ✞ ✝✂ ✞✒ ✍ ✝✯

✞
✞✰✛ ✲ ✖ ✠✢ ✞✰✱ ✛ ✲ ✖✆☎❨ ✞ ✝☞ ✄ ✠ ✝✡ ✞ ✞ ✧✪✄ ✠☎ ✄✞✝ ✞ ✸

✞ ✆ ✞✰ ✝✡ ✛ ✲ ✖ ✞✤ ✞☛✆ ✧✚ ✞✪
✖

Hafs ✟ ✠☛✡✌☞ ✍✏✎✑ ✍✓✒ ✎✔✖✕✘✗✙✛✚ ✜✣✢ ✤✦✥
✞✰ ✝✌ ✄

✞
✂☛ ✞✛ ✞✑

✁ ✠✰�✺ ✞✢ ✧✤ ☎✞ ✖ ✞� ✰☎ ✆
✞

✞✰✒ ✝✌ ✞ ✞
✞� ✧✡ ✄ ✞✛ ✖✪

✞
✞✁ ✝✤

✞
✝☎

✠✪
✖ ✕✍ ✝✯

✞
✛ ✖ ✞✑

✁ ✁✣✆
✞
✂☛ ✞�✡P✄

✞
✧✛✆☎✝ ✠�✁ ✂☛ ✞☎ ✄ ✖ ✞✂ ✞� ✧✄ �☎

✞
✁✤ ❱ ✕ ✰✟

✞
✕ ✞✛ ✞✪
✖

✤
✞

✧☛ ✡ ✄ ✞ ✝✗ ☎ ✆
✞
�✞ ✞
✂ ✞✄ ✂☛ ✞✟ ✞✰✂ ✛ ☎✞ ✖ ✞✁ ✞ ✝✂ ✞✒ ✍ ✝✯

✞
✛✆☎✝ ✠✢ ✞✰✱ ✛ ☎✞ ✖✧☎❨ ✁

✞ ✝☞ ✄ ✠ ✝✡ ✞ ✞
✄ ✠☎ ✄★✝ ✞ ✸

✞ ✆ ✞✰ ✝✡ ✛ ☎✞ ✖ ✞✤ ✞☛✆ ✧✚ ✞✪
✖

Warsh ✩ ✎✪ ☞ ✎✚ ✎✑ ✍✬✫✭ ✥✮✤ ✗✙✯✚ ✜ ✢ ✤✦✥
✞✰ ✝✌ ✄

✞
✂☛ ✞✛ ✞✑

✁ ✠✰�✺ ✞✢ ✧✤ ☎✞ ✖ ✞� ✰☎ ✆
✞

✞✰✒ ✝✌ ✞ ✞
✞� ✧✡ ✄ ✞✛ ✖✪

✞
✞✁ ✝✤

✞
✝☎

✠✪
✖ ✍ ✝✯

✞
✞✰✛ ✖ ✞✑

✁ ✁✣✆
✞
✂☛ ✞�✡P✄

✞
✧✛ ☎✝ ✠�✁ ✂☛ ✞☎ ✄ ✖ ✞✂ ✞� ✧✄ �☎

✞
✁

✞✤ ✕ ✰✟
✞

✕ ✞✛ ✞✪
✖

✤
✞

✧☛ ✡ ✄ ✞ ✝✗ ☎ ✆
✞
�✞ ✞
✂ ✄ ✂☛ ✞✟ ✞✰✂ ✛ ☎✞ ✖ ✞✁ ✞ ✝✂ ✞✒ ✍ ✝✯

✞
✞✰✛✵☎✝ ✠✢ ✞✰✱ ✛ ☎✞ ✖✧☎❨ ✁

✞ ✝☞ ✄ ✠ ✝✡ ✞ ✞ ✧✪✄ ✠☎ ✄★✝ ✞ ✸
✞ ✆ ✞✰ ✝✡ ✛ ☎✞ ✖ ✞✤ ✞☛✆ ✧✚ ✞✪

✖
Qālūn ✩ ✎✪ ☞ ✎✚ ✎✑ ✍ ✎✰✲✱★✳ ☞ ✗✪ ✗✙✯✚ ✜ ✢ ✤✦✥

✞✰ ✝✌ ✄
✞
✂☛ ✞✛ ✞✑ ✠✰�✺ ✞✢ ✧✤ ☎ ✖ ✞� ✰☎ ✆

✞
✞✰✒ ✝✌ ✞ ✞

✞� ✧✡ ✄ ✞✛ ✖✪
✞

✞✁ ✝✤
✞
✝☎

✠✪
✖ ✕✍ ✝✯

✞
✞✰✛ ✖ ✞✑

✒
✁ ✆

✞
✂☛ ✞�✡P✄

✞
✧✛✆☎✝ ✠�✁ ✂☛ ✞☎ ✄ ✖ ✞✂ ✞� ✧✄ �☎

✞
✞✤ ❱ ✕✟ ✕ ✛ ✖

✤
✞

✧☛ ✡ ✄ ✞ ✝✗ ☎ ✆
✞
�✞ ✞
✂ ✄ ✂☛ ✞✟ ✞✰✂ ✛ ☎✞ ✖ ✞✁ ✞ ✝✂ ✞✒ ✍ ✝✯

✞
✞✰✛ ☎✝ ✠✢ ✞✰✱ ✛ ☎✞ ✖✧☎❨ ✞ ✝☞ ✄ ✠ ✝✡ ✞ ✞ ✧✪✄ ✠☎ ✄ ✝ ✞ ✸

✞ ✆ ✰ ✝✡ ❱ ✛ ☎✞ ✖ ✞✤ ✞☛✆ ✧✚ ✞✪
✖

Al-dūr̄ı ✤✦✴✶✵ ✍✌✷✶✸ ✵ ✹ ✢ ✎✑ ✍✓✺ ✥✮✤✲✻ ✳ ✢ ✗✙✼✚ ✜ ✢ ✤✦✥
Figure 2: The same first two lines of surat al-ra‘d as in

Fig. 1, typeset with AlQalam.

Fig. 2 shows the same quotes presented in Fig. 1
as typeset by the current version of AlQalam. This
example reveals a few more new features. The in-
terword spacing in high quality Arabic typography
is much smaller than in Latin-based typography. In
some cases it is even completely absent. The reader
relies on the fact that letters at the end of a word
have a different shape in order to separate the words.
A minimal spacing within a right-to-left environ-
ment is the default now, compare:

�✢ ✡ ✄ ☎ ✆ ✤ ✗ ✛ ✖ �✞ ✆ ✟ ✄ ✽ ✛ ✖ ✝✌ ✆ ✄ ☎ ✆ �✢ ✚ ✑ ✤ �✆ ✟ ✛ ✖ �✞ ✆ ✝✂ ✆ ✂ ✟ ✄ ✛ ✁ ✆ ☛✡ ✞ ✖ ✝✯★✾
to �✢ ✡ ✄ ☎ ✆ ✤ ✗ ✛ ✖ �✞ ✆ ✟ ✄ ✽ ✛ ✖ ✝✌ ✆ ✄ ☎ ✆ �✢ ✚ ✑ ✤ �✆ ✟ ✛ ✖ �✞ ✆ ✝✂ ✆ ✂ ✟ ✄ ✛ ✁ ✆ ☛✡ ✞ ✖ ✝✯✦✾
The command \newspacefalse was used in the sec-
ond case to retain a large spacing as in ArabTEX and
regular Latin script.

The earlier version of AlQalam allows hamzat-
alwasl (✲ ✖) to appear only at the start of a word. How-
ever, in the Qur’anic text, it may appear in a medial
form as in

✿✶ ❀ ✻ ❁ ❂ ❃ ❄ ❅✶ ❆ ✽ ❇✲❈✹✺ ✶❉✹❄ ❂ ✽ ✶❊ ✻ ✿ ❋ ❈✹ ✻● ✶❍✶■ ✶❉❏ ❂ ❃ ✶ ❑▲ ▼◆ ❑❖ ✶ ✶❉✼ ❂ ✽ ✶❊
which is now possible in the current version.

Another new feature concerns the positioning
of diacritic marks on top of the letters. Compare

✂ ✆ ✟ ✧�
✪
✖ to ✂ ✆ ✟ ✧�

✪
✖ . The first is the default, while

the second with the raised mark is achieved by the

command \hightrue within the Arabic script envi-
ronment.

The current algorithm handles the small dag-
ger alif according to its context. It is considered a
separate character that appears on its own in cases
such as

✶P ◗ ❘ ✶ ■ ✶❊ ✶❍ ❈✹❙ ■◗ ✶❄❚ ✽ ✶● ✹❯ ■ ✶❇ ■◗ ✶✸ ✶❉❱ ✼ ❂ ✽ . On the other hand, it is
considered a mark on top of the underlying character
in cases such as

✹ ❲ ■❇ ✶❳❚ ✶❨ ✻❩ ❂ ✽ ✶✹ ❲ ■❇ ✶❬ ✶❉❭ ✼ ❂ ✽ ■◆ ✶❇ ✶✹❳ ✻❘ ❂ ✽ . If the dagger alif
is a mark, its positioning on the character is similar
to that of the short vowels.

The contextual analysis for the dagger alif is
conceptually simple, although a bit elaborate to pro-
gram using TEX macros. The dagger alif is a mark
modifying the underlying character if it is

• on the ‘final’ ✺ as in ■◆ ✶❇ ✶✹❳ ✻❘ ❂ ✽ , even if it is

followed by a connected pronoun as in ❈❪ ■❄
✶❉❇ ✶❘

❃
✶❫ ■❳ ✶❉❴ ✶ ❑❍ ❃

✶❫ ■❄ ✶❇ ✻✹✺ ✶✹❄ , or

• on a ✑ which is pronounced as an ✖ as in ❆ ✽ ■❇ ✶❄ ❅ ❉✷ ✶ ✼ ❂ ✽
or

✶✹ ❲ ■❇ ✶❬ ✶❉❭ ✼ ❂ ✽ .
5.2 Coloring

The coloring scheme has been improved as well. In
Fig. 2, the color of every ❵ or ✝☞ that has a shad-
dah on top of it is different, to indicate its spe-
cial pronunciation in the Qur’an. The user chooses
the color by \colmnshadd{colorname} (a few other
commands for various rules were also added). The
issue of coloring while maintaining the contextual
analysis to decide on the correct form (initial, me-
dial, final, or isolated) of the letter is not easily done.

In the Latin script, it is easy to get ‘text’ via
‘te\textcolor{blue}{x}t’—as long as no special
ligatures or kerning are needed between the ‘x’ and
the ‘e’ or ‘t’. However, in Arabic script the com-
mand sequence in the middle of the word breaks the
contextual analysis and the ligature formation.

In our case, since the coloring rules are known
a priori, we code them in the system. Thus, after all
the contextual analysis to decide on the appropriate
letter form and the ligatures is done, but before the
complete word is fed to the output, we intervene
and check for the existence of the requested letter
sequence. If a part of the word matches the pattern,
we color it. Such a hard-coded “programmatic” way
is not suitable for arbitary coloring that the user
may wish to introduce into regular text outside of
Qur’anic quotations.

5.3 Other improvements

A large number of glyphs in the current font are
improvements of what ArabTEX or the first version
of AlQalam provided. ArabTEX uses a circular pen
for the diacritic marks. We found that a rotated

164 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

AlQalam for typesetting traditional Arabic texts

Figure 3: Effect of changing the pen and improving the

shape on the “shaddah”.

❑� ✶ ✻❍
✶�✁ ✻ ✽ ✶❊ ✹❯ ✶ ■ ✶❇ ■◗ ✶✸ ✶❉❱ ✼ ❂ ✽✄✂ ❑▲ ✶ ✶● ✻❙ ❅ ✶ ❑

❨ ✻❩ ❂ ✽ ❈☎ ❅ ✷ ✶ ✻ ❑❨ ✆ ❈❚ ◆ ❑❖ ✶ ✶❉✼ ❂ ✽ ❪ ✶ ✶❉✝ ✼ ✶ ✽ ❊ ❈❖ ❈✞ ❅ ✻❱ ✶✟❚ ✁
✶❉ ✶� ✽ ✠

✡☛ ✶ ✻✷ ✶☞ ✻✼ ❂ ✽ ❈❉❯ ❅ ✶❍ ✶❇ ❈✌ ✁
✶❉ ✽� ✶ ✶❪ ■◗ ✶✼ ✽� ✶ ▼ ✁ ✶ ❈❪ ✶❉✝ ✼ ❂ ✽✎✍✄✏✑ ✶ ❑✒ ❇ ❈ ❑❳ ❬ ✶ ✻☞ ❈✹❄✣❃ ✶✓ ✶❊ ✶ ❑✒ ❇ ❈ ❑✺ ✻ ❑❨ ✆ ❈✹ ❃ ✶✓ ❈ ✿ ✶✔ ✻☞ ✶❄❚ ✶❊✶ ❑✕✗✖❚ ❄ ❅✶ ❑❖ ✶ ■◗ ✶✘ ✻✼ ❂ ✽ ✶ ❑✕ ✓ ✶ ✶✹❙ ❑
❳ ❈❴ ✻✙

✶� ✽ ✶✹❙ ✻✹▲ ✶❖ ✶✚ ✶� ✽ ❈✷ ❈ ❑✛ ❑
❳
✶ ❑✜ ✶
❘

✶✢ ❃ ✶✹▲✤✣ ✍✦✥✑★✧ ✿✶ ❀ ❚ ❑✛ ✶ ✶☞ ✻✼ ❂ ✽ ✩ ❋✦✪ ✫ ✬ ✭
▼ ■✮ ✯✫ ✰ ✯✫✱ ✬✳✲● ✴ ❋ ✵ ▼✶✸✷■ ✹ ❋✺ ✻ ✬ ✼ ❋✽✽ ✶ ❑❏ ❃ ✶✓ ✻✷ ❈ ❑✛ ❑✟ ❂ ❃

✶ ❑▲ ✻✾ ❈✿ ✻ ❑❀ ✶❁
✶❉✢ ✶❇ ✶✹❄ ✶❉ ✿ ❋ ❈✡ ✻✾ ✿ ✶ ✻❀ ❚ ✶✼ ✽� ✶ ✻❪ ✹✺ ✶ ✻✼

✶� ❃ ✶ ❑▲ ✽ ✶ ❑❖ ■◗ ✶✌ ✂ ❀ ❅✶ ■◗ ✶✹❳ ✘ ✶ ❉❄ ❅✶ ❙ ❅ ✶✌ ✻ ❑❏ ❂ ✽❂✍ ❃✑❄ ✍ ✷✑ ✶ ❑✒ ❇ ❈☞✳❅ ❅✶ ✻✷ ✶
❄❚❆ ✶ ✸ ✶❉ ❑❳ ✼ ✽ ❈✹ ❲ ✶❍ ❇ ◗ ❈❘

Figure 4: Marginal notes indicating partitions and

prostrations.

square pen gives a much more satisfying output, as
shown on the right side of Fig. 3.

To mimic the printed versions of the Qur’an,
we define a \sura command (“sura” is a chapter of
the Qur’an) that produces:❇❈ ❉ ❊❋ ●■❍ ❊❏▲❑▼❑❖◆ ◆P◆ ❇◗ ❊❙❘ ❊❋ ●✦❚ ❘ ❊❯❲❱ ❍❨❳❇ ❩ ❊❬❪❭ ❉ ❳❫ ◆P◆❴◆ ❇❈ ❊❵❛ ● ❜ ❊❝
and ❇◗ ❘ ❊❋ ●✄❍ ❊❏❡❞ ◆P◆P◆ ❢ ❊ ❊❣✐❤❥❧❦♠ ❊ ❍ ❳❇ ❩ ❊❬♥❭ ❉ ❳❫ ◆P◆♦◆ ❇❈ ❊❵❛ ● ❜ ❊❝
when given the number of the sura (100 in the first
case and 112 in the second). AlQalam provides de-
fault values for the remaining information to be dis-
played (number of verses and whether the sura was
revealed in Makkah or Madinah) if they are not sup-
plied by the user.

Fig. 4 shows verses with marginal notes indi-
cating the partitioning and the location of a pros-
tration, as is customary in printings of the Qur’an.
The counter of the partition and the correspond-
ing note are produced automatically when the user
writes * in the file. The indicator and the note for
the prostration are similarly produced by ^ in the
input file.

6 Future work

Much more work is needed on the fonts to pro-
duce new typefaces and to enhance the current one.
The production of multi-letter ligatures with a lay-
ered approach where the dots, vowels, and addi-
tional marks are stacked on the basic structure is
still an open issue. It might even require changes to
the way TEX and METAFONT (or other font gener-
ation tools) handle ligature tables.

The use of TEX macros for programming has its
merits and problems as discussed earlier. We think
that we have brought AlQalam quite close to the
limits of such an approach. To handle line breaking
and justification correctly, a much more fundamen-
tal change in TEX itself is needed. After describing
the line breaking algorithm of TEX [11], Plass and
Knuth propose a refinement where the badness func-
tion for the lines depends on the number of varying-
width letters in the paragraph. Neither TEX nor its
descendants have implemented this refinement. In
the case of the Arabic script, it will not be just the
varying-width letters but also the optional ligatures
that may be formed or broken to change the length
of the text on the line. We hope that one of the
current projects to extend TEX (ε-TEX, Ω, X ETEX,
Oriental TEX, . . .) will include this change to the
badness calculation. Much experimentation using
several different languages will be needed to come
up with the most suitable algorithm.

Another issue that requires more work is the
contextual analysis to decide on the glyphs used.
This analysis is not only within a word; it must
sometimes look at two consecutive words. The fol-
lowing example shows why such an inter-word analy-
sis is needed. In general in Arabic, a silent ‘n’ sound
is pronounced normally before♣ ✝qsrtq ✾ ✂
and goes through some form of vocal assimilation
into the sound of the following letter otherwise. If
the silent ‘n’ sound is at the end of a word in the form
of a tanwin (for example), and the following word
starts by a letter into which the ‘n’ assimilates, the
tanwin will be changed from ◆ ✉ ❖ ✉◆P❖ ✝◆P❖ to ◆ ✞✈ ❖ ✈ ✞◆P❖ ✈ ✠◆P❖ if the
following letter is ✞ ✆ or to ◆ ❯ ❖ ❯◆P❖ ❚ ◆P❖ otherwise. The
first letter of that following word gets a shaddah on
it in the case of a full assimilation and does not get
the shaddah for the incomplete assimilation.

For a program, these rules mean that we must
do our analysis across any intervening spaces or com-
mand sequences, including counters for the verses
and indicators of prostration or partitions that might
come between consecutive words. The inter-word
analysis is needed in many cases, not just for the ‘n’
sound, and it has some implications on the coloring
rules as well.

As might be expected, our first attempts to
achieve that endeavor using TEX macros proved to
be quite laborious and are not yet fruitful. Cur-
rently, the user chooses the appropriate shape from
the font manually. Once more we hope that the
future TEX extensions can come to our help by pro-
viding easier means to program such an analysis.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 165

Hossam A. H. Fahmy

7 Conclusions

In this article, we provided a summary of the tra-
ditional Arabic typesetting requirements as well as
the first steps of a system to fulfill them. From these
requirements, it appears that a layered approach is
mandatory for high quality typography. We hope
that future changes to TEX and METAFONT will
enable us to achieve better ligature formation, line
justification, and contextual analysis. To the best
of our knowledge, there is no other software system
available to serve the requirements of the different
Qur’anic narrations.

References

[1] Yannis Haralambous. Typesetting the holy
Qur’an with TEX. In Multi-lingual computing:

Arabic and Roman Script: 3rd International

conference, Durham, UK, December 1992.

[2] Yannis Haralambous and Gábor Bella. Omega
becomes a sign processor. In EuroTEX 2005:

Proceedings of the 15 th Annual Meeting of the

European TEX Users, Pont-à-Mousson, France,
pages 8–19, March 2005.

[3] Yannis Haralambous and John Plaice. Multi-
lingual typesetting with Ω, a case study: Ara-
bic. In Proceedings of the International Sympo-

sium on Multilingual Information Processing,

Tsukuba, pages 63–80, March 1997.

[4] Donald E. Knuth and Pierre A. MacKay. Mix-
ing right-to-left texts with left-to-right texts.
TUGboat, 8(1):14–25, 1987.

[5] Klaus Lagally. ArabTEX: A system for typeset-
ting Arabic. In Multi-lingual computing: Arabic

and Roman Script: 3rd International confer-

ence, page 9.4.1, Durham, UK, December 1992.

[6] Klaus Lagally. ArabTEX— Typesetting Arabic
with vowels and ligatures. In Jǐŕı Zlatuška, ed-
itor, EuroTEX 92: Proceedings of the 7th Eu-

ropean TEX Conference, pages 153–172, Brno,
Czechoslovakia, September 1992. Masarykova
Universita.

[7] Pierre A. MacKay. The internationalization
of TEX with special reference to Arabic. Pro-

ceedings of the IEEE International Conference

on Systems, Man and Cybernetics, pages 481–
484, November 1990. IEEE catalog number
90CH2930-6.

[8] Thomas Milo. Arabic script and typography:
A brief historical overview. In John D. Berry,
editor, Language Culture Type: International

Type Design in the Age of Unicode, pages 112–
127. Graphis, November 2002.

[9] Thomas Milo. Authentic Arabic: A case study.
right-to-left font structure, font design, and ty-
pography. Manuscripta Orientalia, 8(1):49–61,
March 2002.

[10] Thomas Milo. ALI-BABA and the 4.0 Unicode
characters. TUGboat, 24(3):502–511, 2003.

[11] Michael F. Plass and Donald E. Knuth. Break-
ing paragraphs into lines. In Donald E. Knuth,
editor, Digital Typography, pages 67–155. CSLI

Publications, Stanford, California.

[12] Mohamed Zakariya. � ✄✂✁ ✆ ✤ ✗ ✛ ✖ ✝✄ ✤ ✢ ✤ ✖ ☎ ✆ ✟ ✝☎ ✪
✖ . Al-Com-

puter, Communications and Electronics Mag-

azine
�✞ ✆ ✡ ✄ ✝☎ ✑ ✤ �✆ ✄ ✛ ✝✪ ✖ ✑ �✞ ✝ ✆ ✆ �☎ ✝ ✖ ✑ ✤ �☎ ✄ ✡ ✄ ✡ ✆ ✟ ✄ ✛ ✖ , 22(8):48–

53, October 2005.

166 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Infrastructure for high-quality Arabic typesetting

Yannis Haralambous

Département Informatique, ENST Bretagne
CS 83 818, 29 238 BREST Cedex 3
France
yannis dot haralambous (at) enst dash bretagne dot fr

1 Introduction

This paper presents what we consider to be the
ideal1 (or at least a first step towards the ideal)
infrastructure for typesetting in the Arabic script.
This infrastructure is based on four tools which have
partly been presented elsewhere:

1. the concept of texteme;
2. OpenType (or AAT) fonts. In fact in this pa-

per we will talk about “super-OpenType” which
consists in using static OpenType substitutions
and positionings in dynamic typesetting;

3. Ω2 modules: transformations applied to the
horizontal node list before entering the main
loop;

4. an extended version of TEX’s line-breaking
graph for dynamic typesetting.

Textemes have been presented in [12] and [13].
They are atomic units of text extending the notion
of character. A texteme is a collection of key-value
pairs, some of which are mandatory (but may have
an empty value) and others optional or freely de-
finable by the user. Mandatory keys are “charac-
ter” (a Unicode position), “font” (a font identifier)
and “glyph” (a glyph identifier in the given font).
The latter two keys are, in some sense, the com-
mon part between textemes and TEX’s “character
nodes” (quoted because in fact a “character node”
contains only glyph-related information). Hence, a
first application of textemes is to add character data
to “character nodes”. In fact there are other types
of information which we also add to textemes:

• hyphenation: instead of using discretionary
nodes, we add hyphenation-related information
into textemes;
• color;
• horizontal and vertical offset of glyph (leaving

the abstract box “width × (depth + height)”
unchanged);

1 The author has written several papers on the typeset-
ting of Arabic: [6, 7, 8, 9, 10, 15, 16], and has developed
Arabic systems using three different methods: a preproces-
sor (1990), intelligent ligatures (ArabiTEX, using TEX--XET,
1992) and Ω1 Translation Processes (Ω1 distribution and Al-

Āmal, 1994). The system described in this paper will be the
fourth (and hopefully the last) Arabic system developed by
the author.

• metadata;

• etc.

We will see how— due to the internal structure
of the Arabic writing system —the concept of text-
eme happens to be particularly useful for text in the
Arabic script.

There is no need to present OpenType and
AAT fonts; the reader can consult [20] or the corre-
sponding Web pages at Microsoft and Apple.

Ω2 modules have been presented in [14]. The
well-known technique of Ω1 Translation Processes
(ΩTPs) is applied at a later stage of text process-
ing inside Ω2: just before the end_graf procedure,
which is called when the complete list of nodes of a
paragraph has been stored in memory, before we en-
ter into the line breaking engine which will examine
this list of nodes and insert active nodes at potential
line breaks.

Ω2 will output the horizontal list of nodes, in
XML. Since we are using textemes, this horizon-
tal list contains both traditional types of nodes as
well as texteme nodes. External processes will then
transform these XML data and the result is again
read by Ω2 and replaces the original horizontal list.

Besides the nodes of the horizontal list, Ω2 also
includes in the XML data global information such as
font name mapping, the current language, etc.

In the next section we will describe the fourth
tool, namely the extended TEX graph.

2 Dynamic typesetting and

an extended graph

When TEX processes a horizontal list, inserts ac-
tive nodes for potential breakpoints, calculates bad-
nesses for each arc of the graph and finally finds
the shortest path (where we consider badness as a
“distance”), glyphs do not change:

• if glyphs are given by “character nodes” then
they are static;

• if they are given by discretionary nodes, then
we have two possibilities: when there is no line
break we have a single node list (possibly con-
taining one or more glyphs) and when there is
a break we have two entirely different lists, the
“pre-break” and the “post-break”. The choice

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 167

Yannis Haralambous

depends entirely on the fact whether we break
or not;
• if they are given by ligature nodes, once again

we have two possibilities: when the ligature is
not broken then we have a single static glyph.
When the ligature is broken we return to “char-
acters” (or at least to something which is a bit
closer to the concept of character, even though
it is not exactly a character) and apply the main
loop again to the two parts (before and after
the break), which sometimes results in new lig-
atures. But once again each node list obtained
that way is unique.

In all three cases glyphs either do not change
or their change depends only on a line break close
to them.

Dynamic typesetting is a method of typeset-
ting where glyphs can change during the process
of line breaking, for reasons which may depend on
macrotypographic properties such as justification of
the line or of the entire paragraph, or more global
phenomena like glyphs on subsequent lines touching
each other or to avoid rivers, etc.

Dynamic typography was applied by Gutenberg
in his Bibles. He was systematically applying liga-
tures to optimize justification on the line level. It
is very useful for writing systems using words but
not allowing hyphenation, like Hebrew (where some
letters have large versions without semantic over-
load, these letters have been used mostly at the end
of lines, when printers realized that they are facing
justification problems) or Arabic.

To perform dynamic typesetting with Ω2 we
are extending the graph of badnesses so that we
can have many arcs between two given nodes, each
one corresponding to a given width (“width” in the
sense of glue, that is a triple — ideal width, maximal
stretch, maximal shrink) and to its badness.

Using an extended graph means applying the
same principle of optimized typesetting on the para-
graph level to paragraphs where glyphs (or glyph
groups) have alternative forms (in the case of groups
we call them “ligatures”). Performing the calculation
of shortest path on such a graph means that the so-
lution will be the best possible paragraph, chosen
among all possible combinations of alternate forms
of glyphs.

Alas, such a calculation can explode combina-
torially. Imagine a paragraph of ten lines, each con-
taining 60 glyphs, that is 600 glyphs in total. Imag-
ine each glyph having two variant forms, that is a
total of three choices for each glyph. No ligatures.
That would already make 3600 ≈ 1.87·10286 possible
combinations of glyphs, enough for running Ω2 until

the next big bang and beyond, for only ten lines of
text . . . a perspective which would delight Douglas
Adams if he was still with us.

This is why dynamic typesetting requires a
strategy. Even if choices of glyph variants are mu-
tually independent, one has to define rules to limit
the number of glyph combinations.

For example, a realistic strategy could be the
following:

1. classify glyphs into N width classes (the higher
N the finer the result will be, but the more
calculations we will have to do);

2. whenever we have to choose between glyphs in
the same class, make a single choice, in a ran-
dom manner;

3. if we have many choices for which the sum of the
widths of classes is relatively constant, choose
a single one, randomly.

In other words, we restrict the number of choices
to those that give us different widths on the word
level. Whenever we have different glyph combina-
tions producing the same global width, we use a
random generator to choose a single combination.
This strategy is useful when there is no semantic
overload. One can imagine refined versions where
the combination chosen is not entirely random but
is based on more-or-less strict criteria (for example:
use ligatures preferably at the end of words, or do
not use specific variants in the same word, etc.).

The strategy we have described is based solely
on width criteria. But when many different glyph
versions are designed the chances that some of them
are in conflict (for example, may touch each other)
heavily increases. Due again to combinatorial rea-
sons, we can’t expect the font designer to anticipate
all possible conflicts between glyphs. We need a tool
which will test each combination (for example, test
whether glyphs are touching) and eventually add an
additional penalty to the corresponding arc of the
graph.

This tool can work on an interline level so that
the calculation of global badness is more complex
than just summing up the badnesses of individual
arcs. The extended TEX graph used by Ω2 will use
binary arithmetic on flags to add additional bad-
nesses to given path choices.

Up to now, very few fonts exist with extremely many
variants (one of which is, for example, Zapfino which
has ten different ‘d’ letters) and in the case of calli-
graphic fonts the document’s author (who becomes
a “calligrapher”) will probably be more interested
in (manually) choosing a beautiful combination of

168 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

Infrastructure for high-quality Arabic typesetting

glyphs than in having the absolutely best justifica-
tion by leaving the choice of glyphs to the machine.

The case of Arabic is different: ligatures are
much more common (especially in traditional writ-
ing styles) and calligraphers have a long tradition of
using them in the frame of a justification-oriented
strategy (see [3]). This is why the extended graph
of TEX will prove especially useful for the Arabic
script.

In the following we describe the infrastructure
necessary for each step of Arabic text processing.

3 Infrastructure for Arabic text processing

3.1 Preliminaries: Dynamicity of

Arabic script

Arabic text justification can be obtained by (in order
of priority):

• using blank spaces of variable width (as in other
scripts);
• enabling or disabling ligatures;
• choosing between alternative forms of glyphs;
• inserting “keshideh” connections between letters

(in systems like [3] and [4] which can produce
curvilinear connections; when the “keshideh” is
simply a straight line segment, its esthetic value
is very doubtful).

Article [3] mentions some additional justifica-
tion methods (curvilinear baseline, typesetting the
last words as interlinear annotations, etc.), which,
in our humble opinion, are less suited for the visual
paradigm of printed text and fall into the category
of manuscript constructions.

3.2 Preliminaries: Texteme properties

The Arabic script functions in such a way that a lot
of information is unwritten and has to be known in
advance by the reader:

• Some letters are systematically connected and
hence can take up to four different forms ac-
cording to their immediate context (in Urdu
script we have up to nine contextual forms).
The form of a glyph can be calculated by con-
textual analysis, but in some cases this calcu-
lation must be overridden: for example, as we
see in fig. 1, an initial letter meem �V is used
as an abbreviation for mou’annith �ZqV (= fe-
male). This contradicts contextual rules: that
meem normally should be isolated. Unicode
provides a solution for this case: to use a zero-

width joiner character just after the meem.
We consider Unicode’s solution to be particu-
larly clumsy: a “character” is (according, once
again, to Unicode) the “abstract representation

Figure 1: Abbreviations taken from a French-Arabic
dictionary [1]. Notice on line 5 letter meem in initial
form �V instead of isolated form U which should normally

be used since it is not followed by any other letter. The
same happens with letter heh on line 11.

of a smallest component of written language”
and this can hardly be said for the zero-width

joiner as used here. Furthermore, when doing
copy-and-paste operations one should be sure
to copy that invisible character, otherwise the
meem will change form. Instead, Ω2 inserts
Arabic contextual form inside the texteme, as
a texteme property.

In operating systems there is a dedicated li-
brary (Uniscribe for Windows, Pango for Linux,
ATSUI for Apple) which performs contextual
analysis and then transmits the result to an
OpenType font. This is why OpenType pro-
vides a property for each contextual form (init
for initial, medi for medial, fina for final, isol
for isolated). In our case, the texteme proper-
ties play the rôle of OpenType property activa-
tors.
• Short vowels, although not always written, can

be very useful for NLP (Natural Language
Processing) applications (indexing, automatic
translation, summarizing, etc.). People like
Ahmed Lakhdar Ghazal in proposing a simpli-
fication of the Arabic script ([10], [18]) consider
nonetheless that vowels should always be ex-
plicitly written in Arabic, to avoid ambiguities.

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 169

Yannis Haralambous

Tools like Sakhr’s Diacritizer [19] or other tools
described in [17] can provide the missing vowels.
One can imagine an Ω2 module based on one of
these technologies for adding textemes for the
missing vowels (all vowels are represented by
Unicode characters) with a “hidden” property
activated.

Some people may consider full vowelization
as archaic. It is true that the average Arabic
reader does not need vowels to understand a
text, except for rare cases (foreign words, etc.),
in which it remains customary to use vowels. By
using “visually hidden” textemes we can provide
linguistically rich text without changing the vis-
ual image of the text and hence people’s reading
practices.
• Most words of Semitic languages are based on

three-letter stems called roots. To analyze a
word morphologically it is mostly sufficient to
find its root and to consider the vowels which
are added to the three letters and eventual pre-
fixes and postfixes. In particular, being in pos-
session of these data is the ideal condition for
proper indexing of Arabic and the first step for
pertinent automatic translation.

Removing prefixes from Arabic words is nec-
essary even for alphabetical sorting: it would
be silly to sort liradzul under letter ‘l’ since it
means in fact “for (li-) a man (radzul)” and the
lemma should be radzul.

Once again the solution is provided by text-
emes: using an NLP tool one can attach proper-
ties such as “first/second/third letter of semitic
root”, “prefix”, “postfix”, etc., to textemes. The
sorter/indexer can then use them to operate
properly.

• In some cases we are not sure about some of
the information described above: ancient Ara-
bic texts have no dots on letters (so that, for
example, letters beh, teh, theh, noon and (in ini-
tial and medial form) yeh are written in exactly
the same way), and even fewer short vowels or
other diacritics. Reading such a text requires
significant human interpretation (as in all an-
cient languages, but even more because of this
particular aspect of Arabic script).

Let us suppose that a scholar considers that a
given letter of his manuscript has a 70% chance
of being intended by its author as a beh, a
29.999% chance of being a teh and a chance in
a million to be a theh. How can we insert this
information into the text itself? Once again, we
can use texteme properties. The same method
can be applied for missing vowels. And one

could develop various visual strategies for rep-
resenting such textemes (color, hypertext links
with pop up windows, etc.).

• Let us leave the semantic area aside and delve
again into purely visual issues. Arabic letters
can be connected by curvilinear segments called
keshideh. But the amount of keshideh autho-
rized between two letters is specified by rules
(see [5], [9] and [16]). A special texteme prop-
erty can be used to store the amount of keshideh
allowed (for example, a floating number be-
tween 0 and 1 or a glue field) after a given text-
eme.

Let us note the fact that keshideh has some-
times a semantic overload: it can be used to em-
phasize or to show metric properties of verses
in poetry. In that case the glue field of the
keshideh property will have a non-zero ideal
value with shrink and stretch values.

This property is important for post-process-
ing: not only do we need a curvilinear stroke
but the glyphs surrounding the keshideh in
some cases get modified so that they smoothly
fit together.

Last but not least there is another aspect of
keshideh: in some cases they may carry short
vowels or diacritics. Indeed there is a Unicode
character for keshideh: arabic tatweel. This
Unicode character can be used as the base char-
acter for short vowels or diacritics (which are all
combining characters). In that case we will still
use curvilinear keshideh but, again, with a non-
zero ideal width so that there is room enough
to place the diacritic.

We have presented several cases where injecting
extra information into Arabic textemes can prove
useful for Ω2 processing or for other tasks (sorting,
indexing, etc.). The other advantage of textemes is
that this information will remain in the textual data
and will be available to any subsequent operation.

In any case during step 1 of the process we need
to calculate Arabic contextual forms. This is de-
scribed next.

3.3 Step 1: Hyphenation

It has been said over and over again that Arabic
is not hyphenated. This is true when we refer to
Arabic language, but false when we refer to Arabic
script. Indeed, there is one language written in Ara-
bic script, namely Uighur, which uses hyphenation
just like any European language. Uighur may use
the Arabic script but is not a Semitic language and

170 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

Infrastructure for high-quality Arabic typesetting

Figure 2: A text in Uighur (Universal Declaration of
Human Rights).

hence does not use implicit short vowels: all vow-
els are explicitly written and one can easily identify
syllables and hyphenate words between them.2

Uighur is indeed hyphenated but if we add soft
hyphen characters we risk obstruction of contextual
analysis, which is the next step. It is easier to add
potential breakpoints as texteme properties, as is
done for other languages.

3.4 Step 2: Contextual analysis

This is the step where the forms of Arabic letters are
calculated based on the context. In the (rather rare)
case where the user may want to manually specify
a contextual form he/she just needs to set the cor-
responding texteme feature and to lock it, so that
the contextual analysis module will not be able to
change it.

Contextual analysis should be done on the mod-
ule level rather than on the ΩTP level because ΩTPs
transform only the contents of a buffer, so that any
command inserted into an Arabic word will end the

2 It seems that one of the reasons why hyphenation is not
desirable for Ivrit (although used by Israeli newspapers) is
the fact that the absence of short vowels may lead to bad hy-
phenations, a problem which could be solved by vowelization.

buffer and will obstruct contextual analysis. For ex-
ample, if we want to colorize a part of an Arabic
word we would normally use a \textcolor com-
mand, but this would enter in conflict with con-
textual analysis and the colorized letter would be
typeset always in isolated form.

Performing contextual analysis on the level of
nodes of the horizontal list allows us to obtain a
much more reliable result.

3.5 Step 2′: Hamza rules

One of the major contributions of ArabTEX (by
Klaus Lagally) to Arabic text processing was the
fact that it considers Arabic script from a grammat-
ical point of view, while Unicode is bound, by its
tenth general principle, to follow legacy encodings
like ASMO, which in turn have been based on the
character set of Arabic typewriters.

There is one case where the difference be-
tween ArabTEX and Unicode is flagrant: the use of
hamza. This letter represents the glottal stop and
can be represented in four possible ways: as an iso-
lated letter (arabic letter hamza), or carried by
alef (arabic letter alef with hamza), by yeh

(arabic letter yeh with hamza), or by waw

(arabic letter waw with hamza). Four Uni-
code characters for what is in fact a single letter.

The rules of visual representation of hamza are
quite strict:

1. at word begin: hamza is carried by alef ;

2. inside a word:

(a) if the hamza is preceded or followed by a
vowel /i/ (short or long), it is carried by
yeh,

(b) otherwise, if it is preceded or followed by a
vowel /u/ (short or long), it is carried by
waw,

(c) if it is preceded by yeh and followed by
short vowel /a/, it is carried by yeh (with
some isolated exceptions where it is carried
by alef),

(d) if rules (a), (b), (c) do not apply and it is
preceded or followed by a short vowel /a/
it is carried by alef,

(e) if rules (a)–(d) do not apply and it is pre-
ceded by a long vowel /a/ it is written
without carrier;

3. at word end: if it is preceded by a short vowel
/i/, /a/ or /u/ then it is carried by the corre-
sponding long vowel; if it is preceded by a long
vowel or a consonant, then it is written without
carrier.

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 171

Yannis Haralambous

ArabTEX indeed takes an abstract representa-
tion of hamza as input and calculates the visual rep-
resentation according to the rules (and exceptions)
above. A “hamza module” for Ω2 could serve either
to facilitate input of Arabic text (but in that case
one should develop the corresponding GUI) or as a
“spelling checker” for the specific grammatical issue.

3.6 Step 3: Bidi algorithm

The bidi algorithm is part of the Unicode specifica-
tion. It deals with the visual representation of mixed
RL (right-to-left) and LR (left-to-right) text. For ex-
ample, if we consider capitals to be Arabic, when
typesetting the sentence “My friend said � �"O* !”
must the exclamation mark be placed to the right or
to the left of � �"O* ? In other words: is this excla-
mation mark part of the Arabic sentence “ � �"O* ” or
part of the English sentence “My friend said [. . .]!”?
In the first case (“Arabic exclamation mark”) the ex-
clamation mark is placed “after” � �"O* , and “after”
in Arabic means “to the left of it”. In the other case
it is placed to the right of � �"O* .

The problem here is that the exclamation mark
has no explicit directionality: it may be equally well
considered as being RL or LR. The bidi algorithm
gives a canonical default solution to this problem
and more generally to the way of rendering a para-
graph containing LR, RL as well as neutral (with
respect to directionality) characters.

One may ask: “why does Unicode care about
rendering issues?” The reason is that one does not
always want the canonical solution. To change the
order in which blocks of the paragraph are displayed,
one can use special Unicode characters RLE, LRE,
RLO, LRO, PDF, RLM, LRM. This may sound com-
plicated but in the everyday life of an Arabic lan-
guage keyboard user, whenever a paragraph does
not look like he/she expected it, he/she only needs
to insert a character or two among these to obtain
the correct rendering. The bidi algorithm is applied
on-the-fly by WYSIWYG systems.

What happens when such a text is processed by
Ω2? The latter just needs to perform the same cal-
culations as to obtain the same results as the WYSI-

WYG system. To do this, one needs to consider the
paragraph as a whole. And this is only possible on
the level of the horizontal list. This is why a sepa-
rate bidi module must be applied, and this is step 3
of the process.

3.7 Step 4: OpenType and

super-OpenType features

In an Arabic rendering process OpenType tables can
fulfill five functions:

1. Supply the glyph corresponding to the pair
(character, contextual form), the form being
provided as an OpenType feature [GSUB table,
lookup of type 1 “single substitution”];

2. Supply grammatical (lam-alif) and esthetic lig-
atures [GSUB table, lookup of type 4 “ligature”];

3. Supply alternative forms for glyphs [GSUB ta-
ble, lookup of type 3 “variant selection”];

4. Kerning between single or ligatured glyphs
[GPOS table, lookup of type 2 “positioning of
a pair of glyphs”];

5. Place short vowels and other diacritics on iso-
lated glyphs or on ligature components [GPOS

table, lookups of types 4 “diacritical marks”
and 5 “diacritical marks on ligatures”].

One could imagine some of these features be-
ing contextual, with or without backtrack and look-
ahead. One could also imagine an Arabic OpenType
font using the lookup of type 3 “cursive attachment”
of the GPOS table.

Clearly these lookups handle most of the com-
plexity of Arabic script. In Ω2, the GSUB and GPOS

tables of the font are read by corresponding modules,
which will transform the horizontal list of textemes
accordingly.

More precisely, on a first parse of the font we
store the glyphs which start a context or match
a lookup, as well as the maximum length of con-
text (with backtrack and lookahead) for each glyph.
Then, when going through the horizontal list of text-
emes, for each glyph of a texteme we test whether
it is part of a context and then check the following
glyphs up to the maximum length for that glyph.

According to OpenType rules we must stop at
the first lookup which matches the longest string.

What we call “super-OpenType” is the fact that
we take not only the longest string but also all sub-
strings starting by the same glyph, and also that we
process all possible lookup matches and not only the
first in the list. By doing this we store all possible
OpenType transformations so that they produce dis-
tinct arcs in the TEX paragraph builder graph. This
behaviour is only valid when we are doing dynamic
typesetting.

For example, one can imagine four glyphs
g1g2g3g4 forming a ligature (like the Arabic word
“muhammad”). In a standard OpenType process,
the application would find this ligature and stop.
In super-OpenType we also store all possible “sub-
ligatures” in our texteme: g1g2g3, g1g2, g3g4, etc. as
well as single unligatured glyphs g1, g2, g3, g4. Ev-
ery choice of ligatures and/or single glyphs results
in a different badness calculation for the given line,
and hence is a different arc of our (extended) graph.

172 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

Infrastructure for high-quality Arabic typesetting

The reader may wonder how we deal with hyphen-
ation (although there is only one Arabic script lan-
guage which is hyphenated: Uighur). As hyphen-
ation is performed before OpenType transforma-
tions, we already have “alternative horizontal lists”
(also called “bifurcations”): with and without line
break. We can consider this a split of the hori-
zontal list into two parts: one goes unaltered, and
the other contains the hyphen and a special texteme
property representing a line break. The OpenType
modules go through both parts and apply the neces-
sary transformations, eventually involving the glyph
of the hyphen and special end-of-line or begin-of-line
features ([11]).

Figure 3: The lam-alif ligature as two glyphs.

Let us note en passant an important problem of Ara-
bic fonts: ligatures lam-alif are always drawn as a
single glyph. This is justified by the fact that the
two letters are always connected, but can be quite
problematic when we want to color one of the two
letters. We suggest using the following approach: in-
stead of implementing lam-alif as a single glyph ob-
tained by a type 4 lookup, divide the ligature glyph
in two parts and implement them as variants of the
corresponding glyphs, obtained by type 1 lookups
(“single substitutions”). In that way they can be
colorized separately, but otherwise the visual result
is the same.

This problem occurs only for the lam-alif lig-
ature since in all other cases we deal with esthetic
(and hence non-mandatory) ligatures and one can
simply break the ligature into single and separately
colorizable glyphs.

3.8 Step 5: Fine-tuning

An OpenType font designer is, after all, just a hu-
man being, and cannot possibly anticipate all possi-
ble combinations of glyphs, ligatures, short vowels,

diacritics. To face this problem, and knowing that
automatic positioning of Arabic short vowels and
diacritics has been studied extensively [2], one can
adopt at least two approaches:

1. Develop a system which will either refine the
font tables whenever a conflict appears in a
word (for example two letters touching each
other, or a diacritic touching a letter, or a di-
acritic set in such a way that it is not clear
to which letter it belongs) or simply break the
corresponding ligature and return to a non-
ligatured state (where no conflicts occur);

2. Develop a system checking the default (Open-
Type) positioning and correcting it accordingly
(by slightly moving some of the visual compo-
nents). This solution is especially interesting
when one does not have the rights to modify
the font.

This step deals with the latter solution: cor-
recting a posteriori the positioning of Arabic letters,
short vowels and diacritics, obtained by OpenType
transformations. This involves heavy, but well un-
derstood, calculations based on glyph outlines: ob-
tain the glyph outlines, place them at given hori-
zontal and vertical offsets, and check whether they
touch or even come closer than a given ε to each
other (with a lot of special cases depending on opti-
cal effects).

Another solution would be to take pixel images
of the various glyphs emboldened (so that we also
catch glyphs getting close without touching), assem-
ble them using the corresponding horizontal and ver-
tical offsets, and find pixels belonging to more than
one glyph.

As always in such cases, a tool as the one
described would need serious optimizations to run
without slowing down the whole typesetting process.
One could imagine a cache mechanism for storing
words that present such problems so that the sys-
tem does not need to do redundant calculations.

