256

Pearls of TEX programming

The title of the BachoTEX 2005 conference was “The
Art of TEX Programming,” TAOTP for short, there-
fore the idea of a “Pearls of TEX Programming”
session arose. Bogustaw Jackowski came up with
the session motto: “Behold” — Bhaskara (see, e.g.,
http://www.aurora.edu/mathematics/bhaskara.
htm).

The idea was to invite TEXies known to be
TEXperts, TEX Masters or perhaps even TEX Grand-
masters! to contribute.

The call stated what was wanted:

e a short TEX, METAFONT, or METAPOST macro
or macros (preferably a few lines)

e results should be virtually useful yet not obvi-
ous

e easy to explain: 10 minutes at most

Editor’s note: This article is reprinted with permission from
the proceedings of BachoTEX 2005: Biuletyn Polskiej Grupy
Uzytkownikéw Systemu TEX, Zeszyt 22, May 2005, T. Przech-
lewski, B. Lichonski, S. Wawrykiewicz, P. Bolek, eds. Reprint-
ed with permission.

L Of course the blame for a failure to contact somebody
fitting this description should be put at the doorstep of the
conference organizers.

barbara beeton
New symbols from old

TUGDboat, Volume 26 (2005), No. 3

Prospective contributors were asked to kindly
provide the source of a macro or macros and a dis-
play or short description of the result, the size of it
to be altogether not more than one A4 page, prefer-
ably —half of an A4.

We also stated that this is not a contest and
that contributions were requested even from authors
who are unable to attend the conference. In such
a case the author was free either to elect one of the
participants to present his work or “leave the proof
to the gentle reader” aka “Behold”. The latter can
be done anyway. ..

As can be seen from the examples, we did not
strictly adhere to the stated program/macro limita-
tions, with the notable exception being Frank Mit-
telbach’s contribution. The result is here for the gen-
tle reader to digest and profit from.

We intend to continue the TAOTP initiative
at future BachoTEX conferences: TEX has so much
more up its sleeves ... A web display, similar in
spirit to the “TEX Showcase” maintained by Ger-
ben Wierda (at http://tug.org/texshowcase), is
also being considered for the future.

<223

Sometimes one needs a symbol that can’t be found in any font, but that is either a rotation
or a reflection of a symbol that is available. The graphicx package to the rescue!

\newcommand{\reflectit}[1]{\reflectbox{\ensuremath#13}}
\newcommand{\turnover}[1]{\rotatebox [origin=c]{180}{\ensuremath#1}}
\newcommand{\turnne}[1]{\rotatebox [origin=c]{45}{\ensuremath#1}}
\newcommand{\turnnwl} [1]{\rotatebox [origin=c]{135}{\ensuremath#1}}
\newcommand{\turnsw} [1]{\rotatebox [origin=c]{225}{\ensuremath#1}}
\newcommand{\turnse} [1]{\rotatebox [origin=c]{315}{\ensuremath#1}}

=N ¥y ~ e

When you define new names for such symbols, it’s a good idea to specify the class (\mathord,
\mathbin, etc.) in the definition so you get the correct spacing when they’re used.

TUGboat, Volume 26 (2005), No. 3

Martin Schroder
Colour separation in pdfTEX

\newcommand*{\AC@addColor} [5]{%
\immediate\pdfobj stream
attr {
/FunctionType 4
/Domain [0.0 1.0]
/Range [0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0]
}
{ { dup 72 mul exch
dup 7?3 mul exch
dup 7?4 mul exch
?5 mul } }
\edef\AC@ColorFunctionObj{\the\pdflastobj}/
\immediate\pdfobj {[/Separation /71
/DeviceCMYK
\AC@ColorFunctionObj\space 0 R 1}/
\begingroup
\toks@\expandafter{\AC@colorhookl},
\edef\x{%
\endgroup
\gdef\noexpand\ACQcolorhook{%
\the\toks@
/?1\space\the\pdflastobj\space O R %
Y
Yh
\x
}
% later
\edef\AC@expand{\global\pdfpageresources {%
/ColorSpace << \AC@colorhook >>
Y
\ACQexpand

David Carlisle (proposed by Frank Mittelbach)

Guess what. ..

