
152 TUGboat, Volume 26 (2005), No. 2— Proceedings of the 2005 Annual Meeting

LuaTEX: Howling to the moon

Hans Hagen
Pragma ADE, The Netherlands
pragma@wxs.nl

Abstract

Occasionally we reach the boundaries of TEX and programming then becomes
rather cumbersome. This is partly due to the limitations of the typesetting
engine, but more important is that a macro language is not always best suited
for the task at hand.

1 Some observations

Occasionally we reach the boundaries of TEX and
programming then becomes rather cumbersome.
This is partly due to the limitations of the typeset-
ting engine, but more important is that a macro lan-
guage is not always best suited for the task at hand.
One problem is for instance that intermediate oper-
ations and final results are intermixed (which has a
certain charm as well).

\def\RepeatMe#1#2%
{\bgroup
\count0=#1%
\loop
\ifnum\count0>0
#2%
\advance\count0 -1

\repeat
\egroup}

The next call gives *****:

\RepeatMe{5}{*}

If you want to use this macro to construct a new
one holding 5 stars, you’re tempted to do something:

\edef\ShowMe{\RepeatMe{3}{*}}

This will give an error and the reason for this is
that \RepeatMe is (in TEX-speak) not fully expand-
able.

In ε-TEX we can define this macro in a fully
expandable way:

\def\RepeatMe#1#2%
{\ifnum#1>0 #2\else

\expandafter\IgnoreMe
\fi
\expandafter\RepeatMe\expandafter
{\the\numexpr#1-1\relax}{#2}}

\def\IgnoreMe#1#2#3#4#5{}

Now we can safely say:

\edef\ShowMe{\RepeatMe{3}{*}}

Or even:

\edef\ShowMe{\RepeatMe{3}{\RepeatMe{3}{*}}}

Unfortunately, many users will turn away
from writing macros as soon as something like
\expandafter shows up, so this solution is not of
much help for novice users, given that they already
have noticed that they need to do this kind of ex-
pansion in order not to end up in too deep nesting
and in order to finish the condition. Also, we only
have to add a simple counter that keeps track of the
total number to end up with a non-fully expandable
macro again.

\newcount\NOfRepeats

\def\RepeatMe#1#2%
{\ifnum#1>0

\advance\NOfRepeats 1
#2%

\else
\expandafter\IgnoreMe

\fi
\expandafter\RepeatMe\expandafter
{\the\numexpr#1-1\relax}{#2}}

\def\IgnoreMe#1#2#3#4#5{}

LuaTEX: Howling to the moon

TUGboat, Volume 26 (2005), No. 2— Proceedings of the 2005 Annual Meeting 153

If we try:

\edef\ShowMe{\RepeatMe{2}{*}}

We get a macro \ShowMe with the meaning:

\advance \NOfRepeats 1 *\advance \NOfRepeats
1 *

But there is a way out of this! See the following
variant:

\def\RepeatMe#1#2%
{\lua

{for i=1,#1 do
tex.print("#2")

end}}

Isn’t this much more convenient? It even looks
readable. Before I explain the \lua command, I will
make a few more observations.

As said, TEX programming can be cumbersome,
but this is no reason to throw away the macro lan-
guage. There is much macro code around and there
are many documents that depend on TEX’s longevi-
ty. So in order to overcome limitations, we need to
talk in terms of extensions, not replacements.

Nowadays TEX is used for more than type-
setting documents directly from a source. While
manipulating the input, some applications demand
more advanced programming features than good old
TEX can (conveniently) provide. In many cases, it’s
not so much the whole machinery that we want to re-
place. We just want to extend or replace some of the
subsystems. In order to provide robust solutions we
may also want to have access to the internals. We’d
like to add extensions and delegate activities to oth-
er programs. Of course there may also be personal
motives for extending TEX, for instance because ev-
ery now and then we need a new challenge.

2 Why Lua

I use SCITE as my main editor for documents and
programs. This editor is built on top of the SCINTIL-

LA framework. It’s a fast, lightweight but powerful
program. Being mainly a program editor it lacks
some features that you need for text editing and
processing, like adjusting text and spell checking.
However . . . it has a scripting engine that gives ac-
cess to the user interface and the editing component.
This scripting language happens to be LUA.