There are several ways to proceed for solving
this problem. What we wish to point out is the fact
that in an infrastructure as the one described here, it
is possible to take control of glyphs after they have
been transformed by OpenType rules.3

3.9 Step 6: Extended graph and strategies

We arrive now at the paragraph builder. After hav-
ing gone through the five steps described above,

3 At this level we recommend operating only on the glyph
level. Indeed it would be unwise to change character values
of textemes, but, at the very end, this is up to the user to
decide: he/she has full control over the textemes before they
are transmitted to the paragraph builder.

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 173

Yannis Haralambous

we have a horizontal list with, occasionally, variant
glyphs, some of which are logically connected (for
example, when we have a line break). This means
that we have several ways of wandering across the
horizontal list, according to our choices of variant
glyphs and/or line breaks. As in standard TEX we
start defining active nodes and calculate the bad-
ness of (potential) lines brought to the same width.
But in the extended graph we have many graph arcs
sharing the same departure and arrival nodes: as
many as there are combinations of variant glyphs
and activated/de-activated ligatures.

The extended graph is larger than the ordinary
TEX graph, but the process of calculating the short-
est path is the same. Nevertheless we may have
to include logical expressions based on flags corre-
sponding to arcs so that a given path through the
graph may accumulate an extra penalty because
of interline phenomena (lines touching each other,
rivers, etc.).

As already mentioned in the introduction, when
a font provides a large number of glyph variants,
the badness calculation will suffer from combinato-
rial explosion. To avoid this we need to implement
a strategy before entering into the extended graph.
The goal of the strategy is to significantly decrease
the number of arcs between two given nodes, and
nevertheless obtain the smallest possible badness.

This is possible since the badness of a line de-
pends only on widths of glyphs and not on the glyphs
themselves. Which means that if we consider classes
of glyphs of the same width we obtain the same re-
sult and hence need to perform our calculations only
on the class level. Once the optimal classes have
been found, one can simply choose glyphs randomly
in the same class.

But even when using classes of glyphs one can
obtain the same badness by ordering them differ-
ently. For example, a word can be typeset by using a
“wide” class followed by a “narrow” one, or the other
way around: the global width will be the same, and
so will be the badness. The next step of the strat-
egy would be to choose patterns of classes or at least
eliminate arcs based on the same glyph classes but
in different orders.

Let us not forget that besides the combinatorics
of “rigid” widths provided by variant glyphs, we also
have glue, obtained by blank spaces as well as by
keshideh. The precision of classes of glyph widths
must be set in inverse relation to the amount of glue
we can use. The more keshideh and interword glue
we will use the less precision we need since differ-
ences in width between the glyph class and the glyph
actually used will be absorbed by glue.

3.10 Step 7: Post-processing

Multiple master tables have been defined for Open-
Type and then dismissed, as the Multiple Master
format is now officially obsolete. AAT variation ta-
bles have been used only in a single experimental
font (Skia). Graphite does provide continuous vari-
ation of glyphs. In one word: there is nowadays no
glyph variation in font formats.

How do we deal then with keshideh and other
glyph variations which have to be continuous?

A possible solution would be to use a post-
processor: a dvips module which will convert glue
(flagged as “keshideh glue”) into beautiful curvilin-
ear strokes and replace the glyphs surrounding the
keshideh by appropriate variants.

One could imagine a continuous stroke gener-
ator for generating keshideh but also a large set of
predesigned keshideh and surrounding glyphs. The
latter solution has the advantage of using hints, that
can be useful at low resolutions, and should acceler-
ate processing.

3.11 Final result

At the end we obtain textemes containing all the
information accumulated through these seven steps,
as well as the initial information: Unicode charac-
ters, contextual forms, semitic roots, full voweliza-
tion, etc.

References

[1] Mounged de poche. Dar el-Machreq, 1991.
[2] Gábor Bella. An automatic mark positioning

system for Arabic and Hebrew scripts. Master’s
thesis, ENST Bretagne, October 2003.

[3] Mohamed Jamal Eddine Benatia, Mohamed
Elyaakoubi, and Azzeddine Lazrek. Arabic text
justification. TUGboat, 27(2):137–146, 2006.

[4] Daniel M. Berry. Stretching letter and slanted-
baseline formatting for Arabic, Hebrew and
Persian with ditroff/ffortid and dynamic Post-
Script fonts. Software Practice and Experience,
29(15):1417–1457, 1999.

[5] Carl Faulmann. Das Buch der Schrift en-

thaltend die Schriftzeichen und Alphabete aller

Zeiten und aller Völker des Erdkreises. Druck
und Verlag der kaiserlich-königlichen Hof- und
Staatsdruckerei, Wien, 1880.

[6] Yannis Haralambous. Arabic, Persian and
Ottoman TEX for Mac and PC. TUGboat,
11(4):520–524, 1990.

[7] Yannis Haralambous. Towards the revival of
traditional Arabic typography. In Proceedings

of the 7th European TEX Conference, Prague,
pages 293–305, 1992.

174 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

Infrastructure for high-quality Arabic typesetting

[8] Yannis Haralambous. Typesetting the Holy
Qur’ān with TEX. In Proceedings of the 3rd In-

ternational Conference and Exhibition on Mul-

tilingual Computing, Durham 1992, 1992.

[9] Yannis Haralambous. The traditional Arabic
typecase extended to the Unicode set of glyphs.
Electronic Publishing—Origination, Dissemi-

nation, and Design, 8(2/3):111–123, 1995.

[10] Yannis Haralambous. Simplification of the
Arabic script: Two different approaches and
their implementations. In Electronic Publish-

ing, Artistic Imaging and Digital Typography,
volume 1375 of Springer Lecture Notes in Com-

puter Science, pages 138–156. Springer, 1998.

[11] Yannis Haralambous. New hyphenation tech-
niques in Ω2. TUGboat, 27(1):98–103, 2006.

[12] Yannis Haralambous and Gábor Bella. Inject-
ing information into atomic units of text. In
Proceedings of the ACM Symposium on Docu-

ment Engineering, Bristol, 2005.

[13] Yannis Haralambous and Gábor Bella. Omega
becomes a sign processor. EuroTEX 2005, pages
99–110, 2005.

[14] Yannis Haralambous and Gábor Bella. Open-
belly surgery in Ω2. TUGboat, 27(1):91–97,
2006.

[15] Yannis Haralambous and John Plaice. First ap-
plications of Ω: Adobe Poetica, Arabic, Greek,
Khmer. TUGboat, 15(3):344–352, 1994.

[16] Yannis Haralambous and John Plaice. Multi-
lingual typesetting with Ω, a case study: Ara-
bic. In Proceedings of the International Sym-

posium on Multilingual Information Process-

ing, Tsukuba 1997, pages 137–154. ETL Japan,
1997.

[17] Ruhi Sarikaya Imed Zitouni, Jerey S. Sorensen.
Maximum entropy based restoration of Arabic
diacritics. In Proceedings of the 21st Interna-

tional Conference on Computational Linguis-

tics and 44th Annual Meeting of the ACL, Syd-

ney, pages 577–584, 2006.

[18] Ahmed Lakhdar-Ghazal. Pour apprendre et

maîtriser la langue arabe. Éditions La Porte,
1991.

[19] Sakhr. Diacritizer. http://www.sakhr.com/

Sakhr_e/Technology/Diacritization.htm.

[20] Yannis Haralambous (translated into En-
glish by Scott Horne). Fonts & Encodings.
O’Reilly & Associates, 2007.

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 175

Babel speaks Hindi

Zdeněk Wagner
Vinohradská 114
13000 Prague 3
Czech Republic
zdenek dot wagner (at) gmail dot com

http://icebearsoft.euweb.cz

Abstract

Babel provides a unified interface for creation of multilingual documents. Un-
fortunately no Indic languages are currently supported, so typesetting in In-
dic languages is based on specialised packages. The most advanced of these
is Velthuis Devanāgar̄ı for TEX, because it already provides Hindi values for
language-dependent strings as well as a macro for a European-style date. A
language definition file for plugging Hindi into Babel has therefore been recently
developed.

The second part of the paper explains differences between Unicode and
Velthuis transliteration. This is important for understanding the tool that can
convert Hindi and Sanskrit documents from MS Word and OpenOffice.org into
TEX via an XSLT 2.0 processor and a Perl script, as well as a method of making
the PDF files searchable.

Finally the paper discusses some possibilities of further development: the
advantages offered by X ETEX and the forthcoming integration of Lua into pdfTEX.

1 Introduction

Packages for typesetting in various Indic languages
in both plain TEX and LATEX have been available
from CTAN for a long time. The authors of these
packages have made substantial efforts to support
the Indic scripts, which present difficulties that can-
not be solved by TEX itself. For example, although
generation of conjuncts and placing dependent vow-
els (matras) to subscripts and superscripts could be
handled as ligatures in TFM files, the form of a con-
junct depends also on language. While conjuncts Ä
(kta) and à (nna) are used in Sanskrit and tradi-
tional Hindi, they are nowadays often replaced with
the half forms ?t and �n, respectively. Such matters
can be solved only by using a preprocessor bound to
a (LA)TEX macro package.

The existing packages are used by indologists
from all over the world as well as by people from In-
dia. It is therefore unfortunate that the packages
support only the script and lack features to sup-
port the language. An exception is the Velthuis De-
vanāgar̄ı for TEX package [1]. Since version 2.13, it
contains definitions for language-dependent strings
as well as a European-style date, and macros for
switching between them and an English version. It
therefore provides a kind of a mini-Babel. The fur-
ther natural development step was to prepare a lan-

guage definition file which will integrate Hindi into
the Babel system.

2 Birth of the Language Definition File

The aim of our work was to enable transparent use
of Hindi in multilingual documents by means of the
standard Babel invocation:

\usepackage[hindi]{babel}

Preparing a language definition file for Babel is
not a difficult task. It involves defining language-
dependent macros such as \chaptername, and the
date macro \today. These definitions were already
present in the Devanāgar̄ı package and they even
properly handled switching between the Bombay,
Calcutta and Nepali variants of the Devanāgar̄ı fonts.
However, placing them into the language definition
file is not enough. Rendering these words in the De-
vanāgar̄ı font requires a lot of special macros. More-
over, as mentioned previously, the Hindi text cannot
be fed directly to TEX— preprocessing is manda-
tory.

It therefore seemed useless to copy the macros
from the Devanāgar̄ı package to the language defini-
tion file and follow the same development in two
different places. It was therefore decided just to
load devanagari.sty and redefine its options as lan-
guage attributes. As a matter of fact, the language

176 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

Babel speaks Hindi

definition file itself without the fonts and the prepro-
cessor would not work at all. Thus the requirement
to have the Devanāgar̄ı package installed does not
pose a real limitation.

The devanagari.sty package already contains
captions and date macros for English. These defini-
tions must not be removed because they are already
documented and their removal might damage legacy
documents. On the other hand these definitions col-
lide with the Babel core.

The package was therefore modified so that the
macros are declared by means of \providecommand
and the definition delayed via \AtBeginDocument.
The macros are thus guaranteed to exist and the
Babel definitions have higher preference no matter
in which order the files are loaded. The language
definition file checks the package version and will
complain if an old version of devanagari.sty is in-
stalled.

As already mentioned, it is not sufficient to ac-
tivate the Hindi language either as the main lan-
guage or by any of the Babel language switching
environments. The text must be enclosed within a
{\dn ...} group, or the preprocessor will not find
it.

3 Unicode vs. Velthuis transliteration

Devanāgar̄ı originates in an ancient Brāhmı̄ script,
and is an abugida. Each consonant (vyanjana) also
represents an inherent following vowel— a in the
case of Devanāgar̄ı. Other vowels are added as di-
acritics in the vicinity of the consonant. Groups of
consonants often form conjuncts, with only a minor-
ity of them written using a virama sign. Initial form
of vowels have a different shape than vowel diacritics
(matras).

Unicode is based on characters. The inherent
a is not encoded. Thus U+0915 represents the к
(ka) syllable (akshara). The syllable Eк (ki) is rep-
resented by the two Unicode characters U+0915 and
U+093F. Reversing the order of glyphs in displayed
output is left to the rendering engine [2].

Independent vowels (initial forms) have distinct
codes, e. g. the code of i (i) is U+0907. The three
characters U+0915 U+094D U+0924 denote a San-
skrit conjunct Ä (kta). However, such a glyph may
not be present in modern Hindi fonts. The render-
ing engine will then display ?t. In order to force
the rendering engine to display the latter form even
though the Sanskrit ligature is present in the font,
zero-width-joiner must be inserted. The Unicode
encoding will then be U+0915 U+904D U+200D
U+0924.

In contrast, the transliteration scheme devel-
oped by Frans Velthuis tries to be as close to schol-
arly practice as possible. Devanāgar̄ı is traditionally
transliterated into the Roman alphabet where long
vowel, retroflex consonants, etc., are marked with
diacritics [10]. The practice varies slightly between
different textbooks and dictionaries. The Velthuis
transliteration is a 7-bit encoding so the text can be
input on a standard US keyboard. Transliteration
is based on pronunciation, although in Hindi a short
a in the middle of words, as well as at the end of
words, is very often not pronounced. The inherent
a in the middle of the word must always be written
but the final short a can be omitted. Thus кrnA
must be input as karanaa while Gr can be written
just ghar.

Important aspects of the differences between
these two approaches will be shown in the follow-
ing subsections.

3.1 Conversion into the Velthuis

transliteration

Book production is often a collaborative work of au-
thor(s), editor(s), and a compositor. The authors
rarely supply the texts in TEX; they commonly use
other text editors, mostly MS Word. The first task
is therefore conversion of the supplied manuscript
into TEX. Almost all markup must be removed and
replaced in order to achieve a particular graphical
design.

We have found it is advantageous to open the
manuscript in OpenOffice.org, and then save in its
native format, which is XML. Although various tools
are freely available, they still retain too much of
the author’s markup. Use of TEXML will also re-
quire much work which can hardly be reused in other
books. Since the OpenOffice.org file format is XML,
conversion can be performed by XSLT. A simple
stylesheet can remove nearly all markup, keeping
just boldface, italics and footnotes.

Another difficulty is that some Unicode charac-
ters are not directly available in TEX. Fortunately,
Saxon 8.x [5], which implements XSLT 2.0, offers
character maps, which allow replacement of such
characters with TEX control sequences. However,
this is not enough for the texts in the Devanāgar̄ı
script. If we just convert Unicode characters to cor-
responding Roman letters, all inherent a’s would be
lost.

Although the result of the XSLT transformation
can be fed into TEX, some postprocessing is recom-
mended. Sometimes bold text is entered such that
each character is emboldened separately. Merging

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 177

Zdeněk Wagner

these into a single \textbf command is more eas-
ily done later in a Perl script than directly in the
stylesheet. Also, the whole OpenOffice.org docu-
ment is output on a single line. We need to edit
the resulting file in order to wrap it to a reasonable
width. Without any programming, this can be done
by the Perl Text::Wrap module.

In addition to such formatting issues, we also
split the main job of conversion between XSLT and
Perl. First of all, long vowels can be encoded in
the Velthuis transliteration either by doubling or
by uppercasing. The stylesheet always uses upper-
case for long vowels in order to prevent ambiguities.
For instance, ки will be converted into kaI because
kaii will be rendered as к{i, which is wrong. Empty
braces would also solve the problem, but using up-
percase is easier. The independent vowels are trans-
formed directly into the corresponding letter(s) in
the Velthuis transliteration. The dependent vowels
(matras) are preceded with an equal sign. The con-
sonants are followed by equal signs and the virama
is transformed into an underscore.

Afterwards the Perl script takes its turn. In
the input, each paragraph appears on a single line
to be processed. The first task is to form conjuncts.
This will work for Sanskrit words as well as mod-
ern Hindi, where some ligatures are not used, e. g.
in aX̂XA. The virama will be added by the prepro-
cessor. Conjuncts are created by

while (s/(\{\\dn [^}]*)=_/$1/) {}

In the next step matras are handled. Double
equal signs are simply removed and lone equal signs
denote missing inherent a’s to be added. This is
achieved by the following lines.

while

(s/(\{\\dn [^}]*)==([aAiIuU.eo])/$1$2/) {}

while (s/(\{\\dn [^}]*)=/$1a/) {}

Next, we remove the final inherent a unless we
are converting a Sanskrit document.

while (!$opt_sanskrit &&

s/(\{\\dn [^}]*)a([^.a-zA-Z])/$1$2/) {}

Finally the line is wrapped.

eval {

print wrap(’’, ’’, $_); 1;

} or do {

warn "Warning: $@"; print;

};

3.2 Searchable PDF files

PDF files play an important role as online docu-
ments. Although the chapter and section names
may be placed into outlines and related parts may

be found by hyperlinks, it is also desirable to be
able to search for words and sentences. Here, In-
dic scripts present a big problem. PDF, similar to
PostScript, deals with glyphs, but the field in the
search dialogue accepts Unicode characters. Files
generated by the Devanāgar̄ı package are therefore
unsearchable. X ETEX [13] can use OpenType fonts,
but it turns out that a PDF file created by X ETEX
is not searchable either, although the situation is
not simple. X ETEX can use several engines for PDF

creation and the results differ. OpenOffice.org is
slightly more successful because all simple words
which do not contain conjuncts are searchable.

The key problem stems from the distinction be-
tween glyphs and characters. Mappings between
glyphs and characters can be inserted into so-called
‘ToUnicode’ maps. This feature is already imple-
mented in the cmap.sty package. An experimen-
tal ToUnicode map was therefore developed for the
Velthuis Devanāgar̄ı package. Since pdfTEX inserts
these maps according to the font encoding, each In-
dic script will require its own encoding name for
LATEX. Currently Devanāgar̄ı, Bengali, and Gur-
mukhi use encoding U, and all of them rely on pre-
processors with analogous functionality. In the pres-
ent experimental project, encoding X0900 was used
in order to refer to the corresponding Unicode block.

The dvng fonts contain single characters, liga-
tures and pieces which are glued together by TEX
macros. Single characters and ligatures are directly
mapped to Unicode characters. Half forms of the
consonants are mapped to the corresponding char-
acters followed by a virama. Vattu is added to a
full consonant, therefore it is mapped to the r (ra)
consonant preceded by virama. This makes words
with conjuncts searchable.

Unfortunately it is not possible to solve all prob-
lems. Since PDF works with glyphs, i-matras always
precede the consonants. When searchng such words,
it is necessary to type them into the search field as
they appear, i. e. to write the i-matra in front of
the consonant. Acrobat Reader is also confused by
placing vowel diacritics below or above consonants
as well as by vattus. An extra word boundary is
created. Thus when searching for к� Sl� , two words
к� Sl� must be typed into the search field. The
word X~ Aivr must be entered in a way impossible in
the Velthuis transliteration, namely as two words X~
Aivr. Unicode allows starting a word with a depen-
dent vowel which is, of course, incorrect. This mis-
feature enables making such words searchable. Ex-
tra word boundaries are not formed if the akshara is
drawn as a glyph in the dvng font. The words zкnA
and mA/A can be searched for as such. More detailed

178 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

Babel speaks Hindi

information is present in the documentation of the
experimental ToUnicode map [12].

The ToUnicode map is also used when copy-
ing and pasting the text from a PDF file to another
application. It is no surprise that we get into the
same problems. The pasted text will contain extra
spaces after vattu and both short and long u-matras.
Words with i-matras will look visually correct but
their Unicode representation will be wrong. If a
word such as EdSlF is copied and pasted from PDF

and then sent to a sorting algorithm, it will appear
in a nonsensical place, because the program will see
a word starting with i-matra which is not allowed
by Hindi orthography.

4 Future development

The greatest disadvantage of contemporary Velthuis
Devanāgar̄ı for TEX is the necessity of using the pre-
processor. It does not seem so uncomfortable if a
single language document is being prepared. How-
ever, if a trilingual document in Hindi, Bengali and
Panjabi is being typeset, the source file has to be run
through three preprocessors in series. The devnag

preprocessor can handle a few Bengali or Panjabi
words within a Hindi paragraph using angle brack-
ets but not all preprocessors are that advanced. The
necessity of using the preprocessor brings about dif-
ficulties with index creation which have not been
solved yet. Replacing the preprocessor with another
mechanism is thus an important step forward.

The first idea was to reimplement the prepro-
cessor in encTEX [6]. It hooks into TEX’s mouth
and converts input characters to arbitrary tokens
according to the conversion table. Conversion can
be switched on and off by changing the value of
\mubytein. The conversion table can also mod-
ify the file output of \write according to value of
\mubyteout. However, since the conversion acts
upon characters in the TEX’s mouth, it is not possi-
ble to distinguish between characters within words
and characters within control sequences. Reimple-
mentation of the preprocessor in encTEX would thus
be very difficult and the resulting code inefficient.

More promising is integration of the Lua script-
ing language [3] into pdfTEX. The preprocessor can
be reimplemented in Lua and moreover new features
can be added. It will be possible to read texts both
in the Velthuis encoding and in Unicode. It will
also be possible to process documents already run
through the preprocessor so that compatibility will
not be lost. When and if Lua is integrated into
X ETEX, it will be possible to choose between dvng

and OpenType fonts. Having hooks to TEX’s mouth

as well as output in Lua, it will be easier to imple-
ment indexing software in Indic languages.

5 Requirements for multilingual

environment

Multilingual support is required not only in TEX,
but also in the whole operating system. First, it
is necessary to display the Unicode characters cor-
rectly. Groups of consonants with viramas must be
properly combined into conjuncts and matras moved
to the correct place. It is achieved in Linux by one of
the following libraries: ICU [4] and Pango [8]. How-
ever, these libraries are not yet used by all programs.
Even Firefox does not use Pango by default, it must
first be activated by setting MOZ_PANGO_ENABLE=1.
MS Internet Explorer displays Hindi texts correctly.

The text must also be prepared using Unicode.
There remain problems with editors under Linux.
OpenOffice.org, gEdit, and <oXygen/> (XML editor)
[7] work well; yudit is also said to work, but I have
not tried it. Support for Indic scripts in other editors
is still missing.

Input in Indic scripts must, of course, be ac-
cepted in all applications and displayed correctly.
This is a problem with Adobe Acrobat Reader un-
der Windows. I did not manage to enter anything
into the search dialogue directly from the Hindi key-
board in a usable way (it displayed something but
did not search). It is possible to copy and paste
the text from another application but it is displayed
in Unicode sequences. A comparison of Linux and
Windows versions is shown in Figure 1. The Linux
version is more comfortable for users but both search
equally well.

The search facility and copying texts from PDF

require modification in the CMap encoding. Cur-
rently 1:1 and 1:many mappings are available. In
order to be able to reverse the order of glyphs and
handle two part vowels in Dravidian languages, a
many:many mapping is needed. For better under-
standing, a few Devanāgar̄ı and Malayālam sylables
are shown in Table 1.

Table 1: Selected Devanāgar̄ı and Malayālam syllables.

Meaning Devanāgar̄ı Malayālam

d�vnAgrF .2/>2�

ma m .

maa mA .>

mi Em .?

mii mF .@

me m� G.

mo mo G.>

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 179

Zdeněk Wagner

Figure 1: Comparison of search for X~ Aivr (input as X~ Aivr) in Adobe Acrobat Reader 7 in Linux (left) and
Windows XP (right).

6 Conclusion

The paper describes how the Babel module for Hindi
was made. It further presents thoughts concerning
the use of Indic texts as online documents. Tools for
conversion from MS Word and OpenOffice.org into
TEX and for making PDF files with Devanāgar̄ı texts
searchable are presented. These tools are available
from the author’s web page [11].

7 Acknowledgement

The author would like to acknowledge the work
of other developers of the Velthuis Devanāgar̄ı for
TEX, as the package is the base for this project, as
well as Karel Píška for converting the Indic fonts
to the Type 1 format [9]. Special thanks belong
to Anshuman Pandey for translating the language-
dependent strings into Hindi, and John Smith and
Arnošt Štědrý for providing test files created by
X ETEX. The author would also like to acknowledge
Alexandr Babič for running the test under Ubuntu
and Petr Tomášek for explanation of topics related
to font rendering in X. Finally, the author would like
to acknowledge financial support of his attendance
of the TUG 2006 conference by CSTUG and TEX
Users Group.

References

[1] Devanāgar̄ı for TEX.
http://devnag.sarovar.org/.

[2] Joan Aliprand et al. The Unicode Standard,
chapter South Asian Scripts. The Unicode
Consortium, 2003. http://www.unicode.

org/faq/indic.html#5.
[3] Hans Hagen. LuaTEX: Howling to the

moon. TUGboat, 26(2):152–157, 2005.
http://www.tug.org/TUGboat/Contents/

contents26-2.html.
[4] International components for Unicode.

http://icu.sourceforge.net/.
[5] Michael Kay. Saxon, the XSLT and XQuery

processor. http://saxon.sourceforge.net/.
[6] Petr Olšák. encTEX.

http://www.olsak.net/enctex.html.
[7] <oXygen/> XML editor.

http://www.oxygenxml.com/.
[8] Pango. http://www.pango.org/.
[9] Karel Píška. Indic Type 1 fonts for TEX.

CTAN:fonts/ps-type1/indic.
[10] Transliteration pages. http://homepage.

ntlworld.com/stone-catend/translit.htm.
[11] Zdeněk Wagner. My free software.

http://icebearsoft.euweb.cz/sw.php.
[12] Zdeněk Wagner. Searchable PDF with

Devanāgar̄ı texts. http://icebearsoft.

euweb.cz/dvngpdf/.
[13] The X ETEX typesetting system.

http://scripts.sil.org/xetex.

180 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

LATEX as a tool for the typographic reproduction of ancient texts

Apostolos Syropoulos
Greek TEX Friends Group
366, 28th October Str.
GR-671 00 Xanthi, Greece

Abstract

Modern digital typography makes it possible to reliably reproduce ancient texts.
In the TEX world, one usually employs a macro package and one or more Post-
Script fonts in order to accomplish his/her task. Here we briefly describe some
tools that have not been described in the literature and then we give our own re-
sponse to the important question regarding the suitability of the LATEX tools that
are available for the reproduction of ancient texts. More generally, we are also
concerned about the suitability of our typesetting enginees to handle demanding
typographic problems. Naturally, an answer cannot be definitive, nevertheless,
we conclude that the tools and typesetting engines have provisions to handle all
possible forms of ancient documents.

1 Introduction

The reproduction of ancient texts is an important is-
sue, mainly because by digitally reproducing ancient
documents we can preserve our cultural heritage. In-
deed, digital typography is about culture and art as
much it is about science and technology. And it is
not surprising that many TEX experts have devoted
much time and energy to develop a number of tools
for the typesetting of ancient scripts. For instance,
Peter Wilson and the present author have created a
number of such tools, which are partially described
in [1, 2, 3]. Obviously, these tools cannot cover all
possible cases, but are good enough for most tasks.
However, the really important question is whether
tools such as these can be used to digitally reproduce
any ancient document. Naturally, an answer to this
question cannot be definitive, nevertheless, as it will
be demonstrated later on, it seems that these tools
can be used to reproduce any ancient document.

The purpose of this article is not only to show
that modern typesetting tools can be used to repro-
duce many ancient documents, but also to describe
a number of tools that have not been described in
the literature so far. For this reason, we will de-
scribe the tools developed to typeset the symbols of
the disk of Phaistos, the symbols of the Linear A
script, the symbols of the Epi-Olmec script, and the
staves used in medieval Iceland. In addition, we will
briefly discuss our project to provide support for the
Cretan hieroglyphics.

In the next section we will review the type-
setting tools for various scripts that have not been
described in the literature. Then we will discuss
whether these tools solve the problem they have

been designed to tackle. We conclude with a short
discussion regarding our future projects.

2 From ancient Greece through ancient
Meso-America to medieval Iceland

The great island of Crete was the site of the Minoan
civilisation. On this island Cretans developed their
various writing systems, including Linear A and Lin-
ear B. Before these scripts gained widespread use
and acceptance, a hieroglyphic script was in use. To
the best of our knowledge, this script has not been
deciphered yet. Also, on the famous Disk of Phaistos
is inscribed a text in an undeciphered script. Wilson
has created a font and a LATEX package to typeset
Linear B documents, whilst the present author de-
veloped a font and a LATEX package that can be used
to typeset Linear A tablets.

2.1 The Disk of Phaistos

The present author and Stratos Doumanis have cre-
ated a font and an accompanying LATEX package,
named phaistos, that can be used to digitally re-
produce both sides of the Disk of Phaistos. The
package provides access to the glyphs of the Phais-
tos font, via commands of the form \PHxxxx. The
xxxx part of the name follows the “Phaistos Con-
Script Unicode Standard” (http://www.evertype.

com/standards/csur/phaistos.html. The list of
glyph access commands is shown in Table 1.

2.2 Linear A

The package LinearA provides access to the fonts
LinearA and LinearACmplxSigns, which contain both
the simple and compound symbols of the Linear A

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 181

Apostolos Syropoulos

\PHpedestrian = A
\PHplumedHead = B
\PHtattooedHead = C
\PHcaptive = D
\PHchild = E
\PHwoman = F
\PHhelmet = G
\PHgaunlet = H
\PHtiara = I
\PHarrow = J
\PHbow = K

\PHshield = L
\PHclub = M
\PHmanacles = N
\PHmattock = O
\PHsaw = P
\PHlid = Q
\PHboomerang = R
\PHcarpentryPlane = S
\PHdolium = T
\PHcomb = U
\PHsling = V
\PHcolumn = W

\PHbeehive = X
\PHship = Y
\PHhorn = Z
\PHhide = a
\PHbullLeg = b
\PHcat = c
\PHram = d
\PHeagle = e
\PHdove = f
\PHtunny = g
\PHbee = h
\PHplaneTree = i

\PHvine = j
\PHpapyrus = k
\PHrosette = l
\PHlily = m
\PHoxBack = n
\PHflute = o
\PHgrater = p
\PHstrainer = q
\PHsmallAxe = r
\PHwavyBand = s

Table 1: Glyph access commands provided by the phaistos package.

script. The term compound symbol denotes a sym-
bol that consists of two or more simple symbols.
For example, the compound symbol � is composed
of the symbols C and ;. The two fonts contain 389
glyphs and since there are no “official” names for the
various glyphs, the glyph access commands have the
following general form: \LinearALLLL, where LLLL

is a roman numeral. For example, this Linear A
text:

�*!C;��
was typeset with the following commands:

\LinearAXXIX{\LinearAXLIII}{\LinearAXXXIV}%

\LinearALXVIII{\LinearALX}{\LinearAIV}%

{\LinearAXXII}%

Each command is defined using the \xspace com-
mand, and thus we need to surround the various
commands with curly braces to avoid the produc-
tion of extra white space. If a user does not want to
refer to individual glyphs and worry about spacing,
he/she can employ the following redefinition after
the command that includes the LinearA package:

\let\xspace\relax

In Table 2 the reader can see the glyph access com-
mands provided for the simple symbols of the Lin-
ear A script. Of course it would be nice to have this
as a package option, and it is planned for inclusion
in a future release.

2.3 Epi-Olmec

The epiolmec package provides the necessary com-
mands to typeset Epi-Olmec texts and numerals.

The various glyph access commands are shown in
Table 3. The Epi-Olmec people of Meso-America
used the vigesimal numbering system (i.e., a base 20
numbering system). The package provides two com-
mands to generate Epi-Olmec numerals, which are
identical to the numerals employed by the Mayan
people. Specifically, the command \vigesimal type-
sets a number on a horizontal line, while the com-
mand \StackedVigesimal typesets the same nu-
meral on a vertical line, which is the historical way
that the Epi-Olmec people wrote numbers.

For example, the command \vigesimal{2006}
produces the symbols ¨�˝, while the com-
mand \StackedVigesimal{2006} produces:

¨
�
˝

2.4 Icelandic

The package icelandic provides access to the font
icelandic. This font contains the Icelandic runes as
well as most of the Icelandic sorcery and witchcraft
staves. The letters can be accessed by simply typing
the lowercase Latin equivalent (see Table 4).

For example, the following text: was typeset
with the input ‘island’:

ᛁᛋᛚᚨᚾᛑ

To typeset the staves, one uses commands sim-
ilar to those provided by the LinearA package (see
Table 5).

182 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

LATEX as a tool for the typographic reproduction of ancient texts

\LinearAI = �
\LinearAII = �
\LinearAIII = �
\LinearAIV = �
\LinearAV = �
\LinearAVI = �
\LinearAVII = �
\LinearAVIII = �
\LinearAIX = �
\LinearAX = 	
\LinearAXI =

\LinearAXII = �
\LinearAXIII = �
\LinearAXIV =

\LinearAXV = �
\LinearAXVI = �
\LinearAXVII = �
\LinearAXVIII = �
\LinearAXIX = �
\LinearAXX = �
\LinearAXXI = �
\LinearAXXII = �
\LinearAXXIII = �
\LinearAXXIV = �
\LinearAXXV = �
\LinearAXXVI = �
\LinearAXXVII = �
\LinearAXXVIII = �
\LinearAXXIX = �
\LinearAXXX = �
\LinearAXXXI = �
\LinearAXXXII = �
\LinearAXXXIII =
\LinearAXXXIV = !
\LinearAXXXV = "
\LinearAXXXVI = #
\LinearAXXXVII = $
\LinearAXXXVIII = %
\LinearAXXXIX = &
\LinearAXL = '
\LinearAXLI = (
\LinearAXLII =)
\LinearAXLIII = *
\LinearAXLIV = +
\LinearAXLV = ,

\LinearAXLVI = -
\LinearAXLVII = .
\LinearAXLVIII = /
\LinearAXLIX = 0
\LinearAL = 1
\LinearALI = 2
\LinearALII = 3
\LinearALIII = 4
\LinearALIV = 5
\LinearALV = 6
\LinearALVI = 7
\LinearALVII = 8
\LinearALVIII = 9
\LinearALIX = :
\LinearALX = ;
\LinearALXI = <
\LinearALXII = =
\LinearALXIII = >
\LinearALXIV = ?
\LinearALXV = @
\LinearALXVI = A
\LinearALXVII = B
\LinearALXVIII = C
\LinearALXIX = D
\LinearALXX = E
\LinearALXXI = F
\LinearALXXII = G
\LinearALXXIII = H
\LinearALXXIV = I
\LinearALXXV = J
\LinearALXXVI = K
\LinearALXXVII = L
\LinearALXXVIII = M
\LinearALXXIX = N
\LinearALXXX = O
\LinearALXXXI = P
\LinearALXXXII = Q
\LinearALXXXIII = R
\LinearALXXXIV = S
\LinearALXXXV = T
\LinearALXXXVI = U
\LinearALXXXVII = V
\LinearALXXXVIII = W
\LinearALXXXIX = X
\LinearALXXXX = Y

\LinearAXCI = Z
\LinearAXCII = [
\LinearAXCIII = \
\LinearAXCIV =]
\LinearAXCV = ^
\LinearAXCVI = _
\LinearAXCVII = `
\LinearAXCVIII = a
\LinearAXCIX = b
\LinearAC = c
\LinearACI = d
\LinearACII = e
\LinearACIII = f
\LinearACIV = g
\LinearACV = h
\LinearACVI = i
\LinearACVII = j
\LinearACVIII = k
\LinearACIX = l
\LinearACX = m
\LinearACXI = n
\LinearACXII = o
\LinearACXIII = p
\LinearACXIV = q
\LinearACXV = r
\LinearACXVI = s
\LinearACXVII = t
\LinearACXVIII = u
\LinearACXIX = v
\LinearACXX = w
\LinearACXXI = x
\LinearACXXII = y
\LinearACXXIII = z
\LinearACXXIV = {
\LinearACXXV = |
\LinearACXXVI = }
\LinearACXXVII = ~
\LinearACXXVIII = �
\LinearACXXIX = �
\LinearACXXX = �
\LinearACXXXI = �
\LinearACXXXII = �
\LinearACXXXIII = �
\LinearACXXXIV = �
\LinearACXXXV = �

\LinearACXXXVI = �
\LinearACXXXVII = �
\LinearACXXXVIII = �
\LinearACXXXIX = �
\LinearACXL = �
\LinearACXLI = �
\LinearACXLII = �
\LinearACXLIII = �
\LinearACXLIV = �
\LinearACXLV = �
\LinearACXLVI = �
\LinearACXLVII = �
\LinearACXLVIII = �
\LinearACXLIX = �
\LinearACL = �
\LinearACLI = �
\LinearACLII = �
\LinearACLIII = �
\LinearACLIV = �
\LinearACLV = �
\LinearACLVI = �
\LinearACLVII = �
\LinearACLVIII = �
\LinearACLIX = �
\LinearACLX = �
\LinearACLXI =
\LinearACLXII = ¡
\LinearACLXIII = ¢
\LinearACLXIV = £
\LinearACLXV = ¤
\LinearACLXVI = ¥
\LinearACLXVII = ¦
\LinearACLXVIII = §
\LinearACLXIX = ¨
\LinearACLXX = ©
\LinearACLXXI = ª
\LinearACLXXII = «
\LinearACLXXIII = ¬
\LinearACLXXIV = ­
\LinearACLXXV = ®
\LinearACLXXVI = ¯
\LinearACLXXVII = °
\LinearACLXXVIII = ±

Table 2: Glyph access commands for the simple symbols provided by the linearA package.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 183

Apostolos Syropoulos

\EOi = �
\EOii = �
\EOiii = �
\EOiv = �
\EOv = ¨
\EOvi = ˝
\EOvii = ˚
\EOviii = ˇ
\EOix = ˘
\EOx = ¯
\EOxi = ˙
\EOxii = ¸
\EOxiii = ˛
\EOxiv = ‚
\EOxv = ‹
\EOxvi = ›
\EOxvii = “
\EOxviii = ”
\EOxix = „
\EOxx = «
\EOzero = �
\EOSpan = ,
\EOJI = -
\EOvarji = .
\EOvarki = /
\EOpi = 0
\EOpe = 1
\EOpuu = 2
\EOpa = 3
\EOvarpa = 4
\EOpu = 5
\EOpo = 6
\EOti = 7
\EOte = 8
\EOtuu = 9
\EOta = :
\EOtu = ;
\EOto = <
\EOtzi = =
\EOtze = >
\EOtzuu = ?
\EOtza = @
\EOvartza = A
\EOtzu = B
\EOki = C
\EOke = D
\EOkuu = E

\EOvarkuu = F
\EOku = G
\EOko = H
\EOSi = I
\EOvarSi = J
\EOSuu = K
\EOSa = L
\EOSu = M
\EOSo = N
\EOsi = O
\EOvarsi = P
\EOsuu = Q
\EOsa = R
\EOsu = S
\EOji = T
\EOje = U
\EOja = V
\EOvarja = W
\EOju = X
\EOjo = Y
\EOmi = Z
\EOme = [
\EOmuu = \
\EOma =]
\EOni = ^
\EOvarni = _
\EOne = ‘
\EOnuu = a
\EOna = b
\EOnu = c
\EOwi = d
\EOwe = e
\EOwuu = f
\EOvarwuu = g
\EOwa = h
\EOwo = i
\EOye = j
\EOyuu = k
\EOya = l
\EOkak = m
\EOpak = n
\EOpuuk = o
\EOyaj = p
\EOScorpius = q
\EODealWith = r
\EOYear = s

\EOBeardMask = t
\EOBlood = u
\EOBundle = v
\EOChop = w
\EOCloth = x
\EOSaw = y
\EOGuise = z
\EOofficerI = {
\EOofficerII = |
\EOofficerIII = }
\EOofficerIV = ~
\EOKing = Ă
\EOloinCloth = Ą
\EOlongLipII = Ć
\EOLose = Č
\EOmexNew = Ď
\EOMiddle = Ě
\EOPlant = Ę
\EOPlay = Ğ
\EOPrince = Ĺ
\EOSky = Ľ
\EOskyPillar = Ł
\EOSprinkle = Ń
\EOstarWarrior = Ň
\EOTitleII = Ŋ
\EOtuki = Ő
\EOtzetze = Ŕ
\EOChronI = Ř
\EOPatron = Ś
\EOandThen = Ş
\EOAppear = Ť
\EODeer = Ţ
\EOeat = Ű
\EOPatronII = Ů
\EOPierce = Ÿ
\EOkij = Ź
\EOstar = Ž
\EOsnake = Ż
\EOtime = Ĳ
\EOtukpa = İ

\EOflint = đ
\EOafter = §
\EOvarBeardMask = ă
\EOBedeck = ą
\EObrace = ć
\EOflower = č
\EOGod = ď
\EOMountain = ě
\EOgovernor = ę
\EOHallow = ¡
\EOjaguar = ĺ
\EOSini = ľ
\EOknottedCloth = ł
\EOknottedClothStraps = ń
\EOLord = ň
\EOmacaw = ŋ
\EOmonster = ő
\EOmacawI = ŕ
\EOskyAnimal = ś
\EOnow = š
\EOTitleIV = ş
\EOpenis = ť
\EOpriest = ţ
\EOstep = ű
\EOsing = ů
\EOskin = ÿ
\EOStarWarrior = ź
\EOsun = ž
\EOthrone = ż
\EOTime = ĳ
\EOHallow = ¡
\EOTitle = £
\EOturtle = À
\EOundef = 
\EOGoUp = Â
\EOLetBlood = Ã
\EORain = Ä
\EOset = Â
\EOvarYear = Ã
\EOFold = Ä
\EOsacrifice = Å
\EObuilding = Æ

Table 3: Glyph access commands provided by the epiolmec package.

184 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

LATEX as a tool for the typographic reproduction of ancient texts

Unicode name Access
character

runic letter ansuz a a
runic letter berkanan beorc rjarkan b b
runic letter iwaz eoh c
runic letter d d
runic letter e e
runic letter fehu feoh fe f f
runic letter gebo gyfu g g
runic letter haglaz h h
runic letter isaz is iss i i
runic letter thurisaz thurs thorn j
runic letter kauna k
runic letter laukaz lagu logr l l
runic letter mannaz man m m
runic letter naudiz nyd naud n n
runic letter othalan ethel o o
runic letter pertho peorth p p
runic letter ingwaz q
runic letter raido rad reid r r
runic letter sigel long-branch-sol s s
runic letter tiwaz tir tyr t t
runic letter uruz ur u u

Table 4: Runic letters supported by the staves package.

3 Are our tools good enough?

The suitability of any tool, in general, is a tanta-
lizing question that every designer should consider
when creating his/her tools.

In our case, we need to know whether our tools
can be used to reproduce any ancient document they
were intended to be able to reproduce. The various
scripts presented so far are not especially compli-
cated, and one can safely say that the tools can re-
liably reproduce documents writen in these scripts.

However, there are much more esoteric writing
systems, such as the Mayan writing system, that
seem quite challenging. The Mayan writing system
is a two-dimensional system, in the sense that there
is a main sign surrounded by other signs. The main
sign is larger than the other signs, which are affixes.
There are four kinds of affixes: prefixes, which are
placed to the left of the main sign, superfixes, which
are placed above the main sign, subfixes, which are
placed below the main sign, and postfixes, which
are placed at the right of the main sign. Affixes
can also be fused within the main glyph and are
called infixes. So this is a vastly more complicated
writing system, and it would be quite challenging to
develop a tool for mechanically typesetting Mayan
documents from sources in some Latinized translit-
erated form. It would seem this is a typographic job
particularly well-suited for advanced typesetting en-
gines such as Ω, ℵ, and/or X ETEX.1

1 Ω is the last letter of the Greek alphabet, while ℵ is
the first letter of the Hebrew alphabet, which makes me

On the other hand, to merely literally repro-
duce a Mayan script, one could use the picture envi-
roment or define some other environment/command
to build these complicated compounds. Of course,
this is an unintelligent solution. An appealing solu-
tion would be quite difficult to implement.

So where are we? The answer is that we need
advanced typesetting engines to be able to typeset
complicated writing systems easily. So far, it seems
that most cases can be handled by existing tools,
but it is necessary to make sure that these tools are
reliable and give always the expected results. This
is quite feasible, but demands a clear design and
one that will not be based on previous programming
approaches and design principles..

4 Epilog

We have presented work that we have done over
the last few years in the field of digital typography.
Specifically, we presented the tools we developed to
typeset ancient documents. This work and other
similar projects prompted us to ponder about the
suitability of our typesetting engines as typographic
tools capable to handle any ancient script. We con-
cluded that an unintelligent design is possible for
any imaginable writing system, but the recreation
of an ancient document from “raw” data is some-
thing that demands very sophisticated typesetting
engines. Thus, we need to examine all writing sys-
tems and to adapt our tools so as to be able to han-
dle all possible cases. This will prompt researchers
and developers to work toward the creation of new
tools and/or the improvement of existing tools.

Acknowledgements

I would like to thank the TUGboat reviewers for
their comments and suggestions.

References

[1] Apostolos Syropoulos. Replicating Archaic
Documents: A Typographic Challenge.
TUGboat, 24(3):319–322, 2003.

[2] Apostolos Syropoulos, Antonis Tsolomitis,
and Nick Sofroniou. Digital Typography Using
LATEX. Springer Professional Computing.
Springer-Verlag, New York, 2003.

[3] Peter Wilson. The alphabet tree. TUGboat,
26(3):199–214, 2005.

think that Ω was supposed to be the ultimate typesetting
engine, but ℵ showed that probably there is still a long way
to the end. . . A belief that was verified with the emergence of
X ETEX!

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 185

Apostolos Syropoulos

Gly a esss omma s rovi e y t e st es a kage

\staveI =�
\staveII =�
\staveIII =�
\staveIV =�
\staveV =�
\staveVI =�
\staveVII =�
\staveVIII =�
\staveIX =�
\staveX =	
\staveXI =

\staveXII =�
\staveXIII =�
\staveXIV =

\staveXV =�
\staveXVI =�
\staveXVII =�
\staveXVIII =�
\staveXIX =�
\staveXX =�
\staveXXI =�
\staveXXII =�
\staveXXIII =�
\staveXXIV =�
\staveXXV =�
\staveXXVI =�
\staveXXVII =�
\staveXXVIII =�

\staveXXIX =�
\staveXXX =�
\staveXXXI =�
\staveXXXII =�
\staveXXXIII =
\staveXXXIV =!
\staveXXXV ="
\staveXXXVI =#
\staveXXXVII =$
\staveXXXVIII =%
\staveXXXIX =&
\staveXL ='
\staveXLI =(
\staveXLII =)
\staveXLIII =*
\staveXLIV =+
\staveXLV =,
\staveXLVI =-
\staveXLVII =.
\staveXLVIII =/
\staveXLIX =0
\staveL =1
\staveLI =2
\staveLII =3
\staveLIII =4
\staveLIV =5
\staveLV =6
\staveLVI =7

\staveLVII =8
\staveLVIII =9
\staveLIX =:
\staveLX =;
\staveLXI =<
\staveLXII ==
\staveLXIII =>
\staveLXIV =?
\staveLXV =@
\staveLXVI =A
\staveLXVII =B
\staveLXVIII =C
a = ᚨ
b = ᛒ
c = ᛇ
d = ᛑ
e = ᛂ
f = ᚠ
g = ᚷ
h = h
i = ᛁ
j = ᚦ
k = ᚲ
l = ᛚ
m = ᛗ
n = ᚾ
o = ᛟ
p = ᛈ
q = ᛜ
r = ᚱ
s = ᛋ
t = ᛏ
u = ᚢ

Table 5: Glyph access commands provided by the staves package.

