
TUGBOAT

Volume 25, Number 2 / 2004

General Delivery 123 From the president / Karl Berry

124 Editorial comments / Barbara Beeton

New TUGboat submission and posting policies; Justin Howes, 1963–2005;
John Seybold, 1916–2004; Word Hy-phen-a-tion by Com-pu-ter;
Error in TUGboat 24:2 Zapfino article; Historic LATEX distributions;
The LATEX Companion, 2nd edition; techexplorer available once again;
Central European diacritics: TYPO Magazine;
Extra time? Proofread for Project Gutenberg

Tutorials 126 CTAN for starters / Jim Hefferon

128 \starttext: Practical ConTEXt / Steve Peter

131 Virtual fonts— a tutorial / Thomas Schmitz

Typography 134 Typographers’ Inn / Peter Flynn

Philology 136 Philological facilities for the Coptic script / Claudio Beccari

and Cristiano Pulone

141 RyDArab— Typesetting Arabic mathematical expressions / Azzeddine Lazrek

Software & Tools 150 PerlTEX: Defining LATEX macros using Perl / Scott Pakin

159 TEX and prepress / Siep Kroonenberg

166 Automatic typesetting of formulas using computer algebra /

Marcelo Castier and Vladimir F. Cabral

Graphics 172 ePiX: A utility for creating mathematically accurate figures / Andrew D. Hwang

177 LATEX in 3D: OpenDX annotations / Jerry Hagon

LATEX 188 dramatist: Another package for typesetting drama with LATEX /

Massimiliano Dominici

193 Variable width boxes in LATEX / Simon Law

Macros 194 xkeyval— new developments and mechanisms in key processing /

Hendri Adriaens and Uwe Kern

199 A non-expert looks at a small TEX macro / David Walden

Hints & Tricks 201 Glisterings: Package/package and class/package clashes / Peter Wilson

203 The treasure chest / Mark LaPlante

Abstracts 209 Zpravodaj : Contents of issues 13(1), 14(1), 14(2) (2003–04)

210 Die TEXnische Komödie: Contents of issues 1–4/2003

213 Biuletyn GUST : Contents of issues 20–21 (2004)

215 Les Cahiers GUTenberg : Contents of issue 43 (2003)

216 MAPS : Contents of issues 29–31 (2003–04)

News &

Announcements

221 Calendar

223 A brief report on the first GuIT meeting / Onofrio de Bari

and Maurizio Himmelmann

223 TUG2005 announcement

TUG Business 224 TEX Development Fund 2003–05 report / Karl Berry and Kaja Christiansen

226 Financial statements for 2004 / Robin Laakso

228 TUG 2005 election report / Barbara Beeton

232 Institutional members

Advertisements 232 TEX consulting and production services

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2004 dues for individual members are as follows:
Ordinary members: $75.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site:
http://www.tug.org.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $85 a year, including air mail delivery.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org) or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2004 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, and may not be reproduced,

distributed or translated without their permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

Samuel Rhoads∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Steve Grathwohl
Jim Hefferon
Ross Moore
Arthur Ogawa
Gerree Pecht
Steve Peter
Cheryl Ponchin
Michael Sofka
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

Addresses

General correspondence,
payments, etc.

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 503 223-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: June 2005]

The link between weaving and representations of letters
on a computer screen can be seen very clearly by looking
at how the weavers of Lyons wove words into their designs.

James Essinger
Jacquard’s Web: How a hand-loom led to

the birth of the information age (2004)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 25, NUMBER 2 • 2004
PORTLAND • OREGON • U.S.A.

TUGboat

This issue (Vol. 25, No. 2) is the only regular
issue of the 2004 volume year. Vol. 25, No. 1
was the Practical TEX 2004 conference proceed-
ings, and the first publication for 2004 appeared
in June 2004, the special non-TUGboat “preprints”
of the TUG 2004 conference proceedings, subse-
quently published by Springer-Verlag. (For more
information about the TUG’04 proceedings, see
http://tug.org/TUGboat/Articles/tb25-0.)

TUGboat is distributed as a benefit of mem-
bership to all TUG members. It is also available
to non-members in printed form through the TUG

store (http://tug.org/store), and online at the
TUGboat web site, http://tug.org/TUGboat. On-
line publication to non-members may be delayed up
to one year after an issue’s print publication, to give
members the benefit of early access.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

Suggestions and proposals for TUGboat articles are
gratefully accepted and processed as received. We
encourage submitting contributions by electronic
mail to TUGboat@tug.org. Alternatively, please
contact the TUG office.

The TUGboat “style files”, for use with either
plain TEX or LATEX, are available from CTAN

and the TUGboat web site above. We also accept
submissions using ConTEXt.

As of the 2005 volume year, submission of a
new manuscript will imply permission to publish
the article, if accepted, on the TUGboat web site,
as well as in print. So, if you have any reservations
about posting online, please notify the editors at the
time of submission. (Background: until now, it has
been TUGboat policy to seek explicit permission
for posting online, but we believe this has become
unnecessary, leading primarily to articles never
being posted, as well as being a time-consuming
burden on TUGboat staff. For several years, no
author has refused permission to post online, so it
seems reasonable to now assume this permission by
default.)

TUGboat Editorial Board

Barbara Beeton, Editor-in-Chief

Robin Laakso, Managing Editor

Mimi Burbank, Production Manager

Victor Eijkhout, Associate Editor, Macros

Alan Hoenig, Associate Editor, Fonts

Christina Thiele, Associate Editor,

Topics in the Humanities

Production Team

William Adams, Barbara Beeton, Karl Berry,
Mimi Burbank (Manager), Kaja Christiansen,
Robin Fairbairns, Baden Hughes, Steve Peter,
Michael Sofka, Christina Thiele

Other TUG Publications

TUG is interested in considering additional man-
uscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the TEX community in general. Provision can be
made for including macro packages or software in
computer-readable form.

If you have any such items or know of any
that you would like considered for publication, send
the information to the attention of the Publications
Committee at tug-pub@tug.org.

TUGboat Advertising

For information about advertising rates and options,
write or call the TUG office, or see our web page
http://tug.org/TUGboat/advertising.html.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue should
not be considered complete.

METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.
TEX and AMS-TEX are trademarks of the American

Mathematical Society.

TUGboat, Volume 25 (2004), No. 2 123

General Delivery

From the President

Karl Berry

TUG board and election

As I write this in May 2005, the postmark deadline
for the first TUG election for president in many years
is almost here, with Lance Carnes and myself as
the candidates. We expect the election results to
be known by the time of the Practical TEX 2005
conference in Chapel Hill, North Carolina this June.

No matter the outcome of the election, I am
honored to have served as president these past two
years, and am happy that TUG members actually
have a choice in this election, instead of the president
being selected by “default”. Thanks to Lance for
having the interest and inclination to get involved.

As with the last several election cycles, there
were fewer candidates for the board than positions
available. As president, I therefore appointed the
incoming candidates immediately, as is traditional.
I would like to welcome our two newest board mem-
bers: Klaus Höppner and Dave Walden.

Klaus is also the vice-president of DANTE e.V.
and so brings a wealth of cross-continental informa-
tion and initiatives. We’re very happy to have him
join us, as the TEX user groups worldwide work more
closely together than ever.

Dave is a long-time worker in computers, in-
cluding a long stint at Bolt, Beranek, and Newman
during the time of primary Internet development,
as programmer, technical manager, and ending as
general manager. He thus brings enormous man-
agement and organizational expertise to TUG, along
with plenty of programming and writing skills.

More information about all the board members
can be found in the election report elsewhere in this
issue of TUGboat, and online at http://tug.org/

board.html.

New TUG initiatives in 2004

First, TUG launched an online publication, The

PracTEX Journal, with Lance Carnes as editor-in-
chief. Two issues have been published to date and
are available now on the TUG web site, at http:

//tug.org/pracjourn. As you might guess from
the name, TPJ focuses on short, timely, and prac-
tical pieces, and thus complements TUGboat.

Many people contributed to making TPJ a re-
ality; the web pages have the full list of the organiz-

ing board, as well as (of course) the authors, without
whom there would be nothing to publish. Still, I’d
like to especially thank Lance for his efforts in bring-
ing this to fruition, and Dave Walden, for his exten-
sive work writing the (Perl) program which gener-
ates the published web pages.

Second, another new feature on the TUG web
site is the Interview Corner. This was conceived
by Dave Walden (thanks again, Dave) as a way to
record some of the community history, and get to
know some of the individuals so important to TEX
and TUG over the years. He’s interviewed many no-
tables already, including Robin Fairbairns, George
Grätzer, and Christina Thiele. Dave welcomes feed-
back on the interviews, suggestions for future inter-
viewees, and also other interviewers. Check out the
web pages at http://tug.org/interviews.

Lastly, I’m happy to report that TUG and the
WinEdt team have begun a program whereby TUG

now offers WinEdt licenses at a substantial discount
to TUG members, following a similar agreement be-
tween WinEdt and DANTE. My thanks to Steve
Peter, Klaus Höppner, and the WinEdt folks for the
idea and execution of this, and to Robin Laakso in
the TUG office for taking on yet another task with
enthuasism. More information and the order form
are available at http://tug.org/winedt.

TUG futures

TUG’s longstanding activities also continue: TUG-

boat, software, and conferences. With this issue,
TUGboat will essentially be once again current, af-
ter several years of work catching up. The next is-
sues, for the 2005 volume, will (barring disaster) be
published in 2005. Barbara Beeton discusses this
further in her editorial.

On the software front, work on TEX Live 2005
is proceeding. We will also distribute an update
for proTEXt, the Windows distribution based on
MiKTEX which we distributed in 2004 for the first
time. Thanks to Thomas Feuerstack and Christian
Schenk for making that possible.

And we’ve sponsored Practical TEX conferences
in 2004 and 2005 in the United States, as well as
the annual conferences (this year in historic Wuhan,
China, http://tug.org/tug2005).

Despite these new and ongoing activities, our
membership is down around 10% in 2004 (see the fi-
nancial report in this issue for more details). If you
are taking the trouble to read this, you are likely
one of TUG’s many long-time supporters — thanks.
If TUG is to remain viable over the long term, clearly
we must find ways to attract and retain more mem-
bers; the overwhelming majority (around 80%) of

124 TUGboat, Volume 25 (2004), No. 2

funding for TUG activities comes from membership
dues.

In turn, this presumably means keeping TEX it-
self vibrant and growing. TUG is, after all, the TEX
users group, an organization of, by, and for TEX
users, not a big for-profit company or government in-
stitution handing down pronouncements about how
things must be.

So if you have ideas for or interest in promoting
or developing TEX and friends, or have thought of
other projects useful to the community that TUG

might undertake, please don’t hesitate to contact
the full board (board@tug.org) or myself. Thanks
for your support, and happy TEXing.

⋄ Karl Berry

president@tug.org

TUGboat, olume (2004), No.

Editorial Comments

Barbara Beeton

New TUGboat submission and

posting policies

Effective with the first issue of volume 26 (2005),
there will be two changes in TUGboat policies for
article submission and posting.

First, submissions to TUGboat will assume that
the author agrees to posting of the submitted arti-
cle on the TUG web site when the issue in which it
appears is posted, subject to two restrictions:

• If the author specifically states that the article
may not be posted, and provides the reason,
this will be honored.

• If an article appeared previously in another
publication, permission to post on the TUG web
site will be requested from the editor(s) of that
publication as well as from the author before
posting.

Second, open posting of a published TUGboat

issue will be deferred up to one year from the mail-
ing date of that issue. However, immediate on-line
access will be provided to members; the mechanism
has not yet been implemented, but will be in place
by the time the first issue of volume 26 is distributed,
and members will be notified in due time.

Justin Howes, 1963–2005

We report with sadness the death on March 1, 2005,
of Justin Howes, the typographer who developed the
font, Founders Caslon, that was used to typeset the
EuroTEX 2003 proceedings, TUGboat 24(3).

Howes, who was born April 4, 1963, was de-
voted to typographic history, and actively sought to
preserve the artifacts and archives of British type-
founding. Thanks largely to him, the holdings of
Stephenson, Blake Ltd, of Sheffield, the last ma-
jor firm of this kind, were saved for posterity by
the Type Museum in 1996; these included materials
dating back to the Moxon era of the 17th century.
For the past two years, Howes worked part time as
curator of this collection.

He became attracted to the potential of the
computer to aid in the preservation of type designs.
Unlike many other digitized versions of old faces,
Howes’ rendering of Caslon was not only true to the
original, but was implemented in several distinct de-
sign sizes.

Howes was about to embark on a six-month
visit to the Plantin-Moretus Museum in Antwerp,
Belgium, where he had looked forward to casting
letters and working with their 16th and 17th cen-
tury materials.

He died at his desk of a heart attack, aged 41.
An extensive obituary from the London Times

can be found on-line at http://www.timesonline.
co.uk/article/0,,60-1505298 2,00.html, from
which much of the information in the present note
is abstracted. Additional information about his
work can be found at http://www.microsoft.com/
typography/links/news.aspx?NID=4665.

John Seybold, 1916–2004

John Seybold, the father of computer typesetting,
died on March 14, 2004, in Haverford, Pennsylvania.

Seybold became involved with publishing after
World War II, during the era in which offset printing
was beginning to replace the metal technologies. In
1963, he was introduced to an early implementation
of computer hyphenation, in conjunction with pa-
per tape control of an early phototypesetter. He be-
came convinced that computers could do more than
just hyphenation, and founded the Rocappi com-
pany (Research on Computer Applications in the
Printing and Publishing Industries) to develop a sys-
tem that could tackle the entire process of editing,
manipulating and formatting text to produce “com-
mercial quality” published materials.

In 1970, after selling Rocappi, Seybold under-
took consulting, and in September 1971, he and
his son Jonathan launched The Seybold Report, a
newsletter that became the most reliable source of
information on the computer publishing industry.

TEX was the subject of an extensive article in
The Seybold Report, and Seybold organized a small
gathering at Stanford in 1983 to investigate META-

TUGboat, Volume 25 (2004), No. 2 125

FONT, a gathering which I was privileged to attend.
One whimsical product of this experiment was the
letter “Knu”, a compound of an uppercase “K” and
lowercase “n”; the resulting glyph, sadly, appears to
have been lost.

A brief biography and other memorabilia can be
found on-line at http://www.johnwseybold.com/

bio.htm.

Word Hy-phen-a-tion by Com-put-er

Frank Liang’s Stanford Ph.D. dissertation has, with
Frank’s permission, been scanned and posted on-line
for unlimited distribution. This work presents the
hyphenation algorithm that is standard in TEX, and
has been adapted for use with numerous languages.

The dissertation was scanned by Petr Sojka and
his colleagues (to whom many thanks), and can be
obtained via links on the page http://tug.org/

docs/liang/.

Error in TUGboat 24:2 Zapfino article

The article “There is no end: Omega and Zapfino”
by William Adams has in the upper right-hand cor-
ner of most right-hand pages a series of figures in-
tended to be viewed by flipping the pages, spelling
out the name of the font in an animation. Unfortu-
nately, owing to a lapse in communication with the
printer, the figures were cropped incorrectly, and the
effect is not what was intended.

The article as posted on line has the correct,
uncropped figures. Look for it via the issue con-
tents: http://www.tug.org/TUGboat/Contents/

contents24-2.html.

Historic LATEX distributions

Ulrik Vieth has installed a collection of historic
LATEX distributions dating from 1983 on ftp://

ftp.tug.org/historic/macros/latex-saildart.
This collection includes LATEX 2.0 for TEX 1.0 (re-
leased on 11 December 1983) and some even earlier
versions. The material is based on archive tapes
from Stanford’s SAIL system.

Ulrik has long been interested in TEX history
and is responsible for other collections as well. If
you know of, or have, any material that isn’t in-
cluded in the historical archives on the TUG ma-
chine, but should be, let us know, and we will help
you to connect with Ulrik.

The LATEX Companion, 2nd edition

The second edition of The LATEX Companion con-
tains numerous examples illustrating the many pack-
ages described in the book. These examples are sig-
nificantly revised from those that appeared in the

first edition. The revised examples can be found at
CTAN in info/examples/tlc2.

Some errors have already been found. These
too are at CTAN, and also available at http://www.
latex-project.org/guides/tlc2.err.

Addison-Wesley and the authors have started
a bug contest— any mistake found and reported is
a gain for all. A prize will be awarded every half
year for 6 periods, in May and October, through
May 2007. The eligible person who finds the largest
number of bugs during each period will have free
choice of any single computing book (no boxed sets
or multiple volume offers) on the AW Professional
web site, http://www.awprofessional.com. A per-
son can receive at most one prize, ever; errors found
by any of the authors do not count.

Start reading, and good luck.

techexplorer available once again

The techexplorer Hypermedia Browser, originally
created by IBM, has been acquired and is now avail-
able from Integre Technical Publishing Co. as li-
censed, sponsored freeware. For details, see http:

//www.integretechpub.com/techexplorer/.

Central European Diacritics:

TYPO Magazine

TYPO Magazine is a bimonthly, full-color magazine
published in both Czech and English on topics re-
lated to typography, graphic design and visual com-
munication. The September 2004 issue contains an
interesting article on the design of central European
diacritics.

Back issues are posted on line at http://www.
magtypo.cz/; the cited issue is No. 10.

Extra time?

Proofread for Project Gutenberg

The goal of Project Gutenberg is to make avail-
able, in electronic form, books that are out of copy-
right (published before 1924) in different languages.
Proofreading and correction are accomplished by
volunteers. More than 15,000 e-books have been
made available to date.

If you have some free time, and wish to aid
this effort, you can find information at http://www.
pgdp.net.

⋄ Barbara Beeton

American Mathematical Society

201 Charles Street

Providence, RI 02904 USA

bnb@ams.org

126 TUGboat, Volume 25 (2004), No. 2

Tutorials

CTAN for Starters

Jim Hefferon

Newcomers to TEX can have trouble finding their
way around. As with other community-supported
projects, beginners can feel that only insiders or old-
timers can get the tool to do its magic.

One of the secrets to TEX success is to know
where on the Internet there are resources that you
can use. A key TEX community resource is our
archive. This article takes you through how to find
and use this site.

1 On your mark . . .

All TEX users should know: if you need something,
then the right place to look is the Comprehensive
TEX Archive Network.

CTAN is authoritative: if you need something
TEX related that is out there, then chances are that
you can get it in here. And, most of CTAN’s holdings
are freely available, so you can just pick them up and
use them.

This article will take you around the site a bit,
so that you can get an idea of what is here. Start by
browsing to the top page: http://www.ctan.org.

2 Get ready . . .

From the home page, click on the “Look through”
link to get to http://www.ctan.org/tex-archive.
There you see the CTAN’s top-level organization,
with a brief description of each branch. If you click
around, you will get some sense of the great amount
of material, and of the wide variety of material, that
is available to you.

As a beginner, the first thing to get is a dis-
tribution— a collection of packages and programs,
suitable for your computer platform, with what you
need to start working. We have all of the major
free and shareware distributions: TEX Live for Win-
dows, Macintosh, and Unix, MiKTEX for Windows,
gwTEX with i-Installer for Macintosh OS X, and
teTEX for Unix and Mac OS X.

Go back to the “Look through” page and click
on “systems” to go to where system-specific software
lives. Click on the type of system that you have. For
instance, if you work under Windows then you can
follow the win32 link (or the texlive link). One of
the options there is miktex, and the material on that

Editor’s note: This article was first published in The

PracTEX Journal, 2005(1), http://tug.org/pracjourn.

page tells you to install by reading what is in the
setup directory. By following those directions you
will get a complete TEX system on your computer.

3 Get set . . .

After you’ve installed a distribution, you next need
a tutorial. There is no substitute for a good book,
but CTAN can still help you here, too. Go back to
the top page and again follow the “Look through”
link (http://www.ctan.org/tex-archive) to the
top of the file structure.

Click on the “info” link to go to http://www.

ctan.org/tex-archive/info. Here are many tu-
torials, and a great deal of other documentation.

Most people do their TEX work via the LATEX
macro package, and one of the choices now on your
screen is “lshort”. Click on it to get to http://www.

ctan.org/tex-archive/info/lshort, which con-
tains the widely-recommended The (Not So) Short
Guide to LATEX2ε (the current version of LATEX is
called LATEX2ε). There are many translations there;
select one and save or print it.

4 Go!

With that, you now have a full TEX system and
enough documentation to do tremendous things.

5 Through the back straightaway . . .

CTAN is not just for getting up to speed, it can also
help you move ahead in your TEX work.

Imagine that you’ve used LATEX a bit and have
gotten comfortable with the tutorial. A colleague
sends you a file to use, but running it gives you an er-
ror message that your system cannot find SIunits.
This package might not have come with your dis-
tribution (the distribution’s builders try to balance
completeness and size). However, CTAN has it.

From the top page http://www.ctan.org, take
the “search” link to http://www.ctan.org/search.

In the first text box, type SIunits and hit En-
ter. You get a list of links, including a directory
called macros/latex/contrib/SIunits. Click on
the directory name to see what’s there. You get a
page listing the files.

Also on that directory page is a link to get the
contents of the “entire directory”. Click on it, and
you will be offered the files from the directory, bun-
dled up as SIunits.zip or SIunits.tar.gz. That’s
the right way to get the materials, so that you will
not miss any.

Click on one of the links to get it to your ma-
chine (if you don’t know which to use, get the .zip).
You may get a page that asks you to select a mirror
from a list. Many sites around the world generously

http://www.ctan.org
http://www.ctan.org/tex-archive
http://www.ctan.org/tex-archive
http://www.ctan.org/tex-archive/info
http://www.ctan.org/tex-archive/info
http://www.ctan.org/tex-archive/info/lshort
http://www.ctan.org/tex-archive/info/lshort
http://www.ctan.org
http://www.ctan.org/search

TUGboat, Volume 25 (2004), No. 2 127

help out by offering the contents of CTAN to the
public; you are seeing a list of these. Choose one
from the list that says it offers the kind of archive
that you want, .zip or .tar.gz, and you will be
sent a cookie so that your browser can remember
your preference in the future.

With that, you have the bundle on your com-
puter containing the files that you want. What
you need next is directions to install the material.
CTAN can help you here, also. Back at the search
page http://www.ctan.org/search, look for the
“Frequently Referenced Links”. One of these is to
Robin Fairbairns’s English language FAQ, http://
www.tex.ac.uk/faq. One of the answers on that
list, “Installing a new package”, tells you just what
you need to know.

You may want to bookmark the search page
http://www.ctan.org/search; it’s one of the most
convenient ways to get at the information on CTAN.

6 Out of the final turn . . .

Now you know how to get publicly available materi-
als, if you know exactly what files you want. What if
you instead need some particular feature, but don’t
know a specific name? As with the documentation,
there is no substitute for a good book, but the search
page can help.

Suppose that you need to work with your page
footers. Go to http://www.ctan.org/search and
use the “Search the Catalogue” box (the Catalogue
is a large collection of TEX package descriptions).
Enter footer. You get a page of links, one of which
is fancyhdr, with the abstract “Extensive control of
page headers and footers in LATEX2ε”. Also there is
a link to the directory, so you can look through the
documentation file.

Your distribution already has this package, so
there is no need to download it. Nonetheless, the
lesson here is that CTAN is useful for things other
than getting materials; it is also a source of infor-
mation on those materials.

7 Across the line

One thing that places an experienced person ahead
of a beginner is an awareness of what resources to
use to solve problems. For TEX users, CTAN is one
of the most important resources.

8 In the circle with the leaders

As your TEX sophistication grows, you may well de-
velop some software or documentation of your own.
For instance, perhaps you are writing a thesis in
TEX, and you find that none of the available thesis
styles quite suit your university. You solve the prob-

lem by combining some packages from CTAN with
some programming of your own to write a style that
works.

When you do that, please consider contributing
your work to CTAN. A link on the top page takes
you to a page with instructions on how to upload.
Typically, you only need make a .zip file with the
software and enough documentation to help people
get started using your work.

Contributions like this help us to build our com-
munity!

9 A note on places

CTAN is a network because it consists of a number
of cooperating sites. This article consistently uses
http://www.ctan.org URL’s but you have other
options, which may give you better network access.

The three core sites are http://dante.ctan.

org in Germany, http://cam.ctan.org in England,
and http://tug.ctan.org in the United States;
this last is an alias for http://www.ctan.org. The
three have different interfaces, but have the same
holdings.

These three sites are active —they install newly
uploaded material, etc. There are also many mirror
sites that help out by just copying the content from
a core site and then also offering the material to
the public. Please use a mirror if you can; see the
full list at http://www.ctan.org/tex-archive/

README.mirrors.
The three core sites are sponsored by TEX user

groups: DANTE in Germany, UK-TUG in England,
and TUG in the US. There are many more user
groups; see http://tug.org/usergroups.html for
the complete list. If you find CTAN and TEX useful,
please consider joining or supporting the user group
best for you.

10 One more note: what shows

The CTAN team is working on some changes that
may affect the look of the web site. Thus, in the
future, some of the web interface details described
here may change. Of course, we hope that these
changes make the site even more useful to the TEX
community.

⋄ Jim Hefferon

St. Michael’s College

Vermont, USA

ftpmaint@alan.smcvt.edu

http://www.ctan.org/search
http://www.tex.ac.uk/faq
http://www.tex.ac.uk/faq
http://www.ctan.org/search
http://www.ctan.org/search
http://www.ctan.org
http://dante.ctan.org
http://dante.ctan.org
http://cam.ctan.org
http://tug.ctan.org
http://www.ctan.org
http://www.ctan.org/tex-archive/README.mirrors
http://www.ctan.org/tex-archive/README.mirrors
http://tug.org/usergroups.html

128 TUGboat, Volume 26 (2004), No. 2

\starttext: Practical ConTEXt

Steve Peter

Abstract

In this column, I introduce the reader to the
ConTEXt macro package, showing a few practical
examples along the way.