For a while I was hesitant to use ‘yet another

programming language’, but using the built in LUA

machinery made more sense than programming in
C++ and trying to keep that up to date with the
rest of the program. I was more or less familiar
with the SCINTILLA programming interface because
I had written the TEX and METAPOST lexers, but
in contrast to the lexer code other extensions would
involve changes spread more widely over the code
base. So, the LUA way we went.

While the PERL, PYTHON, and (my favourite)
RUBY languages are heavyweight languages, LUA is
a simple but nevertheless powerful language. The
first three come with a constantly growing num-
ber of libraries and users expect the whole lot to
be present, which makes them unsuitable as exten-
sion languages: cross platform issues, slow startup,
much bigger TEX distributions, etc.

LUA can interface to libraries but its main pur-
pose is to be embedded in an application and present
the user with an interface to the parent application.
It’s made for embedding! It has a small footprint
and adds only some 50–100K to the parent binary.
One can add additional functionality, for instance
support for sockets.

The more I looked into it, the more I liked
it, and after positive experiences with integrat-
ing METAPOST in ConTEXt, integrating LUA didn’t
seem that strange to me.

Not being a ‘TEX the Program’ hacker, I man-
aged to trick Hartmut Henkel (member of the
PDFTEX development team) into implementing a
\lua command. Hartmut and I share a passion for
experiments in PDFTEX and he knows how to im-
plement them: I got back a (LINUX) binary within
a few days.

After we had this proof of concept, it was time
to involve Taco Hoekwater (member of the Con-
TEXt, METAPOST and other development teams),
who knows more about TEX’s internals than I ever
will. Another few days later we had the first inter-
face to some of TEX’s internals.

3 A few examples

I will show a few of the examples that I demonstrat-
ed at the TUG 2005 conference in Wuhan, China.
Keep in mind that an experimental version was used
and that the interfaces may change. For instance,
it will be possible to activate several LUA engines
(\newlua) and all variables, the hash table, internal
lists, etc., are on the agenda.

For starters, if we say:

Hans Hagen

154 TUGboat, Volume 26 (2005), No. 2— Proceedings of the 2005 Annual Meeting

\lua{a = 1.5 ; b = 1.8 ; c = a*b}

we only set some variables, and get nothing in re-
turn. However, the next call puts the value of c back
into the input stream.

\lua{a = 1.5 ; b = 1.8 ; c = a*b ;
tex.print(c)}

The result comes back as a string. This means
that we need to process it in the right way in order
get something that TEX sees as TEX code. For this
reason we define:

\def\luatex#1{\scantokens\expandafter
{\lua{#1}}}

The \scantokens primitive has some undesired
side effects: it cannot properly handle multiple lines
(catcode problem) and acts as a pseudo-file, but
Taco is working on a variant.

So, in the next example, we get different results:

\lua {tex.print("$\string\\sqrt{2} = "
.. math.sqrt(2) .. "$")}

\luatex{tex.print("$\string\\sqrt{2} = "
.. math.sqrt(2) .. "$")}

The \lua call returns a verbatim copy, i.e. a
dollar shows up as a dollar, while the \luatex call
gives a typeset formula, i.e. the dollar sign is seen as
the signal to enter math mode.

Next we demonstrate how to use LUA to match
strings (using regular expressions):

\lua {
match = {} ;
match.expression = "" ;
match.string = "" ;
match.result = {} ;
match.start = 0 ;
match.length = 0 ;

}
\def\matchstring#1#2{\lua {
match.expression = "#1" ;
match.string = "#2" ;
match.result = {} ;
match.start,match.length,match.result[1],
match.result[2], match.result[3],
match.result[4], match.result[5],
match.result[6], match.result[7],
match.result[8], match.result[9]
= string.find(match.string,

match.expression);
}}

\def\matchresult#1{\lua {
tex.print(match.result[#1]) ;

}}

When we use the last macro as:

\matchstring
{(\letterpercent d+) (\letterpercent d+)
(\letterpercent d+)}
{2005 08 08}

the three components are available in:

\matchresult{1} \matchresult{2} \matchresult{3}

The percent symbol is LUA’s escape character,
which is why we need \letterpercent. The results
can be used in a table like the following:

\starttabulate[|l|c|r|]
\NC year \NC \matchresult{1}

\NC \number \matchresult{1} \NC \NR
\NC month \NC \matchresult{2}

\NC \number \matchresult{2} \NC \NR
\NC day \NC \matchresult{3}

\NC \number \matchresult{3} \NC \NR
\stoptabulate

We can rewrite the LUA code in a more efficient
way (less code in the main macro):