186 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Generating TEX from mathematical content

with respect to notational settings

Elena Smirnova
Ontario Research Centre for Computer Algebra
The University of Western Ontario
London, ON, N6A 5B7, Canada
elena (at) orcca dot on dot ca

http://www.orcca.on.ca/MathML/elena.html

Stephen M. Watt
Department of Computer Science
The University of Western Ontario
London, ON, N6A 5B7, Canada
watt (at) csd dot uwo dot ca

http://www.csd.uwo.ca/~watt.html

Abstract

We describe how to obtain client-preferred notations in TEX generated from the
output of mathematical software environments. Our approach is based on the
fact that most packages can produce MathML or other XML-based formats for
mathematical content. Generating TEX from these allows notational choices to
be applied during the translation process. The particular choices of notation
can be made either at the time TEX is generated or later, by the use of TEX
macros. We show how this approach may be applied to the generation of TEX
from both presentationally- and conceptually-oriented mathematical content and
how MathML may be used in the process. Our implementation conserves the
implicit high-level semantics of macro use in both TEX and MathML. Since the
expressions generated by mathematical software may be quite lengthy, we also
discuss issues that arise in line-breaking.

1 Introduction

Most mathematical software systems allow one to
export expressions in TEX format. For many math-
ematical ideas there are several choices of notation,
and typically the TEX formulae generated by soft-
ware systems use the notational conventions selected
by the system designers. These choices might be
quite different from what would be selected by the
client of the package, if a choice were offered.

We are interested in the problem of generating
TEX that respects the notational conventions that
are preferred by the client. To see the difference
between a default and a customized rendering of an
expression, compare the formulae of Figure 1a and
Figure 1b. In most cases it is not possible for a
user to obtain TEX output that uses their preferred
notation. If the user of a computer algebra system
or other mathematical software package wishes to
publish the results of a computation, he or she must
either accept the presentation offered by the system,
or rewrite the TEX content. In this paper we present

(a) Default rendering by Maple

(b) Customized rendering via Mozilla

Figure 1: Two renderings of the same expression.

an alternative approach, based on adding notation
preferences to mathematical TEX converters.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 187

Elena Smirnova and Stephen M. Watt

Figure 2: Three ways to generate TEX from a
mathematical software system

There are several ways in which TEX for math-
ematical expressions may be generated from a soft-
ware package such as Maple [1], Mathematica [2],
Axiom [3], Aldor [4], etc. One approach is to make
a direct translation to TEX from the internal ex-
pression representation of the software system. Ex-
porting it to TEX directly from the system will then
produce package-specific presentation of this con-
tent (Figure 2, arrow 1). Another approach may be
taken if the mathematical object has been created in
a web-oriented mathematical environment, such as
with the MONET web-services [5, 6]. In this situa-
tion the expression will most likely be encoded using
some XML-based standard, such as OpenMath [7] or
Content MathML [8]. These formats are supported
by most computer algebra systems as well as many
web browsers and other packages. The objective of
this paper is to demonstrate a flexible technique to
generate of TEX presentation from these XML-based,
semantically-oriented formats.

We explore two manners of producing TEX from
XML formats: The first is to do so directly from
mathematical content, taking into account nota-
tional settings (Figure 2, arrow 2). The second ap-
proach is to use a two-stage conversion (Figure 2,
arrow 3). In this case, MathML — combined with
elements using some extended set of tags — is first
generated from the mathematical content. This ex-
tended MathML is then translated into TEX with
corresponding TEX macros. In this case, high-level
mathematical constructs may be mapped directly to
TEX macros. This ensures that the semantics of the
original expression are conserved in the output TEX
content.

This paper is organized as follows: Section 2
describes how presentation of mathematical content
can be customized using a Notation Selection Tool.
Section 3 describes a MathML to TEX translator
that is used in multi-stage conversion. Section 4 pro-
vides some details of how line breaking is achieved
in the generated TEX. Section 5 presents our conclu-
sions and outlines some possible directions for future
work in this area.

2 Generating presentation from content
using notational preferences

Anyone with more than a passing familiarity with
the subject understands that there is no universal
notation for mathematics. There are mathematical
concepts for which there are several different nota-
tions, and there are notations for which there are
several different mathematical concepts. Figure 3
shows how the choice of different notation can af-
fect the appearance of mathematical content. This
choice of notation is certainly the major determining
factor in how an expression will appear.

2.1 A notation selection tool

In earlier work we described a Notation Selection
Tool [9, 10] designed to control conversion of math-
ematical expressions in XML format. The original
purpose of this tool was to provide a graphical user
interface (Figure 4) for notation selection. The tool
generates an XSLT stylesheet used to transform Con-
tent MathML to Presentation MathML using the de-
sired notational conventions. The stylesheet and the
generated Presentation MathML are determined by
the user’s choice of notation settings.

2.2 Extending the tool for direct
conversion to TEX

In the present work we use a key feature of the Nota-
tion Selection Tool: Its extensible design allows one
to add new translation directions without modify-
ing the software implementation. In particular, we
can add direct conversion of OpenMath and Content
MathML to TEX.

We described in [9] how the Notation Selection
Tool is initialized by a configuration file. This file
is the only component in the design that provides
information about the mathematical concepts that
the converter can handle. It also stores the transfor-
mation rules to be applied for the selected notations.

Because all knowledge of the MathML conver-
sion is contained in this configuration file, it may
also be used to specify conversions involving other
XML formats for input and other XML or text for-
mats for output. Updating the configuration file

188 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Generating TEX from mathematical content with respect to notational settings

Figure 3: Generating different notations for the same mathematical content

with new conversion rules, such as with OpenMath
as source and TEX as target, allows the Notation
Selection Tool to perform new conversions accord-
ing to desired rules:

<catalog>
<name> CALCULUS </name>
<itemlist>

<item>
<keyword> PARTIAL DERIVATIVE </keyword>
<content>

OpenMath encoding for mathematical
concept PARTIAL DERIVATIVE

</content>
<choicelist>

<choice>
<!-- The first notation choice for -->
<image src = "pd_1.gif"/>
<keyvalue> 1 </keyvalue>
<presentation>

<converter input = "OpenMath" output="LaTeX">
XSLT template for OpenMath
to LATEX for this notation

</converter>
...

</presentation>
</choice>
...

</choicelist>
</item>
...

</itemlist>
</catalog>

If the user selects the notation Dx for partial differ-
entiation and f ′ for ordinary differentiation, then,
instead of obtaining the default output, the Maple
expression shown in Figure 1a will be converted to

$${{\left(\mathop{exp}{\left({x+3}\right)}\right)}^\prime}\,
{{({{\left({x+3}\right)}^{1/3}})}^{\prime\prime\prime}}\,
{{\mathrm D}_{xxxyy}\left({{x^y}+{y^x}+{x^3}}\right)}$$,

which renders as

(exp (x + 3))
′
((x + 3)

1/3
)
′′′

Dxxxyy

(
xy + yx + x3

)
.

The configuration file may define more than
one output format, for example both LATEX and
MathML. In this case, the conversion rules are se-
lected according to the target format specified by
the user (see Figure 4). This approach is a special
case of that described in [11] for the conversion of
mathematical documents into multiple forms.

2.3 The notation selection tool as a
front-end in multi-stage conversion

We have discussed extension of the Notation Se-
lection Tool by modifying the configuration file to
provide new conversions directly to TEX. We can,
instead, do the translation in a series of stages to
increase flexibility.

We can use the Notation Selection Tool as an
intermediate translation stage generating MathML.
This MathML can then be further processed to pro-
duce TEX. This multi-stage mode of generating TEX
from Content MathML or OpenMath can be spec-
ified by a menu selection in the Notation Selection
Tool. In this mode, the Notation Selection Tool first
generates MathML and then passes it to our config-
urable MathML to TEX converter [12].

This multi-stage process allows the Notation
Selection Tool to generate extended markup (i.e.
MathML and other XML) that may then later be
transformed. To do this, the desired extended mark-
up is placed in the output rules of the configuration
file. This extended markup can use new tags to cap-
ture the semantics of new mathematical concepts
or complex combinations of OpenMath or MathML

constructs. For example, one might use a new XML

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 189

Elena Smirnova and Stephen M. Watt

Figure 4: The Notation Selection Tool, stand-alone application interface

element to capture the semantics of binomial coef-
ficients or continued fractions, which do not appear
in standard MathML. In such a case, a new trans-
formation rule can be added directly to the config-
uration file of the Notation Selection Tool:

<converter input = "Content MathML" output="LaTeX">
<xsl:template match = "apply/mmlx:choose[position()=1]

[count(child::*)=2]">
<mmlx:binomial>

<xsl:for-each select = ’mmlx:choose/child::*’>
<xsl:copy-of select=’.’/>

</xsl:for-each>
</mmlx:binomial>

</xsl:template>
</converter>

The output of the XSLT transformation in the
above example will contain Presentation MathML

extended with the new tag mmlx:binomial. The
prefix “mmlx” is defined at the beginning of the gen-
erated XML, and indicates that this element be-
longs to a different namespace than the standard
MathML elements. The resulting element can be
either expanded immediately after the conversion
to obtain a combination of appropriate presentation
markup and semantic annotation (possibly using a
<csymbol> element). Alternatively, it may be car-
ried on to the next step of the translation to TEX,
as described in the next section.

3 MathML to TEX conversion

In earlier work we have explored the question of con-
version between TEX and MathML, using a set of
bidirectional transformation rules [13, 14, 15]. Here
we summarize the aspects of the converter that are
used in notation selection for TEX via MathML.

3.1 Modes of conversion

In [15] we presented a MathML to TEX translator
that converts expressions in MathML representation
to equivalent TEX expressions. The translator sup-
ports conversion at three different levels of content
granularity: (1) entire files, (2) individual expres-
sions and (3) separate objects. The last option al-
lows the user to manipulate stand-alone MathML

and TEX-objects obtained from sources other than
the usual MathML or TEX documents.

To perform the file-level conversion, the trans-
lator processes an entire MathML file and produces
a complete TEX document. The converter can also
handle other XML files containing MathML and re-
place the MathML elements with their TEX equiva-
lents, embedded as CDATA sections, as shown on Fig-
ure 5. This option is useful when our converter is
used as a pre-processor for HTML to LATEX transla-
tors such as html2latex [16]. Thus, from a sequence

190 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Generating TEX from mathematical content with respect to notational settings

of two translations we can produce TEX documents
from HTML web pages containing mathematics.

3.2 Implementation

Even though the most natural choice for implement-
ing a converter for XML-based languages such as
MathML is via XSLT stylesheets, we have taken an-
other approach. The main argument against us-
ing XSLT for this converter was our desire to pro-
vide a symmetric path for the inverse conversion
from TEX to MathML. We chose to organize both
of the translators based on bidirectional mappings
between MathML and TEX constructs. Mapping
rules describe the correspondence between TEX and
MathML patterns in the following format:
<pat:template>

<!-- TeX command with parameters -->
<pat:tex op="\frac" params="\patVAR!{num}\patVAR!{den}"/>

<!-- Corresponding MathML tree -->
<pat:mml op="mfrac">

<mfrac>
<pat:variable name="num"/>
<pat:variable name="den"/>

</mfrac>
</pat:mml>

</pat:template>

Templates, such as the above, are organized
into mapping files. The same file can be used both
for converting from TEX to MathML and vice versa.
The converter tools are implemented in Java and
read one or more mapping files as they are initial-
ized. The converter may be run as a stand-alone
application (Figure 6) or as a web service [12]. The
same configuration file is used to control a trans-
former in the reverse direction [17], from TEX to
MathML. While it is the core Java program that
is carrying out the actual conversion, its behavior is
defined by the selection of mapping files.

This approach provides the converter with the
desired flexibility: none of the conversion rules are
hard-coded and any of them may be updated by
editing the corresponding templates in the mapping
files. The consistency between the two directions of
conversion is preserved, since any of the mapping
files can be used by either of the converters.

New mappings can be added in a similar way.
Whenever a new pattern, such as a TEX macro or
XML template, is introduced, a new template can be
added to a mapping file. This immediately enables
the conversion using a new transformation rule.

3.3 Conserving high-level semantics in
translation

In [13] and in Section 2.3 we have described how
new mathematical constructs can be described with
TEX macros or XSLT template definitions.

Macros are usually used as abbreviations for
lengthy expressions, expressions that are particu-
larly notable, or that appear more than once. These
expressions typically have some meaning that makes
them natural choices for expression by macros.
When converting a mathematical document be-
tween formats, we wish to conserve whatever im-
plicit semantics is captured by the macro markup.
Expanding macros and then converting loses this
information.

In [13] and [18] we showed that rather than ex-
panding all macros to low-level formatting instruc-
tions, in many cases it is possible to map high-
level markup in one setting to corresponding markup
in another, thus conserving implied semantics. We
may arrange that each TEX style or class file have
a counterpart XSLT stylesheet for use with Presen-
tation MathML, and each TEX macro have a corre-
sponding XSLT template definition.

We now give a complete example: Suppose we
are working with documents that involve the Lam-
bert “W” function of two arguments k and z, de-
noted Wk(z). It would be possible to denote this
explicitly as W_k(x) everywhere in a TEX docu-
ment, and as corresponding presentation markup in
a MathML document. We prefer, however, to define
a TEX macro, such as
\newcommand{\LambertW}[2]{W_{#1}\left({#2} \right)}

and a corresponding XSLT template
<xsl:template match="mmlx:LambertW">

<mrow>
<msub>

<mo> W </mo>
<xsl:apply-templates

select = ’mmlx:LambertW/child::*[1]"/>
</msub>
<mfenced>

<xsl:apply-templates
select = ’mmlx:LambertW/child::*[2]"/>

</mfenced>
</mrow>

</xsl:template>

We also add a direct mapping rule for \LambertW

and <mmlx:LambertW> to one of the translator map-
ping files:
<pat:template>

<!-- TeX command -->
<pat:tex op="\LambertW"

params="\patVAR!{k} \patVAR!{z}"/>
<!-- MathML element -->
<pat:mml op="mmxl:LambertW">

<mmxl:LambertW>
<pat:variable name="k"/>
<pat:variable name="z"/>

</mmxl:LambertW>
</pat:mml>

</pat:template>

Using this mapping, a MathML expression
<mmxl:LambertW>

<mn> 1 </mn>
<mi> z </mi>

</mmxl:LambertW>

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 191

Elena Smirnova and Stephen M. Watt

<?xml version=’1.0’ encoding=’utf-8’?>

<html>

<h1> XHTML + MathML </h1>

<math> ⇐ Expression 1
<msup>

<mi>x</mi>

<mn>2</mn>

</msup>

<mo>+</mo>

<mn>1</mn>

</math>

<math> ⇐ Expression 2
<msubsup>

<mi> A </mi>

<mi> i </mi>

<mi> j </mi>

</msubsup>

</math>

</html>

<?xml version=’1.0’ encoding=’UTF-8’ ?>

<html>

<h1> HTML + MathML </h1>

<LaTeX xmlns=’orcca.on.ca’> ⇐ Expression 1
<![CDATA[$${x^2}+1$$]]>

</LaTeX>

<LaTeX xmlns=’orcca.on.ca’> ⇐ Expression 2
<![CDATA[$${A_i^j}$$]]>

</LaTeX>

</html>

Figure 5: Example of conversion from XHTML with MathML to TEX

will be translated to TEX as \LambertW{1}{z} in-
stead of W_1\left(z\right).

This approach, converting from MathML to
TEX driven by high-level rules, allows a concept-level
translation of user-defined macros. This preserves
mathematical semantics implied by the markup of
the original expression and, most importantly for
the present paper, allows user-preferred notations
to be given by alternative definitions of the target
TEX macros.

4 Automated line breaking

A secondary benefit of using a non-XSLT approach
for conversion from MathML to TEX is that it makes
automated line breaking of long expressions easier.

4.1 Motivation

In general, automated line-breaking of mathemati-
cal expressions is a complex problem and has been
studied by designers of computer algebra systems for
some three decades [19]. MathML browsers, such as
Amaya, MathPlayer and those of the Netscape fam-
ily, either have their own mechanism for line break-
ing in mathematical formulae, or provide a scrolling
region for long expressions. TEX, however, does not
natively support either of these options. Therefore
long TEX formulae generated from MathML may not
fit in the text area of the document. Very often com-

posing a mathematical paper with long formulae will
give results as shown in Figure 7.

Manual line breaking in TEX formulae is viable
only when the size of the expression is relatively
small. However, when MathML content is generated
as output from a mathematical software package, or
when numerous documents are to be converted, this
approach is not sufficient. One solution would be to
use the breqn package [20] to display generated TEX
formulae. There are a number of reasons, however,
why we have elected to provide line-breaking as part
of the TEX generation:

• Generated TEX formulae can be very large, so
a number of line breaking (and page breaking)
issues arise that do not arise with hand-written
equations. In particular, breqn fails to separate
factors of long products with implied multipli-
cation. We can handle these situations better
than a human-oriented package such as breqn.

• Generated TEX formulae can be idiosyncratic,
so providing our own line breaking of equations
gives finer control.

• As part of the TEX generation we have already
performed much of the analysis that is required
for line breaking.

• As a purely practical consideration, not all TEX
environments support the breqn package.

192 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Generating TEX from mathematical content with respect to notational settings

Figure 6: The MathML to TEX converter, stand-alone application interface

4.2 Algorithm overview

The subject of line-breaking for mathematical for-
mulae is complex, and a full description of our ap-
proach is beyond the scope of this paper. For the
purpose of this article, we highlight only some of the
important aspects.

In a manner similar to the total-fit approach to
line breaking implemented for TEX paragraphs by
Knuth and Plass [21], our algorithm searches for all
possible breakpoints in a formula and tries to find
the combination of line breaks that will produce the
best global arrangement.

In addition to splitting linear text, the method
must take into account the two-dimensional nature
of mathematical content and also consider the im-
plicit semantics of expressions.

This leads to a number of constraints. For ex-
ample, script sub-expressions may not be separated
from their base expressions. Another common case
is that of juxtaposition: Immediate function argu-
ments should not be separated from the name of the
function, e.g. we must avoid

p(x− y, z) sin
(2x + 1) ,

but implicit multiplication can be split between the
factors

p(x− y, z)×
sin(2x + 1) .

Juxtaposition is difficult to distinguish, since func-
tion application and implicit multiplication often
have no explicit indication which operation is in-
tended (even though MathML provides invisible op-
erators for this purpose).

In general, every possible breakpoint is assigned
a “penalty” value, so for example, signs and rela-
tions, such as =,⇒, etc., as well as + and − are usu-
ally given priority over division and multiplication.
Preference is given to breaking a formula closer to
the root of the expression tree than within a branch.
This means that a product of sums will preferen-
tially break at the multiplications, unless the other
penalties make this an overwhelmingly bad choice.

4.3 Customization

In the previous example we saw that when multi-
plication is expressed implicitly, line breaking may
force the addition of an explicit multiplication sign.
This may be represented by a central dot ·, times ×,

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 193

Elena Smirnova and Stephen M. Watt

Figure 7: TEX article without line breaking in long formulae.

asterisk ∗ or other operator ⊗,⊙, Our package
allows the user to specify which is preferred.

Likewise, the positioning of the operator at a
line break can be set to the upper line, the lower
line, or repeated on both lines (see Figure 8). In
addition various indentation styles may be desired
for the multiple lines. These options reflect differ-
ent notational and cultural preferences, and can be
customized by the user of the converter through the
GUI interface or command line.

4.4 Line breaking in sub-expressions

As well as allowing a formula to fit within a given
page or column width, the line breaking algorithm
also handles situations where certain sub-expressions
are too large for conventional line-breaking. These
situations include long scripts (compare Figures 9
and 10), in fraction numerators and denominators
(Figure 11), and expressions under radicals (Fig-
ure 12).

The sizes of the bounding boxes for the folded
sub-expressions are normally calculated automati-
cally, based on an optimal fit in the text area. If
desired, they may instead be specified by the user.
For example, for sub-scripts this is specified as a
maximum ratio of the script width to the width of
the base expression.

x1 − y2 + z3+
α− β2 + γ3+
f(1) + g(2)

(a) Before break

x1 − y2 + z3

+α− β2 + γ3

+f(1) + g(2)

(b) After break

x1 − y2 + z3+
+α− β2 + γ3+
+f(1) + g(2)

(c) Before and after break

Figure 8: Operator placement at line breaks

For large expressions, line breaking is a true
two-dimensional problem involving box composition.
In this setting, the height and width of individual
terms depend on the choices made in displaying
its sub-expressions. Examples of such nested line
breaking are shown in Figures 10, 11 and 12.

As a practical implementation detail, we use
the array environment to organize multi-line out-
put in mathematical expressions. This is shown in

194 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Generating TEX from mathematical content with respect to notational settings

∑

(i,j)∈{(α,β) | axα+bxβ=m, m∈R+, α6=β, gcd(a,b)=1}

f(...

Figure 9: Expression without line breaking does not fit
in a text column

∑

(i,j)∈

{

(α,β)

∣
∣
∣
∣

axα + bxβ = m,
m ∈ R+, α 6= β,
gcd(a, b) = 1

}

f(i)g−1(j)φ(i+ j, i− j)

Figure 10: Adding line breaking in subscript allows the
whole expression to fit in a column

10
27 y2 e(x+3) 3

√

(x + 3) W0(1.5 + 2.5 ı)×













x(y−3) ln (x)
2
y3 + 6 x(y−3) ln (x) y2 +

6 x(y−3) y − 3 x(y−3) ln (x)
2
y2 −

12 x(y−3) ln (x) y − 6 x(y−3) +

2 x(y−3) ln (x)
2
y + 4 x(y−3) ln (x) +

y(x−2) x2 ln (y)
3 − y(x−2) x ln (y)

3
+

6 y(x−2) x ln (y)
2

+ 6 y(x−2) ln (y)−
3 y(x−2) ln (y)

2 − 14 y(x−2) x ln (y)














(x + 3)
3

Figure 11: Line breaking in long fractions

(x + y)2 − 6 =
7

√
√
√
√
√
√
√
√

(x + y)
14 − 42 (x + y)

12
+

756 (x + y)
10 − 7560 (x + y)

8
+

45360 (x + y)
6 − 163296×

(x + y)
4

+ 326592 (x + y)
2 − 67

Figure 12: Line breaking in long sub-radical
expressions

the code fragment of Figure 13. Note the command
\displaystyle preceding every new line. This en-
sures rendering of fractions and scripts in display
mode. To see the effect, compare the appearance of
the formula with fractions of Figure 14a and Fig-
ure 14b.

4.5 Open questions

One of the challenges in line breaking is to distin-
guish implicit multiplication and application of un-
specified or user-defined functions. We may assume
function application in the cases of explicit markup
or known functions, such as \mathop{tg} \alpha or
\tan x. In general, however, we need either good
heuristics, non-trivial semantic analysis, or explicit

$$

\begin{array}{l}

\displaystyle A\,\frac{x+y}{3}+{14\,t}^{3}-\\

\displaystyle B\,\frac{a-b}{4}+{12\,t}^{4}+\\

\displaystyle C\,\frac{m+n}{5}+{10\,t}^{5}

\end{array}

$$

Figure 13: Encoding of multi-line constructions

A x+y
(a+b)3 + 14m12 −

B a−b
(x−y)3 + 12n14

(a) In-line style

A
x + y

(a + b)3
+ 14m12 −

B
a− b

(x− y)3
+ 12n14

(b) Display style

Figure 14: Array elements (a) without and (b) with
explicit display style.

user markup.
Another challenge, this time from the aesthetic

point of view, is how to arrange mixed expressions,
such as shown in Figure 12, where we decide to
maintain a single baseline for the overall expres-
sion and to align sub-expressions in place, instead
of moving them to separate lines and splitting them
there.

The final issue we mention is the question of
page breaking in the case of multi-page content.
This situation frequently arises with output of com-
puter algebra systems. We have implemented an ap-
proach that takes page size into account, but there
remain a large number of questions with respect to
handling of subexpressions and layout choices.

5 Conclusions and future work

We have explored an alternative approach to gen-
erating TEX expressions from mathematical content
when the content is presented in a conceptually ori-
ented format.

The main idea of our approach is to maintain
the mathematical markup at a high level, either
in TEX or MathML, allowing extended markup for
new mathematical concepts. This allows higher-
level transformations among the formats and allows
late binding of user-specified notational choices.

We have shown how the rendering of mathe-
matical content with TEX can be customized with
our Notation Selection Tool. For this, we considered

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 195

Elena Smirnova and Stephen M. Watt

two methods of conversion to TEX: One as a direct
translation using features of the Notation Selection
Tool. The second method was to use MathML ex-
tended with new elements. We showed that the sec-
ond approach offers a more fine-grained control over
the conversion process. It allows implicit seman-
tics of mathematical expressions to be mapped from
MathML template definitions to TEX macros. Ad-
ditionally, it allows a line breaking implementation
suitable for large, generated mathematical expres-
sions.

We continue to explore certain open problems
in the conversion between MathML and TEX. These
include the automatic generation of templates for
mapping rules and XSLT templates for notation con-
versions. We also wish to further investigate en-
hanced expression breaking methods in the pres-
ence of selectable notations. In particular, we intend
to explore generating line-breaking hints for a late
stage line breaker (i.e. one that operates after no-
tation specialization). Another point of interest for
our group in the MathML to TEX conversion area
is in automated generation of TEX style files from
XML cascading style sheets [22].

References

[1] Maple User Manual, Maplesoft, a division of
Waterloo Maple Inc., 2005.

[2] Mathematica, Wolfram Research, Inc., 2004,
http://www.wolfram.com.

[3] Richard D. Jenks and Robert Sutor, AXIOM: the
scientific computation system, Springer-Verlag,
New York, 1992.

[4] S.M. Watt, Aldor, pp. 265–270, in Handbook of
Computer Algebra J. Grabmeier, E. Kaltofen,
V. Weispfenning (editors) , Springer Verlag,
Heidelberg, 2003.

[5] Mathematics on the Net, Symbolic Services,
2003, http://www.orcca.on.ca/MONET/.

[6] Mike Dewar, Elena Smirnova and Stephen M.
Watt, XML in Mathematical Web Services, Proc.
XML 2005 Conference — Syntax to Semantics,
Nov 14–18, 2005, Atlanta GA, USA, http:

//www.idealliance.org/proceedings/xml05/.

[7] S. Buswell, O. Caprotti, D.P. Carlisle, M.C.
Dewar, M. Gaetano, M. Kohlhase, et al., The
OpenMath Standard 2.0, 2004,
http://www.openmath.org/cocoon/openmath/

standard/om20/index.html.

[8] R. Ausbrooks et al. Mathematical Markup
Language (MathML) Version 2.0 (Second
Edition), World Wide Web Consortium
Recommendation, 21 October 2003,
http://www.w3.org/TR/2003/

REC-MathML2-20031021.

[9] Elena Smirnova and Stephen M. Watt,
Notation Selection in Mathematical Computing
Environments, pp. 339–355, Proc. Transgressive
Computing 2006: A conference in honor of
Jean Della Dora (TC 2006), April 24–26 2006,
Granada, Spain.

[10] The notation selection on-line tool, 2002,
http://www.orcca.on.ca/MathML/

NotationSelectionTool/.

[11] William Naylor and Stephen M. Watt,
Meta-Stylesheets for the Conversion of
Mathematical Documents into Multiple Forms,
Annals of Mathematics and Artificial Intelligence,
Vol. 38, pp. 3–25, 2003.

[12] MathML to TEX on-line converter, 2001,
http://www.orcca.on.ca/mathml/texmml/

textomml.html.

[13] Stephen M. Watt, Exploiting Implicit
Mathematical Semantics in Conversion
between TEX and MathML, Proc. Internet
Accessible Mathematical Communication,
(IAMC 2002), July 2002, Lille, France, http:

//www.symbolicnet.org/conferences/iamc02.

[14] S.M. Watt, Conserving Implicit Mathematical
Semantics in Conversion between TEX and
MathML, TUGboat, Vol. 23, No. 1, p. 108, 2002,
http://www.tug.org/TUGboat/Articles/tb23-1/

watt.pdf.

[15] E. Smirnova and S.M. Watt, MathML to TEX
Conversion: Conserving High-Level Semantics
in Translation, International Conference on
MathML and Math on the Web (MathML

2002), June 28–30 2002, Chicago, USA, 2002,
http://www.mathmlconference.org/2002/

presentations/smirnova/.

[16] HTML to LATEX converter, http://www.rpi.

edu/~sofkam/html2latex/1.0/common/doc/

html2latex.html,

[17] TEX to MathML on-line converter,
http://www.orcca.on.ca/mathml/texmml/

mmltotex.html, 2001.

[18] Igor Rodionov and Stephen M. Watt, Content
Faithful Stylesheets for MathML, Ontario
Research Centre for Computer Algebra,
University of Western Ontario, Research Report
TR-00-14, 2000.

[19] John Keith Foderaro, Typesetting MACSYMA

equations, Proc. 2nd. MACSYMA User’s
Conference, June 1979.

[20] Michael Downes, Breaking equations, TUGboat,
Volume 18, No. 3, Proceedings of the 1997
Annual Meeting, 1997, http://www.tug.org/

TUGboat/Articles/tb18-3/tb56down.pdf.

[21] D.E. Knuth and M.F. Plass, Breaking paragraphs
into lines, Software — Practice and Experience,
1981.

[22] Cascading Style Sheets, www.w3.org/Style/CSS/.

196 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

dvi2svg: Using LATEX layout on the Web

Adrian Frischauf and Paul Libbrecht
German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3
66123 Saarbrücken
Germany
adrianf (at) activemath dot org, paul (at) activemath dot org

http://www.activemath.org/~adrianf

Abstract

The problem of presenting mathematical formulas on the Web is non-trivial.
Current systems offer only partial answers to such requirements as the guaranteed
layout on the client side or the availability of font glyphs. We describe dvi2svg,
a system to convert TEX’s output into Scalable Vector Graphics. This approach
responds to the requirements above and several others. We also present how it
has been put to use in ActiveMath, a learning environment on the Web which
presents mathematical documents personalized to each learner.

1 Different approaches to supporting
mathematics on the Web

Classically, learning content is presented on the Web
using the HTML format. This format, however, is
unable to provide rich graphical constructs that are
needed to render normal mathematical expressions.
HTML’s layout capabilities are limited, unable to
fully render such constructs as the square-root or a
fraction with proper baseline alignment. Mathemat-
ical formulas also often use characters which may be
unavailable on some operating systems while HTML

offers no method to ensure that a given font glyph
will be available.

Using images for formulas solves these two is-
sues but introduces several other problems. The re-
sulting formula has no way to align properly inside
a line of text, is not scalable, and does not adapt to
changing text size. Moreover the separate parts of
the formula can not be addressed as different objects
by interactive scripts running on the client.

Presentation MathML [3] has the potential to
realize a full featured mathematical presentation but
current browser support has several drawbacks. As
with HTML, the font glyphs have to be available to
display the special characters correctly.

Another possibility for the delivery of mathe-
matical content over the Web is to use PDF docu-
ments. This has no problem with fonts or layout but
the PDF document does not allow much interactiv-
ity. As an “E-Paper” it is an offline resource and
not an online presentation format.

Our dvi2svg implementation has thus tried to
answer the following requirements:

• provide layout quality as high as that of LATEX,
for text, formulas, and mixtures of both;

• deliver the content with guaranteed availability
of font glyphs when presented to the client;

• present the content on a platform which can be
dynamically scripted.

Moreover, we wished to integrate such a solution in
the ActiveMath learning environment which com-
bines and caches individual paragraphs before being
personalized and delivered to the clients.

The specification of clients for the Scalable Vec-
tor Graphics provides an answer to all these require-
ments and was chosen for this reason.

2 The Scalable Vector Graphics format

The SVG file format [4] is an XML [1] language for
describing two-dimensional vector graphics. It was
issued as a recommendation by the W3C in 2003.
This format allows for easy editing by hand, as well
as easy generation, because of the many libraries
available for manipulating XML. SVG allows font
glyphs to be embedded within the document pre-
sented, and supports and specifies document object
model access through a scripting API. Because of its
graphical nature, the SVG format is able to display
a complete layout faithfully even though it is unable
to compute the layout itself. We thus put to use the
well-known quality of LATEX layout to create a docu-
ment rendered using the modern SVG specification.

3 DVI2SVG

dvi2svg is a converter for DVI files, the format out-
put by TEX and LATEX. It is written in Java and
processes streams of DVI tokens. It parses the DVI

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 197

Adrian Frischauf and Paul Libbrecht

input file and generates events, each event repre-
senting a command of the input file and holding the
current state of the page (position, font, etc.). The
Writer interprets the commands and produces the
vector graphics XML.

The DVI format, in contrast to SVG, is a doc-
ument format with multiple pages. For each page
of the input, dvi2svg produces a separate SVG file.
Each of these pages contains a header with the font
definitions for this specific page. Since the fonts tend
to be large, only the font glyphs used in the page
are actually included. Especially with fonts used for
the formulas, partial glyph embedding saves a large
amount of space, since typically only a few charac-
ters of each math font are used in a page.

dvi2svg makes use of the classical TEX fonts
as translated to SVG by Michel Goossens [5], whose
script converts entire fonts into their SVG glyph
equivalents.

The TEX character encoding is used within this
conversion. This poses a problem since the TEX
fonts contain character codes which are invalid in
an XML document. The ‘’ (the Sigma char-
acter Σ) is an example of such. The solution used
is to map the TEX character codes to the Unicode
private area above 0xE000. No special characters
which break the document occur. The resulting
SVG source document is not human readable and
is also unusable for Web-robots. This issue is only
temporary, as implementations such as the Hermes
translator1 show that it is possible to extract good
Unicode text from DVI output.

As a command-line tool, dvi2svg can be used
to process static DVI files and publish scientific doc-
uments in SVG on the Web.

3.1 Support for additional LATEX packages

In addition to the basic DVI commands, dvi2svg

also supports additional features. LATEX packages
such as color, hyperref or graphicx use special
commands to enrich a document. They are also
translated to SVG.

A TEX command such as \special{abc} is cop-
ied as ASCII text into the DVI file as a special event.
dvi2svg defines a custom language which it is able
to interpret. Since SVG is an XML format, the lan-
guage of the specials is closely related to that. Such
a special command in the DVI file looks like:

svg: rect @x=0 @y=0 @width=10 @height=10 /rect

This is transformed into an XML fragment:

<rect x="0" y="0" width="10" height="10"/>

1 Hermes is a translator from LATEX to XHTML+MathML,
see http://hermes.roua.org/.

It is thus possible for an author with little
knowledge of SVG to enrich the document with the
graphics and interactivity that the SVG format sup-
ports.

Using this protocol, drivers for the color and
graphicx packages have been designed for dvi2svg.
By compiling LATEX documents to DVI using these
drivers, pictures, text in colors, rotated texts, etc.,
can be embedded using the same macros as those
used, for example, for PDF documents. The sup-
ported image file formats include SVG, GIF, JPEG,
and PNG.

The creation of links with the hyperref pack-
age is also supported. Since dvi2svg produces one
file per input page, in-document links will be trans-
lated into links to the SVG file for the corresponding
page.

4 Integration with ActiveMath

ActiveMath is a Web-based intelligent learning en-
vironment [8]. It presents mathematical documents
transformed from OMDoc [6], an XML language for
semantically representing mathematical documents.
The mathematical formulas in OMDoc are encoded
in OpenMath [2].

The presentation engine of ActiveMath [10] has
been designed to support the dynamic generation of
content presentation from OMDoc fragments such as
definitions or examples. It generates documents in
different output formats such as HTML, XHTML +
MathML, SVG, and PDF.

It first extracts the OMDoc fragments, injects
related objects, and applies an XSLT transforma-
tion: this is done exactly once per fragment and per
language, and is cached. Once queries from learn-
ers arrive, this cached result is interpreted to inject
personalization parameters:

• special mathematical notations are chosen de-
pending on the context and user;

• fragments are presented in an order that may
be particular to the learner (the learner can
edit his own books, and have them created by
a course generator [9]);

• exercise links have to be generated with user
information;

• traces of the learner-model are output within
the presentation, which helps the learner’s mo-
tivation and tracking of his progress.

The resulting SVG fragments are assembled us-
ing stream combination and the high-performance

198 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

dvi2svg: Using LATEX layout on the Web

template engine Velocity.2 This architecture real-
izes an effective simultaneous delivery to classrooms
of learners.

The resulting presentation is enriched with in-
teractivity: for example, at the time of fragment
extraction, each mathematical symbol used seman-
tically in the OMDoc source is annotated with its
title. The XSLT transformation outputs the nec-
essary \special commands so that scripting code
on the client brings up a tooltip-like layer above
the presented symbol. Potentially, other interac-
tive features made possible by the semantic nature
of the source could be provided, for example, the
formula sub-term highlighting, context menus, and
drag-and-drop presented in [7].

4.1 Example conversion

We present the processing steps into SVG and see
where caching is possible and where personalization
happens. In the first step, the sources are fetched
from the database. Such a source might look like:

<definition for="SVG">

<metadata>

<Title>

Definition of SVG

</Title>

</metadata>

<CMP xml:lang="en">

SVG stands for Scalable Vector Graphics

and is a Web graphics format.

<OMOBJ>

<OMA>

<OMS name="divide"/>

<OMI value="1"/>

<OMA>

<OMS name="sqrt"/>

<OMI value="2"/>

</OMA>

</OMA>

</OMOBJ>

</CMP>

</definition>

Then, using XSLT, this source is transformed
into the following LATEX fragments:

...

\begin{fragment}

\section*{Definition of SVG}

SVG stands for Scalable Vector Graphics

and is a Web graphics format.

$\frac{1}{\sqrt{2}}$

\end{fragment}

...

Such a fragment is translated to SVG as follows.
For readability, the private Unicode-range text parts

2 See http://jakarta.apache.org/velocity/

were replaced by their ASCII representation. In this
SVG document one can see the fine control over the
horizontal positioning of each glyph (in the precise
x values), one of the major ingredients of LATEX’s
layout’s quality.

<rect x="0" y="0" width="468" height="690"

stroke="none" fill="none" />

<g>

<text font-family="CMBX" font-size="16.97">

<tspan y="99.30" x="61.69 76.32 85.02

95.63 106.24 111.54 118.96 124.26 133.81

150.77 160.31 172.51 183.11 197"

>Definition of SVG</tspan>

</text>

<text font-family="CMR" font-size="11.78">

<tspan y="125.20" x="61.69 68.1 76.43

89.32 93.88 98.36 104.13 110.54 116.95

125.34 128.87 134.64 142.97 149.38

154.50 160.27 163.48 169.25 175.65

178.86 187.83 195.52 200.65 205.77

210.26 216.03 224.36 233.41 237.90

243.66 250.07 256.48 259.69 264.81

273.21 278.98 285.39 295.64 298.85

307.24 316.86 327.75 332.87 343.13

348.90 353.38 359.15 365.56 371.97

375.17 380.30 388.70 392.22

397.99 402.48 412.09 417.86 422.34"

>SVG stands for Scalable

Vector Graphics and is a Web

graphics format.</tspan>

</text>

<rect x="431.85" y="122.062"

width="11.13" height="0.39"

fill="Black" stroke="Black"

stroke-width="0.1" />

<text font-family="CMR" font-size="7.85">

<tspan y="120.56" x="435.33">1</tspan>

</text>

<rect x="438.81" y="123.20" width="4.17"

height="0.35" stroke-width="0.1"

fill="Black" stroke="Black" />

<text font-family="CMSY" font-size="7.85">

<tspan x="431.9" y="123.6"

>�xE017;</tspan>

</text>

<text font-family="CMR" font-size="7.85">

<tspan y="130.08" x="438.81">2</tspan>

</text>

</g>

These fragments are embedded into a document
and are then processed into DVI using LATEX. The
conversion to SVG files using dvi2svg is invoked.
Similar to caching of HTML fragments (for serv-
ing HTML to clients), the SVG fragments are now
cached.

In the last step, the SVG fragments are assem-
bled to build a page using Velocity. The Velocity

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 199

Adrian Frischauf and Paul Libbrecht

Figure 1: An ActiveMath page using SVG.

page provides an SVG skeleton, includes the fonts,
and embeds the other SVG fragments. This step not
only collects all the items for the page but also de-
termines the final appearance of the page and the
personalized appearance of the items. In the situa-
tion shown in Figure 1, for example, yellow shaded
rounded rectangles are put around each item.

5 Conclusion

We have presented the dvi2svg processor and how
it has been integrated into ActiveMath.

Compared to other approaches of putting math-
ematics on the Web, dvi2svg appears to offer inter-
esting promises:

• Compared to PDF-based solutions, dvi2svg of-
fers richer interactivity, being based on stan-
dard scripting features.

• Compared to other solutions to convert TEX-
based files to HTML or MathML, dvi2svg en-
sures available fonts and the highest quality of
layout provided by the classical (LA)TEX algo-
rithms.

• compared to approaches which make use of the
Flash player,3 dvi2svg is more open due to us-
ing its XML format; moreover, fragments are
easier to combine. A feature of the Flash player
format that we have not yet found in SVG, how-
ever, is the ability to embed an SVG document
within another SVG document and preserve all

3 The Flash player presents animated vector graphics us-
ing a widespread plugin; see http://www.macromedia.com.

interactivity in the embedded document; this
could have avoided the repeated delivery of the
SVG fonts for TEX.

SVG appears to be a real opportunity for Web-
based presentation of TEX documents for the future.
For now, some drawbacks remain: mainly that SVG

players which have to be installed before one can use
any SVG abilities; SVG support is emerging in de-
veloper versions of the Mozilla and Safari browsers,4

but this support is incomplete; in particular, it is
lacking the ability to render embedded fonts, a fun-
damental ingredient of the dvi2svg approach and
the only way to ensure that all font glyphs will be
available on the client.

At present, the Java-based SVG viewer Batik5

and the latest version of the Adobe SVG plugin,6

which is available only for Windows, are the only
players which work well with dvi2svg.

We hope to see a renewal of the Adobe family
of plugins following the merger of the two compet-
ing vector graphics leaders: Adobe and MacroMedia
could bring the widely available Flash vector graph-
ics plugins to fully support the SVG format.

References

[1] T. Bray, J. Paoli, and C. M. Sperberg-
McQueen. Extensible Markup Language
(XML). W3C Recommendation
PR-xml-971208, World Wide Web
Consortium, December 1997.
http://www.w3.org/TR/PR-xml.html.

[2] Stephen Buswell, Olga Caprotti, David
Carlisle, Mike Dewar, Marc Gaëtano,
and Michael Kohlhase. The OpenMath
standard, version 2.0. Technical report, The
OpenMath Society, June 2004. Available from
http://www.openmath.org/.

[3] D. Carlisle, P. Ion, R. Miner, and
N. Poppelier. Mathematical markup
language, version 2.0, 2001.
http://www.w3.org/TR/MathML2/.

[4] Jon Ferraiolo, Jun Fujisawa, and Dean
Jackson. Scalable vector graphics (SVG)
1.1 specification. Technical report, World
Wide Web Consortium, 2003. Available from
http://www.w3.org/TR/SVG11/.

4 For the current status, see http://www.mozilla.

org/projects/svg/status.html and http://webkit.org/

projects/svg/status.xml.
5 The Batik SVG toolkit is available at http://xml.

apache.org/batik; it is a Java library which supports down-
loaded fonts but with limited performance.

6 The Adobe SVG plugin is available at http://www.

adobe.com/svg.

200 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

dvi2svg: Using LATEX layout on the Web

[5] Michel Goossens and Vesa Sivunen. LATEX,
SVG, fonts. TUGboat, 22(4):269–281, 2001.
Available from http://tug.org/TUGboat/

Articles/tb22-4/tb72goos.pdf.

[6] M. Kohlhase. OMDoc: Towards an
OpenMath representation of mathematical
documents. Seki Report SR-00-02,
Fachbereich Informatik, Universität
des Saarlandes, 2000. See also http:

//www.mathweb.org/omdoc.

[7] Paul Libbrecht and Dominik Jednoralski.
Drag and drop of formulae from a browser.
In Proceedings of MathUI’06, August 2006.
Available from http://www.activemath.org/

~paul/MathUI06/.

[8] E. Melis, G. Goguadze, M. Homik,
P. Libbrecht, C. Ullrich, and S. Winterstein.
Semantic-aware components and services of
ActiveMath. British Journal of Educational
Technology, 37(3):405–423, May 2006.

[9] C. Ullrich. Tutorial planning: Adapting
course generation to today’s needs. In
M. Grandbastien, editor, Young Researcher
Track Proceedings of 12th International
Conference on Artificial Intelligence in
Education, pages 155–160, Amsterdam, The
Netherlands, 2005.

[10] C. Ullrich, P. Libbrecht, S. Winterstein,
and M. Mühlenbrock. A flexible and
efficient presentation-architecture for
adaptive hypermedia: Description and
technical evaluation. In Kinshuk, C. Looi,
E. Sutinen, D. Sampson, I. Aedo, L. Uden,
and E. Kähkönen, editors, Proceedings of
the 4th IEEE International Conference on
Advanced Learning Technologies (ICALT
2004), Joensuu, Finland, pages 21–25, 2004.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 201

LATEX 2ε, pict2e and complex numbers

Claudio Beccari
Politecnico di Torino
Turin, Italy
claudio dot beccari (at) polito dot it

Abstract

In 2003 the endless list of LATEX packages was enriched by the package pict2e,
intended to substitute for the dummy one that has accompanied every LATEX dis-
tribution since 1994. This package implements everything as stated by Lamport
in the second edition of his LATEX manual (for LATEX 2ε). But if you explore the
inner workings of the new pict2e, you discover the new package has some unex-
pected potential applications, especially if complex number arithmetic operations
are included in it.

1 Introduction

The original package pict2e which accompanied the
first release of LATEX 2ε in 1994 was just a dummy
package that would simply type out an info message
that the real package was not yet available. Nev-
ertheless, the LATEX manual by Leslie Lamport [2]
already described the features of this expected pack-
age; its primary function was to relieve the strong
limitations of the picture environment, mainly due
to the fact that graphic objects were realized by
means of special fonts which necessarily contained
a limited number of “graphic” glyphs.

Anyone who has used the original picture en-
vironment in LATEX may have looked forward to the
new pict2e package, so as to be able to draw the
usual graphics available with other drawing facili-
ties, even those that are an integral part of commer-
cial and/or open source text processors.

The new pict2e [1] relieves all the limitations
of the old picture environment, in particular: the
small set of possible inclinations of segments and
vectors; the limited number of radii for drawing cir-
cles; the rigidity in drawing ovals, whose corners suf-
fered from the limited number of quarter circle arcs;
the shortest length of segments and vectors limited
to 10pt except for horizontal and vertical ones; the
line thickness limited to two values due to the very
limited number of special picture fonts; only sec-
ond order Bézier curves which were made up of small
dots partially superimposed on one another.

The new pict2e resorts to the output driver fa-
cilities, in the sense that it is dvips or pdf(la)tex1

that takes care of drawing straight and curved lines,
filled and unfilled contours, arrow tips, and the like,

1 Some other drivers are partially or totally supported.

with all the facilities offered by the powerful Post-
Script language, even in its simplified form as used
in PDF documents.

