172

TUGboat, Volume 25 (2004), No. 2

Graphics

ePiX: A utility for creating mathematically
accurate figures

Andrew D. Hwang

1 Introduction

Mathematical and scientific writing call for figures
that accurately and attractively integrate typogra-
phy and numerical data. Widely-used commercial
and non-commercial drawing programs exist, as do
dozens of lesser-known utilities. This article de-
scribes an addition to the list: ePiX, a collection of
command line utilities for creating mathematically
accurate, logically structured, camera-quality 2- and
3-dimensional figures and animations in IATEX. De-
spite superficial similarities with existing programs,
ePiX fills a distinct niche in the ecosystem of draw-
ing software by providing a bridge between the pow-
erful numerical capabilities of C++ and the high-
quality typesetting of TEX.
z

: x constant

Figure 1: A surface with simulated transparency.

ePiX’s relationship to a graphical drawing pro-
gram is analogous to IATEX’s relationship to a word
processor. A logically structured input file is pre-
pared in a text editor, then compiled into a plain
text (eepic) file that is included into a WTEX docu-
ment. Optionally, the figure may be processed into
eps or pdf. This note focuses on the user interface,
though certain issues of implementation arise of ne-
cessity.

ePiX’s strengths include:

e Ease of use: Figure objects are specified by sim-
ple, mnemonic commands that refer to a natu-
ral coordinate system.

TUGboat, Volume 25 (2004), No. 2

Quality of output: ePiX creates mathematically
accurate line figures whose appearance matches
that of BKTEX. Typography is added to an ePiX
figure as easily as to a ITEX picture environ-
ment. The mechanism for text placement is ro-
bust under changes of scale.

e Wide availability: ePiX runs on platforms with
a C++ compiler and the GNU shell bash, par-
ticularly on GNU/Linux, Mac OSX, Windows
(Cygwin), FreeBSD, and Solaris. An output
file may be incorporated into a document on
any platform that supports BETEX.

e Programming: ePiX’s input is a widely-spoken,
easily-learned programming language. Even
simple figures can benefit from logical struc-
turing, while complex figures may employ algo-
rithms and generate their own numerical data.

e Extendability: Users can write custom code
and incorporate the functionality with a com-
mand line switch or a Makefile. This feature,
suggested by Andrew Sterian, endows ePiX with
the computational power of C++.

e FEconomy of storage and transmission: A com-
pressed tar file of the IXTEX sources and com-
piled eepic files is typically a small fraction of
the size of a compressed PostScript file or a tar-
ball containing eps files, making ePiX output
particularly attractive for archiving.

e License: ePiX is Free Software, published under
the GNU General Public License.

This note focuses on general issues of image cre-
ation and ePiX’s approach to integrating numerical
and algorithmic capabilities with high-quality ty-
pography. The project home page has source code,
documentation, sample images, and animations:

http://mathcs.holycross.edu/ ahwang/
current/ePiX.html

The latest stable version is also available from CTAN
(in graphics/epix). Please visit the project page
for a more thorough showcase of ePiX’s capabilities.

I am grateful to Jay Belanger, Robin Blume-
Kohout, Andrew Sterian, and Gabe Weaver for de-
tailed and insightful design discussions and advice.

2 Source and Output Files

In IMTEX, a document preamble specifies the default
appearance and sets up an environment by includ-
ing packages and defining macros, while the body
contains commands that generate the actual output.
Similarly, an ePiX preamble (Figure 2) accesses li-
brary code and defines symbolic constants and func-
tions that reflect the internal structure of the figure,

173

#include "epix.h" // analogous to \usepackage
using namespace ePiX;

// function definition
double f(double x) { return x/(1-x*x); }

int main()

{
unitlength(".85in"); // LaTeX unitlength
picture(P(3, 1.5)); // printed size

// specify cormers; depict [-2,4] x [-4,4]
bounding_box(P(-2,-4), P(4,4));

begin(); // picture starts here
crop(Q); // crop to bounding_box
dashed() ; // draw dashed lines

line(P(-1, y_min), P(-1, y_max));
line(P(1, y_min), P(1, y_max));

s0lid(); // use solid lines
h_axis(P(x_min, 0), P(x_max, 0), x_size);
v_axis(P(0, y_min), P(0, y_max), y_size);

h_axis_labels(P(x_min, 0), P(x_max, 0),
0.5*x_size, P(-2,2), tl);

bold(); // draw in bold (fonts unaffected)

plot(f, x_min, x_max, 120); // function plot

label(P(2,3), P(0,0),
"$y=\\displaystyle\\frac{x}{1-x"2}$");
end () ;
}

Figure 2: An ePiX source file, cf. Figure 3.

while the body contains commands that adjust the
appearance of objects and write the output file.

Body commands include objects, labels, and
attribute declarations. ePiX supplies standard ge-
ometric primitives: points, lines, circles, spheres,
planes, quadratic and cubic splines, ellipses and
arcs, arrows, polygons and polylines, and coordinate
grids. In addition, ePiX provides plotting: graphs,
parametric curves and surfaces, data from files, vec-
tor fields, derivatives and integrals, and solutions of
ordinary differential equations. Basic geometric ob-
jects can be constructed and used in mathematically
natural ways, such as finding the intersection point
of two lines, constructing a circle through three non-
collinear points, or drawing the tangent line to a
function graph.