\lua {
function match.find(expr, str)
match.expression = expr ;
match.string = str ;
match.result = {} ;
match.start, match.length, match.result[1],
match.result[2], match.result[3],
match.result[4], match.result[5],
match.result[6], match.result[7],
match.result[8], match.result[9]
= string.find(match.string,

match.expression) ;
end
}

\def\matchstring#1#2{\lua {
match.find("#1","#2") ;

} }

LuaTEX: Howling to the moon

TUGboat, Volume 26 (2005), No. 2— Proceedings of the 2005 Annual Meeting 155

\def\matchresult#1{\lua {
tex.print(match.result[#1]) ;

} }

The usage is the same. In the previous example
we used \number to get rid of leading zeros, but we
can also adapt the expression like this:

\matchstring
{0*(\letterpercent d+)
0*(\letterpercent d+)
0*(\letterpercent d+)}
{2005 08 08}

The next example takes some close reading, but
it demonstrates how to mix TEX and LUA. Let’s start
with defining some tables, a very LUAish but pow-
erful data structure (the more one reads about LUA,
the more one realizes that it is pretty well designed).

\lua {
document = { }
document.dimens = { }

}

Next we store the widths of a bunch of charac-
ters in the dimens subtable. (We could have used
ε-TEX’s char dimension primitives instead.)

\dostepwiserecurse{‘a}{‘z}{1} {
\setbox\tempbox\hbox{\char\recurselevel}
\lua {
document.dimens[\recurselevel]
= tex.wd[\number\tempbox]

}
}

Now we can calculate the average widths of the
characters. Of course this particular case can be
done in pure TEX quite conveniently, but one can
envision more tricky calculations.

\lua {
local total, n = 0, 0
for d in pairs(document.dimens) do
total, n
= total + document.dimens[d], n + 1

end
if n>0 then
document.mean = total/n

else
document.mean = 0

end
}

We leave it to your imagination to envision
what the next code will produce (this article is not
produced using LUATEX):

\mathematics {
\lua { tex.dimen[0] = document.mean }
\withoutpt \the\dimen0 =
\lua { tex.print(document.mean/65536) }
\approx
\lua { tex.print(

math.ceil(document.mean/65536)) }
}

Did you notice how we have access to TEX’s
dimensions? We can read and write them —when
a string is assigned, the usual dimensions are in-
terpreted. In a similar fashion we have access to
counters.

\bgroup
\count0=10 \count2=30
\scratchcounter =
\lua { tex.print((tex.count[0]

+ tex.count[2])/2) }
\number\scratchcounter
\egroup

Now keep in mind, we’re not piping data from
TEX into some external program and reading it back
in again. Here LUA is an integral part of TEX!

Token registers can be accessed as well:

\toks0 = {interesting}
\lua {
tex.toks[0]
= string.gsub(tex.toks[0],

"(.)", " (\letterpercent1)
")
}
\the\toks0

This will return the individual characters of ‘in-
teresting’ surrounded by parentheses. LUA has suf-
ficient functionality for string manipulations.

Can you envision what this next bit of code
does? Again we use a token register but this time we
also rescan the result because it contains a control
sequence. (The quote is from Hermann Zapf.)

Hans Hagen

156 TUGboat, Volume 26 (2005), No. 2— Proceedings of the 2005 Annual Meeting

\toks0 = {
Coming back to the use of typefaces in
electronic publishing: many of the new
typographers receive their knowledge and
information about the rules of typography
from books, from computer magazines or the
instruction manuals which they get with
the purchase of a PC or software. There
is not so much basic instruction, as of
now, as there was in the old days,
showing the differences between good and
bad typographic design. Many people are
just fascinated by their PC’s tricks,
and think that a widely-praised program,
called up on the screen, will make
everything automatic from now on.
}

\lua {
str = tex.toks[0]
str = string.gsub(str,"\letterpercent w+",

function(w)
if str.len(w) > 4 then
return "\string\\color[red]{"

.. w .. "}"
else
return "\string\\color[green]{"

.. w .. "}"
end
end
)

tex.toks[0] = str
}

\scantokens\expandafter{\the\toks0}

Words longer than 4 characters will become red,
while short words become green. The .. operator
concatenates strings. Of course a solution with more
complex input will demand a different approach, and
in the end we need the ability to process TEX’s in-
ternal lists.