Figure 1 shows an example of a set of lines with
slopes of 10◦, 20◦, . . . , 80◦. The following picture

code reflects the usual syntax, with the only excep-
tion that line slopes are three digit integers, instead
of the relatively prime one digit integers limited to
a magnitude of 6 as in the “old” picture environ-
ment. The coefficients of the line slopes are simply
obtained by rounding to the closest integers the sines
and cosines of the angular slopes multiplied by 1000.

\unitlength=1mm

\begin{picture}(70,70)

...

\put(0,0){\line(985,174){68.95}}

\put(0,0){\line(940,342){65.80}}

\put(0,0){\line(866,500){60.62}}

...

\put(0,0){\line(342,940){23.94}}

\put(0,0){\line(174,985){12.18}}

\end{picture}

Depending on the output driver, pict2e inserts
the necessary \special commands with the appro-
priate syntax, so that when running pdflatex the
output PDF file contains the drawings that are di-
rectly visible with the PDF viewer. When running
latex, the DVI file generally2 must be processed
with dvips to get a PostScript file where the draw-
ings are directly visible with the PostScript viewer,
and/or the PostScript file may be processed with
ps2pdf to get a self-contained PDF file.

2 Several DVI file previewers can interpret the PostScript
\specials, but this is not universally true.

202 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

LATEX 2ε, pict2e and complex numbers

x

y

Figure 1: Line segments with angular slopes that are
multiples of 10◦, drawn with pict2e

When dealing with pict2e, I believe the latex

+ dvips + ps2pdf procedure is less interesting than
the direct production of a PDF file by means of
pdflatex, because in the former case the author
may alternatively use the well-known and more pow-
erful PSTricks [3].

I would like to encourage any LATEX users who
may be unaware of the availability of pict2e to
download the package from CTAN, if necessary, and
experiment with the new features. In particular, I
would like to draw to the attention of Linux users
that TEX distributions coming with some Linux sys-
tems are quite out-of-date with respect to CTAN.
My own Linux-based distribution (2005/08/15), for
example, contains only issue 14 of latexnews.dvi

dated 2001/06/01, while my updated MiKTEX dis-
tribution contains issue 16 dated 2003/12/01. The
new pict2e was announced in issue 15, also dated
2003/12/01. The current version (as of Septem-
ber 2006) of pict2e was updated 2004/08/06. The
current version is available in current and future dis-
tributions of MiKTEX and TEX Live.

In the following sections I will give some ex-
amples of pict2e usage, and then describe some
enhancements of the package, how to use some in-
ternal commands and how to build powerful new
commands to draw arbitrary curves by means of
third order Bézier curves. I will also need to describe
some elementary properties of complex numbers and
therefore how to implement complex number arith-
metic by means of LATEX and the underlying TEX
macros and primitives.

sin φ

φ

−1

0

+1

2 4 6

Figure 2: A sine wave

Figure 3: A curve containing a cusp

2 Examples

Our first example is an accurate sine wave, as in
figure 2. This can be created as follows:

\Curve(0,0)<1,1>% 0 deg

(1.570796,1)<1,0>% 90 deg

(4.712389,-1)<1,0>% 270 deg

(6.283185,0)<1,1>% 360 deg

where the parentheses contain the curve node coor-
dinates and the angle brackets contain the direction
coefficients of the curve tangents at each node.

A diagram with a cusp is shown in figure 3; the
code used is the following:

\Curve(2.5,0)<1,0>(5,3.5)<0,1>%

(2.5,3.5)<-.5,-1>[-.5,1]%

(0,3.5)<0,-1>(2.5,0)<1,0>

Another example is given in figure 4 where the
\polyline macro, described later, is used. The code
for generating the heptagon and star vertices is the
following:

\begin{picture}(5,5)(-2.5,-2.5)

\DividE 360pt by 7pt to\Seventh

\DirFromAngle\Seventh to\Dir

\CopyVect 0,2.5 to\Vone

\MultVect\Vone by\Dir to\Vtwo

\MultVect\Vtwo by\Dir to\Vthree

\MultVect\Vthree by\Dir to\Vfour

\MultVect\Vfour by\Dir to\Vfive

\MultVect\Vfive by\Dir to\Vsix

\MultVect\Vsix by\Dir to\Vseven

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 203

Claudio Beccari

Figure 4: Heptagon and seven pointed star

\polyline(\Vone)(\Vtwo)(\Vthree)(\Vfour)%

(\Vfive)(\Vsix)(\Vseven)(\Vone)

\thicklines

\polyline(\Vone)(\Vfour)(\Vseven)%

(\Vthree)(\Vsix)(\Vtwo)(\Vfive)(\Vone)

\end{picture}

3 Extensions to the pict2e package

The pict2e package, according to the description
in [2], retains the limitation that the slope param-
eters of the picture segments are represented with
integer numbers. According to the authors, Rolf
Niepraschk and Hubert Gäßlein, this limitation is
due to the specific division routine used, as well as
fulfilling the line and vector specifications specified
by Lamport.

In a previous paper [4] I complained about the
fact that even ε-TEX does not implement real float-
ing number calculations and I invited developers to
extend ε-TEX functionality in that direction.

Meanwhile, the LATEX programmer must rely on
“poor man” methods. The only TEX object that is
representable with a fractional number in the input
flow is the scale factor used for scaling lengths: when
you type

\newlength{\dimA} \newlength{\dimB}

\setlength{\dimA}{33.25pt}

\setlength{\dimB}{1.44\dimA}

\showthe\dimB

you expect to see on the log file (and on the screen)
that the dimension register \dimB contains the value
of 47.88pt. Actually the log file will exhibit the
value of 47.88008pt because of conversion, round-
ing and truncation errors during the whole process.
Here is where the floating point arithmetic would
be handy. . . in the future. But notice that 47.88 is
the arithmetic product of the fractional measure in
points of the register \dimA multiplied by the frac-

tional number 1.44. Multiplication is then relatively
an easy task provided we can convert back and forth
fractional numbers and dimensions.

The trick is easy, and despite being classified as
“dirty” in The TEXbook [5, page 375], it has been
used by almost everyone needing to use this poor
man approach to fractional number multiplication.

Division is trickier because it can produce over-
flows (like multiplication), the division by zero error,
and it does not have any relation to scale factors, the
only objects that TEX can use as multipliers.

Integer division is generally unusable and so the
routine Gäßlein and Niepraschk used accepts integer
dividend and divisor transformed into lengths, but
yields a length whose measure in points is the re-
quired fractional quotient.

At the time pict2e became available I had been
using a division routine for several years; it was part
of a package of mine that was never published. The
good point is that I had been using that package for
years and that routine always worked reliably, al-
though no controls were actually performed to avoid
overflows or divisions by zero (they could be possi-
bly be done before calling the routine). This routine
actually divides two lengths and yields their ratio as
a fractional signed decimal number. The code may
be seen in figure 5.

TEX programming was used together with some
plain TEX macros that are also available in the ker-
nel of LATEX. I chose to use the delimited argu-
ment facility of TEX, which is not available in LATEX,
because coding becomes more readable; the funny
choice of the name with initial and final capitals
has a long and insignificant history, but I did not
want to change it here, for the sake of avoiding con-
tradictions. For the same reason I did not trans-
late \segno into, say, \Sign, but I suppose that its
meaning is understandable by everybody. In prac-
tice \DividE implements a long division between the
numerator and denominator lengths translated into
scaled points (this is what TEX does when a counter
is assigned a length value) stored into two numerical
counters; at every iteration the remainder is multi-
plied by ten and the single digit new quotient \q is
appended to the overall quotient \Q.

The only test I added to this last version of the
routine is to assign a positive maximum TEX value
to the quotient in case of division by zero, so that
the best TEX approximation to infinity is used.

With this division routine at hand, we can ex-
tend the slope argument of segments to any reason-
able fractional number; the \line of pict2e may
be changed to the code in figure 6.

Some comments are in order because some of

204 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

LATEX 2ε, pict2e and complex numbers

\def\DividE#1by#2to#3{%

\begingroup

\dimendef\Numer=254\relax \dimendef\Denom=252\relax

\countdef\Num 254\relax \countdef\Den 252\relax \countdef\I=250\relax

\Numer #1\relax \Denom #2\relax

\ifdim\Denom<\z@ \Denom -\Denom \Numer -\Numer\fi

\def\segno{}\ifdim\Numer<\z@ \def\segno{-}\Numer -\Numer\fi

\ifdim\Denom=\z@

\ifdim\Numer>\z@\def\Q{16383.99999}\else\def\Q{-16383.99999}\fi

\else

\Num=\Numer \Den=\Denom \divide\Num\Den

\edef\Q{\number\Num.}%

\advance\Numer -\Q\Denom \I=6\relax

\@whilenum \I>\z@ \do{\DividEDec\advance\I\m@ne}%

\fi

\xdef#3{\segno\Q}\endgroup

}%

\def\DividEDec{\Numer=10\Numer \Num=\Numer \divide\Num\Den

\edef\q{\number\Num}\edef\Q{\Q\q}\advance\Numer -\q\Denom}%

Figure 5: Another division routine for fractional values

the code may seem redundant. The \line macro
behaves as in the original pict2e, except that the
“only” argument #1 actually has the usual format
of two fractional or integer numbers separated by
a comma; this is the form I will give to the rep-
resentation of complex numbers; the \line macro
does not actually need this machinery, but since the
necessary macros are already there, why not?

The \DirOfVect macro takes the two direc-
tion comma-separated coefficients passed in argu-
ment #1, interprets them as the horizontal and ver-
tical components of a vector and determines the di-
recting cosines, or, if you prefer, normalizes these
two vector components to the length of the vector it-
self, so that they are both fractional numbers whose
magnitude does not exceed unity. This is good for
the following operations and division calculations.
The rest of the macro is very similar to the original
one. But it may be observed that the above nor-
malization does not depend on the integer or frac-
tional nature of the directional coefficients; it even
neglects the fact that their magnitude may be larger
than 1000, which is the last constraint remaining in
the original pict2e \line macro.

Of course these coefficients should not be too
large, even though the length of the vector compu-
tation implies some powers of two and a square root;
computations are made in such a way as to extract
from the root the largest of the two components,
so that a number not exceeding unity gets squared

and the radicand never exceeds 2. The \ModOfVect

macro actually executes this square root and I have
never observed any deficiency in its calculations.

This extension suggests another one; since the
direction coefficients may be of any reasonable mag-
nitude, why should we maintain the picture syntax
for defining lines, where along with the direction
coefficients it is necessary to specify the horizon-
tal projection of the segment? Why not define the
line with its absolute horizontal and vertical com-
ponents? Everything would be much cleaner and
the execution time would be much shorter. Thus, I
defined an alternative line description, as follows:

\def\Line(#1,#2){%

\pIIe@moveto\z@\z@

\pIIe@lineto{#1\unitlength}%

{#2\unitlength}%

\pIIe@strokeGraph}%

where the arguments passed to the macro represent
the actual components of the segment, and no length
is specified. With \put you put the segment ori-
gin as usual and the \Line macro does the rest.
The “moveto”, “lineto” and “stroke” keywords
are those used in PostScript and in many descrip-
tive graphic languages; these are some of the new
keywords introduced by pict2e and they may in-
duce a small revolution in considering graphics with
LATEX.

For example it is possible to define a macro for
tracing a polygonal line joining an arbitrary number

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 205

Claudio Beccari

\def\line(#1)#2{\begingroup

\@linelen #2\unitlength

\ifdim\@linelen<\z@\@badlinearg\else

\expandafter\DirOfVect#1to\Dir@line

\GetCoord(\Dir@line)\d@mX\d@mY

\ifdim\d@mX\p@=\z@\else

\ifdim\d@mX\p@<\z@ \@tdB=-\p@\else\@tdB=\p@\fi

\DividE\@tdB by\d@mX\p@ to\sc@lelen \@linelen=\sc@lelen\@linelen

\fi

\pIIe@moveto\z@\z@

\pIIe@lineto{\d@mX\@linelen}{\d@mY\@linelen}%

\pIIe@strokeGraph

\fi

\endgroup\ignorespaces}%

\def\GetCoord(#1)#2#3{%

\expandafter\SplitNod@\expandafter(#1)#2#3\ignorespaces}

\def\SplitNod@(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}%

\def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y

\ModOfVect#1to\@tempa \DividE\t@X\p@ by\@tempdimc to\t@X

\DividE\t@Y\p@ by\@tempdimc to\t@Y

\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%

\def\ModOfVect#1to#2{\GetCoord(#1)\t@X\t@Y

\@tempdima=\t@X\p@ \ifdim\@tempdima<\z@ \@tempdima=-\@tempdima\fi

\@tempdimb=\t@Y\p@ \ifdim\@tempdimb<\z@ \@tempdimb=-\@tempdimb\fi

\ifdim\@tempdima>\@tempdimb

\DividE\@tempdimb by\@tempdima to\@T

\@tempdimc=\@tempdima

\else

\DividE\@tempdima by\@tempdimb to\@T

\@tempdimc=\@tempdimb

\fi \ifdim\@T\p@>\z@

\@tempdima=\@T\p@ \@tempdima=\@T\@tempdima

\advance\@tempdima\p@

\@tempdimb=\p@

\@tempcnta=5\relax

\@whilenum\@tempcnta>\z@\do{\DividE\@tempdima by\@tempdimb to\@T

\advance\@tempdimb \@T\p@ \@tempdimb=.5\@tempdimb

\advance\@tempcnta\m@ne}%

\@tempdimc=\@T\@tempdimc

\fi

\Numero#2\@tempdimc

\ignorespaces}%

\def\MakeVectorFrom#1#2to#3{\edef#3{#1,#2}\ignorespaces}%

Figure 6: Redefinition of the \line macro using the new division routine

206 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

LATEX 2ε, pict2e and complex numbers

of nodes as such, as in \polyline here:3

\def\polyline(#1){\beveljoin

\GetCoord(#1)\d@mX\d@mY

\pIIe@moveto{\d@mX\unitlength}%

{\d@mY\unitlength}%

\p@lyline}%

\def\p@@lyline(#1){%

\GetCoord(#1)\d@mX\d@mY

\pIIe@lineto{\d@mX\unitlength}%

{\d@mY\unitlength}%

\p@lyline}%

\let \lp@r(\let\rp@r)

\def\p@lyline{%

\@ifnextchar\lp@r{\p@@lyline}%

{\pIIe@strokeGraph\ignorespaces}%

}%

This simple macro \polyline would be rather dif-
ficult to realize without the moveto, lineto and
stroke keywords.

A final small improvement consists in setting
the shape of the line terminators; by default they are
square caps but when tracing thick lines that meet
at the same point it is better to set them round. See
figure 7 for a comparison. The following code gives
access to these settings:

\ifcase\pIIe@mode\relax

\or %PostScript

\def\roundcap{\special{ps:: 1 setlinecap}}%

\def\squarecap{\special{ps:: 0 setlinecap}}%

\def\roundjoin{\special{ps:: 1 setlinejoin}}%

\def\beveljoin{\special{ps:: 2 setlinejoin}}%

\or %pdf

\def\roundcap{\pdfliteral{1 J}}%

\def\squarecap{\pdfliteral{0 J}}%

\def\roundjoin{\pdfliteral{1 j}}%

\def\beveljoin{\pdfliteral{2 j}}%

\fi

I prefer to have the round cap version as the default
setting, but this is a question of personal taste. Ap-
parently these settings, set up by means of the spe-
cial programming language of the destination file,
are global ones so it is necessary to countermand
them once the default has to be restored; it is not
possible to rely on groups in the usual TEX way. I
also have the impression that at each closing of a pic-
ture environment any setting is lost; I do not know
the PostScript language well enough to understand
if some internal pict2e command executes this re-
set, but after all it is no trouble to reset the preferred
settings at the beginning of each picture.

3 Of course with delimited arguments it is not possible to
use the LATEX macro definition commands.

x

y

x

y

Figure 7: Square and round caps

It happens that the line terminator choice does
not work with the original pict2e \line definition
when the drawn segments are purely horizontal or
vertical, while it does work with my redefinition, as
can be seen in figure 7. After all the original pict2e

definition of \line mimics the original “LATEX 2.09”
one, where it was important to avoid drawing lines
by means of the special graphic fonts when hori-
zontal and vertical lines could be more easily and
efficiently drawn with the low level DVI commands
TEX uses for vertical and horizontal rules. When
lines are drawn with the device driver facilities it is
no longer necessary to make horizontal and vertical
lines special cases.

I should remark that several other graphic pack-
ages are available; among them the curves package
by Ian Maclaine [6] certainly is the first one that
might benefit from these new facilities introduced
by pict2e. There is also the package bundle pgf by
Till Tantau [7]; PGF stands for “portable graphic
format” and its intention is to provide LATEX with a
portable set of macros providing nearly as much as
PSTricks, even when running pdflatex. The latter
program is at the base of the excellent presentation
document class beamer and is certainly worth using
because of its fine properties. In the event, I did not
extend pgf because I found some difficulties in writ-
ing some macros, such as to relocate output to spec-
ified coordinates. Moreover I believe that pict2e,
although much simpler then pgf, is part of LATEX,
not a major extension as pgf is.4

4 Complex numbers

As has partially been seen, drawing implies treat-
ing directions; in particular, it is necessary to ma-
nipulate vectors and their directions. METAFONT

[8], the program for drawing fonts written by Knuth
himself, treats all these objects with complex num-
bers. Knuth hardly ever cites complex numbers in

4 With pict2e I had no difficulties rewriting the macros
of a package of mine for drawing electronic circuits; I was not
able to do the same with pgf; of course the one to blame is
just myself.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 207

Claudio Beccari

The METAFONTbook, but all the inner and outer
workings are done by means of pairs that are noth-
ing else but complex numbers. The manipulation of
directions and angles is always done in an alternat-
ing change from Cartesian to polar representation of
complex numbers; here and there some of the opera-
tions available on pairs are explicit complex number
operations.

Most people don’t know or don’t like complex
numbers; perhaps this is due to the fact that they
contain imaginary quantities, something far away
from the everyday reality of numbers.

Mathematicians, on their side, usually do little
to ease students’ learning of complex numbers, and
with their love for abstraction and generalization
they sometimes miss conveying the message that
these entities are nothing more than “scale-rotate”
operators: they simply scale an object up and down
and rotate it around a pivoting point. Almost ev-
erybody is familiar with these operators, from using
one of the many interactive drawing programs, even
relatively simple ones.

To see this, take a vector ~v drawn from the
origin of a Cartesian plane defined with axes x and y;
if you project the above vector on the x axis you get
the horizontal component ~vx, while if you project it
on the y axis you get the vertical component ~vy. If
you define two unit vectors, ~ux parallel to the x axis
and pointing to increasing x values, and similarly ~uy

for the y axis, you can separate in every component
the information of its magnitude from that of its
direction and you can write

~v = ~vx + ~vy = vx~ux + vy~uy

Now let us emphasize the link the vector ~v has
with the unit direction along the x axis by writing

~v = [vx + (~uy/~ux)vy]~ux

so that we may interpret the contents of the square
brackets as the operator that acts on the unit x
vector, by scaling it according to the magnitude of
~v, and by rotating it by a certain angle, the angle
of ~v with respect to the x axis. The contents of
the square brackets have the same characteristics as
those we anticipated for complex numbers.

The ratio ~uy/~ux is generally given the name of
‘i’ by the mathematicians and ‘j’ by most technolo-
gists.5 Its application has the geometric meaning of
changing the unit vector ~ux to the unit vector ~uy,
i.e. rotating the unit vector ~ux 90◦ counterclockwise.

If we apply twice in a row the 90◦ rotation op-
erator ‘i’ to the unit vector ~ux, producing a total

5 Notice that this mathematical operator is not a variable
and therefore according to international standards must be
written with an upright font.

rotation of 180◦, we get the renowned expression

i ~uy = i(i ~ux) = i
2
~ux = −1~ux

that is
i
2

= −1 or i =
√
−1

which induced XVI century mathematicians to call
‘i’ the imaginary unit.

If we further process the above results, we get

vx + (~uy/~ux)vy = vx + i vy = |~v|
(

vx

|~v| + i
vy

|~v|

)

where

|~v| =
√

v2
x + v2

y

We recognize that if the original vector ~v is in-
clined by an angle θ counterclockwise with respect
to the x axis, then the two above fractions represent
the cosine and sine of such an angle

vx

|~v| = cos θ

vy

|~v| = sin θ

The scaling factor of the operator acting on the unit
x vector is |~v| and the direction of the x unit vector
is changed by the angle θ counterclockwise. The
operator is actually a scale-rotate operator, i.e. a
complex number.

If we apply two scale-rotate operators in a row
to the unit x vector, we make the following observa-
tions:

1. the two scaling factors behave as two multipliers
and are commutative;

2. the two rotation angles add up and are commu-
tative;

3. the total effect produced by the two operators
is therefore equivalent to that of a single opera-
tor whose magnitude is the product of the two
magnitudes and whose angle is the sum of the
two angles.

In order to represent such effects with the operation
of multiplication it is advisable to use magnitudes
as regular factors, and to use angles as exponents of
a suitable base; the mathematicians tell us that a
scale-rotate operator of magnitude a and of angle θ
can be represented as

a(cos θ + i sin θ) = a ei θ

which is called Euler’s formula. There are many
serious reasons for choosing ‘e’ as the base and for
representing the exponent as an imaginary quantity,
but we are not concerned here with them; we simply
note that given two scale-rotate operators a exp(i θ)
and b exp(i φ) their total effect is (ab) exp[i(θ + φ)].

This observation together with Euler’s formula
lets us understand the meaning of division by a com-
plex number, i.e. a scale-rotate operator; in fact, the

208 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

LATEX 2ε, pict2e and complex numbers

division is nothing but the inverse operator of a mul-
tiplication, and this can be expressed as

[

a ei θ
]−1

=
1

a
e− i θ

where we observe that the scaling factor is simply
the reciprocal of the multiplicative one, while the ro-
tation term is just in the opposite direction relative
to the multiplicative one.

The scale-rotate interpretation of complex num-
bers also lets us understand very easily the meaning
of addition and subtraction of such entities — which
end up being the same as addition and subtraction
of vectors. Moreover the vector notation becomes
redundant, since the scale-rotate operators always
act on the unit x vector, which can thus be taken
for granted and omitted from the complex number
expressions. These expressions therefore maintain
the meaning of vector operations and of complex
number relationships.

For our present purposes, let us emphasize that
exp(i θ) has unit magnitude, and therefore contains
only the information on the direction. Furthermore,
exp(− i θ) represents a rotation in the opposite di-
rection; if we have the means of multiplying by such
factors we can change the direction of any vector the
way we like, either counterclockwise or clockwise.

For TEX arithmetic it is better to use simple
multiplications without exponentials, but Euler’s
formula lets us change back ad forth from the expo-
nential form to the Cartesian one; the exponential
form gives us an easy interpretation of the rotat-
ing effects while the Cartesian form gives us an easy
mechanism for executing the complex multiplication
and therefore the required rotation.

5 Complex number TEX macros

I am not going to include here the code for every
complex number operation [9]; let me just list the
macro names of the operations I wanted to realize,
with some explanations to clarify detail.

Notice that I decided to maintain most if not
all fractional numbers in control sequences. I also
use control sequences to pass complex values to the
macros, so that in order to operate on the complex
number parts a macro (\GetCoord) is needed to sep-
arate them, and another (\MakeVectorFrom) to re-
assemble them.

Most macros have delimited arguments, with
the main command is followed by the sequence of ar-
guments separated by keywords; rarely, arguments
must be enclosed in the traditional curly braces, as
normally necessary in LATEX. For example in or-
der to extract the magnitude (modulus) and the
direction from a given vector the macro name is

\ModAndDirOfVect but the various arguments are
separated by the words to and and so that a typical
call might be

\ModAndDirOfVect\VectorA to\ModA and\DirA

In this context the word “vector” is synonymous
with complex number or scale-rotate operator; the
word “direction” refers to a complex number with
unit magnitude so that the scaling factor is unity.

In the following list of macros the parameters
#1, #2,. . . are the arguments passed to the various
macros. The macro names are assumed to be self
explanatory.

\SinOf#1to#2

\CosOf#1to#2

\TanOf#1to#2

\MakeVectorFrom#1#2to#3

\CopyVect#1to#2

\ModOfVect#1to#2

\DirOfVect#1to#2

\ModAndDirOfVect#1to#2and#3

\GetCoord(#1)#2#3

\DistanceAndDirOfVect#1minus#2to#3and#4

\XpartOfVect#1to#2

\YpartOfVect#1to#2

\DirFromAngle#1to#2

\ScaleVect#1by#2to#3

\ConjVect#1to#2

\AddVect#1and#2to#3

\SubVect#1from#2to#3

\MultVect#1by#2to#3

\MultVect#1by*#2to#3

\DivVect#1by#2to#3

The list ends with the usual four arithmetic oper-
ations performed on any mathematical entity; the
variant of the multiplication that contains an aster-
isk performs the multiplication of the first operand
by the complex conjugate of the second operand; the
complex conjugate of a complex number is just the
scale-rotate operator where the rotation direction
has been reversed.

The above list starts with the usual trigonomet-
ric functions. Actually, I stated earlier that arith-
metic in TEX should be done with numbers and di-
rections; angles, that are so expressive in Euler’s
formula, should be avoided. Nevertheless, at some
point it’s necessary to convert angles to their sines
and cosines, but switching back and forth from the
Euler representation to the Cartesian one implies
the computation of both direct and inverse trigono-
metric functions. TEX can do both operations (with
acceptable approximations) but it slows down quite
a bit with frequent transformations. I implemented
the computation of the direct trigonometric func-
tions of angles in degrees, not in radians, by means
of the continued fraction expansion of the half angle

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 209

Claudio Beccari

tangent and the parametric formulas:

sin θ =
2 tan x

1 + tan2 x

cos θ =
1− tan2 x

1 + tan2 x

tan θ =
2 tan x

1− tan2 x

where

tan x =
1

1

x
− 1

3

x
− 1

5

x
− 1

7

x
− · · ·

and x = θ/114.591559 is the half angle in degrees
converted to radians.

This iterative formula for the tangent is quite
fast and its precision is remarkable if we consider
the modest performance of TEX calculations with
fractional numbers. I decided to stop the continued
fraction with the term containing the coefficient ‘11’;
probably it is a little too much for TEX capabilities
but I prefer to perform one extra cycle than to miss
the target.

Unfortunately I could not find similar fast algo-
rithms for the inverse trigonometric functions; I de-
cided to avoid using such inverse functions. META-
FONT implements both algorithms, but METAFONT

is not TEX: the former was designed to perform frac-
tional number calculations (although represented in
fixed radix notation) while the latter was designed
for efficiently typesetting text, with calculations re-
duced to integer operations with some simple tricks
to cope with the necessity of fractional “factors”.

The macro \DirFromAngle is the only one that
uses trigonometric functions; further on, just direc-
tion vectors are used.

6 Circular arcs

pict2e implements only the drawing commands
specified by Lamport in [2]; it can draw full cir-
cles or quarter circles but it cannot draw arcs of
any other specified angle amplitude. Or better: it
cannot draw them because of the lack of user com-
mands, but it has all the potentialities.

Suppose we want to draw an arc by specifying
its center, its starting point and its angle amplitude.
The center and the starting point may be absolute
coordinates in the picture environment space or
may be relative to the position specified with a \put.

With pict2e we can resort to third order Bézier
curves as it is done in METAFONT; if the third order
curve is not misused, it can approximate up to a half

O

P1P2
B

A
Q1Q2

θθ

Figure 8: Circular arc elements

circle with remarkable precision. The problem is to
find the arc end point and the correct control points
of the Bézier curve.

With reference to figure 8 it is a simple exercise,
given the center O, the starting point P1, and the
arc angle 2θ, to determine the coordinates of the end
arc point P2 and the two control points Q1 and Q2.

For the end point P2 it suffices to take the vec-
tor
−−−−→
P1 −O and rotate it about the center point by

the given angle 2θ; this operation is simplified by
the complex number arithmetic described above.

A little trickier is the determination of the
control points. It is evident that they lie on the
segments perpendicular to the vectors

−−−−→
P1 −O and−−−−→

P2 −O, but how long are the vectors
−−−−−→
Q1 − P1 and−−−−−→

Q2 − P2 ? To answer, it is necessary to know the
cubic Bézier equation:

P = P1(1− t)3 + 3Q1t(1− t)2 + 3Q2t
2(1− t) + P2t

3

that can be found (using other symbols) in The

METAFONTbook.
P is the generic point on the curve; the start

and end points and the control points form the co-
efficients of the equation; t is a parameter that runs
from 0 to 1 while P moves from P1 to P2. The
above equation in reality represents the pair of equa-
tions obtained when the point coordinates are sub-
stituted; therefore it represents the pair of paramet-
ric equations that describe the curve in the usual xy
Cartesian plane.

If we move the origin of the coordinates to point
B of figure 8 and exploit the obvious symmetry, the
similar triangles, the Bézier equation, and the fact
that point A must be distant from O just as P1 and
P2, it turns out that the length K of the required

210 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

LATEX 2ε, pict2e and complex numbers

vectors is

K =
4

3

1− cos θ

sin θ
R

where R is the arc radius, the length of the vector−−−−→
P1 −O. Again, with the complex number opera-
tions we have at our disposal, it is straightforward
to exploit the information we have to trace the cubic
Bézier curve from P1 to P2; the result is indistin-
guishable from a true circle when the total arc angle
does not exceed 90◦ and is not noticeable with the
naked eye when the total arc angle does not exceed
180◦.

Therefore a good \Arc macro should check the
amount of the total arc angle and possibly split the
total arc into sub-arcs none of which exceeds a half
circle, or, even better, a quarter circle. This is why
in actual computations it is much better to measure
angles in sexagesimal degrees than in radians; with
radians the reduction of angles by amounts corre-
sponding to quarter or half circles intrinsically re-
quires approximation due to the irrational nature of
π; TEX introduces its own approximation errors, so
let us not contribute with further ones.

7 General curves

The abovementioned package curves [6] by Ian
Maclaine offers the user the possibility of tracing
arbitrary curves by stating just the curve nodes;
METAFONT is entirely built on this possibility, al-
though it uses much finer mathematics and it offers
the user the opportunity to optionally specify node
tangents and arc tensions.

From the user’s point of view these differences
are great by themselves, but there is another im-
portant difference: curves uses quadratic Bézier
curves, while METAFONT uses cubic ones. This pro-
duces dramatic differences when the curve nodes im-
ply the presence of inflection points. In this case the
algorithm devised by Maclaine more often than not
produces anomalous loops; such loops are very rare
with cubic Bézier curves — it is necessary to work
hard just to find examples of such loops.

Of course Maclaine had to sacrifice some graph-
ical functionality in favor of simpler mathematics,
which, as we know, is not TEX’s best feature.

I tried to devise a chain of macros that trace one
cubic Bézier arc at a time, and pass one another the
end point tangent directions. These macros are

\StartCurveAt#1WithDir#2

\CurveTo#1WithDir#2

\CurveFinish

where the first argument is a point coordinate pair
(a complex number) and the second argument is a
direction (a complex number with unit magnitude).

The first macro initializes the process and memo-
rizes the first point direction; the second macro gives
the destination program the necessary information
on the arc nodes and control points, and the third
macro eventually strokes the curve with the syntax
of the destination program.

The first macro basically uses the moveto key-
word, the second macro curveto, and the final
macro stroke; we have already partially seen these
keywords while discussing lines and polylines. The
first and second macros also normalize the direc-
tions given, so the end user does not need to make
preliminary calculations in order to normalize the
direction magnitude. They also memorize the spec-
ified and normalized direction for the benefit of the
next \CurveTo call.

The \CurveTo macro is the one that has to do
the main work in determining the position of the
control points. Obviously it must start by check-
ing the trivial situations where the directions form
zero or 180◦ angles with the arc chord; it must also
distinguish the situations where the tangents form
90◦ angles with the chord. It must behave correctly
even if the end nodes and the directions imply an in-
flection point. But in most cases it has to deal with
normal situations where the control point directions
relative to the respective end points are given but
the distances of the control points from the nodes
must be determined.

There is a great margin for arbitrary decisions.
I decided to divide the chord in two parts that are
more or less proportional to the projection of the
directions on the chord and to determine the dis-
tance K of each control point from its neighboring
node with the same formula as for circular arcs. The
chord fraction is treated as half the chord of a circu-
lar arc and the corresponding radius is determined
so as to use the mentioned formula. This choice is
totally arbitrary but, as it is easily understandable,
it is a reasonable one.

This done, the usual complex number arith-
metic can be used to locate the position of the con-
trol point and to give the internal command for in-
structing the destination program how to draw the
desired curve. In figure 2 there is a simple example
of a sine curve that has been drawn with three arcs:
from the origin to the maximum, from this point to
the minimum, and lastly from the minimum to the
end of the cycle.

Actually the three above macros are the ingre-
dients of the general macro \Curve that operates on
an arbitrary number of couples of nodes and direc-
tions:

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 211

Claudio Beccari

\Curve(〈P0〉)<〈dir0〉>(〈P1〉)<〈dir1〉>...

(〈Pn〉)<〈dirn〉>
whose code is the following:

\def\Curve(#1)<#2>{%

\StartCurveAt#1WithDir{#2}%

\@ifnextchar\lp@r\@Curve{%

\PackageWarning{curve2e}{%

Curve specifications must contain at least

two nodes!\Messagebreak

Please, control your Curve

specifications\MessageBreak}}}

\def\@Curve(#1)<#2>{%

\CurveTo#1WithDir{#2}%

\@ifnextchar\lp@r\@Curve{%

\@ifnextchar[\@ChangeDir\CurveFinish}}

\def\@ChangeDir[#1]{\ChangeDir<#1>\@Curve}

For each node it is necessary to specify the direc-
tion of the tangent to that node, but these tangent
direction coefficients need not be normalized. They
are normally given within angle brackets. If there
is a cusp, the tangent changes abruptly so that a
new direction must be specified before continuing
to draw the curve; this “optional” change in direc-
tion is indicated with a direction enclosed in square
brackets; see the code implementing the heart shape
in figure 3.

In the light of that example it is not a burden
to specify all the directions at each node, although
a simpler syntax such as that used in METAFONT

would be desirable.

8 Conclusion

I wanted to illustrate the use of fractional number
TEX arithmetic applied to complex numbers. These
are formidable tools for graphics applications and
the necessary macros are actually within the range
of every TEXnician; there is no need to be a guru.

I hope the ideas I gave here may be exploited
better than I can do for extending the existing
graphic packages so as to get the best from the
pict2e package. This package in particular may
benefit from some simple extensions, or may incor-
porate the user macros for drawing circular arcs and
arbitrary curves, possibly even with the filling capa-
bilities that are being offered by other programs.

There might even be some expert programmer
who feels challenged to write a user graphical inter-
face that exploits the suggested extensions.

The pict2e package may still have minor
glitches,6 but even right now it opens many pos-
sibilities that were unthinkable when the standard
LATEX 2.09 picture environment provided the only
native graphics for LATEXers. They eventually had to
give up and move to other dedicated programs; these
are fine, but they do not necessarily produce com-
pletely compatible code and generally, with some
remarkable exceptions (such as pgf), require special
treatment in order to insert the same fonts used in
the main text.

I hope the features described here will be in-
cluded in future releases of the mentioned packages.
Until that time, I have made a package curve2e

available from CTAN [9] for anyone who wishes to
make use of them.

References

[1] Gäßlein H. and Niepraschk R., The pict2e

package, PDF document attached to the “new”
pict2e bundle; the bundle may be downloaded
from CTAN.

[2] Lamport L., LATEX: A Document Preparation
System. Addison Wesley Publishing Co., Read-
ing, Massachusetts, 1994.

[3] van Zandt T., PSTricks, CTAN. See also
http://www.tug.org/PSTricks for further doc-
umentation and examples.

[4] Beccari C., Floating point numbers and Meta-
font, MetaPost, TEX, and PostScript Type 1
fonts, TUGboat 23:3/4, 2002, pp. 261-269.

[5] Knuth D.E., Computers & Typesetting volume
A: The TEXbook, Addison Wesley Publishing
Co., Reading, Massachusetts, Millennium Edi-
tion.

[6] Maclaine I., curves and curvesls, CTAN.

[7] Tantau T., User’s Guide to the PGF Package,
included in the pgf bundle downloadable from
CTAN.

[8] Knuth D.E., Computers & Typesetting volume
C: The METAFONTbook, Addison Wesley Pub-
lishing Co., Reading, Massachusetts, Millennium
Edition.

[9] Beccari C., curve2e, CTAN.

6 With the version I have at hand, pict2e traces vectors
a little bit thicker than segments, although the line thickness
is maintained constant; with my redefinition of \vector this
glitch appears to be corrected.

212 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Page design in LATEX3

Morten Høgholm
LATEX3 Project
morten dot hoegholm (at) latex dash project dot org

Abstract

Choosing a page layout in LATEX is easy for the user with the help of packages
like geometry and typearea. However, users face various problems when wishing to
change the layout parameters mid-document — something which happens quite
often: title pages, rotated pages (with rotated header and footer), special pages
or spreads including large images, and other situations where manual fiddling is
a difficult and error prone process.

This article describes an interface for defining, storing, and retrieving com-
plete page layouts. It will take a look under the hood to see how the data
structures and programming constructs provided by the LATEX3 kernel ease the
programming task.

1 Introduction

Setting and understanding the page layout param-
eters in standard LATEX is not the easiest of tasks.
There is no interface at all so it must be done by
setting all parameters manually and then hope you
got them right. The packages geometry and typearea

both provide an interface for changing the parame-
ters for the entire document but there are situations
where one may wish to use a different layout for just
a few pages of the document:

• Title and back pages, where content is often
centered on the physical page.

• Rotated pages, where some users want to also
rotate header and footer.

• Page spreads containing material crossing page
borders.

Additionally, the ubiquitousness of PDF documents
on the Internet has opened up a new window of op-
portunity: changing page size mid-document.

2 The current solutions

Before trying to figure out a way to deal with page
layout in LATEX3, it is probably a good idea to take
a closer look at the existing solutions within the
LATEX 2ε framework.

2.1 The base distribution

The LATEX kernel doesn’t really have much of an in-
terface when it comes to modifying the layout. The
only way to change anything is to set the dimensions
by hand by means of commands such as

\setlength\paperheight{29.7cm}

\setlength\paperwidth{21cm}

Using the “raw” LATEX commands like this is not
an ideal interface for a designer. The layout package
from the tools bundle alleviates this a bit by drawing
the layout for you so that you can check if it looks as
intended. This way you may also discover conflicting
settings, as the kernel does not check this itself.

Should one wish to change some parameters
temporarily mid-document their values must either
be stored or the changes done locally. However, the
parameters are global (in the sense that they are set
at the top level in the document preamble) and it
is bad practice to do local changes to global param-
eters. In short: there are no technical hindrances
for the adventurous user to change the parameters
at will but it is at best a tedious and error prone
procedure.

Another problem is that recto and verso pages
are exactly the same except for \evensidemargin

and \oddsidemargin. As a consequence, certain
types of designs become much harder to do in LATEX
than you’d expect. For example, defining a page
layout where every odd page is six lines shorter (be-
cause, say, this is reserved for supplementary text) is
slightly difficult because one has to manually change
the text height from page to page.

2.2 The geometry and typearea packages

The most popular package for changing the page
layout is the geometry package [4]. It provides an
easier interface, one using a 〈key〉 = 〈value〉 syntax
whereby the designer/user is shielded from the di-
rect form of the LATEX parameters. The syntax is
almost self-explanatory:

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 213

Morten Høgholm

\usepackage{geometry}

\geometry{

paper = a4paper ,

textwidth = 6in ,

lines = 42

}

Not surprisingly this makes the textwidth 6 in and
puts 42 lines of text on A4 paper. geometry does
not try to enforce typographic rules of thumb on
the user except for choosing margin ratios suitable
for printed books. Other than that, the user is re-
sponsible for everything.

A different approach is taken by the typearea

package from the koma-script bundle [3]. Based on
the document font, it tries to produce a textwidth
of about 60–70 characters and then defines the lay-
out in accordance with good typographic practice,
such as a 1:2 relationship between top and bottom
margin.

For a more in-depth discussion of both geom-

etry and typearea, see [2]. Common to both pack-
ages is that they work only for the entire document:
All settings must be done in the preamble and thus
we have not yet solved one of our initial problems:
changing the parameters mid-document.

3 A new solution

In order to come up with a solution to the problems,
let’s take a step back and look at what sort of areas
may appear on a page.

3.1 The parts of a page

Instead of defining recto and verso pages we will de-
fine one standard page description so that all differ-
ent page types have the same set of parameters, each
parameter corresponding to a letter as shown in Fig-
ure 1. The indices w, h, and s denote width, height,
and separation respectively. The central thing on
the page is the textblock T itself. The textblock
is surrounded on all sides by header, footer, left
area and right area. The left and right areas are
where margin notes may be positioned or as seen
in some designs where the designer uses the right
margin to place captions, section headings etc. and
outside these areas are the actual margins. Finally
the final paper size is often different from the stock
size so we must take this into account too. We can
notice several relationships:

Sw = tL + tR + pw

Sh = tT + tB + ph

pw = mL + Lw + Ls + Tw + Rw + Rs + mR

ph = mT + Hh + Hs + Th + Fs + Fh + mB

These relationships are similar to what can be found
in geometry and ease the task of autocompletion and
error checking.

The output routine will have to know which
values to use and the easiest way is probably to use
a set of global parameters with names such as

\g_page_std_textheight_dim

\g_page_std_textwidth_dim

etc. For those unfamiliar with the LATEX3 naming
conventions, these are global dimension registers be-
longing to the page module and going by the name
std_〈parameter〉. In a similar manner we will make
each page type have an identical set of parameters,
except these go by names like

\l_page_〈type 〉_textheight_dim

\l_page_〈type 〉_textwidth_dim

etc., i.e., they are local parameters and then the
shipout routine can handle setting the global pa-
rameters to the value of the local ones. Defining
a complete set of parameters for each page type
uses quite a number of dimension registers but since
LATEX3 uses ε-TEX (or better) we are not tied to so-
lutions working within the tightly confined space of
the Knuthian TEX engine.

Since we have decided that all page types share
the same parameters, we must also solve the prob-
lem of storing and retrieving parameter values since
they must change between, for instance, recto and
verso pages. For this task we turn our attention to
some of the tools provided by the LATEX3 kernel.

3.2 Tools

TEX comes with only a few kinds of registers and
anything dealing with lists must be done in macros.
The tools for list processing in the LATEX 2ε kernel
are restricted to token lists and comma separated
lists, and even then there are only mapping func-
tions. The LATEX3 kernel alleviates this by both ex-
tending the list of data structures with sequences
and property lists as well as providing a complete
set of tools for each data type: mapping, push/pop
operations, etc. For the problem at hand we will use
property lists.

3.2.1 Property lists

A property list is a list structure consisting of a series
of keys, each with its own information field, of the
form

\〈key 1 〉{〈info 1 〉}
\〈key 2 〉{〈info 2 〉} ...

For example, a small test file for the cross refer-
encing module of LATEX3 contains a property list
\g_xref_mylabel_plist which expands to

214 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Page design in LATEX3

Footer

Header

L

✛ ✲Lw

❄

✻

Lh R

✛ ✲Rw

❄

✻

Rh

✛ ✲Tw

❄

✻

Th

✛ ✲Ls
✛ ✲Rs

✛ ✲tL ✛ ✲tR✛ ✲mL
✛ ✲mR

✛ ✲Sw

❄

✻

Sh

✛ ✲pw

❄

✻

ph

❄
✻Hs

❄
✻Hh

❄
✻Fs

❄
✻Fh

❄
✻tB
❄

✻

mB

❄

✻

mT

❄
✻tT

Figure 1: The parts of a page: S is stock size, p is paper size, t are trims, m is margin, T is the text block, L and
R are marginal note areas, and F and H are footer and header resp.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 215

Morten Høgholm

\xref_name_key {This is a name}

\xref_valuepage_key {1}

\xref_page_key {i}

Property lists are a natural way to store series/col-
lections of information. One such application could
be the babel language strings or, as we shall see, an
array of length registers with saved values.

For our purposes we will store the property lists
with names like \g_page_recto_plist with the fol-
lowing contents:

\l_page_recto_textheight_dim

{\l_page_recto_textheight_dim}

\l_page_recto_textwidth_dim

{\l_page_recto_textwidth_dim}

...

The reason is that we can have some application set-
ting these parameters locally and then we can use
the extended list processing tools of the LATEX3 ker-
nel to map a function on each info-pair and extract
the data. Here’s a small example of how this is done:

\tlp_gset:Nx \g_page_recto_tlp {

\prop_map_function:NN

\g_page_recto_plist

\page_extract_dimensions:Nn

}

\def_new:NNn\page_extract_dimensions:Nn 2{

\exp_not:N\dim_set:Nn #1{\dim_use:N #2}

}

\tlp_gset:Nx does an \xdef on its second argu-
ment and stores it in the global token list pointer
\g_page_recto_tlp. \prop_map_function:NN is
an expandable mapping operation which places its
second argument in front of each info-pair of the
property list, which is given as the first argument. In
our example this argument is the auxiliary function
\page_extract_dimensions:Nn which is called to
get the current value of the parameter and prepar-
ing it to be set. The end result is a macro containing

\dim_set:Nn\l_page_recto_textheight_dim

{536.0pt}

\dim_set:Nn\l_page_recto_textwidth_dim

{310.0pt}

...

At the time of the shipout this list is run and then
we also run a simple

\dim_gset:Nn

\g_page_std_textheight_dim

{\l_page_recto_textheight_dim}

\dim_gset:Nn

\g_page_std_textwidth_dim

{\l_page_recto_textwidth_dim}

...

Note that all of this does not touch the original prop-
erty list, so a number of operations can be performed
by mapping functions onto it. For example, one
could reset all parameters to some special value (typ-
ically negative) and then a second mapping function
could check if all parameters have indeed been set.

3.2.2 Templates

LATEX3 provides the concept of templates, which are,
in short, parameterized functions. As arguments, a
template takes a list of named parameters given in
the well-known ‘keyval’ syntax plus additional ar-
guments, which are often user input. The template
converts the named parameters into macro or reg-
ister assignments and uses these when running the
actual code in the template. While a template can
be used directly, one often defines various named
instances of a template, which is the template func-
tion run with a specific set of parameters. Defining
and using an instance instead of running the entire
template at runtime is faster in terms of execution
time but also has the advantage that one can store
several different versions of a template and then use
specific instances depending on the needs at hand.

As a small example, let’s imagine a template
type for producing split level fractions such as 3/7.
The template type receives three arguments from
the user:

1. Numerator.

2. Separator. In case of \NoValue, i.e., no argu-
ment, use a default symbol instead.

3. Denominator.

So for this template type one can define several dif-
ferent templates depending on the needs of the user
and the font in question. With fonts not containing
superior and inferior numbers one will have to man-
ually raise and lower the characters whereas more
advanced font sets such as Minion Pro contain these
characters and then one can use a much simpler tem-
plate, which basically just inserts the user input as-
is. Figure 2 shows a complete example of a simple
template and a possible user interface to the tem-
plate using xparse, while Figure 3 shows the result-
ing output. The template defined in this example
uses \textfractionsolidus as the default separa-
tor symbol.

In the example you can see how one can run the
template directly, how to define instances and how
to use instances as part of defining document syntax
with xparse. An interesting observation is that using
the solidus from Times works rather well with Com-
puter Modern instead of the unusually large solidus
found there.

