
TUGboat, Volume 26 (2005), No. 3 243

Hyphenation patterns in ConTEXt

Hans Hagen

Abstract
A brief discussion of hyphenation patterns, excep-
tions, and TEX languages, especially in ConTEXt.

1 Pattern files

TEX has two mysterious commands that the average
user will never or seldom meet:

\hyphenation{as-so-ciates}
\patterns {.ach4}

Both commands can take multiple strings, so in
fact both commands should be plural. The first
command can be given any time and can be used
to tell TEX that a word should be hyphenated in a
certain way. The second command can only be is-
sued when TEX is in virgin mode, i.e. starting with
a clean slate. Normally this only happens when a
format is generated.

The second command is more mysterious than
the first one and its entries are a compact way to
tell TEX between what character sequences it may
hyphenate words. The numbers represent weights
and the (often long) lists of such entries are gener-
ated with a special program called patgen. Since
making patterns is work for specialists, we will not
go into the nasty details here.

In the early stage of ConTEXt development it
came with its own pattern files. Their names started
with lang- and their suffixes were pat and hyp.

However, when ConTEXt went public, I was con-
vinced to drop those files and use the files already
available in distributions. This was achieved by us-
ing the ConTEXt filename remapping mechanism.
Although those files are supposed to be generic, this
is not always the case, and it remains a gamble if
they work with ConTEXt. Even worse, their names
are not consistent, and the names of some files as
well as locations in the tree keep changing. The
price ConTEXt users pay for this is lack of hyphen-
ation until such changes are noticed and taken care
of. Because constructing the files is an uncoordinat-
ed effort, all pattern files have their own character-
istics, most noticably their encoding.

After the need to adapt the name mapping once
again, I decided to get back to providing ConTEXt
specific pattern files. Pattern cooking is a special

craft and TEX users may count themselves lucky
that it’s taken care of. So, let’s start with thank-
ing all those TEX experts who dedicate their time
and effort to get their languages hyphenated. It’s
their work we will build (and keep building) upon.

In the process of specific ConTEXt support, we
will take care of:

• consistent naming, i.e. using language codes
when possible as a prelude to a more sophis-
ticated naming scheme, taking versions into
account

• consistent splitting of patterns and hyphen-
ation exceptions in files that can be recog-
nized by their suffix

• making the files encoding independent using
named glyphs

• providing a way to use those patterns in plain
TEX as well

Instead of using a control sequence for the named
glyphs, we use a different notation:

[ssharp] [zcaron] [idiaeresis]

The advantage of this notation is that we don’t
have to mess with spacing and parsing, and cleanup
with scripts becomes more robust. The names con-
form to the ConTEXt way of naming glyphs and the
names and reverse mappings are taken from the en-
coding files in the ConTEXt distribution, so you need
to have ConTEXt installed.

The ConTEXt pattern files are generated by a
Ruby script. Although the conversion is rather
straightforward, some languages need special treat-
ment, but a script is easily adapted. If you want a
whole bunch of pattern files, just say:

ctxtools --patterns all

Or, if you want one language:

ctxtools --patterns nl

If for some reason this program does not start, try:

texmfstart ctxtools --patterns nl

When things run well, this will give you four files:

lang-nl.pat the patterns in an encoding inde-
pendent format

lang-nl.hyp the hyphenation exceptions

244 TUGboat, Volume 26 (2005), No. 3

lang-nl.log the conversion log (can be deleted
afterwards)

lang-nl.rme the preambles of the files used
(copyright notices and such)

If you redistribute the files, it makes sense to bundle
the rme files as well, unless the originals are already
in the distribution. It makes no sense to keep the log
files on your system. When the file lang-all.xml
is present, the info from that file will be used and
added to the pattern and hyphenation files. In that
case no rme and log file will be generated, unless
--log is specified.

In the Dutch pattern file you will notice entries
like the following:

e[ediaeresis]n3

So, instead of those funny (encoding specific)
^^fc or (format specific) \"e we use names. Al-
though this looks ConTEXt dependent it is rather
easy to map those names back to characters, espe-
cially when one takes into account that most lan-
guages only have a few of those special characters
and we only have to deal with lowercase instances.

The ConTEXt support module supp-pat.tex is
quite generic and contains only a few lines of code.
Actually, most of the code consists of a dedicated
XML handler. Loading a pattern meant for EC en-
coded fonts in a system other than ConTEXt is done
as follows:

\bgroup
\input supp-pat

\lccode"FC="FC
\definepatterntoken ediaeresis ^^fc

\lccode"FF="FF
\definepatterntoken ssharp ^^ff

...