Four internally documented shell scripts consti-
tute the user interface: epix (creates eepic files),
elaps (converts ePiX and eepic files to eps, pdf,
or PostScript), £1ix (creates png images and mng an-
imations), and laps (converts IATEX to PostScript).

3 Design

The notion of “ideal” drawing software is too depen-
dent on authors’ individual needs and preferences to

174

be meaningful. Nonetheless, commonly useful fea-
tures can be identified. ePiX does not satisfy all the
criteria below, but its development has proceeded
with these goals in mind.

3.1 Capabilities

A general-purpose command-driven drawing utility
provides three basic services: an input language,
a set of data structures for representing figure ob-
jects and their attributes, and output routines. The
input language should be easy to learn and use,
yet powerful, flexible, and extendable. Frequently-
encountered objects and algorithms should be rep-
resented natively, allowing users to program (when
necessary) in a high-level language. Both 2- and 3-
dimensional figures should be supported. A variety
of output file types should be available, so that the
resulting images can be exchanged easily, used in
printed documents, or published on the Web.

Less technical but equally important are issues
of convenience and freedom. A program should sup-
ply sensible defaults, so that simple figures can be
drawn without micro-management. At the same
time, figure attributes should be modifiable with
short, easily-remembered commands. Users’ files
should compile quickly, preferably in no more than
a couple of seconds on a moderately fast machine.
Output files should be small, perhaps tens of KB, yet
of high typographical quality. The program should
be widely available, and free from proprietary algo-
rithms and file formats.

3.2 Logical Structuring and Input

Mathematical figures represent structured informa-
tion. Bitmapped images, and to a lesser extent eps
files, discard this structure. By contrast, a program-
ming language exploits logical structure through use
of symbolic constants, data structures, functional re-
lationships, and algorithms, including control state-
ments, loops, and recursion. A high-level figure de-
scription language is potentially both efficient and
convenient, for the same reasons that a Taylor poly-
nomial compactly encodes a trig table. Naturally,
users do not want to learn a new language in or-
der to create figures, but software can accommodate
users by providing intuitively-named functions that
implement common figure objects. Ultimately, how-
ever, a language that provides plotting and other
algorithmic and numerical capabilities must utilize
more complex syntax. To ease the learning curve,
a scene description language might piggyback itself
onto a widely-used programming language, such as
C++, Fortran, or Lisp.

ePiX attempts to meet these goals by furnish-
ing a user-friendly interface to C++, harnessing its

TUGDboat, Volume 25 (2004), No. 2

Figure 3: Rescaling: Two figures generated from
the input file in Figure 2.

speed, flexibility, and computational power to the
creation of mathematical figures. An ePiX source
file is a compact, high-level scene description writ-
ten in C++. Even moderately complicated figures
require no prior knowledge of C++, and the source
code comes with dozens of samples files suitable for
study and experimentation.

3.3 Page Coordinates and Resizing

Logical markup is fundamental to ITEX: a doc-
ument does not directly specify its visual appear-
ance, but relies on packages loaded at compile time.
Mathematical figures benefit similarly from logical
structuring. Designing and writing a figure in page
coordinates, as in the KTEX picture environment,
is conceptually WYSIWYG.

Except as required to size and place the finished
product, and to align text (below), an ePiX figure
refers exclusively to Cartesian coordinates. The use
of logical coordinates makes the input file easier for
a human to read, and enhances flexibility: software
can render a figure according to user-specified crite-
ria at compile time, changing the size, aspect ratio,
or viewpoint, for example.

Incorporation of typography imposes an addi-
tional requirement on a figure’s coordinate system.
A text box is attached to a specific logical location in
a figure. However, fonts do not (and usually should
not) scale when the size of a figure changes. Conse-
quently, a ATEX box cannot always be placed using
only its basepoint if the result is to compile attrac-
tively at various aspect ratios: the Cartesian loca-
tion of the basepoint does not generally undergo the
expected affine scaling when a figure is resized (Fig-
ure 3). ePiX handles this difficulty by positioning a

TUGboat, Volume 25 (2004), No. 2

label “coarsely” using Cartesian coordinates, then
offsetting it “finely” in true coordinates, namely,
aligning the text box on a point other than its KTEX
basepoint. In other words, a scale-invariant align-
ment point is manually attached to each label, and
Cartesian coordinates are used to position this align-
ment point. There seems to be no simple, high-
quality alternative to aligning labels visually and
individually.

3.4 Scene Representation

An ePiX input file describes a 3-dimensional world,
which is represented on an abstract 2-dimensional
screen. World and screen coordinates are Carte-
sian, and not directly related to the printed figure’s
size. The screen contains a bounding boz, a user-
specified Cartesian rectangle that is affinely mapped
to a IWTEX picture. The overall size of the figure
is given directly in the input file, while the aspect
ratio is determined by the relative aspect ratios of
the bounding box and the picture box.

Sky

RN

Shadow

Viewpoint

Object

Figure 4: ePiX’s point-projection camera model.

