
TUGBOAT

Volume 26, Number 2 / 2005

TUG 2005 Conference Proceedings

106 Conference program, delegates, and sponsors

108 Robin Laakso / Highlights from TUG 2005

110 Conference photos

Keynote 111 Wai Wong / Typesetting Chinese: A personal perspective

Talks 115 Jonathan Kew / X

E

TEX, the Multilingual Lion: TEX meets Unicode and

smart font technologies

125 Javier Rodŕıguez Laguna / Hóng-Zı̀: A Chinese METAFONT

129 Candy L. K. Yiu and Jim Binkley / Qin notation generator

135 Nandan Bagchee and Eitan M. Gurari / SwiExr: Spatial math exercises and

worksheets, in Braille and print

142 Philip Taylor / Typesetting the Byzantine Cappelli

152 Hans Hagen / LuaTEX: Howling to the moon

158 Karel Ṕı̌ska / Converting METAFONT sources to outline fonts using METAPOST

165 S. K. Venkatesan / Moving from bytes to words to semantics

169 Abstracts (Beebe, Cho, Höppner, Hong, Rowley, Taylor)

News 170 Calendar

174 TEX Collection 2005 (TEX Live, proTEXt, MacTEX, CTAN)

175 EuroTEX 2006 announcement

176 TUG 2006 announcement

TUG Business 172 TUG membership form

173 Institutional members

Advertisements 173 TEX consulting and production services

Index c3 Table of contents, ordered by difficulty

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2005 dues for individual members are as follows:
Ordinary members: $75.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site:
http://www.tug.org.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $85 a year, including air mail delivery.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org) or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2005 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, and may not be reproduced,

distributed or translated without their permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Lance Carnes
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Arthur Ogawa
Gerree Pecht
Steve Peter
Cheryl Ponchin
Samuel Rhoads
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

Addresses

General correspondence,
payments, etc.

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 503 223-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: November 2005]

The Communications of the TEX Users Group

Volume 26, Number 2, 2005
TUG 2005 Conference Proceedings

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions
2005 dues for individual members are as follows:

Ordinary members: $75.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site:
http://www.tug.org.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $85 a year, including air mail delivery.

Institutional Membership
Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org) or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2005 TEX Users Group.
Copyright to individual articles within this publication

remains with their authors, and may not be reproduced,
distributed or translated without their permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice are
preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,
except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President
David Walden∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Lance Carnes
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Arthur Ogawa
Gerree Pecht
Steve Peter
Cheryl Ponchin
Samuel Rhoads
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

Addresses
General correspondence,

payments, etc.
TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 503 223-3960

Electronic Mail
(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web
http://www.tug.org/

http://www.tug.org/TUGboat/

Problems not resolved?
The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: November 2005]

TUG2005 Proceedings

Wuhan, China

August 23–25, 2005

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 26, NUMBER 2 • 2005

PORTLAND • OREGON • U.S.A.

TUG 2005

International Typesetting Conference

Sponsors

Chinese TEX User Group TEX Users Group DANTE e.V.

Acknowledgements

With great appreciation to all the speakers and teachers, and special thanks to:

Wai Wong, for agreeing to be the keynote speaker.
Duane Bibby, for the traditionally excellent drawings.

Conference committee

Karl Berry Chen HaiBin Gu XiongZhi Hong Chan Hong Feng
Hu WeiMing Robin Laakso Liu Hao Peng ZiQiang Wan Lin
Wu ZhenHua Xu JiZhe Yao WeiZhen Zhang YuanLin

International participants

Le Khanh Au Duong, HM Revenue & Customs
Nelson Beebe, University of Utah
Jin-Hwan Cho, University of Suwon
Steve Grathwohl, Duke University Press & TUG

Guo Liang, Institute of Software, Chinese Academy
of Science, Beijing

Eitan Gurari, Ohio State University
Hans Hagen, Pragma ADE & NTG

Hartmut Henkel, von Hoerner & Sulger GmbH
Klaus Höppner, DANTE e.V. & TUG

Maik Kündig, Fallenden, Switzerland
Jonathan Kew, SIL International
Richard Kinch, TrueTEX, Inc.
Robin Laakso, TEX Users Group

Jerzy Ludwichowski, Nicolaus Copernicus
University & GUST

Ross Moore, Macquarie University & TUG
Karel Ṕı̌ska, Czech Academy of Sciences
Arthur Reutenauer, France
Chris Rowley, Open University & LATEX3 Project
Volker R.W. Schaa, DANTE e.V.
Karel Skoupý, Zurich, Switzerland
Philip Taylor, University of London & TUG

S. K. Venkatesan, TnQ Books and Journals
Kevin Warnock, Silveroffice, Inc.
Wai Wong, Chinese University of Hong Kong
Candy Yiu, Portland State University
Sam Zoghaib, France

Local participants

Chen Haibin
Hong Feng
Liu Hao
Lu Ming
Meng Yan
Peng ZiQiang

Wang JiaHui
Wu Xuemou
Wu Zhenhua
Yao Weizhen
Zhu Xiang

TUG 2005 — program and information

Monday
August 22
(tutorials)

8–9 am registration
9 am Hong Feng TEX as a compiler

10:30 am break
10:45 am Ross Moore LATEX to HTML conversion

12 pm lunch

1:30 pm Chris Rowley LATEX for beginners
2:45 pm Hartmut Henkel MetaPost for beginners

4 pm break
4:15 pm Hans Hagen ConTEXt for beginners

5:30–7 pm reception

Tuesday
August 23

9 am Hong Feng, CTUG Welcome
9:15 am Wai Wong, Chinese University

of Hong Kong, China
keynote address: Typesetting Chinese—A personal

perspective

10:15 am break

10:30 am Jonathan Kew, SIL International X

E

TEX, the multilingual lion: TEX meets Unicode
and smart fonts

11:15 am Philip Taylor, University of London Typesetting the Byzantine Cappelli
11:45 am Candy Yiu, Portland State University Qin’s music notation generator

12:15 pm lunch

1:15 pm Nelson Beebe, University of Utah The design of TEX and METAFONT: A retrospective
2:15 pm Karel Skoupý, ETH Zentrum Free-shape text formatting

3 pm break

3:15 pm Suki Venkatesan, TnQ Books and
Journals

Moving from bytes to words to semantics

4 pm Chris Rowley, Open University Beyond TEX: An introduction to new models for
high quality document fomatting

4:45 pm panel: CJKV and TEX moderator: Hong Feng; Jin-Hwan Cho, Hans Hagen,
Jonathan Kew, Chris Rowley, Wai Wong

Wednesday
August 24

9 am Hong Feng Wavelet transformations and Chinese font design
9:45 am Karel Ṕı̌ska, Czech Academy of

Sciences
Converting METAFONT sources to outline fonts

using MetaPost

10:30 am break

10:45 am Jin-Hwan Cho, University of Suwon Practical use of special commands in DVIPDFMx
11:30 am Eitan Gurari, Ohio State University Spatial math exercises and worksheets

12:15 pm lunch

1:15 pm Klaus Höppner, DANTE e.V. Strategies for including graphics in LATEX documents
2 pm Philip Taylor Grid typesetting in LATEX

2:45 pm break

3 pm Chris Rowley LATEX maintenance and development
3:45 pm Ross Moore, Macquarie University PlanetMath.org and the Free Encyclopaedia of

Mathematics

4:30 pm Jerzy Ludwichowski, Nicolaus
Copernicus University

World wide TEX user groups review

5 pm q & a
5:30 pm TUG annual meeting

Thursday
August 25

9 am Steve Grathwohl, Duke Univ. Press On ConTEXt
9:45 am Hans Hagen, Pragma ADE & NTG LuaTEX: Howling to the moon

10:45 am break

11 am Volker R.W. Schaa, DANTE e.V. XML workflows and the EuroTEX 2005 proceedings
11:45 am panel: Digital publishing moderator: Hong Feng; Nelson Beebe,

Steve Grathwohl, Ross Moore,
Volker R.W. Schaa, Philip Taylor

Highlights from TUG 2005

Robin Laakso
TEX Users Group
office@tug.org

http://tug.org/tug2005

TUG 2005: International Typesetting Conference
and the 26th annual meeting of the TEX Users
Group, was held in Wuhan, China, from August
23–25, 2005. CTUG (the Chinese TEX User Group),
committed to handling the conference affairs. Con-
gratulations to Hong Feng, chairman of CTUG, and
all of his local help, including Chen HaiBin, Hong
Chan, Gu XiongZhi, Hu WeiMing, Liu Hao, Peng
ZiQiang, Wan Lin, Wu ZhenHua, Xu JiZhe, Yao
WeiZhen, and Zhang YuanLin, for making the con-
ference a unique experience and resounding success.

TEX users traveled from near and far to at-
tend this year’s conference and tutorials. China,
Australia, South Korea, Europe, India and North
America were all represented. Hong and/or Chen
HaiBin, Wu ZhenHua, Peng ZiQiang met conference
attendees at the airport outside of Wuhan arranging
bus and taxi transportation to our final destination,
the East Lake Hotel in Wuchang, Wuhan. We were
invited to enjoy a welcome dinner near the hotel
upon our arrival — a restaurant setting that would
become familiar over the next several days as the
conference room was just down the hall, and where
breakfast, lunch and dinner were served, included in
the registration.

A variety of brief tutorials was offered on Mon-
day, August 22, the day before the conference
opened. The instructors were a top notch fit with re-
gard to their respective topics. The line-up included:
Hong Feng, TEX as a Compiler; Ross Moore, LATEX
to HTML Conversion; Hartmut Henkel, MetaPost
for Beginners; Hans Hagen, ConTEXt for Beginners,
and Chris Rowley, who ended up choosing to forgo
his LATEX for Beginners course as we were running
behind schedule (and because there were scant few
beginners in the room).

Wai Wong, with the Chinese University of Hong
Kong, delivered a charming and informative keynote
address entitled “Typesetting Chinese: A personal
perspective”. Wai’s presentation was followed by
about 20 talks over the three days, ranging from a
look back at the design of TEX and METAFONT by
Nelson Beebe, to a look ahead at improving pdfTEX
via the LuaTEX team as presented by Hans Hagen.
A wide range of topics was covered in-between, such

as accessing fonts in the operating system, among
other features of X ETEX, presented by its author
Jonathan Kew, and using TEX in conjunction with
other tools such as Perl and Excel, to sort, ana-
lyze, and finally typeset the Byzantine Cappelli, pre-
sented by Phil Taylor. Each and every one of the
presentations was well attended and enthusiastically
received.

Wednesday afternoon, Jerzy Ludwichowski of
GUST and the Nicolaus Copernicus University in
Poland summarized a bit about TEX user group
activities worldwide. He passed along some ideas
generated at BachoTEX such as producing a font
CD, perhaps including Chinese fonts, and setting
up a Wiki about the history of TEX. Jerzy’s talk
preceded the TUG annual meeting where, after the
group was updated about TUG business, upcoming
conferences, and a proposed TEX Hall of Fame, dis-
cussion focused on ways to increase both interest in
TEX and membership in TUG. Suggestions ranged
from advice about how to advertise TEX and TUG

nationally and internationally using a PR firm on
the web, to introducing a simple LATEX system to
grade schoolers.

The conference officially concluded Thursday
with a round-table panel. In the afternoon, many
attendees boarded a bus to tour a nearby archeo-
logical museum and one of Chairman Mao’s former
residences. Late afternoon that same day about half
the group journeyed overnight by bus from Wuhan
to the town of Wudang. After a rest and a tra-
ditional Chinese breakfast, the group boarded the
bus again, arriving at Wudang Mountain, the birth-
place of Taoism, about an hour later. Onward and
upward, though this time boarding gondolas two
by two, we continued our long vertical climb via
pathways and stairs that eventually led to Taoist
temples, nunneries, temples on cliffs, bridges, pavil-
ions and ancestral temples. Needless to say, the
views were spectacular from most locations on Wu-
dang Mountain. And even though the journey from
Wuhan to Wudang was a long one (thus some peo-
ple departed Wudang Friday afternoon by train),
the visit to this magnificent and special place was
appreciated by all.

108 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

Highlights from TUG 2005

Some comments from attendees:
— For the most part, I think it went pretty

well. It would have been helpful in planning travel
to know in advance what the Wudang Mountain ex-
pedition would involve; at the time I was booking my
flights, there was no hint that this was more than
a one-day excursion. (But despite the difficulties, I
very much enjoyed going.)

— I think the local Wuhan tours were outstand-
ing, and I loved them.

— I really enjoyed this conference. The bus ride
to Wudang added to the richness of the trip, and I’m
happy to have had the experience. We saw a side of
China we wouldn’t have seen otherwise.

— Once again, thank you very much for invit-
ing me to TUG 2005. I did enjoy the talks and the
discussion during the conference very much. I learnt
a lot through them.

— I think the informal discussions we had dur-
ing the panels were especially valuable. Some very
good ideas were exposed there, and would be less
likely to come up in more formal settings such as
regular lectures, were we often lack time to answer
questions comprehensively. Thus, I believe it would
be quite profitable to everyone to have more of
these. However, I must admit I don’t know how
these scale up when there are more participants; we
really weren’t that many, probably because some
people couldn’t make it to China.

— Hope to see you next year!

Sitting in chairs left to right: Chris Rowley, Sam Zoghaib, Ross Moore, Volker Schaa, Hong Feng,
Hans Hagen, Jerzy Ludwichowski, Richard Kinch

Back, left to right: Yao Weizhen, Guo Liang, anonymous photographer, Liu Hao, Jonathan Kew,
Eitan Gurari, Jin-Hwan Cho, Kevin Warnock, Joseph Rajendra, Hartmut Henkel, Candy Yiu, Maik Kündig,
Le Khanh Au Duong, Karel Skoupý, Robin Laakso, Phil Taylor, Karel Ṕı̌ska, Nelson Beebe, S.K. Venkatesan,
Steve Grathwohl, Klaus Höppner, Arthur Reutenauer, Lu Ming, Wu Zhenhua, Wai Wong.

Thanks to Hong Feng, William Adams, and Mare Joy Smith for work on this photograph for publication.

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 109

Under the welcome banner at Eastlake Hotel:
Hartmut Henkel, Jerzy Ludwichowski, Hans Hagen.

Robin Laakso, Steve Grathwohl (at table); Candy Yiu,
Nelson Beebe, Chris Rowley, Klaus Höppner (behind).

Jerzy making creative use of chopsticks at Hong’s
birthday evening, with Karel Ṕı̌ska observing.

110 TUGboat, Volume 26 (2005), No. 2

Special thanks to the photographers: Hans Hagen, Hartmut Henkel, Jerzy Ludwichowski,
and Volker R.W. Schaa.

Panel on CJKV and TEX: Hong Feng, Hans Hagen,
Jin-Hwan Cho, Wai Wong.

TEX is everywhere.

Panel on digital publishing: Hong Feng, Nelson Beebe.

Typesetting Chinese: A personal perspective

Wai Wong
The Chinese University of Hong Kong
School of Continuing Studies
Shatin, Hong Kong, China
waiwongww@gmail.com

Introduction

First of all, I would like to thank TUG for inviting
me to speak at the TUG 2005 conference. This is the
first time ever that a TUG conference has been held
in China — where typesetting was first invented. As
a Chinese citizen, I welcome all of you who traveled
such a long way to participate in the conference and
to visit my country.

My talk will begin with a very brief survey of
the development of printing in China since the in-
vention of movable types in the 11th century. A
proper account of this development can easily fill
several volumes; therefore, given our limited time, I
will show only a few interesting examples, which are
selected quite arbitrarily. Hopefully, they will still
provide us some insights into certain conventions in
typesetting Chinese books that still influence cur-
rent practice.

Then, I will compare briefly the page layout
and available fonts between European typesetting
and Chinese typesetting in the 20th century.

Lastly, from a personal perspective, I will talk
about the challenge that high-quality professional
typesetting systems such as TEX and its friends face
when typesetting Chinese.

A brief history of movable type printing
in China

The invention of movable types in China was in the
period of 1041 to 1048 by a common man named Bi
Sheng. He himself did not leave any documented
evidence of his invention. The earliest record of
movable type was written by Shen Kuo in his book
Dream Pool Jotting. Figure 1 shows the page that
describes how to make clay movable types.

Since then, a variety of different materials have
been used to make movable types, including copper,
tin, lead, wood, clay and porcelain. After Bi Sheng ’s
work, the next most significant development of mov-
able types was by Wang Zhen. He surveyed the var-
ious techniques of making movable types using clay
and tin types in his book A Treatise of Agriculture.
In the same book, he described a new technique for

Figure 1: A page of Dream Pool Jotting by
Shen Kuo, the earliest record of making movable
types.

typesetting Chinese with a detailed drawing. This
employed a revolving table for arranging the types
by a rhyming scheme, which was believed to be in-
vented by the book’s author. A model of this re-
volving table is shown in Figure 2.

While movable type printing was used and de-
veloped continually throughout the centuries since
its invention, it has never dominated the printing
industry in China, at least not until the beginning
of the twentieth century. The technique of wood
block printing has been perhaps more popular than
movable type printing throughout history. This is
because:

• The intrinsic complexity of the Chinese lan-
guage. There are thousands to tens of thou-
sands of different characters.

• The difficulty and expense of producing such a
large number of types.

• The relatively low demand for books, making
movable type printing less advantageous than
wood block printing.

Table 1 shows a timeline summarizing the his-
torical development of printing in China.

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 111

Wai Wong

Table 1: Historical Development of Chinese printing: a brief timeline

1600–1066 BC writing brush and ink
403–221 BC earliest existing brush
206BC–220 AD ink made from pine soot
105 AD Cai Lun improved papermaking technique
636 AD woodblock printing
1041–1048 Bi Sheng invented movable-type printing with clay type

(recorded by Shen Kuo)
1297 Wang Zhen improved movable-type printing with wooden and

metal (tin alloy) type
1455 Gutenberg metal movable-type printing
1660s Mueller wooden Chinese type (3824 pieces)
1812–1822 Morrison tin alloy type, 200,000 pieces of 20,000 different characters;

printed a six-volume dictionary in Macao
1859–1861 Cole a complete set of types in seven different sizes, Shanghai
1915 old-style type commissioned by the Commercial Press (two sizes)
1927–1934 Fong Song style type made

Figure 2: A model of Wang Zhen’s revolving
table for typesetting

Bookbinding

The oldest books in Chinese were written on strips
made of wood or bamboo. They were then tied and
rolled up using strings, as illustrated in Figure 3.
Because of these long thin strips, when paper was
invented, followed by the subsequent invention of
printing, the Chinese still kept their writing direc-
tion vertical.

Bookbinding developed from scroll rollers, to
pleated leaf binding, to wrapped-back binding, to
thread binding. The vertical direction was preserved
through a thousand years of history. Only in the
mid-twentieth century did the horizontal direction
begin to dominate in most of China. Even today,

Figure 3: A rolled-up strip of writing on bamboo

most books of literature published in Taiwan and
Hong Kong are in the vertical direction.

Influence from the west

Starting in the 19th century, trading and exchange
in many other fields between China and the west in-
creased dramatically. Probably the most important
influence on modern printing in China came from a
Christian missionary named Robert Morrison. He
arrived in Macao in 1807. Later he set up a print-
ing press and published a 6-volume dictionary of the
Chinese language in 1815. For this project, he made
200,000 pieces of type of 20,000 different characters.

112 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

Typesetting Chinese: A personal perspective

Unfortunately, these type pieces were destroyed in
1856 in a riot.

The first half of the 19th century saw many
westerners coming to China. Another influential
person in Chinese printing history from that time
is an American named Cole, who initially set up a
printing press in Macao. The press was moved to
Ningpo and later to Shanghai in 1860. He set up a
type foundry in Ningpo, and produced type pieces
in seven different sizes.

Page layout

It is interesting to compare the typical page lay-
out of western and Chinese books. Although there
are numerous variations, traditional European book
designers lay out a typical page with the top mar-
gin smaller than the bottom margin and the inner
margin smaller than the outer margin, as shown in
Figure 4a.

In contrast, Chinese tradition puts the empha-
sis on the opposite side. The top margin is larger
than the bottom margin and the inner margin is
larger than the outer margin, as shown in Figure 4b.
This ratio has been developed from far back in his-
tory, when text was printed vertically on one side
only, and the pages were folded back and bound us-
ing stitches.

Measurement of types

Throughout their long history of printing with mov-
able type, the Chinese did not develop a common
system for type measurement. Each type maker
made type pieces in their own sizes. It was not until
the mid-nineteenth century, when modern movable
types and printing presses were introduced from the
west, that a common system of type sizes was de-
veloped. This system initially had 7 different sizes,
numbered sequentially.

Table 2 lists the type size numbers and their
equivalent point size. This numbering system was
widely adopted and used until the very recent times
when digital typesetting replaced traditional metal
types.

Table 2: Numbering system for Chinese type sizes

#1 #2 #3 #4 #5 #6 #7
pt 28 21 16 14 10.5 8 5.25

Another widely used system of type measure-
ment is the K system. It was introduced together
with phototypesetters from Japan. 1K is equal to
0.25 mm, and commonly used sizes are between 8K

3

6

4 2

a. Traditional European books

4

6

3

3

b. Traditional Chinese books

Figure 4: Comparison of page layout

and 40K. Since the widespread adoption of digital
typesetting, the point system has become dominant.

Available fonts

Creating fonts is a complicated and expensive under-
taking. Song and Kai are the names of the two main
families, with their roots in wood block printing.
They were the only font styles for a very long time
in the history of movable type printing. Other font
families have been developed only recently: Fong
Song style was created in 1916. With the intro-
duction of phototypesetters from Japan, available
Chinese font families started to increase. However,
there are still many fewer Chinese fonts than west-
ern fonts.

It is not uncommon to commission typefaces
for a book in western languages. In contrast, it is
extremely rare for a Chinese printing press or pub-
lisher to commission a font for a book. Although
with the advance of digital typesetting more fonts
are now available, many new fonts lack many char-
acters, often even common characters, let alone the
complete repertoire of CJK characters in Unicode.

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 113

Wai Wong

Figure 5: Some common font styles: Song,
Kai, Old Song, Hei and Fong Song (from top to
bottom)

For example, the Old Song style shown in the middle
row of Figure 5 lacks four of the ten sample char-
acters. They therefore have to be substituted by
other styles, which is hardly acceptable in profes-
sional publishing.

Opportunities and challenges

The current situation in Chinese typesetting is that
the era of hot metal has passed away. Digital tech-
nology is used but it is dominated by a very small
number of imported commercial software applica-
tions. Home-grown software has quite a small por-
tion of the market. The demand for high quality
typesetting software is high.

On the other hand, open source and free soft-
ware like TEX and its friends is available, but lo-
calization effort is required. As has been described
above, localization does not only mean being able to
handle Chinese characters. It is necessary to cater to
the cultural differences as well. What Chinese users
need is integrated solutions. TEX and its friends pro-
vides a flexible foundation. Good solutions can be
built on top of this foundation. The challenge is to
bridge the gap between these existing technologies
and the specific requirements of Chinese typesetting.

114 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

X ETEX, the Multilingual Lion:

TEX meets Unicode and smart font technologies

Jonathan Kew
SIL International
Horsleys Green
High Wycombe HP14 3XL
England
jonathan_kew@sil.org

Abstract

Professor Donald Knuth’s TEX is a typesetting system with a wide
user community, and a range of supporting packages and en-
hancements available for many types of publishing work. How-
ever, it dates back to the 1980s and is tightly wedded to 8-bit
character data and custom-encoded fonts, making it difficult to
configure TEX for many complex-script languages.

"is paper will introduce X ETEX, a system that extends TEX
with direct support for modern OpenType and AAT (Apple Ad-
vanced Typography) fonts and the Unicode character set. "is
makes it possible to typeset almost any script and language with
the same power and flexibility as TEX has traditionally offered in
the 8-bit, simple-script world of European languages. X ETEX (cur-
rently available on MacOSX, but possibly on other platforms in
the future) integrates the TEX formatting engine with technolo-
gies from both the host operating system (Apple Type Services,
CoreGraphics, QuickTime) and auxiliary libraries (ICU, TECkit),
to provide a simple yet powerful system for multilingual and mul-
tiscript typesetting.

"emost significant extensions X ETEX provides are its native
support for the Unicode character set, replacing the myriad of 8-
bit encodings traditionally used in TEX with a single standard for
both input text encoding and font access; and an extended \font

command that provides direct access by name to all the fonts
installed in the user’s computer. It also provides a mechanism to
access many of the advanced layout features of modern fonts.

Additional features that will also be discussed include built-
in support for a wide variety of graphic file formats, and an ex-
tended line-breaking mechanism that supports Asian languages
such as Chinese or "ai that are written without word spaces.

Finally, we look briefly at some user-contributed packages
that help integrate the features of X ETEX with the established
LTEX system. Will Robertson’s fontspec.sty provides a sim-
ple, consistent user interface in LTEX for loading both AAT and
OpenType fonts, and accessing virtually all of the advanced fea-
tures these fonts offer; Ross Moore’s xunicode.sty is a package
that allows legacy LTEX documents to be typeset using native
MacOSX fonts without converting the input text entirely to Uni-
code, by supporting traditional TEX input conventions for accents
and other “special” (non-ASCII) characters.

− − ∗ − −

Editor’s note: "is article is typeset in Adobe Garamond, with Andale
Mono for the code examples, and processed on the author’s MacOSX

machine with X ETEX, as Unicode support was needed in several places.

What is X ETEX?

X ETEX
1 is an extension of the TEX processor, designed to

integrate TEX’s “typesetting language” and document for-
matting capabilities with the Unicode/ISO 10646 universal
character encoding for all the world’s scripts, and with the
font technologies available on today’s computer systems,
including fonts that support complex non-Latin writing
systems.

X ETEX is in fact based on ε-TEX, and therefore in-
cludes a number of well-established extensions to TEX.
"ese include additional registers (\count, \dimen, \box,
etc.) beyond the 256 of each that TEX provides; various
new conditional commands, tracing features, etc.; and of
particular significance for multilingual work, the TEX–XET
extension for bidirectional layout.

"e TEX extensions inherited from ε-TEX are not dis-
cussed further here, as they are already described in the
ε-TEX documentation2, except to note that for right-to-
left scripts in X ETEX, it is necessary to set \TeXXeTstate=1
and make proper use of the direction-changing commands
\beginR, \endR, etc. Without these, there will still be some
right-to-left behavior due to the inherent directionality de-
fined by the Unicode standard for characters belonging to
Hebrew, Arabic and similar scripts, but overall layout will
not be correct.