1 Introduction

Welcome to the first installment of the \starttext

column. Together we’ll explore the vast world that
ConTEXt offers. If you don’t already have ConTEXt
installed on your system, head over to the Pragma
web site at www.pragma-ade.com. You can get
just ConTEXt, or a complete system with the under-
lying TEX distribution.

To get the most out of this column, you should
have ConTEXt running on your system, and you
should type in the examples as we go. You can use
any editor that outputs plain text, such as emacs,
vi, Text Edit, or Notepad. Don’t use a word proces-
sor like Word or OpenOffice Writer. There are also
complete TEX editing environments like TeXShop
on Mac OSX and TEXnicCenter on Windows that
allow you to edit your files, run TEX, and view the
output from within a single application.

If you don’t have TEX, don’t have a computer,
or are just curious about ConTEXt and would rather
read than type, I’ve also supplied some illustrations.

Let’s get started!

2 Hello, World!

Since ConTEXt is a TEX macro package, we’ll follow
the standard workflow by first entering the text of
our document into a plain text file, interspersed with
commands that tell TEX to do something with the
text (e.g., make it bold, or format it like a footnote).
Then we run TEX on the file, and finally we look at
the beautiful output.

So fire up your favorite text editor and enter
the following:

\starttext

Hello, World! This is \ConTeXt.

\stoptext

Editor’s Note: This article is reprinted, with additions, from
The PracTEX Journal, 2005(1), http://tug.org/pracjourn.

The body of your document is enclosed in a
\start—\stop pair. \starttext handles various
setup details for you. Save the file as document.tex.

If you’ve used any variety of TEX before, the
next step is slightly different, so watch out. (And be
amazed!) To run this document through TEX, we’ll
use texexec, a front end script that greatly simpli-
fies life. More about that in a bit. For now, just
type the following in a shell window (if you’re not
using an editing environment as discussed above):

texexec document

You should now have a new file, document.dvi, in
your directory. You can view the file with, e.g., xdvi
on Unix, TEXniscope on Mac, or yap on Windows.
You can convert the dvi (DeVice Independent) file to
pdf with the dvipdfm utility, or use texexec --pdf.
Or perhaps your machine may be configured to run
pdfTEX automatically (as my machine is). In that
case, simply open the resulting document.pdf file.
Whether dvi or pdf, the result should look some-
thing like this:

.5 C .5 .5 Y .5 K C G Y R B K

1.00

0.95

0.75

0.50

0.25

0.05

C

1.00

0.95

0.75

0.50

0.25

0.05

R

1.00

0.95

0.75

0.50

0.25

0.05

1.00

0.95

0.75

0.50

0.25

0.05

G

1.00

0.95

0.75

0.50

0.25

0.05

Y

1.00

0.95

0.75

0.50

0.25

0.05

B

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

1

Hello, World! This is ConTEXt.

Figure 1 Your first ConTEXt document!

The page number at the top tells us that this is a
default ConTEXt document, and not simply a Plain
TEX one. For our first experiment, let’s put the
number into the footer.

Setting up something like the location of the
page number is done with a \setup command in
ConTEXt. Don’t worry right now about the exact
form of the command. We’ll go over them in much
greater detail in a later column. For now, to put the
number in the footer, add the following line to the
top of your document, before the \starttext. Run
it through texexec and look at the file produced.

\setuppagenumbering [location=footer]

Now the folio is in the footer.
Text of any length is usually subdivided. Let’s

put in some sections. This time after \starttext,

http://www.pragma-ade.com

TUGboat, Volume 26 (2004), No. 2 129

put the line

\section{First section}

Add a few more \sections with some text. We’ll
need them for the next section. To get a bunch
of text quickly, try \dorecurse{20}{\input knuth

\par}.

3 texexec

I mentioned before that texexec greatly simplifies
life. Why is that? Well, typesetting is a complicated
business, and TEX frequently has to collect informa-
tion on one run to use in a later run. For example,
let’s add a table of contents. Just after \starttext,
add:

\completecontent

But how does TEX know what page the second
\section is on until after it has typeset the doc-
ument? The answer, of course, is that it doesn’t.
TEX gathers up information from all the \sections
you have in the document and writes that informa-
tion to an auxiliary file. Normally, you have to then
run TEX a second time so that TEX can read that
information in and set the table of contents. (And
if the TOC is long, it will push everything down,
meaning that you have to rerun TEX again!)

Sometimes you find yourself rerunning TEX
needlessly just to make certain there aren’t any un-
resolved references. But texexec changes that. It
automatically reruns TEX as many times as neces-
sary, so you can go refill your coffee.

4 Fun and fancy

Just to whet your appetite, let’s take a quick look at
a couple of fancier things ConTEXt can do. We’ll go
into details in future columns. I realize these are a
bit of a jump from the basic formatting considered
in the other sections, but since we’re just setting
out, I thought I’d give you a glimpse of some really
fancy stuff.

To maintain high typographic standards (cf. the
discussion, for example, in Robert Bringhurst, The

Elements of Typographic Style) you often have to
align text, graphics, etc., to a grid, and your text
should maintain a consistent position on the baseline
grid. Add this to the top of your document and
process it with texexec.

\setuplayout[width=middle,location=middle,

grid=yes,marking=color]

\moveongrid[both]

\showgrid

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

\starttext

Steve Peter

1 Introduction

Welcome to the first installment of the \starttext column. Together we’ll explore the

vast world that ConTEXt offers. If you don’t already have ConTEXt installed on your

system, head over to the Pragma website at www.pragma-ade.com, and grab it. You

can get just ConTEXt, or a complete system with the underlying TEX distribution. If you

have no version of TEX whatsoever, you might find Doug Waud and Tim Null’s notes

on installing TEX to be useful.

Michael Guravage offers a good definition of what ConTEXt is (over in the Ask Nelly

section), so I’ll concentrate here on how to use ConTEXt. We’ll start out with a traditional

first document, and then we’ll have some fun tweaking it.

To get the most out of this column, you should have ConTEXt running on your

system, and you should type in the examples as we go. If you don’t have TEX, don’t

have a computer,1 or are just curious about ConTEXt, and don’t want to take the plunge

yet, I’ve also supplied some illustrations.

Let’s get started!

2 Hello, World!

Since ConTEXt is a TEX macro package, we’ll follow the standard workflow by first

entering the text of our document into a plain text file, interspersed with commands

that tell TEX to do something with the text (like make it bold, or format it like a footnote).

Then we run TEX on the file, and finally we look at the beautiful output.

So fire up your favorite text editor2 and enter the following:

Hey, then how are you reading this?1

You can use any editor that outputs plain text, such as emacs, vi, Text Edit, or Notepad. Don’t use a2

word processor like Word or OpenOffice Writer. There are also complete TEX editing environments like

Figure 2 The matrix? No, it’s the grid.

If you’ve ever tried to do that with Plain TEX, or
even LATEX, you know what a pain it can be. How-
ever, ConTEXt does it easily, and even shows you
where the grid is, so you can debug troublesome
documents.

After all TEX is, when you get down to it, a
programming language. That means at some point
you’ll need to debug your documents. The grid fea-
ture is but one of several nice visual debugging tools
provided with ConTEXt. For another one, add this
to the beginning of your document to gain a view of
how TEX puts boxes and glue together:

\showmakeup

In figure 3 we can see the bounding box for the
E in TEX, along with the negative kerns, shown as
the thicker boxes near the base of the E.

One more useful visualization command shows
you the layout on the page of your text block, mar-

130 TUGboat, Volume 26 (2004), No. 2

.5 C .5 .5 Y .5 K C G Y R B K

1.00

0.95

0.75

0.50

0.25

0.05

C

1.00

0.95

0.75

0.50

0.25

0.05

R

1.00

0.95

0.75

0.50

0.25

0.05

1.00

0.95

0.75

0.50

0.25

0.05

G

1.00

0.95

0.75

0.50

0.25

0.05

Y

1.00

0.95

0.75

0.50

0.25

0.05

B

TEX
Figure 3 What TEX might look like to TEX

gins, headers and footers:

\showframe

For more on this aspect of visual debugging, see
Hans Hagen’s paper in TUGboat vol. 19, no. 3.

You don’t need a fancy commercial page layout
program to set crop marks or do imposition. Put
these lines before \starttext, run texexec, and
watch the magic! (Figure 4.)

\setuppapersize [A7][letterpaper]

\setuparranging [2*2,rotated,doublesided]

\setuppagenumbering [

alternative=doublesided]

\setuplayout [margin=0pt,width=fit]

\setupbackgrounds [text][text][

background=screen]

\setupcolors [state=start]

\setuplayout [location=middle,

marking=color]

\setuptolerance[tolerant]

\setupbodyfont [palatino,6pt]

You can even produce a negative by replacing the
first line above with

\setuppapersize [A7][letterpaper,

negative,mirrored]

I won’t show it here, due to obvious ink costs. But
if you ever need to generate film output, this is a
lifesaver.

5 Links

I hope you’ve enjoyed this first look at ConTEXt.

.5 C .5 M .5 Y .5 K C G Y R M B K

1.00

0.95

0.75

0.50

0.25

0.05

C

1.00

0.95

0.75

0.50

0.25

0.05

R

1.00

0.95

0.75

0.50

0.25

0.05

M

1.00

0.95

0.75

0.50

0.25

0.05

G

1.00

0.95

0.75

0.50

0.25

0.05

Y

1.00

0.95

0.75

0.50

0.25

0.05

B

1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00

1 1

1 1

4

C
o

n
T E

X
t

h
as

m
an

y
fe

at
u

re
s

to
m

ak
e

li
fe

ea
si

er
w

h
en

y
o

u

h
av

e
to

ty
p

es
et

co
m

p
le

x
d

o
cu

m
en

ts
.F

o
r

ex
am

p
le

,i
n

co
m

m
er

-

ci
al

ty
p

es
et

ti
n

g
,

y
o

u
o

ft
en

h
av

e
to

al
ig

n
te

x
t,

g
ra

p
h

ic
s,

et
c.

to

a
g

ri
d

.C
o

n
T E

X
t

ca
n

ea
si

ly
d

o
th

at
,a

n
d

ev
en

sh
o

w
y

o
u

w
h

er
e

th
e

g
ri

d
is

,
so

y
o

u
ca

n
d

eb
u

g
tr

o
u

b
le

so
m

e
d

o
cu

m
en

ts
.

T
ry

ad
d

in
g

th
e

fo
ll

o
w

in
g

li
n

es
to

th
e

to
p

o
f

y
o

u
r

d
o

cu
m

en
t

an
d

p
ro

ce
ss

it
w

it
h
t
e
x
e
x
e
c

.

\
s
e
t
u
p
l
a
y
o
u
t
[
w
i
d
t
h
=
m
i
d
d
l
e
,
l
o
c
a
t
i
o
n
=
m
i
d
d
l
e
,

g
r
i
d
=
y
e
s
,
m
a
r
k
i
n
g
=
c
o
l
o
r
]

\
m
o
v
e
o
n
g
r
i
d
[
b
o
t
h
]

\
s
h
o
w
g
r
i
d

Y
o

u
d

o
n

’t
n

ee
d

a
fa

n
cy

co
m

m
er

ic
al

p
ag

e
la

y
o

u
t

p
ro

g
ra

m

to
se

t
cr

o
p

m
ar

k
s

o
r

d
o

im
p

o
si

ti
o

n
.

P
u

t
th

es
e

li
n

es
b

ef
o

re

\
s
t
a
r
t
t
e
x
t

,r
u

n
t
e
x
e
x
e
c

,a
n

d
w

at
ch

th
e

m
ag

ic
!

\
s
e
t
u
p
p
a
p
e
r
s
i
z
e
[
A
7
]
[
l
e
t
t
e
r
p
a
p
e
r
]

\
s
e
t
u
p
a
r
r
a
n
g
i
n
g
[
2
*
2
,
r
o
t
a
t
e
d
,
d
o
u
b
l
e
s
i
d
e
d
]

\
s
e
t
u
p
p
a
g
e
n
u
m
b
e
r
i
n
g
[
a
l
t
e
r
n
a
t
i
v
e
=
d
o
u
b
l
e
s
i
d
e
d
]

\
s
e
t
u
p
l
a
y
o
u
t
[
m
a
r
g
i
n
=
0
p
t
,
w
i
d
t
h
=
f
i
t
]

\
s
e
t
u
p
b
a
c
k
g
r
o
u
n
d
s
[
t
e
x
t
]
[
t
e
x
t
]
[
b
a
c
k
g
r
o
u
n
d
=
s
c
r
e
e
n
]

\
s
e
t
u
p
c
o
l
o
r
s
[
s
t
a
t
e
=
s
t
a
r
t
]

\
s
e
t
u
p
l
a
y
o
u
t
[
l
o
c
a
t
i
o
n
=
m
i
d
d
l
e
,
m
a
r
k
i
n
g
=
c
o
l
o
r
]

\
s
e
t
u
p
t
o
l
e
r
a
n
c
e
[
t
o
l
e
r
a
n
t
]

\
s
e
t
u
p
b
o
d
y
f
o
n
t
[
p
a
l
a
t
i
n
o
,
6
p
t
]

1

\
s
t
a
r
t
t
e
x
t

S
te

v
e

P
et

er

1
In

tr
o

d
u

ct
io

n

W
el

co
m

e
to

th
e

fi
rs

t
in

st
al

lm
en

t
o

f
th

e
\
s
t
a
r
t
t
e
x
t

co
lu

m
n

.

T
o

g
et

h
er

w
e’

ll
ex

p
lo

re
th

e
v

as
t

w
o

rl
d

th
at

C
o

n
T E

X
t

o
ff

er
s.

If

y
o

u
d

o
n

’t
al

re
ad

y
h

av
e

C
o

n
T E

X
t

in
st

al
le

d
o

n
y

o
u

r
sy

st
em

,

h
ea

d
o

v
er

to
th

e
P

ra
g

m
a

w
eb

si
te

at
w
w
w
.
p
r
a
g
m
a
-
a
d
e
.
c
o
m

,

an
d

g
ra

b
it

.

M
y

co
ll

ea
g

u
e

M
ic

h
ae

l
G

u
ra

v
ag

e
o

ff
er

s
a

g
o

o
d

d
efi

n
it

io
n

o
f

w
h

at
C

o
n

T E
X

t
is

(o
v

er
in

th
e

A
sk

N
e

ll
y

se
ct

io
n

),
so

I’
ll

co
n

ce
n

tr
at

e
h

er
e

o
n

h
o

w
to

u
se

C
o

n
T E

X
t.

W
e’

ll
st

ar
t

o
u

t
w

it
h

a
tr

ad
it

io
n

al
fi

rs
t

d
o

cu
m

en
t,

an
d

th
en

w
e’

ll
st

ar
t

to
h

av
e

fu
n

tw
ea

k
in

g
it

.L
et

’s
g

o
!

Figure 4 Imposition with ConTEXt

There are numerous topics we haven’t addressed yet,
such as cross references, hyperlinks, indexes, Meta-
Post figures and other graphics, and ConTEXt’s in-
credible support for pdf trickery.

There’s a lot of information out there and plen-
ty to explore. Start with the documentation on the
Pragma web site (www.pragma-ade.com).

For examples, check the ConTEXt wiki at
contextgarden.net and work your way through
Bill McClain’s excellent page detailing ConTEXt at
home.salamander.com/~wmcclain/context-help

.html. Last, but certainly not least, you can
jump into the never-ending discussion on the offi-
cial mailing list at www.ntg.nl/mailman/listinfo
/ntg-context.

Join us here in future issues of TUGboat for
more on the practical use of ConTEXt.

⋄ Steve Peter
Beech Stave Press,
310 Hana Road,
Edison, NJ 08817
speter@beechstave.com

www.ntg.nl/mailman/listinfo/ntg-context
www.ntg.nl/mailman/listinfo/ntg-context
www.ntg.nl/mailman/listinfo/ntg-context
www.ntg.nl/mailman/listinfo/ntg-context
www.ntg.nl/mailman/listinfo/ntg-context
www.ntg.nl/mailman/listinfo/ntg-context

TUGboat, Volume 25 (2004), No. 2 131

Virtual fonts— a tutorial

Thomas A. Schmitz

Lots of information on TEX’s virtual fonts can be
found on the web and in books (e.g., Knuth’s very
own “Virtual Fonts: More Fun for Grand Wiz-
ards”, http://www.ctan.org/tex-archive/info/
virtual-fonts.knuth). However, there doesn’t
seem to be a step-by-step tutorial for non-wizards
like myself. I have experimented with virtual fonts
recently. It took me a while to understand the ba-
sics, so I thought that other people might find it
useful to hear about this and avoid some common
mistakes.

1 Basic facts about virtual fonts

Let’s start by discussing two immensely useful things
that virtual fonts can do.

First, they can remap characters within the
same font. If you have a font foo with files foo.pfb
and foo.tfm, you can make a virtual font foobar

that will be identical to foo but print an “A” when-
ever you have a “B” in your TEX file.

This may sound absurd at first, but there are
cases where it is useful. For instance, some fonts
offer alternative forms for letters. With the help of
a virtual font, you can remap the letters and thus
switch to these alternative forms without changing
your TEX source.

The second use for virtual fonts is much more
common: Given a font foo, you can create a virtual
font foobar that will include some characters from
a second font, say bar. This is often used to include
old-style numerals or additional ligatures that are
not provided by the normal font.

2 Copying the font files

So, let’s begin. We assume that we will be using two
PostScript fonts, foo and bar. Usually, for each of
these fonts, we will have two files foo.tfm (resp.
bar.tfm) and foo.pfb (resp. bar.pfb) and nothing
else, so we need to create a virtual font (.vf) file
from scratch. I didn’t find it mentioned anywhere
that this is not only possible, but even fairly easy.

We’ll perform these operations on the command
line in a working directory, such as /tmp. So the first
step is to copy foo.tfm to this directory:

cd /tmp

cp /PATH/TO/foo.tfm .

(Watch the trailing period, it’s necessary!)

3 Create a human-oriented property list

The file foo.tfm is a binary file, in a format that

TEX can read. If we want to edit it, we will have
to convert it to a so-called “property list” file (typi-
cally given the extension .pl), which is a plain text
file that can be read by humans. We will be using
tools that come with any complete TEX installation.
From the command line:

tftopl foo foo

(Yes, that’s right: we have to type foo twice!)

4 Open the property list

We now have a new file foo.pl which contains all
the information about the font that TEX needs.
Open it in your favorite text editor. If you’re edit-
ing in a non-Unix environment, such as Windows or
Mac OS X, make sure that your editor is set to use
Unix line endings, unless you know for certain that
your TEX utilities don’t mind. The first few lines
will read like this:

(FAMILY TEX-FOO)

(FACE F MRR)

(CODINGSCHEME FONTSPECIFIC + TEX TEXT)

(DESIGNSIZE R 10.0)

...

(LIGTABLE ...

If there is a line (CHECKSUM O ...), delete it;
it will be regenerated later.

5 Editing the property list

In order to generate a virtual font, we need to modify
this file. First, we have to tell TEX which fonts our
new virtual font will be referring to. Let’s say they
are foo.tfm and bar.tfm— needless to say, both
have to be installed and functional in your TEX in-
stallation.

As a first step, we will create a virtual font that
will remap some characters within foo. So just be-
fore the line starting with (LIGTABLE, add this:

(MAPFONT D 0

(FONTNAME foo)

(FONTDSIZE R 10.0)

)

The FONTDSIZE of foo is found from the
(DESIGNSIZE R 10.0)

line above; all we have to do is copy this information.

6 Remapping a character

Now let’s scroll down in this file. The LIGTABLE

(containing information about ligatures and kern-
ing) will end with two lines

(STOP)

)

After this, the section with information about
all the defined characters in the font will follow,
probably starting something like this:

132 TUGboat, Volume 25 (2004), No. 2

(CHARACTER O 0

(CHARWD R 0.674)

(CHARHT R 0.726)

)

TEX itself only cares about the dimensions of
characters, as stored in the .tfm file, when doing the
typesetting; it essentially leaves room for an empty
box with these dimensions. The actual characters
(the visible “glyphs”) are put into these boxes only
when the final PostScript or PDF output is made.

(CHARACTER C A

(CHARWD R 0.747)

(CHARHT R 0.747)

)

(CHARACTER C B

(CHARWD R 0.739)

(CHARHT R 0.726)

)

TEX will be using the box described as here, so
we want the box for “B” to have the dimensions of
the box for “A”. Hence, the first thing to do is copy
the dimensions of “A” into “B”. Then the section
should look like this:

(CHARACTER C A

(CHARWD R 0.747)

(CHARHT R 0.747)

)

(CHARACTER C B

(CHARWD R 0.747)

(CHARHT R 0.747)

)

Next (and this is the magic of virtual fonts)
we tell TEX that it should remap “B” to “A”. Just
before the closing parenthesis of CHARACTER B, we
insert a new section, so that “B” will look like this:

(CHARACTER C B

(CHARWD R 0.747)

(CHARHT R 0.747)

(MAP

(SETCHAR C A)

)

)

One of the things that can be a bit confusing
about these property lists is that (apart from the
numbers and the 26 letters of the English alphabet)
characters are referred to by “octal numbers”. If
you want to know what character corresponds to
what octal number, you can have a look at the tables
created by testing the font (section 9).

7 Saving the file

That’s it! We have modified the font description;
now we need to generate the binary files for TEX to
use. The next step is extremely important: save

the file to a different name.

In our case, let’s say we call the new virtual
font foobar. The base name doesn’t much matter,
but the extension should be .vpl; so let’s save to
foobar.vpl.

8 Generating the binary files

Back to the command line. We now run a pro-
gram that will convert foobar.vpl into two new
files, foobar.tfm and foobar.vf:

vptovf foobar.vpl

This will not only do the conversion, it will also
check whether the .vpl file is in good order. It
is very picky about the right indentation level and
parentheses; if there is a problem it will give the
exact line number. So if you get errors, just go back
and edit foobar.vpl again.

vptovf may also tell you that it had to “round
some units”; that’s OK.

9 Installing the new font

So now we should have foobar.vf and foobar.tfm.
The next step is to copy both files into the right
place. I would suggest you create your own texmf-
branch in your home directory, for instance, under
~/Library/texmf, or ~/ (depending on your local
setup as defined in texmf.cnf). For the sake of our
example, we’ll use the former:

cp foobar.tfm ~/Library/texmf/fonts/tfm/

cp foobar.vf ~/Library/texmf/fonts/vf/

(You will have to create these directories if they
don’t exist yet.)

Since we’re only using characters from within a
single font (foo), we don’t need to fiddle with any
“map files”. When the final output is made, only
font foo will be needed, which was already func-
tional.

Before embarking on a long journey with this
new virtual font (say your 1200-page thesis that is
due in two weeks), let’s test it on its own:

cd ~

pdfetex testfont

pdfetex will respond something like this:

This is pdfeTeX, Version 3.1415...

...

(/usr/local/.../plain/base/testfont.tex

Name of the font to test =

We now type the name of our font:
foobar

and pdfetex will respond:

Now type a test command (\help for help):)

*

We give the command:
\table

TUGboat, Volume 25 (2004), No. 2 133

pdfetex will come back with another asterisk, and
now we’re done:

\end

If all goes well, a file testfont.pdf will be cre-
ated with a table showing that font foobar does not
have a letter “B”, but twice the letter “A” — which
is just what we wanted.

If your TEX distribution includes the ConTEXt
format (see http://tug.org/pracjourn/2005-1/

peter/), you can also create a very nice colorized
table. Make a file test.tex like this:

\starttext

\showfont[foobar]

\stoptext

Then, run this file through ConTEXt:
texexec --pdf --nonstopmode test.tex

You’ll get a table with all the glyphs; every cell will
indicate the decimal, hexadecimal, and octal value
of the glyph (very handy for editing property lists).

10 Adding a second font

Now let’s work on including further characters, like
old-style numerals or ligatures from font bar. We
go back to our working directory and delete the old
file foobar.vpl. Don’t worry, we’ll create it again:

rm foobar.vpl

vftovp foobar foobar foobar

We do this because vftovp will automagically
include one important piece of information; every
character description will now look like this:

(CHARACTER C A

(CHARWD R 0.747)

(CHARHT R 0.747)

(MAP

(SETCHAR C A)

)

)

That’s already not bad, but to mix glyphs from
two fonts, we have to say which font to use in every
instance. So in an editor, we perform a “find and
replace” that will find every instance of (MAP and
replace it with

(MAP

(SELECTFONT D 0)

In Emacs, it is possible to include the line break in
the replace pattern. (I don’t know how other editors
can handle it.)

Now add the information about the second font,
just as described in section 5:

(MAPFONT D 1

(FONTNAME bar)

(FONTDSIZE R 10.0)

)

To get the DSIZE of bar, we can again just con-
vert bar.tfm into bar.pl, open this file and look
into the first lines. Or, if you want to be fancy:

tftopl ‘kpsewhich bar.tfm‘ | grep DESIGNSIZE

(watch the “backticks”, those are single opening
quotes!).

11 Including glyphs from a second font

Now look for the section containing the numerals.
It should start like this:

(CHARACTER C 0

(CHARWD R 0.514)

(CHARHT R 0.628)

(CHARDP R 0.1)

(MAP

(SELECTFONT D 0)

(SETCHAR C 0)

)

)

Again, the first thing to do is copy the dimen-
sions of CHARACTER C 0 from bar.pl to foo.pl. Then
the new step, to use bar instead of foo: replace
(SELECTFONT D 0) with (SELECTFONT D 1). Re-
peat for all the other numerals.

