
246 TUGboat, Volume 26 (2005), No. 3

Graphics

Diagxy, a Lego-like diagram package

Michael Barr

1 Overview

This is an introduction to my diagxy package
that sets commutative (usually) diagrams using
an interface that patches pieces together, Lego
style. Since it comes with full documentation/
tutorial, I will just hit the high points here and
refer to the package for more details.

There are a number of good packages for
making commutative diagrams. Mostly, they
are based on \halign. This has advantages and
disadvantages. The advantages are that the syn-
tax is mostly familiar and the underlying TEX
engine does all the work in its native mode, at
a considerable advantage in speed, not to men-
tion relative ease in programming. The main
disadvantage from my point of view is lack of
flexibility. TEX makes all the spacing decisions
and the user has few options. I first became
aware of this when I used XY-pic to make a “W”
shaped diagram and discovered that, owing to a
mismatch between the various nodes of the dia-
gram, the “W” was leaning to one side. Another
problem was that a fixed distance was used for
arrows and if the label on an arrow was larger
than that distance, it was hard to force it to be
larger and the increments available (by adding
nodes) were large.

In the 1980s I had designed a diagram pack-
age built around LATEX’s picture mode that was
based on defining shapes that fit together like
Lego blocks. The sizes of the shapes were un-
der user control. This violates the LATEX prin-
ciple of logical markup, but I do not feel that
diagrams can be done using logical markup, at
least not at present. The original package had
defined shapes such as squares (really rectangles,
but we call them squares anyway) and triangles
at various orientations that would fit together.
I was limited by the directions available in the
picture mode (an arrow could go in only one of
48 different directions, at a resolution that varies
between 3 and 14 degrees). The package was not
entirely satisfactory for other reasons.

One real advantage of XY-pic is that it has a
full 256-character font of line segments in differ-
ent directions and two fonts of arrowheads that

allow arrows in any of 512 directions, which is as
many as one could wish for. It was also possible
to make macros to replace the plain TEX arrow-
heads with those of XY-pic, giving a more uni-
form look to papers, especially ones using many
arrows. Therefore I had the idea a few years ago
of reimplementing my original package making
use of the XY-pic arrows. When I sat down to do
this I discovered that, underlying the XY-pic ma-
trix package was a drawing engine of great gen-
erality. In fact, it turned out to be much easier
to use this engine as the back end to my reim-
plementation than to just use the arrows. As a
result, it is possible to mix my diagram package
with native XY-pic code with excellent results.
Also, the present diagxy works with both LATEX
and plain TEX. Except for one incompatibility
described below, diagxy appears to be compat-
ible with AMS-LATEX as well, although I have
not tested that extensively.

There are two kinds of people: those who
can read and write syntax diagrams and those
who learn by example. I am far out on the lat-
ter limb of what is really a continuum. Accord-
ingly, most of the documentation of diagxy is in
the form of a tutorial, diaxydoc.tex, that gives
many examples. Even though I designed and
implemented the package, I myself still refer to
the tutorial all the time.

2 Simple diagrams

The most elementary is

C D
k

//

A

C

g

��

A B
f // B

D

h

��

which is produced using the code

$$\bfig\square[A‘B‘C‘D;f‘g‘h‘k]\efig$$

Here I used the ‘ symbol to separate the nodes.
It seemed to be the symbol that was least likely
to actually be used. If it is, it must be enclosed
in braces to avoid being interpreted by TEX as
a delimiter. Similarly, the ; was chosen as a
character little used in mathematics (although
unfortunately used a lot in computer programs)
that separates the nodes from the arrow labels.
Any of the entries can be left empty. Although
the default is to place all four arrows, optional
arguments allow omission of arrows too. Inci-
dentally, square brackets are used internally as
delimiters, so any square brackets should also

TUGboat, Volume 26 (2005), No. 3 247

be enclosed in braces. Sometimes they are un-
necessary, but they can never hurt and I have
not actually worked out what situations require
their use.

Suppose the square is not large enough. If
you want the diagram

Hom(A,B′) Hom(A′, B′)
Hom(f,B′)

//

Hom(A,B)

Hom(A,B′)

Hom(A,g)

��

Hom(A,B) Hom(A′, B)
Hom(f,B) // Hom(A′, B)

Hom(A′, B′)

Hom(A′,g)

��

you use size parameters set off by < and > as in
$$\bfig\square<1000,500>[\Hom(A,B)‘
\Hom(A’,B) ‘\Hom(A,B’)‘\Hom(A’,B’);
\Hom(f,B)‘\Hom(A,g)‘ \Hom(A’,g)
‘\Hom(f,B’)]\efig$$

Here the numbers 1000 and 500 refer to the
width and height of the square in units of .01 em.
This is doubtless too fine; I hardly ever use a dis-
tance not a multiple of 10 (or, occasionally, 5),
but I feel that now I am stuck with that choice.
The default is <500,500> and will be supplied
if not specified.