X ETEX was created in order to typeset materials—
literacy and educational books, translated Scriptures, lin-
guistic studies, dictionaries, etc.— in a wide range of lan-
guages and scripts, including lesser-known ones that are
not adequately supported in most existing products. It in-
herits ideas, and even some code, from an earlier system
called TEXGX that integrated TEX with the QuickDraw GX

graphics system on older Macintosh operating systems.

1 "e name X ETEX was inspired by the idea of a MacOSX extension
(hence the ‘X’ prefix) to ε-TEX; and as one of its intended uses is for
bidirectional scripts such as Hebrew and Arabic, the name was designed to
be reversible. "e second letter should ideally be U+018E LATIN CAPITAL

LETTER REVERSED E, but as few current fonts support this character, it
is normal to use a reflected ‘E’ glyph."e name is pronounced as if it were
written zee-TEX.

2 E.g., !e ε-TEX Short Reference Manual, http://www.staff.

uni-mainz.de/knappen/etex_ref.html.

TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting 115

Jonathan Kew

\font\Hoefler = "Hoefler Text" at 10pt

\Hoefler This is the Hoefler Text font.

This is the Hoe!er Text font.

\font\VerdanaItal = "Verdana Italic" at 9pt

\VerdanaItal And this is Verdana Italic.

And this is Verdana Italic.

Figure 1: Accessing fonts installed natively on the host
platform

Host platform fonts

For many users, one of the most significant features of
X ETEX is that it makes use of the fonts installed in the oper-
ating system, just likemainstreamGUIword processing and
page layout programs. On MacOSX, fonts in a number of
major formats— in particular, TrueType (.ttf) fonts, and
bothTrueType- andCFF-flavored3 OpenType (.otf) fonts,
as well as legacy Macintosh resource file formats— can be
installed in any of several Library/Fonts folders (system-
wide, or per-user), and users expect these fonts to be avail-
able in all applications.

With a traditional TEX system, this is not the case. Be-
cause of its portable, platform-independent heritage, TEX
knows nothing about the fonts installed in a particular op-
erating system, or even about today’s major font formats;
it relies instead on .tfm files (an alien concept to the typ-
ical modern font user) to provide the metrics information
needed for typesetting, and on output drivers that locate
and use the actual font files containing glyph images. All
these are specifically installed for TEX and associated tools,
quite separately from font installation for the operating sys-
tem or other applications. Many users find this a challenge,
and do not feel confident to use fonts other than those pro-
vided with their TEX distribution. So there is a perception
that TEX supports a very limited range of fonts. X ETEX aims
to change this.

Font access in X ETEX Within a X ETEX document, it is
trivial for users to typeset using whatever fonts they have on
their computer system. If a MacOSX user buys or down-
loads a .ttf or .otf font and installs it in the standard way
with FontBook or by placing the file in ~/Library/Fonts,
the font can be used by just specifying it by name with a
\font command, as in figure 1. No conversions, no auxil-
iary files, no TEX-specific installation or configuration; just
tell X ETEX to use the font, and there it is. (Note that fig-
ure 1, like most examples in this paper, uses simple “plain
TEX”-level commands; in the context of packages such as
LTEX or ConTEXt there would be higher-level commands
designed to interact properly with the overall package.)

3 CFF: Compact Font Format, the table type that holds PostScript
glyph data in an OpenType font container.

When X ETEX is using “native” fonts from the operat-
ing system, it handles text in a slightly different way than
standardTEX. Rather than treating each character individu-
ally, looking up its metrics (in a .tfm file), it collects “runs”
(typically, but not always, complete words) and passes them
to the font rendering subsystem as complete chunks of text.
"is is necessary in order to allow the font to implement
features such as ligatures, cursive connections, contextual
character substitutions or reordering, etc., which may be
defined in AAT or OpenType fonts (see below). Such fea-
tures may represent optional typographic refinements in
Latin-based scripts, but in many Asian scripts they are es-
sential for correct rendering.

Output device support Selecting fonts by name within
the source document, and having the typesetting process
find and use them when building paragraphs, is only half
the story. Drivers that render TEX output onto a partic-
ular device also need to locate fonts— and in the tradi-
tional TEX world, the two stages rely on separate files, with
typesetting requiring only .tfm files, and output requiring
“real” fonts of some kind, e.g., .pk or .pfb files.

"e current implementation of X ETEX creates output
in an “extended DVI” format (.xdv), and this is then con-
verted to PDF by a second process, xdv2pdf.4 To generate
PDF, xdv2pdf relies on the user’s installed fonts in exactly
the same way as the typesetting process. "ere is no sepa-
ration between fonts as used during typesetting and those
used for output.

Because the output format is effectively PDF (as the
.xdv .pdf→ conversion is automatically executed), X ETEX
output can then be viewed or printed on any system or
device where PDF is supported, using standard viewers and
printer drivers.

Support for legacy TEX fonts In addition to using fonts
installed natively in the operating system, X ETEX continues
to support the use of existing fonts in the texmf tree, using
.tfm files (for metrics) and .pfb fonts (Type 1 outlines, for
rendering). When using such .tfm-based fonts, the results
should be identical to those produced by standard TEX.

Note that the current xdv2pdf driver supports such
legacy fonts only in .pfb format; there is no support, in
particular, for .pk or other METAFONT-derived bitmap
formats. "ere is also no .vf support at present.

"e use of .tfm-based fonts is important partly for
compatibility with existing documents that use these fonts,
where a user might wish to take advantage of some X ETEX
features without changing the overall look of the document.
Perhaps more important, .tfm-based fonts are required for
mathmode, as TEX’s math formattingmakes use of detailed

4 "e default behavior is for the xetex process to automatically pipe
its .xdv output through xdv2pdf, so that the default output format ap-
pears to be PDF.

116 TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting

X ETEX, the Multilingual Lion: TEX meets Unicode and smart font technologies

metric information that comes from theMETAFONT fonts
and cannot readily be generated for the system’s native
fonts. "is means that math typesetting continues to work
unchanged in X ETEX; however, it also means that for math,
the range of fonts available remains very limited.

Unicode support

TEX was originally designed for English typesetting, with
characters needed for other (primarily European) languages
supported via the \accent command and additional char-
acters (such as ß and æ) provided in the Computer Modern
fonts and accessed via control sequences, to escape the lim-
itations of the ASCII character set. Many other languages
and scripts have also been handled, using a variety of tech-
niques including custom codepages and fonts, macros and
“active” characters, and even preprocessors that implement
specific complex scripts such as Devanagari.

"e variety of TEX programming tricks available, to-
gether with the use of non-standard input and font en-
codings and similar techniques, have allowed many scripts
to be typeset; however, they have also meant that the input
text used for typesetting is often encoded in a non-standard
way, unique to the particular TEX package in use, making
for problems of data interchange with other systems. And
the use of preprocessors and/or TEX macros to implement
script behavior can easily conflict with other levels of macro
programming (document markup and formatting control),
making for complex and fragile systems.

"e Unicode standard offers the possibility of a much
simpler, cleaner multilingual system. In Unicode, every
character needed for any script has (in principle) its own
code, so there is no longer any need for multiple codepages,
where the meaning of a particular character code depends
on the input encoding or font in use. Nor is there any need
for escape sequences or preprocessors to access characters
that cannot be entered directly in the input; text in any
language can be represented as simple character data. So
X ETEX aims to extend TEX such that the standard charac-
ter encoding used throughout the typesetting process, from
text input to accessing glyphs in fonts, is Unicode.

Character codes "e first step towards Unicode support
in TEX is to expand the character set beyond the original
256-character limit. At the lowest level, this means chang-
ing internal data structures throughout, wherever charac-
ters were stored as 8-bit values. As Unicode scalar values
may be up to U+10FFFF, an obvious modification would
be to make “characters” 32 bits wide, and treat Unicode
characters as the basic units of text.

However, in X ETEX a pragmatic decision was made
to work internally with UTF-16 as the encoding form,
making “characters” in the engine 16 bits wide, and han-
dling supplementary-plane characters using UTF-16 surro-
gate pairs. "is choice was made for a number of reasons:

• "e operating-systemAPIs that X ETEX uses in working
with Unicode text require UTF-16, so working with
this encoding form avoids the need for conversion.

• A number of internal arrays in TEX are indexed by
character codes. Enlarging these from 256 elements
each to 65,536 elements seems reasonable; enlarging
them to a million-plus elements each would dramat-
ically increase the memory footprint of the system.
To avoid this, a sparse array implementation might be
used, but this would be significantly more complex
to develop and test, and might well have a negative
impact on typesetting performance.

• It seems unlikely, in any case, that there will be much
need to customize these properties (see next section)
for characters beyond Plane 0.

In view of these factors, X ETEX works with UTF-16

code units. Unicode characters beyond U+FFFF can still be
included in documents, however, and will render correctly
(given appropriate fonts) as the UTF-16 surrogate pairs will
be passed to the font system.

Another possible route would have been to use UTF-8
as the internal encoding form, retaining the existing 8-bit
code units used in TEX as characters. However, this would
have made it impossible (without major revisions) to pro-
vide properties such as character category (letter, other
printing character, escape, grouping delimiter, comment
character, etc.), case mappings, and so on to any characters
beyond the basic ASCII set; and it would also require con-
version when Unicode text is to be passed to system APIs.
Overall, therefore, UTF-16 was felt to be the most practi-
cal choice, and the appropriate TEX data structures were
systematically widened.

Extended TEX code tables Along with widening charac-
ter codes from 8 to 16 bits, the TEX code tables that pro-
vide per-character properties were enlarged to cover the
range 0…65,535. "is means that X ETEX has \catcode,
\sfcode, \mathcode, \delcode, \lccode and \uccode

values for each of the characters in Unicode’s Basic Multi-
lingual Plane."e default format files provided with X ETEX
initialize the \lccode and \uccode arrays based on case
mapping properties from the Unicode Character Database,
so that the \uppercase and \lowercase primitives will be-
have as expected. Figure 2 shows how these extended code
tables might be used.

Because these arrays are indexed by the individual
code units of the UTF-16 data used in X ETEX, it is not pos-
sible to set these properties for characters beyond Plane 0.
However, as these are mainly either CJK ideographs or
characters of relatively obscure archaic scripts, it seems
unlikely that there will be much need to change their
\catcode values or apply case-changing commands.5

5 Full use of math characters from Plane 1 is a separate issue, as math
mode requires additional font and character properties.

TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting 117

Jonathan Kew

\lowercase{DŽIN}

d!in

\uppercase{Esi eyama klȘ míaƒe nuvȘwo Ța vȘ la}

ESI EYAMA KL" MÍA#E NUV"WO $A V" LA

\catcode`王=\active \def王{...}

% defines an individual Chinese character as a macro

Figure 2: Per-character code tables in X ETEX support
Unicode

Input encodings While X ETEX is designed to work with
Unicode throughout the typesetting process, users may well
wish to typeset text that is in a different encoding. By de-
fault, X ETEX interprets input text as being UTF-8, convert-
ing multi-byte sequences to Unicode character codes ap-
propriately, unless inspection of the file suggests that the
text is UTF-16 (identified by a Byte Order Mark code, or
by null high-order bytes in the initial 16-bit code units).
Either way, the input is assumed to be valid Unicode.

Existing TEX documents that use purely 7-bit ASCII
are of course also valid Unicode (UTF-8); but documents
in 8-bit encodings such as Windows Latin or Cyrillic code-
pages, legacy Mac OS character sets, or East Asian double-
byte encodings cannot be interpreted this way. "ey will
typically contain byte sequences that are not legal inUTF-8;
but even if the bytes are not ill-formed when read asUTF-8,
they will not result in the intended characters.

To address this problem, X ETEX provides two com-
mands that allow the input to be converted from a different
encoding into Unicode:

\XeTeXinputencoding "codepage-name"
changes the codepage for the current input file, begin-
ning with the next line of text

\XeTeXdefaultencoding "codepage-name"
sets the initial codepage for subsequently-opened in-
put files (does not affect files already open for reading)

"ese commands allow input text in a non-Unicode en-
coding to be converted (using the converters from the ICU
library6) into Unicode as it is read. "us, text in Latin-1 or
Big5 or Shift-JIS or many other encodings can be typeset
directly using Unicode-compliant fonts.

Note that output text, whether in the transcript file
or files written using \openout and \write, will always
be UTF-8 Unicode, regardless of the codepage or encoding
form of the input text.

Hyphenation support Along with other character-code-
oriented parts of TEX, the hyphenation tables in X ETEX
have been extended to support 16-bit Unicode characters.
"is means that it is possible to write hyphenation patterns

6 http://www.ibm.com/software/globalization/icu/

\patterns{

% break before or after any full vowel

1ٞ1
1ٟ1

1٠1
1١1
1٢1
1٣1
1٤1

1ڲ1

% ...etc...

% break after vowel matra, but never before

1ڕ2
1ږ2
1ڗ2
1ژ2
1ڙ2
1ښ2
1ڛ2
1ڴ2
1ڵ2
% ...etc...

}

Figure 3: Hyphenation patterns using Devanagari letters

that use any (Plane 0) Unicode letters, including non-Latin
scripts as well as extended Latin (accented characters, etc.)
Figure 3 shows a fragment from a Sanskrit hyphenation file
created by a X ETEX user.With the traditional TEX approach
to such scripts, using complex macros and preprocessing,
it would be much more difficult to support hyphenation
patterns.

"e implementation of native Unicode font support
in X ETEX, treating each word as a “black box” measured as
a unit by the font subsystem, made it easy to form para-
graphs of such “boxes” without extensive changes to the
overall algorithms. However, TEX’s automatic hyphenation
mechanism, which comes into effect if it is unable to find
satisfactory line-break positions for a paragraph on the ini-
tial attempt, applies to lists of character nodes representing
runs of text within a paragraph to be broken into lines. But
when using Unicode fonts in X ETEX, the line-break process
sees “word nodes” as indivisible, rigid chunks.

Explicit discretionary hyphens may of course be in-
cluded in TEX input, and these continue to work in X ETEX,
as they become discretionary break nodes in the list of items
making up the paragraph. "e word fragments on either
side, then, would become separate nodes in the list, and
a line-break can occur at the discretionary node between
them.

118 TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting

X ETEX, the Multilingual Lion: TEX meets Unicode and smart font technologies

In order to provide automatic hyphenation support,
however, it was necessary to extend the hyphenation rou-
tine so as to be able to extract the text from a word node,
use TEX’s pattern-based algorithm (and exception list) to
find possible hyphenation positions within the word, and
then replace the original word node with a sequence of
nodes representing the (possibly) hyphenated fragments,
with discretionary nodes in between.

One more refinement proved necessary here: once the
line-breaks have been chosen, and the lines of text are being
“packaged” for final justification to the desired width, any
unused hyphenation points are removed and the adjacent
word (fragment) nodes re-merged. "is is required in or-
der to allow rendering behavior such as character reordering
and ligatures, implemented at the smart-font level, to occur
across unused hyphenation points. With an early release of
X ETEX, a user reported that OpenType ligatures in certain
words such as different would intermittently fail (appear-
ing as different, without the ff ligature). "is was occurring
when automatic hyphenation came into effect and a dis-
cretionary break was inserted, breaking the word node into
sub-words that were being rendered separately.

Typographic features

Beyond simply allowing the use of any font on the user’s
system, X ETEX also provides access to various advanced ty-
pographic features of AAT and OpenType fonts, so that
users can take advantage of the full richness of these fonts.

AAT font features AAT (Apple Advanced Typography) is
the native MacOSX technology for advanced fonts that
provide typographic layout information (besides simple
glyph metrics). An AAT font may contain tables that de-
fine layout features such as ligatures, alternate glyph forms,
swashes, etc. "ese features may be specified by the font as
being enabled by default, in which case X ETEX will auto-
matically use them; or they may be optional features that
are only used when explicitly turned on.

"e font designer provides names, stored in the font
itself, for any features that are intended to be controlled
by the user. While there is a registry of known features,
designers are free to implement and name new behaviors
in their fonts, so the possible set of features and settings is
open-ended.

"e extended \font command in X ETEX allows AAT
font feature settings to be specified as a list of feature = setting
pairs appended to the name of the font. Feature settings that
are enabled by default can also be turned off, by prefixing
the setting name with ‘!’. Figure 4 illustrates a few optional
features available in the Apple Chancery font.

Vertical text with AAT fonts An additional attribute that
can be specified for AAT fonts in X ETEX is vertical. "is
causes the text rendering system to use vertical text-layout

\font\x="Apple Chancery" at 10pt

\x The quick brown fox jumps over the lazy dog.

!e quick brown fox jumps over "e lazy dog.
\font\x="Apple Chancery:

Design Complexity=Simple Design Level;

Letter Case=Small Caps" at 10pt

\x The quick brown fox jumps over the lazy dog.

#$% &'()* +,-./ 0-1 2'345 -6%, 7$% 89:; <-=.
\font\x="Apple Chancery:

Design Complexity=Flourishes Set A" at 10pt

\x The quick brown fox jumps over the lazy dog.

>e ?uic@ Arown foB jumps over "e Cazy Dog.

Figure 4: Selecting optional AAT font features

techniques, although it does not in itself re-orient the over-
all layout. Typically, glyphs will be rotated 90° counter-
clockwise, l i k e t h i s, and laid out according to their
vertical rather than horizontal metrics.

If this capability is combined with macros that rotate
the text block as a whole, which is readily achieved through
graphic transformations in the output driver (see figure 5),
it becomes possible to typeset languages such as Chinese
using a traditional vertical layout. Figures 6 and 7 show the
same text formatted in horizontal and vertical styles. Note
how certain glyphs such as the brackets do not undergo the
same rotation as the rest of the text; the vertical attribute
automatically gives the correct behavior here.

OpenType: optional features Like AAT fonts, OpenType
fonts may also include layout features that can be en-
abled or disabled to affect the rendering of the text. Un-
like AAT, there are no feature names provided in the font,
only four-character “tags” (which are generally somewhat
mnemonic). "e expectation in OpenType is that all fea-
tures will be officially registered withMicrosoft and Adobe,
and applications can then provide whatever user interface
and names are needed for the features they choose to sup-
port.

X ETEX takes a low-level approach, allowing feature
tags to be used directly in the \font command in a sim-
ilar way to AAT names; individual features can be turned
on or off for any given font definition, using + or - with
the four-character tag. "erefore, any features defined in
the font can be used, even if not defined in the OpenType
feature registry. (Macro packages could be used to provide
more meaningful names; for example, the fontspec package
for LTEX provides a unified interface for many registered
features across both AAT and OpenType fonts.) Figure 8
shows a few examples of the use of OpenType feature tags
to select alternate renderings of a font.

TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting 119

Jonathan Kew

\newif\ifVertical \Verticaltrue % \Verticalfalse gives horizontal layout

\vsize=7in \hsize=4.5in \def\Vert{} % set up page size

\ifVertical % set parameters for vertical layout

\hsize=7in \vsize=4.5in \def\Vert{:vertical} % attribute used in font defs

% macro to rotate a box of Chinese text set with the "vertical" font attribute

\def\ChineseBox#1{\setbox0=\vbox{\boxmaxdepth=0pt #1}\dimen0=\wd0 \dimen2=\ht0

\vbox to \dimen0{\hbox to \dimen2{\hfil\special{x:gsave}\special{x:rotate -90}\rlap

{\vbox to 0pt{\box0\vss}}\special{x:grestore}}\vss}}

\def\ChineseOutput{\shipout \vbox{\ChineseBox{\makeheadline \pagebody \makefootline }}

\advancepageno \ifnum \outputpenalty >-20000 \else \dosupereject \fi}

\output={\ChineseOutput} \fi

\font\body="STKaiti\Vert" at 12pt \body

\font\bold="STHeiti\Vert" at 12pt \font\title="STHeiti\Vert" at 18pt

\centerline{\title 三　国　演　㤻}

\bigskip \centerline{\bold〔明〕橉砡中}

% ...etc...

Figure 5: Using an AAT font attribute and graphic transformations to implement vertical typesetting

尿’拳’亅’儺

fl霜‒節隙奩

架咏X

嫌嫌宇三堪犯姫J称巷遍爾冩涙‘畔喫洩ル孩忘舜X塔農

們写唔J沙緩幽伉醐‘

ユ汽匐茉三砒拝J撃酬湯咒化糾‘倡勾尓蕊裕翼牛X携飼

眼倍氾J歓狭立併奩‘

掛倡鉱

亰辺吁乎止尿私儺’噪紘諮冩涙蛮織粂

抗標倣妖廻班J休柴Э糊J糊柴Э休X姙測亭拳休塢J哀

南勣奴Y些奴蒼壗倖J 横\現休塢J勁哀南勣現Y現渦屬金峩

噪ユ狽既提儺J倡剖倣妖J倖招桁門奩領J荻 夬遥笠J撫休稔

尿拳‘防貞夭責壗剽J戒反勣校\酔毅笠‘校笠時迚派障J炎糧

硬鶏 ‘些校笠ЁJ酔笠嵯名J廻皿宗閻門\噴狂嬰榠J卦翼叫

崢Y抜辨硬鶏胃旨核鱈陶J 閻門\嬰榠卒嫂壗J狛氾鮎掻J儀

稔復県J奩矚屬歌卻娯‘

Figure 6: Chinese text in horizontal format

OpenType: optical sizing Some OpenType font families
include multiple faces designed for use at different sizes; for
example, the Adobe Brioso Pro family includes Caption,
Text, Subhead, Display, and Poster faces, each optimized
for a different range of point sizes. If the full collection
of fonts has been installed, X ETEX will use the OpenType
“size” feature to automatically select the appropriate face
for the point size used, as shown in figure 9. Generally, this
automatic behavior is helpful; however, it can be overrid-
den if necessary by using a /S=optical-size modifier on the
font name. Figure 10 shows several different optical sizes

尿’

拳’

亅’

儺

ぜ
霜
ぞ
節
隙
奩

架
咏
§

嫌
嫌
宇
三
堪
犯
姫
~
称
巷
遍
爾
冩
涙
¢
畔
喫
洩
ル
孩
忘
舜
§
塔

農
們
写
唔
~
沙
緩
幽
伉
醐
¢

ユ
汽
匐
茉
三
砒
拝
~
撃
酬
湯
咒
化
糾
¢
倡
勾
尓
蕊
裕
翼
牛
§
携

飼
眼
倍
氾
~
歓
狭
立
併
奩
¢

掛
倡
鉱

亰
辺
吁
乎
止
尿
私
儺’

噪
紘
諮
冩
涙
蛮
織
粂

抗
標
倣
妖
廻
班
~
休
柴
Э
糊
~
糊
柴
Э
休
§
姙
測
亭
拳
休
塢
~

哀
南
勣
奴
ƒ
些
奴
蒼
壗
倖
~

横
¡
現
休
塢
~
勁
哀
南
勣
現
ƒ
現
渦
屬

金
峩
噪
ユ
狽
既
提
儺
~
倡
剖
倣
妖
~
倖
招
桁
門
奩
領
~
荻

夬
遥
笠
~

撫
休
稔
尿
拳
¢
防
貞
夭
責
壗
剽
~
戒
反
勣
校
¡
酔
毅
笠
¢
校
笠
時
迚
派

障
~
炎
糧
硬
鶏

¢
些
校
笠
Ё
~
酔
笠
嵯
名
~
廻
皿
宗
閻
門
¡
噴
狂
嬰

榠
~
卦
翼
叫
崢
ƒ
抜
辨
硬
鶏
胃
旨
核
鱈
陶
~

閻
門
¡
嬰
榠
卒
嫂
壗
~

狛
氾
鮎
掻
~
儀
稔
復
県
~
奩
矚
屬
歌
卻
娯
¢

Figure 7: Chinese text in vertical format

of Brioso used at the same physical size, making the design
difference between the faces more apparent to the eye.

OpenType: script and language In addition to optional
typographic features, OpenType fonts may include layout
features that are necessary for the correct rendering of com-
plex writing systems such as Arabic or Indic scripts. To
apply these features, it is necessary to have a “shaping en-
gine” that applies the appropriate feature tags to individual
characters of the text. "ere are specific rules for each sup-
ported script, and complex scripts will only render properly

120 TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting

X ETEX, the Multilingual Lion: TEX meets Unicode and smart font technologies

\font\x="Brioso Pro" \x Hello World! 0123456789

HelloWorld! 0123456789

\font\x="Brioso Pro:+smcp" \x Hello World! 0...

HelloWorld! 0123456789

\font\x="Brioso Pro:+sups" \x Hello World! 0...

HelloWorld! 0123456789

\font\x="Brioso Pro Italic:+onum" \x Hello W...

He!oWorld! 0123456789

\font\x="Brioso Pro Italic:+swsh,+zero" \x H...

He-oWorld! 0123456789

Figure 8: Selecting OpenType feature tags

\font\x="Brioso Pro" at 7pt \x Hello World!

HelloWorld! (Brioso Pro Caption)

\font\x="Brioso Pro" at 10pt \x Hello World!

HelloWorld! (Brioso Pro Text)

\font\x="Brioso Pro" at 16pt \x Hello World!

HelloWorld! (Brioso Pro Subhead)

Figure 9: Automatic optical sizing

if the correct engine is specified in the \font command, as
illustrated in figure 11. (Note that this is different from
the situation with AAT fonts, where complex rendering be-
havior is programmed entirely in the font tables, and no
script-specific engine is needed.)

OpenType fonts may also support multiple “language
systems” to handle differences in the appropriate rendering
for different languages. For example, many serifed Latin
fonts include an fi ligature, and this will normally be en-
abled by default. However, Turkish makes a distinction
between i and ı (dotless i). Using an fi ligature typically
causes this distinction to be lost, and therefore this liga-
ture must be disabled in the Turkish language system. An-
other example of language-specific behavior occurs in Viet-
namese, where the positioning of multiple diacritics on a
base character differs from the default vertically-stacked be-

\font\x="Brioso Pro/S=7" at 12pt\x Hello World!

HelloWorld! (Brioso Pro Caption)

\font\x="Brioso Pro/S=10" at 12pt\x Hello World!

HelloWorld! (Brioso Pro Text)

\font\x="Brioso Pro/S=16" at 12pt\x Hello World!