216 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Page design in LATEX3

\documentclass[12pt]{article}

\usepackage{template,xparse,textcomp,l3box}

\CodeStart

\dim_new:N \l_splitfrac_size_dim

\dim_new:N \l_splitfrac_pre_kern_dim

\dim_new:N \l_splitfrac_post_kern_dim

\box_new:N \l_splitfrac_tmpa_box

\DeclareTemplateType{splitfrac}{3}

\DeclareTemplate{splitfrac}{text}{3}{

numerator-format = f1 [#1] \splitfrac_numerator_format:n ,

denominator-format = f1 [#1] \splitfrac_denominator_format:n ,

separator-format = f1 [#1] \splitfrac_separator_format:n ,

numerator-scale = n [.6] \l_splitfrac_scale_tlp ,

separator-symbol = n [\textfractionsolidus]

\l_splitfrac_separator_symbol_tlp,

separator-font = n [\DelayEvaluation{\f@family}] \l_splitfrac_separator_font_tlp ,

separator-pre-kern = l [\DelayEvaluation{-.1em}] \l_splitfrac_pre_kern_dim ,

separator-post-kern = l [\DelayEvaluation{-.15em}] \l_splitfrac_post_kern_dim

}

{

\DoParameterAssignments

\sbox\l_splitfrac_tmpa_box{

\splitfrac_separator_format:n {

\fontfamily{\l_splitfrac_separator_font_tlp }\selectfont

\IfNoValueTF{#2}{\l_splitfrac_separator_symbol_tlp}{#2}

} }

\mbox{

\dim_set:Nn\l_splitfrac_size_dim {

\l_splitfrac_scale_tlp \dim_eval:n{\f@size pt} }

\raisebox{\box_ht:N \l_splitfrac_tmpa_box -\height }{

\splitfrac_numerator_format:n {

\fontsize{\l_splitfrac_size_dim }{\baselineskip}\selectfont

#1 } }

\kern\l_splitfrac_pre_kern_dim

\box_use:N \l_splitfrac_tmpa_box

\kern\l_splitfrac_post_kern_dim

\raisebox{-\box_dp:N \l_splitfrac_tmpa_box}{

\splitfrac_denominator_format:n {

\fontsize{\l_splitfrac_size_dim }{\baselineskip}\selectfont

#3 } } }

}

\DeclareDocumentCommand\splitfrac{mom}{

\IfExistsInstanceTF{splitfrac}{\f@family}

{\UseInstance{splitfrac}{\f@family}}

{\UseTemplate{splitfrac}{text}{}}

{#1}{#2}{#3}

}

\CodeStop

\begin{document}

\UseTemplate{splitfrac}{text}{}{34}{\NoValue}{15},

\fontfamily{ptm}\selectfont\textonehalf,

\UseTemplate{splitfrac}{text}{

separator-pre-kern=0pt,

separator-post-kern=0pt}{1}{\NoValue}{2},

\DeclareInstance{splitfrac}{ptm}{text}{

separator-pre-kern=0pt,

separator-post-kern=0pt}

\UseInstance{splitfrac}{ptm}{1}{\NoValue}{2},

\splitfrac{34}{56},

\normalfont

\splitfrac{34}{56},

\UseTemplate{splitfrac}{text}{

separator-font=ptm,

separator-pre-kern=0pt,

separator-post-kern=0pt}{34}{\NoValue}{15}

\end{document}

Figure 2: Example document for split level fractions using templates.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 217

Morten Høgholm

34⁄
15

, ½, 1⁄2, 1⁄2, 34⁄56, 34⁄
56

,

34⁄15

Figure 3: Output from running the example document
shown in Figure 2.

Templates are an integral part of the design as-
pect in LATEX3 and worth a closer look; see the doc-
umentation in [1]. We will not discuss them further
here, but this brief introduction should be enough
to give you an idea of the potential. At this point
it should come as no surprise that our present page
layout parameters are well suited for templates.

3.3 Putting the pieces together

We’ve now presented the tools and are ready to de-
fine templates for setting the page layouts. A tem-
plate for setting all parameters is likely to be very
large, so we’ll just show a minimal example. We
define a template type pagelayout which takes one
argument: the name for the page type. Next we
declare the template minimal which has two keys:
textheight and textwidth with default values of
8 in and 6.5 in respectively (same as in the standard
LATEX class file minimal). The template then sets the
local parameters for the page type and stores them
in the token list pointer as shown Section 3.2.1. This
simple template setup looks like this:

\DeclareTemplateType{pagelayout}{1}

\DeclareTemplate{pagelayout}{minimal}{1}{

textheight = l [8in]

\g_page_std_textheight_dim ,

textwidth = l [6.5in]

\g_page_std_textwidth_dim ,

}{

\DoParameterAssignments

\dim_set:cn {l_page_#1_textheight_dim}

{\g_page_std_textheight_dim}

\dim_set:cn {l_page_#1_textwidth_dim}

{\g_page_std_textwidth_dim}

\page_store_page_dimensions:n {#1}

}

Using the template is fairly straightforward. The
defaults are used unless you use a key in which case
the new value is used. For demonstration purposes,
we will make the recto and verso layouts different in
height; the recto is one inch longer than the verso.

\UseTemplate{pagelayout}{minimal}

{ textheight= 9in } {minimal-recto}

\UseTemplate{pagelayout}

{minimal}{}{minimal-verso}

\UsePageLayout{2}

{minimal-recto,minimal-verso}

The \UsePageLayout command instructs LATEX to
switch between two different parameter sets which
are then given as a comma separated list in the sec-
ond argument. The command takes effect on the
following page so it can also be used mid-document.

The attentive reader may have noticed that the
interface presented above does not allow for defining
two page layouts at a time with common margin
ratios etc., as would usually be required. This will be
supported, but it requires a different template type,
taking two arguments. Alternatively, a package like
geometry in its LATEX3 incarnation could easily stick
to the same user interface as it has now and simply
pass the information on to two templates at a time
if two-sided documents are produced.

4 Concluding remarks

The interface for page layouts described in this ar-
ticle exists only as an unreleased prototype at the
time of writing. There is still a bit of work to do
on it, especially in the area of integrating it with
the experimental output routine xor. Currently xor

stands at 5000+ lines so this is something which has
to be done very carefully! When this is done it will
be possible to specify page layouts on a per-page
basis, which is especially useful for float pages.

Other than that we will produce various differ-
ent templates plus provide tools for autocomplete-
tion and error checking. When ready for release it
will be put in our publically available Subversion
(SVN) repository which can be reached by pointing
your SVN client to

http://www.latex-project.org/svnroot/

experimental/trunk/

References

[1] Various authors. LATEX project web site
directory for experimental code.
http://www.latex-project.org/svnroot/

experimental/trunk.

[2] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, Chris Rowley,
Christine Detig, and Joachim Schrod.
The LATEX Companion. Tools and Techniques
for Computer Typesetting. Addison-Wesley,
Reading, MA, USA, second edition, 2004.

[3] Frank Neukam, Markus Kohm, Axel Kielhorn,
and Jens-Uwe Morawski. The KOMA-Script
Bundle, March 2005.

[4] Hideo Umeki. The geometry package, July
2002.

218 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 219

MKII–MKIV

Hans Hagen
Hasselt, The Netherlands

http://luatex.org

http://pragma-ade.com

pragma (at) wxs dot nl

Abstract

Some time ago the pdfTEX development team set a road map for the next gen-
eration of pdfTEX. It was decided that within a reasonable timeframe pdfTEX
would go 24/32 bit and support OpenType fonts. At the same time, after some
preliminary experiments, it was decided that it made sense to embed the Lua
scripting engine into TEX.

Currently, Taco Hoekwater and I spend a lot of time exploring the possibil-
ities of a TEX engine enhanced in this way. Downward compatibility as well as
the traditional stability are very important conditions in this proces. Because
we’re both actively involved in the development of ConTEXt and both know the
internals quite well, we can easily test Lua based alternatives and explore possible
routes and needed extensions.

This paper presents some possible features of LuaTEX (some may go, some
may change, others will be added). I will discuss how they may influence the way
ConTEXt will be organized in the future as well as how code development may
change in nature and influence users. I will also demonstrate some of the features
of that LuaTEX currently offers.

1 Introduction

The development of LuaTEX started with a few
email exchanges between me and Hartmut Henkel.
I had played a bit with Lua in SCITE and some-
how felt that it would fit into TEX quite well. Hart-
mut made me a version of pdfTEX which provided
a \lua command. After exploring this road a bit
Taco Hoekwater took over and we quickly reached
a point where the pdfTEX development team could
agree on following this road to the future.

The development was boosted by a substantial
grant from Colorado State University in the context
of Professor Idris Samawi Hamid’s Oriental TEX
Project. This project aims at bringing features into
TEX that will permits ConTEXt to do high qual-
ity Arab typesetting. Due to this grant Taco could
spend substantial time on development, which in
turn meant that I could start playing with more ad-
vanced features.

This document is not so much a manual as a
report on the state of affairs. Things may evolve
and the way things are done may change, but it felt
right to keep track of the process.

2 From Mark II to Mark IV

In 2005 the development of LuaTEX started, a fur-
ther development of pdfTEX and a precursor to pdf-
TEX version 2. This TEX variant will provide:

• 21–32 bit internals plus a code cleanup
• flexible support for OpenType fonts
• an internal UTF data flow
• the bidirectional typesetting of Aleph
• Lua callbacks to relevant TEX internals
• some extensions to TEX (for instance math)
• efficient communication with MetaPost

In the tradition of TEX this successor will be down-
ward compatible in essential ways and in the end,
there is still pdfTEX version 1 as fall back.

In the mean time we have seen another Unicode
variant show up: X ETEX, which is under active de-
velopment, uses external libraries, provides access to
the fonts on the operating system, etc.

From the beginning, ConTEXt always worked
with all engines. This was achieved by conditional
code blocks: depending on what engine was used,
different code was put in the format and/or used

Hans Hagen

220 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

at runtime. Users normally were unaware of this.
Examples of engines are ε-TEX, Aleph, and X ETEX.
Because nowadays all engines provide the ε-TEX fea-
tures, in August 2006 we decided to consider those
features to be present and drop providing the stan-
dard TEX compatible variants. This is a small effort
because all code that is sensitive for optimization
already has ε-TEX code branches for many years.

However, with the arrival of LuaTEX, we need
a more drastic approach. Quite a lot existing code
can go away, to be replaced by different solutions.
Where TEX code ends up in the format file, along
with its state, Lua code will be initiated at run time,
after a Lua instance is started. ConTEXt reserves its
own instance of Lua.

Most of this will go unnoticed for the users be-
cause the user interface will not change. For devel-
opers however, we need to provide a mechanism to
deal with these issues. This is why, for the first time
in ConTEXt’s history, we will officially use a kind
of version tag. When we changed the low level in-
terface from Dutch to English we jokingly talked of
version 2. So, it makes sense to follow this lead.

• ConTEXt Mark I At that moment we still
had a low level Dutch interface, invisible for
users but not for developers.
• ConTEXt Mark II We now have a low level
English interface, which we hoped (and in-
deed saw happen) would trigger more devel-
opment by users.
• ConTEXt Mark IV This is the next genera-
tion of ConTEXt, with parts re-implemented.
At some points, it’s a drastic system over-
haul.

Keep in mind that the functionality does not change,
although in some places, for instance fonts, Mark IV

may provide additional functionality. Most users
will not notice the difference (maybe apart from
performance and convenience) since at the user in-
terface level nothing changes (most of it deals with
typesetting, not low level details).

The hole in the numbering permits us to provide
a Mark III version as well. Once X ETEX is stable,
we may use that slot for X ETEX specific implemen-
tations.

As of August 2006 the banner has been adapted
to this distinction:

ver: 2006.09.06 22:46 MK II fmt: 2006.9.6

ver: 2006.09.06 22:47 MK IV fmt: 2006.9.6

This numbering system is reflected at the file
level in such a way that we can keep developing the
way we do, i.e. no files all over the place, in subdi-
rectories, etc.

Most of the system’s core files are not affected,
but some may be, like those dealing with fonts, input
and output encodings, file handling, etc. Those files
may come with different suffixes:

• somefile.tex: the main file, implementing
the interface and common code
• somefile.mkii: mostly existing code, suit-
able for good old TEX (ε-TEX, pdfTEX,
Aleph).
• somefile.mkiv: code optimized for use with
LuaTEX, which could follow completely differ-
ent approaches
• somefile.lua: Lua code, loaded at format
generation time and/or runtime

As said, some day somefile.mkiii code may show
up. Which variant is loaded is determined automat-
ically at format generation time and/or at run time.

3 How Lua fits in

Introduction

Here I will discuss a few of the experiments that
drove the development of LuaTEX. It describes the
state of affairs around the time that we were prepar-
ing for TUG 2006. This development was rather de-
manding for Taco and me but also much fun. We
were in a kind of permanent Skype chat session, with
binaries flowing in one direction and TEX and Lua
code the other way. By gradually replacing (even
critical) components of ConTEXt we had a real test
bed and torture tests helped us to explore and de-
bug at the same time. Because Taco uses Linux
as platform and I mostly use Windows, we could
investigate platform dependent issues conveniently.
While reading this text, keep in mind that this is
just the beginning of the game.

I will not provide sample code here. When possi-
ble, the Mark IV code transparently replaces Mark II

code and users will seldom notices that something
happens in different way. Of course the potential
is there and future extensions may be unique to
Mark IV.

Compatibility

The first experiments, already conducted with the

MKII–MKIV

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 221

experimental versions involved runtime conversion
of one type of input into another. An example of this
is the (TI) calculator math input handler that con-
verts a rather natural math sequence into TEX and
feeds that back into TEX. This mechanism eventu-
ally will evolve into a configurable math input han-
dler. Such applications are unique to Mark IV code
and will not be backported to Mark II. The ques-
tion is where downward compatibility will become
a problem. We don’t expect many problems, apart
from occasional bugs that result from splitting the
code base, mostly because new features will not af-
fect older functionality. Because we have to reorga-
nize the code base a bit, we also use this opportunity
to start making a variant of ConTEXt which consists
of building blocks: MetaTEX. This is less interesting
for the average user, but may be of interest for those
using ConTEXt in workflows where only part of the
functionality is needed.

MetaPost

Of course, when I experiment with such new things,
I cannot let MetaPost leave untouched. And so, in
this early stage of LuaTEX development I decided to
play with two MetaPost related features: conversion
and runtime processing.

Conversion from MetaPost output to PDF is cur-
rently done in pure TEX code. Apart from conve-
nience, this has the advantage that we can let TEX
take care of font inclusions. The tricky part of this
conversion is that MetaPost output has some weird
aspects, like dvips specific linewidth snapping. An-
other nasty element in the conversion is that we need
to transform paths when pens are used. Anyhow,
the converter has reached a rather stable state by
now.

One of the ideas with MetaPost version 1+ is
that we will have an alternative output mode. From
the perspective of LuaTEX it makes sense to have
a Lua output mode. Whatever converter we use,
it needs to deal with Metafun specials. These are
responsible for special features like transparency,
graphic inclusion, shading, and more. Currently we
misuse colors to signal such features, but the new
pre/post path hooks permit more advanced imple-
mentations. Experimenting with such new features
is easier in Lua than in TEX.

The Mark IV converter is a multi-pass converter.
First we clean up the MetaPost output, then con-
vert the PostScript code into Lua calls. We assume
that this Lua code can eventually be output directly
from MetaPost. We then evaluate this converted

Lua blob, resulting in TEX commands. Example:

1.2 setlinejoin

turned into:

mp.setlinejoin(1.2)

becoming:

\PDFcode{1.2 j}

which is, when the pdfTEX driver is active, equiva-
lent to:

\pdfliteral{1.2 j}

Of course, when paths are involved, more things
happen behind the scenes, but in the end an
mp.path enters the Lua machinery.

When the Mark IV converter reached a stable
state, tests demonstrated then the code was up to
20% slower that the pure TEX alternative on average
graphics, and but faster when many complex path
transformations (due to penshapes) need to be done.
This slowdown was due to the cleanup (using expres-
sions) and intermediate conversion. Because Taco
both develops LuaTEX and maintains and extends
MetaPost, we conducted experiments that combine
features of these programs. As a result of this, short-
cuts found their way into the MetaPost output.

o␣e␣p␣s

Figure 1 Our converter test figure.

Cleaning up the MetaPost output using Lua expres-
sions takes relatively much time. However, starting
with version 0.970 MetaPost uses a preamble, which
permits not only short commands, but also gets rid
of the weird linewidth and filldraw related Post-
Script constructs. The moderately complex graphic
that we use for testing (figure 1) takes over 16 sec-
onds when converted 250 times. When we enable
shortcuts we can avoid part of the cleanup and run-
time goes down to under 7.5 seconds. This is signif-
icantly faster than the Mark II code. We did exper-
iments with simulated Lua output from MetaPost
and then the Mark IV converter really flies. The

Hans Hagen

222 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

values on Taco’s system are given in parentheses:

prologues/
mpprocset

1/0 1/1 2/02/1

Mark II 8.5 (5.7) 8.0 (5.5) 8.8 8.5
Mark IV 16.1 (10.6) 7.2 (4.5) 16.3 7.4

The main reason for the huge difference in the
Mark IV times is that we do a rigorous cleanup of the
older MetaPost output in order to avoid the messy
(but fast) code that we use in the Mark II converter.
Think of:

0 0.5 dtransform truncate idtransform

setlinewidth pop

closepath gsave fill grestore stroke

In the Mark II converter, we push every number
or keyword on a stack and use keywords as trigger
points. In the Mark IV code we convert the stack
based PostScript calls to Lua function calls. The
top-level 0...pop and closepath...stroke expres-
sions are each converted to single calls first. When
prologues is set to 2, such lines no longer show
up and are replaced by simple calls accompanied by
definitions in the preamble. Not only that, instead
of verbose keywords, one or two character shortcuts
are used. This means that the Mark II code can be
faster when procsets are used because shorter strings
end up in the stack and comparison happens faster.
On the other hand, when no procsets are used, the
runtime is longer because of the larger preamble.

Because the converter is used outside ConTEXt
as well, we support all combinations in order not to
get error messages, but the converter is supposed to
work with the following settings:

prologues := 1 ;

mpprocset := 1 ;

We don’t need to set prologues to 2 (font en-
codings in file) or 3 (also font resources in file). So,
in the end, the comparison in speed comes down to
8.0 seconds for Mark II code and 7.2 seconds for the
Mark IV code when using the latest greatest Meta-
Post. When we simulate Lua output fromMetaPost,
we end up with 4.2 seconds runtime and when Meta-
Post could produce the converter’s TEX commands,
we need only 0.3 seconds for embedding the 250 in-
stances. This includes TEX taking care of handling
the specials, some of which demand building mod-
erately complex PDF data structures.

But, conversion is not the only factor in conve-
nient MetaPost usage. First of all, runtime Meta-
Post processing takes time. The actual time spent
on handling embedded MetaPost graphics is also de-
pendent on the speed of starting up MetaPost, which
in turn depends on the size of the TEX trees used:
the bigger these are, the more time KPSE spends
on loading the ls-R databases. Eventually this bot-
tleneck may go away when we have MetaPost as a
library. (In ConTEXt one can also run MetaPost be-
tween runs. Which method is faster depends on the
amount and complexity of the graphics.)

Another factor in dealing with MetaPost, is the
usage of text in a graphic (btex, textext, etc.).
Taco Hoekwater, Fabrice Popineau and I did some
experiments with a persistent MetaPost session in
the background in order to simulate a library. The
results look very promising: the overhead of embed-
ded MetaPost graphics goes to nearly zero, espe-
cially when we also let the parent TEX job handle
the typesetting of texts. A side effect of these ex-
periments was a new mechanism in ConTEXt (and
Metafun) where TEX did all typesetting of labels,
and MetaPost only worked with an abstract repre-
sentation of the result. This way we can completely
avoid nested TEX runs (the ones triggered by Meta-
Post). This also works ok in Mark II mode.

Using a persistent MetaPost run and piping data
into it is not the final solution if only because the
terminal log becomes messed up too much, and also
because intercepting errors becomes very messy. In
the end we need a proper library approach, but the
experiments demonstrated that we needed to go this
way: handling hundreds of complex graphics that
hold typeset paragraphs (being slanted and rotated
and more by MetaPost), took mere seconds com-
pared to minutes when using independent MetaPost
runs for each job.

Characters

Because LuaTEX is UTF based, we need a different
way to deal with input encoding. For this purpose
there are callbacks that intercept the input and con-
vert it as needed. For ConTEXt this means that the
regime-related modules get Lua-based counterparts.
As a prelude to advanced character manipulations,
we already load extensive Unicode and conversion
tables, with the benefit of being able to handle case
handling with Lua.

The character tables are derived from Unicode
tables and Mark II ConTEXt data files, and gener-
ated using mtxtools. The main character table is

MKII–MKIV

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 223

pretty large, and this made us experiment a bit with
efficiency. It was in this stage that we realized that
it made sense to use precompiled Lua code (using
luac). During format generation we let ConTEXt
keep track of used Lua files and compile them on
the fly. For a production run, the compiled files
were loaded instead.

Because at that stage LuaTEX was already a
merge between pdfTEX and Aleph, we had to deal
with pretty large format files. Thus, on 2006-09-18
the ConTEXt format with the English user interface
amounted to:

luatex pdftex xetex aleph
9 552 042 7 068 643 8 374 996 7 942 044

One reason for the large size of the format file is
that the memory footprint of a 32-bit TEX is larger
than that of good old TEX, even with some of the
clever memory allocation techniques used in Lua-
TEX. After some experiments where size and speed
were measured Taco decided to compress the format
using level 3 zip compression. This brilliant move
lead to the following sizes on 2006-10-23:

luatex pdftex xetex aleph
3 135 568 7 095 775 8 405 764 7 973 940

The first zipped versions were smaller (around 2.3
meg), but in the meantime we moved the Lua code
into the format and the character related tables take
some space.

Debugging

In the process of experimenting with callbacks I
played a bit with handling TEX error information.
An option is to generate an HTML page instead of
the usual blob of text on the terminal.

Playing with such features gives us an impression
of what kind of access we need to TEX’s internals. It
also formed a starting point for conversion routines
and a mechanism for embedding Lua code in HTML

pages generated by ConTEXt.

File I/O

Replacing TEX’s input and output handling is non-
trival. Not only is the code quite interwoven in the
Web2C source, but there is also the KPSE library to
deal with. This means that quite a few callbacks are
needed to handle the different types of files. Also,
there is output to the log and terminal to deal with.

Getting this done took us quite some time and
testing and debugging was good for some headaches.
The mechanisms changed a few times, and TEX and
Lua code was thrown away as soon as better solu-
tions came around. Because we were testing on real
documents, using a fully loaded ConTEXt we could
converge to a stable version after a while.

Getting this I/O stuff done is tightly related to
generating the format and starting up LuaTEX. If
you want to overload the file searching and I/O han-
dling, you need overload as soon as possible. Be-
cause LuaTEX is also supposed to work with the
existing KPSE library, we still have that as fallback,
but in principle one could think of a KPSE free ver-
sion, in which case the default file searching is lim-
ited to the local path and memory initialization also
reverts to the hard coded defaults. A complication
is that the soure code has KPSE calls and references
to KPSE variables all over the place, so occasionally
we run into interesting bugs.

Anyhow, while Taco hacked his way around the
code, I converted my existing Ruby based KPSE

variant into Lua and started working from that
point. The advantage of having our own I/O handler
is that we can go beyond KPSE. For instance, since
LuaTEX has, among a few others, the zip libraries
linked in, we can read from zip files, and keep all
TEX related files in TDS compliant zip files as well.
This means that one can say:

\input zip::somezipfile::somefile.tex

\input zip://some.zip/subdir/somefile.tex

and use similar references to access files. Of course
we had to make sure that KPSE like searching in
the TDS (standardized TEX trees) works smoothly.
There are plans to link the curl library into LuaTEX,
so that we can go beyond this and access network
repositories.

Of course, in order to be more or less KPSE

and Web2C compliant, we also need to support this
paranoid file handling, so we provide mechanisms for
that as well. In addition, we provide ways to create
sandboxes for system calls.

Getting to intercept all log output (well, most
log output) was a problem in itself. For this I used
a (preliminary) XML based log format, which will
make log parsing easier. Because we have full con-
trol over file searching, opening and closing, we can
also provide more information about what files are
loaded. For instance we can now easily trace what
TFM files TEX reads.

Implementing additional methods for locating

Hans Hagen

224 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

and opening files is not that complex because the
library that ships with ConTEXt is already prepared
for this. For instance, implementing support for:

\input http://example.net/somefile.tex

involved just a few lines of code, most of which deals
with caching the files. Because we overload the
whole I/O handling, this means that the following
works ok:

\placefigure

{http handling}

{\externalfigure

[http://www.pragma-ade.com/show-gra.pdf]

[page=1,width=\textwidth]}

Other protocols, like FTP, are also supported, so one
can say:

\typefile {ftp://anonymous:@ctan.org/\

tex-archive/systems/knuth/lib/plain.tex}

On the agenda is playing with databases, but by
the time that we enter that stage linking the curl

libraries into LuaTEX should have taken place.

Verbatim

The advance of LuaTEX also permitted us to play
with a long standing wish for catcode tables, a mech-
anism to quickly switch between different ways of
treating input characters. An example of a place
where such changes take place is verbatim (and, in
ConTEXt, when dealing with XML input).

We had already encountered the phenomena that
when piping back results from Lua to TEX, we
needed to take care of catcodes so that TEX would
see the input as we wished. Earlier experiments
with applying \scantokens to a result and thereby
interpreting the result conforming the current cat-
code regime was not sufficient or at least not handy
enough, especially in the perspective of fully expand-
able Lua results. To be honest, \scantokens was
rather useless for this purposes due to its pseudo file
nature and its end-of-file handling but in LuaTEX
we now have a convenient \scantextokens which
has no side effects.

Once catcode tables were in place, and the rel-
evant ConTEXt code adapted, I could start playing
with one of the trickier parts of TEX programming:
typesetting TEX using TEX, or verbatim. Because
in ConTEXt verbatim is also related to buffering and

pretty printing, all these mechanism were handled
at once. It proved to be a pretty good test case for
writing Lua results back to TEX, because anything
you can imagine can and will interfere (line endings,
catcode changes, looking ahead for arguments, etc).
This is one of the areas where Mark IV code will
make things look more clean and understandable,
especially because we could move all kind of post-
processing (needed for pretty printing, i.e. syntax
highlighting) to Lua.

Pretty printing 1000 small (one line) buffers and
5000 simple \type commands perform as follows:

TEX normal TEX pretty Lua normal Lua pretty

buffer 2.5 (2.35) 4.5 (3.05) 2.2 (1.8) 2.5 (2.0)

inline 7.7 (4.90) 11.5 (7.25) 9.1 (6.3) 10.9 (7.5)

Between braces the runtime on Taco’s more modern
machine is shown. It’s not that easy to draw con-
clusions from this because TEX uses files for buffers
and with Lua we store buffers in memory. For inline
verbatim, Lua calls bring some overhead, but with
more complex content, this becomes less noticeable.
Also, the Lua code is probably less optimized than
the TEX code, and we don’t know yet what benefits
a Just In Time Lua compiler will bring.

XML

One interesting result is that the first experiments
with XML processing don’t show the expected gain
in speed. This is due to the fact that the ConTEXt
XML parser is highly optimized. However, if we want
to load a whole XML file, for instance the formal
ConTEXt interface specification cont-en.xml, then
we can bring down loading time (as well as TEX
memory usage) down from multiple seconds to a
blink of an eye. Experiments with internal mappings
and manipulations demonstrated that we may not so
much need an alternative for the current parser, but
can add additional, special purpose ones.

We may consider linking XSLTPROC into Lua-
TEX, but this is yet undecided. After all, the prob-
lem of typesetting does not really change, so we may
as well keep the process of manipulating and type-
setting separated.

Multipass data

Those who know ConTEXt a bit will know that it
may need multiple passes to typeset a document.
ConTEXt not only keeps track of index entries, list
entries, cross references, but also optimizes some of

MKII–MKIV

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 225

the output based on information gathered in previ-
ous passes. Especially so-called “two-pass data” and
positional information put some demands on mem-
ory and runtime. Two-pass data is collapsed in lists
because otherwise we would run out of memory (at
least this was true years ago when these mechanisms
were introduced). Positional information is stored
in hashes and has always put a bit of a burden on
the size of a so-called utility file (ConTEXt stores all
information in one auxiliary file).

These two datatypes were the first we moved to
a Lua auxiliary file and eventually all information
will move there. The advantage is that we can use
efficient hashes (without limitations) and only need
to run over the file once. And Lua is incredibly fast
in loading the tables where we keep track of these
things. For instance, a test file storing and reading
10 000 complex positions takes 3.2 seconds runtime
with LuaTEX but 8.7 seconds with traditional pdf-
TEX. Imagine what this will save when dealing with
huge files (400 page 300 Meg files) that need three or
more passes to be typeset. And, now we can without
problems bump position tracking to the millionth
decimal place.

4 Initialization revised

Initializing LuaTEX in such a way that it does what
you want it to do your way can be tricky. This has to
do with the fact that if we want to overload certain
features (using callbacks) we need to do that before
the originals start doing their work. For instance,
if we want to install our own file handling, we must
make sure that the built-in file searching does not
get initialized. This is particularly important when
the built in search engine is based on the KPSE li-
brary. In that case the first serious file access will
result in loading the ls-R filename databases, which
will take an amount of time more or less linear with
the size of the TEX trees. Among the reasons why
we want to replace KPSE are the facts that we want
to access zip files, do more specific file searches, use
HTTP, FTP and whatever comes around, integrate
ConTEXt specific methods, etc.

Although modern operating systems will cache
files in memory, creating the internal data struc-
tures (hashes) from the rather dumb files take some
time. On the machine where I was developing the
first experimental LuaTEX code, we’re talking about
0.3 seconds for pdfTEX. One would expect a Lua
based alternative to be slower, but it is not. This
may be due to the different implementation, but
for sure the more efficient file cache plays a role

as well. So, by completely disabling KPSE, we can
have more advanced I/O related features (like read-
ing from zip files) at about the same speed (or even
faster). In due time we will also support progname
(and format) specific caches, which speeds up load-
ing. In case one wonders why we bother about a
mere few hundreds of milliseconds: imagine frequent
runs from an editor or sub-runs during a job. In such
situation every speed up matters.

So, back to initialization: how do we initialize
LuaTEX. The method described here is developed
for ConTEXt but is not limited to this macro pack-
age; when one tells TEXexec to generate formats us-
ing the --luatex directive, it will generate the Con-
TEXt formats as well as mptopdf using this engine.

For practical reasons, the Lua based I/O handler
is KPSE compliant. This means that the normal
texmf.cnf and ls-R files can be used. However,
their content is converted in a more Lua friendly
way. Although this can be done at runtime, it makes
more sense to do this in advance using the luatools
utility. The files involved are:

input raw input runtime input /
fallback

ls-R files.luc /
files.lua

texmf.lua temxf.cnf configuration.luc /
configuration.lua

In due time luatools will generate the directory list-
ing itself (for this some extra libraries need to be
linked in). The configuration file(s) eventually will
move to a Lua table format, and when a texmf.lua

file is present, that one will be used.

luatools --generate

This command will generate the relevant data-
bases. Optionally you can provide --minimize

which will generate a leaner database, which in turn
will bring down loading time to (on my machine)
about 0.1 sec instead of 0.2 seconds. The --sort

option will give nicer intermediate (.lua) files that
are more handy for debugging.

When done, you can use luatools roughly like
kpsewhich, for instance to locate files:

luatools texnansi-lmr10.tfm

luatools --all tufte.tex

You can also inspect its internal state, for in-
stance:

Hans Hagen

226 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

luatools --variables --pattern=TEXMF

luatools --expansions --pattern=context

This will show you the (expanded) variables from
the configuration files. Normally you don’t need to
go that deep into the belly.

The luatools script can also generate a format
and run LuaTEX. For ConTEXt this is normally done
with the TEXexec wrapper, for instance:

texexec --make --all --luatex

When dealing with this process we need to keep
several things in mind:

• LuaTEX needs a Lua startup file in both ini
and runtime mode
• these files may be the same but may also be
different
• here we use the same files but a compiled one
in runtime mode
• we cannot yet use a file location mechanism

A .luc file is a precompiled Lua chunk. In order to
guard consistency between Lua code and tex code,
ConTEXt will preload all Lua code and store them in
the bytecode table provided by LuaTEX. How this is
done is another story. Contrary to these tables, the
initialization code can not be put into the format,
if only because at that stage we still need to set up
memory and other parameters.

In our case, especially because we want to over-
load the I/O handler, we want to store the startup
file in the same path as the format file. This means
that scripts that deal with format generation also
need to take care of (relocating) the startup file.
Normally we will use TEXexec but we can also use
luatools.

Say that we want to make a plain format. We
can call luatools as follows:

luatools --ini plain

This will give us (in the current path):

120,808 plain.fmt

2,650 plain.log

80,767 plain.lua

64,807 plain.luc

From now on, only the plain.fmt and plain.luc

file are important. Processing a file

test \end

can be done with:

luatools --fmt=./plain.fmt test

This returns:

This is luaTeX, Version 3.141592-0.1-alpha-

20061018 (Web2C 7.5.5)

(./test.tex [1])

Output written on test.dvi (1 page, 260 bytes).

Transcript written on test.log.

which looks rather familiar. Keep in mind that at
this stage we still run good old Plain TEX. In due
time we will provide a few files that will making
work with Lua more convenient in Plain TEX, but
at this moment you can already use, for instance,
\directlua.

In case you wonder how this is related to Con-
TEXt, well only to the extent that it uses a couple
of rather generic ConTEXt related Lua files.

ConTEXt users can best use TEXexec which will
relocate the format related files to the regular engine
path. In luatools terms we have two choices:

luatools --ini cont-en

luatools --ini --compile cont-en

The first case uses context.lua as the startup
file. This Lua file creates the cont-en.luc runtime
file. In the second case, luatools will create a cont-

en.lua file and compile that one. An even more
specific call would be:

luatools --ini --compile \

--luafile=foo.lua cont-en

luatools --ini --compile \

--lualibs=foo1.lua,foo2.lua cont-en

This call does not make much sense for ConTEXt.
Keep in mind that luatools does not set up user
specific configurations, for instance the --all switch
in TEXexec will set up all patterns.

I know that it sounds a bit messy, but till we have
a more clear picture of where LuaTEX is heading
this is the way to proceed. The average ConTEXt
user won’t notice those details, because TEXexec will
take care of things.

Currently we follow the TDS and Web2C conven-
tions, but in the future we may follow different or
additional approaches. This may as well be driven

MKII–MKIV

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 227

by more complex I/O models. For the moment ex-
tensions still fit in. For instance, in order to support
access to remote resources and related caching, we
have added to the configuration file the variable:

TEXMFCACHE = $TMP;$TEMP;$TMPDIR;$HOME;\

$TEXMFVAR;$VARTEXMF;.

5 An example: CalcMath

introduction

For a long time TEX’s way of coding math has dom-
inated the typesetting world. However, this kind
of coding is not that well suited for non-academics,
such as schoolchildren. Often kids do know how to
key in math because they use advanced calculators.
So, when a couple of years ago we were implement-
ing a workflow where kids could fill in their math
workbooks (with exercises) on-line, it made sense to
support so-called “Texas Instruments” math input.
Because we had to parse the form data anyway, we
could use [[and]] as math delimiters instead of $.
The conversion took place right after the form was
received by the web server.

By combining Lua with TEX, we can do the con-
version from calculator math to TEX immediately,
without auxiliary programs or complex parsing us-
ing TEX macros.

TEX

In a ConTEXt source one can use the \calcmath

command, as in:

The strange formula

\calcmath{sqrt(sin^2(x)+cos^2(x))}

boils down to ...

One needs to load the module first, using:

\usemodule[calcmath]

Because the amount of code involved is rather
small, eventually we may decide to add this support
to the Mark IV kernel.

XML

Coding math in TEX is rather efficient. In XML

one needs way more code. Presentation MathML

provides a few basic constructs and boils down to
combining those building blocks. Content MathML

is better, especially from the perspective of applica-
tions that need to interpret the formulas. It permits
for instance the ConTEXt content MathML handler
to adapt the rendering to cultural driven needs. The
OpenMath way of coding is like content MathML,
but more verbose with fewer tags. Calculator math
is more restrictive than TEX math and less verbose
than any of the XML variants. It looks like this:

<icm>sqrt(sin^2(x)+cos^2(x))</icm> test

And in display mode:

<dcm>sqrt(sin^2(x)+cos^2(x))</dcm> test

Speed

This script (which you can find in the ConTEXt dis-
tribution as soon as the Mark IV code variants are
added) is the first real TEX related Lua code that
I’ve written; before this I had only written some
wrapping and spell checking code for the SCITE ed-
itor. It also made a nice demo for a couple of talks
that I held at usergroup meetings. The script has
a lot of expressions. These convert one string into
another. They are less powerful than regular expres-
sions, but pretty fast and adequate. The feature I
miss most is alternation like (l|st)uck but it’s a
small price to pay. As the Lua manual explains:
adding a POSIX compliant regexp parser would take
more lines of code than Lua currently does.

On my machine, running this first version took
3.5 seconds for typesetting 2500 times the previously
shown square root of sine and cosine. Of this, 2.1
seconds were spent on typesetting and 1.4 seconds
on converting. After optimizing the code, 0.8 sec-
onds were used for conversion. A stand alone Lua
takes .65 seconds, which includes loading the in-
terpreter. On a test of 25 000 sample conversions,
we could gain some 20% conversion time using the
LuaJIT just in time compiler.

Unicode and multilingual typesetting with X ETEX

Jonathan Kew
SIL International
Horsleys Green
High Wycombe HP14 3XL
England
jonathan_kew (at) sil dot org

This extended abstract demonstrates how ex-
tending TEX to natively handle the Unicode char-
acter set greatly simplifies the task of multilingual
and multi-script typesetting. Because all characters
of all the world’s scripts are included in a single stan-
dard, it is not necessary to convert external encod-
ings to a special internal representation, or to man-
age multiple input encodings for different languages,
and any combination of scripts and languages can be
freely mixed in a single document — even in a single
line of text. The X ETEX extension of TEX makes it
simple to use Unicode throughout, from input text
to hyphenation tables and font access.

In addition to adopting Unicode as the stan-
dard character encoding, X ETEX has built-in sup-
port for modern font technologies (TrueType, Open-
Type, AAT), including glyph layout behavior de-
fined in font tables. This means that complex scripts
such as Indic and Arabic can be typeset with no
special font setup and configuration. For example,
using an off-the-shelf Arabic font, whether from a
major vendor or a free font developer, involves no
complex conversion processes or the creation of an
“alphabet soup” of .tfm, .vf, .ocp, .map, .enc,
.fd, etc. files; just drop the .otf or .ttf file into
the computer’s Fonts directory, and select the type-
face in a TEX document.

Including Arabic in a LATEX document can then
be as simple as declaring the font to be used:
\usepackage{fontspec}

\newfontinstance{\arfont}[Script=Arabic]

{Scheherazade}

% for in-line Arabic we need R-L control

\newenvironment{ar}

{\beginR\arfont}{\endR}

To include ǽ̑Ǩˈͫا Ⱥʦͫا in a document, we can just
enter \begin{ar} ... \end{ar} in the source text,
with Unicode Arabic text within the ar environment
(not shown here because cmtt does not include Ara-
bic characters).

For extended passages of Arabic, one additional
factor needs to be taken into account: the overall
paragraph direction should be made right-to-left, so

ҨҞ͇ن، Βҙҏا Ǜ΀ا ǽ͎ اǍͫاردة واǇ̈Ǩʥͫت اǍ˙ʥͫق ɼ͎Ǉ˜̑ Ƚʓ˳ʓͫا Ɏ̤ Ǉʶن Β͵ا ɡ˜ͫ
اǨͫاΑي اΑو ɬ̈ǚͫا اΑو ɼˉˬͫا اΑو ȫ˶ʤͫا اΑو اͫˬǍن اΑو Ǩˀ˶ˈͫا ȇʒʶ̑ ǩʉʉ˳ʓͫǇ͛ ،ǩʉʉ˳̒ اΑي دون
اΑي اΑو اͫ˳ҨҞʉد اΑو اǨʔͫوة اΑو ǽ͇Ǉ˳ʓ̣ Βҙҏا اΑو ǽ˶̈́Ǎͫا ɡ Α̿ҙҏا اΑو ،Ǩ ΐ̥ا راΑي اΑي اΑو ǽ̵Ǉʉʶͫا

واͫ˶Ǉʶء. اǇ̣Ǩͫل ɬʉ̑ ɼ͘Ǩˏ̒ ɼ Α̈ا دون ،Ǩ̥ΐا Ƚ̀و
ǽ͵Ǎ͵Ǉ˙ͫا اΑو ǽ̵Ǉʉʶͫا Ƚ̀Ǎͫا ɷ̵Ǉ̵Αا ǩʉʉ˳̒ اΑي Ǉ˶΀ك ̈˜Ǎن ɬˬ͎ ̒˙ǚم Ǉ˳͇ ًҨҞˁ͎و
ɼˈ˙ʒͫا ɑˬ̒ اΑو ǚˬʒͫا Ǜ΀ا Ǉ͛ن Ǎ̵اء اͫˏǨد Ǉ́ʉͫΒا ǽ˳ʓ˶̈ ǽʓͫا ɼˈ˙ʒͫا اΑو ǚˬʒͫ ǽͫوǚͫا اΑو
Αҙҏي ɼˈ̀Ǉ̥ ɷ̒دǇʉ̵ Ȉ͵Ǉ͛ اΑو ǽ̒اǛͫا ɨ˜ʥͫǇ̑ Ƚʓ˳ʓͲ Ǩʉ͈ اΑو ɼ̈Ǉ̿Ǎͫا Ȉʥ̒ اΑو ًҨҞ˙ʓʶͲ

اͫ˙Ǎʉد. ɬͲ ǚʉ͘

Figure 1: Arabic text typeset by X ETEX using the min-
imal declarations shown in the text

that the paragraph indent and alignment of the last
line behave as expected:

% simple environment for R-L paragraphs

\newenvironment{ArabicPar}

{\everypar={\setbox0\lastbox \beginR

\box0 \arfont}}{}

This environment allows Arabic paragraphs to
be properly laid out, as in figure 1.

Because X ETEX uses Unicode text and fonts,
rather than a complex collection of macros to pro-
vide the script support, it is trivial to include other
scripts such as Japanese, Devanagari, or many oth-
ers in the same document. All we need is an appro-
priate Unicode font that covers the required charac-
ter repertoire:

% Japanese, with proper line-breaking

\newfontinstance{\japfont}

{Hiragino Kaku Gothic Pro}

\newenvironment{Japanese}

{\XeTeXlinebreaklocale "jp"

\XeTeXlinebreakskip0pt plus 1pt

\japfont}{}

% Hindi

\newfontinstance{\devfont}{Devanagari MT}

\newenvironment{Hindi}

{\devfont}{}

With these declarations, we can set Japanese
and Hindi just as easily as Arabic. Figure 2 shows
two examples using fonts included as standard with

228 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Unicode and multilingual typesetting with X ETEX

すべて人は、人種、皮膚の色、性、言語、宗教、政
治上その他の意見、国民的もしくは社会的出身、財
産、門地その他の地位又はこれに類するいかなる自由
による差別をも受けることなく、この宣言に掲げるす
べての権利と自由とを享有することができる。
さらに、個人の属する国又は地域が独立国であ

ると、信託統治地域であると、非自治地域であると、又
は他のなんらかの主権制限の下にあるとを問わず、そ
の国又は地域の政治上、管轄上又は国際上の地位に
基ずくいかなる差別もしてはならない。

सभी को इस घोषणा ņ सिĭनeहत सभी अeधकारƘ और
आज़ाeदƘ को ĲाĴत करī का हक़ ž और इस मामř ņ जाeत, वणƨ,
ƒलग, भाषा, धमƨ, राजनीeत या अĭय eवचार-Ĳणाली, eकसी ċश
या समाज eवषƞश ņ जĭम, सŋपिă या eकसी Ĳकार की अĭय
मयƌदा आeद © कारण ľदभाव का eवचार न eकया जाŏगा।

इस© अeतeर¯त, चाż कोीई ċश या Ĳċश ŵवतĭद हो,
सƫरिǘत हो, या ŵवशासन रeहत हो या पeरिमत ĲभƲसăा वाला
हो, उस ċश या Ĳċश की राजनƢeतक, ǘƞǮीय या अĭतरƌŰǖीय
िŵथeत © आधार पर वहƊ © eनवाeसƘ © Ĳeत कोई फ़रक़ न रहा
जाएगा।

Figure 2: Japanese and Hindi text set by X ETEX











α = f(z)

β = f(z2)

γ = f(z3)











{

x = α2
− β

y = 2γ

}

p1(n) = lim
m→∞

∞
∑

ν=0

(

1− cos2m(ν!nπ/n)
)

൞ߙ = 𝑓(ݖ)ߚ = 𝑓(ݖଶ)ߛ = 𝑓(ݖଷ) ൢ ቊ ݔ = ଶߙ − ݕߚ = ߛ2 ቋ
𝑝ଵ(𝑛) = lim௠→ஶ

ஶ෍ఔୀ଴൫1 − cosଶ௠(𝜈!௡𝜋∕𝑛)൯
Figure 3: Math displays in Computer Modern (with custom encodings and multiple fonts) and Cambria Math (a
single Unicode font, with no .tfm, etc.), typeset from the same source text

Mac OS X; similar results are obtained with Open-
Type fonts available on Windows, GNU/Linux, and
other systems.

A more thorough implementation of script and
language switching should of course also change hy-
phenation patterns, quote-mark styles, and other ty-
pographic niceties according to the language in use.
These minimal examples show how easily multilin-
gual fonts can be used; producing high-quality ty-
pography in varying scripts may require additional
refinements.

Ongoing work on X ETEX includes some exper-
imental features to support the use of OpenType
math fonts, which can contain a huge collection of

math alphabets (italic, bold, blackboard, fraktur,
script, etc.) and symbols, all encoded according to
the Unicode standard. Forthcoming Microsoft prod-
ucts will include the Cambria Math font, and other
projects such as the STIX fonts can be expected
to support the same OpenType standard for math
metrics. X ETEX aims to be able to use such fonts
directly, without needing to create custom-encoded
subfonts, .tfm files, etc., and the current status of
these features will be demonstrated. A couple of ex-
amples from The TEXbook are shown in figure 3, in
both the original Computer Modern and Unicode-
compliant Cambria Math fonts.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 229

The New Font Project: TEX Gyre

Hans Hagen
Pragma ADE, Holland
pragma (at) wxs dot nl

Jerzy B. Ludwichowski
Nicholas Copernicus University, Toruń, Poland
Jerzy.Ludwichowski (at) uni dot torun dot pl

Volker RW Schaa
GSI, Darmstadt, Germany
v.r.w.schaa (at) gsi dot de

http://www.gust.org.pl/e-foundry/tex-gyre

Abstract

In this short presentation, we will introduce a new project: the “LM-ization”
of the free fonts that come with TEX distributions. We will discuss the project
objectives, timeline and cross-LUG funding aspects.