3 Lego blocks

Although simple diagrams are the most com-
mon, the real power of diagxy is the ease of
putting blocks together to make more compli-
cated diagrams. In order to do this, there are
parameters, enclosed in (), that tell where to
place a block in the given coordinate system.
For example:

C D
k

//

A

C

g

��

A B
f // B

D

h

��

E F
n

//

C

E

l

��

C D// D

F

m

��

This is produced by
$$\bfig\square(0,500)[A‘B‘C‘D;f‘g‘h‘k]
\square[C‘D‘E‘F;‘l‘m‘n]\efig$$

This is an example of the Lego block approach.
Note that C and D are repeated. This is nec-
essary in order that the arrows be the correct
lengths. On the other hand, there is no need
to repeat k and, if you did, it would by default
appear both above and below the middle arrow.

There are other optional parameters to tell
where the arrow labels should go and to change
the arrow style. The latter can get very com-
plicated, as complicated as XY-pic allows. Arbi-
trary XY-pic arrow styles, including arrows that
follow arbitrary Bezier curves, are allowed.

There are a number of basic triangle shapes,
which are named according to the letter in the
alphabet that most neatly fits in the triangle.
For example, a \ptriangle is a right triangle
whose hypotenuse goes from east to south and
an \Atriangle is an isoceles triangle whose base
is horizontal. This example

A B
f //A

C

h

��

B

C

g

����
��

��
��

��
�

C D
l

//

B

C
����

��
��

��
��

�
B

D

k

��

is produced by
$$\bfig\ptriangle[A‘B‘C;f‘h‘g]
\dtriangle[B‘C‘D;‘k‘l]\efig$$

An alternate way of making the same diagram
is given by
$$\bfig\square[A‘B‘C‘D;f‘h‘k‘l]
\morphism(500,500)<-500,-500>[B‘C;g]
\efig$$

where \morphism creates the arrow from B to
C.

Incidentally, the effect of \bfig. . .\efig in
a displayed diagram is nearly the same as \xy
. . . \endxy except that it has the effect of enclos-
ing the whole in a \vcenter box so that equa-
tion numbers, if any, are vertically centred. In
case you are curious about the names \bfig and
\efig, I used an NROFF-type system briefly in
the very early 1980s (in the paleolithic era be-
fore TEX) and figures were set off using .BFIG
and .EFIG.

4 In-line arrows

One of my minor gripes about LATEX is that
the arrows used in text look quite different from
those used in diagrams. So one of the things
I have done is define a macro \to that works
somewhat like \rightarrow but uses the XY-pic
arrowheads. It has several other features, in-
cluding various options, but the most important
is that it grows to accommodate long labels. An

example is A
a long label // B, for which the

source is
$A\to^{\mbox{\rm a long label}}B$.

248 TUGboat, Volume 26 (2005), No. 3

S

NP
oooooooooo S

VP
OOOOOOOOOO

NP

Art
��

��
�
NP

N

??
??

? VP

Vt

��
��

�
VP

NP
??

??
?

Art

the

N

man

Vt

hit

NP

Art
��

��
�
NP

N

??
??

?

Art

the

N

ball

Figure 1: A tree diagram from mathematical linguistics

There are other macros, such as \two and three,
which make double and triple arrows. The di-
rections of the arrows (right or left) can be in-
dependently set, using standard XY-pic controls.

5 Compatibility

There is nothing in this code (or in XY-pic) that
uses anything but plain TEX. I have used it ex-
tensively under LATEX and never unearthed any
incompatibility. I have not used it much with
AMS-LATEX but there is one known incompat-
ibility. One of the AMS symbol fonts makes a
little box which is named \square. A simple
fix is to load the amsfonts first. If you actu-
ally require that character, then before loading
diagxy, simply say \let\Box\square, to call it
\Box. Incidentally, the @ sign is used in the
XY-pic syntax, along with just about every other
non-alphanumeric character. Thus you cannot
change the catcodes of any of them, which means
there are no private control sequences. Thus one
must be careful not to redefine any of the inter-
nal sequences used.

6 An alternate syntax

A couple years after this package was released, I
received a note from a graduate student named
Gerd Zeibig who suggested an alternate syntax
in which you specify the placement of nodes in
the coordinate system and then draw arrows be-
tween them. He had also implemented this in a
way that used two counters for each node. Given
the shortage of counters in standard LATEX, I de-
cided to reimplement it using macro definitions
in place of these counters. So it is now possible
to describe diagrams as illustrated below. The
diagram in Figure 1 appears in a set of notes
on mathematical linguistics. While there is cer-
tainly no problem producing it using the ear-

lier code, it is much more systematic to describe
trees in this way:

$$\bfig

\newcommand{\NP}{\hbox{\mit NP}}

\newcommand{\VP}{\hbox{\mit VP}}

\newcommand{\Art}{\hbox{\mit Art}}

\node 1a(0,0)[S]