HelloWorld! (Brioso Pro Subhead)

Figure 10: Overriding normal optical sizing

\font\x="Code2000" \x ԼԟԨ԰ԶԞ ڗٿڤځږڒ

河臆音加寡憶 泣窮客虚黍笈 default (Latin) features only; incor-
rect rendering of both scripts

\font\x="Code2000:script=arab" \x ԼԟԨ԰ԶԞ

correct Arabic script rendering

\font\x="Code2000:script=deva" \x ڗٿڤځږڒ

窮泣 黍笈 correct Devanagari script rendering

Figure 11: Specifying OpenType shaping engines using
the script=... feature

\font\Brioso="Brioso Pro"

\Brioso …gelen firmaları…tarafından…

…gelen firmaları…tarafından…

\font\BriosoTrk="Brioso Pro:language=TRK"

\BriosoTrk …gelen firmaları…tarafından…

…gelen firmaları…tarafından…
Turkish requires the i/ı distinction maintained

\font\D="Doulos SIL/ICU"

\D cung cኜp mዐt con sወ duy nhኜt cho mዎi ký tየ
cung c!p m"t con s# duy nh!t cho m$i k% t&

\font\V="Doulos SIL/ICU:language=VIT"

\V cung cኜp mዐt con sወ duy nhኜt cho mዎi ký tየ
cung c'p m"t con s(duy nh't cho m)i k% t&
Vietnamese uses different diacritic positioning

Figure 12: Using alternate language systems in
OpenType fonts to achieve correct rendering

havior that would be expected elsewhere. When loading an
OpenType font in X ETEX, the desired language tag can be
included in the \font command to control the behavior,
as shown in figure 12.

Font mappings In addition to the font-specific AAT and
OpenType features that can be included in a \font com-
mand, X ETEX has a general-purpose mechanism known as
“font mappings” that can be applied to any native font.

To understand the purpose of font mappings, con-
sider TEX input conventions such as ---, which normally
generates an em-dash, or ``, which generates an opening
double quote. "ese conventions are not built into TEX,
nor are they generally implemented in TEX macros (like
most other “extended” characters); rather, they are imple-
mented as ligatures in the Computer Modern fonts, and
similar ligature rules have been created in most other fonts
configured for use with TEX.

However, these ligatures, unlike standard typographic
ligatures such as fi, are not generally known or used

TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting 121

Jonathan Kew

LHSName "TeX-text"

RHSName "UNICODE"

pass(Unicode)

U+002D U+002D <> U+2013 ; -- -> en dash

U+002D U+002D U+002D <> U+2014 ; --- -> em dash

U+0027 <> U+2019 ; ' -> right single quote

U+0027 U+0027 <> U+201D ; '' -> right dbl quote

U+0022 > U+201D ; " -> right double quote

U+0060 <> U+2018 ; ` -> left single quote

U+0060 U+0060 <> U+201C ; `` -> left dbl quote

U+0021 U+0060 <> U+00A1 ; !` -> inv. exclam

U+003F U+0060 <> U+00BF ; ?` -> inv. question

Figure 13: "e tex-text font mapping

outside the TEX world. "ey were designed as a conve-
nient workaround for limitations of the character set that
could be entered on typical keyboards. But we cannot ex-
pect general-purpose fonts from outside the TEX world
to implement these ligatures. "erefore, if a X ETEX user
working with a standard Unicode font enters ``Help---
I'm stuck!'', the result is likely to be something like
``Help---I'm stuck!'', which is not what was intended.

One solution is to convert the input text to directly
use the desired Unicode characters for quote marks, dashes,
etc., but this may not be convenient where there are large
amounts of pre-existing text. Even for new text, experienced
TEX typists may be more comfortable continuing to use
these conventions rather than learning new key sequences,
or document portability between X ETEX and standard TEX
may require that they be used.

X ETEX’s font mappings can solve this issue. A font
mapping is a transformation, expressed as mapping rules
that convert Unicode characters or sequences from an “in-
put” form (that found in the document text) to an “out-
put” (the character or characters to be rendered from
the font). Such mappings are written in the TECkit
mapping language.7 A \font command may include a
mapping=filename qualifier, and X ETEX will then apply the
given mapping as part of the text rendering process when
using that font. An example tex-textmapping is included
with X ETEX to implement the common ligatures found
in Computer Modern fonts; figure 13 shows the TECkit
source of this mapping file. If this mapping is loaded along
with a standard Unicode font, then the TEX-style input text
``Help---I'm stuck!'' will render as expected: “Help—
I’m stuck!”.

7 http://scripts.sil.org/teckit/

\def\SampleText{Unicode - это уникальный

код для любого символа, независимо от платформы,

независимо от программы, независимо от языка.}

\font\gen="Gentium"

\gen\SampleText\par

Unicode - %&' ()*+,-.)/0 +'1 1-2 -34'5'
6*78'-,,)9:,8*6*7' '& ;-,&<'=7/,)9:,8*6*7'
'& ;='5=,77/,)9:,8*6*7' '& 2:/+,.

\font\gentrans="Gentium:mapping=cyr-lat-iso9"

\gentrans\SampleText\par

Unicode - èto unikal'nyj kod dlâ lûbogo simvola,
nezavisimo ot platformy, nezavisimo ot programmy,
nezavisimo ot âzyka.

Figure 14: Using a font mapping to render the same
text in its native script and transliterated

While font mappings were originally implemented to
provide compatibility with TEX typing conventions, they
can be used in other ways, too; figure 14 shows an exam-
ple where the same input text is printed both in its origi-
nal form and in Latin transliteration, using a Cyrillic/Latin
transliteration mapping associated with the font.

Asian-language linebreaking

A number of east and south-east Asian languages, such as
Chinese, Japanese, "ai, and others, are normally written
without word spaces."e only spaces in the text may be be-
tween phrases or sentences, or even entire paragraphs may
be lacking any space characters. Hyphenation is also not
used in many of these languages. "is presents a problem
for line-breaking, as TEX normally expects to find inter-
word glue where line-breaks can be attempted.

Line-break positions To support typesetting text in such
languages, X ETEX includes a feature known as “locale-
based line-breaking”, based on the Unicode line-break al-
gorithm implemented in the ICU library. "e command
\XeTeXlinebreaklocale="locale-code", where the locale-
code is a standard locale (language/region) code, tells X ETEX
to look for possible line-break positions according to the
rules of the given locale; the paragraph can then be broken
at these places despite the lack of spaces or hyphenation
rules.

Justification In addition to the problem of finding legiti-
mate line-break positions, the lack of inter-word glue also
makes it difficult for TEX to justify the lines. One op-
tion, of course, is ragged-right typesetting, and this may
be the appropriate solution if a rigid character grid (as
sometimes seen in Chinese, for example) is to be main-
tained. However, another option is to set the parameter
\XeTeXlinebreakskip to a slightly stretchable glue value.

122 TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting

X ETEX, the Multilingual Lion: TEX meets Unicode and smart font technologies

\def\thaitext{%

িকণটস৆চ঑঳চাদ৆ন, অমঢট঵নঽখমত৉উ঱ঽংশ৅ণনঃ৆মঈংলছঽতস৅মঈঃমঈখলনঽদঃ.
অমঢট঵নঽখমত৉উলকঽংৄছখলনমলংপতাদ঱মলংঃত঱মস৅চৃ
িকণং঳তং঴বচকবঢ঳ণঽদঃীব৆ফ঴বতলছাখ৅দ঱খলন.
ং৅মচবচ৆঳ঘশ৅ে Unicode উ঱গ঺ংফত৆঳ঈঃষ৆চ, ুক৆ঢশত঱ছছ encoding

মণ঺৅বদ঳ণত৆মণত঱ছছফ঴বতলছং঳তং঴বচকবঢ঳ণঽদঃঽবদ৅঳চশ৆.}
\font\thai="Thonburi" at 10pt

\thai \thaitext

!"#$%&'()'*+,-, ./0$1-23/4567289:#-;,/<8=>24%:/<;/<3=-2+;.
./0$1-23/456="28?>3=-/=8@4*+7/=8;47/%:'A
!"#8)48BC'"C0)#2+;DC,EBC4=>*3F+73=-. 8F/'C',)G9: H
Unicode 67IJ8E4,)<;K &', L",0947>> encoding
/#JFC+)#4,/#47>>EBC4=>8)48BC'"C0)#2+;2C+F)'9&.
!ai tet ith spaces only beteen phrases

\XeTeXlinebreaklocale "th"

\XeTeXlinebreakskip=0pt plus 1pt

\thai \thaitext

!"#$%&'()'*+,-, ./0$1-23/4567289:#-;,/<8=>24%:/<;/<3=-2+;.
./0$1-23/456="28?>3=-/=8@4*+7/=8;47/%:'A !"#8)48BC'"
C0)# 2+; DC, EBC4=> *3F +7 3=-. 8F/'C',)G9:H Unicode 67 IJ8
E4,)<;K&', L", 09 47>> encoding /#JF C+)#4,/#47>>EBC4=>
8)48BC'"C0)#2+;2C+F)'9&.
Using locale-based line-breaking to improve results

Figure 15: Line-breaking and justification without word
spaces

X ETEX will then insert this glue at each potential break po-
sition found by the line-break algorithm, which makes the
overall text slightly stretchable and allows fully justified set-
ting. Figure 15 illustrates the use of the Asian line-breaking
parameters.

"ere is also a parameter \XeTeXlinebreakpenalty
that can be set to control the desirability of inter-character
breaks found by the Unicode algorithm, as compared to
normal breaks at other penalties and glue.

Built-in graphics support

TEX traditionally knows nothing about graphics, leaving
this to output drivers andmerely passing along information
from \special commands. It is left to macro packages and
users to determine the amount of space that an included
image occupies; the \special that causes the image to be
included by the driver does not itself take any space during
the typesetting process.

X ETEX provides an alternative approach, adding prim-
itive commands that actually load graphic files during type-
setting. "e advantage of this is that the typesetting process
can know the size of the image; typically, it is loaded into
an \hbox, and macros can then examine the \wd and \ht

of that box to make decisions about layout, or to re-load
the image with different scaling, etc.

\centerline{%

\hbox{\XeTeXpicfile "unicode-book.jpg"

scaled 100}\quad

\hbox{\XeTeXpicfile "unicode-book.jpg"

scaled 100 xscaled 2000}\quad

\hbox{\XeTeXpicfile "unicode-book.jpg"

scaled 100 rotated 90}}

Figure 16: Including graphics in a X ETEX document

QuickTime-based graphics "e X ETEX primitive com-
mand \XeTeXpicfile "filename" locates and includes the
named graphic file, which may be in any format recog-
nized by theQuickTime library onMacOSX."is includes
common image formats such as .jpg, .bmp, .tiff, .png,
and many others. A number of keywords such as width,
height, scaled, and rotated may be used after the file-
name to transform the image. Figure 16 shows some simple
examples of image inclusion.

PDF documents One of the formats supported by the
\XeTeXpicfile command is .pdf; however, if a PDF

graphic is included in this way, it will be rendered as a
raster image at relatively low resolution. It is better to use
an alternative command, \XeTeXpdffile, which includes
the specified PDF in its native form, complete with vector
graphics, embedded fonts, etc. \XeTeXpdffile also sup-
ports an additional keyword page to select the required
page from a multi-page PDF document.

Note that there is a xetex.def driver available for the
standard LTEX graphics.sty and graphicx.sty pack-
ages; this driver will automatically use the X ETEX prim-
itives to implement the higher-level \includegraphics
command, and will choose the proper X ETEX function de-
pending on the type of graphic file.

LTEX packages

Many users like to combine the Unicode and font support
of the X ETEX engine with the document markup and for-
matting features of LTEX. Inmost cases, this works well; the
exceptions typically involve LTEX packages dealing with
input and font encodings (which are generally superfluous
in a Unicode-based process) or packages that depend on
the features of a particular output driver (such as draw-
ing packages that rely on dvips or dvipdfm \specials, or
on pdfTEX extensions). In some cases, such packages may
need to be adapted to work with the xdv2pdf driver; in
others, the output driver features needed may not currently
be available.

TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting 123

Jonathan Kew

\usepackage{fontspec} % load fontspec.sty

\setmonofont[Scale=0.8]{Andale Mono WT J}

% use scaled Andale Mono for \tt

\defaultfontfeatures{Mapping=tex-text}

% load the tex-text font mapping by default

\setromanfont{Adobe Garamond Pro}

% use Garamond Pro as \rm, etc

Figure 17: Use of fontspec.sty, from the preamble of
this document

In addition to the xetex.def driver files for the stan-
dard LTEX graphics and color packages, allowing these to
be used with the X ETEX engine, two important packages
written specifically for X ETEX deserve mention.

fontspec "e fontspec.sty package, written by Will
Robertson, provides a high-level interface to native Uni-
code fonts in X ETEX, integrating them with the LTEX font
selection mechanism, and supporting a wide range of fea-
tures in both AAT and OpenType fonts. Extensive docu-
mentation is available with the package; figure 17 shows a
simple excerpt from the preamble of this document. "ese
few lines are sufficient to set up all the typefaces needed for
this document, except those used within figures to illustrate
specific points. Note that there are no auxiliary .tfm, .fd,
.sty, or other TEX-specific files associated with the fonts
used here; they are simply installed in the ~/Library/Fonts
folder in the standard MacOSX manner.

xunicode To improve support for standard LTEX docu-
ments when using Unicode fonts, Ross Moore has pro-
vided xunicode.sty. "is package reimplements many of
the control sequences used in LTEX for accents, symbols,
and other “special” characters, mapping them to the cor-
rect Unicode codepoints instead of to their locations in
traditional TEX fonts. "is allows documents that use these
symbols via their LTEX names to run unchanged under
X ETEX, with the correct Unicode characters being rendered
in the output.

X ETEX and ConTEXt

While LTEX is probably the macro package most com-
monly used with X ETEX, it is also possible to use ConTEXt.
My understanding is that the standard ConTEXt distribu-
tion includes an option to use the X ETEX engine in place
of the default pdfTEX. A brief example of how X ETEX font
support can be used in ConTEXt is shown in figure 18.
"ere is further information on the ConTEXt Wiki site,8

from which this example was copied.

8 See http://wiki.contextgarden.net/XeTeX and
http://wiki.contextgarden.net/Fonts_in_XeTeX.

\definedfont["Hoefler Text:mapping=tex-text;

Style Options=Engraved Text;

Letter Case=All Capitals" at 24pt]

Big Title

"#$ %#%&'

Figure 18: Loading a native Unicode font in ConTEXt

Future directions

In conclusion, a few comments on the possible future of
X ETEX."e system has been publicly available for about 18
months as of the time of writing, and has been used for
a wide range of document types and languages. While it
remains a “work in progress”, it appears to work reliably for
most users, within the limitations of its design.

Besides on-going bug fixes and minor features, there
are several major enhancements that could be undertaken
to further improve X ETEX:

• Enhanced PDF back-end, via one of several ap-
proaches:

– leverage improved PDF support in MacOSX

10.4

– new xdv2pdf driver based on dvipdfmx

– integration with pdfTEX output routine

• True Unicode math support:

– requires extensions to \mathchar etc., and un-
derlying structures

– also requires extended (at least 16-bit) font met-
ric format

– may be possible to make use of code from
Omega/Aleph

• X ETEX for non-MacOSX platforms:

– should include full integration with TEX Live
sources

Assistance towards implementing any and all of these
ideas, or others, is most welcome! "e X ETEX source code
is currently available in a Subversion repository at svn://
scripts.sil.org/xetex/TRUNK; this URLmay change at
some point, but the X ETEX web pages at http://scripts.
sil.org/xetex should always indicate where to look.

124 TUGboat, Volume 26 (2005), No. 2—Proceedings of the 2005 Annual Meeting

1 Introduction

Chinese characters (hanzi) and their close relatives1

appear to be specially suitable for treatment under
METAFONT [KNU ]. Their shapes, notwithstand-
ing their complexity, are made up of a finite (though
large) number of parts. But these parts are not
just pasted inside a box, like letters in a word.
The parts change their shape depending on the size
and position where they are going to be inserted.
METAFONT is an approach to font design which is
especially suited for these shape modifications.

Nonetheless, the TEX community still lacks a
full fledged Chinese METAFONT. Of course, it is
easy to include CJKV text in a TEX document using
packages which employ other types of fonts, but
then we lack the tunability and high quality to
which we are accustomed.

The first development of a Chinese METAFONT

was performed by Gu Guoan and John Hobby in the
METAFONT-79 dialect [GH ], which is not compat-
ible with the current version. In the November 1982
issue of Scientific American, Douglas Hofstadter
described his own project, in collaboration with
David Leake, called Hàn-Z̀ı [HOF ], [HOF ].
Unfortunately, it was abandoned shortly after.

In 1993, Martin Dürst provided an interesting
approach for a Chinese METAFONT [DÜR ] which,
as far as the present author knows, did not have a
follow-up. The recent proposal of Candy L.K. Yiu
and Wai Wong [YW ] may be more fruitful. In it,
the authors describe a language for the description
of hanzi, known as HanGlyph, and a METAPOST

1 Chinese hanzi (both simplified and traditional),
Japanese kanji, Korean hanja (and even hangul) and
Vietnamese chũ

,

hán and chũ

,

nôm. Writing systems
from these countries are usually termed CJKV text.
See [LUN ] for details.

TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting 125

Hóng-Zı̀: A Chinese METAFONT

Javier Rodŕıguez Laguna
SISSA, Trieste (Italy)

jrlaguna@sissa.it

http://www.sissa.it/~jrlaguna

Abstract

Hóng-Zı̀ ($~) is a new Chinese METAFONT, still at a very early stage of
development, freely available at http://hongzi.sourceforge.net under the
GPL. The structure is split into four levels of abstraction: strokes, radicals,
distributions and full characters, such that the highest level description of the
characters becomes truly simple.

program called CCSS (Chinese Character Synthesis
System) which renders the characters. Although the
approach introduced in this paper was developed
independently, it shares many features with the
ideas of Yiu and Wong.

Hóng-Zı̀ ($~) was born as an attempt to
overcome this gap in the TEX world. It is supported
by SourceForge and its first release was published
in May 2003 at http://hongzi.sourceforge.net.
It is organized into four levels of abstraction, so
that reading (and writing) the highest level files is
easy even for a METAFONT-newbie. This way, non-
experts should be able to help in its development.

The current version, described in this paper,
is Hóng-Zı̀ 0.5. Although this distribution contains
only 126 characters, it has the potential to build
many more. The characters are composed from
69 radicals, which are drawn using 32 different
types of strokes. The basic mechanism is probably
fixed now, although some details may change in
subsequent versions. The main tasks are now (a) the
development of more radicals and more characters
and (b) the design of a nice TEX interface.

Section 2, which is the core of this paper, is
a description of the abstraction levels of Hóng-Zı̀.
This paper ends with a discussion of the open
problems and future work.

2 Abstraction levels of Hóng-Zı̀

Hanzi are made up of parts which, going beyond the
strict meaning of the term, we shall name radicals.
(Strictly speaking, radicals are the 214 hanzi parts
used by Chinese dictionaries for indexing.) Radicals
are distributed in certain ways inside the character,
always fitting a square box. (To learn more about
the structure of hanzi, I recommend the books

[HEI ] and [FAZ ], and the program Hanzi

Master (hanzim) [ROB ].)
In summary, characters consist of radicals, dis-

tributed in certain ways. Radicals, in turn, consist
of strokes. The distribution of Hóng-Zı̀ contains
(at this moment) four files, one for each abstraction
level. Let us describe each one separately.

(a) Strokes. This is the lowest level, the one which
only uses METAFONT primitives. There are 32
stroke functions defined in the current version. Each
one requires either two, three or four parameters.
Some examples: point(cx,cy) only needs two
parameters, which correspond to the coordinates of
the peak of the point. The stroke hook v(cx,cy,l)

(which draws a vertical hooked bar) requires three:
the coordinate of the starting point and the length.
And down right(cx,cy,lx,ly) (which draws a
stylized stroke going down and right) requires four:
the coordinates of the starting point, and the width
and height of a box which contains it.

Prototype Shape

point(cx,cy); �
point sized(cx,cy,lx,ly); �

point ne sized(cx,cy,lx,ly); �
bar v(cx,cy,l); ��

down left(cx,cy,lx,ly); �	
down right(cx, cy, lx, ly); ��

hook v(cx, cy, l);
Æ
hook ob(cx, cy, lx, ly); �
corner tr(cx, cy, lx, ly); �
corner hook(cx, cy, lx, ly); �

vert raise(cx, cy, l); �
nu stroke(cx, cy, lx, ly); �
angle(cx, cy, lx, ly); �
ell(cx, cy, lx, ly); �

ye stroke(cx, cy, lx, ly); �
three(cx, cy, lx, ly); �

three hook(cx, cy, lx, ly); �
spoon stroke(cx, cy, lx, ly); �

Table 1. Some of the stroke functions defined in
Hóng-Zı̀. Strokes with more than one shape are
polymorphic.

126 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

Javier Rodŕıguez Laguna

Some strokes are polymorphic; for instance, the
shape of a down right(0f,10f,8f,2f) is not just
a rescaling of a down right(0f,10f,8f,8f). The
most important parameter which decides the shape
is (usually) the aspect ratio, A := height/width.

Table 1 shows some of the stroke functions
defined so far, along with some of the possible
output. The complete list is in the file strokes.mf

in the current distribution.

(b) Radicals. The term radical is extended in
this work to cover any combination of strokes we
regard as a unit inside a hanzi. Each radical
function takes four parameters: coordinates of the
upper-left corner, width and height. Radicals are
given “meaningful” names in English, such as child
(�) or eye (�). It is not always easy to find an
appropriate name for a given radical.

Many radicals are also polymorphic. For
example, let us consider the radical water. if the
aspect ratio is A > 2, its appearance is: �. But if
A ≤ 2, it looks like the full character: �. Table 2
shows some of the radicals defined in Hóng-Zı̀, as
described in file radicals.mf.

Radical name Rendered form

water � �
roof �
child �
woman �
tongue �
omen �
person � �
heart � � �
sun �

grass !
moon "
fire 1 2
ghost 5
way 8

knife = >
rice F

Table 2. A few of Hóng-Zı̀’s radicals. Polymorphic
radicals show some of their possible renditions.

(c) Distributions. A number of binary operators
have been defined which are useful for distributing
radicals on the character. E.g.: the H(·,·) operator
composes a single radical out of two, distributing
them horizontally. Each radical get 50% of the
width. It is similar to the TEX expression \hbox{X

Y}, but taking into account the fact that radicals
have no natural height or width.

If some space must be left between the radicals,
we may use H (·,·), which leaves 10% of blank space.
The Hl series, which splits horizontally and gives
more space to the left part) is depicted in full.
We have three equivalent series: Hr (horizontal
splitting, more space to the right part), Vu (vertical
splitting, more space to the upper part) and Vd

(vertical splitting, more space to the lower part).
There are a few other distribution operators

which do not fall into any of the above four series:
the L-box L(X,Y) operator, used in Æ dāo (road);
the inner-box I(X,Y) operator, used in � guó

(country); and the Is(X,Y) operator, which leaves
a smaller inner box, as in m wèn (question).

Table 3 shows some of the distribution opera-
tors created so far. They are defined in the source
file distributions.mf.

Of course, these operators may be composed,
thus providing a way to describe complex characters,
as we shall discuss in the following section.

(d) Full characters. All the lower layers are
designed to make the highest level description of
characters easy. As an example, the Hóng-Zı̀ code
for J mı́ng (luminosity), as expressed in our file
hongzi.mf, is just

H rr(sun)(moon)

This line is to be read as follows: “Make up
a character whose left part is the radical for sun
and whose right part is the radical for moon. Give
much more space to the right part and leave some
space between them”. In the real code, this line is
enclosed by a zi. . .iz pair.

A more complex character is 7 liáng (cold),

Hrr(ice)(Vdd(above)(Vd(box)(small)))

METAFONT reads this complex line downwards ,
like this: it first prepares a big box and splits it
horizontally (giving more space to the right part,
Hrr). It fills the left part with the ice radical. The
right part, on the other hand, is processed further.
First, it is split vertically (giving much more space
to the lower part, Vdd). In the upper half, it renders
the above radical. The lower part is again split

TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting 127

Hóng-Zı̀: A Chinese METAFONT

Distribution operator Effect

H(X,Y)

H (X,Y)

Hl(X,Y)

H l(X,Y)

Hll(X,Y)

H ll(X,Y)

V(X,Y)

V (X,Y)

Vu(X,Y)

L(X,Y)

I(X,Y)

Is(X,Y)

Table 3. Some of Hóng-Zı̀’s distribution operators.

(giving slightly more space to the lower part, Vd),
and there the box and small radicals are rendered.

Table 4 shows the code for some full characters,
ordered according to their complexity.

3 Open problems and future work

The basic structure of the project seems to be rea-
sonably fixed, although some issues of design must
still faced. For example, regarding the distribution
operators, perhaps we should replace the H, Hl, Hll
series with a single operator containing an extra
parameter. Also, the character descriptions should
make up a sort of dictionary, containing the shape

Hanzi Pinyin EnglishS nˇ̈u woman
womand shǔi water

water! hǎo good

H(woman)(child)� ān peace

Vdd(roof)(woman)F mı́ lost

L(way)(rice)G mı́ riddle

Hrr(word)(L(way)(rice))P nāo not good

Vd(no)(H(woman)(child))% huā flower

Vdd(grass)(H(person)(spoon))w y̌ıng shadow

H ll(Vdd(sun)(Vdd(above)(Vd(box)(small))))(beard)

Table 4. Character descriptions as they appear in
the hongzi.mf file. They become quite easy at the
highest level. Even complex characters such as w
are explained in a single line.

description, pinyin, English translation and some
compounds.

But the main problems of Hóng-Zı̀ at this
stage are that we must have (a) many more radicals
and characters; (b) calligraphic improvements and
different sets of strokes; and (c) a nice TEX interface.
Therefore, we need and welcome new volunteers for
collaboration! Deep knowledge of METAFONT is
not needed as much as deep knowledge of the
Chinese language, as can be seen from the high-
level structure. And of course, extensions to other
scripts in the CJKV family would be very nice.

128 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

Javier Rodŕıguez Laguna

The project web page, http://hongzi.sf.net,
aspires to contain a full-fledged introduction both
to the Chinese language for non-native speakers,
and to CJKV typing.

Suggestions, comments, criticisms and, most of
all, offers to help, are most welcome.

Acknowledgements

The author acknowledges Douglas R. Hofstadter and
the organizers of TUG’05 for their encouragement
and very useful comments. This project is supported
by SourceForge (http://sourceforge.net).

Bibliography

[DÜR ] Martin J. Dürst, Coordinate-independent

font description using Kanji as an example, Elec-
tronic Publishing 6(3), 133–143 (1993).

[FAZ ] Edoardo Fazzioli, Caratteri cinesi, Mon-
dadori (1986).

[GH ] John D. Hobby and Gu Guoan, A Chinese

Meta-Font, TUGboat 5(2), 119–136 (1984).
http://cm.bell-labs.com/who/hobby/pubs.html

[HEI ] James W. Heisig, Remembering the Kanji,
Tokyo: Japan Publishing Co. (2001).