The camera, consisting of a body and a lens,
maps the world to the screen; indeed, the screen
should be regarded as the camera’s film plane. The
camera body contains information about the loca-
tion and spatial orientation of an abstract observer,
while the lens is the actual mapping, point projec-
tion by default (Figure 4). The camera is designed
to behave like a real camera: The viewpoint and tar-
get may be set arbitrarily, the camera rotated about
its axes (sea, sky, and eye), and the lens changed.

To control the abstract and/or printed size of a
figure, ePiX can remove figure elements that lie out-
side a user-specified “clip box” (Figure 1), and can
“crop” a figure by masking elements that lie outside
the bounding box (Figures 3 and 5). Clipping and
cropping are disabled by default, in accordance with

175

the design philosophy of imposing minimal default
behavior.

3.5 Layering and Hiding

The eepic file produced by ePiX is at some stage
converted to PostScript or PDF. In either case, the
output is layered: objects occlude earlier parts of the
file. For 2-dimensional black and white line draw-
ings, layering is a minor concern, but for shaded,
color, or 3-dimensional pictures, layering is usually
important.

Figure 5: Layering, shading, and cropping.

ePiX does not currently automate hidden ob-
ject removal, but manual techniques provide satis-
factory results. In Figures 1 and 5, paths and sur-
faces are broken into mesh elements, sorted by dis-
tance to the viewpoint, and printed to the file in de-
creasing order of distance. The shading in these fig-
ures exemplifies the use of programming constructs
in ePiX. For each mesh element, a normal vector and
illumination vector are calculated, and the shade of
gray is a simple function of the angle between these
vectors. Similar techniques can be used to simulate
multiple light sources, even light sources of varying
colors.

3.6 Implementation

Befitting its role as a bridge between the compu-
tational power of C++ and the high-quality typog-
raphy of IXTEX, ePiX is not a stand-alone program,
but is instead assembled from standard components:
the C++ compiler, libraries and binutils; GNU bash,;

176

ePiX header
ePiX library

ITEX file
>—— PostScript
laps
Input file Output file

epix
1

[}
[}
[}
[}
User code

Figure 6: Processing an input file.

and optionally IXTEX, Ghostscript, and ImageMag-
ick. The bulk of ePiX proper consists of a compiled
C++ library and header file.

An input file is a short program that incorpo-
rates functions from the ePiX library. The shell
script epix invokes the compiler on the input file.
The resulting binary executable writes the KTEX
code of the figure, which the script directs to a file
(Figure 6). Each of ePiX’s scripts accepts numerous
command-line options, which are listed by running
“<script> --help”.

From its inception, ePiX has used an external
compiler to read and parse input files. This require-
ment, which may at first seem limiting, is not essen-
tially different from reliance on an interpreter, be it
Java, METAPOST, Perl, PostScript, Python, or TEX
itself. Further, there are at least three practical rea-
sons for utilizing the C++ compiler.

First, any program processing user-supplied in-
put must recognize and cope with both well-formed
and malformed data. The use of an existing com-
piler avoids both the substantial complication and
needless duplication of effort that would result from
coding a compiler or interpreter from scratch.

Second, separately compiled code can be in-
corporated in an ePiX figure with a command-line
switch. Use of a widely-spoken language allows users
to extend ePiX easily.

TUGDboat, Volume 25 (2004), No. 2

Third, when a typical plot is generated, a few
functions are called repeatedly, possibly thousands
of times. Compiled code runs quickly enough (com-
pared to interpreted code) to justify the time over-
head of compiling code to process a figure. When
the plot depicts the outcome of a complicated algo-
rithm (such as solving a differential equation), the
extra efficiency of compiled code can be substantial.

4 Future Development

Until now, ePiX has existed as a single-developer
project, and has grown primarily along lines dic-
tated by a need for features. The current source
tree is nearing an evolutionary cul-de-sac, and future
work will focus on a redesigned and re-implemented
version, known informally as The Next Generation.
The author welcomes user feedback, design sugges-
tions, and additional coders. The source tree is on
the CVS server at savannah.gnu.org.

The Next Generation will separate input, repre-
sentation, and output, serving as a general-purpose
scene description and rendering utility rather than
merely a IXTEX-specific image creation tool. How-
ever, incorporation of high-quality typography will
remain a primary goal. Additional aims of TNG in-
clude providing flexible page markup, allowing mul-
tiple scenes to be placed in a single figure; more
modularized output, so that a single input file can
generate a sequence of output files—in various for-
mats—from a single run; and better support for
object hiding in 3-dimensional figures.

A framework for high quality scientific draw-
ing and data visualization is of wide interest to the
mathematical, scientific, and typesetting communi-
ties. It is hoped that ePiX will contribute toward
the realization of a GPL-ed utility that is efficient,
intuitive, computationally powerful, and sufficiently
flexible to grow with its user base for the long-term
future.

¢ Andrew D. Hwang
Department of Math and CS
College of the Holy Cross
Worcester, MA 01610-2395, USA
ahwang@mathcs.holycross.edu
http://mathcs.holycross.edu/
“ahwang/