1 Introduction

The New Font Project is a brainchild of Hans Ha-
gen, triggered mainly by the very good reception
of the Latin Modern (LM) font project by the TEX
community. After consulting other LUG leaders,
Bogus law Jackowski and Janusz M. Nowacki, aka
“GUST type.foundry”, were asked to formulate the
project.

The next section contains its outline, as pre-
pared by Bogus law Jackowski and Janusz M. No-
wacki. The remaining sections were written by us.

2 Project outline

Our aim is to prepare a family of fonts, equipped
with a broad repertoire of Latin diacritical charac-
ters, based on the freely available good quality fonts.
We think of an “LM-ization” of freely available fonts,
i.e., providing about as many diacritical characters
per font as we prepared for the Latin Modern font
package (ca. 400 characters) which would cover all
European languages as well as some non-European
ones (Vietnamese, Navajo).

Since the provided character sets would be so
close, such “LM-ized” fonts would work with all the
TEX packages that the LM fonts work with, which
would ease their integration. The result would be
distributed, like the LM fonts, in the form of Post-
Script Type 1 fonts, OpenType fonts, MetaType1
sources and the supporting TEX machinery.

We would like to emphasize that the preparing
of fonts in the OpenType format is an important

aspect of the project. OpenType fonts are becom-
ing more and more popular, they are Unicode-based,
can be used on various platforms and claim to be a
replacement for Type 1 and TrueType fonts. More-
over, Type 1 fonts were declared obsolete by Adobe
a few years ago.

Since TFM format is restricted to 256 distinct
character widths, it will still be necessary to prepare
multiple metric and encoding files for each font. We
look forward to an extended TFM format which will
lift this restriction and, in conjunction with Open-
Type, simplify delivery and usage of fonts in TEX.

We especially look forward to assistance from
pdfTEX users, because the pdfTEX team is working
on the implementation on the support for OpenType
fonts.

An important consideration from Hans Hagen:
“In the end, even Ghostscript will benefit, so I can
even imagine those fonts ending up in the Ghost-
script distribution.”

The idea of preparing such font families was
suggested by the pdfTEX development team. Their
proposal triggered a lively discussion by an infor-
mal group of representatives of several TEX user
groups — notably Karl Berry (TUG), Hans Hagen
(NTG), Jerzy Ludwichowski (GUST), Volker RW

Schaa (DANTE) — who suggested that we should
approach this project as a research, technical and
implementation team, and promised their help in
taking care of promotion, integration, supervising
and financing.

230 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

The New Font Project: TEX Gyre

The amount of time needed to carry out the
task depends on the number of fonts to be included
in the collection, but it can be safely estimated that
a 4-font family (regular, italic, bold, and bold italic)
can be prepared within 1–2 months, depending on
the state of original material), which, for the col-
lection of fonts mentioned below, would mean that
the project can be accomplished within about two
years. Assuming that the launch of the project could
be made in the middle of 2006, the conclusion of the
first stage of the project might be expected by the
end of 2008.

The following fonts are presently considered
worthy of enhancement:

1. The collection of 33 basic PostScript fonts, do-
nated by URW++ and distributed with Ghost-
script, consisting of eight 4-font families:

• URW Gothic (i.e., Avant Garde)

• URW Bookman

• Century Schoolbook

• Nimbus Sans (i.e., Helvetica)

• Nimbus Sans Condensed (i.e., Helvetica
condensed)

• Nimbus Roman (i.e., Times)

• Nimbus Mono (i.e., Courier)

• URW Palladio (i.e., Palatino)

and one single-font “family”:

• URW Chancery (i.e., Zapf Chancery)

(Symbol and Zapf Dingbats fonts are left out.)

2. Donated by Bitstream (4-font families):

• Charter

• Vera

3. Donated by Adobe (4-font family):

• Utopia

4. Other families donated by URW++:

• Letter Gothic

• URW Garamond

Perhaps other interesting free fonts will emerge in
the future.

As to the budget — for the fonts listed above —
there are altogether thirteen 4-font families and the
1-font URW Chancery. We would be satisfied if we
could get a support of 1,500 EUR per a 4-font family
and 500 EUR per a 1-font family. In the case of the
fonts listed above this adds up to 20,000 EUR. We
propose that the funding is made step-wise, i.e., the
payments are made after the release of an enhanced
family of fonts.

Obviously, there is scope for a second stage: the
fonts can be further developed, as one can think for

example of adding cap-small-caps, old style digits,
proportional digits, and more. Once the first stage
of the project is finished, we could embark on further
enhancements. This would be somewhat simpler,
but still a laborious task; we estimate the effort to
be about 60–70% of the first stage.

3 Funding

The project can be divided into three stages:

• stage 1: combining existing fonts into LM com-
patible layouts and identifying gaps

• stage 2: filling in the gaps

• stage 3: math companion fonts

For these the estimated fundings needed are:

• stage 1: around 20,000 EUR

• stage 2: around 15,000 EUR

• stage 3: unknown

The exact figure for the second stage depends
on what is needed and missing. We imagine the
project to be extended with additional stages in or-
der to bring more scripts into Open Type and/or to
clean up other fonts as well.

The current financial state of the project:

• TUG India: 2,000 USD for the first year of the
project and — if possible — a contribution for
the next year.

• CSTUG: 500 EUR per year for the project dura-
tion, and expenses directly connected with im-
plementing good Czech and Slovak support.

• NTG: 20% of the project costs, i.e., 4,000 EUR

for the first stage.

• DANTE: 7,500 EUR this year; additional fund-
ing will be proposed at the September user
group meeting.

• GUST: local infrastructure and expenses of font
developers.

• TUG: positive but the amount is yet unknown,
depends on contributions to the project fund,
more info later this year.

Since the first stage runs this year and next year
(start: May 2006) and since payments will take place
after delivery of each completed font family, we can
safely conclude that project expenses in 2006 can be
covered and given the above we can also be confident
that the rest of the first stage is secured.

The second stage is partly secured as well. We
will try to broaden funding as soon and as much as
possible. It would be good if this project can also
take care of the needs of Indian, Greek, Cyrillic,
Hebrew and Arab scripts, but we’ll have to see . . .

The suite of fonts will be officially presented on
a special font CD for members of user groups.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 231

Hans Hagen, Jerzy B. Ludwichowski and Volker RW Schaa

Figure 1: The TEX Gyre logotype

4 Co-ordination

This will done by DANTE e.V. in close co-operation
with (at least) NTG, GUST, and TUG.

5 Late-breaking news: the name of
the game

Nowhere above is explained the mysterious “TEX
Gyre” which appears in the title. After this paper,
consisting of the preceding sections, was presented
at the BachoTEX 2006 conference, a discussion on
how to name the collection of the New Font Project
fonts was started by Bogus law Jackowski. A collec-
tive name for the project itself as well as names for
the individual font families were looked for. In an-
other lively mail exchange among the above people
and others, between 23rd May 2006 and 5th June
2006, the final proposal was hammered out.

Some of the collective names proposed: TEX-
Modern, TEXSurge, TEXFountain, TEXSuper, TEX
Font Foundry, TEXelent, not to mention stranger
concoctions for individual families like TEXOnitalap
(Palatino reversed) or — for Bookman reversed —
TEXMankoob. A minimalist proposal of TEXF pre-
vailed for a while, then TEX Fountain Collection
fought against TEX Fount and even TEXFun was
proposed until TEX Gyre was coined by Karl Berry.

This was liked by Bogus law: it nicely plays with
the logotype he used in his presentations of the LM

project, Figure 1. It is meant to symbolize the nev-
erending striving for perfection as well as the “LM-
ization” of the families.

The reader might not have previously encoun-
tered the word “gyre”. For pleasure, here are a few
dictionary explanations and examples of use in lit-
erature and on the web.

• the Collins Dictionary of the English Language
defines “gyre” as:

– a circular or spiral movement or path

– a ring, circle, or spiral

• the Webster’s Third New International Dictio-
nary, Unabridged, says the following:

– to cause to turn around: revolve, spin,

whirl; to move in a circle or spiral

– circular motion by a moving body: rev-

olution; a circular or spiral form: ring,

vortex

– in Scottish: a malignant spirit or spook

• more entertaining nearby terms from Webster’s:

– gyre carline, in Scottish: witch, hag

– gyrencephalate: a group of higher mam-
mals: having the surface of the brain con-
voluted

• Wikipedia (http://en.wikipedia.org/wiki/

Gyre) reports this:

– a gyre is any manner of swirling vortex

– W. B. Yeats uses the word in many of his
poems, including “The Second Coming”

– Lewis Carroll used the word as a verb in
the opening stanza of his poem “Jabber-
wocky”:

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe;
All mimsy were the borogoves,
And the mome raths outgrabe.

defining it as “to go round and round like
a gyroscope”

• “The Widening Gyre”, home of slistuk, the UK

survival listserver (http://dnausers.d-n-a.

net/dnetIULU), describes itself as “A site for
the preparedness minded”

• Gyre, The Old Sow Whirlpool (http://www.

oldsowwhirlpool.com), the biggest whirlpool
in the Western Hemisphere, of over 70 meters
in diameter, on the border of Canada and the
United States, on the east coast of North Amer-
ica.

We will spare the reader’s patience by not pre-
senting the details of the discussion leading to the
names of the individual font families. The general
motivation when trying to find the names was that
people dealing with fonts are likely to be familiar

232 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

The New Font Project: TEX Gyre

with the original PostScript names, so names resem-
bling the original ones were desired.

We first tried to find the shortest English nouns
that have some relationship to the original Post-
Script names, with possibly positive or neutral con-
notations, but this proved futile. In the end, Latin
words were adopted. The result is presented in the
following table (check the meanings at, e.g., http:

//archives.nd.edu/latgramm.htm).

PostScript name
Original URW name OpenType name

TFM name root*

TeXGyreAdventor

URW Gothic L TeX Gyre Adventor

qag

TeXGyreBonum

URW Bookman L TeX Gyre Bonum

qbk

TeXGyreCursor

Nimbus Mono L TeX Gyre Cursor

qcr

TeXGyreHeros

Nimbus Sans L TeX Gyre Heros

qhv

TeXGyrePagella

URW Palladio L TeX Gyre Pagella

qpl

TeXGyreTermes

Nimbus Roman No9 L TeX Gyre Termes

qtm

TeXGyreSchola

Century Schoolbook L TeX Gyre Schola

qcs

TeXGyreChorus

URW Chancery L TeX Gyre Chorus

qzc

* For example, TFM files for the members of the
Pagella family are named qplr.tfm, qplri.tfm,

qplb.tfm, qplbi.tfm for the regular, italic, bold
and bold italic faces, respectively. Encodings will be
specified as a prefix such as ec-, as in Latin Modern.

The families listed in items 2, 3 and 4 of Sec-
tion 2 have not yet been given TEX Gyre names. We
are going to continue in the same spirit.

At the time of this writing (November, 2006),
the Pagella and Termes families are at version 1.00,
the Bonum family is at version 0.995 and should very
soon be fully released, i.e., arrive at version 1.00.
They can be found at http://www.gust.org.pl/

e-foundry/tex-gyre. There is more to the fonts
than was promised in Section 2:

• over 1100 glyphs are available, including Cyril-
lic (though this was just carried over from the
original without more ado);

• the complete Greek alphabet (for technical pur-
poses rather than typesetting in Greek) is in-
cluded — comments are welcome;

• cap-small-caps and old style digits are provided;
this was initially planned for the second stage
of the project.

Watch that space and enjoy!

P.S. X ETEX (http://scripts.sil.org/xetex), an
addition to the TEX family developed relatively re-
cently by Jonathan Kew, shows that the decision
to provide TEX Gyre OpenType font versions was
a good one: X ETEX already uses the OTF version
of the LM fonts. Now also the OTF TEX Gyre fonts
bring the advantages of this format to the TEX world
. . .

Jackowocky

’Twas brillig and the slithy Poles

Did gyre and gimble in the wabe

All mimsy were the borogoves

And the mome raths outgrabe

With apologies to Lewis Carroll (and Poland!)
— Chris Rowley

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 233

Outline font extensions for Arabic typesetting

Karel Ṕı̌ska
Institute of Physics, Academy of Sciences
182 21 Prague, Czech Republic
piska (at) fzu dot cz

Abstract

The contribution demonstrates applications of the programs FontForge (by
George Williams) and MetaType1 (by Bogus law Jackowski et al.) for develop-
ment and maintenance of outline versions of Arabic fonts and shows tools for
glyph transformations. Generating of stretchable glyphs is also discussed. Build-
ing of Type 1 fonts for Arabic typesetting with MetaType1 (“LM-ization”) is
under development process.

1 Introduction

The current text describes selected “technical tech-
niques” of creating, modifying and maintaining out-
line fonts for use with Arabic typography.

We start with some font adaptations and modi-
fications using FontForge for relatively simple glyph
transformations. Executing more complex changes
would be inefficient.

The next examples demonstrate representation
of glyphs in MetaType1 (in fact, it is METAPOST),
font modifications and some results of Type 1 fonts
dynamically generated by MetaType1.

2 Font transformations with FontForge

The open source font editor FontForge [15], devel-
oped by George Williams, contains many commands
for the creation and modification of fonts in numer-
ous standard formats. Along with its interactive
facilities, FontForge has a scripting language which
allows automatic batch processing. Thus, existing
fonts, e.g., Computer Modern Type 1 mathemat-
ical fonts, can be adapted into fonts oriented to
Arabic presentation by executing appropriate glyph
transformation commands. The example in fig. 1
demonstrates how to flip (reverse, mirror) a sym-
bol to achieve the effect described in the paper on
‘Dynamic Arabic Mathematical Fonts’ ([11], fig. 1)
in our Type 1 representation. The original sym-
bol (left) has been flipped horizontally (middle) and
then vertically (right):

#!/usr/local/bin/fontforge

Open("cmex10.pfb");

Select("summationtext");

HFlip(CharInfo("Width")/2); VFlip();

CorrectDirection();

SetFontNames("amcmex10",\

"ArabicComputerModern",\

Figure 1: Flip twice or rotate.

"ArabicMathCMEX10");

Generate("amcmex10.pfb","",0x240000);

no flex hints, hints, round,

no afm, no tfm

The identical transformation could be done by rota-
tion:

Select("summationtext");

Rotate(180);

3 Font development with MetaType1

MetaType1 [6], developed by Bogus law Jackowski,
Janusz M. Nowacki, and Piotr Strzelczyk, is a META-
POST-based package for producing, auditing, en-
hancing and otherwise handling outline PostScript
fonts in the Type 1 format. One part of the package
is a converter from Type 1 to MetaType1 source. A
practical approach to maintaining a font with Meta-
Type1 is to start from an existing Type 1 font or
from a font just converted into Type 1 (e.g., from
METAFONT sources). In the present case for Ara-
bic we can and want to use as a base (for further
modifications, extensions, etc.) the xnsh14 font in
the Naskhi style available from the ArabTEX distri-
bution [9].

The most important ideas of the MetaType1
package are:

234 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Outline font extensions for Arabic typesetting

• programmable font description in source form,
(the language is METAPOST with extensions for
font support);

• the glyphs are defined in their outline represen-
tation (the recommended approach);

• very simple definition of composite glyphs, es-
pecially glyphs with accents, which is significant
for all Latin fonts;

• automatic generation of glyph and metric files
(pfb, afm, tfm, pfm) from scratch;

• the glyphs are (may be and must be) denoted
by (PostScript) names, therefore the number of
glyphs is not limited, although the Type 1, tfm

output and encodings are restricted (no more
than 256 encoded characters available);

• the glyph definitions also contain metric data:
dimensions (width, height, depth, italic correc-
tion), ligatures, kerning pairs and other infor-
mation, to allow for easier further conversion
into OpenType or Type 3.

These features have been applied during the de-
velopment of the Latin Modern collection [7] and
other fonts produced by the authors. Similar “LM-
ization” could be executed for Arabic because there
is no fundamental difference between Latin accents
and Arabic diacritic marks.

The following example and fig. 2 illustrate pro-
ducing composite Arabic glyphs with MetaType1.
def mark_down(text glyh_acc_,glyh_,acc_) =

standard_introduce(glyh_acc_);

beginglyph(glyh_acc_);

use_glyph(glyh_);

use_glyph(acc_) % offset of the accent =

(round((wd.uni_name(glyh_)-wd.uni_name(acc_))/2),

dp.uni_name(glyh_)-ht.uni_name(acc_));

% recalculation of metrics

wd.uni_name(glyh_acc_)=wd.uni_name(glyh_);

ht.uni_name(glyh_acc_)=ht.uni_name(glyh_);

dp.uni_name(glyh_acc_)=dp.uni_name(glyh_)

-ht.uni_name(acc_)+dp.uni_name(acc_);

fix_hsbw(wd.uni_name(glyh_acc_),0,0);

endglyph;

enddef;

mark_down("bah")("bah_s")("one_dot_down");

mark_down("pah")("bah_s")("three_dots_down");

% definition of "mark_up" macro is similar

mark_up("tah")("bah_s")("two_dots_up");

The next example shows an excerpt from the
Type 1 representation in the readable form disas-
sembled by t1disasm from the t1utils package. The
dot mark in nun is omitted.

/nun.fin {

0 433 hsbw

-278 70 hstem

0 71 hstem

0 35 vstem

Figure 2: Composite glyphs: b — p — t.

356 36 vstem

451 67 rmoveto

-11 4 rlineto

-27 0 -19 13 -22 22 rrcurveto

-11 4 rlineto

-24 -67 rlineto

13 -38 6 -40 0 -40 rrcurveto

0 -13 -1 -12 -2 -13 rrcurveto

-49 -84 -78 -11 -34 0 rrcurveto

[...]

closepath

endchar

} ND

The result of conversion into the METAPOST/
MetaType1 representation (in an absolute coordi-
nate system!) is:
beginglyph(_nun.fin);

save p; path p[];

z0 0=(451,67);

z0 1=(440,71); z0 1a=(413,71); z0 2b=(394,84);

z0 2=(372,106);

z0 3=(361,110);

z0 4=(337,43); z0 4a=(350,5); z0 5b=(356,-35);

z0 5=(356,-75); z0 5a=(356,-88); z0 6b=(355,-100);

z0 6=(353,-113); z0 6a=(304,-197); z0 7b=(226,-208);

[...]

z0 21=(426,0);

p0=compose_path.z0(21); Fill p0;

fix_hstem(71)(p0) candidate_list(y)(0, 71);

[...]

standard_exact_hsbw("nun.fin");

endglyph;

And my subsequent conversion of the path def-
inition into relative coordinates, as it will be neces-
sary to eliminate the dependence on absolute coor-
dinate values:
def nunf_z(suffix nz) =

z.nz 0=(451,67);

z.nz 1=z.nz 0+(-11,4);

z.nz 1a=z.nz 1+(-28,0); z.nz 2b=z.nz 1a+(-17,12);

z.nz 2=z.nz 2b+(-23,23);

[...]

z.nz 7=z.nz 7b+(-34,0);

z.nz 7a=z.nz 7+(-61,0);

z.nz 8b=z.nz 7a+(-70,35);

[...]

z.nz 15=z.nz 15b+(111,0);

z.nz 15a=z.nz 15+(111,0);

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 235

Karel Ṕı̌ska

[...]

z.nz 22=z.nz 0;

enddef;

This path has been slightly modified and will be
further adapted in an extended stretchable defini-
tion of the letter nun in the final position (without
the dot) — see later.

The METAPOST macro definitions may define
glyphs or their parts, and we can use them to de-
scribe glyphs already present in a font or to compose
modified or new glyphs.

The transformations we saw in fig. 1 can be ex-
pressed in METAPOST to produce the same results:

numeric l,d; l:=wd._summationtext;

d=dp._summationtext;

% Horizontal Flip:

p0=compose_path.z0(22)

reflectedabout((l/2,0),(l/2,1));

correct_path_directions(p0)(p);

% Horizontal and Vertical Flip:

p1=compose_path.z0(22)

reflectedabout((l/2,0),(l/2,1))

reflectedabout((0,d/2),(1,d/2));

correct_path_directions(p1)(p);

% Rotation

p2=compose_path.z0(22)

rotated 180 shifted (l,d);

4 Glyph stretching with MetaType1

Azzeddine Lazrek et al., in the papers about type-
setting Arabic (RyDArab [12] and CurExt packages
[10] and dynamic fonts [11]), describe the use of dy-
namic Type 3 fonts and corresponding tfm, map and
enc files for generating final PostScript documents
with (LA)TEX and dvips. The supported version of
MetaType1 supports producing only Type 1 fonts,
and Type 1 (and also metric) files cannot be dy-
namic.

But tfm (as the RyDArab system does) and
Type 1 can be generated dynamically. As the next
consecutive step after generating metrics we can pro-
duce (dynamically with MetaType1) the Type 1 font
corresponding to the equivalent Type 3 font and sub-
stituting it.

The variable-width kashida is demonstrated in
fig. 3. The Type 3 commands from [11] were rewrit-
ten into METAPOST macros giving the similar com-
mands in Type 1 where, of course, each glyph should
have its own charstring definition. Glyphs, like met-
rics, can be generated on the fly for a given width.

Figure 3: Stretchable kashida in Type 1.

Figure 4: Stretchable glyph with an hrule filler.

Fig. 4 shows a primitive glyph elongation where
only a horizontal rule as the filler is inserted and
the right and left part of the glyph nun in the final
position (without dot) are shifted.

The following METAPOST commands and fig. 5
demonstrate a more sophisticated elongation algo-
rithm: the parameter addwx changes control points
and control vectors. The solution was inspired by
methods described by Daniel M. Berry [1]. Here we
have decided to preserve glyph heights and also their
right and left parts. Probably more complex outline
contour curves could be defined.

def nunf_z(suffix nz)(expr addwx) =

addwxa:=round(addwx/2);

z.nz 0=(451,67)+(addwx,0);

z.nz 1=z.nz 0+(-11,4);

z.nz 1a=z.nz 1+(-28,0); z.nz 2b=z.nz 1a+(-17,12);

[...]

z.nz 7=z.nz 7b+(-34,0)-(addwxa,0);

z.nz 7a=z.nz 7+(-61,0)-(addwxa,0);

z.nz 8b=z.nz 7a+(-70,35);

[...]

z.nz 15=z.nz 15b+(111,0)+(addwxa,0);

z.nz 15a=z.nz 15+(111,0)+(addwxa,0);

[...]

z.nz 22=z.nz 0;

enddef;

def nun_fin_v(suffix code)(expr addx) =

standard_introduce("nun.fin_v" & decimal(code));

wd._nun.fin_v.code:=wd._nun.fin+addx;

ht._nun.fin_v.code:=ht._nun.fin;

dp._nun.fin_v.code:=dp._nun.fin;

beginglyph(_nun.fin_v.code);

save p; path p[];

nunf_z(0)(addx); p0=compose_path.z0(21);

Fill p0;

standard_exact_hsbw("nun.fin_v" & decimal(code));

endglyph;

enddef;

nun_fin_v(300)(+300);

Figure 5: Stretchable glyph.

236 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Outline font extensions for Arabic typesetting

D. Berry [1] and A. Lazrek [11] propose to use
PostScript Type 3 fonts and W. Bzyl [2, 3] reintro-
duced Type 3 fonts and showed how to extend the
MetaType1 package to produce Type 3 (but it did
not find the support in recent MetaType1 distribu-
tions). For me the future of Type 3 fonts is not clear,
screen rendering algorithms for Type 3 are worse
than for other font formats, probably nobody is go-
ing to improve them, and I do not include Type 3
in my contribution.

5 Conclusion

I have no detailed information about commercial
and copyrighted products of Thomas Milo [13] (and
I do not have these products). I expect the develop-
ment and use of Arabic fonts will be discussed with
authors of packages for multilingual typesetting in-
cluding Arabic: Y. Haralambous [14], H. Fahmy [4],
K. Lagally [9], J. Kew [8], A. Lazrek, and others. I
have no support for integrating dynamically gener-
ated or stretchable fonts into TEX. Some new line
breaking and justification algorithms could be de-
veloped, for example, to spread the word box to a
specified width and then to generate dynamically
the appropriate glyph instance by demand on the fly
to composite a compound “ligature”. Or to produce
glyphs only in a restricted set of point sizes and ap-
ply some variant of a micro-typographic alignment
or justification as in pdfTEX [5].

This approach uses “small” (max. 256 glyphs)
tfm and pfb files. We could convert them into Open-
Type (as the LM fonts have been converted). But
I do not know: “Could we integrate Type 3 into
OpenType?” or “Is it possible to create dynamic
OpenType?”

A limitation to one direction, the current trend
towards a single, huge and static outline OpenType
font file (for each typeface in important point sizes),
may not be wise. It’s unlikely this will be the final
termination point of font development, and thus will
not be the best solution in the future development
of computer font technology.

References

[1] Daniel M. Berry. Stretching Letter and Slanted-
baseline Formatting for Arabic, Hebrew, and
Persian with ditroff/ffortid and Dynamic Post-
Script Fonts. Software—Practice & Experience,
29(15), 1417–1457, 1999.

[2] W lodzimierz Bzyl. Reintroducing Type 3 fonts
to the world of TEX. Proceedings of the
XII European TEX Conference, pp. 219–243,
Kerkrade, the Netherlands, 23–27 September
2001, 2001.

[3] W lodzimierz Bzyl. The Tao of Fonts, TUGboat
23(1):27–40, 2002.

[4] Hossam A. H. Fahmy. AlQalam for typeset-
ting traditional Arabic texts. In this volume,
pp. 159–166.

[5] Hàn Thé̂ Thành. Micro-typographic extensions
to the TEX typesetting system. TUGboat 21(4),
317–434, 2000.

[6] Bogus law Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk. Programming PostScript Type 1
Fonts Using MetaType1: Auditing, Enhancing,
Creating. EuroTEX 2003 Proceedings, TUGboat
24(3):575–581, 2003; ftp://bop.eps.gda.pl/

pub/metatype1.

[7] Bogus law Jackowski, Janusz M. Nowacki. En-
hancing Computer Modern with accents, ac-
cents, accents. TUGboat 24(1):64–74, 2003;
CTAN:/fonts/lm.

[8] Jonathan Kew. X ETEX, the Multilingual Lion:
TEX meets Unicode and smart font technolo-
gies. TUG 2005 Conference Proceedings, TUG-
boat 26(2):115–124, 2005.

[9] Klaus Lagally. ArabTEX — Typesetting Arabic
with vowels and ligatures. EuroTEX 92: Pro-
ceedings of the 7th European TEX Conference,
ed. J. Zlatuška, pp. 152–172, Brno, Czechoslo-
vakia, 1992.

[10] Azzeddine Lazrek. CurExt, typesetting
variable-sized curved symbols. EuroTEX 2003
Proceedings, TUGboat 24(3):323–327, 2003.

[11] Mostafa Banouni, Mohamed Elyaakoubi, and
Azzeddine Lazrek. Dynamic Arabic mathemat-
ical fonts. Preprints for the 2004 Annual Meet-
ing, Xanthi, Greece, pp. 48–53, 2004.

[12] Azzeddine Lazrek. RyDArab — Typesetting
Arabic mathematical expressions. TUGboat
25(2):141–149, 2004.

[13] Thomas Milo. ALI-BABA and the 4.0 Unicode
characters — Towards the ideal Arabic work-
ing environment. EuroTEX 2003 Proceedings,
TUGboat 24(3):502–511, 2003.

[14] Yannis Haralambous and John Plaice. Multilin-
gual Typesetting with Ω, a Case Study: Arabic.
Proceedings of the International Symposium on
Multilingual Information Processing, pp. 137–
154, Tsukuba, 1997.

[15] George Williams. Font creation with Font-
Forge. EuroTEX 2003 Proceedings, TUG-
boat 24(3):531–544, 2003; http://fontforge.

sourceforge.net.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 237

Arabic font building for LATEX

F. Mounayerji, M. A. Naal
Department of Computer Engineering
University of Aleppo, Syria
Fares_Mounayerji (at) hotmail dot com

Abstract

This contribution aims to describe a new solution for building arabic font for
LATEX. We focus on the font generation for Arabic calligraphy. This solution is
based on the determination of control points that gives precise METAFONT code
for the given Arabic font glyph. Using the METAFONT compiler, the new font is
compiled and finally installed on a LATEX distribution.

1 Introduction

The Arabic language is one of the ten most com-
monly used languages worldwide. Over 300,000,000
people living in the Arab world use this language in
everyday and official writing. This creates an im-
portant potential for Arabic text editor users.

LATEX is an elegant and advantageous typeset-
ting program and is strongly recommended for scien-
tific writing. Its capabilities and especially its math-
ematical capabilities are well known.

LATEX uses a logical structure or WYMIWYG

(What You Mean Is What You Get) concept in-
stead of WYSIWYG (What You See Is What You
Get), which makes LATEX unique in its approach
for building texts, and building structure-oriented
rather than formatting-oriented text, which reduces
errors and increases concentration on the idea of the
text.

There is a growing interest in globalizing LATEX
by supporting the most important languages all over
the world, and as we know, the Arabic language is
important and widely used, which generates a need
for even more extensive support than that of the ex-
isting ArabTEX and other Arabic support packages.
We also need to give the Arabic user of LATEX more
options, such as font selection, font adding, special
Arabic effects, etc.

Because of all the previous factors mentioned,
we see the importance to expand the support for this
important language.

2 LATEX Principles

2.1 What is LATEX?

LATEX is a programming language used to build large
text documents (e.g., books, articles, theses) presen-
tations, etc. We can also use the term LATEX for a

Figure 1: Simplified LATEX system structure

LATEX compiler. Figure 1 shows a simplified view of
the structure of LATEX processing.

2.2 What is a LATEX distribution?

A (LA)TEX distribution is a set of folders and files
containing a (LA)TEX compiler, in addition to sup-
porting tools such as a previewer, METAFONT com-
piler, and much more. Some LATEX distribution is
needed to run LATEX on a given machine; option-
ally, a front-end like TEXnicCenter or WinEdt can
also be used. LATEX is free and open source soft-
ware, which has led to an enormous number of dis-
tributions, but only a few of them are recognized
worldwide, such as MiKTEX on Microsoft Windows,

238 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Arabic font building for LATEX

MacTEX on Mac OS X, and teTEX which is usually
installed by default on Linux platforms.

Standard distributions follow the TDS (TEX Di-
rectory Structure) conventions, which describe how
to organize a distribution’s files and folders, and in
relation to our main subject of font files, the TDS

specifies where to put the font files such as .pk, .tfm

and .mf.

2.3 METAFONT

METAFONT is a font building programing language
used to build fonts for (LA)TEX. It has a special syn-
tax to do this, depending on the control points of
the letter and their ordering. A line is drawn pass-
ing between the control points, sometimes a straight
line, and sometimes a curved line [5].

3 The solution

Because of the importance of the Arabic language,
Arabic fonts are important too. Every user should
have the ability to design the font that he wants to
use with his distribution of LATEX. To achieve this
goal we built a solution that permits any character,
or actually any shape, to be processed in different
stages in order to achieve the font as the user wants
it to be. The main stages in achieving this goal are:

• drawing the font on paper,

• scanning the font as an image,

• analyzing the image,

• finding the relations between control points,

• and generating the METAFONTcode.

We will talk about each of these stages in detail in
the following sections.

3.1 Drawing the font on paper

This step is drawing the Arabic character like ð, �

or any other characters on paper, respecting Ara-
bic calligraphy. We don’t need to draw the double-
struck letter forms because there is an algorithm to
extract it from the standard form.1

3.2 Scanning the font

This will be a simple procedure of scanning the font
in order to enter it into the computer machine, and
deal with it as a simple colored image.2 We also
include applying some changes to the image to be
ready for the next step.

1 It is worth mentioning that we can build our font as a
dynamic font [2] by using the kashida, a curvilinear variable
lengthening of letters along the baseline.

2 Usually black and white, with the font being black and
the background white.

First stage Transform the image into a grayscale
image, and then into a black and white image.

Next stage Applying certain algorithms in order
to prepare the image for determining the con-
trol points, such as the contour algorithm for
the double-struck letter, and the skeleton al-
gorithm for the standard form, as we can see
in Figure 2.

Figure 2: Standard, skeleton and contour

3.3 Analyzing the image

This step will deal with the output image of the
previous step, and it will be responsible for two main
objectives:

• Determining the control points of the letter as
precisely as possible. Since these points will be
used later to build the METAFONT code, this
procedure is the main work here. We will scan
the image line by line until we find a black
point; this point will be the start of the let-
ter (generally but not always — the font could
be composed of lines and curves, separated or
connected). After that, we will move on those
curves and lines point by point, and during
this pass we will save the information that we
get about them in matrices, in order to be used
in a later stage for building the font as it ap-
pears in the image.

• Determining the path between those points is
very important here because we will lose the
original shape of the letter without knowing
the exact path between its control points.3

Figure 3 shows how we handle the standard case
by using the skeleton algorithm, and Figure 4 shows
how we handle the contour case or the double-struck
character.

3.4 Finding the relations between the
control points

This is an important step for simplifying the META-
FONT code, because many relations between the con-
trol points could be found. Simplifying will make the

3 The control points cannot be repeated but the path
points can be repeated.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 239

F. Mounayerji, M. A. Naal

Figure 3: Standard, skeleton and control points

Figure 4: Double-struck and control points

work for building the METAFONT file easier, and the
result more professional. Those relations can vary
from two points or more which have the same x or y,
to two points have a point which fall between them
in three cases:

• x3 = (x1 + x2)/2

• y3 = (y1 + y2)/2

• z3 = (z1 + z2)/2

3.5 Generating the METAFONT code

This step will include transforming the results of
the previous steps into code readable by the META-
FONT compiler. First of all we need to transform
the Cartesian coordinates of the solution environ-
ment into the Cartesian coordinates of the META-
FONTcompiler. Secondly we will have to transform
the points of the path into the METAFONT form.
And finally add the METAFONT instructions that
will draw the lines between the previous points.

3.6 Installing the new font

This step actually depends on the particular (LA)TEX
distribution, but we can specify the main stages in

a general way [1]. Assuming that the METAFONT

file is arab.mf:

• From the command line, run
mf ’\mode=ljfour; mode_setup; input arab.mf’

• The output files will be arab.tfm and
arab.600gf (or similar).4

• Now you still need to pack the gf file into a
usable format. You do so with this command:

gftopk arab.600gf arab.pk

• And that’s it! Your font is now available to
every LATEX document whose source is in the
same directory as the font files. I mean here
both file with the extensions .pk and .tfm.
We can also install it permanently, which is a
process that depends on the distribution [3].

References

[1] Christophe Grandsire, The METAFONT tutorial,
Version 0.33.

[2] Mostafa Banouni, Mohamed Elyaakoubi and
Azzeddine Lazrek, Dynamic Arabic Mathemati-
cal Fonts. Preprints for the 2004 Annual Meet-
ing, Xanthi, Greece, pp. 48–53, 2004.

[3] TUG Working Group on a TEX Directory Struc-
ture (TWG-TDS), A Directory Structure for
TEX Files, version 1.1, June 23, 2004.

[4] Azzeddine Lazrek, NasX Arabic literal symbols
font, May 2, 2004.

[5] Peter Flynn, Formatting information: A be-
ginner’s introduction to typesetting with LATEX,
2005.

[6] The UK TEX FAQ, Your 396 Questions An-
swered, version 3.15a, date 2005/11/29.

[7] Jeff Clark, LATEX Tutorial, revised February 26,
2002.

[8] Klaus Lagally, ArabTEX, Typesetting Arabic and
Hebrew, User Manual, Version 4.002, March 11,
2004.

4 The number 600 indicates that the precision is 600 dpi
(dots per inch).

240 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Everything we want to know about Font Resources

Chris Rowley
Open University, UK
c dot a dot rowley (at) open dot ac dot uk

Abstract

A brief discussion of Font Resources: subsystems that know how to ‘visualize’
a string of (Unicode) characters. We mention existing Font Resources, desired
capabilities for LATEX, and questions for further study.

1 Introduction

This article is based on my introduction to a dis-
cussion of font resources and their use that took
place towards the end of the TUG 2006 conference.
By that time, a lot of useful detailed information
(much of it correct!) about modern font resources
had been provided, both formally and informally,
to me by many delegates (whilst others, naturally,
assumed that we all knew everything before they
started talking).

I therefore decided to focus on more general
ideas about the philosophy behind the new technol-
ogy and how this fits with the classical approach of
TEX-based typesetters.

The bibliography points to a few of the many
relevant web resources.

2 LATEX-related work

There are many specific questions to be asked and
decisions to be made before building a LATEX [4]
system for automated selection from the available
choices offered by modern font resources, due to the
large range of variants within what was once a single
font. We shall also need to extend the font-changing
commands; work on glyph selection in math mode
has been started already. Most of these ideas are
being pioneered by Will Robertson in his work with
X ETEX [8], particularly the fontspec [3] package.

3 What is a Font Resource ?

For current purposes I shall use the following infor-
mal answer. A Font Resource is a subsystem that
‘knows how to visualize a string of (Unicode) charac-
ters’. Note that this is not quite the same as saying
that a font resource is itself capable of rendering the
character string; thus, for example, a TEX .tfm file
is a Font Resource although it contains only metric
information, not rendering information.

So is that all a Font Resource can do? And
must it be able to visualise any text string? These
are two questions that do not need precise answers,
I pose them only to get you thinking!

An important extra property of any Font Re-
source that can be really useful to a typesetter (ei-
ther human or software) is flexibility and the major
advantage of modern fonts is that they have a lot
more abilities than classical fonts. Equally impor-
tant for flexible Font Resources is that they should
be self-aware: they need to know about these abili-
ties and how much flexibility they provide.

4 What can we ask of a Font Resource ?

A flexible Font Resource needs to be self-aware so
that the font selection system of a typesetter (such
as LATEX’s NFSS) can ask it about its abilities. Typi-
cal modern fonts can be queried in this way by type-
setting software such as X ETEX (although the inter-
face is not very intuitive), so it will be possible to
extend the NFSS to exploit their added flexibility.

5 Exemplary types of Font Resource

This is not a classification of types of Font Resource
but merely some more-or-less mythical examples of
the range of possibilities that are now, or maybe
soon, available.

simple just stacks aligned glyphs in one writing di-
rection (maybe ‘returns the advance width’)

TEX tfm . . . adds (a fixed set of)

• kerns

• ligatures (mandatory, aesthetic, Knuthian)

• italic corrections

AAT/OpenType . . . adds (the possibility of)

• (importantly) script plus language

• (usefully) choice of ligatures

• (for fun fonts) choice of swashes, etc.

• . . . many other things (see Apple Advanced
Typography [1] and the Microsoft/Adobe
version [5])

FreeType 2 . . . use various font resource types [2]

Ω2 . . . adds many more features (see the article by
Yannis Haralambous in these proceedings)

ParaType . . . adds line-breaking and justification
(perhaps?)

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 241

Chris Rowley

6 The discussion

At this point some well-known gurus were dragged
onto the platform to answer questions and provoke
further discussion. We started off with some rhetor-
ical questions that allowed the panelists to remove
many of my misunderstandings. Particular thanks
are due to Yannis Haralambous, Taco Hoekwater,
Jonathan Kew & Arthur Reutenauer.

The questions:

• What is a Font Resource?

• Should there be a clear interface between Font
Resource and the Typesetter?

The discussion ranged far and wide, drifting
into political as well as technical areas. Here are
some highlights.

• Clarification of the various parts of current font
technology and their relationship to aspects of
micro-formatting — including paragraph mak-
ing!

• Font Resources may do a lot . . . and the type-
setter may need control too; but there is no
clear division between them.

• Currently, middleware is important for typeset-
ting, especially for complex scripts: examples
are Pango [6] and Uniscribe [7].

• Important: a modern typesetter should be
able to use whatever Font Resources are avail-
able and not need specialised formats such as
.tfm files.

7 The questions continue

Here are some further questions which are still open.
I hope they will stimulate further discoveries leading
to articles in TUGboat.

7.1 Questions for a Font Resource

• What can be asked about a visualisation?

• What can be asked about the abilities?

• How practical is it to query the tables in a mod-
ern Font Resource?

– Is it inefficient?

– Can all information be extracted?

7.2 Handling deficiencies in
a Font Resource

How should a typesetting system best handle a mod-
ern font resource that does not explicitly provide
all the information required by a typesetter (such
as accurate vertical metrics or italic corrections)?
Some possibilities, assuming that the extra infor-
mation can be calculated or found elsewhere:

• Add to existing tables using standard methods:
do these exist?

• Add extra tables in the Font Resource: is this
feasible?

• Produce external tables that enhance/override
internals: is this feasible?

Such activities also raise legal and moral ques-
tions about the licencing terms of modern font re-
sources: should there be a distinction between the
rendering information (the glyphs themselves), the
metric information and the ‘use information’ (i.e.,
whether to use ligatures and other features).

Finally some questions for (or demands of) font
designers:

• What tables are needed for high quality type-
setting?

• How should the glyphs, metrics and other in-
formation be enhanced/extended/corrected?

References

[1] http://www.apple.com/macosx/features/

fontbook

[2] http://www.freetype.org

[3] http://www.ctan.org/tex-archive/

macros/xetex/latex/fontspec

[4] http://www.latex-project.org

[5] http://www.adobe.com/uk/type/opentype

[6] http://www.pango.org

[7] http://www.microsoft.com/typography/

developers/uniscribe

[8] http://scripts.sil.org/xetex

242 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Names in BibTEX and MlBibTEX

Jean-Michel Hufflen

LIFC (FRE CNRS 2661)
University of Franche-Comté
16, route de Gray
25030 Besançon Cedex
France
hufflen (at) lifc.univ-fcomte.fr

http://lifc.univ-fcomte.fr/~hufflen

Abstract

Within the bibliographical entries managed by BibTEX, the bibliography proces-
sor usually associated with LATEX, person and organisation names are specified
with a rough syntax, whose details are not very well known. Likewise, the features
related to formatting names within bibliography styles are often viewed as ob-
scure. We explain these points in detail, giving some cases difficult or impossible
to handle with BibTEX. Then we show how these problems can be solved within
MlBibTEX, our reimplementation of BibTEX focusing on multilingual features
and using an extension of XSLT as the language for bibliography styles.
Keywords BibTEX, MlBibTEX, Bibliographies, bibliography styles, specifying
and formatting person names.

1 Introduction

Specifying meta-information related to persons is a
difficult problem within databases from a general
point of view. It is well known that the parts con-
stituting the name of a person are insufficient to
characterise only one person. However, we do not go
thoroughly into this point and only focus on names
we can find within bibliographical databases. Man-
aging this information is crucial: it may be used for
searching bibliographical databases, and many bib-
liography styles sort references w.r.t. alphabetical
order of authors or editors.

When users typeset documents with the LATEX
word processor [15], searching bibliographical data-
bases for citations and assembling references into a
‘Bibliography’ section, put at the end of a printed
document, is usually done with the BibTEX bib-
liography processor [20]. Formats for names are
defined as part of bibliography styles: first names
may be abbreviated or put in extenso, they can be
written before or after the last name, . . . BibTEX
uses a rough syntax for specifying authors’ and ed-
itors’ names within bibliographical entries. This
syntax is suitable for simple cases, and powerful
since it includes many interesting and useful fea-
tures, sometimes not well known due to their com-
plexity. In addition, some of these features are doc-
umented only partially, as far as we know, although
many details are given in the second edition of the

LATEX Companion [16, § 13.2.2]. Likewise, the prim-
itive format.name$ function, which formats names
within BibTEX’s bibliography styles [19] is power-
ful but uses quite complicated patterns, documented
only partially. In fact, only a small fraction of its
expressive power is used in practice.

So we begin by describing BibTEX’s syntax for
names, with its advantages and limitations. We
also show how names are formatted, as precisely as
possible. Then we explain how these points have
been improved within MlBibTEX (for ‘MultiLingual
BibTEX) [7], our reimplementation focusing on mul-
tilingual aspects. Last, we discuss aspects of inter-
nationalization.

Reading this article requires good knowledge of
BibTEX as an end-user, and a bit of experience with
bibliography styles, that is, a good knowledge of the
notions described in [16, § 13.6]. We will recapitu-
late more technical points, however.

2 How names are processed by BibTEX

2.1 Names’ components

Inside AUTHOR and EDITOR fields, BibTEX allows the
specification of successive names, separated by the
‘and’ keyword, as shown in Figure 1. A large list
of names that is not typed in extenso is ended with
‘and others’:

{Karl-Heinz Scheer and Clark Darlton and

others}

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 243

Jean-Michel Hufflen

@BOOK{feist-wurts1991,

AUTHOR = {Raymond E. Feist and

Janny Wurts},

TITLE = {Servant of the Empire},

PUBLISHER = {Grafton Books},

ADDRESS = {London},

YEAR = 1991}

Figure 1: Example of a BibTEX bibliographical entry.

A name consists of four components: First (for
a first name), von (for a particle), Last (for a last
name), and Junior (for a suffix), and recognizes
them in the following possible syntaxes [20, § 4]:

(i) First von Last

(ii) von Last, First

(iii) von Last, Junior, First

As suggested by the word capitalisation used within
this terminology —originating from BibTEX— the
words belonging to the von field are supposed to
begin with a lowercase character, whereas the words
belonging to the First and Last fields are supposed
to begin with an uppercase character, e.g.:

Catherine Crook
︸ ︷︷ ︸

First

de
︸︷︷︸

von

Camp
︸ ︷︷ ︸

Last

The rule common to these three syntaxes: if there
is only one word, it is taken as the Last part, even if
this word does not begin with an uppercase letter,
e.g.:

{-}ky
︸ ︷︷ ︸

Last

If we consider the (i) syntax, two other rules are
used when a name is split into its components:

• the von part takes as many words as possible,
provided that its first and last words begin with
a lowercase letter, e.g.:1

Jean
︸ ︷︷ ︸

First

de la Fontaine du
︸ ︷︷ ︸

von

Bois Joli
︸ ︷︷ ︸

Last

let us notice that the First part can be empty,
whereas the Last part cannot:

jean de la fontaine du bois
︸ ︷︷ ︸

von

joli
︸ ︷︷ ︸

Last

• if all the words begin with an uppercase letter,
the last word is the Last component, and the
First part groups the other words, e.g.:

1 Only the following name is imaginary (although it is
derived from a French poet’s name). All the others— some
being pseudonyms—name real persons, even if some look
strange. That is, the problems raised by BibTEX in the ex-
amples we give may arise in real situations.

Kim Stanley
︸ ︷︷ ︸

First

Robinson
︸ ︷︷ ︸

Last

If we consider the (ii) or (iii) syntaxes, the von part
takes as many words as possible, provided that only
its last word begins with a lowercase letter, e.g.:

De la Fontaine du
︸ ︷︷ ︸

von

Bois Joli
︸ ︷︷ ︸

Last

, Jean
︸ ︷︷ ︸

First

2.2 Using braces

If the first letter of a word is surrounded by braces,2

it is supposed to be uppercase, unless it follows a
TEX command and is lowercase. Here are some ex-
amples:

• Alfred Elton {van}
︸ ︷︷ ︸

First

Vogt
︸ ︷︷ ︸

Last

• Alfred Elton
︸ ︷︷ ︸

First

{\relax van}
︸ ︷︷ ︸

van

Vogt
︸ ︷︷ ︸

Last

(\relax is a dummy command [14, Ch. 24]),
• Alfred Elton {\relax Van}

︸ ︷︷ ︸

First

Vogt
︸ ︷︷ ︸

Last

Remark 1 Non-letter characters are ignored when
BIBTEX determines whether the first letter of a word
is lower- or uppercase. That is why it considers
‘{-}ky’ (see above) to begin with a lowercase letter,
ignoring the hyphen sign between braces.