[HOF ] Douglas R. Hofstadter, Changes in default

words and images, engendered by rising conscious-

ness, Sci. Am., Nov. 1982.

[HOF ] Douglas R. Hofstadter, Metafont, meta-

mathematics and metaphysics, in Metamagical the-

mas (chapter 13), Penguin Books (1986).

[KNU ] Donald E. Knuth, The METAFONTbook,
Addison-Wesley (1986).

[LUN ] Ken Lunde, CJKV information processing,
O’Reilly (1998).

[ROB ] Adrian Robert, Hanzi Master, a Chinese

character learning-aid program (2002).
http://zakros.ucsd.edu/~arobert/hanzim.html

[YW ] Candy L.K. Yiu and Wai Wong, Chi-

nese character synthesis using METAPOST, TUG-

boat 24(1), 85–93 (2003).

Qin notation generator

Candy L. K. Yiu, Jim Binkley
Department of Computer Science

Portland State University

Portland, OR USA

[candy,jrb]@cs.pdx.edu

Abstract

A Chinese character is a two-dimensional typological representation of strokes
and radicals. This is unlike English letters, where there are only 26 letters which
combine in one dimension. As there are thousands of Chinese characters, any
Chinese character font requires more space (typically two bytes) for its computer
encoding. Additionally, it takes more time for the creation of a complete font set.

Another problem is web communication. If a character is not available from
the client’s font set, there is no clean way to put the information in the web
document. This is what originally motivated us to work on dynamic character
generation.

The Qin is a Chinese musical instrument with a music specification language
that serves as a good example of Chinese character stroke and radical combina-
tions. The notation which represents the music is made with a set of characters
and radicals. People who show Qin notation on the web have to scan an image
and put it on the web. This project attempts to use Qin notation generation to
demonstrate the possibility of Chinese character rendering.

This project is divided into two parts: the first is the Qin notation description
language, and the second is the web notation generator. The description language
will be based on Hanglyph, which is a syntax able to describe the hierarchical
structure of Chinese characters. The Qin description language will use the basic
characters and components. The rendering will construct the notation using
MetaPost, based on Hanglyph. A web generator will output the pages with the
Qin notation to allow communication over the internet.

1 Introduction to the Guqin

The guqin [5] (old zither) has a long history in China.
It is mentioned in the Book of Odes (Shi Jing) and
Confucius is said to have played it, thus we know it
existed long before 200 B.C.E. Some have said that
the shape of the instrument has not changed since
the late Han dynasty, which is roughly two thousand
years ago, between 200–500 C.E. Although many
of the current pieces played on the Qin are from
the Ming and Qing dynasties and may be “only”
200 to 500 years old, some pieces exist that may
have started musically in B.C.E. times; for instance,
the famous piece “Flowing Water” (Liu Shui). This
piece is said to have been created by the legendary
Qin player Bo Ya in the Spring and Autumn period.
Flowing Water was included on the Voyager satellite
launched in 1977, as played by the famous 20th cen-

This work was supported as part of the Google 2005 Summer

of Code, http://code.google.com/summerofcode.html.

tury Qin master Guan Ping-hu. Thus the piece has
been performed by Qin players for three millennia.

The Qin belonged to the old scholar class who
ruled China until the fall of the Qing dynasty in
1911. The scholar class was said to practice “qin qi
shu hua”, “the four arts of the gentleman”:

qin, the art of playing the qin
qi, the art of playing go
shu, the art of calligraphy
hua, the art of painting

They celebrated the Qin in poetry and in paint-
ing. Emperors played it, poets such as Li Bo men-
tioned it in poetry, and painters would often include
it in a painting. The scholar class invested the Qin
with an ideology that could manifest itself as a sub-
tle form of reflective meditation through playing or
view the Qin as a physical object of connoisseur-
ship. Much of the music for the Qin is said to be
thematic in the sense that it is related to nature

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 129

Candy L. K. Yiu, Jim Binkley

(and Taoism), including pieces like Gao Shan (High
Mountains), Liu Shui (Flowing Water), and Ping
Sha Lo Yan (Geese at the Seashore). The Qin cer-
tainly has been influenced by Taoism, however other
songs include thematic material taken from history,
philosophy, and even occasionally romance.

As the Qin belonged to the so-called “writing
class”, scholars and musicians collected Qin songs,
which they published in books called “qin-pu” or
Qin handbooks. Hundreds of qin-pu exist with many
songs (not all of which are currently played). Al-
though there are a few individual songs on paper
that predate the early Ming dynasty, in general most
traditional books of songs date from around 1425 to
the time of the Qing dynasty’s collapse.

2 Qin tablature and the typesetting

problem

The nature of traditional written Qin music is a
gesture-oriented tablature. Complex symbols de-
scribe the motions of the left and right hands. Schol-
ars believe that at some point between the Tang and
Song dynasties a set of simplified Chinese charac-
ters was created as a shorthand form. These sym-
bols took an old longhand verbose set of instructions
for the left hand and right hand written in classical
Chinese and combined them into a more terse form.
Thus a composite Qin symbol was created that looks
like an ordinary Chinese character, but is actually
more variable internally than an ordinary Chinese
character.

In a sense, this composite symbol is more like
a sentence’s worth of instructions in classical Chi-
nese. It tells the player how to make a note with
a combined left and right hand gesture. The basic
components were taken from existing Chinese char-
acters and could be combined and recombined to
create simple and complex gestures that might, for
example, say (see figure 1):

• using the left-hand thumb, at string 3, at stop
position 10, play the string with the right-hand
middle finger while pulling the string towards
the player.

• follow this by sliding the left hand up to posi-
tion 9 and do nothing with the right hand.

• now with the left hand not pressing any strings,
with the right hand index finger play string 6
out from the player.

The “sentences” above are expressed with Qin
symbols in a very concise form, requiring only a few
symbols, as we can see in the figure.

The problem for typesetting is that any given
symbol has a high degree of internal variability. The

Figure 1: Example qin notation

Qin has seven strings and thirteen “stops” or left-
hand position markers. For example, even though
the first instruction above is relatively simple, we
could change the string (1 to 7) and the left-hand
stop position (1 to 13). This leads to 100 or so
different symbols. We could also change the right-
hand playing technique. One recent qin-pu from the
19th century [6] has about 50 separate sub-symbols
for right-hand techniques and about 80 for left-hand
techniques. Each stop position itself may be sub-
divided into 100 different parts. Thus a purport-
edly simple combination, without fancy glissando
techniques, can easily lead to thousands of differ-
ent combinations. This may be good for calligraphic
artistry, but it is bad for font designers.

In short, although the traditional Qin tablature
is made up out of component Chinese characters,
the combined results may take many forms —and
of course no existing Chinese font set would have
them or be able to deal with the resulting com-
plexity. Even today it is normal in the printing of
modern Qin music for the transcriber to use tra-
ditional ink-based calligraphy to write out the Qin
music and then somehow photographically insert the
images onto the printed page.

From the point of view of font creation, there
are many difficulties. For one, a composer could
invent a new symbol. Furthermore existing hand-
books in some cases document the individual char-
acter components, but the handbooks do not always
agree on the atomic class of symbols! In addition,
older handbooks from the Ming dynasty may use
some symbols that have more or less dropped out of
use in later handbooks. So although the Qin tabla-
ture system is rich in terms of tradition and semantic
expression, it is fair to say it is not easily amenable
to machine-based typography.

3 Structure of Qin notation

Qin notation is similar to Chinese characters. The
notation can be decomposed into a number of parts
called components. Each component consists of a
number of strokes. Qin notation has a fixed number
of components. Because of the fixed set of compo-

130 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

Qin notation generator

nents, we can decompose Qin symbols in three ways:
top-bottom, left-right, inside-out.

Figure 2 shows example Qin notation symbols
which have been decomposed into all three compo-
nents. In the figure, the four areas named A, B, C

and D represent four components. A and B is a left-
right relation which forms one element AB. C and D

is a inside-out relation which forms another element
CD. Now we can see that elements AB and CD form
a top-bottom relation which gives you the complete
symbol structure.

Figure 2: Example of Qin notation structure

Using the three combination operations above,
we can build a hierarchical model of Qin notation
based on the structure of the notation. Figure 3
shows an example which contains all 3 combinations.
Figure 3 shows a Qin notation example which used
the same combination structure in 2, and Figure 4
shows the hierarchical tree model after decomposing
the Qin notation.

Figure 3: Qin notation decomposed elements

Thus we can use this model to build and com-
bine single or composed elements into a new nota-
tion. We abstractly define the three combinations
of the elements as follows:

left-right (|) inside-out (@)

top-bottom (=)

Figure 4: The hierarchical Qin notation tree

1. top-bottom: combine any two elements with
one on the top of another.

2. left-right: combine any two elements with one
on the left and another on the right.

3. enclosed: put one element inside another ele-
ment, which has defined the enclosed area. This
combination is only used when the outer ele-
ment has an enclosed area.

As a result, the Qin notation generator struc-
ture is represented by a tree structure. Each internal
node in the tree is any one of the above combina-
tions (operators). The leaves of the tree are the basic
pre-defined elements.

4 A Qin notation description language

In 2003, in papers entitled “Chinese Character Syn-
thesis System using METAPOST” [3] and “Type-
setting Rare Chinese Characters in LATEX” [4], we
defined a Chinese description language called Han-
glyph (Chinese Description Language). This lan-
guage can be used to give any Chinese character a
typological representation. In Hanglyph, there are
five operators and the system is based on strokes as
a basic unit. In the full Hanglyph, there are also op-
tional relations which can be used to specify more
detail in the relation between the operands such as
width, height, and alignment.

Our present Qin notation description language
uses Hanglyph to describe the Qin notation. Qin
notation, complex as it is, uses only a small subset
of the more than 60,000 Chinese characters known,
so it becomes a somewhat simpler problem. There-
fore we only choose three operators without using
any optional relations for the description of the Qin
notation. However, to achieve this reduction, we
require more work and information from the ele-
ment library and a smarter generator engine. In the
next section we will discuss the approach needed to
achieve this goal.

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 131

Candy L. K. Yiu, Jim Binkley

Here is a formal definition of the Qin notation
description language:

〈Qin Notation〉 ::= 〈expr〉+
〈expr〉 ::= 〈Qin char〉 〈Qin char〉

〈parallel operator〉
| 〈en Qin char〉 〈Qin char〉

〈enclosed operator〉
〈parallel operator〉 ::= 〈top bottom operator〉

| 〈left right operator〉
〈top bottom operator〉 ::= =

〈left right operator〉 ::= |

〈enclose operator〉 ::= @

〈Qin char〉 ::= 〈en Qin char〉
| 〈basic Qin char〉

〈en Qin char〉 ::= predefined element
allowing enclosed

〈basic Qin char〉 ::= predefined basic element

5 Basic components

Traditionally there are two kinds of basic compo-
nents which are taught for Qin notation in hand-
books. These components are combined to make
composite symbols and can be said to belong to two
sets: one for the left hand, and one for the right
hand. Left hand and right hand sets of symbol ele-
ments are thus predefined. Many of the elements are
Chinese character components or simplified versions
of them.

Our basic elements come from a late Qing dy-
nasty Qin handbook [6]. We use a pinyin derived
variable name for the elements so that they can be
encoded with our basic operators. There are 87 left
hand components and 47 right hand components.
Figure 5 shows some examples of basic components.

Figure 5: Examples of basic components

6 Notation generator

The notation generator generates the Qin notation
in a geometric format such that we can convert the
result into an image or font. It takes the Hanglyph
input and generates the graphical representation as
output. Figure 6 shows the structure of the Qin
notation generator.

Figure 6: Qin notation generator architecture

The generator requires the basic components
library and operation library, which are both written
in MetaPost. We thus can divide the process into
three stages:

1. MetaPost translator: Translates the Hanglyph
input of the Qin notation into MetaPost output.

2. Qin notation in PostScript format: The gener-
ator uses the basic component library and per-
forms desired operations using the operation
libray to generate the Qin notation output in
PostScript format.

3. Converter: The last step is to convert the Post-
Script format into whatever other format may
be desired. In this project, we use a third-party
tool, namely ImageMagick, to convert to png
format in order to allow web display.

6.1 Basic component library

The basic component library is written as MetaPost
macros, named for each component pinyin symbol.
Figure 5 shows examples of basic components. For
each component, we have control points of the path
representing the component.

We also have a path creation macro to allow
scaling the control points. This means when one
scales the control point, one does not scale the path
at the same time. Thus we achieve separation of
control points and paths. This is very important
because otherwise different and undesirable results
may occur.

132 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

Qin notation generator

6.2 Operation library

As mentioned before, we use only three operations:
top-bottom, left-right and enclosed. The operation
must determine the ratio of the two components and
related spacing occupied by each component. In ad-
dition, the space between the two components also
has to be determined, in order to check whether two
components are touching each other.

Thus, the component library contains two prop-
erties, enclosed area and surrounding, to allow the
operation to obtain the needed information for each
component.

6.2.1 Enclosed area property

The enclosed area specifies the possible area for an
element which can contain another element. The
operation uses this information to scale the inner
element as needed, combining both elements to gen-
erate output. Figure 7 shows three examples of pos-
sible enclosed components. The gray area represents
the location of the inner element.

(a) (b) (c)

Figure 7: Examples of areas available for enclosed
components

6.2.2 Surrounding property

The surrounding properties are defined in terms of
four directions:

1. North (N): top side of the element.

2. East (E): left side of the element.

3. South (S): bottom side of the element.

4. West (W): right side of the element.

Furthermore, each direction can be flat or non-
flat. Figure 8(a) shows the definition of each face
direction. Zero represents flat and one represents
non-flat. Below we show the equation to determine
if spacing between two elements is needed.

space = 1, if s1 = s2 (1)

space = 0, if s1 6= s2 (2)

For the left-right operator shown in figure 8(b),
we consider the east face (right side) of the first oper-
and and west face (left side) of the second operand.
If the top-bottom operator is used as in figure 8(c),
we consider the south face (bottom side) of the first

N

W E

S

WE
s

N

(a) (b) (c)

Figure 8: The direction of each component has
a defined face: (a) face definitions; (b) left-right
operations on faces; (c) top-bottom operations on
faces

operand and north face (top side) of the second oper-
and.

The Qin notation generator can use these prop-
erties and rules to determine the needed spacing be-
tween two operands. The equation above states that
if there are two faces which have the same proper-
ties, either flat or non-flat, we insert space. Other-
wise, two elements touch each other by default.

6.2.3 Area ratio

Our next concern is to determine the ratio of the
visual area of the two operands. We use the elements
below to consider how to estimate the ratio:

1. The number of strokes in each component.

2. The total length of the strokes in each compo-
nent.

3. The width of each component.

The first row of figure 9 (1a,1b,1c) shows differ-
ent possible area ratios occupied by each operand.
The Qin notation generator has to calculate and de-
termine the ratio of each operand in order to give
a good visual output for the notation. The second

(1a) (1b) (1c)

(2a) (2b) (2c)

Figure 9: Spacing operands: first row shows
generic ratios; second row shows possible
characters; with (2c) being the best result.

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 133

Candy L. K. Yiu, Jim Binkley

row of figure 9 (2a,2b,2c) shows example character
for different ratios. In this example, (2c) is the best
output. In our experiment, the above rules to cal-
culate the notation work well.

7 Future work

We can further fine-tune the Qin notation genera-
tor by studying previously printed qin-pu and the
symbols used in them to do a better job estimating
a more aesthetic ratio between our operands. After
we generate the notation, the layout of the music
piece is another interesting topic as well. To type-
set an entire piece of music, we need a language for
describing the layout of the piece. This could, for
example, combine Western staff notation with the
traditional Qin notation in order to provide neces-
sary information about the tempo of a piece. We
hope to continue this project in the future [1].

References

[1] Candy L. K. Yiu, Portland State University,
Qin notation generator. http://web.pdx.edu/

~candy/qin.

[2] Candy L. K. Yiu, Wai Wong. Chinese Charac-

ter Synthesis. ACM PG Conference, Hong Kong,
China. January 25, 2003.

[3] Candy L.K. Yiu, Wai Wong. Chinese character

synthesis using METAPOST. In proceedings
of TUG 2003, TUGboat 24(1), 85–93 (2003).
http://tug.org/TUGboat/Articles/tb24-1/

yiu.pdf.

[4] Wai Wong, Candy L. K. Yiu, and Kelvin C.F.
Ng. Typesetting Rare Chinese Characters in

LATEX. In proceedings of the 14th Euro-
pean TEX Conference (EuroTEX 2003), TUG-

boat 24(3), 582–587 (2003). http://tug.org/
TUGboat/Articles/tb24-3/wong.pdf.

[5] http://en.wikipedia.org/wiki/Guqin.
September 2005.

[6] http://www.cs.pdx.edu/~jrb/chin. Yuguzhai
Qinpu, 1855, Fujian, China. September 2005.

[7] John Hobby and Gu Guoan. A Chinese meta-

font. TUGboat 5(2), pp. 119–136, 1984.

[8] John D. Hobby. A user’s manual for Meta-

Post. AT&T Bell Laboratories Computer Sci-
ence Technical Report, No. 162, 1992. http:

//cm.bell-labs.com/who/hobby/pubs.html.

[9] Donald E. Knuth. The METAFONTbook.
Addison-Wesley, 1986.

134 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

SwiExr: Spatial math exercises and worksheets, in Braille and print

Nandan Bagchee and Eitan M. Gurari
Ohio State University
gurari@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~gurari

Abstract

LATEX is a highly expressive authoring language considered to be the lingua franca
of the mathematics community. Yet, until recently, except for a few contributions
concerning long division, it offered very little support for expressing planar layouts
of problems that employ elementary mathematic operations.

We present a highly configurable tool [2] (written in Java) for producing spa-
tial representations of elementary math exercises and worksheets. The available
configurations produce verbatim and tabular forms of exercises and worksheets
in print and Nemeth Braille formats for inclusion in LATEX, MathML, HTML, and
text files. In addition, they ensure Braille output entirely equivalent to mate-
rial prepared in print formats. Our current attention is devoted to the addition,
subtraction, multiplication, division, and root operations.

We are interested in identifying potential users from the LATEX community
with the objective of developing widely acceptable LATEX interfaces for requesting
math exercises and worksheets.

1 General background

The arithmetic tasks of addition, subtraction, mul-
tiplication, division, and square root assume a cen-
tral place in elementary math education. Spatial
arrangements of problems with such operations of-
fer the foundation for applying computational pro-
cedures to instances which involve operands with
large values. Students are expected to acquire flu-
ency with the algorithms involved in dealing with
the representations and understanding of the un-
derlying ideas. To reach this end, they typically
practice the approaches to the point of automatic-
ity. The teachers are required to supply variants of
the problems for the students to drill with.

Printed and written material, in original and
xeroxed forms, as well as exercise program genera-
tors, are readily available to sighted students and
their teachers. When it comes to math in Braille,
outstanding detailed guidelines are available for cre-
ating worksheets of exercises [7, 8] but very few
actual resources for blind students are provided.
The guidelines are legal requirements for Braille to
be produced according to the Braille Authority of

Editor’s note: This material is based upon work supported
by the National Science Foundation under Award No. IIS-
0312487. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the au-
thor and do not necessarily reflect the views of the National
Science Foundation.

math worksheets 2,110,000
"math worksheets" 276,000
math worksheets Braille 17,600
"math worksheets" Braille 223

Table 1: Number of entries listed for different
searches with Google.

North America standards [4].
Figure 1 exhibits a sample of spatial layouts of

problems provided in the guidelines. On the other
hand, Table 1 shows some data obtained in search-
ing the web for math worksheets. In the case of
Braille, only one of the entries turned out to be rel-
evant: it offered worksheets of arithmetic operations
on numbers of single digits, and got listed in 1999
with a cost quote of $110 per 650 worksheets.

The problem of a lack of mathematical and
scientific content in Braille, and the high cost of
producing such material, are well known. For in-
stance, the American Printing House for the Blind
estimated that, due to a severe shortage of tran-
scribers, only 78 out of the 3000 general textbooks
published in 1999 were available in Braille in Jan-
uary 2000 [11]. Transcribing a single textbook can
take more than six months [11], and may cost up to
$9,500 [6].

A vast amount of scientific content is available

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 135

Nandan Bagchee and Eitan M. Gurari

1 1

254
+176

430

.
•.
.
..

.
•.
.
..

.
•
•

.
•
•

.
•
•

.
•
•

.
•
•

.
•
•

.
•
•

.
•
•

.
•
•

.
•
•

.
•
•

.
•
•

.
•
•

..

.
.
•.
..
•

.
•.
.
•
•

..
•

•.
•

.
•.
...

.
•
•

.
•
•

.
•
•

.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•
•

.
•.
.
•.

..
•

.
•
•

$7.45
10.92

+84.00

$102.37

.

..
•..

.
•
•

•..
.
•
•

.
•
•

.

..
•.
•

.
•.
.
•
•

.
•.
.
.
•

.
•.
..
.

..
•

.
•
•

..

.
•.
•

..
•

.
•.

.
•
•

..

.
..
•

•.
•

.
•
•

..
•

.
•.
.
•
•

..

.
•.
•

..
•

.
•
•

..
•

.
•
•

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.

..
•..

.
•
•

•..
.
•.
.
..

.

.
•

.
•
•

.
•
•

.

..
.
..
•.
•

.
•.
.
•.

.
•
•

.
•
•

$9.00
+1.00

$10.00

..

.
•.
.

.
•
•

•.
.

..
•

.
•.

..

.
•.
•

..
•

.
•
•

..
•

.
•
•

..
•

•.
•

.
•.
...

...
•.
•

..
•

.
•
•

..
•

.
•
•

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

..

.
•.
.

.
•
•

•.
.

.
•.
..
.

..
•

.
•
•

..

.
•.
•

..
•

.
•
•

..
•

.
•
•

23
×54

92
115
1242

.
•
•

..

.
.
•.
.
•.

...
•..

•..
..
•

.
•.
..
•

.
•.
.
•
•

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

..
•

.
•.

.
•
•

..

.
.
•.
..
.

.
•.
..
.

.
•.
..
•

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
..

.
•
•

.

..
.
•.
.
•
•

1704
× 5
8520

.
•.
...

.
•
•

.
•
•

..
•

.
•
•

.
•.
.
•
•

...
•..

•..
..
•

.
•.
..
•

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•
•

..
•

.
•.
..
•

.
•
•

...
..
•

.
•
•

132
×300

39600

.
•.
...

.
•.
.
•.

.
•
•

...
...
•..

•..
..
•

.
•.
.
•.

..
•

.
•
•

..
•

.
•
•

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

..
•

.
•.

.
•
•

.
•.

..
•

.
•
•

..
•

.
•
•

6)636

106

.
•
•

.
•.

•.
•

.
•.

.
•
•

.
•.

.
•.
.
•.

.
•
•

.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
..

.

.
•

.
•
•

.
•
•

.
•.

5,080.09

18)91,441.62
90

1 44
1 44

1 62
1 62

.
•.
..
•

..

.
..
•

..
•

.
•
•

.
•
•

..
•

..
•

.
•
•

..

.
•.
•

..
•

.
•
•

..
•

.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
..

.
•
•

..
•

•.
•

.
•.

.

.
•

.
•.

.
•.
.
..

.

..
.
.
•

.
•.
.
•
•

.
•.
.
•
•

.
•.
.
..

.

..
•.
•

.
•
•

.
•.

.
•
•

.

..
..
•

.
•.

..
•

.
•
•

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
.
.

.
•.
.
•
•

.
•.
.
•
•

.
•.
..
.

.
•.
.
•
•

.
•.
.
•
•

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
..

.
•
•

.
•.

.
•
•

...
.
•.
..
.

.
•
•

.
•.

.
•
•

..

.
.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

.
•.
.
•.

Figure 1: Spatial layout of math exercises in Braille.

136 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

SwiExr: Spatial math exercises and worksheets, in Braille and print

(a)

(b)

(c)

(d)

Figure 2: Graphical user interfaces for addition.

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 137

Nandan Bagchee and Eitan M. Gurari

in LATEX, authored either directly with text editors
or indirectly through word processors that export
LATEX. LATEX also seems to be the authoring lan-
guage preferred by visually impaired scientists.

The objective of our work in general is to auto-
mate the production of technical and scientific ma-
terial in Braille, with an emphasis on translating
content available in LATEX. Our current attention
is devoted to the area of producing spatial arrange-
ments for arithmetic exercises.

We introduce a highly configurable utility ded-
icated to this task, capable of producing worksheets
in different forms for general users, while ensuring
an option of Braille output for all supported fea-
tures. We present a graphical user interface (GUI)
of the tool, and exhibit a corresponding XML repre-
sentation for the data to be fed into the tool. Then
we consider LATEX in the role of a user interface for
the tool.

2 Graphical user interfaces

In order to serve a large base of users with differ-
ent needs and preferences, our tool was designed
in a modular manner which allows easy connection
to independent standalone user interfaces. Figure 2
displays GUIs currently provided for the addition
operation. GUIs of a similar nature are also offered
for the other operations.

The GUI of Figure 2(a) lets the user explicitly
introduce the problems to be processed. The GUI of
Figure 2(b) provides the means to request the de-
sirable content and representation for the problems.
In particular, there are options to present the prob-
lems with their results, with intermediate steps, with
the carries produced during the computations, and
a currency sign. The addition sign may be placed in
the same columns as the currency sign, or leftward.
The output may be exported in LATEX, MathML,
text, or Braille format.

A user may request randomly generated prob-
lems satisfying desirable constraints via the GUI

shown in Figure 2(c). The data to be included refers
to the number of problems to be generated, the de-
sirable number of decimal digits, lower and upper
limits on the number of desirable operands, the total
number of digits per operand, and the magnitudes
of the digits. Figure 2(d) shows a GUI for determin-
ing the characteristics involved in typesetting the
problems within the worksheets.

3 System architecture

Two aspects make the system highly configurable:
a modular architecture which gives independent at-
tention to the different functions of the system,

Figure 3: The underlying structure of the system.

and a script-based approach which provides for the
functions to be described within external configura-
tion files instead of being hardwired into the code.
The system consists of four major components (Fig-
ure 3).

The back end of the system employs a script-
based driver, called XTTL, for performing XML

transformations. The driver is offered a library,
called MathExr, of scripts for typesetting exercises
and worksheets. In addition, the library includes a
utility able to compute data for the exercises. The
scripts for handling the different operations are in-
dependent of one another, and they can be sup-
plemented and augmented by additional scripts to
achieve alternative outcomes. The examples of Fig-
ure 1 were obtained with those scripts.