We then follow the same procedure as before:
generate the tfm/vf pair (section 8) and copy these
files to the right directories (section 9). Now TEX
and friends will look at the new tfm/vf, and take the
numerals from font bar, and everything else from
font foo. Again, test the results!

12 Post-install

After you have edited your virtual font, you can dis-
card the .vpl file. If you ever want to edit your font
again, you can recreate it by copying both the .vf

and the .tfm into the same directory and running
vftovp foo foo foo

Have great fun and feel like a great wizard!

13 Further reading

http://www.cl.cam.ac.uk/users/rf/pstex/index.htm

http://homepage.mac.com/bkerstetter/tex/

fonttutorial-current.html

http://zoonek.free.fr/LaTeX/Fontes/fontes.html

(in French)

⋄ Thomas A. Schmitz
Institut fuer Klassische und

Romanische Philologie
Universitaet Bonn, 53113 Bonn
Germany
thomas.schmitz@uni-bonn.de

134 TUGboat, Volume 25 (2004), No. 2

Typography

Typographers’ Inn

Peter Flynn

1 Devil in the Details

One of the hallmarks of publication-quality typeset-
ting is that it is correct in the fine detail. Not just
in positioning, spacing, balance, weight, and other
niceties of layout, but in thre key areas: speling,
punk chew asian and consistency. Few people have
the head for detail required of a typographer, but
most ordinary readers are quite capable of telling
poorly-set work from well-set, even if they cannot
put their finger on what is actually wrong with it.

If you can’t spell, find someone who can. There
is no shame in admitting to a spelling problem:
it’s very common. Spellcheckers can be useful,
but they tend to be error-prone on complex text
unless you spend a long time training them.

If you can’t punctuate, follow your publisher’s
rules; buy a copy of Eats, shoots, and leaves [4];
or if you’re self-publishing, see Figure 1.

If you’re by nature inconsistent, it will proba-
bly show, so hire a proofreader.

Beyond these three, there are three further levels at
which attention to the details of formatting can be
applied:

Looking acceptable. It’s not hard to get a de-
gree of regularity sufficient to pass muster with
the average reader, or even your pointy-haired
boss. LATEX will almost always get the position-
ing right for major structural blocks like section
headings, lists, and paragraphs. It may not be
the most elegant, but if it’s consistent and read-
able, and doesn’t interfere with the sense for
the reader, it’s acceptable. You can even get
this far with a word processor, if you’re feeling
masochistic, but see Figure 3. At this level, it’s
probably OK for office use or as drafts.

Looking ‘right’. This is a cultural thing. LATEX’s
defaults look right to an American, because it
grew up there. The extensive language cus-
tomization available in the babel package in-
cludes many typographic tweaks, but as far as
I’m aware there is nothing affecting font size or
vertical spacing: these you have to add your-
self.1 A similar requirement applies to other

1 It would be useful to produce an equivalent set of lay-
out default changes on a cultural (linguistic? national?) basis.
Several LUGs have already done this for their own constituen-
cies, so perhaps this could be extended.

These are guidelines that I have found useful in the ab-
sence of a formal set of rules. Some are cultural and need
adapting as appropriate. Books of rules exist in many
cultures (the Chicago Manual of Style [5]; the Guide of
the Modern Language Association [2]; the various vol-
umes of the Duden [1]; or any of the successors to Hart’s

Rules [3]), but these are sometimes slow to reflect cul-
tural changes, and may mislead users into perpetuating
an inappropriately antique style. Typists are taught to
splatter their work with unnecessary punctuation — try
to avoid this temptation.

1. Use punctuation sparingly.

2. Always use a space after closing punctuation unless
another punctuation sign follows, in which case a
\thinspace is appropriate. Don’t bother typing
multiple spaces: LATEX will adjust the spacing.

3. Never use a space between a word and the punctu-
ation which belongs after it (see Figure 2!) unless
required by the cultural style.

4. Use the apostrophe correctly:

(a) use it when something belongs to someone
(Flynn’s Rules = the rules belong to me);

(b) avoid it with simple plurals (Pizzas € 5.99) or
a number (1940s);

(c) use it without the extra ‘s’ when Rule 4a
applies but the word already ends in an ‘s’
(Jones’ Pizzas are better);

(d) use it where there’s a letter missing from the
word (there’s = there is; don’t = do not);

(e) avoid it when personal possessives already end
in ‘s’ (yours, his, theirs).

5. Use a full point at the end of a sentence.

6. Use a comma between phrases of a sentence only if
there is a shift in meaning or emphasis.

7. Use a colon between two related but distinct (or
opposing) thoughts in a sentence.

8. Use a semicolon between items in a list when they
all form part of a greater whole (as the sub-list at
Rule 4 above) and use a full point after the last
item (assuming it’s the end of the sentence).

9. Only ever use one exclamation or question mark at
a time.

10. Never abbreviate unless you’re short of space (ex-
ception: personal titles like Dr. and Ms.).

11. Never use full points in acronyms or abbreviations
(IBM not I.B.M.) unless you’re trying for that 1940s
effect.

12. Be consistent with single quotes and double quotes:
if you use double quotes for speech, use single
quotes for quotations within speech.

13. If a sentence ends with a URI, separate the full point
with a \thinspace so that novices don’t think it’s
part of the Web address. If it comes at the end of a
paragraph, consider omitting the full point entirely.

Figure 1: Rough Guide to Punctuation

TUGboat, Volume 25 (2004), No. 2 135

Not only have they put a space before the comma in
the first line, but the space before the semicolon has
permitted a linebreak which they clearly don’t see as
being wrong! [Irish Postal Service mission statement,
displayed in every post office.]

Figure 2: Wrong spacing for punctuation

typographic defaults, like the use of 1º instead
of 1st for the ordinal.2 At this level, a document
is probably publishable.

Being invisible. The objective of typographic de-
sign is to help the author communicate ideas to
the reader without getting in the way. Unless
you are explicitly trying for special effects (com-
mon in advertising, for example, where almost
anything goes to attract attention), the niceties
of typography should recede into the woodwork
or blend into the wallpaper. The reader should
be unaware that any special effort has gone into
the setting. Extra attention to detail can help
achieve this, ironing out the remaining inconsis-
tencies and minor infelicities, by adding man-
ual micro-adjustments here and there to create
that smooth, even look that makes a document
easy to read and does not cause the reader to
stumble over some unexpected bullet, font, or
oddity of spacing. But this can take a lot of ad-
ditional time, and the nature of the job should
indicate whether it is worth it or not (and it
comes naturally to some people, like the editors
of TUGboat). By this stage, your typography
has become invisible.3

2 And in passing I can’t avoid repeating that the use of a
superscripted ordinal in Anglo-American typography is a Vic-
torian relic, obsolete since before WW1, and unkindly reintro-
duced by word processors. Avoid it (it can be turned off —
with some difficulty — in word processors) and use lining low-
ercase (1st) instead.

3 That is, only your fellow conspirators compositors will
notice what you have done.

If your organization is joined at the hip to Microsoft
Word, you can still use LATEX to create PDFs by starting
your documents like this:

\documentclass[12pt]{article}

\usepackage[margin=1in]{geometry}

\usepackage{pslatex,sectsty,parskip}

\setcounter{secnumdepth}{0}

\allsectionsfont{\sffamily}

\makeatletter

\renewcommand{\maketitle}{%

\section{\@title}%

\subsection{\@author}%

\subsubsection{\@date}}

\makeatother

It takes a little more effort to tweak lists into looking as
ugly as Word’s default, but it’s possible.

Figure 3: Faking it for Word

I am aware that some of the guidelines in Fig-
ure 1 conflict with some received wisdom and I
would welcome comments.

2 The Atlantic Divide

The TUGboat editors reminded me during the writ-
ing of this piece that the differences between Anglo
and American typography still cause authors and
publishers some difficulty. The first thing the read-
ers will comment on is the additional comma placed
in inline lists in the US, so that the (UK) ‘apples,
pears and bananas’ becomes (US) ‘apples, pears, and
bananas’.

It looks as if there should be a semantic dif-
ference here, but there isn’t: to an American the
UK usage imples that pears and bananas are to be
taken as a group because there’s no comma: to the
BritEng reader, the US usage makes it look as if
bananas are some kind of afterthought. Again, con-
sistency is the watchword. If you’re using a pro-
grammable system like XSLT or LATEX’s paralist en-
vironment, it is even possible to omit the commas
in a list and make the macros do the work.

The trailing period is another bugbear. I used
one above after ‘bananas’ but the Modern Language
Association (all stand and uncover, please) demands
that the full point go inside the quotes even when
it’s not a part of the quotation! In a discussion on
style and punctuation this is probably misleading,
but it is the normal US convention— which TUG-

boat and many other technical works flout.
Increased use of email and text messaging has

probably led to a closing of the divide, but I remem-
ber feeling distinctly uneasy at the idea of ‘busing’
children to school (I pronounced it ‘bewsing’ at first

136 TUGboat, Volume 25 (2004), No. 2

sight, and had to ask what it meant) where ‘bussing’
would have been normal to me — if anything can be
said to be normal about verbing nouns.

3 Comeuppance

It’s always good to see the engineer hoist with his
own petard, so I suppose I had it coming to me for
the series of rants on ’reversed quotes’ (Typogra-
phers’ Inn, ad nauseam). It’s still a pet hate, largely
because it looks so silly, but it has become a shibbo-
leth among designers: you can tell one who knows
what she is doing by her avoidance of it.

I thought the earliest example I had seen was in
the 1970s volume I of the late and much missed Spike
Milligan’s war autobiography, where I put it down
to someone messing around with filmset matrices.

Last Sunday, irreverently gazing at the beauti-
fully engraved tablets on the walls of my city’s cathe-
dral during the Nine Lessons and Carols, I spotted
a memorial to a soldier of the Great War, killed in
what was then called the Soudan, which had two
quotations both in double reversed quotes. Presum-
ably the engraver felt it was more symmetrical.

The permanence of engraving on stone cannot
be underestimated: it lasts for thousands of years,
far longer than any print or type. With luck it will
outlast that other horror of the word processor, the
automated apostrophe-becoming-an-opening-quote,
which silently turns ’94 into ‘94 because it is count-
ing odd and even occurrences regardless of any pre-
ceding space, and thinks this is the start of reported
speech.

This and the ordinal2 are really good grounds
for ditching the word processor and using LATEX . . .

References

[1] [Duden Editors]. Die deutsche Rechtschreibung.
Brockhaus, Mannheim, 23rd edition, 2004.

[2] Joseph Gibaldi. MLA Style Manual and Guide

to Scholarly Publishing. Modern Language As-
sociation, New York, NY, 2nd edition, 1998.

[3] R.M. Ritter and Horace Hart. Oxford Guide to

Style. OUP, Oxford, 28th edition, 2002.

[4] Lynne Truss. Eats, Shoots & Leaves: The

Zero Tolerance Approach to Punctuation. Profile
Books, London, 2003.

[5] University of Chicago Press Staff. The Chicago

Manual of Style. University of Chicago Press,
Chicago, IL, 15th edition, 2004.

⋄ Peter Flynn

University College, Cork, Ireland

pflynn@ucc.ie

http://imbolc.ucc.ie/~pflynn

TUGboat, olume (2004), No.

Philology

Philological facilities for the Coptic script

Claudio Beccari and Cristiano Pulone

Abstract

Since 1995 some Coptic fonts by Serge Rosmorduc
have been available on CTAN, along with minimal
support for using them with LATEX. We have ex-
tended them a little bit and added some support for
philological typesetting, including hyphenation pat-
terns and a small collection of macros for the ease
of the philologists.

1 Introduction

Thanks to Serge Rosmorduc, since 1995 one Coptic
font has been available on CTAN together with the
font description file necessary for its use with LATEX.

Rosmorduc provided the METAFONT descrip-
tion with file copte.mf; apparently he obtained the
contour descriptions by tracing some fonts very sim-
ilar to those that appear in a hieroglyphic dictionary
[2]; one line of that source METAFONT file says:1

{limn output Sep 24 17:59:49 1995 from

imageto output Sep 24 16:54:15 1995}

but nothing else is said about the source images he
operated on. He put his fonts in the public domain
with a generic sentence, but an auxiliary file of his
bundle contains the whole specification of the Free
Software Foundation Licence.

We therefore felt free to add and modify Ros-
morduc’s files, by changing names and giving him
full credit for the original work he had done. His
work continues to be at least 80% of the new files. In
particular his approach has been almost completely
maintained in this sense: his tracing algorithm gave
him the Bezier nodes and control points, therefore
his METAFONT description is explicit, not a param-
eterized algorithmic one as we are accustomed to
from the Computer Modern font source files; on this
point you may see [5] for further information.

On the other side the fonts whose pictures have
been traced by Rosmorduc have a very interesting
appearance, since they give the impression of being
stroked with a quill pen or some other old hand-
writing instrument of that sort.

Since Coptic fonts appear mostly in Christian
liturgical texts we added some symbols that fre-
quently occur in such texts. Nevertheless, philolo-

1 limn and imageto are two early programs for tracing

font contours; they are part of the GNU Font Utilities.

TUGboat, Volume 25 (2004), No. 2 137

gists today dedicate most of their attention to para-
Christian texts, especially Gnostic ones, as those in
the renowned Nag Hammadi Library. Such signs as
! " ∗ are specific to ritual texts, not necessarily
strictly Christian ones; 5 and V are of evident
Christian origin, but they frequently appear in pa-
gan ritual texts, Gnostic cosmologies, etc. For the
philologist’s ease we also added other glyphs that
are in use in their texts.

We decided also to collect all the signs on the
first page of the font table; in other words, we used
only the first 128 slots of the font table. We did not
care much about the encoding; Rosmorduc himself
had in mind a philologist writing critical texts, not
a theologian writing a whole text in Coptic, thus re-
quiring numbers, punctuation, extra signs, etc. We
are aware that there is an effort among the clergy
in the Coptic Church trying to define a common en-
coding scheme (see [3], for example). On the other
hand, the Unicode standard allocates the unique
Coptic signs in slots 0x03E2 through 0x03EF, while
apparently the other symbols derived from Greek
share the same positions of the Greek letters.

For reasons of compatibility we retained the lig-
atures defined by Rosmorduc, so that a text origi-
nally written to be typeset with the copte fonts can
be processed with our fonts copto (ordinary upright
font) and copti (inclined font), obtaining the same
output except for a possible inclination.

In the end, the ordinary Coptic font turned out
as shown in Table 1.

We also provide the font definition files, and,
most important of all, we provide Type 1 versions
of the fonts. So there should be no difficulty in pro-
ducing fine documents in PostScript or PDF format.

2 The Coptic font

As we said in the introduction, Rosmorduc’s fonts
were obtained by tracing the images of Coptic glyphs
taken from some source where they had suitable
dimensions. The METAFONT specifications are in
terms of contour Bezier nodes and control points,
although the latter are specified indirectly.

The font design size is declared to be 10pt and
everything inside the METAFONT files is specified in
terms of a unit u declared to be one tenth of the de-
sign size, therefore nominally u = 1 pt. In practice
the heights, widths and depths of all characters were
as the tracing algorithm had determined; virtually
all of them were distinct. No x height, quad width,
etc., were defined, but it turned out that the aver-
age x height of the various glyphs was significantly
larger than the corresponding dimension of compa-
rable fonts; in particular, it was almost 25% larger

than the corresponding height of the CM fonts.
We decided to modify the font metric dimen-

sions and to specify the other missing font dimen-
sions that define the font-dependent TEX units.

We modified several glyphs; the most signifi-
cant modification was the one concerning the let-
ter “shima” whose upper stroke protrudes far out of
the glyph bounding box, so that it would not butt
against the ascenders or the next right character,
specifically with “lauda”, as in the word qloq.

We added some special symbols, such as

! " 5 V : > ? 9 v 2 =

and redefined the ligature table to cope with new
glyphs and their ligatures, while preserving Rosmor-
duc’s ligatures, for compatibility reasons. Probably
in this respect more work should be done, but the
result appears acceptable.

3 The font keyboard mapping

We use the word transliteration instead of encod-
ing, because we had the philologist in mind; that
is, a person who is writing critical texts in Coptic,
but using a “Latin” keyboard. In fact, we made
all our experiments with the Italian keyboard which
lacks some important ASCII characters, but does
have various others that are missing from a “nor-
mal” US keyboard.

For example, we had to define the grave accent.
The Italian keyboard lacks the key with the grave
accent (or back tick); we used the apostrophe key
instead, on the assumption that the acute accent is
seldom if ever used in Coptic. On the other hand,
we defined a macro \° because the ° sign is on the
Italian keyboard and the macro appears less obtru-
sive when inserted into the source file. We provided
the \0 alias for those who use keyboards without the
° sign.

The correspondence between the Latin and the
Coptic signs is as shown in Table 2. It is based on the
correspondence of the “sounds” or of the “shapes”
or . . . on the availability of a free key!

Notice that in Table 2 we make no attempt
to spell out the names of the Coptic letters; there
are several naming conventions that depend on the
Western language of those who named them. At
the web site http://www.copticchurch.net there
is a short outline regarding Coptic fonts with their
names. The point is that the Coptic letters should
carry a phonetic value, but those who know how to
read and write this language do not agree on their
pronunciation, therefore the phonetic transliteration
is not unique. Nevertheless, those who master the
Coptic language can perfectly understand Table 2.

138 TUGboat, Volume 25 (2004), No. 2

’00 ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’10 ’11 ’12 ’13 ’14 ’15 ’16 ’17

’000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

"00

’020
16 17 18 19 20

–
21
—

22 23 24 25 26 27 28 29 30 31
"10

’040
32
!

33
"

34
#

35
$

36 37 38 39
(

40
)

41
*

42
+

43
,

44
-

45
.

46
/

47
"20

’060 0
48

1
49
2

50
3

51
4

52
5

53
6

54 55
8

56
9

57
:

58
;

59
<

60
=

61
>

62
?

63
"30

’100
64
A

65
B

66
C

67
D

68
E

69
F

70
G

71
H

72
I

73
J

74
K

75
L

76
M

77
N

78
O

79
"40

’120 P
80
Q

81
R

82
S

83
T

84
U

85
V

86
W

87
X

88
Y

89
Z

90
[

91 92
]

93 94 95
"50

’140 ‘
96
a

97
b

98
c

99
d

100
e

101
f

102
g

103
h

104
i

105
j

106
k

107
l

108
m

109
n

110
o

111
"60

’160 p
112

q
113

r
114

s
115

t
116

u
117

v
118

w
119

x
120

y
121

z
122 123 124 125 126 127

"70

"00 "01 "02 "03 "04 "05 "06 "07 "08 "09 "0A "0B "0C "0D "0E "0F

Table 1: The ordinary upright Coptic font

4 The Coptic fonts in Type 1 format

As mentioned previously, we produced our Coptic
fonts in Type 1 PostScript format.

We followed the near-standard procedure of
tracing large-scale raster fonts made with META-
FONT by means of mftrace [7] and pipelining the
output to pfaedit (now fontforge [8]).

We did not try to create an encoding vector
with any kind of names for the Coptic letters, not
even trying to “copy” them from existing encoding
vectors. Our fonts are rather non-standard, so their
use is confined to (LA)TEX use only.

5 The Coptic font description file

Since we produced two basic shapes for the Coptic
font family, we had to produce a new LATEX font
definition file, lcopcoptic.fd, substantially differ-
ent from the single-shape one by Rosmorduc.

In addition to the obvious point of declaring
two shapes, instead of just one, the main changes
are the following:

1. The font encoding was named LCOP in accor-
dance with the recommendation of the LATEX3
team that any non-standard encoding should
start with the letter L, for “local encoding”.

2. The font is loaded with a default magnification
of 0.83. This scales the Coptic font to have a
closer match between its x-height and the one
of the surrounding text in Latin characters.

As with the original font by Rosmorduc, our
fonts come in one size, although the METAFONT

source files may be invoked on the fly by modern
TEX systems so as to generate the raster files at the
desired magnification. The heavy strokes of these
fonts cope well with shrinking, but we think they
become too black when enlarged too much, as seen
in titles. In any case, we produced the PostScript

Type 1 versions of these fonts so that a single source
is used at all magnifications and PostScript or PDF

documents can be well typeset, easily readable on
screen and perfectly printable on paper.

6 Coptic hyphenation

We produced also a pattern file for the hyphenation
of the Coptic language; it was “hand made” since we
were not able to find either a word list or a Coptic
dictionary specifying hyphenation points.

We worked on and implemented grammar rules
[6] based on open and closed syllables, similar to the
ancient Greek and Italian rules. While typesetting a
master’s thesis on some ancient Coptic texts, we en-
tered the words into a word list without hyphenation
points and checked the hyphenations by means of
a little LATEX program implementing V. Eijkhout’s
\printhyphens macro [4].

The present patterns appear to hyphenate cor-
rectly all the words on the word list (a few hundred).
Some possible hyphenation points may have been
missed, but this is not a real inconvenience. (Ev-
ery time the patgen program is used to create new
patterns or analyze existing ones, the statistics of
the missed hyphens are output. This is useful infor-
mation when patgen is used to create or to modify
hyphenation patterns from a hyphenated word list,
but is of minor importance when analyzing existing
patterns.)

In fact, typographical hyphenation does not
necessarily coincide with grammatical hyphenation,
even though, of course, it must not violate gram-
matical rules. Typographical hyphenation fulfills
two main purposes: (a) allowing the typeset text
to be broken into lines and justified without ugly
white gaps, and (b) keeping the reader comfortable
in reading broken lines. For the second purpose it
may be desirable to refrain from certain hyphen-

TUGboat, Volume 25 (2004), No. 2 139

Latin Coptic Latin Coptic
a a A A
b b B B
c c C C
d d D D
e e E E
f f F F
g g G G
h h H H
i i I I
j j J J
k k K K
l l L L
m m M M
n n N N
o o O O
p p P P
q q Q Q
r r R R
t t T T
u u U U
v v V V
w w W W
x x X X
y y Y Y
z z Z Z
8 8 81 (
ks) KS, Ks *
ps # PS, Ps $
dj ; DJ, Dj <
hj j HJ, Hj J
tj 3 TJ, Tj 4
h1 / H1 0
h2 2 H2 6

Table 2: Correspondence between Coptic and
Latin signs or sign sequences on a Latin keyboard

ations; this is certainly so in Italian, and therefore
we followed our Italian tradition.

7 Macros for Coptic philologists

We completed the Coptic bundle with a coptic.sty

file containing some useful macros in order to easily
typeset Coptic source .tex files for critical texts.

The style file obviously provides a command
and an environment, \textcoptic and coptic re-
spectively, for typesetting the marked text using the
Coptic alphabet and hyphenation. There is also a
command \textlatin for inserting some text in the
Latin alphabet. For compatibility reasons the code
fragment “coptic” may be substituted by “copte”
or “copto”, so old documents, the source files of

command example output

\H \H 0
\h \h /
\= \={me}

♣ ♣

me
\" \" –
\"i \"i 9
\"u \"u v
\’ \’e ‘e
\’m \’m >
\’n \’n ?
\°a \° :
\0 \0 :
\+b \+ =

\pont \pont{c} c
q

\trepun \trepun !
\threedots \threedots !
\trepund \trepund "

\sic \sic e.\=nk
sic

e.
♣ ♣

nk

\dubious \dubious{anokpe}
?

︷ ︸︸ ︷
anokpe

\barretta \barretta{dj} ;
\Asterisk \Asterisk ∗

\Crux \Crux 5
\crucicula \crucicula V
\iesus \iesus

♣ ♣

ic
\djois \djois

♣ ♣

;c
\xcr \xcr

♣ ♣

xcr
\xc \xc

♣ ♣

xc

a Besides the sign : this command and its alias \0 intro-

duce a discretionary break after the short hyphen.
b This double inclined dash mark inserts an unbreakable

point within a word, but it does not inhibit hyphenation in

the remaining part of the word.

Table 3: New commands with the Coptic fonts

which were composed with the original Rosmorduc
files or with our alpha versions of the package, are
still usable, with no need to correct the commands
and the environments.

It must be noted that the loading order of the
packages fontenc and coptic makes a difference.
If the former precedes the latter, coptic remembers
the correct Latin encoding; if the latter precedes
the former, coptic remembers the default encod-
ing, presumably OT1, before the subsequent fontenc
package changes the Latin encoding. Therefore a lit-
tle care should be exercised when loading packages,
or the \textlatin might yield unexpected results.

The specific Coptic language macros that are
introduced with the package are collected in Ta-
ble 3. Some of them operate on arguments, others
are freestanding. The diaeresis accent may be set on
every letter, but special commands are defined for

140 TUGboat, Volume 25 (2004), No. 2

the cases when the letters are i and u, to use the
special accented glyphs already present in the font.
Similarly, the grave accent has special glyphs when
the letter is m or n.

It is a well-known problem that accent macros
interrupt what TEX considers to be a word; in gen-
eral, they inhibit subsequent hyphenation in the
word. By resorting to special characters and the
advanced LATEX2ε composite symbol command def-
initions it is possible to address the special symbols
directly, thus allowing hyphenation and letting TEX
work with the possible ligature and/or kerning prop-
erties of the characters involved.

Finally, we note that the coptic package is
compatible with the teubner package, so that some
synergy can be exploited between the two. In prac-
tice, typesetting critical texts in Coptic almost al-
ways implies citing numerous Greek references and
text samples, possibly from the same ancient peri-
ods, so that all the facilities available with teubner,
that are not directly connected with the Greek lan-
guage, can be quite useful.