\enablepatterntokens
\enablepatternxml

\input lang-de.pat
\input lang-de.hyp

\egroup

In addition to this one may want to set addi-
tional lower and uppercase codes. In ε-TEX these
are stored with the language.

Just for completeness we provide the magic com-
mand to generate the XML variants:

ctxtools --patterns --xml all

This will give you files like:

<?xml version=’1.0’ standalone=’yes’?>

<!-- some comment -->

<patterns>
... e&ediaeresis;n3 ...
</patterns>

This is also accepted as input but for our purpose
it’s probably best to stick to the normal method.
The pattern language is a TEX specific one anyway.

2 Installing languages

Installing a language in ConTEXt should not take
too much effort given that the language is supported.
Language specific labels are grouped in lang-* files,
like lang-ger.tex for the germanic languages.

Patterns will be loaded from the files in the gen-
eral TEX distribution unless lang-nl.pat is found,
in which case ConTEXt assumes that you prefer the
ConTEXt patterns. In that case, run

ctxtools --patterns all

You need to move the files to the ConTEXt base
path that you can locate with:

textools --find context.tex

You can also use kpsewhich, but the above
method does an extensive search. Of course you
can also generate the files on a temporary location.
Now it’s time to generate the formats:

texexec --make --all

Since X ETEX needs patterns in UTF-8 encoding,
we provide a switch for achieving that:

texexec --make --all --utf8

Beware: you need to load patterns for each lan-
guage and encoding combination you are going to
use. You can configure your local cont-usr file to
take care of this. When an encoding does not have
the characters that are needed, you will get an error.
When using the non-ConTEXt versions this may go
unnoticed because the encoding is hard coded in the

TUGboat, Volume 26 (2005), No. 3 245

file. Of course it will eventually get noticed when the
hyphenations come out wrong.

The ConTEXt distribution has a file that holds
the copyright and other notes about patterns,
named lang-all.xml. An example description:

<description language=’nl’>
<sourcefile>nehyph96.tex</sourcefile>
<title>TeX hyphenation patterns for the

Dutch language</title>
<copyright>

<year>1996</year>
<owner>Piet Tutelaers

(P.T.H.Tutelaers at tue.nl)</owner>
<comment>8-bit hyphenation patterns

for TeX based upon the new Dutch
spelling, officially since
1 August 1996. These patterns follow
the new hyphenation rules in the
Woordenlijst Nederlandse Taal [...]

</comment>
</copyright>

</description>

This file is ‘work in progress’: more details will be
added and comments will be enriched.

3 Commands

You can at any moment add additional hyphenation
exceptions to the language specific dictionaries. For
instance:

\language[nl] \hyphenation{pa-tiÃn-ten}

Switching to another language is done with the
\language command. The document language is
set with \mainlanguage.

If you want to let TEX know that a word should
be hyphenated in a special way, you can use the \-
command, for instance:

Con\-TeXt

Compound words are not recognized by the hy-
phenation engine, so there you need to add direc-
tives, like:

the ConTeXt|-|system

If you are using XML as the input format, you
need to load the hyphenation filter module. Here we
assume that UTF encoding is used:

\useXMLfilter[utf,hyp]

In your XML file you can now add:

<hyphenations language=’nl’ regime=’utf’>
<hyphenation>pa-tiÃn-ten

</hyphenation>
<hyphenation>pa-tiÃn-ten-or-ga-ni-sa-tie

</hyphenation>
<hyphenation>pa-tiÃn-ten-plat-form

</hyphenation>
</hyphenations>

This filter also defines some auxiliary elements.
Explicit hyphenation points can be inserted as fol-
lows:

Zullen we hier
af<hyphenate/>bre<hyphenate/>ken of niet?

The compound token can be anything, but keep
in mind that some tokens are treated specially (see
other manuals).

Wat is eigenlijk een
patiÃńnten<compound token="-"/>platform?

A language is chosen with:

nederlands
<language code="en">english</language>
nederlands

If you set attribute scope to global, labels
(as used for figure captions and such) adapt to
the language switch. This option actually invokes
\mainlanguage.

4 Languages

When users in a specific language area use more than
one font encoding, patterns need to be loaded multi-
ple times. In theory this means that one can end up
with more instances than TEX can host. However,
the number of sensible font encodings is limited, as
is the number of languages that need hyphenation.
Now that memory is cheap and machines are fast,
preloading a lot of pattern files is no problem.

� Hans Hagen
Pragma ADE
pragma (at) wxs.nl