\node 2a(-600,-300)[\NP]

\node 2b(600,-300)[\VP]

\arrow/-/[1a‘2a;]

\arrow/-/[1a‘2b;]

\node 3a(-900,-600)[\Art]

\node 3b(-300,-600)[N]

\node 3c(300,-600)[V_t]

\node 3d(900,-600)[\NP]

\arrow/-/[2a‘3a;]

\arrow/-/[2a‘3b;]

\arrow/-/[2b‘3c;]

\arrow/-/[2b‘3d;]

\node 4a(-900,-900)[{\sf the}]

\node 4b(-300,-900)[{\sf man}]

\node 4c(300,-900)[{\sf hit}]

\node 4d(600,-900)[\Art]

\node 4e(1200,-900)[N]

\arrow/-/[3a‘4a;]

\arrow/-/[3b‘4b;]

\arrow/-/[3c‘4c;]

\arrow/-/[3d‘4d;]

\arrow/-/[3d‘4e;]

\node 5a(600,-1200)[{\sf the}]

\node 5b(1200,-1200)[{\sf ball}]

\arrow/-/[4d‘5a;]

\arrow/-/[4e‘5b;]

\efig$$

First you define the nodes and then draw
arrows between them. In this case, we wanted
only lines, whence the /-/ specification on the
arrows. The labels on the nodes are almost com-
pletely arbitrary (limited only by what \csname
. . . \endcsname allows).

TUGboat, Volume 26 (2005), No. 3 249

TT T
µ //TT

TTT ′

TTη′

��?
??

??
??

??
??

??
??

? T

TTT ′TTT ′ TT ′
Tσ

//

T

TTT ′

T

TT ′

Tη

��?
??

??
??

??
??

??
??

?TT

TT ′T

Tη′T

��
TT ′TT ′ TT ′T ′

TTT ′

TT ′TT ′

Tη′TT ′

��

TTT ′ TT ′
µT ′

// TT ′

TT ′T ′

Tη′T ′

��

TT ′

TT ′

id

��?
??

??
??

??
??

??
??

?

T ′T T ′TT ′
T ′Tη′

//

TT ′T

T ′T

σT

��

TT ′T TT ′TT ′TT ′Tη′
// TT ′TT ′

T ′TT ′T ′TT ′ T ′T ′
T ′σT ′

//

TT ′TT ′

T ′TT ′

σTT ′

��

TT ′TT ′ TT ′T ′TT ′σ // TT ′T ′

T ′T ′

σT ′

��
T ′T ′ T ′

µ′
//

TT ′T ′

T ′T ′

TT ′T ′ TT ′Tµ′
// TT ′

T ′

σ

��

1

2

3

4 5

6

7

Figure 2: A larger diagram

7 A large diagram

Figure 2 shows a large diagram that is taken di-
rectly from the book Toposes, Triples and The-
ories by Michael Barr and Charles Wells, pub-
lished by Springer Verlag in 1984. It may well
have been the very first book produced using
LATEX, which was not released until 1985. Us-
ing diagxy, it can be produced with the following
code.
$$\bfig
\scalefactor{1.4}
\qtriangle(0,1000)/>‘>‘/[TT‘T‘TTT’
;\mu‘TT\eta’‘]

\btriangle(500,1000)/‘>‘@<-14\ul>/%
[T‘TTT’‘TT’;‘T\eta‘T\sigma]

\morphism(0,1500)|l|/>/<0,-1000>%
[TT‘TT’T;T\eta’T]

\square(500,500)|ammx|/@<14\ul>‘>
‘>‘/[TTT’‘TT’‘TT’TT’‘TT’T’;%
\mu T’‘T\eta’TT’‘T\eta’T’‘]

\morphism(1000,1000)|r|/>/<500,
-500>[TT’‘TT’;\hbox{\rm id}]

\square/>‘>‘‘>/[TT’T‘TT’TT’‘T’T‘T’
TT’;TT’T\eta’‘\sigma T‘‘T’T\eta’]

\square(500,0)|ammb|[TT’TT’‘TT’T’‘
T’TT’‘T’T’; TT’\sigma‘\sigma TT’
‘\sigma T’‘T’\sigma T’]

\square(1000,0)/>‘‘>‘>/[TT’T’‘TT’
‘T’T’‘T’;T\mu’‘‘\sigma‘\mu’]

\place(500,1250)[1]
\place(215,1000)[2]
\place(750,750)[3]
\place(215,250)[4]
\place(750,250)[5]
\place(1140,750)[6]
\place(1250,250)[7]
\efig$$

8 Availability

diagxy can be found on CTAN in the directory
macros/generic/diagrams/barr/, and at my
own ftp site at ftp.math.mcgill.ca/pub/barr/
diagxy.zip.

� Michael Barr
Dept. of Math. and Stats.
McGill University
805 Sherbrooke St. W
Montreal, QC H3A 2K6
Canada
mbarr (at) barrs.org