\month=10

\let~\catcode™ ‘76~ ‘A13~ ‘F1~“jO0~ ‘P2jdefA71F~ ‘7113 jdefPALLF
PA’ ’FwPA; ;FPAZZFLalPA//71F71iPAHHFLPAzzFenPASSFthP ; A$$FevP
AQQFfPARR717273F737271P ; ADDFRgniPAWW7 1FPATTFvePA**FstRsamP
AGGFRruoPAqq71.72.F717271PAYY7172F727171PA??Fi*LmPA&&71jfi
Fjfi71PAVVF jbigskipRPWGAUU71727374 75,76Fjpar71727375Djifx
:76jelse&U76j£iPLAKK7172F7117271PAXX71FVLn0SeL71SLRyadR@oL
RrhC?yLRurtKFeLPFovPgaTLtReRomL ;PABB71 72,73:Fjif.73. jelse
B73:jfiXF71PU71 72,73:PWs;AMM71F71diPAJJFRAriPAQQFRsreLPAI
I71Fo71dPA! !FRgiePBt’el@ 1TLqdrYmu.Q.,Ke;vz vzLqpip.Q.,tz;
;Lgl.IrsZ.eap,qn.i. i.eLlMaesLdRcna,;!;h htLgm.MRasZ.ilk,%
s$;z zLgs’.ansZ.Ymi,/sx ;LYegseZRyal,@i;@ TLRlogdLrDsW,@;G
LcYlaDLbJsW,SWXJW ree QrzchLhzsW,;WERcesInW qt.’oL.Rtrul;e
doTsW,Wk;Rri@stW aHAHHFndZPpqar.tridgelLinZpe.LtYer.W, :jbye

This pearl is saved for you at http://www.gust.org.pl/BachoTgX/2005/pearls/
Don’t try to copy it from this paper.

257

258 TUGDboat, Volume 26 (2005), No. 3

Karl Berry

Forcing a page or column break in the middle of a paragraph.

{\parfillskip=0Opt\par}\vfill\penalty-10000{\everypar={}\noindent}

Taco Hoekwater
Die Hard

Here is a very short macro that immediately kills off a TEX run, regardless of the current
state of the TEX engine, and issuing a fatal error message before it does so.
\def\die#1%
{\immediate\writel6{#1}
\batchmode
\input junkfilethatdoesntexist }

Petr Olsak

\expandafter\endcsname trick.

It is better to write
\expandafter \let \csname #1\expandafter \endcsname \csname #2\endcsname
than

\expandafter \expandafter \expandafter \let
\csname #1\endcsname \csname #2\endcsname

Petr Olsak

Testing whether two characters form a ligature.

\newif\ifligature

\def\testligature #1#2{\setbox0=\hbox{/
\thickmuskip=1000mu \textfontO=\the\font
$\mathchar ‘#1 \mathrel\mathchar ‘#2$}/,
\ifdim\wd0>500pt \ligaturefalse \else \ligaturetrue \fi}

David Kastrup

Comparing two strings known to consist only of characters.

\def\strequal#i{\number\strequalstart{}{}#1\relax}

\def\strequalstart#1#2#3{\if#3\relax\strequalstop\fi
\strequalstart{\if#3#1}{#2\fi}}

\def\strequalstop\fi\strequalstart#1#2#3{\fi#1#3\relax’#213 }

\if\strequal{junk}{#1} will be true for #1 being “junk”, and false otherwise.

TUGboat, Volume 26 (2005), No. 3

David Kastrup
Sorting words by length.

“Finnegans Wake” by James Joyce is a book that is not easily comprehensible. TEX can
systematize the approach to the text by confronting the reader with the longest, and conse-
quently hardest, words last.

\def\sorttext#1{\setbox0\vbox{{\language255\hsize=0pt\hfuzz\maxdimen
\parfillskipOpt\noindent#1\par}\sortvlist\unpack}\unvbox0 }
\def\sortvlist{{\unskip\unpenalty \setboxO\lastbox
\ifvoidO\noindent\else\setboxO\hbox{\unhbox0\ }\sortvlist\sortin\fil}}
\def\sortin{\setbox2\lastbox\ifdim\wd2>\wd0{\sortin}\fi\box2\box0}
\def\unpack{{\setbox0O\lastbox\ifvoidO\indent\else\unpack\unhboxO\fil}}

\sorttext{riverrun, past Eve and Adam’s, ... linsfirst loved livvy.}

Frank Mittelbach

\looseness not so loose.

This paragraph was set twice in
a two column multicols environ-
ment. The first time it was set
without any special adjustments,
the second time we used -1 as
the value for the \looseness pa-
rameter. Can you explain why
the two paragraphs are different-
ly broken into lines even though
clearly the use of the parameter
\looseness couldn’t shorten the
paragraph at all?

This paragraph was set twice in
a two column multicols environ-
ment. The first time it was set
without any special adjustments,
the second time we used -1 as
the value for the \looseness
parameter. Can you explain why
the two paragraphs are different-
ly broken into lines even though
clearly the use of the parame-
ter \looseness couldn’t shorten
the paragraph at all?

Answer: When \looseness gets a non-zero value, TEX will always run through all para-
graph passes (i.e., breaking without hyphenation, with hyphenation and (if \emergency-
stretch is non-zero as it is inside multicols) through the emergency-pass. But adding
\emergencystretch to every line means that the line breaks chosen in the first paragraph
may fall in different fitting classes so that at different places \adjdemerits are charged, thus
making the original solution less attractive.