8 Conclusion

In preparing the modified Coptic fonts, from the
original work of Serge Rosmorduc, and all the re-
lated files for typesetting critical texts in Coptic, we
think we have made a first attempt to extend the
present situation; but the actual approval of this
work may come only from those scholars and Coptic
clergy that use this alphabet and this language.

We did not experiment with ledmac [9] simply
for lack of time; we suppose that the coptic and
the ledmac packages should be compatible. If there
are any, they may in fact be between teubner and
ledmac and these possible bugs will be examined for
the next release of teubner.

We are very grateful to the TEX users who have
been so patient to use our material and submit con-
structive criticism. We will continue working on the
refinement of this bundle in order to make it more
useful to the Coptic experts.

As a concluding display, see in Figure 1 a sam-
ple text typeset with the Coptic fonts of this ar-
ticle; the versicle marks were obtained by means
of the teubner package facilities. If upper and/or
lower philological marks are present it is advisable
to spread out the typeset lines a little bit; in Fig. 1
they were processed with a spread factor of 1.5.

References

[1] Budge, Wallis, Egyptian Hieroglyphic
Dictionary: With an index of Egyptian words,
king list and geographical list with indexes, list

Wien K 8304 (Rainer, AN 201)
1

3wrke erok mpoou w /rou+oc paggeloc

etthy
2

e;en texwra nghme ;ekac
q

ekepwry

nnek-
3

ten/ e;en ma
sic

ma nim eterepi/nau

nbarwt
4

n/h
q

tf yantefktof pma ntafei

ebol n/htf pi
5

ei
q

b
q

t mnpemnt pem/it

mn8alacca eywpe ef-
6

tomc
q

/apka/

ekeouwn/f ebol eywpe ef/hp
7

/mma ntom

ekektof epeima pntaf;itf mper-
8

trepka/

ta;rof /arof mpertretpe er/aibc erof
9

auw

mpertr
q

elaau nemton ywpe naf pthrf
10

a9o

a9o taxh taxh taxh

Figure 1: A sample typeset with the copto font

of hieroglyphic characters, Coptic and Semitic
alphabets, etc., New York, Dover Publications,
1978.

[2] The Coptic Standard Character Code
(CSCC), http://www.copticchurch.net/
coptic_fonts/

[3] Eijkhout, Victor, “The bag of tricks”, TUGboat
14(4), 1993, p. 424.

[4] Hall, Timothy, “The METAFONT approach:
Implicit, relative, and analytical font design”,
TUGboat 24(2), 2003, pp. 200-205.

[5] Mallon, Alexis, Grammaire copte, Beirut 1904,
1926.

[6] Nienhuys, Han-Wen, mftrace—Scalable
fonts for Metafont, http://www.xs4all.nl/
~hanwen/mftrace/index.html

[7] Williams, George, fontforge,
http://fontforge.sourceforge.net/.
Originally named pfaedit.

[8] Wilson, Peter, ledmac—A presumptuous
attempt to port EDMAC, TABMAC and
EDSTANZA to LATEX, present in any
distribution of the TEX system when the
ledmac package is installed.

⋄ Claudio Beccari

Politecnico di Torino, Turin, Italy

claudio.beccari@polito.it

⋄ Cristiano Pulone

Università di Bologna, Bologna,

Italy

c_pulone@tin.it

TUGboat, Volume 25 (2004), No. 2 141

RyDArab — Typesetting Arabic mathematical

expressions

Azzeddine Lazrek

Abstract

TEX was adapted to handle passages of Arabic script
some years ago, via packages such as ArabTEX or
Ω. The package RyDArab, presented herein, extends
these to handle mathematics in an Arabic presenta-
tion. That means expressions with specific symbols
flowing from right to left, according to the Arabic
writing, as they can be found in Arabic mathemat-
ical handbooks.

1 Overview

Although TEX [3] was designed according to the con-
ventions of English and Western languages, it is also
able to handle passages of Arabic script [4]. Sys-
tems such as ArabTEX, by K. Lagally [5], and Ω,
by Y. Haralambous and J. Plaice [2], allow gener-
ating documents with passages in Arabic or some
other language using the Arabic script. Even though
many Arabic mathematical texts present mathemat-
ical expressions as they are in English or in French
texts, a large number of Arabic handbooks display
mathematical expressions using specific symbols in
a writing flowing from right to left. Arabic mathe-
matical document processing has been discussed in
[10] and [11].

The RyDArab system presented here is designed
for generating Arabic texts including such mathe-
matical writing. The system consists of a set of TEX
macro packages, some additional extensions and a
family of symbol fonts. It will run under the Plain
TEX or LATEX [6] formats. The present paper was
typeset with this package.

This paper is organized as follows: in section 2,
we show how to load the package. In section 3, we
present some package options. In section 4, we go
over commands that can be used to typeset Arabic
mathematical expressions and show some examples.
Of course, some problems are still to be solved. In
particular, some compatibility questions are under
investigation. There are still open questions that
are outside the scope of this paper.

Throughout the present paper, we speak about
“Arabic mathematical” texts, documents, expres-
sions, and so on. Of course, mathematics is unique;
it has nothing to do with any national specificity.
When we use this appellation, it refers only to the

Editor’s note: This article originally appeared in Die

TEXnische Komödie 2/2001, and is reprinted here by per-
mission, with many improvements by the author.

way in which mathematics is presented in most com-
mon Arabic writing.

2 Preamble

To use RyDArab to generate Arabic mathematical
expressions, first load the system by putting \input

rydarab (for Plain TEX) or \usepackage{rydarab}
(for LATEX) in the preamble of your document.

The ArabTEX package or Ω has to be loaded
first. That will be the system for typesetting the
textual component of the document.

3 Options

The commands defined in RyDArab are prefixed with
the initials “am” (for Arabic mathematical). This
helps to distinguish RyDArab’s commands from the
basic commands of TEX, LATEX, or other packages.
The other part of the command names derive from
the corresponding TEX or LATEX commands.

The following options are offered as commands
or options of the package:

arabmath to begin an environment where Arabic
mathematical expressions are generated (e.g.
h♣). This is the default.

latinmath to begin an environment where mathe-
matical expressions are in their Latin form (e.g.√

).

warabnum for using the standard western Arabic
digits ({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}). These digits —
known as Arabic digits — are used in North Af-
rica. This is the default.

earabnum for using the eastern Arabic digits ({0, 1,
2, 3, 4, 5, 6, 7, 8, 9}). These numerals — known as
Hindi digits — are used in the Middle East.

alpwithoutdots for using the alphabetic symbols
without dots. This is the default.

alpwithdots for using the alphabetic symbols with
dots.

funwithdots for using abbreviations representing
elementary functions with dots. This is the de-
fault.

funwithoutdots for using abbreviations represent-
ing elementary functions without dots.

If these options are specified in the preamble of
the input file, they work for the whole document.
If they are specified at the beginning of an envi-
ronment, in mathematical mode, the option is valid
only through the end of the environment.

4 Commands

In addition to the basic set of TEX commands, there
are new commands and commands resulting from
some transformations of similar commands in TEX.

142 TUGboat, Volume 25 (2004), No. 2

All these work in math mode only, either in display
or inline environments.

The commands are listed below in an Arabic
mathematical environment. The resulting text will
appear in the frame following or in front of the com-
mand.

4.1 Inversion of direction

\amrl{expr} inverts the direction of writing in order
to generate an Arabic mathematical expression expr

from right to left. Notice that the command \amrl

does not change the direction of text portions given
in additional braces:

$ {\amrl{ abjd }}$ XhH@

$ {\amrl{ {abjd} }}$ @HhX

$ {\amrl{ a{bj}d }}$ XHh@

If the command \amrl is used in the argument
of \amrl, both it and its argument must be enclosed
in braces:

$ {\amrl{ a\amrl{bj}d }}$ XHh@

$ {\amrl{ a{\amrl{bj}}d }}$ XhH@

$ {\amrl{ \amrl{abjd} }}$ @HhX

$ {\amrl{ {\amrl{abjd}} }}$ XhH@

In general, all commands with arguments that
are used in an \amrl command, and their argu-
ments, should be written in braces unless the ar-
gument consists of a single character. In the latest
versions of RyDArab, the use of the \amrl command
in an Arabic mathematical environment is transpar-
ent for the user. It is added automatically to the
expression in an Arabic environment.
\arabmath

${\hat b} , b{\sp{{17}}} ,

{\sqrt{s+3}}$

3 + �
♣

,17 H , Ĥ

4.2 Alphabetic symbols

The RyDArab system provides various Arabic char-
acters without dots or vowels or diacritics, including
three shapes of Arabic characters (initial, isolated
and with a tail) in bold or contour forms.

Arabic literal symbols are given via the translit-
eration TransTec [1] (see Table 1), which is an adap-
tation of ArabTEX’s [7] font xnsh. This coding dif-
fers slightly from the basic one used in ArabTEX to
generate text in Arabic. This transliteration can be
used either in text or mathematical expressions. In
order to use this transliteration in text also, the user
should load the transtec1 package and add the com-

1 The transtec package was developed by K. Lagally fol-
lowing our propositions. Our thanks to K. Lagally.

Letter Text Mathematical expression

@ a @ a

H. b H b K B D�K \amb
�H t
�H F

h. j h j k J D�k \amj

h H

p X

X d X d
	X Z

P r
	P z P z

� s � c � C D�� \amc
�� C

� S � s � S D�� \ams
	� D

 T T D�£ \amt
	 V

¨ E ¨ e « E D�« \ame
	̈

G
	¬ f ¬ f ¯ F D�¯ \amf
�� q � q

¼ k ¸ k D�» \amk

È l È l Í L D�Ë \aml

Ð m Ð m Ó M D�Ó \amm
	à n à n Þ N

è h ë H D�ë \amh

 Q

ð w ð w

ø
 y ø y þ Y û \amy

ø Y

� e

� u

� i

� eN or ee

� uN or uu

� iN or ii

� W

� o

Z A- Z A

@ Aa

@
 AY

ð Aw

K Ay�
@ Ma�
@ La

� K or -

Table 1: TransTec transliteration

mand \setcode{transtec} in the preamble. The
transliteration in use is not optimal. Since the pack-
age is intended for an Arab user, it would be better
to get a direct coding scheme from the keyboard.

Some Arabic literal symbols can be obtained
from the font NasX [8] also. In order to use this
font, the user should load the NasX2 package unless

2 The NasX package is the core of an Arabic mathematical
font. It was developed in order to have multiple glyphs of
Arabic literal symbols directly in METAFONT.

TUGboat, Volume 25 (2004), No. 2 143

the CurExt3 [9] package is already in use. Literal
symbols are obtained via commands and not directly
(see Table 2).

The Latin literal symbols are also offered:
${\latinletter A} ,

{\latinletter B} ,

{\latinletter C}$

or

{\latinletter A , B , C}

C , B , A

4.3 Accents

Accents, in various shapes, can be combined with
one or several symbols. Accents can be placed beside
the symbol on its left.

The prime accent can be oriented to the left:

$a{{’}} , b{{’}} , j{{’}}$

or

$a{{}^{\prime}}, b{{}^{\prime}},

j{{}^{\prime}}$

′h , ′H , ′ @

and the prime accent can be oriented to the right:

$a{{}^{\amprime}} ,

b{{}^{\amprime}} ,

j{{}^{\amprime}}$

✵h , ✵H , ✵ @

We can also have multiple prime accents ori-
ented to the left:
$b{{’}} , b{{’}{’}} ,

b{{’}{’}{’}}$

or

$b{{}^{\prime}} ,

b{{}^{\prime\prime}} ,

b{{}^{\prime\prime\prime}}$

′′′H , ′′H , ′H

and multiple prime accents oriented to the right:

$b{{}^{\amprime}} ,

b{{}^{\amprime\amprime}} ,

b{{}^{\amprime\amprime\amprime}}$

✵✵✵H , ✵✵H , ✵H

Several accents are offered:
${\hat b} , {\check b} , {\tilde b} ,

{\acute b} , {\grave b} , {\dot b} ,

{\ddot b} , {\breve b} , {\bar b} ,

{\vec b} , {\overleftarrow{b}} ,

{\overrightarrow{b}}$

−→H ,←−H , ~H , H̄ , H̆ , Ḧ , Ḣ , H̀ , H́ , H̃ , Ȟ , Ĥ

3 CurExt is an application for composing variable-sized
curvilinear symbols. It allows looking after the typography
of symbols such as brackets or kashida of Arabic letters in
the composition of Arabic mathematical symbols or the jus-
tification of Arabic cursive texts according to strict rules of
Arabic calligraphy.

Command Glyph Command Glyph Command Glyph

\alef ✥ \aalef ❅

\beh ✦ \bbeh ❆ \BEH ❛

\jeem ✧ \jjeem ❇ \JEEM ❜

\dal ★ \ddal ❈

\waw ✩ \wwaw ❉

\zain ✪ \zzain ❊

\tah ✫ \ttah ❋ \TAH ❢

\yeh ✬ \yyeh ●

\lam ✭ \llam ❍ \LAM ❤

\meem ✮ \mmeem ■ \MEEM ✐

\noon ✯ \nnoon ❏

\seen ✰ \sseen ❑ \SEEN ❦

\ain ✱ \aain ▲ \AIN ❧

\feh ✲ \ffeh ▼ \FEH ♠

\sad ✳ \ssad ◆ \SAD ♥

\qaf ✴ \qqaf ❖

\hamza ✵ \hhamza P \HEH ♣

\lamalef ✶ \llamalef ◗ \KAF q

\Yeh ✷ \YYeh ❘ \TTAH r

\Noon ✸ \NNoon ❙

\Zain ✹ \ZZain ❚

\MEem ✺ \MMEem ❯

\Beh ✻ \BBeh ❱ \BBEH ✈

\Jeem ✼ \JJeem ❲ \JJEEM ✇

\Heh ✽ \HHeh ❳ \HHEH ①

\Kaf ✾ \KKaf ❨ \KKAF ②

\Lam ✿ \LLam ❩ \LLAM ③

\Meem ❀ \MMeem ❬ \MMEEM ④

\Seen ❁ \SSeen ❭ \SSEEN ⑤

\Ain ❂ \AAin ❪ \AAIN ⑥

\Feh ❃ \FFeh ❫ \FFEH ⑦

\Sad ❄ \SSad ❴ \SSAD ⑧

Table 2: Arabic literal symbol font NasX

144 TUGboat, Volume 25 (2004), No. 2

Some accents are variable-sized:

${\underline{abj}} , {\overline{abj}} ,

{\widehat{abj}} , {\widetilde{abj}} ,

{\overleftarrow{abj}} ,

{\overrightarrow{abj}} ,

{\overbrace{abj}} , {\underbrace{abj}}$

hH@
︸︷︷︸

,
︷︸︸︷
hH@ , −→hH@ ,←−hH@ , h̃H@ , ĥH@ , hH@ , hH@

4.4 Digits

Eastern or western Arabic digits can be chosen ac-
cording to the author’s specifications, as follows.

For Western Arabic digits:

\warabnum

$0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9$

9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0

Eastern Arabic digits:

\earabnum

$0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9$

9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0

Western Arabic digits in old style:

$ {\oldstylenum{\amrl{

0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9}}}$

or

${\oldstylenum{0}} , {\oldstylenum{1}} ,

{\oldstylenum{2}} , {\oldstylenum{3}} ,

{\oldstylenum{4}} , {\oldstylenum{5}} ,

{\oldstylenum{6}} , {\oldstylenum{7}} ,

{\oldstylenum{8}} , {\oldstylenum{9}}$

 ,  ,  ,  ,  ,  ,  ,  ,  , 

4.5 Numbers

Numbers have to be enclosed within braces. The
braces can be omitted only if a number consists of a
single digit. The sign of the number should be put
outside the braces.

Numbers can be given with or without a frac-
tional part, separated either by a decimal comma or
a decimal dot. The numbers can be prefixed by an
optional sign. The first example shows the format-
ting according to North African typographic conven-
tions and the second according to Middle Eastern.

$7 , {5} , +{92} , -8 , {107} ,

{12.345} , {3{\latinmath ,}14}$

3,14 , 12.345 , 107 , 8− , 92+ , 5 , 7

\earabnum$7 , {5} , +{92} , -8 , {107} ,

{12.345} , {3{\latinmath ,}14}$

3,14 , 12.345 , 107 , 8− , 92+ , 5 , 7

4.6 Punctuation

The Arabic punctuation system is provided:

$, . ; : ! ? - \cdots$ · · · − ? ! : ; . ,

\latinpunct $,$ or \latinmath $,$

or \lating
,

Of course, Latin dotting is also available:

\latinpunct

$, . ; : ! ? - \cdots$
· · · − ? ! : ; . ,

4.7 Delimiters

Variable-sized delimiters with automatic adjusting
are obtained as follows:
$(, | , [, || , \{ ,

\} , || ,] , | ,)$
(, | , [, || , {,} , || ,] , | ,)

and
$\langle , \lbrace ,

\rbrace , \rangle$
〈, {,} ,〉

4.8 Symbols

The basic symbols have been adapted as follows:
1. Addition, subtraction, multiplication, equality:

$+ , - , * , \times , =$ =, × , ∗ , − , +

2. Division, western percentage and per mille and
eastern percentage and per mille:

$/ , \% , \wpermille ,

\epercent , \epermille$
0/00 , 0/0 , 0/00 , % , /

3. Inferior, superior, membership and capacity:

$< , > , \in , \ni$ ∈,∋,<,>

4. Assignment, equality and equivalence by defini-
tion:

\seqm , \leqm , \leqv
Qª�K
⇐⇒,

Qª�K
= ,=:

5. Radical, angle, existential and universal quanti-
fier:
$\surd , \angle ,

\exists , \forall$
∀ , ✾ , \ ,

♣

6. Negation:

${\not=} , {\not<} , {\not\in}$ 6∋, 6>, 6=

4.9 Superscript and subscript

Superscripts and subscripts can be placed at the left
of any symbol of the equation.

The command \sp{expr} or ^expr produces
expr as an exponent. The exponent expr should be
given within braces unless it consists of a single to-
ken. The command ^ does not change the direction
of expr. It can therefore be used only for a single
token.

$b{{}\sp{{17}}}+5 ; b{{}\sp{2}}+5*s{{}^b}$
H� ∗ 5 + 2H ; 5 + 17H

TUGboat, Volume 25 (2004), No. 2 145

The command \sb{expr} or _expr gives expr as an
index. The index expr should be given within braces
unless it consists of a single token. The command _

does not change the direction of expr. It can there-
fore be used only for a single token.

$b{{}\sb{{17}}}+5 ; b{{}\sb{2}}+5*s{{}_b}$

H� ∗ 5 + 2H ; 5 + 17H

The empty braces {} are necessary to get the
exponent or the index closer to the basic symbol.

4.10 Common functions

There are symbols for the usual abbreviations rep-
resenting elementary functions in use in mathemat-
ics. Table 3 shows the predefined names assigned
according to typographical conventions

Generally, the abbreviations representing ele-
mentary functions are used with dots. Sometimes,
they are noted without dots.

\funwithdots

$\sin c + \tan s$
� A 	£ + � Ag.

\funwithoutdots

$\sin c + \tan s$
� A£ + � Ag

4.11 New function

The command \newfunc{fname} defines a function
named fname.

${\newfunc{SGr}}(c) = \cos(c{{}\sp 2}) - 6$

6− (2�) A�Jk. = (�) Q 	ª�

4.12 Function defined with cases

The command \cases{array} generates a function
defined with different cases presented in array.

$d(c) = {\cases{

{-4c} & {{\arhbox{ AYZa kan }} c<0} \cr

{ 4c} & {{\arhbox{ AYZa kan }} c>0} \cr

{-2} & {{\arhbox{ Gyr Zlk }} } \cr

}}$

0 > � 	àA¿ @ 	X @
 �4−
0 < � 	àA¿ @ 	X @
 �4

½Ë 	X Q�

	« 2−





= (�)X

Mathematical Arabic symbols that stretch or
shrink according to the context are provided by the
system as well.

4.13 Root

The command \sqrt{expr} gives the square root of
expr.

${\sqrt{{{ {b*9} \over {lc} }}}} -

{\sqrt{c{{}\sp 2}}} + {\sqrt{5a}}$

@5
♣

+ 2�
♣
− H∗9

È�

q

Name Example Result

Sine $\sin c$ � Ag.
Cosine $\cos c$ � A�Jk.
Tangent $\tan c$ � A 	£
Cotangent $\cot c$ � A�J 	£
Secant $\sec s$ � A�̄

Cosecant $\csc c$ � A�J�̄

Arc cine $\arcsin c$ � Ag. 	P
Arc cosine $\arccos c$ � A�Jk. 	P
Arc tangent $\arctan c$ � A 	£ 	P
Arc cotangent $\arccot c$ � A�J 	£ 	P
Arc secant $\arcsec c$ � A�̄ 	P
Arc cosecant $\arccsc c$ � A�J�̄ 	P
Hyperbolic sine $\sinh c$ �

	PAg.
Hyperbolic cosine $\cosh c$ �

	PA�Jk.
Hyperbolic tangent $\tanh c$ �

	PA 	£
Hyperbolic cotangent $\coth c$ �

	PA�J 	£
Hyperbolic secant $\sech s$ �

	PA�̄

Hyperbolic cosecant $\csch c$ �
	PA�J�̄

Arc hyperbolic sine $\arcsinh s$ �
	PAg. 	P

Arc hyperbolic cosine $\arccosh c$ �
	PA�Jk. 	P

Arc hyperbolic tangent $\arctanh c$ �
	PA 	£ 	P

Arc hyperbolic cotangent $\arccoth c$ �
	PA�J 	£ 	P

Arc hyperbolic secant $\arcsech c$ �
	PA�̄ 	P

Arc hyperbolic cosecant $\arccsch c$ �
	PA�J�̄ 	P

Logarithm $\lg c$ � ñË
Exponent $\exp c$ � ê�̄

Table 3: Usual functions

The command \root{expr1} \of {expr2} gives the
expr1 root of expr2.

$ {\root{3b} \of

{2+{\frac{b*9}{c}}}}$
9∗H
� + 2

q
H3

4.14 Integral

The command \lint_{expr1}^{expr2} gives the
integral from expr1 to expr2 using the reversed sym-
bol

✽❀.

146 TUGboat, Volume 25 (2004), No. 2

${\lint_{1}^{T}} c{{}^{b}} A c ;

{\lint\limits_{1}^{T}} c{{}^{b}} A c$

�ZH�
 ✽❀
1

; �ZH�
1

✽❀

The command \sint_{expr1}^{expr2} gives the
integral from expr1 to expr2 using the reversed sym-
bol

❘
.

${\sint_{1}^{T}} c{{}^{b}} A c ;

{\sint\limits_{1}^{T}} c{{}^{b}} A c$

�ZH�
 ❘
1

; �ZH�

1
❘

4.15 Sum

The command \lsum_{expr1}^{expr2} produces
the sum from expr1 to expr2 using the conventional
Arabic symbol m.× .

${\lsum_{b=1}^{s}} c{{}^b} ;

{\lsum_{b=a-1}^{s}} c{{}^b}$

H�
�

������������m.×
1−@=H

; H�
�

��������m.×
1=H

The command \csum_{expr1}^{expr2} produces
the sum from expr1 to expr2 using the conventional
Arabic curved symbol �✍. This command needs the
CurExt application.

${\csum_{b=1}^{s}} c{{}^b} ;

{\csum_{b=a-1}^{s}} c{{}^b}$

H�
�
✁✍
1− @ = H

; H�
�
✂✍
1 = H

The command \ssum_{expr1}^{expr2} produces
the sum from expr1 to expr2 with the inverted sym-
bol

P
.

${\ssum_{b=1}^{s}} c{{}^b} ;

{\ssum\limits_{b=a-1}^{s}} c{{}^b}$

H�
�P

1−@=H
; H� �

1=H

P

The command \ssum_{expr1}^{expr2} produces
the sum from expr1 to expr2 using the inverted big
symbol as shown (the broken corner in this symbol
is a known flaw to be repaired in a future version).

${\gsum_{b=1}^{s}} c{{}^b} ;

{\gsum_{b=a-1}^s} c{{}^b}$

H�

� ❊
1− @ = H

; H�

� ❊
1 = H

4.16 Product

The same can be done with the product symbol of
product. The command \lprod_{expr1}^{expr2}

gives the product from expr1 to expr2 using the
conventional Arabic symbol

	Y�����k. .

${\lprod_{b=1}^{s}} c{{}^b} ;

{\lprod_{b=a-1}^{s}} c{{}^b}$

H�
�	Y������������k.

1−@=H
; H�

�	Y��������k.
1=H

The command \cprod_{expr1}^{expr2} gives the
product from expr1 to expr2 using the conventional
Arabic curved symbol✏✄✎. This command needs
the CurExt application.

${\cprod_{b=1}^{s}} c{{}^b} ;

{\cprod_{b=a-1}^{s}} c{{}^b}$

H�
�

✏✁✎
1− @ = H

; H�
�

✏✂✎
1 = H

The command \sprod_{expr1}^{expr2} gives the
product from expr1 to expr2 using the symbol

◗
.

${\sprod_{b=1}^{s}} c{{}^b} ;

{\sprod\limits_{b=a-1}^{s}} c{{}^b}$

H�
�◗

1−@=H
; H� �

1=H

◗

The command \gprod_{expr1}^{expr2} gives the
product from expr1 to expr2 using the big symbol✷✸

(see remarks about the big summation symbol).