The front end of the system uses a script-based
driver, called SwiForm, for managing the GUIs. The
driver is built as an extension to the SwiXml sys-
tem [10] and is offered a library, called SwiExr, of
scripts that specify the desirable features for the
GUIs. In addition, the library provides scripts and a
utility for binding the front end to the back end, and
for filtering the data communicated between these
ends.

The MathExr scripts are currently tailored to
receive the requests in XML format, and to deliver
the exercises in Braille, HTML, LATEX, MathML, and
plain text formats. The type of the information be-
ing transmitted is fully dependent on MathExr, and
that makes it possible to substitute a given graph-
ical front end for another. A LATEX front end is of
interest for us here.

4 An XML view

The MathExr component takes as input a high level
description of the desirable outcome and processes
it into a detailed account of how the digits, symbols,
and rulers of the exercises are to be placed on a grid.
The input of MathExr in its XML forms is to a large
degree a mirror of the visual format available from
the GUIs.

138 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

SwiExr: Spatial math exercises and worksheets, in Braille and print

<addition xttl="add-tex.xttl"

carry="yes"

steps="yes"

result="yes"

currency="alone">

<operands>

<operand>1</operand>

<operand>23</operand>

</operands>

</addition>

(a)

<multiplication steps="yes"

result="yes"

currency="alone"

xttl="mult-txt.xttl">

<operands>

<operand>1234</operand>

<operand>5</operand>

</operands>

</multiplication>

(b)

<division steps="no"

result="yes"

remainder="yes"

currency="yes"

rulers="full"

xttl="div-brl.xttl" >

<operands>

<operand>1234</operand>

<operand>56</operand>

</operands>

</division>

(c)

<generate xttl="worksheet-generate-tex"

cols="3"

enumerate="decimal"

enumerateBefore="("

enumerateAfter=")"

enumerateStart="1">

<exr type="addition"

howmany="2"

xttl="add-tex"

carry="yes"

steps="yes"

result="yes"

currency="alone">

<minEntries>2</minEntries>

<maxEntries>7</maxEntries>

<low>100</low>

<high>999</high>

<minDigits>1</minDigits>

<maxDigits>3</maxDigits>

<decimals>3</decimals>

</exr>

</generate>

(d)

Figure 4: XML requests for typesetting three types of problems and a worksheet.

Figure 4 contains examples of requests in XML

for single exercises and for a worksheet of exercises.
Each of the examples states the data required for
deriving the outcome and the name of the script
to be applied on the data. For instance, the first
example asks for the script stored in a file named
add-tex.xttl. That script typesets the addition
problem onto a grid and exports the result in a tab-
ular format acceptable to LATEX.

5 A LATEX perspective

The motivation to develop our tool was rooted in
the desire to provide the means to prepare spatial ar-
rangements of math exercises in Braille. The Braille
exercises are to serve mainly blind students attend-
ing mainstream classes populated mostly by sighted
children. To properly serve the blind students, it

is crucial for the Braille exercises to accurately rep-
resent the problems given to the sighted students.
Consequently, we programmed our tool to support
standard print formats as well as Braille, with the
hope of making it a useful tool for preparing work-
sheets in any format. In this way, we can ensure that
the Braille material is entirely equivalent to the ma-
terial in print formats.

LATEX offers to our tool an obvious method
of producing high quality printouts, through style
files that are easy to tailor and modify. In addi-
tion, LATEX also provides our tool with an option
for a natural text-based user interface to request
the exercises. A front end of this kind obviously
enables authors to seamlessly incorporate exercises
and worksheets into documents, and introduces a
friendly authoring environment for those who shy

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 139

Nandan Bagchee and Eitan M. Gurari

away from WYSIWYG platforms. In particular, a
non-WYSIWYG front end for accessing the tool is
obviously crucial to blind users.

A LATEX style file to support the input envi-
ronment can consist of macros that imitate the high
level structures captured by the XML code presented
to MathExr. For instance, the following LATEX-
oriented command expresses the same request as
the XML code of Figure 4(a).

\mathexr[op="addition"

xttl="add"

carry="yes"

steps="yes"

result="yes"

currency="alone"]{1,23}

The implementation of the macros can be quite
straightforward, relying on a process similar to that
for bibliographies and indexes in LATEX. Specifically,
the arguments given to the macros may be written
into a file in XML format, with the expectation that
the file will be processed by MathExr. The exer-
cises produced by MathExr can then be imported
by the macros into the LATEX source in consecutive
compilations.

6 Connecting the dots

We introduced our tool to the public domain at
the TUG 2005 International Typesetting Confer-
ence with the hope of promoting the tool with sup-
port from the LATEX community. In particular, we
looked for potential users and developers, interested
in LATEX interfaces and typesetting criteria for el-
ementary math exercises. In addition, we wished
to connect with potential developers for Braille and
related proofreading fonts.

949

13
)

12345
11700

645
520

125
117

8

Figure 5:
A display by
\longdiv.

Despite the central role
LATEX plays in documenting
mathematical and scientific
content, until recently the
only public support avail-
able for elementary math
exercises was a single macro
by Barbara Beeton and
Donald Arseneau [3]. This
macro uses input interfaces
such as the macro invoca-
tion \longdiv{12345}{13}

and produces output like
that shown in Figure 5.

The situation has changed recently, as a new
LATEX package for typesetting spatial math exer-
cises, named Xlop, was submitted to CTAN [5]. In
spirit, the new package answers our wish for a LATEX

counterpart to our tool. We hope future work on
Xlop and our tool will enrich both utilities with
additional features, and will bridge the differences
between the two utilities to allow to support each
other. In particular, we would like to see Xlop pro-
viding a LATEX extension to our system, and have
our utility offer alternative output formats to Xlop
in general and to include Braille in particular.

We are not aware of any LATEX fonts for Braille.
A substitute through LATEX pictures is available via
a style file [9]. The issue of backward translating
math exercises in Braille to LATEX got some atten-
tion in an experimental system called INSIGHT [1].

7 Acknowledgment

We are very grateful to Susan Jolly for introducing
us to Braille and for her generous guidance and help.
Thanks also to Barbara Beeton and Karl Berry for
editing the manuscript.

References

[1] N. Annamalai, D. Gopal, G. Gupta, A.
Karshmer, and H. Guo, INSIGHT: A
comprehensive system for translating
Braille-based mathematical documents to
LATEX, in Proceedings of the International
Conference on Human Computer Interaction,
pp. 1245–1249. 2003. (Demos available at
http://www.logicalsoft.net/frame/demo.

htm.)

[2] N. Bagchee and E. Gurari, SwiExr,
http://www.cse.ohio-state.edu/~gurari/

mathexr/.

[3] B. Beeton, D. Arseneau, Long division,
TUGboat 18(2), June 1997, p. 75–76,
http://tug.org/TUGboat/Articles/

tb18-2/tb55works.pdf.

[4] Braille Authority of North America (BANA),
http://www.brailleauthority.org/.

[5] J. Charpentier, Xlop, 28 April 2005,
http://www.ctan.org/tex-archive/

macros/generic/xlop.

[6] Computers To Help People, Inc. (CHPI),
Sponsoring Technical Reference Books and
Manuals, http://www.chpi.org/refspons.

htm.

[7] R. Craig, Learning the Nemeth Braille
Code: A Manual for Teachers and Students,
American Printing House for the Blind, 1987.

[8] A. Nemeth, The Nemeth Code of Braille
Mathematics and Science Notation. The
Braille Authority of North America
(BANA), American Printing house for the

140 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

SwiExr: Spatial math exercises and worksheets, in Braille and print

Blind, 1972 revision. (French version: http:

//www.meq.gouv.qc.ca/ens-sup/ens-coll/

Braille/Code_Braille_mathematique.pdf)

[9] W. Park, LATEX 2ε package for typesetting
Braille, April 1999, http://www.ctan.org/

tex-archive/macros/latex/contrib/

braille/braille.html.

[10] W. Paulus, SwiXml,
http://www.swixml.org/.

[11] Texas Partnership for Increasing Braille
Production, Report of Braille Production
Specialist Focus Group Meeting, January
2000, http://www.tsbvi.edu/textbooks/

afb/texas-transcriber.htm.

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 141

Typesetting the Byzantine Cappelli

Philip Taylor

The Computer Centre, Royal Holloway,

University of London, TW20 0EX,

United Kingdom

mailto :P.Taylor@Rhul.Ac.Uk

Abstract

An overview of the author’s rôle in the preparation of the forthcoming Lexicon of
Abbreviations & Ligatures in Greek Minuscule Hands, with particular emphasis
on two challenges : sorting TEX markup for polytonic Greek using multiple con-
current keys, and deriving statistical data which could be used to provide input
to the book design.

Introduction

One of the greatest pleasures that I get from my po-
sition as Webmaster at Royal Holloway, University
of London, is the only-too-rare opportunity to work
with truly gifted and dedicated scholars. For the
last few years, I have been truly privileged to be able
to work with Miss Julian Chrysostomides, Director
of our Hellenic Institute, and with Dr Charalambos
Dendrinos, a Research Fellow within the same In-
stitute. These two extraordinary scholars have both
devoted a considerable portion of their lives to the
collection, collation and preparation of material for
a Lexicon of Abbreviations & Ligatures in Greek Mi-
nuscule Hands which is intended to do for Byzan-
tine scholarship what Adriano Cappelli’s Dizionario
di Abbreviature latine ed italiane has been doing for
Latin scholarship for the past 100 years.

Figure 1: A fragment from Cappelli’s Dizionario

For both Latin and Byzantine scholars, the task of
deciphering manuscripts which may be more than
a thousand years old is not simply one of reading
a long-dead scribe’s handwriting : far more difficult
is the task of identifying and correctly interpreting
the various abbreviations, ligatures and other scribal
shorthand notations that he or she may have used.
Even a skilled palæographer may have difficulty in

deciphering these, although for Latin scholars Cap-
pelli’s Dizionario provides an invaluable tool.

Only too aware of the difficulties that their stu-
dents were experiencing in attempting to decipher
Byzantine manuscripts, Julian & Charalambos de-
cided to compile a Byzantine dictionary that would
provide their students, and future scholars, with a
key to those scribal notations which were most likely
to cause problems in interpretation. For over five
years, these two scholars have been painstakingly re-
searching and deciphering hundreds if not thousands
of individual manuscripts and recording the results
of their work, initially using fairly primitive technol-
ogy such as Windows 3.1’s Cardfile and Eberhard
Mattes’ emTEX but more recently using spread-
sheet technology (Microsoft’s Excel) and the TEX
Live Windows implementation of Hàn Thế Thành’s
Pdf(LA)TEX by Fabrice Popineau.

The Work of the Scholars

Although locating and obtaining copies of the man-
uscripts requires a not-insignificant amount of time,
I will concentrate here on the tasks which the schol-
ars undertake once the copies have been received.
Each scribal notation that is potentially of inter-
est is identified and scanned, and any artifacts that
might serve to confuse are eliminated using a light
pen and suitable software (JASC’s Paintshop PRO).
The resulting “clean” image is then stored as a PDF

file using a fixed naming convention, and a corre-
sponding entry made in an Excel spreadsheet : this
entry contains the filename, the transcription, an
explanation (if the notation is an abbreviation or
similar) and the provenance (typically the date, but
occasionally a more detailed provenance where this
is felt to be important). Lest this create the impres-
sion that the rôle of the scholars is trivial, let me

142 TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting

Typesetting the Byzantine Cappelli

emphasise that the task of deciphering and inter-
preting the scribal notations is one requiring much
skill and many many years of experience !

Scanning and transcription take place in
batches, following which proofing takes place. Dur-
ing the proofing stage, the size and relative position
of each scanned image is adjusted to ensure that
all scanned images reproduce at approximately the
same height and with the same vertical offset from
the notional baseline. As will be seen later, ensur-
ing that all images reproduce at the same height has
only a limited effect on their widths : as a result,
a statistical analysis of the widths of the scanned
images will later be needed to allow an accurate as-
sessment of the proportion of images that would fit
without problem were a particular book design to
be adopted. The scaling and offset parameters are
stored within the Excel spreadsheet.

As far as is possible, syntax errors are identified
and corrected at the proofing stage, although some
may sneak through and require further intervention
at the galley or page-proof stages. Because of the
complexity of the markup used to represent tran-
scriptions and explanations, such errors can easily
creep in — these frequently involve braces, either as
mismatched pairs or through the accidental use of
non-brace symbols such as parentheses or brackets.

Markup and Syntax

Each entry in the spreadsheet consists of a number
of fields, most of which are destined to become in-
corporated in a TEX document. Each record in the
resulting TEX file conforms to the following pattern :

\Byzantine

<scale>

<y-offset>

<filename>

<transcription>

<explanation>

<provenance>

of which an example might read

\Byzantine

-0.2

-0.5

abr-qwrafion2

{{q\raise {f}}}

{{qwr’afion}}

{{1430}}

The \Byzantine command is used to introduce each
record, and its meaning is redefined in various pro-
grams used to process the data. The first two pa-
rameters represent the scaling to be used (a neg-
ative value implies shrinkage rather than magni-

fication) and the offset from the horizontal axis
(a negative value implies lowering rather than rais-
ing). The third parameter is the filename, the por-
tion preceding the hyphen indicating into which of
about ten general classifications the record should
be subsumed. The fourth parameter is the tran-
scription, marked up according to Silvio Levy’s en-
coding scheme for polytonic Greek with additional
commands required to indicate scribal ornamenta-
tions such as \raise {}, \overbar {}, etc. The
fifth parameter is the explanation, again marked up
using Levy’s scheme (this time with no extensions) ;
and the sixth and final field is the provenance.

Sorting the Data

Although the data are coarsely pre-sorted by virtue
of the prefix element of the filename, the actual lex-
icographic sorting needed before the data can be in-
corporated in the final lexicon is considerably more
complex. Not only is it necessary to sort — by
Greek collating rules — the latin transliteration of
the Greek characters originally used, it is also nec-
essary to ensure that the sorting takes into account
all of the additional orthographic devices which may
occur : breathings, accents, iota subscripts, orna-
ments (raised [groups of] letters, overbars), diareses
and of course case-differences themselves. Further-
more, it is necessary to sort initially by transcrip-
tion, but if — for a given record — the translitera-
tion is absent, or identical to another transcription,
then sorting must instead be by explanation, and if
two or more records are found still to be identical
after all of these criteria have been considered, then
the date (provenance) and finally the original order
in the spreadsheet must be taken into account (this
last fallback key ensures that no manual sorting will
ever be required once the data have been correctly
entered in the spreadsheet).

Needless to say, sorting of this complexity is a
task for which TEX is rather less than ideally suited.
Even though earlier workers (e.g., Kees van der

Laan, 1993 ; Bernd Raichle, 1994) have shewn
that TEX is perfectly capable of performing sorting,
the magnitude of the data (some 4000 records) and
the complexity of the sorting required suggest that a
more appropriate tool be used. The problem, how-
ever, is that the TEX markup used is fairly complex,
and in order to parse it effectively, TEX itself is re-
ally required. Thus we appeared to be on the horns
of a dilemma : on the one hand, TEX was felt to be
unsuitable for the task of sorting, yet on the other
TEX was considered to be essential if the markup
were to be correctly parsed and interpreted. This

TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting 143

Philip Taylor

impasse was finally resolved during discussions at a
EuroTEX conference with Professor Klaus Lagally,
who had experience of similar problems when try-
ing to sort Arabic text in TEX : his solution, which
proved to be absolutely ideal, was that we should
treat the task as two separate problems — (1) pars-
ing the TEX markup, and (2) sorting the data. The
key to the solution lay in his suggestion that, during
the sorting phase, TEX be asked to output far sim-
pler keys (e.g., purely numeric) which could then be
easily interpreted by any conventional sorting rou-
tine.

Parsing in TEX

With Klaus’s suggestions firmly in mind, work
started on writing the TEX parser. Although it
would have been possible to write all keys to a sin-
gle file, it was decided to associate each key with a
unique file :

\immediate \openout \TRAccents

= Transcription.accents

. . .

\immediate \openout \TROrnaments

= Explanation.ornaments

\immediate \openout \EXAccents

= Transcription.accents

. . .

\immediate \openout \EXOrnaments

= Explanation.ornaments

\immediate \openout \Dates

= Byz-data.dates

\immediate \openout \Sequence

= Byz-data.sequence

Note that accents, breathings, cases, diareses, iotas,
letters and ornaments are replicated for transcrip-
tion and explanation but that dates and sequence
numbers require only a single instance of each.

The main loop of the program iterates over its
input file :

\loop

\read \source to \buffer

\ifeof \source

\repeatfalse

\else

\expandafter

\parse \buffer \endparse

\advance \entry by 1

\repeattrue

\fi

\ifrepeat

\repeat

Before parsing the transcription and the explana-
tion, we re-define the output files as being \TR...

or \EX... as appropriate :

\def \Usetranscription

{%

\let \Accents = \TRAccents

. . .

\let \Ornaments = \TROrnaments

}

\def \Useexplanation

{%

\let \Accents = \EXAccents

. . .

\let \Ornaments = \EXOrnaments

}

Remembering that each input record consists of the
control word \Byzantine followed by six parame-
ters, we define \parse to call the analysis routine
twice, passing first the transcription and then the
explanation :

\def \parse \Byzantine

#1 #2 #3-#4 #5#6#7\endparse

{%

\reset

\transcription = {#5}

\Usetranscription

\analyse #5\endparse \endanalyse

\print

\reset

\Useexplanation

\explanation = {#6}

\analyse #6\endparse \endanalyse

\print

}

The apparent difference between the earlier state-
ment that the transcription forms the fourth pa-
rameter (and the explanation the fifth parameter)
and the code above, which appears to refer to them
as the fifth and sixth parameters respectively, is ex-
plained by the fact that during parsing we treat the
filename as two separate parameters separated by
a hyphen : this allows the prefix (representing the
general category into which the entry fits) to be
extracted and used to qualify the date, since the
lexicon is macro-ordered by general category, and
micro-ordered by the sorting criteria currently be-
ing described.

The analysis code itself is fairly straightforward :

\def \analyse #1#2\endanalyse

{\ifx #1\endparse

\else

144 TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting

Typesetting the Byzantine Cappelli

\def \flag {#2}

\advance \index by 1

\process {#1}

\analyse #2\endanalyse

\fi

}

all of the complexity being delegated to the \process
{} routine :

\def \process #1%

{

\csname +\string #1\endcsname

}

Before \process {} can be understood, it is first
necessary to explain how the parser identifies into
which category each token fits. The program starts
by listing the various categories :

\newentity {accent}

\newentity {breathing}

\newentity {diaresis}

\newentity {grouping}

\newentity {iota}

\newentity {letter}

\newentity {ornamentation}

Then, for each category, the tokens which compose
that category are enumerated. Here, for example,
the possible accents are enumerated :

\newaccent ‘

\newaccent ’

\newaccent ~

To avoid the risk of human error, we interrogate an
internal counter to find how many elements there
are in each category :

\numberof \accents = \valueof ~

\advance \accents by 1 %%% null accent

Now take a deep breath, because we need to discuss
how \newentity {} is defined :

1 \def \newentity #1

2 {\expandafter \NewCount

3 \csname #1\endcsname

4 \expandafter \def \csname

5 new#1\endcsname ##1%

6 {\advance \csname #1\endcsname by 1

7 \expandafter \edef \csname

8 +\string ##1\endcsname

9 {\expandafter \noexpand

10 \csname #1token\endcsname

11 {\string ##1}

12 {\the \csname #1\endcsname}%

14 }

15 }

16 }

As this code is somewhat opaque, let’s make
life simpler by considering what happens when
\newentity {} is called with a parameter, as in
\newentity {accent}. Lines 2 to 3 expand to
yield \NewCount \accent. \NewCount can be used
in macro expansions but is otherwise identical to
Plain’s \newcount. Lines 4 onwards expand to
yield a definition for the single-parameter macro
\newaccent {} ; the definition is equivalent to the
following pseudo-TEX code :

\def \newaccent #1

{\advance \accent by 1

\edef \+#1%

{\accenttoken {#1}{\the \accent}

}

Again it will be simpler to understand through
the medium of an example, so we will consider
what happens when \newaccent {} is called with
parameter ~, as in \newaccent ~. The counter
\accent is incremented by one (it starts life at
zero), and the control sequence \+~ is defined to
expand to \accenttoken {~}{<current value of

\accent>}. The sole function of the + prefix used
in constructing the name of the control sequence is
to reduce the risk of a namespace clash.

We will next need to look at \accenttoken {},
which as we see below is just one of a family of
identically treated control sequences :

\def \accenttoken #1#2%

{\do {Accent}{#1}{#2}}

\def \breathingtoken #1#2%

{\do {Breathing}{#1}{#2}}

\def \diaresistoken #1#2%

{\do {Diaresis}{#1}{#2}}

\def \groupingtoken #1#2%

{\do {Grouping}{#1}{#2}}

\def \iotatoken #1#2%

{\do {Iota}{#1}{#2}}

\def \lettertoken #1#2%

{\do {Letter}{#1}{#2}}

\def \ornamentationtoken #1#2%

{\do {Ornament}{#1}{#2}}

after which we need to examine \do {} :

\def \do #1#2#3%

{%

\csname #1\endcsname {#2} {#3}

}

Since parameters 1 & 2 of \accenttoken {} become
parameters 2 & 3 of \do {}, we can see that when
\do {} is launched from \accenttoken {} the ex-
pansion is :

\Accent {<accent-token>}{<numeric-value>}

TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting 145

Philip Taylor

Remembering that TEX is case-sensitive, it should
be clear that \accent and \Accent {} are totally
different entities — the former is an integer register
(declared with \NewCount {}), whilst the latter is
explained below :

\def \Accent #1#2%

{

\lastaccent = #2

}

Thus the sole effect of \Accent {} is to store the
numeric value associated with the accent (its ordi-
nal) in \lastaccent ; most of the entities analogous
to \Accent {} behave in a similar way, with the
key exception of \Letter {} at which we must next
look :

1 \def \Letter #1#2%

2 {%

3 \lettervalue = #2

4 \ifodd \lettervalue

5 \edef \Caseskey {\Caseskey 1}

6 \advance \lettervalue by 1

7 \else

8 \edef \Caseskey {\Caseskey 0}

9 \fi

10 \edef \Accentskey

11 {\Accentskey \the \lastaccent}

12 \edef \Breathingskey

13 {\Breathingskey

14 \the \lastbreathing}

15 \edef \Diareseskey

16 {\Diareseskey

17 \the \lastdiaresis}

18 \edef \Iotaskey

19 {\Iotaskey 0}

20 \edef \Letterskey

21 {\Letterskey \expandafter

22 \expandafter \expandafter

23 \twodigits \expandafter

24 0\the \lettervalue

25 \sentinel

26 }

27 \edef \Ornamentskey

28 {\Ornamentskey

29 \the \lastornament}

30 \lastaccent = 0

31 \lastbreathing = 0

32 \lastdiaresis = 0

33 }

It is, in fact \Letter {} (which is triggered by the
parser detecting a letter, as opposed to any dia-
critic or other orthographic mark) that is at the
heart of the TEX parser under discussion. Remem-
ber that \Letter {} will be called with the actual

letter as parameter 1 and the ordinal of that letter
as parameter 2. At line 3, the ordinal is saved in
\lettervalue. At lines 4 to 9, a test is made to
see whether this is odd or even, a simple test which
discriminates between upper- and lower-case letters.
If the result is odd (uppercase), \lettervalue is
rounded upwards to renormalise it as lowercase af-
ter noting the fact that it was originally upper-
case. Note carefully the \edefs at lines 5 & 9,
which append a zero or a one to the current value
of \Caseskey : this same mechanism is used from
lines 10 to 29 to append the last (accent, breathing,
diaresis, or ornament) ordinal to the corresponding
key.

Here at last we begin to see the results of all of
our efforts : the various keys are extended (by a fixed
amount) each time a letter is encountered in the in-
put record to capture, as a set of sequences of fixed-
length integers, the possible features which may be
used to differentiate each letter from an otherwise
identical letter when sorting finally takes place.

After parsing the transcription, and again after
parsing the explanation, we write each of the seven
keys to the associated file :

\def \print

{

\immediate \write \Accents

{\Accentskey}

...

\immediate \write \Ornaments

{\Ornamentskey}

}

After the keys for the transcription and explanation
have been written to file, the date (with filename
prefix prepended) and sequence number are simi-
larly recorded :

\immediate \write \Dates {#3-#7}

\immediate \write \Sequence {\the \entry}

The Results

The end result of all of this is a series of files, each of
which consist of n records, where n is the number of
records in the original data set. Each record in each
file will be of length K × l, where l is the number of
letters in the corresponding input record and K is
a constant which varies from file to file (some keys
can be represented as a single digit per character,
some require two digits per character, and so on).
A short fragment of a typical input file, and the cor-
responding extracts from sample key files, are shewn
on the following pages ; the samples are intended to
illustrate most of the scribal devices used.

146 TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting

Typesetting the Byzantine Cappelli

byz-data.dat

\Byzantine -0.5 0.4 abr-adelfou

{{>ad\raise {e}}} {{>adelfo~u}}

{{Thebes}}

\Byzantine -0.4 0.4 abr-adelfous

{{>ad\raise {o‘us}}} {{>adelfo‘us}}

{{1374}}

\Byzantine -0.3 0 abr-adelfwn

{{>adelf}} {{>adelf~wn}}

{{1374}}

\Byzantine -0.3 -0.2 abr-aer

{{a\raise {e}r}} {{>’aer}}

{{15\th c.}}

\Byzantine -0.2 -0.2 abr-aer1

{{a\raise {e}r}} {{>’aer}}

{{1492}}

\Byzantine -0.3 -0.5 abr-afierwthrion

{{>af"I\raise {e}rw\raise {tr}}}

{{>afierwt’hrion}} {{1420}}

\Byzantine -0.3 -0.2

abr-afrodith-fwsforos-qalkos {{}}

{{>Afrod’ith fwsf’oros / qalk‘os}}

{{16\th c.}}

transcription.letters

041012

0410324638

0410122448

041236

041236

0448201236544436

<blank>

transcription.accents

000

00010

00000

000

000

00000000

<blank>

transcription.breathings

100

10000

10000

000

000

10000000

<blank>

transcription.cases

000

00000

00000

000

000

00100000

<blank>

transcription.diareses

000

00000

00000

000

000

00100000

<blank>

transcription.ornaments

001

00111

00000

010

010

00010011

<blank>

explanation.letters

04101224483246

0410122448324638

04101224485428

041236

041236

044820123654441636203228

0448363210204416485438483236323850042422...

explanation.accents

0000003

00000010

0000030

200

200

000000020000

0000020000002000000010

explanation.breathings

1000000

10000000

1000000

100

100

100000000000

1000000000000000000000

explanation.cases

0000000

00000000

0000000

000

TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting 147

Philip Taylor

000

000000000000

1000000000000000000000

explanation.diareses

0000000

00000000

0000000

000

000

000000000000

0000000000000000000000

explanation.ornaments

0000000

00000000

0000000

000

000

000000000000

0000000000000000000000

Sorting in Perl

After the complexities of the TEX coding required to
implement the parser, the matching Perl code will
come as something of a relief ! We start by opening
or creating a few files :

$Data = "Byz-Data.dat" ;

open Data or die

"File $Data cannot be opened :

$!\n" ;

@data = <Data> ;

$TRAccents = "Transcription.Accents" ;

open TRAccents or die

"File $TRAccents cannot be opened :

$!\n" ;

@TRaccents = <TRAccents> ;

. . .