In fact the situation could even be worse: if a long paragraph can be broken into lines
by just using \pretolerance, then a setting of \looseness to +1 might in fact result in a
paragraph with one line less—all that is required is that by breaking it using \tolerance we
would get a default line count that would be 2 lines less than in the case with \pretolerance
(a real life example is left to the reader).

259

260 TUGDboat, Volume 26 (2005), No. 3

Philip Taylor

The Iterator

In general-purpose TEX programming (as opposed to typesetting with TEX), one of the most
commonly needed techniques is the ability to iterate over an unknown number of parameters.
If the number is known to be nine or less in advance, TEX is quite capable of doing all that
is necessary with only a little help from the user. However, if the number of parameters may
exceed ten, than a rather more devious approach will be required.

\def \forall #1#2\do #3{#3 {#1}\ifx \relax #2\relax
\else \forall #2\do {#3}\fil}

Sample usage:

\def \debug #1{\message {[#1]}#1 }
\forall 1234abcd{ef}{ghi}etc...\do {\debug}

David Kastrup

Iterating with roman numerals.

Appendix D in The TEXbook has the task of defining \asts as a macro containing \number\n
copies of an asterisk. The solutions in The TEXbook are not really fun. Here is one that is
all sorts of fun, efficient and simple:

\def\asts#1{\if#1m*\expandafter\asts\fi}
\edef\asts{\expandafter\asts\romannumeral\number\n 000\relax}

Now for something more general: we want a macro \replicate that gets a number in
its first argument and arbitrary tokens in its second argument and expands to the given
number of repeated token strings.

It is surprisingly hard to pass both the shrinking string of m as well as the argument to
be repeated in a useful way into the expanding first macro, and the reader is advised to try
it. What I came up with was
\long\def\gobble#1{}
\long\def\xii#1#2{\if#2m#1\expandafter\xii\else\expandafter\gobble\fi{#1}}
\long\def\xiii#1\relax#2{\xii{#2}#1\relax}
\def\replicate#1{\expandafter\xiii\romannumeral\number\number#1 000\relax}
A somewhat wittier variant that takes its toll on the semantic nest size would be
\def\recur#1{\csname rn#i\recur} \long\def\rnm#1{\endcsname{#1}#1}
\long\def\rn#1{}

\def\replicate#1{\csname rn\expandafter\recur
\romannumeral \number\number#1 000\endcsname\endcsname}

Of course, if we leave the area of TEX compatibility and take a look at what we can do with

e-TEX, we arrive at the boring

\def\replicate#1#2{\ifnum#1>0 #2J,
\expandafter\replicate\expandafter{\number\numexpr#1-1}{#2}\fi}

TUGboat, Volume 26 (2005), No. 3 261

Krzysztof Leszczynski

\csequence stack

Often I need to save a few macros but I don’t want to \begingroup and \global-ly define
those I want to keep after \endgroup. Here is a simple stack:

o \newcsstack \stackname — define a new stack

© \pushcs \stackname \cs — push a control sequence

o \popcs \stackname \cs — pop a control sequence

© \topcs \stackname \cs — equivalent to \popcs. . .\pushcs

\def \gobble#1{} ’ this macro is usually defined somewhere

\def \stackcs#1{\csname \ifnum\escapechar>-1
\expandafter \expandafter \expandafter \gobble
\expandafter \fi \string #1::\number#1\endcsname}

% temporarily un-outer newcount to define newcsstack

\let \topcs = \newcount \let \newcount = \relax

\def \newcsstack #1l{\newcount #1\global#1=0\pushcs#1\relax}

\let \newcount = \topcs % restore \newcount

\def \pushcs#1#2{\global \advance#l 1
\global \expandafter \expandafter \expandafter
\let \stackcs{#1}= #23}
\def \topcs#1#2{\expandafter \expandafter \expandafter \let
\expandafter \expandafter \expandafter #2\stackcs{#1}}
\def \popcs#1#2{\topcs#1#2%
\global \expandafter \expandafter \expandafter
\let \stackcs{#1}\relax \global \advance #1-1 }

The above example doesn’t save parameter values, only the meaning is saved but see below.

Bogustaw Jackowski
Locally changes parameter values.

Macro \local changes a value of a parameter locally (for one paragraph).

\let\restoreparams\empty

\def\local#1{ e.g., ‘‘\local\hfuzz=2pt ... \par’’

\ifx\restoreparams\empty

\let\oripar\par

\def\par{\oripar \restoreparams \let\par\oripar \let\restoreparams\empty}/,
\fi

\edef\restoreparams{\restoreparams#1\the#1}J,
#1}

262

Bogustaw Jackowski
Extra Béziers

TUGDboat, Volume 26 (2005), No. 3

The macro extrapolate computes a
“superpath” (as opposed to “subpath”)
for a single Bézier segment in such a way
that the following identity holds (for
0<t; <ty <1):

Below, there are results of the command
extrapolate(.3, .7) of p for three
similarly defined paths. The black line
denotes the source path, the gray
one—its extrapolation.

p = (0, 0){right} .. {up}(s, s);

J

p = (0, 0){right} ..