${\gprod_{b=1}^{s}} c{{}^b} ;

{\gprod_{b=a-1}^s} c{{}^b}$

H�

�✷✸
1− @ = H

; H�

�✷✸
1 = H

4.17 Limit

The command \lim_{expr1} \to {expr2} gives
the limit when expr1 tends to expr2 using the con-
ventional Arabic symbol A�����î 	E.
${\lim_{c \to 0}} c{{}^2} ;

{\lim_{c \to +\infty}} c{{}^2}$

2� A���������������î 	E
∞+←�

; 2� A���������î 	E
0←�

The command \clim_{expr1} \to {expr2} gives
the limit when expr1 tends to expr2 using the con-
ventional Arabic curved symbol✒✄✑. This com-
mand needs the CurExt application.

${\clim_{c \to 0}} c{{}^2} ;

{\clim_{c \to +\infty}} c{{}^2}$

2�✒☎✑
∞+← �

; 2�✒✆✑
0← �

4.18 Fraction

The command \frac{expr1}{expr2} gives a frac-
tion with expr1 as numerator and expr2 as denom-
inator.
${\frac{1}{2}} ;

{\frac{2*s}{b}}$
�∗2
H ; 1

2

TUGboat, Volume 25 (2004), No. 2 147

4.19 Equation numbering

Equations can be numbered or labeled at the right
or the left in display math mode.

$$2c{{}\sp 2} - 3c + 5 = 0 \leqno (3a)$$

(@3) 0 = 5 + �3− 2�2

$$2mc{{}^2} - 3c + 5 = 0 \eqno (3b)$$

0 = 5 + �3− 2�Ð2 (H3)

4.20 Matrix

The command \matrix{array} generates a matrix.
The element’s array flows from right to left.

The brackets are rendered linear by \left(

and/or \right) or curvilinear by \parentheses as
well as \openparentheses/\closeparentheses. In
the last case, these commands need the CurExt ap-
plication.

$m = {\left(}

{\matrix{

{1}&{2s}&{3}&{+5}\cr

{1}&{2s}&{3}&{+5}\cr

{4a}&{5}&{6}&{-2}\cr

{4a}&{5}&{6}&{-2}\cr

}} {\right)}$




5+ 3 �2 1
5+ 3 �2 1
2− 6 5 @4
2− 6 5 @4


 = Ð

$m = {\parentheses{

{\matrix{

{1}&{2s}&{3}&{+5}\cr

{1}&{2s}&{3}&{+5}\cr

{4a}&{5}&{6}&{-2}\cr

{4a}&{5}&{6}&{-2}\cr}}}}$

� 5+ 3 �2 1
5+ 3 �2 1
2− 6 5 @4
2− 6 5 @4

� = Ð

4.21 System of equations

The command \system{system of equations} gen-
erates a system of equations with a big closing brace
on the right, as in Latin notation —but that is an
opening brace in Arabic notation.

$$ {\system{

{5c - 4s + 6} & { = 8s} \cr

{5c - 7s + 9} & { = 3} \cr

{5c - 7s + 9T} & { = {12}c} \cr }}$$

�8 = 6 + �4− �5
3 = 9 + �7− �5

�12 = 9 + �7− �5

}

and there is also:
$${\left\{}

{\offinterlineskip \openup1\jot

\tabskip=0pt plus1fil

\vcenter{\halign{\tabskip=0pt

& \hfil$#${\ }& \hfil$#${\ }\cr

\amrl{&{3c}&+&{5s}&&& =&8}\cr

\amrl{&&-&{6s}&-&{4m}& =&9}\cr

\amrl{-&{5c}&&&+&{6m}& =&2}\cr}}}

{\right.}\leqno (1b)$$

(H1)
8 = �5 + �3
9 = Ð4 − �6 −
2 = Ð6 + �5 −

}

4.22 Array

The system can also compose tables, including the
possibility of combining lines and columns.

$${{{{\vbox{\tabskip=0pt

\offinterlineskip\def\tablerule{\noalign

{\hrule}}\halign{\strut#&\vrule#\tabskip

=1.5em plus 2.5em&\hfil#&\vrule#&\hfil#

\hfil&\vrule#&\hfil#&\vrule#\tabskip=0pt

\cr\tablerule\amrl{&{\multispan5\hfil

{\arhbox{almbyan}}\hfil}&&}\cr\tablerule

\amrl{&&&&{\omit\hidewidth{\arhbox

{alAYHdaFyat}}\hidewidth}&&&}\cr\amrl{&

{\raisebox{2ex}[0cm]{\arhbox{alnqT}}}&&

{\omit\hidewidth{\arhbox{alsynyQ}}

\hidewidth}&&{\omit\hidewidth{\arhbox

{alSadyQ}}\hidewidth}&&}\cr\tablerule

\amrl{&a&&5&&7&&}\cr\tablerule

\amrl{&b&&8&&9&&}\cr\tablerule

\noalign{\smallskip}}}}}}}$$

	àAJ
J. ÖÏ @
�HAJ
�K @YgB
 @�éK
XA�Ë@ �éJ
 	J�
�Ë@

¡�® 	JË @

7 5 @
9 8 H

4.23 Size variation

Some symbols, as well as superscripts, subscripts
and delimiters, vary their size according to nesting.

\sint , \ssum , \sprod
◗

,
P

,
❘

$$\sint , \ssum , \sprod$$
❨

,
❳

,

❩

$b{\sp{b{\sp{b{\sp{b}}}}}}$
HHHH

$b{\sb{b{\sb{b{\sb{b}}}}}}$
HHHH

${\Bigg(}{\bigg(}{\Big(}

{\big(}(){\big)}

{\Big)}{\bigg)}{\Bigg)}$

((((
()
)))

)

${\left(}{\left[}{\Bigg(}{\left[}{\bigg(}

{\left[}{\Big(}{\left[}{\big(}{\left[}()

{\right]}{\big)}{\right]}{\Big)}{\right]}

{\bigg)}{\right]}{\Bigg)}{\right]}{\right)

}$ ([([([([(
[()]
)])])]

)])

148 TUGboat, Volume 25 (2004), No. 2

4.24 Translation

The system can translate mathematical expressions
and link-words from Arabic to French or English and
vice versa. The user can get different results from
the following mathematical expression \expression

depending on the environment, which is easily spec-
ified:

$$d(c) = {\cases{

{{\ssum\limits_{b=1}^{s}} c{{}^b}} &

{ {\amhbox{AYZa kan} } c < 0} \cr

{{\sint\limits_{1}^{s}} c{{}^b}} &

{ {\amhbox{AYZa kan} } c > 0} \cr

{{\sin} \pi} & {{\amhbox{Gyr Zlk}}} \cr

}}$$

\arabmath \artoar \expression

0 > � 	àA¿ @ 	X @
 H�
�P

1=H

0 < � 	àA¿ @ 	X @
 H�
�❘
1

½Ë 	X Q�

	« π Ag.





= (�)X

Figure 1: Egyptian Arabic

\latinmath \artoar \expression

d(c) =





s∑
b=1

cb 	àA¿ @ 	X @
 c < 0

s∫
1

cb 	àA¿ @ 	X @
 c > 0

sinπ ½Ë 	X Q�

	«

Figure 2: Moroccan Arabic

\latinmath \artofr \expression

d(c) =





s∑
b=1

cb si c < 0

s∫
1

cb si c > 0

sinπ sinon

Figure 3: French

\latinmath \artoen \expression

d(c) =





s∑
b=1

cb if c < 0

s∫
1

cb if c > 0

sinπ otherwise

Figure 4: English

4.25 Miscellaneous

The command \arhbox{string} introduces the Ara-
bic string string in an expression, \time the cur-
rent time, \day the current day, \month the current
month, \year the current year.

$ {\arhbox{mFal}}$ ÈA�JÓ
$\time , \day ,

\month , \year$
2005 , 6 , 6 , 872

The command \amlwm lists western Arabic month
names.

\amlwm
, éJ
 	KñK
 ,ø
 AÓ

,ÉK
QK.

@ ,�PAÓ , QK
 @Q�.

	̄ ,QK
A 	JK

Q�. 	Jk. X ,Q�. 	Kñ 	K ,QK. ñ�J»

@ ,Q�. 	J

�� �� , �I �� 	« , 	PñJ
ËñK

The command \amlem lists eastern Arabic month
names.

\amlem

, 	PñÖ �ß , 	à@QK
 	Qk ,PAK

@ , 	àA��
 	K ,P@

	X
�
@ , AJ. �� , ú

	GA�JË @ 	àñ	KA¿

Èð

B@ 	àñ	KA¿ , ú

	GA�JË @ 	áK
Qå��
�� , Èð

B@ 	áK
Qå��

�� , ÈñÊK

@ ,H.

�
@

The command \wtoday gives the current date con-
sisting of the day, the western Arabic month name
and the year. To give the eastern Arabic month
names, \etoday can be used; \numtoday shows a
numerical month.

\warabnum\wtoday 2005 éJ
 	KñK
 6

\earabnum\etoday 2005 	à@QK
 	Qk 6

\warabnum\numtoday 2005/6/6

\earabnum\numtoday 2005/6/6

Notes:

• One should not put mathematical expressions
in display mode in the interior of an Arabic en-
vironment.

• Any command that requires arguments must be
between braces (for example,
{\command{arg_1} ... {arg_n}}).

• If an expression is made up of only one element
with at least one argument, it should be pre-
ceded by a space (e.g. $ {\command{arg}}$).

5 Conclusion

The RyDArab package can be adapted to different
needs and situations. Styles can be designed accord-
ing to the typographic context. The present translit-
eration is still hard to use, and many open questions
remain about this issue. The user should be aware
of the use of braces but should not need to know
all the details of the \amrl command. In recent

TUGboat, Volume 25 (2004), No. 2 149

versions, automatic management of spaces among
terms works well.

All commands can be renamed. For instance,
the command \amsqrt can be changed into \jdr in
order to get a name closer to the Arabic pronuncia-
tion of the symbol.

RyDArab has been improved, mainly with re-
spect to the transparency of the command \amrl

for inversion of writing expressions, and the gener-
alization of the possibility to use the same names
of commands as for Latin mathematics. Therefore,
the system can provide an automatic translation of
mathematical expressions from Arabic to Latin and
vice versa.

The system can be used with Ω as well as with
ArabTEX. In the near future, the system will be
able to provide a multilingual scientific e-document
by encoding with Unicode, structuring in XML and
MathML and the use of a new Arabic mathematical
font.

Acknowledgements: Thanks to all the people
who have helped to improve the earlier versions. A
special thanks to Barbara Beeton, Karl Berry and
Steve Peter for proposing this work for reprinting,
and their editorial corrections and contributions.

References

[1] Mostafa Banouni, Azzeddine Lazrek
et Khalid Sami. Une translittération
arabe/roman pour un e-document. In 5e

Colloque International sur le Document

Électronique, pages 123–137, Conférence
Fédérative sur le Document, Hammamet,
Tunisi, 2002. http://www.ucam.ac.ma/fssm/
rydarab/doc/communic/cide5.pdf.

[2] Yannis Haralambous and John Plaice.
Multilingual typesetting with Ω, a case study:
Arabic. In Proceedings of the International

Symposium on Multilingual Information

Processing, pages 137–154, Tsukuba, 1997.

[3] Donald Ervin Knuth. The TEXbook.
Addison-Wesley, 1984.

[4] Donald Ervin Knuth and Pierre MacKay.
Mixing right-to-left texts with left-to-right
texts. TUGboat 8(1):14–25, 1987.

[5] Klaus Lagally. ArabTEX —Typesetting
Arabic with vowels and ligatures. In
EuroTEX’92, pages 153–172, Prague, 1992.

[6] Leslie Lamport. LATEX: A Document

Preparation System. Addison-Wesley, 1986.

[7] Azzeddine Lazrek. Aspects de la
problématique de la confection d’une
fonte pour les mathématiques arabes. Cahiers

GUTenberg 39–40, Le document au XXIe

siècle: 51–62, 2001.
http://wwww.ucam.ac.ma/fssm/rydarab/

doc/communic/gut39 40.pdf.

[8] Azzeddine Lazrek. Vers un système de

traitement du document scientifique arabe.
Thèse d’État ès-Science, Université Cadi
Ayyad, Marrakech, 2002.
http://www.ucam.ac.ma/fssm/rydarab/

doc/communic/these.pdf.

[9] Azzeddine Lazrek. CurExt, Typesetting
variable-sized curved symbols. TUGboat

24(3):323–327, 2003. Proceedings of
EuroTEX 2003: 14th European TEX
Conference, Brest, France. http://www.
ucam.ac.ma/fssm/rydarab/doc/communic/

curext.pdf.

[10] Azzeddine Lazrek and Khalid Sami.
Arabic mathematical document processing
perspectives. In Symposium on computer

science and software development and its

future impact. Federation of Arab scientific
research councils and University AlHadbaA
Faculty, Iraq, 2000.

�ñ�	JË @ �ém.Ì'AªÓ
��A 	̄

�
@ , ú
×A� YËA 	gð ��P 	QË 	áK
YË@ 	Q«

�é«A 	J�Ë@ð �éJ
�KAÓñÊªÖÏ @ QÖ
�ß
ñÓ , �éJ
K. QªË@

�é 	ªÊ&Ë AK.
�éJ
�KAJ
 	�AK
QË @

ù
 ÒÊªË@
�IjJ. Ë @ �ËAm.× XAm��' @ , ú
Î

J.
�®�J�ÖÏ @ AëPðXð �éJ
m.×Q�. Ë @

2000 , ��@QªË@ , É�ñÖÏ @ , �éªÓAm.Ì'@ Z AK. YmÌ'@
�éJ
Ê¿ð

�éJ
K. QªË@
[11] Azzeddine Lazrek and Khalid Sami. Towards

a system for Arabic mathematical document
processing. In 7th symposium of Sciences

Arabization, Sciences Arabization in

development system. Egyptian Society for
Arabizing Science and Ayn shams University,
Egypt, 2000.
�ém.Ì'AªÖÏ Qº�JJ.Ó ÐA 	¢ 	� , ú
×A� YËA 	gð ��P 	QË 	áK
YË@ 	Q«
I. K
Qª

�JË ©K. A�Ë@ QÖ �ß
ñÖÏ @ , �éJ
K. QªË@
�éJ
�KAJ
 	�AK
QË @ �ñ�	JË @

, �éJ
Óñ
�®Ë@ �éJ
Ò 	J�JË @

�éÓñ 	¢	JÓ ú

	̄ ÐñÊªË@ I. K
Qª

�K , ÐñÊªË@
,�ÖÞ�� 	á�
«

�éªÓAg. ð ÐñÊªË@ I. K
Qª
�JË �éK
Qå�ÖÏ @

�éJ
ªÒm.Ì'@
2001 ,Qå�Ó , �èQëA�®Ë @

⋄ Azzeddine Lazrek

Department of Computer Science,

Faculty of Science,

University Cadi Ayyad, P.O. Box 2390,

Marrakech, Morocco

Phone: +212 44 43 46 49

Fax: +212 44 43 74 09

lazrek@ucam.ac.ma

http://www.ucam.ac.ma/fssm/rydarab

150 TUGboat, Volume 25 (2004), No. 2

Software & Tools

PerlTEX: Defining LATEX macros using Perl

Scott Pakin

Abstract

Although writing documents with LATEX is straight-
forward, programming LATEX to automate repetitive
tasks — especially those involving complex string
manipulation— can be quite challenging. Many op-
erations that a novice programmer can express easily
in a general-purpose programming language cannot
be expressed in LATEX by any but the most expe-
rienced LATEX users. PerlTEX attempts to bridge
the worlds of document preparation (LATEX) and
general-purpose programming (Perl) by enabling an
author to define LATEX macros in terms of ordinary
Perl code.

1 Introduction

Although TEX is a Turing machine and can there-
fore express arbitrary computation, the language is
not conducive to programming anything sophisti-
cated. As in an assembly language, arithmetic ex-
pressions are written in terms of register modifica-
tions (e.g., “\advance\myvar by 3”) and relational
expressions involving conjunction and disjunction
are constructed from nested comparison opera-
tions (e.g., “\ifnum\myvar>10 \ifnum\myvar<15”).
Loops are expressed in terms of tail-recursive macro
evaluation. The only forms of string manipulation
are single-token lookahead (\futurelet) and macro
argument templates that either match a pattern or
abort TEX. Finally, there are scalars but no aggre-
gate data types (although these can sometimes be
faked with clever use of macro expansion). While
the LATEX kernel and various packages slightly raise
the level of programming abstraction, the typical
programmer is rapidly frustrated when attempting
to code anything nontrivial.

Perl, in contrast, offers a rich programming en-
vironment with most of the features one expects
from a modern high-level language. However, Perl
has no inherent support for document typesetting.
For short or highly repetitive documents, it is rea-
sonable to write a Perl script that outputs a .tex file
and runs it through latex. However, it is generally
inconvenient to include a full-length article in its en-
tirety within a Perl script just so it can invoke some
simple function which is easier to express in Perl
than in LATEX. Furthermore, a LATEX-generating

\newcount\n

\newcommand{\astsslow}[1]{%

\n=#1

\xdef\asts{}%

\loop\ifnum\n>0 \xdef\asts{\asts*}\advance\n-1

\repeat}

(a) Slow version from The TEXbook

\newcount\n

\newcommand{\astsfast}[1]{%

\n=#1

\begingroup

\aftergroup\edef\aftergroup\asts\aftergroup{%

\loop \ifnum\n>0 \aftergroup*\advance\n-1

\repeat

\aftergroup}\endgroup}

(b) Fast but non-scalable version from The TEXbook

\newcommand{\asts}{}

\perlnewcommand{\astsperl}[1]

{’\renewcommand{\asts}{’ . ’*’ x $_[0] . ’}’}

(c) Fast PerlTEX version

Figure 1: Macro to define \asts as a sequence of N

asterisks

Perl script supports only one-way communication:
Perl can pass information to LATEX but not the other
way around.

In this article, we present PerlTEX, a package
that consists of a Perl script (perltex.pl) and a
LATEX2ε style file (perltex.sty). The user simply
installs perltex.pl in an executable directory and
perltex.sty in a LATEX2ε style-file directory, in-
corporates “\usepackage{perltex}” into any doc-
uments which need PerlTEX’s features, and com-
piles such documents using perltex.pl instead of
the ordinary latex command. Together, perltex.pl
and perltex.sty give the user the ability to define
LATEX macros in terms of Perl code. Once defined,
a PerlTEX macro becomes indistinguishable from
any other LATEX macro. PerlTEX thereby combines
LATEX’s typesetting power with Perl’s programma-
bility.

1.1 A simple example

A PerlTEX macro definition can be as simple as

\perlnewcommand{\hello}{"Hello, world!"}

which is essentially equivalent to:

\newcommand{\hello}{Hello, world!}

TUGboat, Volume 25 (2004), No. 2 151

% Given a list of words, build up a \measurements macro as alternating

% words and word width in points, sorted by order of increasing width.

\perlnewcommand{\splitandmeasure}[1]{

return

"\\edef\\measurements{}%\n" .

join ("",

map "\\setbox0=\\hbox{$_}%\n" .

"\\edef\\measurements{\\measurements\\space $_ \\the\\wd0}%\n",

split " ", $_[0]) .

"\\sortandtabularize{\\measurements}%\n";

}

% Given the \measurements macro produced by \splitandmeasure, output a

% two-column tabular showing each word and its width in points.

\perlnewcommand{\sortandtabularize}[1]{

%word2width = split " ", $_[0];

return

"\\begin{tabular}{|l|r|} \\hline\n" .

" \\multicolumn{1}{|c|}{Word} &\n" .

" \\multicolumn{1}{c|}{Width} \\\\ \\hline\\hline\n" .

join ("",

map (" $_ & $word2width{$_} \\\\ \\hline\n",

sort {$word2width{$a} <=> $word2width{$b}} keys %word2width)) .

"\\end{tabular}\n";

}

Figure 2: A PerlTEX-defined LATEX macro that outputs a table of words sorted by typeset width

(The extra " characters delimit a string constant in
Perl.)

To better motivate the use of PerlTEX, con-
sider the first programming challenge in the “Dirty
Tricks” appendix of The TEXbook [3]: construct a
macro that accepts an integer N and defines an-
other macro, \asts, to be a sequence of N asterisks.
Figure 1(a) presents a LATEX wrapper, \astsslow,
for the initial TEXbook solution. Besides rely-
ing on a set of TEX primitives which are unlikely
to be familiar to a LATEX user, the code is slow;
\astsslow{10000} takes over 6 seconds to run on
the author’s 2.8 GHz Xeon-based workstation.

Figure 1(b) presents a LATEX version of the
“fast” solution from The TEXbook. \astsfast is
highly unintuitive; it exploits artifacts of macro ex-
pansion and execution that occur when used in the
context of the TEX \aftergroup primitive. Fur-
thermore, it squanders space on TEX’s input and
save stacks, limiting the number of asterisks to fewer
than 300 when run using the default latex program
that ships with teTEX v1.02.

In contrast to The TEXbook’s solutions, the
PerlTEX solution is fast, scalable, and should
be comparatively easy to understand by anyone

with basic Perl-programming and LATEX macro-
writing skills. Figure 1(c) presents an \astsperl

macro that takes an argument and returns a
\renewcommand string which LATEX subsequently
evaluates. \astsperl{10000} takes less than a sec-
ond to run on the same 2.8 GHz Xeon system as did
the previous macros and uses no TEX primitives,
only ordinary LATEX and Perl commands.

1.2 A more complex example

One of PerlTEX’s capabilities which is not available
with a Perl script that outputs a .tex file is the
ability to pass data bidirectionally between LATEX
and Perl. Suppose, for example, that you wanted to
write a macro that accepts a string of text, splits it
into its constituent space-separated words, and out-
puts a table of those words sorted by their typeset
width. Neither LATEX nor Perl can easily do this on
its own. LATEX can measure word width but cannot
easily split a string into words or sort a list; Perl
cannot easily determine how wide a word will be
when typeset but does have primitives for splitting
and sorting strings.

A PerlTEX macro to do the job, named
\splitandmeasure, is presented in Figure 2. It

152 TUGboat, Volume 25 (2004), No. 2

\edef\measurements{}%

\setbox0=\hbox{How}%

\edef\measurements{\measurements\space How \the\wd0}%

\setbox0=\hbox{now}%

\edef\measurements{\measurements\space now \the\wd0}%

\setbox0=\hbox{brown}%

\edef\measurements{\measurements\space brown \the\wd0}%

\setbox0=\hbox{cow?}%

\edef\measurements{\measurements\space cow? \the\wd0}%

\sortandtabularize{\measurements}%

(a) Result of the call to \splitandmeasure{How

now brown cow?}

How 19.44447pt now 17.50003pt brown 26.97227pt

cow? 21.11113pt

(b) Final contents of \measurements after evaluat-
ing the code in Figure 3(a)

\begin{tabular}{|l|r|} \hline

\multicolumn{1}{|c|}{Word} &

\multicolumn{1}{c|}{Width} \\ \hline\hline

now & 17.50003pt \\ \hline

How & 19.44447pt \\ \hline

cow? & 21.11113pt \\ \hline

brown & 26.97227pt \\ \hline

\end{tabular}

(c) Result of the call to
\sortandtabularize{\measurements}

Word Width

now 17.50003pt

How 19.44447pt

cow? 21.11113pt

brown 26.97227pt

(d) Final typeset table

Figure 3: Overall PerlTEX processing of
\splitandmeasure{How now brown cow?}

accepts a string, splits it into words, and writes
LATEX (or more accurately in this case, TEX) code
which builds up a \measurements macro consist-
ing of alternating words and word widths. This
code is followed by a call to a second PerlTEX
(helper) macro, \sortandtabularize, which ac-
cepts a list of alternating words and word widths
(i.e., \measurements), sorts the list by word width,
and outputs a tabular environment for LATEX to
typeset.

Figure 3 illustrates the step-by-step opera-
tion of \splitandmeasure. Processing begins with
LATEX invoking the \splitandmeasure macro, caus-

ing Perl to output LATEX code which measures each
word (Figure 3(a)). LATEX then evaluates that
code, producing the definition of \measurements

shown in Figure 3(b) followed by an invocation of
\sortandtabularize. Control once again passes to
Perl, which sorts \measurements by word width and
outputs a LATEX tabular environment (Figure 3(c)).
LATEX then evaluates the tabular, producing the
typeset output shown in Figure 3(d).

Macros such as \splitandmeasure which pass
control from LATEX to Perl to LATEX to Perl
and back to LATEX are comparatively easy to im-
plement with PerlTEX — \splitandmeasure con-
sists of a single Perl statement; its helper macro,
\sortandtabularize, consists of only two Perl
statements. However, it would be very difficult
to implement comparable functionality without the
help of PerlTEX.

The rest of this article proceeds as follows. Sec-
tion 2 highlights some of the design decisions that
went into PerlTEX’s implementation. We contrast
those design decisions to the ones made by similar
projects in Section 3. Section 4 describes the mech-
anisms PerlTEX uses to transfer data betwen LATEX
and Perl. Defining Perl macros in LATEX was the
greatest challenge in implementing PerlTEX and re-
quired some fairly sophisticated LATEX trickery. The
solutions that were developed are described in Sec-
tion 5. By comparison, the Perl side of PerlTEX
is comparatively straightforward and is described
briefly in Section 6. Section 7 presents some av-
enues for future enhancements to PerlTEX. Finally,
we draw some conclusions in Section 8.

2 Design decisions

There are multiple ways that PerlTEX could have
been implemented. The following are the primary
alternatives:

• Use the semi-standard “\write18” mechanism
to invoke the perl executable.

• Patch the TEX executable to interface with the
Perl interpreter.

• Implement a Perl interpreter in LATEX.

• Construct macros that enable LATEX to commu-
nicate with an external Perl interpreter.