$EXOrnaments = "Explanation.Ornaments" ;

open EXOrnaments or die

"File $EXOrnaments cannot be opened :

$!\n" ;

@EXornaments = <EXOrnaments> ;

$Dates = "Byz-Data.dates" ;

open Dates or die

"File $Dates cannot be opened :

$!\n" ;

@dates = <Dates> ;

$Sequence = "Byz-Data.Sequence" ;

open Sequence or die

"File $Sequence cannot be opened :

$!\n" ;

@sequence = <Sequence> ;

$Sink = ">Byz-Data.Srt" ;

open Sink or die

"File $Sink cannot be created :

$!\n" ;

We then enumerate the keys that will be used for
sorting :

@key11 = @TRletters ;

@key12 = @TRbreathings ;

@key13 = @TRaccents ;

@key14 = @TRiotas ;

@key15 = @TRornaments ;

@key16 = @TRdiareses ;

@key17 = @TRcases ;

@key21 = @EXletters ;

@key22 = @EXbreathings ;

@key23 = @EXaccents ;

@key24 = @EXiotas ;

@key25 = @EXornaments ;

@key26 = @EXdiareses ;

@key27 = @EXcases ;

@key31 = @dates ;

Then we perform a detached key sort and output
the results :

@keys = sort polytonically @sequence ;

foreach $key (@keys)

{print Sink $data [$key]} ;

All that remains is to define the comparison algo-
rithm :

sub polytonically

{if (($key11 [$a]

cmp $key11 [$b]) != 0)

{return $key11 [$a]

cmp $key11 [$b]}

elsif (($key12 [$a]

cmp $key12 [$b]) != 0)

{return $key12 [$a]

cmp $key12 [$b]}

. . .

elsif (($key27 [$a]

cmp $key27 [$b]) != 0)

{return $key27 [$a]

cmp $key27 [$b]}

elsif (($key31 [$a]

cmp $key31 [$b]) != 0)

{return $key31 [$a]

148 TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting

Typesetting the Byzantine Cappelli

cmp $key31 [$b]}

else {print Errors "Warning :

duplicate entry : \n",

$sequence [$a]+1,

" : ", $data [$a],

$sequence [$b]+1,

" : ", $data

[$b], "\n"}

}

Statistical Analysis of Field Widths

As explained above, although the scanned images
are normalised for height and position, it is impos-
sible to normalise them for width since some are
inherently narrow and others are inherently wide.
The transcriptions, explanations and provenances,
too, vary widely in length. In order to gain an in-
sight into the best distribution of the available space
between the various fields (and, indeed, in order to
determine the minimum page size which would ac-
commodate the longest possible entry for one-, two-
and three-column designs), it was decided to per-
form a statistical analysis of the variation in mini-
mum width of each of the fields. For the scanned im-
ages, all that was necessary was to record the width
of each (after scaling) and to use Excel to analyse
these (the actual analysis techniques used are dis-
cussed below), but for the textual fields there was an
additional and very interesting problem : how does
one decide what is the minimum width that can be
used to typeset a given stretch of text ?

Obtaining the Statistics for Text Fields

One possible approach is to typeset the text in a
\vbox {} with \hsize = 0pt. This will forcibly
hyphenate every possible word, but the problem is
knowing how to access the results : if one examines
the dimensions of the \vbox {} after this operation,
it will have finite height and depth, but the width
will still be 0pt, and even if one unboxes it and
reboxes it, one finds that the internal \hbox {}es
that TEX constructs whilst paragraph building also
have zero width. However, all is not lost : if one
uses TEX’s box destructor primitive \lastbox, one
can gain access to the last line of the paragraph ;
unboxing and reboxing this line yields an \hbox {}

with finite width as well as finite height and depth.
Applying this technique iteratively allows access to
(the widths of) all the lines of the paragraph, and if
one then selects the largest of these, one then knows
the narrowest measure within which the stretch of
text could be typeset.

In reality, of course, this may be far too narrow
to be usable, but once one has established a lower
bound one is as least on the way to determining the
optimal width.

Sample code which can be used to perform this
operation is shewn below :

\toks 0 = {Research by the School of

Management is not confined

to for-profit corporations,

it is also a leading centre

for research into public

sector organisations. In

recognition of the rising

impact of sustainability for

business and society, the

School, together with the

Department of Geography,

have created an

inter-disciplinary Centre for

Research into Sustainability

(CRIS).

}

\newif \ifloop

\newdimen \minwidth

\def \findminwidth #1#2%

{%

\minwidth = 0 pt

\setbox 0 =

\vtop \bgroup

\hsize = 0 pt

\hfuzz = \maxdimen

#1 \noindent #2 \par

\loop

\setbox 2 = \lastbox

\ifvoid 2

\loopfalse

\else

\setbox 4 = \hbox

{\unhbox 2}

\ifdim \wd 4 > \minwidth

\global \minwidth

= \wd 4

\fi

\unskip

\unpenalty

\looptrue

\fi

\ifloop

\repeat

\egroup

\message {min-width : \the \minwidth}

TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting 149

Philip Taylor

\global \setbox 0 = \vtop

\bgroup

\hsize = \minwidth

\rightskip = 0 pt

plus \minwidth

#1 \noindent #2 \par

\egroup

}

\findminwidth {\uchyph = 1}{\the \toks 0}

\setbox 2 = \box 0

\findminwidth {\uchyph = 0}{\the \toks 0}

\setbox 4 = \box 0

\findminwidth {\hyphenchar \font = -1 }

{\the \toks 0}

\setbox 6 = \box 0

\leftline

{\box 2 \quad \box 4 \quad \box 6}

\end

The test lines at the end demonstrate that differ-
ent minimum widths can be achieved depending on
whether or not hyphenation is permitted, and if per-
mitted, whether upper-case words may legitimately
be hyphenated. For the sample stretch of text used,
the three minima were 50.36124pt, 60.05573pt and
74.00015pt for the uc & lc case, the lc-only case,
and the no-hyph case respectively. Figure 2 shews
the results of typesetting the sample text to these
three measures :

Research

by the

School of

Manage-

ment is not

confined to

for-profit

corpora-

tions, it

is also a

leading

centre for

research

into public

sector

organisa-

Research by

the School of

Management

is not

confined to

for-profit

corporations,

it is also

a leading

centre for

research into

public sector

organisa-

tions. In

recognition

of the rising

Research by

the School of

Management

is not confined

to for-profit

corporations,

it is also a

leading centre

for research into

public sector

organisations. In

recognition of

the rising impact

of sustainability

for business

and society,

Figure 2: Typesetting to the narrowest measure :
uc & lc hyphenation, lc-only, and no hyphenation

Analysing the Statistics

For many years, I eschewed spreadsheets completely,
believing that they were yet another manifestation
of “The Emperor’s New Clothes” and offering noth-

ing whilst promising everything ... It was only when
I started chairing the TUG Bursary Committee that
I began to realise that spreadsheets did indeed have
something to offer, and so when I began to search
for a tool to help with the analysis of field widths
for the current project I started by looking at the
possibilities of Excel .

At first I was defeated by little things : Excel ,
for example, seems unfamiliar with the concept of
the point as a unit of measure, so it was unable
to deal with TEX’s 58.88902pt notation. This was
very easily dealt with once I realised that Excel ’s
Data/Text to Columns.../Delimited/Other/"p"

would do exactly what I needed — strip off the trail-
ing pt leaving only the unitless number in the source
column.

The second task was considerably more diffi-
cult : given a set of some 4000 real numbers (repre-
senting the widths of one of the fields in the Lexi-
con), I wanted to (a) sort them, and (b) derive statis-
tics which would shew what percentage were less
than each unique value. I was convinced that Ex-
cel could manage this, but none of my Excel -literate
colleagues (including my wife !) could tell me how to
persuade Excel to do the necessary.

In the end, a Google search led me to
the solution : the necessary statistical tools are
not installed by default, and it is first nec-
essary to install the appropriate options pack.
Tools/Add-Ins.../Analysis ToolPak proved to
be the required incantation, after which Tools/Data

Analysis.../Histogram/Cumulative Percentage

provided the exact statistics that I needed. Fig-
ures 3 – 4 shew a sample of the output from Excel
covering the range from 85% to 98,5%. Access to
statistics such as these for each of the four fields of
the Lexicon will prove invaluable when putting the
finishing touches to the book design, since the au-
thors will be able to see for themselves what fraction
of the entries would fit without compromise were a
particular design to be selected.

Conclusions

TEX is a superb program, capable of producing the
finest quality typeset output ; however, it is neither
the ideal tool for sorting, nor for producing statisti-
cal analyses. When used in conjunction with other
tools such as Perl (sorting) and Excel (statistics),
the combined power far exceeds the sum of the parts.
Synergies such as these are surely the key to the rôle
of TEX in the future : TEX should no longer be per-
ceived as a tool in isolation, but rather as a partner
in a whole suite of tools, each perfectly adapted to
the task for which it is used.

150 TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting

Typesetting the Byzantine Cappelli

43.51428 31 83.30%

44.06853 92 85.42%

44.62279 16 85.79%

45.17705 18 86.21%

45.73131 10 86.44%

46.28556 25 87.02%

46.83982 19 87.46%

47.39408 22 87.96%

47.94834 18 88.38%

48.50260 24 88.94%

49.05685 20 89.40%

49.61111 19 89.84%

50.16537 15 90.18%

50.71963 8 90.37%

51.27389 13 90.67%

51.82814 34 91.45%

52.38240 13 91.75%

52.93666 14 92.08%

53.49092 12 92.35%

54.04517 19 92.79%

54.59943 33 93.56%

55.15369 8 93.74%

55.70795 9 93.95%

56.26221 12 94.22%

56.81646 6 94.36%

Figure 3: Width, frequency & cumulative%age

Acknowledgements

The author would like to acknowledge the unwaver-
ing and unstinting affection, dedication and patience
of Miss Julian Chrysostomides and Dr Charalam-
bos Dendrinos, with whom it is truly a joy to work.
He would also like to thank Professor Klaus La-

gally for his advice on sorting non-Latin scripts,
and Claudio Beccari for his courtesy and patience
whilst the author was trying to effect the transi-
tion from Silvio Levy’s polytonic Greek fonts to the
“CB” series. Finally he would like to thank the TUG

Bursary Committee for financial support which en-
abled him to present this paper at Wu Han (China)
during the TUG 2005 conference.

57.37072 8 94.55%

57.92498 15 94.89%

58.47924 7 95.06%

59.03349 8 95.24%

59.58775 1 95.26%

60.14201 7 95.43%

60.69627 34 96.21%

61.25053 4 96.30%

61.80478 3 96.37%

62.35904 4 96.47%

62.91330 6 96.60%

63.46756 7 96.77%

64.02181 12 97.04%

64.57607 2 97.09%

65.13033 4 97.18%

65.68459 4 97.27%

66.23885 21 97.76%

66.79310 4 97.85%

67.34736 3 97.92%

67.90162 7 98.08%

68.45588 4 98.18%

69.01014 8 98.36%

69.56439 3 98.43%

70.11865 3 98.50%

70.67291 1 98.52%

Figure 4: Width, frequency & cum. %age (cont)

Bibliography

van der Laan, C.G. (“Kees”) 1993 : Sorting in
BLUe ; Minutes and Appendices (MAPS) 10, Ned-
erlandstalige TEX Gebruikersgroep (NTG).

Raichle, Bernd 1994 : Sorting in TEX’s Mouth ;
Proceedings of the 1994 EuroTEX Conference.

TUGboat, Volume 26 (2005), No. 2 —Proceedings of the 2005 Annual Meeting 151

152 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

LuaTEX: Howling to the moon

Hans Hagen
Pragma ADE, The Netherlands

pragma@wxs.nl

Abstract

Occasionally we reach the boundaries of TEX and programming then becomes
rather cumbersome. This is partly due to the limitations of the typesetting
engine, but more important is that a macro language is not always best suited
for the task at hand.

1 Some observations

Occasionally we reach the boundaries of TEX and
programming then becomes rather cumbersome.
This is partly due to the limitations of the typeset-
ting engine, but more important is that a macro lan-
guage is not always best suited for the task at hand.
One problem is for instance that intermediate oper-
ations and final results are intermixed (which has a
certain charm as well).

\def\RepeatMe#1#2%

{\bgroup

\count0=#1%

\loop

\ifnum\count0>0

#2%

\advance\count0 -1

\repeat

\egroup}

The next call gives *****:

\RepeatMe{5}{*}

If you want to use this macro to construct a new
one holding 5 stars, you’re tempted to do something:

\edef\ShowMe{\RepeatMe{3}{*}}

This will give an error and the reason for this is
that \RepeatMe is (in TEX-speak) not fully expand-
able.

In ε-TEX we can define this macro in a fully ex-
pandable way:

\def\RepeatMe#1#2%

{\ifnum#1>0 #2\else

\expandafter\IgnoreMe

\fi

\expandafter\RepeatMe\expandafter

{\the\numexpr#1-1\relax}{#2}}

\def\IgnoreMe#1#2#3#4#5{}

Now we can safely say:

\edef\ShowMe{\RepeatMe{3}{*}}

Or even:

\edef\ShowMe{\RepeatMe{3}{\RepeatMe{3}{*}}}

Unfortunately, many users will turn away from
writing macros as soon as something like \expandafter

shows up, so this solution is not of much help for
novice users, given that they already have noticed
that they need to do this kind of expansion in order
not to end up in too deep nesting and in order to
finish the condition. Also, we only have to add a
simple counter that keeps track of the total number
to end up with a non-fully expandable macro again.

\newcount\NOfRepeats

\def\RepeatMe#1#2%

{\ifnum#1>0

\advance\NOfRepeats 1

#2%

\else

\expandafter\IgnoreMe

\fi

\expandafter\RepeatMe\expandafter

{\the\numexpr#1-1\relax}{#2}}

\def\IgnoreMe#1#2#3#4#5{}

If we try:

LuaTEX: Howling to the moon

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 153

\edef\ShowMe{\RepeatMe{2}{*}}

We get a macro \ShowMe with the meaning:

\advance \NOfRepeats 1 *\advance \NOfRepeats

1 *

But there is a way out of this! See the following
variant:

\def\RepeatMe#1#2%

{\lua

{for i=1,#1 do

tex.print("#2")

end}}

Isn’t this much more convenient? It even looks
readable. Before I explain the \lua command, I will
make a few more observations.

As said, TEX programming can be cumbersome,
but this is no reason to throw away the macro lan-
guage. There is much macro code around and there
are many documents that depend on TEX’s longevi-
ty. So in order to overcome limitations, we need to
talk in terms of extensions, not replacements.

Nowadays TEX is used for more than typesetting
documents directly from a source. While manip-
ulating the input, some applications demand more
advanced programming features than good old TEX
can (conveniently) provide. In many cases, it’s not
so much the whole machinery that we want to re-
place. We just want to extend or replace some of the
subsystems. In order to provide robust solutions we
may also want to have access to the internals. We’d
like to add extensions and delegate activities to oth-
er programs. Of course there may also be person-
al motives for extending TEX, for instance because
every now and then we need a new challenge.

2 Why Lua

I use SCITE as my main editor for documents and
programs. This editor is built on top of the SCINTIL-

LA framework. It’s a fast, lightweight but powerful
program. Being mainly a program editor it lacks
some features that you need for text editing and
processing, like adjusting text and spell checking.
However . . . it has a scripting engine that gives ac-
cess to the user interface and the editing component.
This scripting language happens to be LUA.

For a while I was hesitant to use ‘yet another
programming language’, but using the built in LUA

machinery made more sense than programming in
C++ and trying to keep that up to date with the
rest of the program. I was more or less familiar
with the SCINTILLA programming interface because
I had written the TEX and METAPOST lexers, but
in contrast to the lexer code other extensions would
involve changes spread more widely over the code
base. So, the LUA way we went.

While the PERL, PYTHON, and (my favourite)
RUBY languages are heavyweight languages, LUA is
a simple but nevertheless powerful language. The
first three come with a constantly growing num-
ber of libraries and users expect the whole lot to
be present, which makes them unsuitable as exten-
sion languages: cross platform issues, slow startup,
much bigger TEX distributions, etc.

LUA can interface to libraries but its main pur-
pose is to be embedded in an application and present
the user with an interface to the parent application.
It’s made for embedding! It has a small footprint
and adds only some 50–100K to the parent binary.
One can add additional functionality, for instance
support for sockets.

The more I looked into it, the more I liked it, and
after positive experiences with integrating META-

POST in ConTEXt, integrating LUA didn’t seem that
strange to me.

Not being a ‘TEX the Program’ hacker, I man-
aged to trick Hartmut Henkel (member of the
PDFTEX development team) into implementing a
\lua command. Hartmut and I share a passion for
experiments in PDFTEX and he knows how to im-
plement them: I got back a (LINUX) binary within
a few days.

After we had this proof of concept, it was time
to involve Taco Hoekwater (member of the Con-
TEXt, METAPOST and other development teams),
who knows more about TEX’s internals than I ever
will. Another few days later we had the first inter-
face to some of TEX’s internals.

3 A few examples

I will show a few of the examples that I demonstrat-
ed at the TUG 2005 conference in Wuhan, China.
Keep in mind that an experimental version was used
and that the interfaces may change. For instance,
it will be possible to activate several LUA engines
(\newlua) and all variables, the hash table, internal
lists, etc., are on the agenda.

For starters, if we say:

Hans Hagen

154 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

\lua{a = 1.5 ; b = 1.8 ; c = a*b}

we only set some variables, and get nothing in re-
turn. However, the next call puts the value of c back
into the input stream.

\lua{a = 1.5 ; b = 1.8 ; c = a*b ;

tex.print(c)}

The result comes back as a string. This means
that we need to process it in the right way in order
get something that TEX sees as TEX code. For this
reason we define:

\def\luatex#1{\scantokens\expandafter

{\lua{#1}}}

The \scantokens primitive has some undesired
side effects: it cannot properly handle multiple lines
(catcode problem) and acts as a pseudo-file, but
Taco is working on a variant.

So, in the next example, we get different results:

\lua {tex.print("$\string\\sqrt{2} = "

.. math.sqrt(2) .. "$")}

\luatex{tex.print("$\string\\sqrt{2} = "

.. math.sqrt(2) .. "$")}

The \lua call returns a verbatim copy, i.e. a dol-
lar shows up as a dollar, while the \luatex call gives
a typeset formula, i.e. the dollar sign is seen as the
signal to enter math mode.

Next we demonstrate how to use LUA to match
strings (using regular expressions):

\lua {

match = {} ;

match.expression = "" ;

match.string = "" ;

match.result = {} ;

match.start = 0 ;

match.length = 0 ;

}

\def\matchstring#1#2{\lua {

match.expression = "#1" ;

match.string = "#2" ;

match.result = {} ;

match.start,match.length,match.result[1],

match.result[2], match.result[3],

match.result[4], match.result[5],

match.result[6], match.result[7],

match.result[8], match.result[9]

= string.find(match.string,

match.expression);

}}

\def\matchresult#1{\lua {

tex.print(match.result[#1]) ;

}}

When we use the last macro as:

\matchstring

{(\letterpercent d+) (\letterpercent d+)

(\letterpercent d+)}

{2005 08 08}

the three components are available in:

\matchresult{1} \matchresult{2} \matchresult{3}

The percent symbol is LUA’s escape character,
which is why we need \letterpercent. The results
can be used in a table like the following:

\starttabulate[|l|c|r|]

\NC year \NC \matchresult{1}

\NC \number \matchresult{1} \NC \NR

\NC month \NC \matchresult{2}

\NC \number \matchresult{2} \NC \NR

\NC day \NC \matchresult{3}

\NC \number \matchresult{3} \NC \NR

\stoptabulate

We can rewrite the LUA code in a more efficient
way (less code in the main macro):

\lua {

function match.find(expr, str)

match.expression = expr ;

match.string = str ;

match.result = {} ;

match.start, match.length, match.result[1],

match.result[2], match.result[3],

match.result[4], match.result[5],

match.result[6], match.result[7],

match.result[8], match.result[9]

= string.find(match.string,

match.expression) ;

end

}

\def\matchstring#1#2{\lua {

LuaTEX: Howling to the moon

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 155

match.find("#1","#2") ;

} }

\def\matchresult#1{\lua {

tex.print(match.result[#1]) ;

} }

The usage is the same. In the previous example
we used \number to get rid of leading zeros, but we
can also adapt the expression like this:

\matchstring

{0*(\letterpercent d+)

0*(\letterpercent d+)

0*(\letterpercent d+)}

{2005 08 08}

The next example takes some close reading, but
it demonstrates how to mix TEX and LUA. Let’s start
with defining some tables, a very LUAish but pow-
erful data structure (the more one reads about LUA,
the more one realizes that it is pretty well designed).

\lua {

document = { }

document.dimens = { }

}

Next we store the widths of a bunch of characters
in the dimens subtable. (We could have used ε-TEX’s
char dimension primitives instead.)

\dostepwiserecurse{‘a}{‘z}{1} {

\setbox\tempbox\hbox{\char\recurselevel}

\lua {

document.dimens[\recurselevel]

= tex.wd[\number\tempbox]

}

}

Now we can calculate the average widths of the
characters. Of course this particular case can be
done in pure TEX quite conveniently, but one can
envision more tricky calculations.

\lua {

local total, n = 0, 0

for d in pairs(document.dimens) do

total, n

= total + document.dimens[d], n + 1

end

if n>0 then

document.mean = total/n

else

document.mean = 0

end

}

We leave it to your imagination to envision what
the next code will produce (this article is not pro-
duced using LUATEX):

\mathematics {

\lua { tex.dimen[0] = document.mean }

\withoutpt \the\dimen0 =

\lua { tex.print(document.mean/65536) }

\approx

\lua { tex.print(

math.ceil(document.mean/65536)) }

}

Did you notice how we have access to TEX’s di-
mensions? We can read and write them — when a
string is assigned, the usual dimensions are inter-
preted. In a similar fashion we have access to coun-
ters.

\bgroup

\count0=10 \count2=30

\scratchcounter =

\lua { tex.print((tex.count[0]

+ tex.count[2])/2) }

\number\scratchcounter

\egroup

Now keep in mind, we’re not piping data from
TEX into some external program and reading it back
in again. Here LUA is an integral part of TEX!

Token registers can be accessed as well:

\toks0 = {interesting}

\lua {

tex.toks[0]

= string.gsub(tex.toks[0],

"(.)", " (\letterpercent1)

")

}

\the\toks0

This will return the individual characters of ‘in-
teresting’ surrounded by parentheses. LUA has suf-
ficient functionality for string manipulations.

Can you envision what this next bit of code does?
Again we use a token register but this time we also

Hans Hagen

156 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

rescan the result because it contains a control se-
quence. (The quote is from Hermann Zapf.)

\toks0 = {

Coming back to the use of typefaces in

electronic publishing: many of the new

typographers receive their knowledge and

information about the rules of typography

from books, from computer magazines or the

instruction manuals which they get with

the purchase of a PC or software. There

is not so much basic instruction, as of

now, as there was in the old days,

showing the differences between good and

bad typographic design. Many people are

just fascinated by their PC’s tricks,

and think that a widely-praised program,

called up on the screen, will make

everything automatic from now on.

}

\lua {

str = tex.toks[0]

str = string.gsub(str,"\letterpercent w+",

function(w)

if str.len(w) > 4 then

return "\string\\color[red]{"

.. w .. "}"

else

return "\string\\color[green]{"

.. w .. "}"

end

end

)

tex.toks[0] = str

}

\scantokens\expandafter{\the\toks0}

Words longer than 4 characters will become red,
while short words become green. The .. operator
concatenates strings. Of course a solution with more
complex input will demand a different approach, and
in the end we need the ability to process TEX’s in-
ternal lists.

We don’t yet have access to the lccode table but
we can already efficiently define vectors. Currently
TEX lacks a way to quickly initialize switches, which
is a pity because nowadays PDFTEX provides a lot
of them.

\lua {

lccodes = { }

}

\dorecurse{255} {

\lua { lccodes[\recurselevel]

= \number\lccode\recurselevel ;

}

}

\luatex {

for i in pairs(lccodes) do

tex.print("\string\\lccode" .. i

.. "=" .. lccodes[i] .. " ")

end

}

In the last example we return to the kind of ex-
ample that we started with: fully expandable defin-
itions.

\lua {

interface = {}

interface.noftests = 0

function interface.oneoftwo(result)

interface.noftests = interface.noftests+1

if result then

tex.print("firstoftwoarguments")

else

tex.print("secondoftwoarguments")

end

end

}

This function returns a given string, depending
on the boolean (condition) fed into it. The two pos-
sible strings correspond to macro names (ConTEXt
has a bunch of those):

\long\def\firstoftwoarguments #1#2{#1}

\long\def\secondoftwoarguments#1#2{#2}

Now imagine the following definitions:

\def\DoIfElse#1#2{%

\csname\lua{%

interface.oneoftwo("#1"=="#2")

}\endcsname

}

We feed the string comparison into the function,
which returns a string, which in turn is expanded

LuaTEX: Howling to the moon

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 157

into a control sequence. Without any chance of in-
terference we also keep track of the number of tests.
We can ask for this number with:

\def\NOfTests

{\lua{tex.print(interface.noftests)}}

The following code shows how to use the test.
They all return (typeset) OK.

\def\xxx{yyy} \def\yyy{yyy}

\DoIfElse{one}{one}{OK}{NO}

\DoIfElse{two}{one}{NO}{OK}

\DoIfElse\xxx \yyy {OK}{NO}

What goes in gets expanded, but when it enters
LUA it has been turned into a harmless sequence of
characters:

\DoIfElse

{this is an \hbox to \hsize{real} mess}

{and \rm this is even worse}

{NO}{OK}

This test can be used in an \edef and fed back
into LUA if needed.