Exercise 1. What happens if the relation
0 <t; <ty <1isnot fulfilled? (Hint:
there are a few possible cases.)

Exercise 2. True or false:

for

Exercise 3. Try to imagine the result of
the extrapolation for such weird (yet
trivial) paths as:

—

0,0) ..
(0,0) ..

or

_J

tension .75 ..

controls(0, 0) and (100, 0) ..
controls(100, 0) and (0, 0) ..

Makro extrapolate wyznacza
yhadsciezke” (w odréznieniu od
»podsciezki”) dla pojedynczego tuku
Béziera w taki sposob, ze ponizsza
ré6wnos$é jest spelniona (dla

0<t <ty <1

subpath (t1, t3) of (extrapolate(t, t2) of b) = b

Ponizsza ilustracja przedstawia wynik
polecenia extrapolate(.3,.7) of p dla
trzech podobnie zdefiniowanych $ciezek.
Czarng linia zaznaczona zostata Sciezka
oryginalna, szara — ekstrapolowana.

tension 3 .

4

Zadanie 1. Co by sie stalo, gdyby
warunek 0 < t; < t3 < 1 nie byl
spelniony? (Wskaz6éwka: mozliwych jest
kilka réznych przypadkdw.)

p = (0, 0){right} .. - {up}(s, s):

{up}(s, 5);

Zadanie 2. Prawda czy falsz:

point 1 of (extrapolate(t,, t) of b) = point 1 of (extrapolate(t;, t) of b)
tg <> 1p

Zadanie 3. Sprébuj przewidzie¢ wynik
ekstrapolacji dla tak dziwnych (chociaz
trywialnych) $ciezek jak:

(100, 0)

(100, 0)

clearxy;

Casteljau(xpart(t)) = point 0 of b;

Casteljau(ypart(t)) = point 1 of b;
zg .. controls z1 and zo .. z3
enddef;
%
def Casteljau(expr t) =
t[t[t[z0, 1], tz1, 22]], tlt[21, 22], tlze, 23]]]

enddef’;

vardef extrapolate expr t of b =/, ¢ pair, b Bézier segment

(
Casteljau(1/3 [xpart(t), ypart(t)]) = point 1/3 of b;
Casteljau(2/3 [xpart(t), ypart(t)]) = point 2/3 of b;

TUGboat, Volume 26 (2005), No. 3 263

Bernd Raichle

Plain TEX’s accent macros revisited.

Sample output using Plain TEX’s accent macros.

Here is the output when Plain TEX’s accent macros \AA, \c, and \b are used with
various glyphs from different upright and slanted fonts.

emr: A ¢CtTgG.ipy 0gOjapy
emesc A ¢gCTTG¢G.,IpY 0cOIQPY
emit: A ¢ CtTgG,ipy 0g90jqpy
emsl: A ¢CtTgG,jpy 0g80jqpy

Revised macros using the \accent primitive.

The following re-implementation does not use \halign but the \accent primitive
to position the accent glyph.

\def\AA{{\dimen@ 1lexY%
{\setbox\z@\hbox{A}\dimen@\ht\z@ \advance\dimen@-.35ex
\fontdimen5\font\dimen@}\accent’27\fontdimen5\font\dimen@ A}}

\def\c#1{{\dimen®@ 1ex%
{\setbox\z@\hbox{#1}\dimen@\ht\z@ \advance\dimen@\dp\z@
\fontdimen5\font\dimen@}\accent24\fontdimen5\font\dimen@ #13}}

\def\b#1{{\dimen@ lex\setbox\z@\hbox
{{\setbox\z@\hbox{\char22}\dimen@\ht\z@ \advance\dimen@ .25ex}
\setbox\z@\hbox{#1}\advance\dimen@\ht\z@ \advance\dimen®@\dp\z@
\global\dimen@i\dp\z@ \globalladvance\dimen®@i .45ex%
\fontdimen5\font\dimen@}\accent22\fontdimen5\font\dimen@ #11}Y%
\dp\z@\dimen®@i \box\z@}}

Sample output using the revised macros.

Here is the output using the new definitions.

emr: A ¢cCtT

lgG.jpy 0g0japy
cmese: A ¢QCTTGgG.,IipYy 0G0IQPY
emit: A ¢ CtTgG.jpy 090japy
ems A ¢CtTgG,jpy 0g0jqpy

Do you see the differences? How is \accent used to achieve this effect?