The final option is the one that was deemed best
for PerlTEX. The “\write18” approach is a secu-
rity risk; enabling it (e.g., using the -shell-escape
command-line option present in some TEX distri-
butions) permits not only PerlTEX but any LATEX
package to execute arbitrary programs on the user’s
system. Patching TEX is inconvenient for the user,
who will need to recompile TEX (plus pdfTEX, ε-

TUGboat, Volume 25 (2004), No. 2 153

TEX, pdf-ε-TEX, Ω, and any other TEX-based sys-
tem for which the user wants to add Perl support)
then re-dump the LATEX2ε format file for each Perl-
enhanced build of TEX. Implementing a Perl inter-
preter in LATEX has the advantage of not requiring a
separate Perl installation. However, a LATEX-based
Perl interpreter, besides being extremely difficult to
implement, would necessarily support only a small
subset of Perl, as much of the language cannot be
expressed in terms of the mechanisms provided by
TEX.

As this article will demonstrate, providing
LATEX-level mechanisms to facilitate communication
between LATEX and an external Perl interpreter en-
ables safe execution of Perl code, ease of installa-
tion, compatibility with any underlying TEX imple-
mentation, and access to every feature of the Perl
language.

3 Related work

PerlTEX is not the first system that attempts to
augment LATEX macro programming with a general-
purpose programming language. However, Perl-
TEX’s approach, as outlined in the previous section,
makes it unique relative to other, similar systems.
Note that many of the following systems support
not only LATEX but other formats as well (e.g., Plain
TEX, ConTEXt, and Texinfo); for the purpose of ex-
position we limit our discussion to LATEX.

After releasing PerlTEX, the author discovered
an existing program written by Alexander Shiba-
kov also called PerlTEX [6]. Unlike the PerlTEX
described in this paper, Shibakov’s version is im-
plemented as a patch to TEX. That is, the user
must recompile TEX (and all its variants) with the
PerlTEX patches and re-dump the desired formats.
The result is that Perl is more integrated into TEX
than is otherwise possible. All code between \perl

and \endperl is executed by Perl. Furthermore,
Shibakov’s PerlTEX also supports two-way commu-
nication between TEX and Perl by enabling code
within a \perl. . . \endperl block to insert char-
acters and control sequences into the TEX input
stream. While Shibakov’s PerlTEX works with any
TEX format— Plain TEX, LATEX, ConTEXt, Texinfo,
etc.— the PerlTEX described in this paper works
only with LATEX. However, this paper’s PerlTEX
has the important advantage of not requiring TEX
recompilation, which is tedious and may not be pos-
sible when using a commercial TEX implementation.

Paraschenko takes a similar approach to Shi-
bakov’s with his sTEXme [4], which uses Scheme
rather than Perl as the TEX extension language.
sTEXme adds a single command to TEX: \stexme,

which works like \input but accepts the name of a
Scheme file rather than a TEX or LATEX file. When
the Scheme interpreter evaluates the given file,
output procedures such as newline and display

write into the TEX input stream. Two new pro-
cedures, pool-string and get-cmd, provide access
to TEX internal state. As with Shibakov’s PerlTEX,
sTEXme’s tight integration with TEX comes at the
cost of having to recompile TEX and re-dump all of
the format files before the extension language can
be used.

TEX2page [7] uses also uses Scheme as a TEX
extension language. However, its design is closer to
that of (this paper’s) PerlTEX than to sTEXme’s.
TEX2page provides an \eval macro which brackets
Scheme code. The document is first compiled using
the ordinary latex executable. As part of that pro-
cess, \eval simply writes its argument to a file. The
user then runs tex2page, which invokes the Scheme
interpreter on the extracted Scheme code and writes
the resulting LATEX code to a file. Finally, the user
re-runs latex and, on this pass, \eval loads the
Scheme-produced LATEX code into the document,
where it is typeset normally. Although TEX2page’s
multi-pass approach supports two-way communica-
tion betwen LATEX and Scheme, it does require an
extra run of tex2page and an extra run of latex for
each nesting level. For large documents or heavily
nested \eval calls, this can be slow and tedious.
PerlTEX, in contrast, requires no more latex runs
than the document would otherwise require.

The idea behind PyTEX [1] is to use Python,
not LATEX, as the document’s top-level language.
With PyTEX, the user’s Python code passes strings
to a TEX dæmon [2] to evaluate. PyTEX supports
only one-way communication (i.e., Python to LATEX
but not LATEX to Python). PerlTEX, in contrast,
supports two-way communication, which is neces-
sary when writing code in a general-purpose lan-
guage that requires access to typesetting informa-
tion such as string widths, page counts, or register
contents.

Amrita [5] presents an integration framework
based on re-entrant here documents which supports
communication among a variety of languages such
as Perl, Python, LATEX, Ruby, and POV-Ray. Each
language can generate code to be executed by any
other language. The result of each execution (which
itself may recursively generate code for additional
languages) is code to be executed by the parent lan-
guage. While Amrita is a highly capable system, its
power necessarily introduces an extra level of com-
plexity to the user. Relative to the generality of
Amrita, PerlTEX’s niche is that it enables users to

154 TUGboat, Volume 25 (2004), No. 2

Table 1: Files used for communication between Perl and LATEX

Filename Meaning Purpose

\jobname.topl “to” (Perl) LATEX to Perl communication
also: signal Perl that \jobname.frpl has been read

\jobname.frpl “from” (Perl) Perl to LATEX communication
\jobname.tfpl “to flag” signal Perl that \jobname.topl is ready to be read
\jobname.ffpl “from flag” signal LATEX that \jobname.frpl is ready to be read
\jobname.dfpl “done-with-from-flag flag” signal LATEX that Perl is ready for the next transaction

add a few Perl macros to an existing LATEX docu-
ment with minimal hassle and without having to buy
into a more comprehensive software framework.

4 Communication between LATEX and Perl

PerlTEX has two main components: a Perl
script (perltex.pl) and a LATEX2ε style file
(perltex.sty). PerlTEX is invoked by running the
command perltex.pl, just as one would run latex.
perltex.pl itself is fairly simple; essentially, it in-
stalls a “server” which executes incoming Perl code
and outputs the LATEX result. More information is
provided in Section 6.

perltex.sty provides the \perlnewcommand,
\perlrenewcommand, \perlnewenvironment, and
\perlrenewenvironment macros which are anal-
ogous to their non-perl namesakes but are de-
fined with Perl code instead of LATEX code in the
macro body. When a PerlTEX macro is defined,
perltex.sty instructs perltex.pl to define a cor-
responding Perl subroutine with the given body.
Then, when the macro is invoked, perltex.sty in-
structs perltex.pl to execute the subroutine. A
similar process is performed when defining PerlTEX
environments but involving two behind-the-scenes
macros, one for the “begin” code and one for the
“end” code.

Almost by necessity, communication between
LATEX and Perl is implemented via the filesystem.
TEX provides primitives for creating new files, open-
ing existing files, reading and writing files, and clos-
ing files, but no other mechanisms that can be used
to communicate with entities outside of TEX (ex-
cluding \write18, which has security implications,
as mentioned in Section 2). TEX returns a failure
code when trying to open a nonexistent file; this
condition can safely be tested from within TEX.

The primary challenge in transferring data via
the filesystem is detecting when a file is no longer be-
ing written to. This challenge needs to be addressed
both on the Perl side of the transfer and on the
LATEX side. The solution that PerlTEX takes is to

Time LATEX Perl

❄

Write \jobname.topl

Touch \jobname.tfpl → Await \jobname.tfpl

Read \jobname.topl

Write \jobname.frpl

Delete \jobname.tfpl

Delete \jobname.topl

Delete \jobname.dfpl

Await \jobname.ffpl ← Touch \jobname.ffpl

Read \jobname.frpl

Touch \jobname.topl → Await \jobname.topl

Delete \jobname.ffpl

Await \jobname.dfpl ← Touch \jobname.dfpl

Figure 4: LATEX/Perl communication protocol

employ some auxiliary “flag” files that signal when
an associated file is complete. Table 1 describes the
complete set of files used for communication between
Perl and LATEX.

The communication protocol proper, which is
illustrated in Figure 4, is necessarily complex be-
cause it needs to work around two important limi-
tations of the TEX system:

1. TEX lacks a mechanism for deleting files.

2. The latex executable — at least the version
shipped with the teTEX TEX distribution— is
prone to crash when opening a file for input
while an external process is in the midst of
deleting that file. (Recall that testing if a
file exists means opening the file for input and
checking for success.)

If it were not for those limitations, the protocol
would require only one flag file and half as many
steps.

The \jobname.frpl file contains ordinary
LATEX code that simply gets \input into the doc-
ument. \jobname.topl, in contrast, contains not
only Perl code but also some metadata that helps of-
fload some string manipulation from LATEX to Perl.
Consider passing the LATEX string

In C it’s \texttt{printf("Hello!")}.

as an argument to a function declared with
\perlnewcommand. Because the string contains both

TUGboat, Volume 25 (2004), No. 2 155

DEF

〈unique tag〉

〈macro name〉

〈unique tag〉

〈Perl code〉

(a) Define

USE

〈unique tag〉

〈macro name〉

〈unique tag〉

#1

〈unique tag〉

#2

〈unique tag〉

#3

...

#〈last〉

(b) Invoke

Figure 5: Data written to \jobname.topl to define
or invoke a Perl subroutine

single and double quote characters, every occur-
rence of at least one type of quote will need to be
backslash-escaped for Perl. Rather than do this on
the LATEX side, perltex.sty sends the string as-
is to perltex.pl, which automatically quotes the
string while reading it from \jobname.topl. The
implication is that perltex.sty cannot pass raw
Perl code to perltex.pl to evaluate.

Hence, \jobname.topl needs contain some
metadata telling perltex.pl what to do with the
rest of \jobname.topl’s contents. This metadata
is of one of two types. When \perlnewcommand

or any of the other PerlTEX macros is invoked,
perltex.sty sends perltex.pl the information
shown in Figure 5(a). Then, when a macro de-
fined by one of PerlTEX’s \perl. . . macros is called,
perltex.sty sends perltex.pl the information
shown in Figure 5(b). In Figure 5, 〈unique tag〉
refers to a sequence of 20 letters that perltex.pl

generates randomly at initialization time and passes
to perltex.sty via the latex command line. The
〈unique tag〉 is used as a separator, so perltex.pl

knows where one piece of information ends and the
next one begins. 〈macro name〉 is the name of the
macro to be defined or used. perltex.pl defines a
Perl subroutine named 〈macro name〉 but with the
leading backslash replaced with “latex ”. The sub-
routine body contains 〈Perl code〉 verbatim. When
a PerlTEX-defined macro is invoked, perltex.sty

passes perltex.pl the name of the macro plus all
of the arguments as expanded LATEX code.

Figures 6 and 7 present a more concrete ex-
pression of a LATEX/Perl file transfer. Figure 6(a)
shows the contents of the \jobname.topl file that
LATEX writes as part of the \perlnewcommand in-
vocation presented previously in Figure 1(c); Fig-
ure 6(b) shows the contents of the \jobname.frpl

DEF

TKOUVLRCDIVSVSIZVHFI

\astsperl

TKOUVLRCDIVSVSIZVHFI

’\renewcommand{\asts}{’ . ’*’ x $_[0] . ’}’

(a) Macro definition (\jobname.topl)

\endinput

(b) Result of macro definition (\jobname.frpl)

Figure 6: LATEX/Perl communication associated
with the code in Figure 1(c)

USE

TKOUVLRCDIVSVSIZVHFI

\astsperl

TKOUVLRCDIVSVSIZVHFI

10

(a) Macro invocation (\jobname.topl)

\renewcommand{\asts}{**********}\endinput

(b) Result of macro invocation (\jobname.frpl)

Figure 7: LATEX/Perl communication associated
with an invocation of “\asts{10}”

file that Perl writes in response. Figure 7(a) shows
the contents of the \jobname.topl file that LATEX
writes while executing “\astsperl{10}” and Fig-
ure 7(b) shows the \jobname.frpl file that Perl
writes in response to that.

Expansion is a tricky issue in PerlTEX’s design
and, in fact, is handled differently in PerlTEX v1.1
than in earlier versions of PerlTEX. The challenge is
that Perl cannot evaluate LATEX code; it requires all
subroutine parameters to be ASCII strings. Consider
this invocation of some PerlTEX macro \mymacro:

\mymacro{Hello from Perl\noexpand\TeX!}

How should \mymacro’s argument be passed to Perl?
(1) Unexpanded, as

Hello from Perl\noexpand\TeX!

or (2) partly expanded, as

Hello from Perl\TeX!

or (3) fully expanded, as

Hello from PerlT\kern -.1667em\lower .5ex

\hbox {E}\kern -.125emX\@!

?

156 TUGboat, Volume 25 (2004), No. 2

The first alternative makes PerlTEX macros be-
have differently from LATEX macros, which gener-
ally execute their arguments. The other two al-
ternatives lead to unexpected behavior in cases like
\mymacro{\def\foo{world}Hello, \foo!}, which
cause latex to abort with an Undefined control

sequence error as it tries to expand the not-yet-
defined \foo control word which immediately fol-
lows the non-expandable \def control word. Exe-
cution is not an option because an invocation like
\mymacro{\mbox{Oops}} would need to pass a box
to Perl, which cannot practically be done.

PerlTEX’s approach (as of version 1.1) is to par-
tially expand macro arguments but with \protect

mapped to \noexpand and with \begin and \end

marked as non-expandable. In this approach, ro-
bust macros (such as many of the ones provided
by LATEX) are not expanded while fragile macros
(such as many of the ones defined by a user) are
expanded. For example, the following sequence will
write “LATEX is nice” to the typeset output, which
is a fairly intuitive result:

\newcommand{\adjective}{nice}

\perlnewcommand{\identity}[1]{$_[0]}

\identity{\LaTeX{} is \adjective.}

5 Defining Perl macros from LATEX

From a LATEX programming perspective, there are
two primary challenges that need to be over-
come in order to implement \perlnewcommand,
\perlrenewcommand, \perlnewenvironment, and
\perlrenewenvironment:

1. How can syntactically incorrect LATEX code be
stored and manipulated?

2. How can a LATEX macro iterate over a variable
number of macro arguments?

A solution to the former question is required be-
cause \perlnewcommand, etc. need to write Perl code
to a file. Syntactically correct Perl code is unlikely
also to be syntactically correct LATEX code. For
example, Perl associative arrays are prefixed with
the LATEX comment character, “%”; Perl scalars are
prefixed with “$”, which introduces math mode in
LATEX; and Perl uses “\” to escape special characters
in strings and create variable references while LATEX
expects a valid control sequence to follow. The dif-
ficulty, therefore, is in enabling a LATEX macro to
manipulate one of its arguments while neither ex-
panding nor evaluating it.

A solution to the latter question, how to
iterate over macro arguments, is required be-
cause each macro argument must be passed to

Perl (via the \jobname.topl file). Just as with
\newcommand, a macro defined by \perlnewcommand

accepts a user-defined number of arguments
(e.g., \perlnewcommand{\mymac}[5]{. . . }). How-
ever, TEX requires that macro arguments be refer-
enced by a literal number (e.g., “#3”); variable ar-
gument numbers (e.g., “#\argnum”) result in a TEX
error. The challenge is to construct a loop that it-
erates over a variable number of arguments, writing
each argument to a file, yet does not use a variable
to reference any arguments.

5.1 Storing non-LATEX code

The final argument to \perlnewcommand is a block
of Perl code which will almost certainly cause errors
if evaluated by LATEX. Storing this Perl code in a
macro is similar to outputting non-LATEX code using
the \verb macro. The difference is that \verb does
not need to store its argument.

The solution taken by perltex.sty works as
follows. First, \perlnewcommand is defined to
read one fewer argument than actually needed;
the Perl code is considered the first piece of
text following \perlnewcommand’s argument list.
\perlnewcommand’s last action is to begin a new
variable scope with \begingroup and, within that
scope, set the TEX category codes for all characters
to “other” (i.e., 12) to prevent “%”, “$”, “\”, and
so forth from being treated specially. The only ex-
ceptions are that “{” and “}” retain their original
meanings so that TEX brace-counting will indicate
when the Perl code has ended. Also, the end-of-line
character is made significant because it has meaning
within a Perl string.

The next task involves figuring out how to store
the Perl code following \perlnewcommand and then
reset all of the category codes back to their prior
values. The trick that perltex.sty relies upon is
the TEX \afterassignment primitive, which speci-
fies a command to execute after the next assignment
takes place. The following are the last two lines of
\perlnewcommand’s implementation:

\afterassignment\plmac@havecode

\global\plmac@perlcode

In other words, the \plmac@havecode macro
should be executed after the next assignment. Then,
\perlnewcommand ends with an assignment to the
global token register \plmac@perlcode. The right-
hand side of the assignment is the block of Perl
code, which is already within a pair of curly braces,
as required by a token-register assignment. After
the assignment takes place, control automatically
transfers to the \plmac@havecode macro. Before

TUGboat, Volume 25 (2004), No. 2 157

changing category codes, \perlnewcommand began
a new scope with \begingroup; \plmac@havecode
resets the category codes by executing the match-
ing \endgroup. The result is that the Perl code is
stored unevaluated in the \plmac@perlcode token
register, as desired, and LATEX can continue compil-
ing the user’s document.

\def\plmac@havecode{%
...

\let\plmac@hash=\relax

\plmac@argnum=\@ne

\loop

\ifnum\plmac@numargs<\plmac@argnum

\else

\edef\plmac@body{%

\plmac@body

\plmac@sep\plmac@tag\plmac@sep

\plmac@hash\plmac@hash

\number\plmac@argnum}%

\advance\plmac@argnum by \@ne

\repeat

\let\plmac@hash=##%
...

}

Figure 8: perltex.sty code that iterates over
macro arguments

5.2 Iterating over macro arguments

One limitation of TEX’s macro-processing facility is
that macro arguments must be referred to by a lit-
eral argument number. Hence, “#2” is acceptable
but \newcommand*{\whicharg}{2} followed inside
a macro definition by “#\whicharg” results in an
“Illegal parameter number” error. Even worse,
the error occurs at macro-definition time; even if a
macro containing “#\whicharg” is never invoked it
will still cause TEX to report an error and abort.

Fortunately, the aforementioned limitation is
not insurmountable but it does require a bit of trick-
ery. The solution is to replace “#” with a control
sequence that is let-bound to \relax. TEX does not
expand such control sequences. After the macro is
defined, the control sequence can then be let-bound
to #, making it work as desired.

There are two caveats to this approach. First,
can be used only within a macro definition; hence,
the macro definition must itself be within a macro
definition in order for the let-binding to succeed.
Second, when the macro is executed, # must be
followed by a literal argument number. The let-
binding trickery merely delays the literal-number

check from definition time to execution time —but
this is sufficient for the purpose of accessing a
variable-numbered macro argument. Careful use of
\edef and \noexpand can then make it possible to
iterate over macro arguments, as desired.

Figure 8 presents an excerpt of code from
perltex.sty which constructs a \plmac@body

macro that references in turn each argument
from 1 up to \plmac@numargs. In this code,
\plmac@hash is the placeholder for the # character
and \plmac@argnum is the argument number, which
varies from 1 to \plmac@numargs. In each iteration
of the loop, \plmac@body is redefined as the con-
catenation of its old value, a carriage-return charac-
ter (\plmac@sep), a unique tag as described in Sec-
tion 4, another carriage-return character, and “##”
(doubled because the \edef is nested within another
macro) followed immediately by the argument num-
ber. Only at the end of the loop, after \plmac@body
has its final contents, is \plmac@hash set to an ac-
tual # character (written as “##” because it occurs
within the definition of \plmac@havecode).

6 Processing Perl code

While perltex.sty contains rather complex LATEX
code, perltex.pl contains fairly straightforward
Perl code. perltex.pl’s basic structure is as fol-
lows:

1. Parse the command line.

2. Create a secure sandbox in which to execute
Perl code coming from the document.

3. Spawn a latex process, passing it a variety of
macro definitions in addition to the name of
the user’s LATEX source file.

4. Repeatedly poll for new Perl code to execute,
execute that code in the secure sandbox, and
return the (LATEX) result.

perltex.pl uses the Safe and Opcode mod-
ules to create a secure sandbox in which to execute
code. The idea behind a sandbox is that it lim-
its the types of code that can be executed. Code
deemed too dangerous to run (e.g., an attempt to
delete a file or to kill a running process) produces
a run-time error. Sandboxing the code passed from
LATEX to perltex.pl enables users to build a Perl-
TEX document created by a third party without
having to worry about it containing malicious or
otherwise destructive Perl code. The default set
of sandbox permissions is Opcode’s “:browse” per-
missions, which enable the core Perl language fea-
tures such as arrays, loops, variable assignment, and
function definitions, but forbid creating and open-
ing files, spawning child processes, communicating

158 TUGboat, Volume 25 (2004), No. 2

with other processes, and performing most other in-
put/output functions. A command-line option se-
lectively enables individual functions or groups of
functions. (Another command-line option disables
sandboxing altogether, although this is not gener-
ally recommended.)

After spawning latex (alternatively, pdflatex,
elatex, vlatex, or any other LATEX compiler),
perltex.pl makes that the foreground process,
leaving itself in the background. Doing so makes
it possible for latex to run interactively (e.g., when
encountering an error), which it could not do as eas-
ily as a background process.

Finally, perltex.pl enters a loop in which it
polls the filesystem for incoming Perl code, executes
the code, and returns the (LATEX) result via the
filesystem. The LATEX/Perl communication proto-
col is as described in Section 4. The loop terminates
when the latex process exits.

7 Future work

Although PerlTEX performs its tasks reliably, there
are a variety of avenues for future expansion
and enhancement, mostly suggested by PerlTEX
users. First, while PerlTEX’s \perlnewcommand,
\perlrenewcommand, \perlnewenvironment, and
\perlrenewenvironment macros provide a faith-
ful Perl analogue to LATEX’s command- and
environment-defining macros, a useful addition
would be a way to execute Perl code directly. Such a
feature would be useful when writing Perl code that
is executed only once, such as program initialization
or generation of a particularly unique list, table, or
equation.

The performance of the PerlTEX implementa-
tion could be improved. Although filesystem-based
communication between LATEX and Perl is portable,
file activity— especially over a remote filesystem —
can be a performance bottleneck when compiling
PerlTEX-intensive documents.

One alternative to using the filesystem is to
communicate using standard input and standard
output. There are two challenges in implement-
ing this approach. First, TEX lacks a mechanism
to explicitly flush standard output. Depending on
how latex is implemented, a deadlock can result if
LATEX sends a command to Perl and blocks waiting
for the result while Perl never sees the command
because the standard-output buffers have not been
flushed. Second, maintaining support for user in-
teraction (e.g., to diagnose error conditions) may be
complicated if PerlTEX needs to compete with the
user for control over standard input and standard
output.

A second alternative to filesystem-based com-
munication is to use named pipes, an internal
operating-system data structure for interprocess
communication. A problem with named pipes is
that they are not as portable as files; not every op-
erating system supports named pipes or implements
them in the file namespace (i.e., they might be ac-
cessed via a different interface, making them inac-
cessible to TEX). In addition, while Perl can cre-
ate named pipes, TEX cannot. This restriction may
limit their usefulness in the context of PerlTEX.

Finally, a meaningful follow-on to PerlTEX
would be an 〈anything〉TEX system. Most of
PerlTEX’s magic is in the extension-language-
independent perltex.sty file. The Perl-specific
perltex.pl file performs only simple file and string
manipulation and should easily be portable to any
other programming language. Users could then
write LATEX macros in the language (or languages)
with which they are most comfortable.

8 Conclusions

As this article has demonstrated, PerlTEX takes a
practical, portable approach to augmenting TEX’s
typesetting finesse with Perl’s power in string ma-
nipulation and general-purpose programming. The
importance of PerlTEX’s design —a Perl “server”
that accepts Perl input and produces LATEX out-
put — is that it enables two-way communication be-
tween LATEX and Perl. As Section 1.2 demonstrated,
LATEX can invoke a Perl subroutine which can pro-
duce LATEX code that itself invokes a Perl subroutine
which outputs some final LATEX code. Support for
this dynamic usage model is a clear advantage of
PerlTEX over a custom Perl script which generates
a static LATEX document. By exploiting Perl’s sand-
boxing features, users can compile PerlTEX docu-
ments written by others without fear of their system
being harmed by malicious Perl code.

A key design decision in PerlTEX’s implemen-
tation was to keep the perl and latex programs
largely decoupled. The advantage of decoupling
the two programs is that PerlTEX remains com-
patible with every underlying TEX variant —TEX,
pdfTEX, ε-TEX, pdf-ε-TEX, Ω, etc. — and does not
require the user to recompile the base TEX exe-
cutable or re-dump a LATEX2ε format. The disad-
vantages are that Perl cannot directly access TEX’s
internals and that TEX can communicate with exter-
nal applications only via the filesystem (not count-
ing the security-risk-prone \write18 mechanism or
by revoking user control over standard input and
standard output). This article has presented a
filesystem-based communication protocol that en-

TUGboat, Volume 25 (2004), No. 2 159

ables LATEX and Perl to communicate even though
the two systems are asymmetric in terms of the types
of file operations each supports. Even though TEX
cannot, for example, delete a file, the protocol en-
sures correct behavior, including in the presence of
mutually recursive LATEX and Perl routines such as
those utilized in Section 1.2.

Finally, this paper presented solutions to two
challenging LATEX puzzles: how to store and manip-
ulate syntactically incorrect LATEX code; and, how
to iterate over a variable number of macro argu-
ments. The former problem is solved using a token-
register assignment at the end of a macro call with
\afterassignment used to transfer control to a con-
tinuation macro. The latter problem is solved using
a control sequence bound to \relax while defining a
macro but bound to # afterwards. Neither of those
techniques is specific to PerlTEX; advanced LATEX
users can readily employ them in their own macros.