\edef\zzz{this

\DoIfElse{a}{b}{or}{and}

that}

\lua{tex.print("\zzz")}

\lua{tex.print("this

\DoIfElse{a}{a}{or}{and}

that")}

These examples demonstrate that we can com-
fortably mix TEX and LUA and use whichever suits
the problem best. Also keep in mind that nesting
LUA calls is no problem either:

\lua{tex.print("this

\lua{tex.print("---")}

that")}

Of course we need additional trickery. For in-
stance we need a way to escape characters before
they enter LUA, or the following will fail:

\DoIfElse{one "two" three}

{one ’two’ three}

{OK}{NO}

Instead we need something like this:

\DoIfElse

{\luaesc{one "two" three}}

{\luaesc{one ’two’ three}}

{OK}{NO}

which will comfortably escape the sensitive charac-
ters. So, there is some work left to do.

4 The potential

Since we recognized the potential we decided to con-
tinue this effort and the lean and mean LUATEX
team was there: Hartmut Henkel, Taco Hoekwater
& Hans Hagen. We will discuss, meet, develop and
finally present a working and stable version, proba-
bly around EuroTEX and/or TUG 2006. The binary
will start as a fork of PDFTEX, and in the end per-
haps replace PDFTEX since its author likes the idea.

In the process we consider removing some of the
fuzzy parts of PDFTEX; good candidates for removal
are enctex and mltex, among others, especially if
we can preprocess the input stream. We may as well
replace/extend some of the subsystems (such as font
handling for which we need to go to OPENTYPE any-
way) and/or prototype new subsystems. We will
provide an interface to plugins; for instance, the
paragraph building components that Karel Skoupý
is building and has demonstrated at conferences.

In the end we will provide a playground for all
kinds of features; for instance, language/script spe-
cific font handlers and paragraph builders for lan-
guages such as Chinese. Of course my personal in-
tent is to replace (or extend) some macro-defined
parts of ConTEXt by alternatives in LUA (think of
ConTEXt 4). We can even add functionality that
until now was beyond reason to implement. And
this is just the start . . .

My thanks to Hartmut Henkel and Taco Hoek-
water for their collaboration on this project and this
paper, and Karl Berry for editorial help.

Converting METAFONT sources to outline fonts using METAPOST

Karel Ṕı̌ska
Institute of Physics, Academy of Sciences
182 21 Prague
Czech Republic
piska@fzu.cz

http://www-hep.fzu.cz/~piska/

Abstract

The paper describes a multistep conversion process from METAFONT sources to
outline fonts (Adobe Type 1 format). An important step, finding contours, is
based on an accurate algorithm fitting the envelope curve of a stroke drawn by
a pen along a cubic Bézier curve by the least square method, specially extended
(adapted) for a rotated elliptical pen applied, for instance, in the Devanagari font
design. After converting the EPS files produced by METAPOST to the correspond-
ing outline representation, the FontForge font editor is used for removing overlap,
simplification, autohinting, generating outline fonts, and necessary manual mod-
ifications. The conversion results, the faithful Indic Type 1 fonts (significantly
more precise and closer to optimal than earlier attempts made by autotracing
bitmaps) will be released.
Keywords: font conversion, bitmap fonts, METAFONT, METAPOST, outline
fonts, PostScript, Type 1 fonts, approximation, Bézier curves.

Introduction

In 2001 I experimented with approximate conversion
METAFONT Indic fonts to the Type 1 format by au-
totracing bitmaps with the TEXtrace program [11].
I was not satisfied with the results and decided to
apply another, analytic approach, to achieve results
more precise and also better optimized.

Conversion process

Our procedure consists of studying the font defini-
tions in METAFONT and preparing encoding files.
Then the glyph strokes produced by METAPOST are
converted to outlines, and the font is assembled, op-
timized, and autohinted. Finally, it is generated as
a Type 1 binary file with FontForge. After verifica-
tion of visual proofsheet pages some steps are often
repeated to correct or improve the final results.

Analysis of METAFONT sources We analyze the
METAFONT source texts [7] of a font to select an ap-
propriate strategy of conversion, to find the crucial
parameters, like the font size, the italic angle, and
the definitions of pens and strokes. Some parame-
ters may be also hidden inside macros. Sometimes,
a method for efficient conversion is not apparent.
Therefore it is also important to know about the
presence and number of METAFONT commands not

available in METAPOST [5], for example, using op-
erations with bitmap picture variables.

Creating encoding files Encoding files and en-
coding vectors define a mapping between the glyph
names and their number codes. METAFONT defini-
tions usually do not contain unique glyph names in
an explicit form but only as comments. The glyph
names are taken from these comments to produce an
unambiguous list of PostScript names, i.e. we must
find duplicated names and change them to be dif-
ferent. Our preliminary solution inherits the META-
FONT comments closely to make glyph identification
easier.

Running METAPOST Invoking METAPOST pro-
cesses the METAFONT sources and produces EPS

files. METAPOST together with a macro package
mfplain ([5], p. 79) allows processing the original
or modified (to eliminate METAFONT-specific com-
mands) font sources written in METAFONT and to
generate for each glyph a single file in the Encap-
sulated PostScript format, consisting only of Post-
Script commands like curves, strokes, affine trans-
formations representing pens, etc., but no bitmap
images, in contrast to METAFONT’s usual output.
Some metric data, e.g. the glyph widths and italic
angles, may be lost; we shall restore them later.

158 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

Converting METAFONT sources to outline fonts using METAPOST

Figure 1: Result of METAPOST.

We also need to define a magnification factor,
because we have to transform the glyph images to
a 1000-unit glyph coordinate system (we use this
usual space) with the units in PostScript big points
(bp) and the font designsize in pt units. The trans-
formation factor from pt to bp is 1.00375. Thus
in general the magnification factor will be 1000 ∗
1.00375/designsize. For designsize = 10 pt, this is
1000∗1.00375/10 = 100.375, for 8 pt it is 125.46875,
for 17.28 pt 58.087384, etc.

So, a typical command to call METAPOST is:
mpost ’&mfplain \mode=localfont;’ \

mag=100.375’; input’ dvng10.mf

These files may contain various stroked paths (see
figures 1, 9). It is necessary to find contour curves
for single strokes and then also common envelope
curves for overlapping strokes.

The following lines from the PostScript pro-
duced by METAPOST correspond to fig. 1:

0 79.06227 dtransform truncate idtransform

setlinewidth pop [] 0 setdash

1 setlinecap 1 setlinejoin 10 setmiterlimit

gsave newpath 119.50958 284.54501 moveto

398.36119 284.54501 lineto

[-0.98387 0.98387 -0.17888 -0.17888 0 0] concat

stroke grestore

The lineto operator describes the line segment, the
concat operator applies the affine transformation
represented by the preceding normalized matrix (in
brackets) denoting the rotated elliptical pen, and
79.06227 . . . setlinewidth is the scale factor defin-
ing the stroke width.

Converting METAPOST products to outlines
The results of METAPOST (strokes) are converted
to “primary” outlines. Fitting curves with the least
square method is a typical approach to calculate a
curve approximation. This method is nothing new
and may well have been used in conversion programs
developed by Richard Kinch (MetaFog, [6]), Basil
Malyshev [9], George Williams (FontForge, [13]) and
others. We only apply a few additional conditions.
We try to be more precise, but our attempts are still
more fragile and unstable than the programs listed
above.

Figure 2: Primary conversion to outlines.

All the calculations are in the non-integer value
space. We check each segment for accuracy and sub-
divide it if a chosen limit is exceeded; insert all hori-
zontal and vertical extrema nodes; keep all horizon-
tal/vertical straight lines and control vectors to be
exactly horizontal/vertical. The inner part of a con-
tour curve of drawing a rotated elliptical pen even
along a simple Bézier path without any intersections
may have self-intersections. Therefore we try to find
self-intersection points as precisely as possible, if it
is possible at all. Unfortunately, sometimes this it-
eration does not converge. A simplest conversion to
outlines is shown in figure 2.

For a given time of the path segment using the
affine transformation matrix and its inverse matrix
(for a usual pen they are always regular) we can cal-
culate the displacement corresponding to the point
lying on the right parallel outline curve (the left one
is located symmetrically). Knowing the coordinates
of points on the outline curves and also on the pen
boundary we can fit them by a cubic Bézier approx-
imation. But a problem is that we do not know
whether the points are on the envelope curve, be-
cause parts of the outline curves may create loops
of arbitrary size being inside a closed area. It de-
pends on complex correlations between the path and
the pen.

We also recognize quarter-circles, usually rep-
resented in METAFONT by two segments because
METAFONT tends to divide curves into octants. To
avoid further simplification problems, we do not pre-
serve the 45 degree middle nodes and change the
quarter-circles to the accurate single-segment Post-
Script representation with relative lengths of con-
trol vectors 4/3(

√
2−1) ≃ 0.552285, cf. R. Kinch [6,

p. 236] and Luc Devroye [2]. For an example of our
circle approximation see figure 3.

To summarize, in the primary approximation
straight lines and circles are represented by the min-
imal number of segments (because other nodes are
unnecessary), and, on the other hand, other outline
curves have redundant node points (to preserve a
maximal starting accuracy). These intermediate re-
sults of the primary conversion to outline are demon-
strated in figures 2 and 10.

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 159

Karel Ṕı̌ska

Figure 3: Representation of circles.

Creating a font with FontForge FontForge is a
powerful open source font editor. Among its wide
range of useful abilities is a “background layer”,
which may contain bitmap images and line drawings.
So, we generate with METAFONT high resolution
bitmaps for the font under study, either 2400 dpi
(supre mode), or 7254 dpi. The 7254 dpi “device”
corresponds to the relation 1 pixel in the PK bitmap
∼ 1 unit in the PostScript glyph space for a 10 pt
design size:

% (72.27*1000.375/10dpi)=7254.1

mode_param (pixels_per_inch,4000+3254.1);

mode_param (blacker, 0);

mode_param (fillin, 0);

mode_param (o_correction, 1);

The resulting GF (or PK) files can be imported to
the background as a set of gray pixels to compare
with glyph images. (Sometimes, METAFONT with
such a high resolution may fail, if the author did
not design the font for an arbitrary resolution.)

Font composition We also run mftrace [10]
with an appropriate encoding to make a PFB font
file. From this file we build a frame for the created
font, copy the glyph widths and glyph names, and
move the outlines to the background layer (visible
as green lines). During a subsequent processing of
the font with FontForge we use its internal Spline
Font Database format (SFD).

The high resolution bitmap is always huge, so
we import it only before a comparison. But the out-
line contours of the font produced by mftrace are not
large and we can store them in the working SFD files
permanently. To the foreground layer we import the
outlines from the EPS files calculated in the previ-
ous step from the original EPS files generated by
METAPOST.

The high resolution pixel image gives a close
visual bitmap representation of the original META-

FONT source. Of course, information about contour
curves, intersection points, corners, etc., virtually
calculated by METAFONT has been lost. The font
outlines autotraced by mftrace from similar bitmaps,
despite the inevitable artifacts (bumps, holes, un-
recognized corners, . . .) give reasonably correct in-
formation about the glyphs. Our aim is to obtain
another outline representation: more accurate and
closer to optimal, minimizing the number of defects.

Having the font in SFD format built from the
mftrace output, our next step with FontForge is re-
moving overlap and optimization (simplifica-
tion). We continue processing in the non-integer
space to keep accuracy, in particular, not changing
the slopes of the neighboring control vectors so as
to preserve a smooth transition between segments.

Rounding to integer, hinting and Type 1
font generation FontForge allows for generating
PostScript fonts with non-integer point coordinates
and, PostScript RIP devices (usually) render these
fonts properly. But we have three significant reasons
to round coordinates to integers and to generate the
Type 1 fonts in integer representation:

• Non-integer values in the PostScript charstring
occupy 3 “items”. Therefore the integer rep-
resentation saves storage and the PFB files are
smaller.

• The final Type 1 fonts do not need such accu-
racy after removing overlap and simplification.

• For hinting it would be inconvenient and im-
practical to use any discrete grid other than in-
tegers.

For example, the non-integer Type 1 command
occupies 19 items:

18153 100 div 212 100 div

14437 100 div -407 100 div

7208 100 div -243 100 div

rrcurveto

and after rounding only 7 items:

182 2 144 -4 72 -2 rrcurveto

It is desirable to minimize the number of items
because PostScript interpreters have internal mem-
ory limits per glyph. Exceeding these limits causes
a limitcheck error and rendering fails.

The coordinates of the segments are rounded to
integers by a more complex algorithm than a triv-
ial rounding of all the values. First, we round the
node points. Then we transform the control vec-
tors according the changes of the nodes, and try to
find the control points in the integer grid near the
transformed control vectors. Even this sophisticated
rounding to integer is not without problems. Some-
times, if the change in x or y in the segment is very

160 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

Converting METAFONT sources to outline fonts using METAPOST

Figure 4: Final font in an outline form and a
hinted proofsheet (clip).

small (e.g. about 1 unit) or a segment is too short (in
both directions) no good selection may exist and a
manual adjustment is then necessary, probably with
the loss of closeness, accuracy or symmetry of the
approximation.

No special additional program for hinting has
been developed or applied. The automatic autohint-
ing tool in FontForge is used, and any unsatisfactory
results should be corrected manually.

Finally, we generate the Type 1 binary font
with FontForge, rounded to integer coordinates and
(auto)hinted as described. See figure 4.

Results

To make font auditing and verification quicker and
more efficient, we have developed tools for genera-
tion of visual proofsheets in PDF. These support
a fast overview of all glyph images, display of out-
line curves with node and control points and vectors,
and hinting zones. They can also produce warnings
about undesirable situations such as missing nodes
at extrema, presence of inflection inside a segment,
a non-smooth transition between segments, etc.

Our aim is to fulfill the Type 1 conventions [1].
Therefore we include the extrema nodes (they may
be omitted if they are really redundant), exclude
other unnecessary node points, and preserve smooth
connections between the adjacent segments. We also
keep the straight lines, corners and arcs after con-
version, and avoid any false bumps, holes or steps
absent in the original METAFONT sources.

In this paper, some selected figures have the
node points (squares), the control points (bullets)
and the control vectors enlarged for readability. In
a real working process they are colored and small as
in other proofsheets, when we zoom in on interesting
details only if we need to check them.

The principal and auxiliary algorithms are still
under development and adaptation for new fonts.

Figure 5: dvng10: tta of Frans Velthuis.

Figure 6: dvngbi10: lla of Frans Velthuis.

The programs are written in awk or gawk [3]. For
Type 1 font handling the t1utils [8] are used.

Several pictures illustrate the intermediate and
final results in the conversion of METAFONT fonts to
the Type 1 format: figures 2, 4, 10, 11, 15, and 16.

Indic fonts A basic goal of the work is more precise
outline versions of the free METAFONT Indic fonts
available from CTAN: Devanagari, Sanskrit, Gur-
mukhi, Punjabi, Bangla, Sinhala, Malayalam, Tel-
ugu, Kannada, Tamil, and Tibetan. At the time of
writing, not all the above fonts have been converted.
Also, the Oriya fonts are impractical because they
widely use METAFONT bitmap picture commands.

Figures 5, 6, 12, 13 (all Devanagari), and 14 (for
Malayalam) show the results to date.

Chinese fonts We have also tried to convert two
small single fonts with Chinese ideographs created
in METAFONT: the Hóng-Z̀ı font (128 glyphs) de-
signed by Javier Rodŕıguez Laguna [12] (version 0.5
of 2005-03-23), shown in fig. 7; and china10, a font
from the china2e package [4] containing Chinese

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 161

Karel Ṕı̌ska

Figure 7: Hóng-Z̀ı: xing1 of Javier Laguna.

calendar symbols produced by Udo Heyl (1997), in
fig. 8.

Conclusion

In this article we describe a font conversion process
and briefly discuss some selected problems. Creat-
ing precise fonts is always difficult, time-consuming
and never-ending work, regardless of the approach
chosen. We plan to again verify all the glyphs to
improve hinting and polish the outlines to remove
tiny artifacts. It will also be useful to make the
glyph names of the Indic glyphs common for all lan-
guages; this is not trivial because the fonts contain
many various ligatures, special signs or variants not
covered in the Unicode standards.

Acknowledgements

I would like to thank all the authors of the free con-
version programs, the authors of the public META-
FONT fonts for Indic languages, other sources and
program packages used in this work.

References

[1] Adobe Systems Inc. Adobe Type 1 Font Format.
Addison-Wesley, 1990.

[2] Luc Devroye. “Formatting Font Formats”,
TUGboat 24(3), pp. 588–596, 2003.

Figure 8: china10: yeu of Udo Heyl.

[3] Free Software Foundation. GNU awk,
http://www.gnu.org/software/gawk.

[4] Udo Heyl. china2e, CTAN:macros/latex/

contrib/china2e, 1997.

[5] John D. Hobby. A user’s manual for META-
POST. AT&T Bell Laboratories, Computing
Science Technical Report 162, 1994.

[6] Richard J. Kinch. “MetaFog: Converting
METAFONT Shapes to Contours”, TUGboat
16(3), pp. 233–243, 1995.

[7] Donald E. Knuth. The METAFONTbook.
Addison-Wesley, 1986. Volume C of Computers
and Typesetting.

[8] Eddie Kohler. t1utils: Type 1 font utilities,
http://freshmeat.net/projects/t1utils.

[9] Basil K. Malyshev, “Problems of the conver-
sion of METAFONT fonts to PostScript Type 1”,
TUGboat 16(1), pp. 60–68, 1995.

[10] Han-Wen Nienhuys. mftrace, http://www.cs.

uu.nl/~hanwen/mftrace.

[11] Karel Ṕı̌ska. “A conversion of public Indic fonts
from METAFONT into Type 1 format with TEX-

trace.” TUGboat 23(1), pp. 70–73, 2002.

[12] Javier Rodŕıguez Laguna. Hong-Zi: a Chinese
METAFONT, http://hongzi.sourceforge.

net, 2005.

[13] George Williams. FontForge: an outline font
editor, http://fontforge.sourceforge.net.

162 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

Converting METAFONT sources to outline fonts using METAPOST

Figure 9: dvng10 l h: METAPOST output.

Figure 10: dvng10 l h: primary outlines.

Figure 11: dvng10 l h: Type 1 font proofsheet.

Figure 12: dvng10: om of Frans Velthuis.

Figure 13: dvngbi10: om of Frans Velthuis.

Figure 14: mm10: a of Jeroen Hellingman.

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 163

Karel Ṕı̌ska

Figure 15: mm10 j juu: METAPOST output converted to primary outlines.

Figure 16: mm10 j juu: Type 1 font proofsheet with hints.

164 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

Moving from bytes to words to semantics

S.K. Venkatesan
TnQ Books and Journals,
8, Second Crescent Park Road,
Gandhinagar, Adyar, Chennai 600 020, India
skvenkat@tnq.co.in

Abstract

Starting from several bytes of ASCII or Unicode strings one can construct a type-
set page readable by the community that understands that script. Unfortunately,
it still remains unreadable by the larger community of people who don’t under-
stand the script. Instead, if this page had been coded at the level of a semantic
word, with each word denoting a unique semantic identity, with sufficient mark-
ers (the curly bracket nesting being one such example) for grammar and flow,
then it would be able to display itself in each language without ambiguity. The
eccentricities of ligatures, capitalization, joining of letters could then be handled
accurately. Hyphenation, for example, could then be based not on patterns but
on the semantics of the word. For example, hyphenation in English tends to
depend on whether the word is a noun or a verb. In this work we discuss the
possible atomic words (atoms of course have their own protons, electrons, etc.)
of a language and the semantic markups that could lead us to such an ideal.

“Somehow I too must find a way of making
things; not plastic, written things, but reali-
ties that arise from the craft itself. Somehow
I too must discover the smallest constituent
element, the cell of my art, the tangible im-
material means of expressing everything.”

— Rainer Maria Rilke

Introduction

At a superficial level, it is tempting to identify a
language by the script (glyphs) it uses, or, in more
modern terms, by the Unicode values of the char-
acters used in the document. Both methods would
fail. The first one would fail for scripts that are
common to many language users and the second will
fail miserably, as Unicode fonts are rarely used by
word-processors and typesetters. Many of the e-mail
transactions in Indian languages are done through
their phonetic Latin script equivalents. Even the
complex Chinese language can be phonetically writ-
ten using the Latin script in the Pinyin system.
There was an earlier attempt at Latinizing the Chi-
nese language known as the Wade–Giles system, but
due to its shortcomings the new Pinyin system was
formed.

Human speech, especially its root-words and
structure, is of a language formed much before the
introduction of writing systems. Some languages
like Vietnamese and Malay–Indonesian changed to

their currently used Latin scripts only recently. My
native language, Tamil, for example, has a Brahmic
script that is similar to Sanskrit but there are even
some claims that in its root-word and structural for-
mations it is akin to the primitive Sumer, Elamite
and Mande languages. Although the Japanese and
Korean1 languages use the Chinese Han characters
(ideographs), the languages themselves have more
root-word or structural similarities with the Dravid-
ian languages than with the Chinese languages. For
ease of pronunciation the Japanese language uses
a smaller subset of simplified Han characters as its
alphabet.

Chinese Han script is a good writing system —
the characters can carry meanings beyond the spo-
ken language limit, and reading ideographs is faster
than reading phonograms such as alphabets, be-
cause ideographs directly indicate the meaning while
phonograms are changed to pronunciation first and
only then the meaning is recognised. People with
dyslexia find it difficult to read phonograms but
they can understand ideographs easily. It is clear
that the Chinese ideographs can have wider appli-
cations. Most importantly, the Han script has man-
aged to remain the script that links all the languages

1 The Korean language was originally written using the
Chinese characters; it is now mainly written in Hangul, the
Korean writing system, optionally incorporating Hanja to
write Sino-Korean words.

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 165

S.K. Venkatesan

of China, creating a single language identity.
The Chinese languages are isolating languages

in which the word order, with the help of distinct
particles, creates the structure and meaning of the
sentence.2 In the Latin script, a similar artificial iso-
lating language, lojban, was created and has gen-
erated considerable interest [1]. It is possible to as-
sociate an EBNF (a kind of SGML-DTD structure)
to lojban that makes the language parseable, with
words that have unambiguous semantic meaning.3

lojban has clearly demonstrated that an attempt at
precision does not make the system rigid. In fact,
such attempts surprisingly add to the richness of
the language. The root-words in lojban have also
been carefully selected so as to maintain certain cul-
tural neutrality by including elements from Turkish,
Chinese, English, Indian, Russian, Spanish, French,
Japanese, and German.

This paper here draws much of its inspiration
from the lojban effort, and is an attempt to bring
lojban within the context of the TEX paradigm.
Unlike both Chinese and lojban we make no at-
tempt at a speech level, conceding that area entirely
to the natural languages.

Root-word formation in natural languages

Among the commonly used Dravidian group of lan-
guages of India, Tamil has managed to develop by
inward growth, rather than by borrowing words
from distinct languages such as Sanskrit. Relatively
few languages in the world have remained isolated,
and managed to avoid direct borrowing of words
from other languages. In Europe, the Basque lan-
guage has had such a self-sustained internal devel-
opment, but Basque is an amalgamating language
that is difficult to learn.

Tamil is an agglutinating language that is ex-
plicit and logical, with rules that are easy for chil-
dren to learn. In Tamil, the formation of brivla

(compound-words) from gismu (root-words) is quite
logical and consistent. In Arabic and Hebrew, words
are constructed by weaving vowels over root conso-
nant patterns; in line with this in Tamil, the con-
sonants are considered the ‘true’ (material truth)
letters whereas the vowels are considered the ones
that provide ‘life’ (spirit) to it.

It is also no accident that these inward-looking
languages are also ones that belonged to matriar-

2 Even the inflexional English language is showing some
tendencies of becoming an isolating language.

3 lojban uses only a subset (lower case) of basic Latin
characters (specifically, the letters a to z excluding h, q and
w), while uppercase letters are reserved for characters in
words of foreign origin that require deviation from lojban

phonology. We will follow this tradition here.

chal clan societies with higher in-breeding tenden-
cies. The overthrow of these closed clan societies
also meant the mingling and mangling of words used
by these societies, leading to the present set of large
complex words used in each language. It is however
extremely difficult now to look back in time and re-
construct these morphologies in a coherent and con-
sistent manner.

One inspired attempt is the attempt by Asko
Parpola [2] who observed a link between the Dra-
vidian languages and the Indus Valley script. The
words fish (mIn), star (min-mini), lightning (min-
al) identified as a fig-tree (al) with aerial roots from
heaven through the astrological associations of Sat-
urn, the slow moving dark planet with the Tortoise,
the fish with a roof. The darkness indicating ‘mai’
associated with tortoise (á-mai). The words ‘mal’
darkness and ‘vel’ whiteness are associated with
the deities Kannan and Murukan, this being the
Tamil equivalent of the Yang and the Yin, at eter-
nal mythological war with their opposites. There
is also the undertone of overthrow of matriarchal
Yin by the Yang. Like Tamil, perhaps the Chinese
languages also have mystical beginnings that spring
from tortoise shells, I-ching and soothsayers.

TEX as a paradigm for a new
language formation

The industrial and scientific age has also introduced
new sets of problems and solutions that require a
drastically different outlook from that of the past.
The TEX language has been supporting complex sci-
entific symbols and macros making it an ideal plat-
form for a fresh attempt to formulate a mechanism
for a modern content-oriented language.

If you are familiar with TEX then these exam-
ples will make sense to you:

0. I go there (English)
= Nan(I) ange(there) po(go) (Tamil)

\go{0}{I}{there}

1. I went there = Nan ange po-nen

\go{1}{I}{there}

2. I am-going there = Nan ange po-(ki)ren

\go{2}{I}{there}

3. I am-going-to-go there = Nan ange po-ven

\go{3}{I}{there}

166 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

Moving from bytes to words to semantics

English, as it is practised today, doesn’t have much
of a future (tense4) for precision semantics, as it is
loaded with ambiguity.