We don’t yet have access to the lccode table
but we can already efficiently define vectors. Cur-
rently TEX lacks a way to quickly initialize switches,
which is a pity because nowadays PDFTEX provides
a lot of them.

\lua {
lccodes = { }

}

\dorecurse{255} {
\lua { lccodes[\recurselevel]

= \number\lccode\recurselevel ;
}

}

\luatex {
for i in pairs(lccodes) do
tex.print("\string\\lccode" .. i

.. "=" .. lccodes[i] .. " ")
end

}

In the last example we return to the kind of
example that we started with: fully expandable def-
initions.

\lua {
interface = {}
interface.noftests = 0
function interface.oneoftwo(result)
interface.noftests = interface.noftests+1
if result then
tex.print("firstoftwoarguments")

else
tex.print("secondoftwoarguments")

end
end
}

This function returns a given string, depending
on the boolean (condition) fed into it. The two pos-
sible strings correspond to macro names (ConTEXt
has a bunch of those):

\long\def\firstoftwoarguments #1#2{#1}
\long\def\secondoftwoarguments#1#2{#2}

Now imagine the following definitions:

\def\DoIfElse#1#2{%
\csname\lua{%

interface.oneoftwo("#1"=="#2")
}\endcsname

}

We feed the string comparison into the function,
which returns a string, which in turn is expanded
into a control sequence. Without any chance of in-
terference we also keep track of the number of tests.
We can ask for this number with:

LuaTEX: Howling to the moon

TUGboat, Volume 26 (2005), No. 2— Proceedings of the 2005 Annual Meeting 157

\def\NOfTests
{\lua{tex.print(interface.noftests)}}

The following code shows how to use the test.
They all return (typeset) OK.

\def\xxx{yyy} \def\yyy{yyy}

\DoIfElse{one}{one}{OK}{NO}
\DoIfElse{two}{one}{NO}{OK}
\DoIfElse\xxx \yyy {OK}{NO}

What goes in gets expanded, but when it enters
LUA it has been turned into a harmless sequence of
characters:

\DoIfElse
{this is an \hbox to \hsize{real} mess}
{and \rm this is even worse}
{NO}{OK}

This test can be used in an \edef and fed back
into LUA if needed.

\edef\zzz{this
\DoIfElse{a}{b}{or}{and}
that}

\lua{tex.print("\zzz")}
\lua{tex.print("this

\DoIfElse{a}{a}{or}{and}
that")}

These examples demonstrate that we can com-
fortably mix TEX and LUA and use whichever suits
the problem best. Also keep in mind that nesting
LUA calls is no problem either:

\lua{tex.print("this
\lua{tex.print("---")}
that")}

Of course we need additional trickery. For in-
stance we need a way to escape characters before
they enter LUA, or the following will fail:

\DoIfElse{one "two" three}

{one ’two’ three}
{OK}{NO}

Instead we need something like this:

\DoIfElse
{\luaesc{one "two" three}}
{\luaesc{one ’two’ three}}
{OK}{NO}

which will comfortably escape the sensitive charac-
ters. So, there is some work left to do.

4 The potential

Since we recognized the potential we decided to con-
tinue this effort and the lean and mean LUATEX
team was there: Hartmut Henkel, Taco Hoekwater
& Hans Hagen. We will discuss, meet, develop and
finally present a working and stable version, proba-
bly around EuroTEX and/or TUG 2006. The binary
will start as a fork of PDFTEX, and in the end per-
haps replace PDFTEX since its author likes the idea.

In the process we consider removing some of
the fuzzy parts of PDFTEX; good candidates for re-
moval are enctex and mltex, among others, espe-
cially if we can preprocess the input stream. We
may as well replace/extend some of the subsystems
(such as font handling for which we need to go to
OPENTYPE anyway) and/or prototype new subsys-
tems. We will provide an interface to plugins; for
instance, the paragraph building components that
Karel Skoupý is building and has demonstrated at
conferences.

In the end we will provide a playground for all
kinds of features; for instance, language/script spe-
cific font handlers and paragraph builders for lan-
guages such as Chinese. Of course my personal in-
tent is to replace (or extend) some macro-defined
parts of ConTEXt by alternatives in LUA (think of
ConTEXt 4). We can even add functionality that un-
til now was beyond reason to implement. And this
is just the start . . .

My thanks to Hartmut Henkel and Taco Hoekwater
for their collaboration on this project and this paper,
and Karl Berry for editorial help.