As mentioned in [16, § 13.2.2], enclosing some
characters between braces serves four purposes:

• treating accented letters —accented by means
of TEX commands —as single letters:

Christian Vil{\‘{a}}

• treating multiple words as one, especially when
a component (Last) consists of a single word by
default:

Michael
︸ ︷︷ ︸

First

{Marshall Smith}
︸ ︷︷ ︸

Last

this feature being commonly used for specifying
an organisation name, which consists of only a
Last part:

EDITOR =

{{Science Fiction and Fantasy

Writers of America, Inc.}}

• treating ‘and’ as an ordinary word3 (see the ex-
ample above);
• delimiting substrings which should not change

case when the change.case$ function [16, Ta-
ble 13.8] is applied.4

2 In the following, we do not consider the braces that
might delimit the value of a BibTEX field. ‘Braces’ should
be understood as ‘additional braces’ in such a case.

3 ‘and’ is viewed as a keyword only at the topmost level,
not surrounded by additional braces.

4 . . . although this use is rare within AUTHOR or EDITOR

fields. See more details in Figure 3.

244 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

Names in BibTEX and MlBibTEX

"Charles" text.length$ pushes #7 % ‘#’ begins a number.
"{Ch}arles" text.length$ #7

"{\relax Ch}arles" text.length$ #6

"{ \relax Ch}arles" text.length$ #15 % Space after ‘{’.
"Charles" #1 #1 substring$ "C"

"{Ch}arles" #1 #1 substring$ "{" % Unbalanced brace!
"{\relax Ch}arles" #1 #2 substring$ "{\"

"B{\’a}rt{\’o}k" #-2 #3 substring$ "’o}"

"Charles" #1 text.prefix$ "C"

"{Ch}arles" #1 text.prefix$ "{C}"

"}{Ch}arles" #1 text.prefix$ "}{C}"

"{\relax Ch}arles" #1 text.prefix$ "{\relax Ch}"

"{ \relax Ch}arles" #8 text.prefix$ "{ \relax }"

"{ \relax Ch}arles" #3 text.prefix$ "{ \r}" % Truncate command name!

Figure 2: Examples of functions dealing with strings in bst.

2.3 Words vs tokens

In the above subsections, ‘word’ has been used in
the common sense, that is, ‘an independent unit of
the vocabulary of a language’ [18], so that adjacent
words are syntactically separated by space charac-
ters or punctuation signs. In fact, if we wish to char-
acterise this notion in the sense of successive tokens
handled by BibTEX inside a string representing a
name, the separators are whitespace characters5 —
space, tabulation, line feed, form feed, and carriage
return —unbreakable space characters, specified by
‘~’ as in TEX, and the hyphen sign ‘-’. Such a choice
allows BibTEX to process all the components of a
first name more easily when it is abbreviated, even
if these tokens are separated by hyphen signs, as in
French:

Jean-Pierre Andrevon

However this design choice causes strange behaviour
to happen in some particular cases:

Jean-Claude Smit
︸ ︷︷ ︸

First

- le
︸︷︷︸

von

-B{\’e}n{\’e}dicte
︸ ︷︷ ︸

Last

whereas this name has only First and Last parts, as
suggested by the single space character. Of course,
this name should be specified by:

Jean-Claude
︸ ︷︷ ︸

First

{Smit-le-B{\’e}n{\’e}dicte}
︸ ︷︷ ︸

Last

More precisely, BibTEX retains only the first sepa-
rator between two tokens, omitting any additional
separators from the output:

Edgar␣␣Rice =⇒ Edgar␣Rice

Edgar␣~Rice =⇒ Edgar␣Rice

Edgar~␣Rice =⇒ Edgar~Rice

Karl-␣Heinz =⇒ Karl-Heinz

5 This terminology originates from the Scheme program-
ming language [11, § 6.3.4]: such characters are recognised by
the char-whitespace? function of this language.

It also omits any separator before the first token.

Remark 2 That is why we put the hyphen sign be-
tween braces in ‘{-}ky’ (see above). If the braces
are removed, the hyphen disappears.

Now let us assume that there is no von part.

• If the Last part follows the ‘~’ sign, the ‘~’ is
omitted:

Kenneth
︸ ︷︷ ︸

First

~Robeson
︸ ︷︷ ︸

Last

• If the Last part follows the ‘-’ character, the
word before belongs to this part, too:

Louis-Albert
︸ ︷︷ ︸

Last

2.4 Applying a bibliography style

In general, we can see that strings are not handled
homogeneously in bst, the language used to write
BibTEX’s bibliography styles [19]. Let us consider
the three following bst functions:

S text.length$

S I text.prefix$

S I1 I2 substring$

where S is a string and I, I1, I2 are integers. The
bst language is based on handling a stack, so the
arguments are passed to a function by putting their
values before the function name.6 These three func-
tions respectively push (return) the length of S; the
first I characters of S; and I2 characters of S, start-
ing at position I1 if I1 > 0, or ending at this posi-
tion if I1 < 0, in which case positions are counted
backward from the end of the string.

Braces do not count when the text.length$

function is called, but they do for the substring$

function, as shown by the examples of Figure 2. We

6 MlBibTEX’s compatibility mode allows users to see how
this stack works [9].

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 245

Jean-Michel Hufflen

"frank" =⇒ "FRANK"

"{frank}" =⇒ "{frank}"

"{\relax frank}" =⇒ "{\relax FRANK}"

"{\relax {frank}}" =⇒ "{\relax {FRANK}}"

"{\relax {{frank}}}" =⇒ "{\relax {{FRANK}}}"

"{\a frank \b f}" =⇒ "{\a FRANK \b F}"

"{ \relax frank}" =⇒ "{ \RELAX FRANK}"

"{{\relax frank}}" =⇒ "{{\relax frank}}"

Figure 3: ... "u" case.change$ results.

also see that the substring$ function may push a
string where braces are unbalanced. Braces do not
count for the text.prefix$ function, either, and we
can observe strange behaviour:

• if an unbalanced left or right brace is encoun-
tered, it is put into the string pushed,
• right braces closing unbalanced left braces are

added at the end of the string pushed.

The substring$ function counts each character, in
the sense that any typed character is relevant, in-
cluding enclosed braces and characters surrounded
by braces. Other functions — text.length$ and
text.prefix$—consider that if a left brace is im-
mediately followed by a ‘\’ character, the complete
group between the left enclosing brace and the corre-
sponding right one is viewed as one single character.
Such a group is called special character within
BibTEX’s terminology [16, pp. 768–769]. This dis-
tinction between special characters and other groups
surrounded by braces explains some results shown in
Figure 2. Anyway, let us notice that this distinction
is recognised by the change.case$ function:

S S0 change.case$

—where S is a string— converts S to lowercase
(resp. uppercase) if S0 is the string "l" (resp. "u"),
and pushes the result. If S0 is "t", S is converted to
lowercase except for the first character or the first
group if S begins with a left brace. As shown by the
examples given in Figure 3, the non-command parts
of a special character are processed like ordinary
characters — even if some subparts are surrounded
by braces —whereas all the other groups surrounded
by braces are left unchanged by the change.case$

function. That recalls what is written in [16, p. 768]
about protecting some uppercase letters . . . pro-
vided that the first character after a left brace is
not a ‘\’ character.

Let us now go back to the operations returning
subparts of a string. We see that this data struc-
ture is handled with difficulty in the bst language,
except for simple strings. If we consider values of
the AUTHOR and EDITOR fields, the usual way to deal

"Frank Frazetta" =⇒ "Frazetta, +Frank:"

"{-}ky" =⇒ "{-}ky, :"

Figure 4: ... "{ll}, {+ff}:" format.name$ results.

with them is the format.name$ function, used as
follows:

S1 I S2 format.name$

where S1,S2 are strings and I is a natural number.
This function formats the Ith name of S1 according
to the pattern given by S2, and pushes the result.
The pattern is written as follows:

• if characters are not enclosed by braces, they
are unconditionally inserted into the result;
• at the first level:

– if braces enclose other characters than let-
ters, they also are unconditionally inserted
into the result;

– if braces enclose letters other than ‘f’, ‘j’,
‘l’, ‘v’ (for ‘First ’, ‘Junior ’, ‘Last ’, ‘von’),
it is an error;7

– a single letter (‘f’, etc.) inserts an abbre-
viation of the corresponding part (see be-
low), while a doubled letter (‘ff’) inserts
the complete part.

Examples are given in Figure 4.
Let us say that ‘f’ or ‘ff’, ‘j’ or ‘jj’, . . . are

called subpatterns.8 Each part is processed as fol-
lows:

• if this part is absent within the person name,
the complete specification surrounded by braces
is ignored;
• if this part is not empty:

– all the characters before the subpattern
are inserted before the corresponding part;

– if the subpattern is immediately followed
by a group surrounded by braces, this last
group —which may be empty— replaces
the separator between two adjacent tokens
of the corresponding part;

– the other characters following the subpat-
tern are inserted after the corresponding
part.

If ‘~’ characters are put at the end of characters
following a subpattern or a separator replacement:

• one ‘~’ causes a space character (‘␣’) to be in-
serted after the name’s part,

7 If an error occurs, such a bst function pushes a dummy
value: an empty string in this case.

8 This terminology is used within the source files of
MlBibTEX’s compatibility mode.

246 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

Names in BibTEX and MlBibTEX

last => Le Clerc De La Herverie first => Jean-Michel-Georges-Albert

"{ll}" =⇒ Le~Clerc De La~Herverie "{f}" =⇒ J.-M.-G.-A

"{ll/}" =⇒ Le~Clerc De La~Herverie/ "{f/}" =⇒ J.-M.-G.-A/

"{ll/,}" =⇒ Le~Clerc De La~Herverie/, "{f/,}" =⇒ J.-M.-G.-A/,

"{ll{/},}" =⇒ Le/Clerc/De/La/Herverie, "{f{/},}" =⇒ J/M/G/A,

"{ll{},}" =⇒ LeClercDeLaHerverie, "{f{},}" =⇒ JMGA,

"{ll~}" =⇒ Le~Clerc␣De␣La~Herverie␣ "{f~}" =⇒ J.-M.-G.-A

"{ll~~}" =⇒ Le~Clerc De La~Herverie~ "{f~~}" =⇒ J.-M.-G.-A~

"{ll{~}~}" =⇒ Le~Clerc~De~La~Herverie␣ "{f{~}~}" =⇒ J~M~G~A␣

"{ll{~}~~}" =⇒ Le~Clerc~De~La~Herverie~ "{f{~}~~}" =⇒ J~M~G~A~

"{ll{/},~}" =⇒ Le/Clerc/De/La/Herverie,␣ "{f{/},~}" =⇒ J/M/G/A,␣

"{ll{/}~,~}" =⇒ Le/Clerc/De/La/Herverie~,␣ "{f{/}~,~}" =⇒ J/M/G/A~,␣

"{ll{/}~~,~~}" =⇒ Le/Clerc/De/La/Herverie~~,~ "{f{/}~~,~~}" =⇒ J/M/G/A~~,~

last => Zeb Chillicothe Mantey last => Cousin De Grainville

"{ll}" =⇒ Zeb~Chillicothe~Mantey "{ll}" =⇒ Cousin De~Grainville

Figure 5: Examples of using patterns with the format.name$ function of BibTEX.

• if there are several ‘~’ characters, the first is
dropped, while the others are inserted after the
name’s part.

At other places, tilde characters are inserted like or-
dinary characters.9

Let us assume that there are several tokens for
a name’s part. By default —without separator re-
definition —a ‘~’ character is inserted:

• always between the next-to-last and last tokens,

• between the first and second tokens: if there are
three or more tokens, and the first token is one
or two letters long, a special character or period
belonging to an abbreviated word is counted as
one letter.

All these cases are summarised in the examples given
in Figure 5.

A token is abbreviated by retaining only its first
letter. So, other characters inserted before this first
letter may be dropped. When BibTEX abbreviates a
name part, it recognises special characters, as shown
in Figure 6. But it does not insert braces for other
groups surrounded by braces, as the text.prefix$

function would do: compare the examples given in
Figures 2 & 6 for the string {Ch}arles. Last, let us
mention that by default— without separator redefi-
nition — this first letter is followed by a period char-
acter and the separator—a space, ‘~’ or ‘-’ charac-
ter— put after this token. This mark after the first
letter is not appended after the abbreviation of the
last token. Some of these rules might seem strange
if we think of them only in relation to abbreviat-
ing first names, but let us recall that some styles

9 Let us notice that, in contrast, any occurrence of the
space character is processed w.r.t. a ‘standard way’.

use initials of the von and Last parts as labels of
bibliographical references. For example, the alpha

bibliography style uses the {v{}}{l{}} pattern to
generate these labels.

2.5 Criticism

The functions provided by BibTEX work fine in most
practical cases, in the sense that most BibTEX end-
users accept the results of the standard bibliography
styles. However, the cases not ‘naturally’ included
in this framework are difficult to handle. A simple
example is given by abbreviations. Let us consider
the two following names:

Edgar Rice Burroughs
Jon L White

The {f.} subpattern would cause a period to be
appended after ‘R’ in ‘E. R. Burroughs’, but in-
correctly abbreviates the second example to ‘J. L.

White’.10 The {f} subpattern correctly puts ‘J. L
White’ in the second case, but then a period is miss-
ing after Edgar Rice Burroughs’ middle name. In
addition, it is difficult to specify a particular ab-
breviation for a middle name only. For example,
Nicholas deBelleville Katzenbach’s middle name is
correctly abbreviated to ‘deB.’.

From a general point of view, some workarounds
exist, but may be viewed as hacks. Often they con-
sist in inserting LATEX commands into fields’ values.
For example:

• a command deferring the right case [16, p. 767]:

Maria {\MakeUppercase{d}e La}
︸ ︷︷ ︸

von

Cruz

10 Anyway, [2, § 14.4] recommends the systematic use of
a final period. But such a sign is supposed to replace some
letters omitted.

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 247

Jean-Michel Hufflen

Charles =⇒ C

{Ch}arles =⇒ C

{\relax Ch}arles =⇒ {\relax Ch}

{-}ky =⇒ k

Figure 6: Abbreviating first names in bst.

so BibTEX interprets ‘{de...}’ as the begin-
ning of the von part, because the ‘d’ letter is
lowercase, even though LATEX will typeset ‘De’
when the command is processed;
• inserting a dummy accent command [13, § 251]:

{\relax Ph}ilippe Djian

in order for this French first name to be abbre-
viated to ‘Ph.’ because French digraphs — ‘ch’
is a digraph for ‘[▼]’— should not be reduced.

Other ‘tricks’ are more subtle. For example,
standard bibliography styles put a space character
between the von and Last part. That is suitable for
most cases, e.g., ‘Lyon Sprague de Camp’, but not
when the particle ends with an elision, e.g., ‘Guy
d’Antin’. Testing whether or not the von part ends
with an apostrophe character (“ ’ ”) is tedious, be-
cause the bst language does not provide a natural
way to store part of a name in a variable. In ad-
dition, let us not forget that there may be several
names inside an AUTHOR or EDITOR field, which com-
plicates the search of the accurate indices. One so-
lution is:

Guy d’\unskip Antin

—see [14, Ch. 24] about the \unskip command —
but this is not fully satisfactory: it works only if
we are sure that the text.prefix$ function is not
applied to the von part for a prefix length greater
than 2. Likewise, the change.case$ function should
not be used (cf. supra). Protecting this \unskip

command by braces:

Guy d’{\unskip} Antin

would solve these problems but annihilate the effect
of this command. The insertion of an \aftergroup

command [14, Ex. 24.7], deferring some tokens until
the end of a group is processed:

Guy d’{\aftergroup\unskip} Antin

is useless because the offending space character fol-
lows the brace closing the group with \aftergroup.
And this space, not surrounded by braces, is needed
when BibTEX separates the von and Last parts. The
best solution —cf. [14, Ch. 24]— is:

Guy d’{\aftergroup\ignorespaces} Antin

in the sense that it works in most cases, provided
that the abbreviated first name is not to be followed
by a delimiter, as in ‘[Guy d’]Antin’.

<author>

<name>

<personname>

<first abbrev="L. Sprague">

Lyon Sprague

</first>

<von>de</von>

<last>Camp</last>

</personname>

</name>

<and/>

<name>

<personname>

<first>David</first>

<last>Drake</last>

</personname>

</name>

</author>

Figure 7: The internal representation of names in
MlBibTEX.

As mentioned above, the format.name$ func-
tion allows good control of separators between the
tokens belonging to a same part. However, some
limitations exist. For example, let us consider:

Ursula Kroeber {Le~Guin}

By default — that is, using the {ff} pattern —an
unbreakable space character will be inserted between
the ‘actual’ first name (‘Ursula’) and the middle
name (’Kroeber’). If we would like to allow a line-
break after the first name because the bibliography
will be typeset on a small text width, we can do that
by the ‘{ff{ }}’ pattern. But such a redefinition is
impossible for the two tokens of the last name (‘Le
Guin’), surrounded by braces. In such a case, the
name may be specified by:

Le Guin, Ursula Kroeber

but braces are needed for an organisation name:

AUTHOR = {{Hidalgo~Trading~Company}}

and redefining the separator between words becomes
impossible by means of the format.name$ function
since BibTEX considers there to be only one token.
We can program this operation with the functions
substring$ and *—concatenation of two strings
[16, Table 13.8]— but it is very tedious.

From our point of view, the use of additional
braces belongs to BibTEX’s ‘philosophy’, but is com-
plicated in the sense that some functions process
braced groups opening a TEX command differently
from other groups surrounded by braces. Often this
design choice is good — for example, it allows the
change.case$ function to change the case of ac-
cented letters typed by means of TEX commands —

248 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

Names in BibTEX and MlBibTEX

<nbst:template match="von">

<nbst:variable name="the-part" select="."/>

<nbst:value-of select="$the-part"/>

<nbst:if test=’substring($the-part,string-length($the-part),1) != """’>

<!-- ‘"’ is a predefined entity for an apostrophe character [21, p. 48]. -->

<nbst:text> </nbst:text>

</nbst:if>

</nbst:template>

Figure 8: Putting a particle’s name down.

but other operations are difficult to perform. The
insertion of (LA)TEX commands seems to us to be
just a workaround. It works since BibTEX is used
in conjunction with LATEX. That was true when
BibTEX came out,11 but is not always the case nowa-
days. BibTEX may be used to generate bibliogra-
phies displayed on Web pages written in HTML,12

by means of a converter like BibTEX2HTML [3]. An-
other example, closer to LATEX, is Hans Hagen’s for-
mat ConTEXt [4]. Using LATEX commands within
values associated with BibTEX fields can cause trou-
ble when these programs run (some examples con-
cerning ConTEXt and solutions are given in [10]).

3 How names are processed by MlBibTEX

3.1 Implementation issues

We suggest that the components of a name should be
directly accessible by means of different placehold-
ers within the functions of a bibliography style. As
explained in [7], parsing bibliographical entries from
a .bib file results in an XML13 tree in MlBibTEX.14

The organisation of our elements is a revision and
extension of the DTD15 given in [6], influenced by
BibTEX. Concerning names, fields related to au-
thors and editors are split into subtrees, as shown
in the example of Figure 7. In fact, this figure is a
‘pretty-printing’ of such a tree: in reality, the con-
tents of text nodes — e.g., first, von, last—are
‘space-normalised’, that is, stripped of leading and
trailing whitespace characters, multiple consecutive
occurrences of whitespace characters being replaced
by a single space character. Likewise, most of the
blank nodes16 pictured in Figure 7 do not exist in

11 Initially, BibTEX was designed to work with Scribe [22].
12 HyperText Markup Language. See [17] for an intro-

duction.
13 EXtensible Markup Language. See [21] for an intro-

duction.
14 More precisely, an XML tree represented in Scheme using

the conventions of SXML (Scheme implementation of XML)
[12].

15 Document Type Definition. A DTD defines a document
markup model [21, Ch. 5].

16 Anonymous text nodes whose contents are only white-
space characters; two examples can be found around the and

the ‘actual’ representation. Besides, this representa-
tion uses Latin 1 encoding,17 and some special char-
acters of LATEX are processed; for example, the ‘~’
character is replaced by an unbreakable space char-
acter (numbered 160 in Latin 1). In addition, some
LATEX commands are expanded; for example, accent
commands applied to suitable letters are replaced
by the corresponding accented letters included in
Latin 1 [9].

Bibliography styles are written using the nbst18

language, close to XSLT,19 a language of transfor-
mations used for XML texts. This nbst language is
described in [7].

An example written using nbst is given in Fig-
ure 8. If the von part of a name exists, this template
is invoked, the contents of this von part is written
down. This part is followed by a space character,
unless its last character is an apostrophe. This tem-
plate allows the two examples given above — ‘Lyon
Sprague de Camp’ and ‘Guy d’Antin’— to be dis-
played nicely. Of course, this is an ad hoc solution,
but it shows that we get the full expressive power of
a programming language. In addition, we can call
functions written in Scheme —the implementation
language of MlBibTEX— for difficult cases [7, 8].

3.2 Syntactic issues

MlBibTEX can process any .bib file designed for ‘old’
BibTEX, except that square brackets are syntactic
delimiters used for multilingual features [7]. So,
most of the ‘tricks’ used within ‘old’ .bib files should
work. In addition, MlBibTEX allows more explicit
syntax for the components of a person name and the
abbreviation of a first name, when needed:

first => ..., von => ..., last => ...,

junior => ..., abbr => ...

tag in Figure 7. In XML, all characters are preserved [21,
p. 38].

17 Future versions of MlBibTEX should be able to deal with
Unicode characters [24].

18 New Bibliography STyles.
19 EXtensible Stylesheet Language Transformations. See

[21, Ch. 6] for ashort introduction.

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 249

Jean-Michel Hufflen

The order of the keywords is irrelevant and some
may be absent, provided that the last name is spec-
ified. For example:

first => Kim Stanley, last => Robinson

where the von field is empty, and the abbreviation of
the first name is standard, that is, ‘K.~S.’ Let us no-
tice that in MlBibTEX, the period character ending
an abbreviation belongs to it by default. In addition,
this new syntax can be used with ‘old’ bibliography
styles, written in bst, as we show in Appendix A.

You can mix the ‘old’ and ‘new’ syntaxes, in
which case a name is parsed like (i) if no comma
occurs before a keyword, like (ii) (resp. (iii)) if the
number of commas not followed with a keyword is
one (resp. two) and the keywords give additional
information. Let us give some examples:

Robinson, first => Kim Stanley

is allowed, because ‘Robinson’ is parsed as the Last
part, so ‘Kim Stanley’ is allowed to be the First
part. But:

Kim Stanley, last => Robinson WRONG!

is an incorrect specification, because ‘Stanley’ is
supposed to be the Last part, so this part cannot be
redefined to ‘Robinson’.

In practice, mixing the old and new syntaxes is
useful when we have just to give a specific abbrevi-
ation for a first name:

Lyon Sprague de Camp, abbr => L. Sprague

Roughly speaking, this syntax is close to Ada’s for
passing values inside a subprogram call [23, § 6.4].

Other keywords can be used for both an organ-
isation name and a key for sorting:

EDITOR = {org => \TUG 2006,

sortingkey => TUG2006}

As in BibTEX, co-authors are connected with
the ‘and’ keyword. After the different co-authors,
MlBibTEX allows the addition of collaborators, in-
troduced by the ‘with’ keyword:20

Clive Cussler with Paul Kemprecos

The format for several co-authors and collaborators:

... and ... and ... with ... with ...

In the present article’s bibliography, reference [16]
gives an example of how such an entry using several
co-authors and collaborators is formatted. As in
BibTEX, the ‘others’ keyword can be used when
additional names are left unspecified: ‘and others’
(resp. ‘with others’) for additional unspecified co-
authors (resp. collaborators).

20 . . . at the topmost level only. See Footnote 3, p. 244.

Multilingual switches with a default21 are al-
lowed for names, which is useful for names originat-
ing in languages using other alphabets:

AUTHOR =

{[Сергей Сергеевич Прокофьев] * russian

[Sergey Sergeyevich Prokofiev]}

4 Internationalization of names

MlBibTEX allows names to be displayed according
the cultural background of a language. For example,
accurate templates of the nbst language [8] allow
names of Hungarian people:

AUTHOR = {[Béla Bartók] : magyar}

to be displayed like ‘Bartók Béla’— that is, the last
name at first, followed by the first name —whereas
other names (English, French, . . .) are displayed
as usual, that is, the first name followed by the
last name. However, the specification of any person
name has to be dispatched into the four components
inherited from BibTEX. This is not a problem re-
lated to parsing, because the new keywords allow us
to specify each component separately. In practice,
some cases are solved by extending the First part in
order to include:

• a middle name for American people:

Ursula K. Le Guin

• a patronym (father’s first name) for a Russian
name, here ‘Sergey, Sergey’s son’:

Сергей Сергеевич Прокофьев

Other cases may more difficult to handle. Here are
some exotic examples given in [27]:

• an Assyrian name consisted of a personal name,
the father’s name, and the grandfather’s name,

• in South India, a personal name may be pre-
ceded by the father’s name, usually written
as an initial, and possibly replaced or supple-
mented by the birthplace or mother’s house
name, e.g. ‘Trivandrum R. S. Mani’.22

We plan to go thoroughly into this notion when
the document model of the bibliographies handled
by MlBibTEX is revised by using schemas. For small
examples of using the XML Schema standard for
describing an organisation for names, [25, pp. 91–
107] can be consulted. DocBook, an XML system
for writing structured documents [26], proposes a
more open approach: some optional elements are

21 This means that something is always produced, even if
no information is available in the reference’s language. In
other words, this kind of switch never yields nothing. See [7]
for more details.

22 In such a case, periods are sometimes omitted.

250 TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting

Names in BibTEX and MlBibTEX

<author>

<honorific>Sir</honorific>

<firstname>Arthur</firstname>

<surname>Conan Doyle</surname>

</author>

<author>

<firstname>Edgar</firstname>

<surname>Burroughs</surname>

<othername role="mi">Rice</othername>

</author>

<author lang="fr-BE">

<firstname>J.-H.</firstname>

<surname>Rosny</surname>

<lineage>

<!-- Junior, Senior, etc. [26, p. 308]. -->

aîné

</lineage>

</author>

Figure 9: Names specified using DocBook.

defined —e.g., honorific (see Figure 9)— includ-
ing a hold-all element, othername, for information
that does not fit in other categories. This element—
which may be repeated —has a role attribute that
classifies the different kinds of these ‘other’ names.
However, official documents do not make precise the
possible values for this attribute: so names’ taxon-
omy is not really fixed in DocBook, except for classic
cases, for example, ‘mi’ for ‘middle names’, as given
in [26, p. 149]. Figure 9 shows a DocBook example,
including language information. This information is
not only a single identifier, like an option of the babel

package, but allows the specification of variants of a
language. It consists of a two-letter language code
using lowercase letters, optionally followed by a two-
letter country code using uppercase letters [1]: ‘fr’
is for the French language, ‘BE’ for Belgium. Such el-
ements are not limited to a bibliography: as another
example, the specification of an author’s article also
uses them [26, p. 143].

Another formalism belonging to the XML fam-
ily widely used for bibliographical metadata is the
Dublin Core,23 but here the contents of the elements
representing people’s names are just strings; such el-
ements are not structured by means of subelements
as in DocBook. For example, an entity primarily re-
sponsible for making the content of a resource may
be a person name and is specified by the dc:creator
element. BibTEX-like syntax is used in practice, as
shown in Figure 10; [27] gives some guidelines.

23 The Dublin Core metadata standard is a simple yet ef-
fective element set for describing a wide range of networked
resources. See [5] for more details.

<dc:creator>Kay, Guy Gavriel</dc:creator>

<dc:creator xml:lang="fr">

<!-- xml:lang is a predefined attribute in XML

[21, p. 41], its values are codes described in
[1].

-->

Pierre Pelot

</dc:creator>

Figure 10: Examples with the Dublin Core.

5 Further development and conclusion

As mentioned above, MlBibTEX includes a compati-
bility mode, so it can apply ‘old’ bibliography styles,
written using bst.24 To put this implementation of
bst into action, of course, we studied the behaviour
of this language’s functions precisely, preparing very
many tests. That is why we hope that, in particular,
we know precisely how BibTEX deals with names.
This task of reverse engineering showed us that it
was designed in order for current format operations
to be specified concisely. The price paid is compli-
cated specification of general cases.

Due to the huge number of BibTEX database
files written by end-users, a successor of BibTEX has
to ensure compatibility with existing .bib files. So
we have to pay attention whenever we introduce new
syntactic sugar: could existing files be processed as
previously? Another question is: could we add more
and more syntactic sugar to a formalism without
damaging it? Redefining a new one might be bet-
ter . . .

We think that the work on the new features of
MlBibTEX should be done based on a specification
in XML, and some improvements can be given syn-
tactic sugar, usable within .bib files. For example,
we plan to add a space-after attribute to the von

element:

<von space-after="no">d'</von>

and specify empty space after a particle by an addi-
tional comma in AUTHOR and EDITOR fields:

{first => Guy, von => d’„ last => Antin}

or—when the von part is specified last — :

{first => Gilles, last => Argyre,

von => d’,}

On the contrary, future features related to per-
son names whose structure is to be studied will be
added only to the XML document model of bibli-
ographies, when it is ready. We think that BibTEX
has not been much used for such names, so there
should be no need for additional syntactic sugar and

24 See [9] for an overview of the functions of this mode.

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 251

Jean-Michel Hufflen

first => J.-H., last => Rosny, junior => jeune and

first => Pierre Alexis, last => Ponson du Terrail and

first => Eric, von => Van, last => Lustbader

((*name*)

"Rosny, jeune, J.-H. and Ponson du Terrail, Pierre Alexis and Van Lustbader, Eric" .

#(#((14 . 19) (7 . 12) (0 . 5) #f) ; The order is First, Junior, Last, von. The First part of the first
; element starts at position 14 and ends just before position 19. This
; element does not have a von part.

#((43 . 56) #f (24 . 41) #f)

#((76 . 80) #f (65 . 74) (61 . 64))))

Figure 11: How MlBibTEX’s names are sent to original BibTEX’s functions.

MlBibTEX should be able to get such information by
parsing XML files.

6 Acknowledgements

Many end-users told me that they had difficulty un-
derstanding names’ specification within BibTEX. I
was thinking of them when I was writing this article
and I hope they will enjoy reading it as much as I
enjoyed writing it. Many thanks to Karl Berry and
Barbara Beeton, both of whom proofread a first ver-
sion, suggested some improvements and additional
examples.

A MlBibTEX’s names within

compatibility mode

As mentioned above, MlBibTEX allows users to run
‘old’ bibliography styles of BibTEX [19], by means
of a compatibility mode, sketched in [9]. This com-
patibility mode, programmed in Scheme, actually
uses a stack and allows users to learn the bst lan-
guage easily, since they can run a bst program step
by step. The data used within the result of parsing
.bib files are serialised w.r.t. types used within the
bst language’s functions, that is, strings, integers,
and literals [16, Table 13.8]. Each function belong-
ing to the bst library is implemented by a Scheme
function.

If you push a string and would like to give it to
the Scheme function implementing format.name$,
only the conventions of BibTEX will be put into
action. If the value of an AUTHOR or EDITOR has
been processed by MlBibTEX’s parser and has to be
passed to the compatibility mode, the transmitted
value is a list consisting of a string S, followed by a
vector,25 whose size is the number of the names of
S. Let us consider a name belonging to S, for each
part of it—First, Junior, Last, von, w.r.t. this or-
der—a pair of indices shows where this part begins

25 Vectors of Scheme are analogous to arrays of ‘classical’
programming languages.

and ends. This part is replaced by the false value —
#f—if it does not exist. Unless a name only consists
of a Last part, the possible syntaxes for the string
S are either (ii) or (iii)— cf. § 2.1.

An example is given in Figure 11: given three
person names specified by means of keywords, we
show the three elements of the corresponding struc-
ture passed to the compatibility mode. Index pairs
are organised into vectors: one vector for the parts
of each, these three vectors being elements of a vec-
tor of vectors. If such a list, beginning with the
‘*name*’ marker, is popped by function other than
b-bst-format.name$ and b-bst-num.names$, the
implementations of format.name$ and num.names$,
only the string is retained.

This design choice allows us to have BibTEX’s
behaviour by default if these two functions are given
only a string. But if end-users take advantage of the
keyword specification of name parts, we do not need
workarounds within the strings passed to these two
functions. We do not have to use additional braces
or dummy LATEX commands. Besides, our indices
are coherent with the way used by Scheme for select-
ing substrings: they are characters beginning with
a first inclusive index and ending with a second ex-
clusive index. For example, let s be the long string
given in Figure 11: the expression (substring s

14 19) evaluates to the string "J.-H.".
Last, the names of collaborators, introduced af-

ter an occurrence of the ‘with’ keyword (cf. § 3.2),
are ruled out. Finally, let us remark that these
names would be processed improperly by BibTEX’s
bibliography styles.

References

[1] Harald Tveit Alvestrand: Request for
Comments: 1766. Tags for the Identification
of Languages. UNINETT, Network Working
Group. March 1995. http://www.cis.

ohio-state.edu/cgi-bin/rfc/rfc1766.

html.

252 TUGboat, Volume 27 (2006), No. 2 —Proceedings of the 2006 Annual Meeting

Names in BibTEX and MlBibTEX

[2] The Chicago Manual of Style. The University
of Chicago Press. The 14th edition of a
manual of style revised and expanded. 1993.

[3] Jean-Christophe Filliâtre and Claude
Marché: The BibTEX2HTML Home Page.
June 2006. http://www.lri.fr/~filliatr/

bibtex2html/.
[4] Hans Hagen: ConTEXt, the Manual.

November 2001. http://www.pragma-ade.

com/general/manuals/cont-enp.pdf.
[5] Diane Hillman: Using Dublin Core.

November 2005. http://dublincore.org/

documents/usageguide/.
[6] Jean-Michel Hufflen: “Multilingual Features

for Bibliography Programs: From XML to
MlBibTEX”. In: EuroTEX 2002, pp. 46–59.
Bachotek, Poland. April 2002.

[7] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. TUGboat, Vol. 24, no. 2, pp. 249–262.
July 2003.

[8] Jean-Michel Hufflen: “Bibliography Styles
Easier with MlBibTEX”. In: Proc. EuroTEX
2005, pp. 179–192. Pont-à Mousson, France.
March 2005.

[9] Jean-Michel Hufflen: “BibTEX, MlBibTEX
and Bibliography Styles”. Biuletyn GUST,
Vol. 23, pp. 76–80. In BachoTEX 2006
conference. April 2006.

[10] Jean-Michel Hufflen: “MlBibTEX Meets
ConTEXt”. In: EuroTEX 2006 conference,
preprints, pp. 71–76. Debrecen, Hungary. July
2006.

[11] Richard Kelsey, William D. Clinger,
Jonathan A. Rees, Harold Abelson,
Norman I. Adams iv, David H. Bartley,
Gary Brooks, R. Kent Dybvig, Daniel P.
Friedman, Robert Halstead, Chris
Hanson, Christopher T. Haynes,
Eugene Edmund Kohlbecker, Jr, Donald
Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay
Sussman and Mitchell Wand: “Revised5

Report on the Algorithmic Language
Scheme”. HOSC, Vol. 11, no. 1, pp. 7–105.
August 1998.

[12] Oleg E. Kiselyov: XML and Scheme.
September 2005. http://okmij.org/ftp/

Scheme/xml.html.
[13] Marie-Paule Kluth : FAQ LATEX française

pour débutants et confirmés. Vuibert
Informatique, Paris. Également disponible sur
CTAN:help/LaTeX-FAQ-francaise/. Janvier
1999.

[14] Donald Ervin Knuth: Computers
& Typesetting. Vol. A: The TEXbook.
Addison-Wesley Publishing Company,
Reading, Massachusetts. 1984.

[15] Leslie Lamport: LATEX: A Document
Preparation System. User’s Guide and
Reference Manual. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1994.

[16] Frank Mittelbach and Michel Goossens,
with Johannes Braams, David Carlisle,
Chris A. Rowley, Christine Detig and
Joachim Schrod: The LATEX Companion.
2nd edition. Addison-Wesley Publishing
Company, Reading, Massachusetts. August
2004.

[17] Chuck Musciano and Bill Kennedy: HTML

& XHTML: The Definitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

[18] Oxford Advanced Learner’s Dictionary of
Current English. Oxford University Press.
1989.

[19] Oren Patashnik: Designing BibTEX
Styles. February 1988. Part of the BibTEX
distribution.

[20] Oren Patashnik: BibTEXing. February 1988.
Part of the BibTEX distribution.

[21] Erik T. Ray: Learning XML. O’Reilly
& Associates, Inc. January 2001.

[22] Brian Keith Reid: SCRIBE Document
Production System User Manual. Technical
Report, Unilogic, Ltd. 1984.

[23] S. Tucker Taft and Robert A. Duff, eds.:
Ada 95 Reference Manual. Language and
Standard Libraries. No. 1246 in LNCS.
Springer-Verlag. International Standard
ISO/IEC 8652:1995(E). 1995.

[24] The Unicode Consortium: The Unicode
Standard Version 4.0. Addison-Wesley.
August 2003.

[25] Eric van der Vlist: XML Schema. O’Reilly
& Associates, Inc. June 2002.

[26] Norman Walsh and Leonard Muellner:
DocBook: The Definitive Guide. O’Reilly
& Associates, Inc. October 1999.

[27] Andrew Waugh: Representing People’s
Names in Dublin Core. February 1998.
http://dublincore.org/documents/

name-representation/.

TUGboat, Volume 27 (2006), No. 2—Proceedings of the 2006 Annual Meeting 253

Abstracts

How to Create a TEX Journal:
A Personal Journey
Barbara Beeton

When TUG was first formed, the Internet was not
generally available; the logical channel for commu-
nication with and among TUG’s members was on
paper. So TUGboat came into being.

As TEX has matured, the needs of the commu-
nity have evolved, but paper is still a logical medium
for showcasing a typesetting tool.

This talk will introduce high- and low-lights in
the history of TUGboat, some reasons for choos-
ing its particular format and mode of presentation,
several experiments, and lots of my personal expe-
riences as editor.

(This was the keynote address at the Practical TEX 2006
conference, and the full paper will be published in that
proceedings. Ed.)

TEX, typography & art together
Gyöngyi Bujdosó

In my previous talk presented at EuroTEX 2006, the
TEX side of a TEX and typographical e-learning sys-
tem was presented.

In this talk the main aspects of the other, typo-
graphy-related, part of the system will be shown.
The design of this part contains topics that can be
of assistance to TEX users in designing their docu-
ments by presenting various fonts, page layouts and
illustrations. The presentations of the type design-
ers, typographers and artists of the sample creations
will also be discussed.

ProTEXt, a complete TEX system for
beginners
Thomas Feuerstack and Klaus Höppner

One of TEX’s largest strengths is the high modular-
ity and flexibility of the program and related tools.
Besides the processor itself, every TEXnican may use
the editors, post processor programs, etc. he prefers
most. On the other hand, for beginners or only in-
terested persons this advantage can lead to difficul-
ties, especially in times, where users have gotten ac-
customed at “complete environments”.

To come to the details: While the overall in-
formation technology scene is regarded as fast mov-
ing, the principle of working with data remains es-
sentially unchanged. People still “feed” programs

with sources and expect transformed data as a re-
sult — the difference is in the bandwidth of the pro-
grams they use. When I started working with TEX
in the early 1980s, I used IBM’s xedit for input,
which was the same editor I used for all other pro-
grams, i. e. SAS or PL/1 sources. Nowadays all those
former “programs” have increased to suites, which
means they are shipped with their own editor, post-
processing routines, etc., while TEX is still an ex-
ception, because of its traditional delivery of core
functionality.

At this point you may imagine the difficulties a
newbie will run into when planning to use TEX. Ex-
pecting a single and simple installation, like other
tools, he will soon find himself confronted with the
fact that he has to take care for several tools in addi-
tion to TEX — most of which he has never imagined
might be needed. Asking “the experts” which pro-
cedures are best to follow, may in the worst case
even increase confusion.

According to our experiences, leading beginners
to a new system will hopefully end in success, if we
take heed of the following simple advice:

• A beginner prefers a system which is big enough
to satisfy his needs, and which is likewise small
enough so that he doesn’t lose a general over-
view. For example, he normally doesn’t want
to waste time in choosing the best editor, espe-
cially when he can’t estimate the result.

• A newbie expects an complete system instead of
single components, especially when he can’t see
the connection between them. If this isn’t pos-
sible (like with TEX), collect the smallest size of
components needsed to achieve a first success,
and give him a simple and short overview/intro-
duction of the relationship which these modules
have to each other.

• In addition to the last point, it is nice when you
can start with the newest tools, but this is not a
requirement. In other words: in only the rarest
cases will you start your driving career with a
brand new Mercedes Benz, and most likely you
won’t regard this as a disadvantage.

To come to the end, in our mind the best so-
lution for the problem mentioned above would be
a seasonable single-installation comparable to the
suites described above.

In the meantime, ProTEXt was introduced to
enable even beginners to easily setup a complete

254 TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting

Abstracts

running system, eliminating one of the main obsta-
cles in using TEX. We will present the current status
of the project, experiences from the previous releases
and recent or planned changes.

OpenMath and MathML in practice
Hans Hagen

The Dutch Mathadore project is an experiment that
has as main objective to provide content that can
be used for math courses in secondary education as
well as supplementary courses in permanent educa-
tion. The content is highly interactive and this made
the team decide for OpenMath. This choice is also
driven by the fact that the University of Eindhoven
is on of the participants.

In this talk I will discuss the role that TEX plays
in this game. I will present the way we deal with
OpenMath, intermediate MathML and the final rep-
resentation on paper. I will also discuss the way
authors are dealing with the input, what problems
they encounter and how they need to deal with the
lack of control in XML based environments.

MetaPost developments — autumn 2006
Taco Hoekwater

The new release of MetaPost includes some new fea-
tures as well as a number of bug fixes. The new func-
tionality includes: the possibility of using a template
for the naming of output files; support for CMYK

and greyscale color models; per-object PostScript
specials; the option to generate Encapsulated Post-
Script files adhering to Adobe’s Document Structur-
ing Conventions; the ability to embed re-encoded
and/or subsetted fonts; and support for the GNU

implementation of troff (groff).

(This talk was also presented at EuroTEX 2006, and
therefore the full paper was already published in that
proceedings, TUGboat 27:1. The paper is also available
online at http://tug.org/metapost/articles. Ed.)

TEX producing legal documents
Jerzy Ludwichowski

A subsystem for producing legally binding docu-
ments for the admission system of the Nicolas Coper-
nicus University, Toruń, Poland, will be presented.

The documents are generated based on data that
comes from the system’s database. It will be shown
how using the simplest means helps to achieve re-
sults which look almost impossible to those uniniti-
ated to TEX.

The presentation will give the motivation for
using plain TEX and LATEX as the base for the pro-
duction of the documents, difficulties encountered
and solved, the general design and the (not very ad-
vanced) TEX mechanisms used.

The approach used is a standard one, used be-
fore and publicly described an uncountable num-
ber of times. Nonetheless, it should be interesting
for the conference participants who are not expert
TEXnicians.

TEX Live — Life with TEX
Gerben C. Th. Wierda and
Renée M. E. van Roode

When Mac OS X first appeared, people soon started
to work on getting TEX to run on it. Being a Unix
system with PDF as the screen language, soon front
ends appeared that made use of a (hidden) standard
Unix TEX (with pdfTEX) in the background and the
built-in ability of Mac OS X to handle PDF. teTEX
was an obvious choice as a downloadable distribu-
tion. Soon, the process of downloading, compiling
and installing was done on behalf of users and the
first TEX installers (based on a precompiled teTEX)
appeared.

Over time, one of these became popular. This
redistribution of TEX first was a redistribution of
teTEX (precompiled with basic configuration options
like paper size), then it quickly became a mix of
TEX Live as the basis for the programs (because
it was richer than teTEX) and teTEX for the basic
texmf tree (because it was well maintained and a
near perfect starter set).

Now that teTEX as a separate distribution is
no longer maintained it has become time to migrate
this Mac OS X redistribution (which for want of a
better name we will call gwTEX) to something that
is based on a subset of TEX Live. The talk will focus
on this migration and what was learned about TEX
along the way.

The presentation will end with a short accom-
panying guest talk entitled “Life with TEX”.

TUGboat, Volume 27 (2006), No. 2 — Proceedings of the 2006 Annual Meeting 255

256 TUGboat, Volume 27 (2006), No. 2

MAPS 33 (Fall 2005), 34 (Spring 2006)

MAPS is the publication of NTG, the Dutch lan-
guage TEX user group. Their web site is http:

//www.ntg.nl.

MAPS 33, Fall 2005

Wybo Dekker, Redactioneel [From the editor];
p. 1

Overview of the issue’s contents.

Maarten Sneep, Wachten op een Ca-tas-tro-fe
[Waiting for a Cata-strophe]; pp. 2–3

Opinion on the new Dutch spelling rules.

Dennis van Dok, Jewel case listings for MP3
CD-ROMs; pp. 4–13

Making jewel case listings for MP3 CD-ROMs is
a particular challenge, since up to about ten times
as much information has to be on them as on jewel
cases for regular audio discs. Here TEX’s abilities to
adjust entire paragraphs, as opposed to just single
lines, shine.

Siep Kroonenberg, Font installation the shallow
way; pp. 14–18

[Printed in TUGboat 27:1.]

Idris Samawi Hamid, Installing expert fonts:
Minion Pro; pp. 19–35

Installing fonts for ConTEXt can be an intim-
idating business. In this issue we take on a real
monster: a collection of Adobe Minion Pro expert
fonts. We hope our installation of this collection will
provide an illustrative example for ConTEXt users,
and help to ease the pain of installing new fonts (if
you can install Minion Pro, Myriad Pro and Poetica,
you can install just about anything!).

Hans Hagen, Hyphenation patterns; pp. 36–40
[Printed in TUGboat 26:3.]

Taco Hoekwater, What do you do with
ConTEXt?; pp. 41–45

User responses to the question: “What do you
do with ConTEXt?”.

Piet van Oostrum, Een uittreksel uit recente
bijdragen in het CTAN archief [An extract
from recent contributions to the CTAN archive];
pp. 46–51

This article describes a number of recent con-
tributions to the CTAN archive (and possibly other
Internet sources). The selection is based upon what
I find interesting myself and what I think will be
interesting for others. It is not a complete overview.

Neither are the summaries to be considered as man-
uals. Look on it as a kind of menu to whet your
appetite.

This installment focuses on graphical packages
(amongst others PGF/TikZ, pst-pdf), some graphi-
cal programs (fig2vect, LATEXPiX, sketch, and some
conversion programs) and special applications like
chemistry, music and sudoku.