You can write Perl macros for writing the above
three statements in TEX:

\perlnewcommand{\go}[4]

{

my $smiti_0=$_[0]; my $smiti_1=$_[1];

my $smiti_2=$_[2]; my $smiti_3=$_[3];

if($smiti_0==0) { $klama=’ go ’;}

if($smiti_[0]==1) { $klama=’ went ’;}

if($smiti_0==2) { $klama=’ am going ’;}

if($smiti_0==3) {

$klama=’ am going to go ’; }

if($smiti_2=~m/^[A-Z]/) {

$klama=$klama . ’ to ’;}

$text=$smiti_1. $klama . $smiti_2;

return $text;

}

\perlnewcommand{\po}[4]

{

my $smiti_0=$_[0]; my $smiti_1=$_[1];

my $smiti_2=$_[2]; my $smiti_3=$_[3];

my $klama=’po’;

if($smiti_0==0) { }

if($smiti_[0]==1) { $klama.=’nen’;}

if($smiti_0==2) { $klama.=’(ki)ren’;}

if($smiti_0==3) { $klama.=’ven’; }

if($smiti_2=~m/^[A-Z]/) {$smiti_2.=’ku’;}

$text=$smiti_1.’ ’.$smiti_2.’ ’.$klama;

return $text;

}

If you are a lojbanist then you would write:

\klama{#}{mi}{ta}

However, all this doesn’t prevent you from talking
non-sense:

\go{3}{I}{yesterday}

i.e., I am-going-to-go yesterday. The extra particle
‘to’ was not required here but it comes into play
when we have a specific place, e.g. for

\go{0}{I}{Wuhan}

we have

I go to Wuhan (English) = Naan Wuhan-
ukku po (Tamil)

Tamil being an agglutinating language, the particle
‘to’ (-ukku) modifies the ending of the place-noun.

I have tried to illustrate by a simple exam-
ple how languages belonging to very distinct fam-

4 For instance, “I will go there” indicates future tense but
“will” can add an extra emphasis meaning “I am definitely
going there”. Moreover, if you just wish to say “I go there
tomorrow” — it is not possible.

ilies can be simplified by similar macros. English,
like Chinese has a Subject-Verb-Object (SVO) or-
der, while Tamil has Subject-Object-Verb (SOV) or-
der,5 but our SenseTEX way of writing has made it
Verb-Subject-Object (VSO), more like Hebrew, Ara-
bic and Celtic. We can relax this:

\SenseTeX{I,\go,Wuhan}

The SenseTEX environment will be discussed further
in the next section.

SenseTEX

If words can be understood in terms of their under-
lying meanings, then they can be cross-sectioned,
as first pointed out by George Thompson [3], us-
ing synonymity and antonymity to a smaller class.
Clusters of related adjectives can also be formed. It
is also possible to associate a unique number to this
synonymous class of words known as the sense num-
ber. With more effort the cob-web of words (the
cob-web being a graph, loosely speaking) can be cut
down to a tree. This can be done by imposing a
hypernym–hyponym hierarchy on all words. As this
tree travels from the root to the leaves, it traverses
from the abstract generalizations (groupings) to the
concrete word (from the heaven to the earth, but up-
side down with roots in the clouds, like the sacred
banyan tree).

Speaking of heaven, a search for the word “coke”
in any search engines would get results for all the
word-senses (coca-cola, charcoal, cocaine, etc.). It is
not possible to be word-sense-specific unless the doc-
ument has sense numbers indicated. (Although re-
cently a search engine http://beta.previewseek.

com, made by a company based in London, claims
to do just that, with of course the usual ambi-
tious claims about patented technology etc., to deter
other search engines from reverse engineering it.)

Our approach here is quite straightforward. It
uses no proprietary technology nor anything dificult
to understand. It just adds value (sense numbers)
to TEX when the author needs to do just that.

The user must associate either a sense-number
or lojban word to each word he uses within the
SenseTEX environment, e.g.,

\SenseTeX{coke}

would not parse — unless a sensetex.cfg file has
either a valid lojban word or a sense-number (as
in WordNet) associated with coke. More than one
word can be used in SenseTEX, e.g.,

\SenseTeX{I go Wuhan}

5 According to some linguists, Chinese is showing some
tendency towards becoming a SOV language.

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 167

S.K. Venkatesan

if each word has a unique entry in sensetex.cfg.
If you are adept enough to make Λ, Ω, X ETEX, or
ConTEXt work for you, then you can use your own
language’s script instead of Latin.

We now add the SenseTEX macros:

\SenseTeX{\go{#}{I}{Wuhan}}

which can be trimmed down to this:

\SenseTeX{{I,\go{#},Wuhan}}

We can add further sentences, such as

\SenseTeX{{I,\go{#},Wuhan},\then,

{I,\go{#},Shanghai}}

which could mean “First, I go to Wuhan and then
to Shanghai”.

Curly brackets can be used to break sentences
to logical pieces and double backslashes can be used
as paragraph breaks. One must remember that ex-
cept for the macros the SenseTEX environment be-
haves just like TEX. For predicate-words like \go

and \then, not just a sense-number (or lojban

word) but also a SenseTEX macro must be added
in the sensetex.cfg file.

How are these sense-numbers indicated in print?
One way is to print them on top of each word in a
smaller point-size (here the lojban word ‘klama’):

klama
go

If having SenseTEX change the printed output
is not desired, then the hypertex package can be
used and sense numbers (or lojban words) can be
embedded in hyperlinks that leads to the entries in
the sense dictionaries, either in your local system or
on the web, e.g.

\href{http://www.ctan.org

/macros/sensetex/lojban.htm#klama}{go}

Conclusion

SenseTEX is a small beginning. Its future, like every-
thing else, depends on the extensive effort required
to build the sensetex.cfg file and a sense number
based dictionary. From this small beginning one can
then perhaps navigate the turbid waters of syntax
using macros.

References

[1] http://www.lojban.org; see also Hong Feng,
“The marriage of TEX and lojban”, TUGboat
23(1), 46–48, 2003.

[2] Asko Parpola, Deciphering the Indus script, Sec-
ond paperback edition, Cambridge University
Press, 2003, ISBN 0-521-79566-4.

[3] http://wordnet.princeton.edu

168 TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting

Abstracts

The design of TEX and METAFONT:
A retrospective
Nelson Beebe, University of Utah

This article looks back at the design of TEX and
METAFONT, and analyzes how they were affected by
architectures, operating systems, programming lan-
guages, and resource limits of the computing world
at the time of their creation by a remarkable pro-
grammer and human being, Donald E. Knuth. This
paper is dedicated to him, with deep gratitude for
the continued inspiration and learning that I’ve re-
ceived from his software, his scientific writing, and
our occasional personal encounters over the last 25+
years.

(This was also the keynote address at the Practical TEX
2005 conference, and was printed in TUGboat 26:1. Ed.)

Practical use of \special commands
in DVIPDFMx

Jin-Hwan Cho, University of Suwon

\special commands in TEX provide the only way to
communicate arbitrary information to DVI drivers.
DVIPDFMx, one such driver, translates the standard
DVI output of TEX into the PDF format defined by
Adobe for platform independent transmission of dig-
ital documents.

In this presentation, we discuss the \special

commands supported by DVIPDFMx and show some
practical applications for package designers as well
as for TEX end users.

Strategies for including graphics in
LATEX documents
Klaus Höppner, DANTE e.V. and TUG

This talk presents strategies for including graphics
into LATEX documents. It shows the usage of the
standard graphics packages of LATEX as well as an
introduction to different graphics formats. Some
external tools for converting graphics formats are
discussed.

(This paper was also presented at the Practical TEX 2005
conference, and was printed in TUGboat 26:1. Ed.)

Wavelet transformations and
Chinese font design
Hong Feng, CTUG and Ron’s Datacom Inc.

Originally, the fonts used for the TEX system were
designed with the METAFONT program. In the past
two decades, the wavelet transformation has seen
wide application, and it can also be applied in font
design for TEX. METAFONT (or MetaPost) and the
wavelet transformation can be mutually complemen-
tary in Chinese font design.

(We hope to publish the full paper in a future issue of
TUGboat. Ed.)

LATEX maintenance and development
Chris Rowley, LATEX Project and Open University

This talk gives a brief history of the LATEX Project,
with some insights into what is involved in the en-
hancement and maintenance of a robust and widely
used software system for the automated formatting
of complex documents.

Grid-based typesetting in LATEX
Philip Taylor, TUG and University of London

The first edition of Rosalind Gibson’s Principles of
Nutritional Assessment was jointly typeset by her
husband Ian and myself in the years preceding its
publication in 1990; the preparation of this edition
was the subject of one of my very first talks at a TUG

meeting. Now, fifteen years later, Ian and I have
again collaborated in the typesetting of the second
edition, which — unlike the first — is typeset in two
columns on a strict grid. LATEX is not easily coerced
into grid-based typesetting, so the main thread of
this talk will be the various measures we used to
achieve the desired effect.

(We hope to publish the full paper in a future issue of
TUGboat. Ed.)

TUGboat, Volume 26 (2005), No. 2 — Proceedings of the 2005 Annual Meeting 169

2005

Nov 29 –
Dec 2

Seybold Seminars, Content
Creation and Asset Management,
San Francisco. For information, visit
http://www.seybold365.com/2005/.

Dec 3 MaTEX (Hungarian TEX Users Group)
Conference, Budapest. For information,
visit http://www.matexhu.org/.

Dec 15 Deadline for submission to the annual
typography and type design exhibition
competitions of the Type Directors
Club. For information, visit
http://www.tdc.org/calls/tdc522006

(typography) and
http://www.tdc.org/calls/tdc22006

(type design).

2006

Mar DANTE 2006, 34th meeting,
Technische Universität Berlin,
Germany. For information, visit
http://www.dante.de/events/.

Mar 1 Deadline for submission of abstracts

for EuroTEX 2006. For information,
visit http://www.matexhu.org/.

Mar 6 – 10 Rare Book School, University of
Virginia, Charlottesville, Virginia.
One-week courses on bibliography and
electronic texts. For information, visit
http://www.virginia.edu/oldbooks.

Mar 6 – 8 29th Internationalization and
Unicode Conference, San Francisco,
California. For information, visit
http://www.unicodeconference.org.

Apr 1 Deadline for submission of

abstracts for Practical TEX

2006. For information, visit
http://www.tug.org/practicaltex2006/.

170 TUGboat, Volume 26 (2005), No. 2

Calendar

Apr 29 –
May 3

BachoTEX 2006, 14th annual meeting of
the Polish TEX Users’ Group, GUST,
Bachotek, Brodnica Lake District,
Poland. For information, visit
http://www.gust.org.pl/BachoTeX/.

Jun 5 –
Jul 28

Rare Book School, University of Virginia,
Charlottesville, Virginia. Many one-week
courses on type, bookmaking, printing,
and related topics. For information, visit
http://www.virginia.edu/oldbooks.

Jun 30 Deadline for submission of papers

for TUG 2006. For information, visit
http://www.tug.org/tug2006/.

Jul 3 – 4 “Jobbing printing — the stuff of life”,
joint conference of the Printing
Historical Society and The Ephemera
Society, University of Reading, UK.
For information, visit http://www.

printinghistoricalsociety.org.uk/

events/.

Jul 4 – 9 ALLC/ACH-2005, Joint International
Conference of the Association for
Literary and Linguistic Computing and
Association for Computers and the
Humanities, “Digital Humanities
2006”, Université Paris–Sorbonne.
For information, visit
http://www.allc-ach2006.colloques.

paris-sorbonne.fr/ or the organization
web site at http://www.ach.org.

Jul 5 – 8 16th EuroTEX Conference,
Hungary. For information, visit
http://www.matexhu.org/.

Jul 11 – 14 SHARP Conference (Society for the
History of Authorship, Reading and
Publishing), “Trading Books —
Trading Ideas”, The Hague & Leiden,
Netherlands. For information,
visit http://sharpweb.org/.
In conjunction with the 400th
anniversary of Rembrandt’s birth
in Leiden; for information, visit
http://www.rembrandt400.com/.

Status as of 16 November 2005

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at http://www.tug.org/calendar/.
Additional type-related events are listed in the Typophile calendar, at

http://www.icalx.com/html/typophile/month.php?cal=Typophile.

Practical TEX 2006

Rutgers University, Busch Campus, Piscataway,

New Jersey.

Jul 25 – 28 Pre-conference workshop.

Jul 30 –
Aug 1

A user-oriented conference sponsored
by TUG. For information, visit
http://www.tug.org/practicaltex2006/.

Jul 30 –
Aug 3

SIGGRAPH 2006, Boston,
Massachusetts. For information, visit
http://www.siggraph.org/s2006/.

Sep 29 – 30 American Printing History Association
conference, “The Atlantic World of Print
in the Age of Franklin”, Philadelphia,
Pennsylvania. For information, visit
http://www.printinghistory.org/htm/

conference/.

Oct 7 DIY (Do It Yourself) Book Festival,
Los Angeles, California. For information,
visit http://www.diyconvention.com/.

Oct 20 – 22 The Fourth International Conference on
the Book, “Save, Change or Discard:
Tradition and Innovation in the World of
Books”, Emerson College, Boston,
Massachusetts. For information, visit
http://book-conference.com/.

TUG 2006

Digital Typography & Electronic Publishing:

Localization & Internationalization,

Marrakesh, Morocco.

Nov 7 – 8 Pre-conference tutorials.

Nov 9 – 11 The 27th annual meeting of the TEX
Users Group. For information, visit
http://www.tug.org/tug2006/.

TUGboat, Volume 26 (2005), No. 2 171

TUG’05 participants at Wudang Mountain, the
birthplace of Taoism, in their traditional Taoist
robes (hand-tailored as a conference gift).

Front row: Jiahui Wang, Devi Govalam,
Robin Laakso (behind), Candy Yiu,
Joseph Rajendra, Le Khanh Au Duong,
Jonathan Kew, Karel Ṕı̌ska

Back row: Kevin Warnock, Maik Kündig,
Hong Feng, Hartmut Henkel, Steve Grathwohl,
Hans Hagen, Karel Skoupý, Phil Taylor,
Jerzy Ludwichowski, S. K. Venkatesan

Promoting the use
of TEX throughout

the world.

mailing address:

P.O. Box 2311
Portland, OR 97208-2311 USA

shipping address:

1466 NW Naito PKWY, Suite 3141
Portland, OR 97209-2820 USA

phone: +1 503-223-9994
fax: +1 503-223-3960
email: office@tug.org

web: http://www.tug.org

President Karl Berry
Vice-President Kaja Christiansen
Treasurer David Walden
Secretary Susan DeMeritt

Executive Director Robin Laakso

2005 TEX Users Group Membership Form
TUG membership rates are listed below. Please check the appropriate boxes and
mail the completed form with payment (in US dollars) to the mailing address at
left. If paying by credit/debit card, you may alternatively fax the form to the
number at left or join online at http://tug.org/join.html. The web page also
provides more information than we have room for here.

Status (check one) New member Renewing member
Rate Amount

Regular membership for 2005 $75

Special membership for 2005
You may join at this special rate if you are a
senior (62+), student, new graduate, or from a country with a
modest economy. Please circle accordingly.
See http://tug.org/join.html for more information.

$45

Subscription for 2005 (non-voting) $85

Institutional membership for 2005
Includes up to eight individual memberships.

$500

Send me CTAN 2005 on CD (shipped on DVD to everyone) n/a
If instead of TEX Live 2005 with your membership, you
want the 2004 software delivered right away, check here.

n/a

Last year’s materials (in addition to 2005)

TUGboat volume for 2004 (3 issues) $20
TEX Collection 2004

2 CD’s & 1 DVD with proTEXt, TEX Live, CTAN.

$20

CTAN 2004 CD-ROMs $15

Voluntary donations

General TUG contribution
Bursary Fund contribution

Financial assistance for attending the TUG Annual Meeting.

TEX Development Fund contribution
Financial assistance for technical projects.

Total $

Tax deduction: $40 of the regular membership fee is deductible, at least in the US.

Multi-year orders: To join for more than one year at this year’s rate, just multiply.

Payment (check one) Payment enclosed Visa/MasterCard/AmEx

Account Number: Exp. date:

Signature:

Privacy: TUG uses your personal information only to send products, publications, notices, and (for voting members)
official ballots. TUG does not sell or otherwise provide its membership list to anyone.

Electronic notices will generally reach you much earlier than printed ones. However, you may choose not to receive
any email from TUG, if you prefer.

Do not send me any TUG notices via email.

Name

Department

Institution

Address

City State/Province

Postal code Country

Email address

Phone Fax

Position Affiliation

Institutional

Members

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia,
Roma, Italy

Center for Computing Science,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario Canada

CNRS - IDRIS,
Orsay, France

CSTUG, Praha, Czech Republic

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

MacKichan Software,
Washington/New Mexico, USA

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Uppsala University,
Uppsala, Sweden

Vanderbilt University,
Nashville, Tennessee

Ogawa, Arthur

40453 Cherokee Oaks Drive
Three Rivers, CA 93271-9743

(209) 561-4585
Email: arthur ogawa@teleport.com

Bookbuilding services, including design, copyedit, art,

and composition; color is my speciality. Custom TEX
macros and LATEX2ε document classes and packages.

Instruction, support, and consultation for workgroups and

authors. Application development in LATEX, TEX, SGML,
PostScript, Java, and C++. Database and corporate

publishing. Extensive references.

Veytsman, Boris

2239 Double Eagle Ct.
Reston, VA 20191

(703) 860-0013

Email: boris@lk.net

I provide training, consulting, software design and

implementation for Unix, Perl, SQL, TEX, and LATEX. I
have authored several popular packages for LATEX and
latex2html. I have contributed to several web-based
projects for generating and typesetting reports.

For more information please visit my web page:
http://users.lk.net/~borisv.

TEX Consultants

The information here comes from the consultants
themselves. We do not include information we know to be
false, but we cannot check out any of the information; we
are transmitting it to you as it was given to us and do not
promise it is correct. Also, this is not an endorsement of
the people listed here. We provide this list to enable you to
contact service providers and decide for yourself whether to
hire one.

The TUG office mentions the consultants listed here to
people seeking TEX workers. If you’d like to be included, or
place a larger ad in TUGboat, please contact the office or
see our web pages:

TEX Users Group
1466 NW Naito Parkway, Suite 3141
Portland, OR 97208-2311, U.S.A.

Phone: +1 503 223-9994

Fax: +1 503 223-3960

Email: office@tug.org

Web: http://tug.org/consultants.html

http://tug.org/TUGboat/advertising.html

TUGboat, Volume 26 (2005), No. 2 173

The latest TEX Collection

(http://tug.org/texcollection)
software distribution was produced
in November 2005.

It includes four major components,
as follows:

TEX Collection 2005
proTEXt

TEX for MS Windows
based on MiKTEX

MacTEX
TEX for Mac OS X
based on gwTEX

CTAN
Comprehensive TEX

Archive Network

TEX Live
TEX for Linux/Unix,

Mac OS X, and MS Windows

Editors: Thomas Feuerstack (proTEXt) • Herbert Schulz (MacTEX)
Manfred Lotz (CTAN) • Sebastian Rahtz, Karl Berry (TEX Live)

DVD
November 2005

DANTE e.V.
Postfach 10 18 40
69008 Heidelberg
dante@dante.de
www.dante.de

www.tug.org

TEX Live (http://tug.org/texlive): a comprehensive TEX system that can run directly
from DVD or installed on hard disk. It includes support for most Unix architectures,
including GNU/Linux and Mac OS X, and for Windows.

proTEXt (http://tug.org/protext): an easy to install TEX system for Windows. It is
based on MiKTEX, with additional tools.

MacTEX (http://tug.org/mactex): an easy to install TEX system for Mac OS X. It is
based on gwTEX, with TeXShop, X ETEX, and Excalibur included. Other utilities are also
available.

CTAN (http://www.ctan.org): the Comprehensive TEX Archive Network, a set of servers
worldwide making TEX software publicly available. This DVD contains a snapshot of the
German CTAN node, dante.ctan.org.

The collection is available by joining
TUG (see membership application in this
issue, or http://tug.org/join.html), or
by separate purchase from the TUG store
(http://tug.org/store).

Most other TEX user groups also
make it available to their members
(http://tug.org/usergroups.html).

EuroTEX 2006: A Hungarian TEX Rhapsody

Announcement and Call for Papers

The 16th EuroTEX meeting, “A Hungarian TEX Rhapsody”, will be held in Hungary,
between July 6 and 9, 2006. MaTEX (the Hungarian TEX User Group) together with the
University of Debrecen have committed to undertake the conference affairs, and now
announce the call for papers. This will be the first international TEX conference held
in Hungary.

For more information about EuroTEX 2006, please visit http://www.matexhu.org.

Dates

March 1, 2006 — Deadline for abstracts of presentations;
email eurotex2006@matexhu.org.

June 1, 2006 — Deadline for preprints of papers, for distribution at the conference.

July 5–8, 2006 — Conference.

August 15, 2006 — Deadline for final versions of papers; the proceedings will be
published as an issue of TUGboat.

Topics

Topics include but are not limited to:

TEX and so many friends, for automated typesetting

Typography (digital or otherwise)

Font design and technologies

Publishing (electronic or otherwise)

(Re)discovery of the Hungarian book tradition

Location

The place of the conference will be either Gödöllő or Debrecen.

Gödöllő is a nice town near Budapest. Debrecen is a town of universities known as the
Calvinist Rome. It is near the biggest Hungarian National Park, Hortobágy, and a famous
spa in Hajdúszoboszló.

There will be free time for you to have the opportunity to taste several types of Hungarian
wines, and get to know tasty special Hungarian dishes. Hungary is a sunny country
during summer, an ideal place for making excursions. There are several cultural programs
in both towns, including jazz and classical music festivals, exhibitions and performances.
And we especially invite you to bring instruments to create our own festival!

TUGBOAT Volume 26, Number 2—TUG 2005 Conference Proceedings 2005

TUGBOAT Volume 26 (2005), No. 2 TUG 2005 Conference Proceedings

Table of Contents
(ordered by difficulty)

Introductory

108 Robin Laakso / Highlights of TUG 2005
• conference report and comments from attendees

111 Wai Wong / Typesetting Chinese: A personal perspective
• survey of movable type printing in China, past and present

169 Abstracts (Beebe, Cho, Höppner, Hong, Rowley, Taylor)

Intermediate

135 Nandan Bagchee and Eitan Gurari / SwiExr: Spatial math exercises and worksheets,
in Braille and print

• producing elementary math exercises (addition, division, etc.)

115 Jonathan Kew / X

E

TEX, the Multilingual Lion: TEX meets Unicode and smart font technologies
• extending TEX with Unicode and OpenType/AAT support, currently for Mac OS X

125 Javier Rodŕıguez Laguna / Hóng-Zı̀: A Chinese METAFONT

• composing CJKV characters from reusable parts

142 Philip Taylor / Typesetting the Byzantine Cappelli
• complex sorting of TEX text; maximum width analysis

129 Candy L. K. Yiu and Jim Binkley / Qin notation generator
• composing notation for the Qin musical instrument with MetaPost

Advanced

152 Hans Hagen / LuaTEX: Howling to the moon
• embedding the LUA scripting language in TEX

158 Karel Ṕı̌ska / Converting METAFONT sources to outline fonts using METAPOST

• towards optimal Type 1 outlines from METAFONT fonts

165 S. K. Venkatesan / Moving from bytes to words to semantics
• SenseTEX and Lojban: working with unambiguous semantic words

Reports and notices

106 TUG 2005 conference program, delegates, and sponsors

110 TUG 2005 conference photos

170 Calendar

172 TUG membership form

173 Institutional members

173 TEX consulting and production services

174 TEX Collection 2005 (TEX Live, proTEXt, MacTEX, CTAN)

175 EuroTEX 2006 announcement

176 TUG 2006 announcement

TUGBOAT

Volume 26, Number 2 / 2005

TUG 2005 Conference Proceedings

106 Conference program, delegates, and sponsors

108 Robin Laakso / Highlights from TUG 2005

110 Conference photos

Keynote 111 Wai Wong / Typesetting Chinese: A personal perspective

Talks 115 Jonathan Kew / X

E

TEX, the Multilingual Lion: TEX meets Unicode and

smart font technologies

125 Javier Rodŕıguez Laguna / Hóng-Zı̀: A Chinese METAFONT

129 Candy L. K. Yiu and Jim Binkley / Qin notation generator

135 Nandan Bagchee and Eitan M. Gurari / SwiExr: Spatial math exercises and

worksheets, in Braille and print

142 Philip Taylor / Typesetting the Byzantine Cappelli

152 Hans Hagen / LuaTEX: Howling to the moon

158 Karel Ṕı̌ska / Converting METAFONT sources to outline fonts using METAPOST

165 S. K. Venkatesan / Moving from bytes to words to semantics

169 Abstracts (Beebe, Cho, Höppner, Hong, Rowley, Taylor)

News 170 Calendar

174 TEX Collection 2005 (TEX Live, proTEXt, MacTEX, CTAN)

175 EuroTEX 2006 announcement

176 TUG 2006 announcement

TUG Business 172 TUG membership form

173 Institutional members

Advertisements 173 TEX consulting and production services

Index c3 Table of contents, ordered by difficulty

TUGBOAT Volume 26 (2005), No. 2 TUG 2005 Conference Proceedings

Table of Contents
(ordered by difficulty)

Introductory

108 Robin Laakso / Highlights of TUG 2005
• conference report and comments from attendees

111 Wai Wong / Typesetting Chinese: A personal perspective
• survey of movable type printing in China, past and present

169 Abstracts (Beebe, Cho, Höppner, Hong, Rowley, Taylor)

Intermediate

135 Nandan Bagchee and Eitan Gurari / SwiExr: Spatial math exercises and worksheets,
in Braille and print

• producing elementary math exercises (addition, division, etc.)

115 Jonathan Kew / X

E

TEX, the Multilingual Lion: TEX meets Unicode and smart font technologies
• extending TEX with Unicode and OpenType/AAT support, currently for Mac OS X

125 Javier Rodŕıguez Laguna / Hóng-Zı̀: A Chinese METAFONT

• composing CJKV characters from reusable parts

142 Philip Taylor / Typesetting the Byzantine Cappelli
• complex sorting of TEX text; maximum width analysis

129 Candy L. K. Yiu and Jim Binkley / Qin notation generator
• composing notation for the Qin musical instrument with MetaPost

Advanced

152 Hans Hagen / LuaTEX: Howling to the moon
• embedding the LUA scripting language in TEX

158 Karel Ṕı̌ska / Converting METAFONT sources to outline fonts using METAPOST

• towards optimal Type 1 outlines from METAFONT fonts

165 S. K. Venkatesan / Moving from bytes to words to semantics
• SenseTEX and Lojban: working with unambiguous semantic words

Reports and notices

106 TUG 2005 conference program, delegates, and sponsors

110 TUG 2005 conference photos

170 Calendar

172 TUG membership form

173 Institutional members

173 TEX consulting and production services

174 TEX Collection 2005 (TEX Live, proTEXt, MacTEX, CTAN)

175 EuroTEX 2006 announcement

176 TUG 2006 announcement