In summary, PerlTEX combines Perl’s fortes of
string manipulation, regular-expression processing,
and general programmability with LATEX’s typeset-
ting capabilities. A few lines of PerlTEX can easily
replace their much longer, more complex equivalent
coded in ordinary LATEX. PerlTEX thereby makes
sophisticated LATEX macro programming more ac-
cessible to the novice and more convenient for the
advanced user.

The PerlTEX distribution is available for
download from CTAN at http://www.ctan.org/

tex-archive/macros/latex/contrib/perltex/.

9 Acknowledgments

The author would like to thank all of the people
who have provided feedback, suggestions, and bug
reports for PerlTEX including Andrei Alexandrescu,
José Pedro Oliveira, Fernando P. Schapachnik, Ivo
Welch, James Quirk, Michele Dondi, Hans Fredrik
Nordhaug, and everyone else who helped make Perl-
TEX a success. Also, thanks to James Quirk for
critiquing the PerlTEX examples originally used in
this paper’s Introduction section.

References

[1] Jonathan Fine. PyTEX: Python plus TEX.
http://www.pytex.org/.

[2] Jonathan Fine. TEX as a callable function. In
Proceedings of the 13th European and 10th Polish
TEX Conference (EuroBachoTEX 2002), pages
26–35, Bachotek, Poland, April 29–May 3,
2002. Available from http://www.pytex.org/

doc/euro2002.pdf.

[3] Donald E. Knuth. The TEXbook.
Addison-Wesley, 1986. ISBN 0-201-13447-0.

[4] Oleg Paraschenko. sTEXme: TEX + Scheme.
http://stexme.sourceforge.net/.

[5] James J. Quirk. Programming dynamic LATEX
documents. In Proceedings of the 24th Annual
Meeting and Conference of the TEX Users Group
(TUG 2003), Waikoloa, Hawai‘i, July 20–25,
2003. Slides available from http://www.tug.

org/tug2003/bulletin/highlights/slides/

2 Monday/4 Quirk/4 quirk.pdf.

[6] Alexander Shibakov. PerlTEX—a fusion
of Perl and TEX via Web2C. http:

//www.math.tntech.edu/alex/.

[7] Dorai Sitaram. TEX2page. http://www.ccs.

neu.edu/home/dorai/tex2page/.

⋄ Scott Pakin

4975 S. Sol

Los Alamos, NM 87544-3794, USA

scott+tb@pakin.org

http://www.pakin.org/~scott

TUGboat, olume (2004), No.

TEX and prepress

Siep Kroonenberg

Abstract

This article discusses preparing documents for pro-
fessional printing with TEX and pdftex, including
color printing and prepress standards.

1 History

Most of us aren’t graphics professionals. Still, now
and then we have things that need to be printed
professionally at a conventional printshop.

A bit of historical perspective: originally, we
dealt with this by supplying ‘camera-ready’ laser-
printer output to the printshop, from which printing
plates were created photographically. This method
certainly prevented surprises, but was not the way
to get quality output.

During the nineties, PostScript dumps became
increasingly popular among TEX users as an alter-
native. Professional-quality output became a real
possibility. But it might take some effort to find
a printshop willing to process raw PostScript. The
usual practice in the graphics industry was handing
off application files. Of course, this had its draw-
backs: it was easy to forget to include a font or
a graphic file in the job, and the printshop from its

Editor’s note: This article was first published in MAPS 30
(Spring 2004), and is reprinted by kind permission of the
author and editor.

160 TUGboat, Volume 25 (2004), No. 2

side had to watch against reflow, i.e. changes in line-
breaks. For TEX users, this practice was no option
at all.

TEX users have for a long time been using
Ghostscript for previewing, converting and print-
ing PostScript. However, most printshops seem to
have been unaware of such tools. And without such
tools, a PostScript file is pretty much a black box.

Then Adobe developed PDF, a derivative of
PostScript, and has had some success in persuading
the graphics industry that a PDF-based ‘workflow’
is the way to go. By now, it is not that hard to find
printshops accepting jobs in PDF format.

2 PDF tools

PDF has been developed both as a more tractable
format for print production and as a format for var-
ious interactive uses. Whereas PostScript is a full-
fledged programming language, PDF lacks program-
ming features. Presumably, this made it easier to
write software for it, and we certainly have seen
a flood of software for PDF. Just pay a visit to
www.planetpdf.com to convince yourself.

These include of course the Adobe Acrobat pro-
grams: the free Reader (which is now named Adobe
Reader) and the various commercial editions of Ac-
robat. All these commercial editions include Dis-
tiller for converting PostScript to PDF. As of this
writing, the latest versions (6.xx) of the Reader and
the other Acrobat programs are available only for
Windows and Mac OS X.1

Other PDF tools include various third-party Ac-
robat plugins, for prepress functions such as color
separation and page imposition, and for limited edit-
ing. There are also toolkits/libraries for program-
mers, some of them open source. There are also
commercial and free alternative PostScript-to-PDF

converters, Ghostscript not the least among them.
Mac OS X Panther contains a command-line utility
pstopdf which is quite good. Many programs now
can generate PDF directly.

The principal freely available PDF readers are
Ghostscript (via a suitable frontend such as gv or
GSView), and xpdf. The latter is part of a suite.
Xpdf itself requires X11, but the rest of the suite
consists of some very useful command-line utilities
which are also available for Win32. I’ll mention
some of them below.

3 Routes to PDF

The principal routes to generate PDF from TEX are:

1 Since then, Adobe has released Acrobat 7, in which the

Reader is once more available for Linux.

• from TEX to dvi to PostScript, and then run-
ning the PostScript file through Distiller or an-
other PostScript-to-PDF converter

• from TEX directly to PDF, using pdf[e]tex

• from TEX to dvi and then with dvipdfm[x] to
pdf. Dvipdfm-cjk, a.k.a. dvipdfmx, offers ex-
tended support for CJK (Chinese/Japanese/
Korean) languages with their huge character
sets.

One reason for choosing the roundabout way via
PostScript is when you use PostScript-specific fea-
tures, such as the pstricks package, which haven’t
been adapted to PDF. Another reason is that you
may need Distiller’s extra prepress-related controls.

If you need pdftex-specific features but also Dis-
tiller’s controls, then you can go from PDF to Post-
Script, and then back to PDF. For the first con-
version, you can use either Adobe Reader or Ghost-
script or pdftops (from the xpdf tools suite); for the
second one, use either Distiller or one of its alterna-
tives. This usually works just fine.

3.1 Ghostscript as a PDF generator

Many of Distiller’s prepress-related controls are also
available via Ghostscript; a fairly thorough descrip-
tion can be found in the ps2pdf manual that is in-
cluded in the Ghostscript distribution.

4 Preventing font problems

Acrobat used to come with a base set of fonts:
Courier, Helvetica, Times, Symbol and Zapf Ding-
bats. Therefore, these fonts were customarily not
embedded. To the dismay of the TEX community,
in Acrobat 4 Times was replaced with Times New
Roman, and Helvetica with Arial. Grudgingly, we
concluded that it was better to avoid ambiguity and
embed all fonts for print, including the base 14, and
just put up with the increase in file size. Fortunately,
this version of Acrobat also introduced joboptions
files, which are named sets of Distiller settings. This
made it easier to switch between generating unam-
biguous pdfs for prepress and small pdfs for online
viewing, where you may prefer to exclude the base-
14 fonts.

Another point of concern is METAFONT-gen-
erated bitmapped fonts. Although these may look
fine in print, they usually look pretty bad on screen,
and PDF validation tools will probably flag them as
undesirable or illegal.

Font embedding is controlled by map files. For
teTEX/fpTEX/TEX Live, these used to be located
under texmf/dvips/ and texmf/pdftex/, but are
being relocated to texmf/fonts/map/engine, engine

TUGboat, Volume 25 (2004), No. 2 161

Figure 1: Adobe Reader: Document Fonts

being e.g. dvips or pdftex. Make sure that the rel-
evant map files contain entries for the Computer
Modern fonts, and that all entries contain a font
filename:

ptmr8r NimbusRomNo9L-Regu

" TeXBase1Encoding ReEncodeFont "

<8r.enc <utmr8a.pfb

(a single line), rather than

ptmr8r Times-Roman

" TeXBase1Encoding ReEncodeFont " <8r.enc

The first version downloads the URW Times clone
included in most free TEX distributions; the second
references a version of Times which should be avail-
able to either Acrobat or the printer/typesetter.

As of the 2003 editions of teTEX/fpTEX/TEX
Live, map files are generated with a utility updmap,
and configured either by editing web2c/updmap.

cfg or with command-line parameters. Also check
texmf/pdftex/config/pdftex.cfg (for 2003 and
earlier) to see which map files are used by pdftex.

Changes are planned for future releases, so be
sure and check the documentation if things don’t
work out.

As to MikTEX: The manual mentions the file
updmap.cfg for manual configuration and the com-
mand initexmf --mkmaps for forcing regeneration
of the map files.

You can check your fonts with the Reader by
first scrolling through the entire document and then
either click File/Document Properties/Fonts. . . or
by clicking the right-pointing arrow above the verti-
cal scrollbar and select Document Fonts. . . ; see fig-
ure 1.

If Acrobat doesn’t support your platform, then
use pdffonts from the xpdf suite instead:

> pdffonts siepstyle.pdf

name type emb sub uni object ID

---------------------- ------ --- --- --- ---------

GZLRCN+LMSans8-Regular Type 1 yes yes no 10 0

EQOQAE+LMSans10-Bold Type 1 yes yes no 13 0

...

5 Preventing problems with figures

Included figures also may cause problems:

• Fonts: keep in mind that included pdfs may
also contain fonts and font problems. If a font
is embedded in a pdf that you are trying to
include, and pdftex complains that it can’t find
the font, it may be that the font is present in the
map file but absent from your installation. In
that case, create a custom version of the map
file without the entry. This will hopefully no
longer be a problem with pdftex version 1.20.

• Lines with width 0, as produced by several
graphics programs when you select ‘hairline’.
Width 0 means one pixel wide. This looks fine
with 300 dpi output from a desktop printer,
but becomes completely invisible with high-
resolution typesetter output. A width of 0.3 pt
should be safe.

• Resolution of pixel-based images. With the
wrong Distiller settings, they might inadver-
tently get downsampled to screen resolution.

• Inappropriate use of jpeg:

The left picture is a jpeg of 1138 bytes, the
right one a png of 571 bytes. Jpeg is fine for
photographs, but if your image contains large
solid areas and sharp transitions, then lossless
compression such as used by the png format is
probably better.

Some of these problems can be spotted by zooming
in on your figures in the Reader.

6 Page size and other properties

With the traditional LATEX plus dvips plus Dis-
tiller route, you needed to tell all three programs
about the desired page size. With pdftex, you only
need to specify page dimensions once, in your TEX
source. Use the pdftex primitives \pdfpagewidth

and \pdfpageheight, or use the geometry package.
While you are at it, ensure also that the PDF

version is no higher than it needs be, since your
printshop may not have the latest versions of ev-
erything. A good version to aim for is 1.3, which
corresponds to Acrobat 4. This can be set either in
pdftex.cfg or in your TEX source:

\pdfoptionpdfminorversion=3

Again, you can check either with the Reader, using
either File/Document Properties/Summary or the

162 TUGboat, Volume 25 (2004), No. 2

Figure 2: Adobe Reader: page dimensions and
PDF version

Document Summary tab under the right-pointing
arrow above the vertical scrollbar; see figure 2. With
the xpdf utilities, use pdfinfo:

> pdfinfo siepstyle.pdf

Title: siepstyle

Creator: TeX

Producer: pdfTeX-1.11b

CreationDate: 20040601

ModDate: 20040601

Tagged: no

Pages: 3

Encrypted: no

Page size: 595.3 x 756 pts

File size: 148171 bytes

Optimized: no

PDF version: 1.3

Page dimensions (pts) are in ‘big points’.

7 Combining documents

With a journal or a proceedings, it often isn’t prac-
tical to compile the entire document in a single TEX
run. So you may end up with a separate pdf for each
paper, which you have to combine into a single pdf
somehow.

7.1 With TEX

If you have separate pdfs of arbitrary origin then
TEX can collate them for you: either use the LATEX
package pdfpages or use the ConTEXt utility texexec
with the --pdfarrange switch. Including a file with
pdfpages can be as simple as

\usepackage{pdfpages}

...

\includepdf[pages=-]{APaper}

Figure 3: Combining pdfs interactively with
Acrobat

\includepdf[pages=-]{AnotherPaper}

...

The teTEX/fpTEX/TEX Live distributions contain
the necessary documentation for both pdfpages and
texexec.

7.2 With a Distiller driver file

Another option is to generate PostScript files and
feed Distiller a driver file which loads them. Such a
driver file may look as follows:

%!

/prun {

/mysave save def % save first

dup = flush % Shows name of PS file

RunFile % builtin Distiller proc

clear cleardictstack % Cleans up

mysave restore % Restores save level

} def

(c:/temp/apaper.ps) prun

(c:/temp/anotherpaper.ps) prun

...

This is documented in the Acrobat documentation;
see RunDirEx.txt and RunFilEx.ps. The location
of these files varies per version and platform.

If you use this approach, it is best not to let
dvips subset fonts. That way, Distiller can create
a single subset of each font for the entire volume,
leading to a smaller pdf.

7.3 With Acrobat

Finally, Acrobat lets you combine pdfs interactively
(see figure 3), but since you probably end up repeat-
ing the process quite a few times, the other options
will almost certainly be more convenient.

TUGboat, Volume 25 (2004), No. 2 163

8 Color separation

If you want your document to be printed in color,
then the printshop has to prepare one plate for each
ink. For ‘full color’, these inks are usually cyan,
magenta, yellow and black (CMYK). This style of
color printing is called process color. The best way
by far is to let the printshop handle this itself. After
all, they should have the specialized software and the
know-how.

However, TEX users do have a few options:

8.1 Using macros

You can generate a page several times, each with
different definitions for colors:

\def\doseparation#1{%

\ifcase #1 % composite

\def\sepcyan{cyan}%

\def\sepblack{black}%

\def\sepfigure{CKfigure}%

\or % cyan

\def\sepcyan{black}%

\def\sepblack{white}%

\def\sepfigure{Cfigure}%

% cyan rendered as black; black omitted

\or % black

\def\sepcyan{white}%

\def\sepblack{black}%

\def\sepfigure{Kfigure}% cyan omitted

\fi

{\color{\sepcyan} Text in cyan\par}

{\color{\sepblack} Text in black\par}

\includegraphics{sepfigure}\newpage}

%\doseparation0

% for colored output; omitted for separations

\doseparation1

\doseparation2

Note that this requires preseparated external fig-
ures.

ConTEXt contains built-in macro-based color
separation functionality; see www.pragma-ade.com/
general/manuals/msplit.pdf.

8.2 Using dvips and colorsep.pro

The TEX Live distribution contains a PostScript
header file texmf/dvips/colorsep/colorsep.pro

for separation of process colors. If you run dvips as
follows:

dvips -b 4 -h colorsep.pro filename

then dvips produces each page four times (-b 4

switch), and each time the header file colorsep.pro
redefines colors appropriately for a given printing
plate.

8.3 Using Acrobat 6 Professional

Acrobat 6 Professional also offers color separation
via the Print menu. I encountered some glitches
so I recommend to have a really good look at the
resulting PostScript or pdf file before submitting it
to your printer.

9 Overprinting

When printing black over a colored background,
color separation software typically sets the other
plates to white. However, any misregistration on
the press will lead to slivers of white, which might
be quite distracting; see the picture below.

If the background is light enough, then you can ig-
nore the effect, but in other cases it is better to do
something about it. One solution is to use a modi-
fied black with other color components added:

\color[cmyk]{0,0.5,0,1}

Another solution is to tell PostScript or PDF to let
the color continue underneath the black. This is
called overprinting. For a LATEX style file and exam-
ple which tries to implement this for dvips and pdf-
tex, look at http://tex.aanhet.net/overprint/.
You can judge the effect in Acrobat Pro, if you check
Advanced/Separation Preview. Figure 4 shows this
dialog in another context.

10 Spot colors

A popular use of color in a printed document is to
print some elements such as headings or rules from
a single premixed color. Printshops have books with
color swatches to choose from. Pantone is the man-
ufacturer and license holder of most of these swatch
books. You can let one of the process colors, i.e.
cyan, magenta or yellow, take the place of the spot
color and tell the printshop which color you really
want.

If you want spot color in addition to process
color, then the above trick can’t be used. However,
ConTEXt offers real support for spot colors. You can
do it as follows:

\definecolor[myspotcolor][c=.7,m=.2]

\definecolor[myspot][myspotcolor][p=1]

...

\color[myspot]{myspot}

Note the two-stage definition of myspot: if you want
a separation plate for the spot color, you need to

164 TUGboat, Volume 25 (2004), No. 2

Figure 4: ConTEXt does spot colors in addition to
CMYK

define myspot as a tint or fraction of a previously
defined color. See also figure 4.

11 Color management

RGB colors are represented by three values for the
three components, and process color by four values
for the four process inks. These three or four val-
ues don’t represent color itself but instructions for
a device to apply certain colorants. The resulting
color can and does depend on the device; we are
all familiar with a wall of TV sets in an electronics
store each displaying the same image with a differ-
ent color cast. Matching screen colors with printed
colors is an even worse problem. We all have seen
how screen images can become disappointingly dull
when printed; many brilliant screen colors simply
cannot be reproduced in print.

Since graphics professionals tend to care about
color consistency, color management systems have
been introduced, which try to guarantee color con-
sistency from device to device. This means either
specifying color in some device-independent way or
supplying device profiles to go with the color ele-
ments in your document. This is one area where
open source doesn’t have much to offer.

12 PDF/X and Certified PDF

PDF/X is an ISO standard for PDF files in prepress.
There are two flavors: PDF/X-1a which allows pro-
cess color and spot color, and PDF/X-3 which also
accepts color-managed RGB. Since it is an ISO stan-
dard, you have to pay money to get the specification.
However, you can download documentation and Dis-
tiller settings for free from www.pdf-x.com.

If you can avoid RGB color altogether, then it is

possible to generate PDF/X with pdftex. However,
don’t convert existing images just for the sake of
PDF/X conformance if you don’t have to; check with
your printshop first.

Code similar to the following should ensure that
your pdf won’t fail PDF/X for silly reasons:

\pdfpagewidth=595.3bp

\pdfpageheight=841.7bp

\pdfpageattr{/TrimBox [0 0 595.3 841.7] }

\pdfoptionpdfminorversion=3

\edef\pdfdate{%

\the\year

\ifnum \month < 10 0\the\month

\else \the\month \fi

\ifnum \day < 10 0\the\day

\else \the\day \fi}

\pdfinfo{%

/CreationDate (D:\pdfdate)

/ModDate (D:\pdfdate)

/Trapped (False)

/GTS_PDFXVersion (PDF/X-3)

/Title (\jobname)}

\pdfcatalog{

/OutputIntents [<<

/Info (Euroscale Coated v2)

/Type /OutputIntent

/S /GTS_PDFX

/OutputConditionIdentifier

(OFCOM_PO_P1_F60)

/RegistryName (http://www.color.org/)

>>]}

pdftex 1.11b already includes a creation date au-
tomatically. Hopefully, newer versions will do the
same for modification date so that you can dispense
with the date rigmarole altogether.

Acrobat Distiller also has options for color man-
agement and PDF/X; see figure 5.

Another initiative, from Enfocus Software, is Cer-
tified PDF. This is not just a set of requirements,
but requires your pdfs to be stamped as certified
by dedicated commercial software. I found no refer-
ence to this type of certification in the Acrobat doc-
umentation. See www.certifiedpdf.net for more
information.

13 Preflight

The term preflight has come to be used for ensuring
that your pdf is safe for production. I already men-
tioned a few simple checks that are available with

TUGboat, Volume 25 (2004), No. 2 165

Figure 5: Distiller settings for PDF/X

conformance. The Color tab (not shown)
also contains relevant settings.

the Reader and with the xpdf utilities.
Acrobat Professional has a lot of preflight op-

tions built-in, including checks on PDF/X compli-
ance. They can be found under the Document menu.
Just as with Distiller options, there are also named
sets of preflight options; see figure 6.

Much of the Acrobat preflight code has been
taken from Callas’ PDF/X Inspector. There also
used to be a free version of this tool, called PDF/X-3
Inspector.

14 Conclusion

The main points are to check what you can, and to
discuss with your printshop in what form they want
your document. Maybe they have a Distiller options
file; even if you don’t use Distiller, then it would still
be useful to look at (these are plain ASCII files).

If there is color then it is highly desirable that
the printshop be able to do the separations. The
same is true for page imposition.

Keep also in mind that there are plenty of MS

Office files which are being typeset somehow, so
many printshops ought to be able to handle pdfs
from outside the graphics industry.

Figure 6: A long list of predefined sets of
preflight profiles in Acrobat 6 Pro

All this having been said, I do believe that Ac-
robat Pro is a worthwhile investment if you can af-
ford it at all.

15 URLs

Adobe www.adobe.com

Planet PDF www.planetpdf.com

Xpdf www.foolabs.com/xpdf/

DviPDFm project project.ktug.or.kr/dvipdfmx/

Color separation www.pragma-ade.com/general/

in ConTEXt manuals/msplit.pdf

overprint.sty tex.aanhet.net/overprint/

PDF/X support www.pdf-x.com

Certified PDF www.certifiedpdf.net

Callas www.callas.de/en/

⋄ Siep Kroonenberg
siepo@cybercomm.nl

166 TUGboat, Volume 25 (2004), No. 2

Automatic typesetting of formulas using

computer algebra

Marcelo Castier and Vladimir F. Cabral

Abstract

This paper describes new procedures, written in the
MathematicaR© programming language, for quickly
typesetting mathematical formulas in LATEX syntax.
Two main procedures provide direct interface with
the user. The first of them obtains the LATEX repre-
sentation of a single formula. The second procedure
analyzes a set of formulas, searching for common
terms and symmetries, and breaks the original for-
mulas input by the user in a series of calculations of
intermediate terms. In either case, a list of symbols
used in the formulas is automatically generated in
LATEX format. The procedures may speed up the
writing of technical publications and eliminate com-
mon sources of error in their preparation.

Introduction

Several current tools can assist preparation of tech-
nical documents using computers. Voice recognition
software such as ViaVoice™ and Dragon Naturally-
SpeakingR© transform speech directly into typeset
text with good accuracy. Literature references can
be downloaded from databases, and software such
as Natbib, Reference ManagerR©, and ProCiteR© will
format them according to the rules of many scientific
journals. Cross-referencing of tables, equations, and
figures eliminates the need for their manual renum-
bering, if the manuscript has to be modified. How-
ever, authors usually typeset mathematical formulas
manually, which can be tedious and time-consuming
due to the need for careful reviews of complex ex-
pressions.

In fact, it may be more difficult to guarantee
the correctness of a formula typeset for publication
than its programmed version in a scientific language,
such as Fortran or C. In the latter case, numerical
tests can help locate programming errors. On the
other hand, the verification of formulas typeset for
publication is generally made by visual inspection.

An additional aspect related to typesetting for-
mulas for publication is the preparation of lists of
symbols. It is not unusual to find publications in
which some symbols are missing from these lists.

Modern computer algebra systems (CAS), such
as Maple™ and Mathematica, provide a user-friendly
environment for symbolic computations, allowing
the derivation of complex formulas. Moreover, both
Maple and Mathematica have commands for export-
ing formulas to other programs in different formats.

Therefore, they have the basic functionality needed
for the automatic implementation of formulas, which
has been used by some authors.

Motivated by the difficulty of manual sym-
bolic computations in the area of general relativity,
Klioner (1998) used Mathematica to develop a pro-
gram for operations with indexed objects that can
provide its results in TEX or LATEX. Piecuch (1993)
and Strange et al. (2001) used Maple to obtain LATEX
code in applications to problems in quantum chem-
istry. Maple was also used by Sharf (1996) for the
generation of LATEX code in the analysis of beam
elements for the simulation of multibody systems.
Weinzierl (2004) describes a new CAS, called gTy-
balt, which is freely available and has the possibility
of producing TEX output. However, some opera-
tions, such as integration, are not implemented yet,
which currently limits the applicability of the pro-
gram. Talole and Pradke (2003) developed a pro-
gram that exports text, numerical data, and plots
from a MatlabR© calculation to a LATEX document.
An important contribution in this area is the de-
velopment of Mathscape (Barnett, 1998), which is
a program in Mathematica for the automatic type-
setting of formulas in LATEX whose features are in
many ways complementary to those available in the
set of procedures presented here.

In this paper, we use Mathematica, and the
comments henceforth about the ability to export
formulas are limited to this CAS. Mathematica can
export formulas as images, or in MathML or TEX
formats. The use of images is inconvenient because
some final editing of the formulas is often required.
The MathML or TEX codes cannot be used as input
in the current versions of MicrosoftR© Equation Ed-
itor or MathType™, which are the most commonly
used equation editors for Microsoft Word. There-
fore, the exchange of formulas between Mathematica
and these editors that have graphical user interfaces
is less flexible than would be desirable.

Use of MathML will probably spread in the fu-
ture as a way of interchanging information about
physical properties and models for their evaluation
(Frenkel et al., 2004). However, we focus on the use
of TEX or LATEX directly, because the latter is the
de facto standard used internally by many technical
publishers. Mathematica has a command to gen-
erate the representation of a formula in TEX. Al-
though very useful, this command only takes one
formula at a time and does not generate the list of
symbols, among other limitations.