Jan van de Craats, Color separation; pp. 52–53
The book Basisboek wiskunde (Basic Mathe-

matics) by Jan van de Craats and Rob Bosch was
typeset in LATEX and submitted for printing as one
big PDF file. In this book one extra color (blue) was
used for titles, headings, footings, important formu-
las, figures and also as a background color for certain
pages or parts of text. Jan van de Craats, who did
the typesetting, reports on a trick for obtaining color
separation without flaws.

Hendri Adriaens, Powerdot — making
presentations with LATEX; pp. 54–58

This article describes some technical details of
the powerdot class which was developed during the
summer holidays of 2005.

Siep Kroonenberg, Managing a network TEX
installation under Windows; pp. 59–64

[Printed in TUGboat 27:1.]

Ovidiu Gheorghies, An Introduction to
MetaUML—Exquisite UML Diagrams in MetaPost;
pp. 65–86

MetaUML is a GNU GPL MetaPost library for
typesetting exquisite UML (Unified Modeling Lan-
guage) diagrams. MetaUML offers a highly cus-
tomizable, object-oriented API, designed with ease
of use in mind. This paper presents usage exam-
ples as well as a description of MetaUML infrastruc-
ture. This infrastructure may prove useful for gen-
eral MetaPost typesetting, providing object-oriented
replacements and enhancements to the functionality
offered by the boxes package.

MAPS 34, Spring 2006

Taco Hoekwater & Wybo Dekker, Editorial;
p. 1

Taco Hoekwater, Een laatste dingetje . . . [One
last thing . . .]; p. 2

Hans Hagen, What tools do ConTEXt users
have?; pp. 3–7

[Printed in TUGboat 27:1.]

TUGboat, Volume 27 (2006), No. 2 257

Taco Hoekwater & Hans Hagen,
Announcement: ConTEXt user meeting 2007;
p. 8

Hans Hagen, MKII–MKIV; pp. 9–21
[Printed in this issue of TUGboat, pp. 256= 219

256–227.]

Aditya Mahajan, Display Math in ConTEXt;
pp. 22–34

This article explains how to do various kinds
of alignments in ConTEXt. A visual output is pre-
sented, and it is then shown how that effect can be
achieved in LATEX and ConTEXt. We hope that ar-
ticle will make the transition from LATEX with the
‘amsmath’ package to ConTEXt easier.

Taco Hoekwater, MetaPost developments;
pp. 35–37

[Printed in TUGboat 27:1.]

Jerzy Ludwichowski, Announcement:
EuroBachoTEX 2007; p. 38

Bogus law Jackowski, Appendix G illuminated;
pp. 39–46

[Printed in TUGboat 27:1.]

Hans Hagen & Jerzy Ludwichowski &

Volker Schaa, The New Font Project: TEX
Gyre; pp. 47–50

[Printed in this issue of TUGboat, pp. 256= 230
256–233.]

Taco Hoekwater & Hans Hagen, The making
of a (TEX) font; pp. 51–54

[Printed in TUGboat 27:1.]

Paul Lemmens, Je proefschrift in LATEX zetten
[Typesetting your thesis in LATEX]; pp. 55–64

In this article I will describe how I typeset my
thesis in LATEX. I will mention my work environ-
ment, the extra packages I used, the (local) tricks I
applied inside the source document, the problems I
found, and the solutions for those.

Hans van der Meer, Random bit generator in
TEX; pp. 65–67

A random bit generator code in TEX macros
makes it possible to integrate random numbers and
decisions in the production of documents.

Pawe l Jackowski, Enjoy TEX pearls diving!;
pp. 68–77

The BachoTEX 2006 conference continued the
Pearls of TEX Programming open session, intro-
duced in 2005, during which volunteers present
TEX-related tricks and short answers.

Siep Kroonenberg, Epspdf; pp. 78–80
This article introduces epspdf, a converter be-

tween EPS, PostScript and PDF which can be run ei-
ther via a graphical interface or from the command-
line.

Frans Goddijn, David Walden interview;
pp. 81–84

There’s a treasure of a url (http://tug.org/

interviews/) on the TUG site, where Dave Walden
has collected a number of excellent interviews with
key people of the TEX community — a lively “Who’s
Who” for anyone who has met some TEX luminaries
or seen them in action during conferences. The
interviews go way beyond the obvious as Dave in-
vites his guests to respond to his lucid questions.
The result is a growing collection of significantly
detailed portraits of the people who have made the
TEX landscape the way it is today. Even if you’ve
known one of the featured people for years, you’re
certain to discover something interesting about this
person that you’ve never been aware of. Although
there is an excellent interview with Dave himself
(http://tug.org/interviews/interview-files/

dave-walden.html) on the site, conducted by Karl
Berry, we decided to interview Dave for MAPS, ex-
ploring some subjects that were mentioned in his
online conversation with Berry. You might want to
read that interview first to have context for some of
the questions and answers in this interview.

Wybo Dekker, The ‘isodoc’ class; pp. 85–101
The ‘isodoc’ class can be used for the prepa-

ration of letters, invoices, and, in the future, simi-
lar documents. Documents are set up with options,
thus making the class easily adaptable to user wishes
and extensible to other document types.

Geert C.H.M. Verhaag, Creating a Dust-cover
in ConTEXt; pp. 102–104

This short article describes how to set up a
dust-cover for a book, using the standard features
available in ConTEXt.

Taco Hoekwater, TUG 2006 report;
pp. 105–108

[Printed in this issue of TUGboat, pp. 256= 131
256–136.]

[Received from Wybo Dekker and
Taco Hoekwater]

258 TUGboat, Volume 27 (2006), No. 2

ArsTEXnica

Contents of issue 1
(April 2006)

Editor’s note: ArsTEXnica is the journal of guIt,
the Italian TEX user group. The journal’s web site
is http://www.guit.sssup.it/arstexnica.

Massimiliano Dominici, Editoriale [From the
editor]; p. 3

Brief exposition of the journal’s purposes with
an overview of the issue’s contents.

Gianluca Pignalberi, Intervista a Donald
Knuth [Interview with Donald Knuth]; pp. 5–7

The Italian translation of the interview with
Donald Ervin Knuth, which first appeared in Free

Software Magazine no. 7, and was republished in
TUGboat volume 26, number 6.

[Translation by the author]

Claudio Beccari, I registri token: questi
sconosciuti [The token registers: these mysteries];
pp. 8–13

In this tutorial I show how to use some of TEX’s
primitive commands and objects, not directly acces-
sible from LATEX, to define useful macros to be used
with (pdf)LATEX. These are tokens and token reg-
isters, that are seldom, not to say never, treated in
LATEX manuals. [Translation by G. Pignalberi]

Enrico Gregorio, Ridefinire i comandi primitivi
TEX e applicazioni a LATEX [Redefining TEX’s
primitive commands and applications in LATEX];
pp. 14–19

LATEX’s typesetting is based on several primi-
tive commands directly implemented inside the TEX
program. It is possible, if you know what you are
doing, to redefine such commands. I will discuss
some examples of this kind, which will give ideas for
other command redefinitions.

[Translation by the author]

Massimo Caschili, Semplici figure con
l’ambiente picture [Simple figures using the picture

environment]; pp. 20–28
A short guide on how to use picture, the LATEX

standard environment for creating simple but effec-
tive figures.

[Translation by G. Pignalberi]

Gustavo Cevolani, Norme tipografiche per
l’italiano in LATEX [The typographic rules of the
Italian language, as applied to LATEX]; pp. 29–42

This article briefly describes the Italian lan-
guage’s main typesetting rules, to be followed when
typesetting general purpose articles, theses and

books. For each rule discussed, it shows how to ap-
ply the rule in LATEX. Perhaps the article could be
useful to users of other typesetting programs also.

[Translation by G. Pignalberi]

258 TUGboat, Volume 27 (2006), No. 2

Biuletyn GUST 22 (2005), 23 (2006)

Editor’s note: Biuletyn GUST is the publication of
GUST, the Polish language TEX user group. Their
web site is http://www.gust.org.pl.

Biuletyn GUST 22, 2005

Paweł Jackowski, Ciekawe pętle i iteracje na
drugą nóżkę [Interesting loops and iterations];
pp. 3–6

Tomasz Łuczak, SlaX-TL —budowa, rozwój
i wykorzystanie w praktyce [SlaX-TL —structure,
development and usage]; pp. 7–11

Wojciech Myszka, LATEX a logotyp Politechniki
Wrocławskiej [LATEX and the Wrocław University
of Technology logotype]; pp. 12–16

The authorities of the Wrocław University of
Technology (WUT) has published Guidelines for Use
of the University logotype. The guide contains not
only the history and very formal description of the
WUT’s logo but also examples of acceptable and
unacceptable use and templates. The question for
LATEX users are: ‘how to use TEX tools for preparing
templates of documents following the guide?’; ‘how
to use Pantone (spot) colors and prepare material
for printers?’; ‘how to choose and prepare optimal
LATEX slide environments following PowerPoint tem-
plates?’; and ‘how to mimic all these Office tools?’
The author has prepared a web environment us-
ing (pdf)LATEX for generating stationery (business
cards, letterhead, envelope). Some questions still re-
main open — for example, an elegant way to change
page layout between the first and next pages.

Jean-Michel Hufflen, MlBibTEX in Scheme;
pp. 17–22

We present the main functions of MlBibTEX’s
implementation using Scheme. In particular, that
allows us to see how the modules are organised and
how to run the different parts of MlBibTEX step
by step. Let us recall that MlBibTEX deals with
several data formats (syntaxes w.r.t. TEX, bibliog-
raphy files, XML) and we show how such coexistence
is managed.

TUGboat, Volume 27 (2006), No. 2 259

Jean-Michel Hufflen, TEX’s language within
the history of programming languages; pp. 23–32

We connect some representative statements of
TEX’s language to analogous features belonging to
other programming languages, from a historical point
of view. Some features that look strange now are ex-
plained easily if we consider the era when TEX was
created. By comparing programming in TEX with
other paradigms, we also show what TEX can do
easily and what is tedious for it.

Bogusław Jackowski and Janusz M.

Nowacki, Latin Modern fonts: how less means
more; pp. 33–39

This article concerns the latest release of the
Latin Modern family of fonts. At present the LM

family consists of 57 fonts, each containing 665 glyphs
on the average, mainly diacritics. For the first time
source files for the glyphs were released as well (the
LM fonts were developed with the MetaType1 sys-
tem, which is based on MetaPost).

Tomasz Barbaszewski, Oprogramowanie
otwarte. Dlaczego czasem nam nie idzie? [Why
it is sometimes hard to succeed with open source
software]; pp. 40–45

Krzysztof Leszczyński, Świat parserów [The
world of parsers]; pp. 46–52

Andrzej Tomaszewski, Sto pociech i dwieście
utrapień z realizacją pomysłów redaktora
[Implementing editor’s ideas — lots of fun,
sometimes even more trouble]; pp. 53–54

Piotr Bolek, IPC w TEXu [IPC in TEX];
pp. 55–58

Taco Hoekwater, METAPOST developments;
pp. 59–63

The METAPOST system (by John Hobby) im-
plements a picture-drawing language very much like
that of METAFONT except that it outputs Encapsu-
lated PostScript files instead of run-length-encoded
bitmaps. METAPOST is a powerful language for pro-
ducing figures for documents to be printed on Post-
Script printers, either directly or embedded in TEX
documents. It includes facilities for directly inte-
grating TEX text and mathematics with graphics.

Jean-Michel Hufflen, Introduction to XSLT;
p. 64

We propose a didactic demonstration of XSLT,
the language of transformations used for XML texts.
We use the xsltproc program, built via the libxml2
library. Both are written using the C programming
language and are parts of the Gnome project. Both

are running on Windows and Linux, but our demon-
stration is performed on the latter.

David Kastrup, The bigfoot bundle for critical
editions; pp. 65–70

The LATEX package bigfoot and supporting pack-
ages solve many of today’s problems occurring in the
contexts of single and multiple blocks of footnotes,
and more. The main application is with philological
works and publications, but simpler problems can be
solved painlessly as well without exercising all of the
package’s complexities. For other problems not yet
tackled in this area, a solid framework is provided.

David Kastrup, Designing an implementation
language for a TEX successor; p. 71

Managing the complexity of TEX’s codebase is
an arduous task, so arduous that few mortals can
hope to manage the underlying complexity. Its orig-
inal author’s computational roots date back to a
time where the maturity and expressive power of
existing programming languages was such that he
chose to employ the assembly language of a fictional
processor for the examples in his seminal work The

Art of Computer Programming. In a similar vein,
TEX is written in a stripped-down subset of a now-
extinct Pascal dialect. Current adaptations of the
code base include more or less literal translations
into Java (NTS and exTEX), C++ (the Omega-2.0
codebase), mechanically generated C (Web2C) and
a few others. In practically all currently available
cases, the data structures and control flow and over-
all program structure mimic the original program to
a degree that again requires the resourcefulness of a
highly skilled programmer to manage its complexity.
As a result, almost all of those projects have turned
out to be basically single-person projects, and few
projects have shown significant progress beyond pro-
viding an imitation of TEX. It is the persuasion of
the author that progressing significantly beyond the
state of the art as represented by TEX will require
the expressiveness and ease of use of a tailor-made
implementation and extension language. Even a lan-
guage as thwarted as Emacs Lisp has, due to its
conciseness, rapid prototyping nature, extensibility
and custom data types and its coevolution with the
Emacs editor itself, enabled progress and add-ons
reaching far beyond the original state as conceived
by its original authors. This talk tries to answer
the question what basic features an implementation
platform and language for future typesetting needs
should possess.

260 TUGboat, Volume 27 (2006), No. 2

Barbara Beeton, Karl Berry, David

Carlisle, Taco Hoekwater, David

Kastrup, Bogusław Jackowski, Krzysztof

Leszczyński, Frank Mittelbach, Petr

Olšák, Bernd Raichle, Martin Schroeder,

Philip Taylor, Pearls of TEX programming;
pp. 72–79

Published in TUGboat 26:3.

Biuletyn GUST 23, 2006

Jonathan Kew, The X ETEX project: typesetting
for the rest of the world; pp. 3–8

This paper will introduce the X ETEX project, an
extension of TEX that integrates its typesetting ca-
pabilities with the Unicode text encoding standard,
supporting all the world’s scripts, and with mod-
ern font technologies provided by today’s operating
systems and text layout services.

X ETEX offers the potential to be “TEX for the
rest of the world” in several senses, as will be dis-
cussed and demonstrated. Much of the intimidat-
ing complexity of managing a TEX installation — in
particular, the process of installing and using new
fonts — is eliminated by X ETEX’s integration with
the host operating system’s font management. This
greatly reduces the “barrier to entry” into the TEX
world for many non-technical users, and provides a
richer and more flexible typographic environment.

Because X ETEX is based on Unicode, the uni-
versal character encoding standard, and uses Open-
Type and AAT layout features in modern fonts to
support complex non-Latin writing systems, it can
work with Asian, Middle Eastern, and other tradi-
tionally “difficult” languages just as readily as with
European languages.

X ETEX was initially designed and implemented
for Mac OS X, leveraging some key technologies avail-
able on that platform. However, this meant it was
available only to a fairly small minority of potential
users. However, with the introduction of X ETEX for
Linux, the benefits of X ETEX become available to a
new and wider community of users.

Bogusław Jackowski and Janusz M.

Nowacki, Rodzina fontów Latin Modern [The
Latin Modern font family]; pp. 9–12

The Latin Modern family of fonts is a collec-
tion of fonts, based on Donald E. Knuth’s Computer
Modern family. At present, Latin Modern fonts are
released in the PostScript Type 1 and OpenType
formats; METAPOST (MetaType1) sources are also
available.

The main feature of the Latin Modern fonts is
its rich collection of diacritical characters, covering

all European Latin scripts as well as some other lan-
guages that use Latin alphabets, e.g., Vietnamese.

The aim of the Latin Modern project was to re-
place (but only as the default) a plethora of various
relatives of the Computer Modern fonts, such as the
CS, PL and VN fonts.

We hope that the presentation will convince at
least Polish TEX users that the LM fonts are a good
replacement for the PL fonts at least in MeX and
only as the default.

Hans Hagen and Jerzy B. Ludwichowski

and Volker RW Schaa, The new font project;
pp. 13–14

In this short presentation, we will introduce a
new project: the LM-ization of the free fonts that
come with TEX distributions. We will discuss the
project objectives, timeline and cross-LUG funding
aspects.

Jerzy B. Ludwichowski, GUST font licenses;
pp. 15–18

For some time the problem of font licenses was
discussed at the BachoTEX conferences and in var-
ious mail exchanges. The approach presented here
tries to address the following issues: first, making
sure that fonts developed for the TEX world, where
backwards compatibility is very important, will not
be broken by “uncontrolled” modifications and sec-
ond, addressing the issue of the notion of font source
code files. As a result, two GUST font licenses were
formulated.

Petr Olšák, OFS —A macro package to manage
your fonts; pp. 19–30

OFS (Olsak’s Font System) gives you a possibil-
ity to keep track of your fonts; especially if you have
many fonts. It provides tools for making font cata-
logues, a comfortable user environment for font se-
lection etc. The OFS was presented at EuroTEX 2003
(Brest, France) but many new features were imple-
mented in 2004. This article presents the latest ver-
sion of this package.

Taco Hoekwater, METAPOST: terminally ill or
just playing dead?; pp. 31–34

In recent years, there is evidence of a renewed
interest in the use of METAPOST for various draw-
ing tasks. Simultaneously, it seems that just about
every METAPOST user runs into some kind of lim-
itation that makes the use of METAPOST far from
ideal for the proposed task.

The diagnosis we have to make is whether these
symptoms indicate a fatal disease in the program, or
if they are only idiosyncrasies and scratches that can
be cured with some therapy and a few band-aids.

TUGboat, Volume 27 (2006), No. 2 261

Halina Wątróbska and Ryszard Kubiak, Od
XML-a do TEX-a, używając Emacsa i Haskella
[From XML to TEX, using Emacs and Haskell];
pp. 35–39

A bi-language Old Church Russian-Polish dic-
tionary is being created at the University of Gdańsk.
The dictionary is based on a relic of Old Slavonic
writing, called Izbornik of the XIII century. All word
forms from the relic are translated into Polish.

The whole dictionary was written in an XML

notation. Specific features of the XML tagging ap-
plied as well as a collection of Haskell programs for
processing the material of the dictionary are dis-
cussed in the article. The programs assist in building
of the dictionary using Emacs, serve to analyse its
various aspects and to convert it to the language of
TEX.

Bogusław Jackowski and Marcin Woliński,
Prolegomena do fenomenologii parametrycznego
behawioru TEX-a [Prolegomena to the
phenomenology of the parametric behaviour
of TEX]; pp. 40–42

TEX users certainly encouter situations where
TEX surprises them. Of course, TEX wizards may
never be surprised, but they are not addressed by
our presentation. Our aim is to show a few such sur-
prising —at least at the first glance — cases, without
detailed analysis. It is worthy of knowing that such
things may happen in the realm of TEX.

Michał Wronka, Wersjonowanie dokumentów
TEX-owych w pracy samodzielnej i grupowej
[Versioning of TeX documents in individual and
group work]; pp. 43–46

Using version control in TEX typesetting gives
users a new range of possibilities. Tracking changes
in documents to begin with, followed by synchro-
nization across multiple machines, coordination of
group work and managing simultaneous versions. In
this article, I show how to adapt Subversion for use
in typesetting with TEX.

Joanna Ryćko, Typografia dla początkujących;
pp. 47–52

As we all know, hours and hours can be spent
talking and listening about typography. But on this
occasion I will only write about absolute basics of
the subject and this also in a telegraphic manner.
The aim of the article is to show how to construct
simple and typographically correct documents with
LATEX.

Joanna Ryćko, Minimalny przykład [How to
report (LA)TEX problems: a minimal example and
other rules]; pp. 53–57

This is a Polish translation of the German text
written by Christian Faulhammer. It shows how to
prepare a minimal example, which can be sent to
a newsgroup while asking a question about LATEX.
The original text in German and its English transla-
tion can be found at http://www.minimalbeispiel.
de.

Wojciech Myszka, Jak przeżyć w nieprzyjaznym
środowisku WYSIWYG [How to survive in a
hostile WYSIWYG environment]; pp. 58–62

Hans Hagen, LuaTEX: Howling to the moon;
pp. 63–68

Occasionally we reach the boundaries of TEX
and programming then becomes rather cumbersome.
This is partly due to the limitations of the typeset-
ting engine, but more important is that a macro
language is not always best suited for the task at
hand.

Jean-Michel Hufflen, Advanced techniques in
XSLT; pp. 69–75

This talk focus on some advanced techniques
used within XSLT, such as sort procedures, keys,
interface with identifier management, and priority
rules among templates matching an XML node. We
recall how these features work and propose some ex-
amples, some being related to bibliography styles. A
short comparison between XSLT and nbst, the lan-
guage used within BibTEX for bibliography styles,
is given, too.

Jean-Michel Hufflen, BibTEX, mlBibTEX and
bibliography styles; pp. 76–80

The first part of this talk about BibTEX will fo-
cus on some difficult points related to syntax of bib-
liography files, e.g., the specification of person and
organisation names. In addition, we show how some
successors of BibTEX (BibTEX8, Bibulus, mlBibTEX)
improve them. In a second part, we explain how bib-
liography styles are built. Some demonstrations of
the BibTEX program are given as part of this talk,
and some technical points could be made clearer by
using functions belonging to mlBibTEX.

Gabriela Grusza, BibTEX jako narzędzie
automatyzujące pracę z bibliografią [BibTEX as a
tool for automating tasks around bibliographies];
pp. 81–87

This article is designed for TEX beginners. It
presents bases of BibTEX usage including its advan-
tages. Some of attention is given to bib styles with

262 TUGboat, Volume 27 (2006), No. 2

extended discussion about jurabib package and pro-
gram makebst. Besides, some tools that simplify the
creation of the file containing the bibliographic data
(Emacs, JabRef, Tkbibtex) are introduced.

Tomasz Łuczak, TEX w biurze i jego
wykorzystanie również przez nie-TEXników
[TEX in the office, and for non-TEXies]; pp. 88–90

It is possible to deploy TEX in an office for
preparing typical documents by employees who have
not even have heard of TEX.

A simple and functional user interface allows for
a wider use of LATEX documents in daily correspon-
dence, offers or contracts. Batch processing allows
combining with other programs (as printing support
through pdf) and wrapping with different interfaces
(GUI as a stand-alone application or a browser in-
terface, both using TEX in the background).

Besides dedicated programs I will also mention
the LyX editor which allows for an easy transition
from the WYSIWYG world to the world of pretty
documents. When describing the TEX-nical part of
these solutions I will also present some observations
regarding the “soft” part of the deployment (the em-
ployees attitude towards TEX), i.e., why it became
a success.

Robert Bialik, LATEX w środowisku naukowym.
Spostrzeżenia, uwagi i propozycje [LATEX in the
research community]; pp. 91–92

How to convince people to use the TEX environ-
ment?! “Arguments versus habits” —a few words
about introducing TEX to academics. During the
presentation, results of an “academics attitude to-
wards TEX” survey will be presented.

Jacek Kmiecik and Marek Wójtowicz, Z
TEX-em w tle [With TEX in the background];
pp. 93–95

Wojciech Birula, Czy TEX polubi CATy? [TEX
and computer aided translation]; pp. 96–97

The article briefly describes some problems en-
countered while trying to use CAT programs in the
process of translating TEX files. The author’s ex-
perience concerns mainly LATEX, however presented
problems are similar for other TEX formats.

Maciej Jan Głowacki, LiTeX: łatwość
pierwszego kroku [LiTeX: a TEX micro-distribution];
pp. 98–98

LiTeX is a new project aimed at reducing the
size and ensuring ease of use of the TEX system
in the Linux system environment for PC machines
(i586). The set of packages was designed primar-
ily with TEX beginners, typesetting in the Polish
language, in mind: it contains amongst others the

newest versions of all the Polish and polonized fonts
which are available with a license allowing free us-
age and copying. A complete and clear Polish lan-
guage documentation constitutes an integral part of
the distribution. LiTeX works completely indepen-
dently of other TEX installations, e.g., it does not
use the TDS. Instead, it is firmly set within the
Linux Standard Base.

Piotr Bolek and Jakub Kulesza, Gentoo—
powrót do źródeł [Gentoo Linux: back to sources];
pp. 99–103

Gentoo Linux is a good and useful source-based
Linux distribution. The presentation will cover the
following topics: The history of Gentoo Linux and
the history of open source and the Linux system;
facts and numbers, popularity and aplications of
Gentoo Linux; the reasons of growing popularity
of Gentoo Linux; advantages and flaws of Gentoo
Linux; Gentoo and TEX.

Jean-Michel Hufflen, Writing structured and
semantics-oriented documents: TEX vs. XML;
pp. 104–108

Using XML-like syntax for documents gives them
a tree structure, inducing a notion of structured doc-
ument. Defining domain-dependent tags introduces
a notion of semantics-oriented writing. These two
points result in a new view about document produc-
tion. In fact, they have already existed within TEX,
but in another shape. This article aims to point out
these notions and the differences between them. It
ends with some proposals about the evolution of the
tools belonging to TEX’s world.

Przemysław Scherwentke, Te nieszczęsne
wiszące litery [Those wretched at-end-of-line
conjunctives]; pp. 109–110

A set of macros to automate some Polish type-
settig rules is presented. In particular, the problem
of single characters at the end of a line is solved.

Jerzy B. Ludwichowski, Bogusław

Lichoński, Tomasz Przechlewski and
Stanisław Wawrykiewicz, Edukacyjny portal
GUSTu [The open educational GUST portal];
pp. 111–112

Hans Hagen, Taco Hoekwater, Bogusław

Jackowski, Paweł Jackowski, Frank

Mittelbach, Bernd Raichle, Piotr

Strzelczyk, Enjoy TEX Pearls diving!;
pp. 113–121

This year’s perils of TEX programming will be
presented by a team led by Paweł Jackowski.

[Received from Tomasz Przechlewski]

2006

Dec 4 – 7 <XML2006>, Boston, Massachusetts.
For information, visit
http://2006.xmlconference.org/.

Dec 8 –
Jan 24

Guild of Book Workers 100th Anniversary
Exhibition: A traveling juried exhibition
of books by members of the Guild of
Book Workers. Special Collections,
Michigan State University Libraries,
East Lansing, Michigan. Sites
and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

2007

Jan 12 Type Directors Club typography and
typeface design competitions, deadline
for entries. For information, visit
http://www.tdc.org/calls.

Feb 1 TUG Election: Deadline for
nominations
For information and forms, visit
http://www.tug.org/election.

Mar 7 – 9 DANTE 2007, 36th meeting, Westfälische
Wilhelms-Universität, Münster,
Germany. For information, visit
http://www.dante.de/dante2007.

Feb 9 –
Mar 18

Guild of Book Workers 100th Anniversary
Exhibition: A traveling juried exhibition
of books by members of the Guild
of Book Workers. Utah Museum of
Fine Arts, Salt Lake City, Utah. Sites
and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Mar 24 – 25 First international ConTEXt User
Meeting, Epen, The Netherlands.
For information, visit
http://context.aanhet.net/epen2007.

TUGboat, Volume 27 (2006), No. 2 263

Calendar

Apr 9 –
May 20

Guild of Book Workers 100th
Anniversary Exhibition: A traveling
juried exhibition of books by
members of the Guild of Book
Workers. Branford P. Millar Library,
Portland State University, Oregon.
Sites and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Apr 28 –
May 2

17th EuroTEX Conference +

15th BachoTEX Conference =
EuroBachoTEX 2007, Bachotek,
Poland. For information, visit
http://www.gust.org.pl/BachoTeX/

EuroBachoTeX2007.

TUG 2007

Practicing TEX,

San Diego, California.

Jul 17 Workshops (free for attendees).

Jul 18 – 20 The 28th annual meeting of the TEX
Users Group. For information, visit
http://www.tug.org/tug2007.

Aug 5 – 9 SIGGRAPH 2007, San Diego,
California. For information, visit
http://www.siggraph.org/s2007/.

Aug 6 – 10 Extreme Markup Languages 2007,
Montréal, Québec. For information, visit
http://www.extrememarkup.com/extreme/.

Aug 28 – 31 ACM Symposium on Document
Engineering, University of Manitoba,
Winnipeg, Canada. For information, visit
http://www.documentengineering.org/.

Sep Association Typographique Internationale
(ATypI) annual conference, Brighton,
UK. For information, visit
http://www.atypi.org/.

Status as of 25 November 2006

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at http://www.tug.org/calendar/.
Additional type-related events are listed in the Typophile calendar, at

http://www.icalx.com/html/typophile/month.php?cal=Typophile.

Invitation to EuroTEX 2007

EuroTEX 2007, April 28th until May 2nd, 2007, will be organized

jointly by CSTUG, the Czechoslovak TEX Users Group and GUST,

the Polish TEX Users Group, at Bachotek, near Brodnica, in the

north-east of Poland. This is the place where the annual GUST

BachoTEX conferences are organized yearly since 1992. EuroTEX

2007 will also be the XV BachoTEX, hence you might find it re-

ferred to as the EuroBachoTEX 2007 conference.

We are trying to make it easier for you to get there: if justified by

the number of pasengers, two EuroTEX busses might be organized:

one coming from the south, from the Czech Republic or perhaps

even from Hungary, and one from the west, from Holland. For

details watch the conference site.

The preliminary motto of the conference is

TEX: Paths to the Future

It seems to be justified by the recent developments which address

the current shortcomings of our beloved system. These develop-

ments will be presented during the conference and should make

it very interesting. In no particular order, they are:

• new pdfTEX release,

• METAPOST v. 1.1,

• a batch of new font familes from the new project called TEX Gyre,

• a working version of Omega2,

• LuaTEX,

• X ETEX, and

• many more.

Watch the conference site:

http://www.gust.org.pl/BachoTeX/EuroBachoTeX2007

where you also can find a Google Maps pointer to the conference

location. The site is going to be updated as new information be-

comes available.

Please consider to contribute papers to make EuroBachoTEX 2007

even more interesting. Dates for abstracts and paper submissions

will be published soon at the conference web page.

And, of course: put this event into your calendar and then come

and join the TEXies from around Europe and the world. You can

not afford to miss it!

Jerzy Ludwichowski

(for the Organizing Committee)

TUGboat, Volume 27 (2006), No. 2 265

(These reports were written for The PracTEX Journal

issue 2006-4; we thank the authors and editors for al-
lowing their inclusion here also. The online version at
http://tug.org/pracjourn also includes photos, which
we regretfully had to omit. Ed.)

The 3rd Annual guIt (Italian TEX Users)
Meeting
— Onofrio de Bari, guIt vice president

• The guIt06 site, with additional information
and photos: http://www.guit.sssup.it/

GuITmeeting/2006/2006.en.php.

• A podcast of the conference, provided by
Kaveh Bazargan of River Valley Technologies:
http://web.mac.com/kaveh1000/iWeb/GUIT_

2006/Podcast/Podcast.html.

The third annual meeting of guIt, the Italian TEX
User Group, was held on 21st October 2006 in Pisa,
Italy. Because of all the activities since guIt was founded
in 2004, we are pleased to see ourselves rapidly reach-
ing the level of interest that other European national
user groups receive in their countries. The founding of
guIt with a charter, the publication of our journal, Ars

TEXnica, and the annual meetings are the result of very
intense but gratifying work. In particular, we are very
happy to receive many requests from Italian users to join
guIt and help with our efforts.

The annual meeting is always a special day, giving
guIt members the chance to abandon their ”net anony-
mity” and to meet each other in person to discuss LATEX,
its use and its future, both in Italy and internationally.
The talks at this year’s meeting covered a wide range of
topics, and were chosen to appeal to all levels of users.

The conference started with an introductory speech
by Lance Carnes, editor of The PracTEX Journal, about
PracTEX and what it means for regular TEX users.

Next was Enrico Gregorio who spoke about cate-
gory codes; in particular, he described an application he
developed for entering math expressions by redefining
LATEX category codes and commands.

Gustavo Cevolani introduced a review of several
methods to create booklets using LATEX packages. Some
methods were custom-developed for a specific purpose,
while others were adaptations of existing methods to ob-
tain the desired result.

A paper on LATEX tables by Lapo Mori, who could
not attend in person, was presented by Maurizio Him-
melman. He gave a detailed description of the problems
that can arise when creating tables, and solutions sup-
plied by numerous packages to solve these issues.

Kaveh Bazargan, of River Valley Technologies, gave
a talk about mimicking the vertical grid spacing com-
mon in traditional typesetting with LATEX. This was
a very interesting subject, presented with ”eye-candy”
slides which caught everyone’s attention.

The morning session ended with a talk by Jean-
Michel Hufflen who talked about MlBibTEX, a reimple-
mentation of BibTEX. The goal of this project is to
improve BibTEX to work better in a multilingual envi-
ronment.

In the afternoon it was time for me to give my talk,
about GNU Emacs. I tried my best to make people aware
of basic GNU Emacs editing features for LATEX, and con-
tinued by analyzing features of sophisticated TEX and
LATEX environments such as AUCTeX and preview-latex.

Salvatore Palma presented the use of LATEX to pro-
duce interactive mathematics tests for high schools. His
results are impressive, and this subject will be developed
further in the future.

The final three talks were about critical editions
using LATEX. In the first talk Jeronimo Leàl presented
a course given to university students about critical edi-
tions. The next two presentations were about the Mau-
rolico Project, oriented to critical editions of the works
of the Italian mathematician, Francisco Maurolico. Pier
Daniele Napolitani, head of the project, and Massimil-
iano Dominici supplied a general introduction to Mau-
roTEX (the language built for the project) and a review
of its features and developments. Roberta Tucci de-
scribed her experience using MauroTEX for the critical
edition of a single mathematical work.

Lastly, guIt president Maurizio Himmelmann closed
the meeting with some brief remarks and thanked the
speakers and organizers.

The level of attendance at the meeting was ex-
tremely satisfying. During the day about eighty people
attended the conference. Thirty attendees were from
outside Tuscany, who came by car, train or plane to at-
tend the event; among them were Claudio Beccari (one
of the first TEX users in Italy), Gianluca Gorni, and
many others who will forgive me if I don’t mention their
names here.

As vice president of guIt, I am very pleased to say
that the scientific level of this year’s meeting was ex-
tremely high. Most of all, speaking for all guIt members,
I want to say thanks to Lance Carnes, editor of The

PracTEX Journal and Kaveh Bazargan of River Valley
Technologies. Their contributions to the meeting were
invaluable, not only for their presentations but also for
their personal interest in our evolving user group.

I cannot omit, of course, to say thanks to the Sant’
Anna School of Advanced Studies who provided the meet-
ing facilities, and in particular to Prof. Giulio Bottazzi
of the Laboratory of Economics and Management, with-
out whose support this meeting would not have been
possible.

Last but not least, as is often said in such cases, a
big “thank you” to the guIt staff and to the attendees.
We have received and still receive emails of congratula-
tion which encourage us greatly in what we are trying
to do for the Italian and international TEX community.
Our hope is to make guIt an organization which will im-
prove and grow in coming years.

266 TUGboat, Volume 27 (2006), No. 2

UKTUG sponsors day of LATEX

— Charles Goldie, UKTUG Committee Member

• LATEX Workshop slides and handouts:
http://uk.tug.org/events/workshops/

living-and-working-with-latex

The UK TEX Users’ Group (UKTUG) held a work-
shop “Living and Working with LATEX” on October 20,
2006. This was something of a renewal event for the
Group, which in recent years has found it hard to find
volunteer energy enough to mount any major event. The
breakthrough came with the realisation that it would
make sense to outsource the practical aspects of the day,
leaving the volunteer organisers to concentrate on where
knowledge of the TEX world was needed, namely de-
ciding on a theme and recruiting presenters relevant to
it. The outcome was a meeting run as far as practical
matters were concerned by the London Mathematical
Society, at its new conference facility in central London.

The workshop focussed on using LATEX to write
technical documents, theses, books and articles. A ma-
jor theme was using LATEX better, for example to make it
easier to collaborate and to re-use and revise documents.
Centrepieces of the day were three major presentations:

• Peter Flynn: “Sorry, Professor, the dog ate my
thesis: how to expect the unexpected when using
LATEX”,

• Nicola Talbot: “Writing a thesis in LATEX: hints,
tips and advice”,

• Jonathan Fine: “Avoiding problems, solving prob-
lems, asking for help”.

About 55 attended, essentially filling the room used
for the plenary sessions. Groups on particular topics
formed naturally in breakout sessions in between the
presentations. Participants seemed to be a mixture of
relative newcomers and experienced TEX-setters. Most
found that what they gained from the workshop was
commensurate with their input: asking a question or
making a point forces you to formulate your thoughts
clearly; then back come reactions, help, collateral in-
formation and the identification of others with similar
concerns.

Presentations and background materials are on the
web under http://uk.tug.org/events/. UKTUG ex-
presses its heartfelt thanks to the three presenters for
their contribution to the success of the day. The Group
was encouraged by the outcome, and hopes to mount a
further event or events on a similar model in the future.

Institutional

Members

Aalborg University, Department
of Mathematical Sciences,
Aalborg, Denmark

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia, Roma, Italy

Center for Computing Science,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario Canada

CNRS - IDRIS, Orsay, France

CSTUG, Praha, Czech Republic

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

MacKichan Software,
Washington/New Mexico, USA

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University, Faculty of
Informatics, Brno, Czechoslovakia

Moravian College, Department
of Mathematics and Computer
Science, Bethlehem, Pennsylvania

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator Center
(SLAC), Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University, Department
of Mathematics, Stockholm, Sweden

United States Environmental
Protection Agency,
Narragansett, Rhode Island

University College, Cork,
Computer Centre, Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Vanderbilt University,
Nashville, Tennessee

TEX Users Group
Membership Form

2006

Promoting the use
of TEX throughout

the world.

mailing address:

P. O. Box 2311
Portland, OR 97208-2311 USA

shipping address:

1466 NW Naito PKWY, Suite 3141
Portland, OR 97209-2820 USA

phone: +1 503-223-9994
fax: +1 206-203-3960
email: office@tug.org

web: http://www.tug.org

President Karl Berry
Vice-President Kaja Christiansen
Treasurer David Walden
Secretary Susan DeMeritt

Executive Director Robin Laakso

TUG membership rates are listed below. Please check the appropriate boxes and
mail the completed form with payment (in US dollars) to the mailing address at
left. If paying by credit/debit card, you may alternatively fax the form to the
number at left or join online at http://tug.org/join.html. The web page also
provides more information than we have room for here.

Status (check one) New member Renewing member

Automatic membership renewal in future years
Using the same payment information; just contact office to cancel.

Rate Amount

Early bird membership for 2006
After May 31, dues are $85.

$75

Special membership for 2006
You may join at this special rate ($55 after May 31) if you are a
senior (62+), student, new graduate, or from a country with a
modest economy. Please circle accordingly.

$45

Subscription for 2006 (non-voting) $95

Institutional membership for 2006
Includes up to eight individual memberships.

$500

Don’t ship any physical benefits (TUGboat, software)
TUGboat and software distributions are available electronically.

deduct $20

Send last year’s TEX Collection 2005 right away
Instead of this year’s TEX Collection 2006.

n/a

Send CTAN 2006 on CD (shipped on DVD to everyone) $15

Purchase last year’s materials

TUGboat volume for 2005 (3 issues) $20
TEX Collection 2005

2 CD’s & 1 DVD with proTEXt, MacTEX, TEX Live, CTAN.

$20

CTAN 2005 CD-ROMs $15

Voluntary donations

General TUG contribution
Bursary Fund contribution
TEX Development Fund contribution
CTAN contribution
LATEX 3 contribution

Total $

Tax deduction: The membership fee less $35 is generally deductible, at least in the US.

Multi-year orders: To join for more than one year at this year’s rate, just multiply.

Payment (check one) Payment enclosed Visa/MasterCard/AmEx

Account Number: Exp. date:

Signature:

Privacy: TUG uses your personal information only to send products, publications, notices, and (for voting members)
official ballots. TUG does not sell or otherwise provide its membership list to anyone.

Electronic notices will generally reach you much earlier than printed ones. However, you may choose not to receive
any email from TUG, if you prefer.

Do not send me any TUG notices via email.

Name

Department

Institution

Address

City State/Province

Postal code Country

Email address

Phone Fax

Position Affiliation

The information here comes from the consultants
themselves. We do not include information we
know to be false, but we cannot check out any of
the information; we are transmitting it to you as it
was given to us and do not promise it is correct.
Also, this is not an official endorsement of the
people listed here. We provide this list to enable
you to contact service providers and decide for
yourself whether to hire one.

TUG also provides an online list of consultants
at http://tug.org/consultants.html. If
you’d like to be listed, please fill out the form at
https://www.tug.org/consultants/listing.html

or email us at consult-admin@tug.org. To
place a larger ad in TUGboat, please see
http://tug.org/TUGboat/advertising.html.

Kinch, Richard J.
7890 Pebble Beach Ct
Lake Worth, FL 33467
561-966-8400
Email: kinch (at) truetex.com

Publishes TrueTEX, a commercial implementation
of TEX and LATEX. Custom development for
TEX-related software and fonts.

Martinez, Mercè Aicart
C/Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) menta.net

Web: www.edilatex.com/index_eng.html

We provide, at reasonable low cost, TEX and
LATEX typesetting services to authors or publishers
world-wide. We have been in business since the
beginning of 1990.

MCR Inc.
731 Beta Drive #G
Mayfield Village, OH 44143
(440) 484-3010; fax: (440) 484-3020
Email: sales (at) mcr-inc.com

Web: www.mcr-inc.com

Contract typesetting/printing services.

268 TUGboat, Volume 27 (2006), No. 2

TEX Consultants

MicroPress Inc.
68-30 Harrow Street
Forest Hills, NY 11375
+1 718-575-1816; fax: +1 718-575-8038
Email: support (at) micropress-inc.com

Web: www.micropress-inc.com

Makers of VTEX, fully integrated TEX system
running on Windows. VTEX system is capable of
one-pass output of PDF, PS, SVG and HTML;
VTEX IDE includes Visual Tools for writing
equations, function plots and other enhancements
and a large number of fonts, many not available
elsewhere. Makers of many new and unique
mathematical font families for use with TEX, see
http://www.micropress-inc.com/fonts. Makers
of microIMP, a fully WYSIWYG LATEX-based
Word Processor. microIMP supports TEX and
AMSTEX math, lists, tables, slides, trees, graphics
inclusion, many languages and much else — all
without any need for knowing TEX commands, see
http://www.microimp.com. See our web page for
other products and services. Serving TEX users
since 1989.

Peter, Steve
310 Hana Road
Edison, NJ 08817
+1 (732) 287-5392
Email: speter (at) dandy.net

Specializing in foreign language, linguistic, and
technical typesetting using TEX, LATEX, and
ConTEXt, I have typeset books for Oxford
University Press, Routledge, and Kluwer, and have
helped numerous authors turn rough manuscripts,
some with dozens of languages, into beautiful
camera-ready copy. I have extensive experience in
editing, proofreading, and writing documentation.
I also tweak and design fonts. I have an MA in
Linguistics from Harvard University and live in the
New York metro area.

Veytsman, Boris
2239 Double Eagle Ct.
Reston, VA 20191
(703) 860-0013
Email: borisv (at) lk.net

Web: http://users.lk.net/~borisv

TEX/LATEX consulting. Integration with
databases, full automated document preparation
systems, conversions and more.

TUGBOAT Volume 27, Number 2—TUG 2006 Conference Proceedings 2006

TUGBOAT Volume 27 (2006), No. 2 TUG 2006 Conference Proceedings

Table of Contents (ordered by difficulty)

Introductory
111 Barbara Beeton / Editorial comments

• typography and TUGboat news
110 Karl Berry / From the President

• some TUG activities and information for 2006
230 Hans Hagen, Jerzy B. Ludwichowski and Volker RW Schaa / The New Font Project: TEX Gyre

• enhancing the free fonts from URW et al. to support more scripts, analogous to Latin Modern

Intermediate
202 Claudio Beccari / LATEX2ε, pict2e and complex numbers

• extending the graphics of the pict2e package via complex number manipulation
137 Mohamed Jamal Eddine Benatia, Mohamed Elyaakoubi and Azzeddine Lazrek / Arabic text justification

• survey of historical methods of Arabic text justification, and a recommended algorithm
213 Morten Høgholm / Page design in LATEX3

• using LATEX3 features to ease and generalize page layout definitions
147 Youssef Jabri / The Arabi system — TEX writes in Arabic and Farsi

• an Arabic package for TEX needing no preprocessor, integrated with Babel
228 Jonathan Kew / Unicode and multilingual typesetting with X ETEX

• extended abstract demonstrating Arabic typesetting with X ETEX
238 F. Mounayerji and M. A. Naal / Arabic font building for LATEX

• outline of procedure for building Arabic fonts from scratch
112 John Owens / The installation and use of OpenType fonts in LATEX

• also discusses basics of accessing new fonts from LATEX
241 Chris Rowley / Everything we want to know about Font Resources

• brief discussion and open-ended questions on modern fonts and typesetting engines
181 Apostolos Syropoulos / LATEX as a tool for the typographic reproduction of ancient texts

Intermediate Plus
125 Alex A.J. / Typesetting Malayalam using Ω

• installation and use of a new Omega package to support Malayalam
154 Mustapha Eddahibi, Azzeddine Lazrek and Khalid Sami / DadTEX — A full Arabic interface

• TEX-based localization of documents to Arabic
197 Adrian Frischauf and Paul Libbrecht / dvi2svg: Using LATEX layout on the Web

• math formulas on the Web via DVI to SVG conversion
159 Hossam A.H. Fahmy / AlQalam for typesetting traditional Arabic texts

• enhancements to ArabTEX for Arabic, especially for typesetting the Qur’an
219 Hans Hagen / MKII–MKIV

• integration of LuaTEX with ConTEXt for graphics, I/O, networking, and more
121 Timothy Hall / Brackets around anything

• placing braces of any size and any angle for labeling within a figure
234 Karel Ṕı̌ska / Outline font extensions for Arabic typesetting

• discussion of FontForge and MetaType1 for Arabic fonts
176 Zdeněk Wagner / Babel speaks Hindi

• Hindi support in Babel via devnag, and Unicode vs. Velthuis transliteration
119 Peter Wilson / Glisterings

• empty arguments; clear to even page; capitalizing first characters

Advanced
167 Yannis Haralambous / Infrastructure for high-quality Arabic typesetting

• Supporting Arabic with new features in Ω2

243 Jean-Michel Hufflen / Names in BibTEX and MlBibTEX
• parsing names in bibliographies in a robust and extensible way

187 Elena Smirnova and Stephen M. Watt / Generating TEX from mathematical content
with respect to notational settings

• respecting users’ wishes for TEX output of mathematical notation

Contents of other TEX journals
256 MAPS: Contents of issues 33–34 (2005–06)
258 ArsTEXnica: Contents of issue 1 (2006)
258 Biuletyn GUST: Contents of issues 22–23 (2005–06)

Reports and notices
128 TUG 2006 conference information

254 Abstracts (Beeton, Bujdosó, Feuerstack, Hagen, Hoekwater, Ludwichowski, Wierda)
263 Calendar
264 EuroBachoTEX 2007 announcement
265 Onofrio de Bari / The 3rd Annual GuIT Meeting
266 Charles Goldie / UKTUG sponsors day of LATEX
266 Institutional members
268 TEX consulting and production services