Here, we present two new procedures. The first
generates LATEX code for a single formula. The sec-
ond procedure performs a simultaneous analysis of

TUGboat, Volume 25 (2004), No. 2 167

several formulas, identifies their common and sym-
metrical terms, and obtains the LATEX representa-
tion as a sequence of intermediate formulas, thereby
breaking the original expressions input by the user
into a form that is more convenient for presenta-
tion. Both procedures automatically prepare a list
of symbols, also coded in LATEX, classifying them as
Roman or Greek letters, or indexes.

These new procedures extend the capabilities
of Thermath (Castier, 1999), a program whose cur-
rent version contains approximately 6000 lines of
code written in the Mathematica programming lan-
guage. The original purpose of Thermath was the
computer implementation of thermodynamic mod-
els for the calculation of physicochemical properties
of mixtures, by providing complete subroutines au-
tomatically written in a scientific programming lan-
guage. In a typical application, given a thermody-
namic model, several properties are derived using
computer algebra for operations such as derivation
and integration in a Mathematica session. It of-
ten happens that the derived properties have for-
mulas that are longer and more complex than the
thermodynamic model that originates them. Us-
ing its internal procedures, Thermath analyzes these
formulas and implements them automatically in a
complete subroutine, with a drastic reduction in the
need for manual coding.

Thermath has been extended to other applica-
tions such as the automatic implementation of ex-
pressions (Dominguez et al., 2002) in a format com-
patible with the INTBIS/INTLIB package for solv-
ing sets of nonlinear equations with interval analysis
(Kearfott and Novoa, 1990), and the preparation of
code for the simulation of separation equipment in
the chemical industry (Alfradique et al., 2002).

The new procedures presented in this paper add
the possibility of aiding in the preparation of techni-
cal documents, not only related to physicochemical
properties but in many areas that require the man-
ual typesetting of long formulas. These procedures
perform extensive and intricate symbol manipula-
tions in the expressions. Here, we present only a
general description, and refer to the code, which is
available from the authors on request, for all the
details.

Automatic generation of LATEX code for a

single formula

Mathematica has a function called TeXForm that
translates formulas into TEX syntax. Let us illus-
trate its usage with the typesetting of a simple for-
mula: the van der Waals equation of state. Given
that the emphasis here is not on the technical as-

pects of the equation of state, we refrain from dis-
cussing the meaning of its symbols. The TeXForm

function is used as follows:

TeXForm[P == R*T/(v - b) - a/v^2]

This command produces one line of output, bro-
ken here in additional lines only to fit the column
width of TUGboat, as also done in some of the other

examples of this paper.

P = -\left(\frac{a}{v^2} \right) +

\frac{R\,T}{-b + v}

This output, obtained in a Mathematica ses-
sion, can be cut and pasted into a document. Even
though this certainly reduces the need for manual
typesetting, several improvements are possible, such
as automatically assigning a label to the formula for
cross-referencing and generating a list of symbols.

Thermath contains a procedure, prinTeX, that
performs several actions: (1) prepares lines that load
the LATEX breqn package for the automatic break-
ing of long formulas in several lines; (2) prepares
an equation label containing six randomly generated
digits; (3) identifies all the symbols that appear in
the equation, classifying them as Roman or Greek
letters or indexes; (4) implements the formula using
the Mathematica function TeXForm. The verbatim
input in Mathematica is:

prinTeX[P == R*T/(v - b) - a/v^2]

The verbatim LATEX code obtained as output is:

%

%The following lines should be placed after the

%\documentclass {class} line

%in the LATEX file.

%

\usepackage[cmbase]{flexisym}

\usesymbols{msabm}

\usepackage[debug]{breqn}

\setkeys{breqn}{compact}

%

%The following lines should be placed where

%the formula should appear in the text.

%

\begin{dmath}\label{e:eqn485282}

P = -\left(\frac{a}{v^2} \right) +

\frac{R\,T}{-b + v}

\end{dmath}

%

%The following lines create the list of symbols.

%

\section*{List of Symbols}

%

%

\subsection*{Roman Letters}

%

168 TUGboat, Volume 25 (2004), No. 2

a \\

b \\

P \\

R \\

T \\

v \\

%

%The list of symbols was successfully created.

The parts of this output, i.e., the loading com-
mands for breqn, the formula, and the list of symbols
can then be cut and pasted at their proper positions
in a LATEX document. For example, the loading com-
mands for breqn were pasted at the beginning of the
LATEX document of this paper for TUGboat. The
formula and the list of symbols were pasted here.
Due to differences between the ltugboat document
class used by TUGboat and the elsart document
class from Elsevier, used for testing the software,
it was necessary to manually add a \newline com-
mand in the line after the subsection names to im-
prove formatting. Upon processing with the LATEX
compiler, the following text is obtained:

(1)P = −

(a

v2

)

+
R T

−b + v

List of Symbols

Roman Letters

a
b
P
R
T
v

If several formulas are prepared using prinTeX,
the loading commands for breqn need to be pasted
only once at the beginning of the LATEX document
and the lists of symbols of each formula have to be
manually combined to consolidate the list of symbols
of the document, which most commonly constitutes
one of the final sections of technical papers.

Even though Equation 1 is correct, this ex-
ample also illustrates one of the difficulties with
CAS. Comparing the input and output, we observe
that Mathematica interchanges the order of the two
terms in the right hand side of the equation and
does the same in the denominator (v−b). Therefore,
the formula is not printed as usually represented in
the literature. Unfortunately, there seems to be no
straightforward solution to this problem in Mathe-
matica. Barnett (1998) developed a function called
toEach, in the context of Mathscape, that can re-
verse the order of operations, but this function was
not tested here. Instead, we circumvented the prob-

lem by using the command HoldForm, which keeps
an expression unevaluated and therefore not subject
to the automatic reordering of terms performed by
Mathematica. The corresponding input is:

prinTeX[HoldForm[P == (R*T)/(v - b) - a/v^2]]

After processing this input with the LATEX com-
piler, the traditional representation of the van der
Waals equation of state is obtained:

(2)P =
R T

v − b
−

a

v2

The list of symbols remains unchanged and, for
this reason, is not presented.

Let us consider a more complex example, which
requires integration of the van der Waals equation
of state at constant temperature. The Mathematica
input is:

P = (R*T)/(v - b) - a/v^2

prinTeX[W == HoldForm[Integrate[P,

{v,alpha, beta}]] ==

Simplify[Integrate[P, {v, alpha, beta}]]]

The output is:

(3)

W =

∫ β

α

P dv = a

(

−

(

1

α

)

+
1

β

)

+ R T ln

(

b− β

−α + b

)

List of Symbols

Roman Letters

a
b
R
T
W

Greek Letters

α
β

Note that the command HoldForm leaves the in-
tegral unevaluated between the two equal signs. The
list of symbols now contains a subsection where the
two Greek letters used as integration limits are iden-
tified. A current limitation of the pattern matching
procedure implemented in prinTeX is that it does
not identify dummy variables. For instance, v is a
dummy integration variable, and it is not included
in the list of symbols.

Automatic generation of LATEX code for

multiple formulas

In many cases, several formulas are derived using
computer algebra during a Mathematica session,
and instead of generating LATEX code for each for-
mula, it may be more convenient to generate code

TUGboat, Volume 25 (2004), No. 2 169

for all of them simultaneously. For this, we de-
veloped two procedures that are used sequentially:
ordeqTeX and createTeX.

Procedure ordeqTeX analyzes the expressions
to be represented in LATEX. During this analysis,
subexpressions that appear several times are recur-
sively identified and ordered, in such a way that a
meaningful calculation sequence of subexpressions is
obtained. The procedure also searches for subex-
pressions with symmetrical indexes. In addition,
ordeqTeX can sort the subexpressions according to
their dependence with respect to a list of variables
input by the user, which may be useful for authors
writing about the functional structure of their for-
mulas.

Procedure ordeqTeX is similar to a procedure
already present in the first version of Thermath,
ordeq, whose logical analysis of expressions is dis-
cussed by Castier (1999). An important difference
between them is the level of fragmentation into
subexpressions. Consider, for instance, that 1/x is a
subexpression that appears several times in a large
formula. For automatic programming in a numeri-
cal language, such as Fortran or C, it is convenient
to store the result of the subexpression in an in-
termediate variable, in order to avoid unnecessary
calculations. However, a large number of simple sub-
stitutions may obscure the presentation of a formula
in a text. For this purpose, the formulas should be
less fragmented than for numerical calculations —
but to what extent is a subjective decision.

In ordeqTeX, simple fractions such as the ex-
ample in the above discussion, powers in which the
exponent is a number, multiplications and sums of
only two terms are not replaced by intermediate
variables. However, the pattern matching algorithm
implemented in procedure ordeqTeX can be easily
changed to use other criteria.

Procedure ordeqTeX prepares detailed informa-
tion about the structure of the formulas and of the
subexpressions, which is then passed to procedure
createTeX. This procedure prepares a LATEX code
that presents all subexpressions and final expres-
sions in a feasible computation sequence.

Even though createTeX replaces long formulas
by sequences of subexpressions, it may happen that
some of these subexpressions are longer than one
line of LATEX output. In order to avoid the need for
manual intervention for breaking long lines, we used
the (freely available) LATEX package breqn, which
automatically chooses the breakpoints. For conve-
nience, the output of the prinTeX and createTeX

procedures includes commands for loading and us-
ing breqn, and each formula is given a unique la-

bel for cross-referencing. In the case of prinTeX, a
six-digit random number is used to generate the la-
bel. In the case of createTeX, the number results
from joining the name of the set of formulas being
implemented, specified by the user, with a unique
sequential number assigned to each subexpression.

For the preparation of the list of symbols, we
use the fact that expressions are internally stored
as trees in Mathematica. Using a recursive proce-
dure developed for Thermath, the trees are spanned,
searching for all the symbols they contain. From this
first list of symbols, those that represent intrinsic
Mathematica functions or operators, such as Plus,
Times, Log, Exp, etc., are discarded.

To distinguish between intrinsic Mathematica
functions and symbols entered by the user, we use
the Mathematica function Attributes to test each
symbol. Intrinsic Mathematica functions have non-
empty lists of attributes, whereas a symbol entered
by the user has an empty list of attributes, unless
a special attribute has been explicitly assigned to
the symbol. It is usually unnecessary to specify at-
tributes to symbols, but it may happen, for example,
that some matrices are intrinsically symmetrical. In
these cases, it is convenient to assign the Mathemat-
ica attribute Orderless to the symbols that repre-
sent these values. Therefore, the symbols entered by
users are located as those without attribute or only
with the Orderless attribute.

From the remaining list, the symbols that rep-
resent numerical values, either integer, real or com-
plex, are also discarded. At this point, the list will
only have the symbols entered by the user. It then
remains to verify which of the symbols are variables
and which are only indexes. The convention adopted
in the identification procedure is that a symbol is an
index when it is the argument of a symbol entered by
the user. For instance, in the expression Sin(x(i)),
x is the argument of an intrinsic Mathematica func-
tion, Sin, and therefore is not an index. On the
other hand, i is the argument of x, which is not
an intrinsic Mathematica function. Therefore, i is
assumed to be an index.

As an example, let us consider the simultaneous
analysis of two simple formulas, with some charac-
teristics that help illustrate the features of the pack-
age presented here. The input for this example is:

f = Sin[x[i]*x[j]] + Cos[y[k]*y[m]];

g = Cos[x[i]*x[j]] + Exp[Sin[x[i]*x[j]]];

formulas = {f, g};

analyzedformulas = ordeqTeX[formulas, {}];

createTeX[fg, analyzedformulas,

{HoldForm[f], HoldForm[g]}];

170 TUGboat, Volume 25 (2004), No. 2

In this input, the two formulas f and g, are
joined in a single list, formulas, which is passed to
ordeqTeX. The second argument of this call speci-
fies how subexpressions should be grouped accord-
ing to their functional dependence. In this example,
an empty list is specified, meaning that no specific
grouping is required.

In procedure createTeX, the first argument, fg,
represents a user-defined name for the set of formu-
las being implemented. createTeX uses this name to
prepare a unique label for each subexpression to be
used for cross-referencing. The second argument is
a list containing several pieces of information about
the formulas prepared by procedure ordeqTeX. The
last argument specifies that the left-hand side of the
equations should appear as f = and g =. The LATEX
output (slightly edited) is:

%

%Formulas for model: fg

%

%

% if (

% green(1) .or.

% green(2)

%) then

%

\smallskip

\begin{dmath}\label{e:fgeqn1}

w_{2}\left(i,j \right)=

\sin \left(x\left(i \right)\,

x\left(j \right) \right)

\end{dmath}

%

%Note symmetry: w$2(j,i)=w$2(i,j)

%=============

%

%

% end if

%

%

% if (

% green(1)

%) then

%

\smallskip

\begin{dmath}\label{e:fgeqn2}

f\left(i,j,k,m \right)=

\cos \left(y\left(k \right)\,

y\left(m \right) \right) +

w_{2}\left(i,j \right)

\end{dmath}

%

%Note symmetry: f(i,j,m,k)=f(i,j,k,m)

%=============

%

%

%Note symmetry: f(j,i,k,m)=f(i,j,k,m)

%=============

%

%

%Note symmetry: f(j,i,m,k)=f(i,j,k,m)

%=============

%

%

% end if

%

%

% if (

% green(2)

%) then

%

\smallskip

\begin{dmath}\label{e:fgeqn3}

g\left(i,j \right)=

e^{w_{2}\left(i,j \right)} +

\cos \left(x\left(i \right)\,

x\left(j \right) \right)

\end{dmath}

%

%Note symmetry: g(j,i)=g(i,j)

%=============

%

%

% end if

%

%

%The set of formulas was successfully created.

%

%The following lines create the list of symbols.

%

\section*{List of Symbols}

%

%

\subsection*{Roman Letters}

%

f \\

[...]

%

\subsection*{Indexes}

%

i \\

[...]

%

%The list of symbols was successfully created.

Note that the LATEX output contains a vari-
able of the form wn that is automatically generated
to represent an intermediate value. This output

TUGboat, Volume 25 (2004), No. 2 171

also contains several comments that aim at help-
ing authors to discuss the structure of their for-
mulas, should this be desired. The parts of the
output flagged with green(1) are relevant for the
calculation of the first output variable, f , whereas
green(2) provides a flag for the calculation of g.
The output also indicates the existence of symme-
try. For instance, it indicates that variables w2 and g
are symmetrical with respect to permutations of the
indexes i and j, and that variable f is symmetrical
with respect to some permutations of its indexes.

Compilation with LATEX produces the following
output:

(4)w2 (i, j) = sin (x (i) x (j))

(5)f (i, j, k,m) = cos (y (k) y (m)) + w2 (i, j)

(6)g (i, j) = ew2(i,j) + cos (x (i) x (j))

List of Symbols

Roman Letters

f
g
wn

x
y

Indexes

i
j
k
m

Note that each variable appearing on the left
hand side of Equations 4, 5, and 6 received the cor-
rect indexes automatically and that all the variables
used in the formulas were included in the list of sym-
bols. The exponential and cosine functions appear
in reverse positions in the output compared to the
input, as a result of the automatic reordering of ex-
pressions performed by Mathematica. Unlike the
prinTeX command that was designed handle a sin-
gle formula, the typical use of commands ordeqTeX
and createTeX is in Mathematica sessions where
several formulas are derived using computer alge-
bra. In this context, the user has less control of
the ordering used by Mathematica to present the
formulas. Therefore, even though the formulas are
correctly translated into LATEX, a current limitation
is that the formulas may need to be manually edited
if some specific order of terms is desired in the LATEX
document.

We successfully tested the procedures discussed
here with sets of formulas that are much more com-
plex than those used in these examples. In some

cases, especially when there are rather long formu-
las, a final manual editing step may be necessary
to improve layout; the [layout=RHS] option of the
breqn package proved particularly useful in these
cases.

Conclusions

This paper presented new procedures, written in the
Mathematica programming language, that automat-
ically generate a representation of formulas in LATEX
with the corresponding list of symbols. There is
the option of generating LATEX code for a single for-
mula or for a set of formulas. In the latter case,
a comprehensive analysis of the formula structures
allows the identification of common and symmetri-
cal terms. Therefore, if one uses Mathematica as
a computational environment for the symbolic and
numerical calculations in a given project, it is pos-
sible to quickly obtain an exact representation, in
LATEX, of the formulas used and the list of symbols.
The procedures may speed up the writing of tech-
nical publications and eliminate common sources of
error in their preparation.

Acknowledgments

The authors thank Profs. Veronica M.A. Calado and
Frederico W. Tavares (Universidade Federal do Rio
de Janeiro, Brazil) for their suggestions. The Brazil-
ian agencies CNPq and FAPERJ provided financial
support for this research.

Code availability

The procedures developed in this work are available
from the authors on request. The procedures were
developed and tested using Mathematica 4.1, ver-
sion 0.94 of the LATEX package breqn, and Elsevier
document classes.

References

Alfradique, M. F., R. O. Espósito, and M. Castier.
“Automatic generation of procedures for the
simulation of multistage separators using com-
puter algebra”. Chemical Engineering Commu-

nications 189(5), 657–674, 2002.

Barnett, M. P. “Mathscape — Combining Math-
ematica and TEX”. TUGboat 19(2), 147–156,
1998.

Castier, M. “Automatic implementation of thermo-
dynamic models using computer algebra”. Com-

puters and Chemical Engineering 23(9), 1229–
1245, 1999.

Dominguez, A., J. Tojo, and M. Castier. “Auto-
matic implementation of thermodynamic models
for reliable parameter estimation using computer

172 TUGboat, Volume 25 (2004), No. 2

algebra”. Computers and Chemical Engineering

26(10), 1473–1479, 2002.

Frenkel, M., R. D. Chirico, V. V. Oiky, K. N.
Marsh, J. H. Dymond, and W. A. Wake-
ham. “ThermoML — An XML-based approach
for storage and exchange of experimental and
critically evaluate thermophysical and thermo-
chemical property data. 3. Critically evaluated
data, predicted data, and equation representa-
tion”. Journal of Chemical and Engineering Data

49(3), 381–393, 2004.

Kearfott, R. B. and M. Novoa. “INTBIS, A Portable
Interval Newton Bisection Package”. ACM Trans-

actions on Mathematical Software 16(2), 152–
157, 1990.

Klioner, S. A. “New system for indicial computation
and its applications in gravitational physics”.
Computer Physics Communications 115(2-3),
231–244, 1998.

Piecuch, P. “Maple Symbolic Computation of
the Long-Range Many-Body Intermolecular Po-
tentials —3-Body Induction Forces Between 2
Atoms and A Linear Molecule”. International

Journal of Quantum Chemistry 47(4), 261–305,
1993.

Sharf, I. “Geometrically non-linear beam element
for dynamics simulation of multibody systems”.
International Journal for Numerical Methods in

Engineering 39(5), 763–786, 1996.

Strange, R., F. R. Manby, and P. J. Knowles.
“Automatic code generation in density func-
tional theory”. Computer Physics Communica-

tions 136(3), 310–318, 2001.

Talole, S. E. and S. B. Pradke. “Generating LATEX
documents through Matlab”. TUGboat 24(2),
245–248, 2003.

Weinzierl, S. “gTybalt — A free computer alge-
bra system”. Computer Physics Communications

156(2), 180–198, 2004.

⋄ Marcelo Castier

Escola de Qúımica, Universidade

Federal do Rio de Janeiro

Rio de Janeiro, RJ, 21949-900

Brazil

castier@eq.ufrj.br

⋄ Vladimir F. Cabral

Departamento de Engenharia

Qúımica, Universidade Estadual

de Maringá

Maringá, PR, 87020-900

Brazil

vfcabral@yahoo.com.br

T Gb t, lume (), .

Graphics

ePiX: A utility for creating mathematically

accurate figures

Andrew D. Hwang

1 Introduction

Mathematical and scientific writing call for figures
that accurately and attractively integrate typogra-
phy and numerical data. Widely-used commercial
and non-commercial drawing programs exist, as do
dozens of lesser-known utilities. This article de-
scribes an addition to the list: ePiX, a collection of
command line utilities for creating mathematically
accurate, logically structured, camera-quality 2- and
3-dimensional figures and animations in LATEX. De-
spite superficial similarities with existing programs,
ePiX fills a distinct niche in the ecosystem of draw-
ing software by providing a bridge between the pow-
erful numerical capabilities of C++ and the high-
quality typesetting of LATEX.

y

z

x ∂f

∂y
: x constant

z =
1

2
(y3

− 3x2y)

Figure 1: A surface with simulated transparency.

ePiX’s relationship to a graphical drawing pro-
gram is analogous to LATEX’s relationship to a word
processor. A logically structured input file is pre-
pared in a text editor, then compiled into a plain
text (eepic) file that is included into a LATEX docu-
ment. Optionally, the figure may be processed into
eps or pdf. This note focuses on the user interface,
though certain issues of implementation arise of ne-
cessity.

ePiX’s strengths include:

• Ease of use: Figure objects are specified by sim-
ple, mnemonic commands that refer to a natu-
ral coordinate system.

TUGboat, Volume 25 (2004), No. 2 173

• Quality of output: ePiX creates mathematically
accurate line figures whose appearance matches
that of LATEX. Typography is added to an ePiX

figure as easily as to a LATEX picture environ-
ment. The mechanism for text placement is ro-
bust under changes of scale.

• Wide availability: ePiX runs on platforms with
a C++ compiler and the GNU shell bash, par-
ticularly on GNU/Linux, Mac OS X, Windows
(Cygwin), FreeBSD, and Solaris. An output
file may be incorporated into a document on
any platform that supports LATEX.

• Programming: ePiX’s input is a widely-spoken,
easily-learned programming language. Even
simple figures can benefit from logical struc-
turing, while complex figures may employ algo-
rithms and generate their own numerical data.

• Extendability: Users can write custom code
and incorporate the functionality with a com-
mand line switch or a Makefile. This feature,
suggested by Andrew Sterian, endows ePiX with
the computational power of C++.

• Economy of storage and transmission: A com-
pressed tar file of the LATEX sources and com-
piled eepic files is typically a small fraction of
the size of a compressed PostScript file or a tar-
ball containing eps files, making ePiX output
particularly attractive for archiving.

• License: ePiX is Free Software, published under
the GNU General Public License.

This note focuses on general issues of image cre-
ation and ePiX’s approach to integrating numerical
and algorithmic capabilities with high-quality ty-
pography. The project home page has source code,
documentation, sample images, and animations:

http://mathcs.holycross.edu/~ahwang/

current/ePiX.html

The latest stable version is also available from CTAN

(in graphics/epix). Please visit the project page
for a more thorough showcase of ePiX’s capabilities.

I am grateful to Jay Belanger, Robin Blume-
Kohout, Andrew Sterian, and Gabe Weaver for de-
tailed and insightful design discussions and advice.

2 Source and Output Files

In LATEX, a document preamble specifies the default
appearance and sets up an environment by includ-
ing packages and defining macros, while the body
contains commands that generate the actual output.
Similarly, an ePiX preamble (Figure 2) accesses li-
brary code and defines symbolic constants and func-
tions that reflect the internal structure of the figure,

#include "epix.h" // analogous to \usepackage

using namespace ePiX;

// function definition

double f(double x) { return x/(1-x*x); }

int main()

{

unitlength(".85in"); // LaTeX unitlength

picture(P(3, 1.5)); // printed size

// specify corners; depict [-2,4] x [-4,4]

bounding_box(P(-2,-4), P(4,4));

begin(); // picture starts here

crop(); // crop to bounding_box

dashed(); // draw dashed lines

line(P(-1, y_min), P(-1, y_max));

line(P(1, y_min), P(1, y_max));

solid(); // use solid lines

h_axis(P(x_min, 0), P(x_max, 0), x_size);

v_axis(P(0, y_min), P(0, y_max), y_size);

h_axis_labels(P(x_min, 0), P(x_max, 0),

0.5*x_size, P(-2,2), tl);

bold(); // draw in bold (fonts unaffected)

plot(f, x_min, x_max, 120); // function plot

label(P(2,3), P(0,0),

"$y=\\displaystyle\\frac{x}{1-x^2}$");

end();

}

Figure 2: An ePiX source file, cf. Figure 3.

while the body contains commands that adjust the
appearance of objects and write the output file.

Body commands include objects, labels, and
attribute declarations. ePiX supplies standard ge-
ometric primitives: points, lines, circles, spheres,
planes, quadratic and cubic splines, ellipses and
arcs, arrows, polygons and polylines, and coordinate
grids. In addition, ePiX provides plotting: graphs,
parametric curves and surfaces, data from files, vec-
tor fields, derivatives and integrals, and solutions of
ordinary differential equations. Basic geometric ob-
jects can be constructed and used in mathematically
natural ways, such as finding the intersection point
of two lines, constructing a circle through three non-
collinear points, or drawing the tangent line to a
function graph.

Four internally documented shell scripts consti-
tute the user interface: epix (creates eepic files),
elaps (converts ePiX and eepic files to eps, pdf,
or PostScript), flix (creates png images and mng an-
imations), and laps (converts LATEX to PostScript).

3 Design

The notion of “ideal” drawing software is too depen-
dent on authors’ individual needs and preferences to

174 TUGboat, Volume 25 (2004), No. 2

be meaningful. Nonetheless, commonly useful fea-
tures can be identified. ePiX does not satisfy all the
criteria below, but its development has proceeded
with these goals in mind.

3.1 Capabilities

A general-purpose command-driven drawing utility
provides three basic services: an input language,
a set of data structures for representing figure ob-
jects and their attributes, and output routines. The
input language should be easy to learn and use,
yet powerful, flexible, and extendable. Frequently-
encountered objects and algorithms should be rep-
resented natively, allowing users to program (when
necessary) in a high-level language. Both 2- and 3-
dimensional figures should be supported. A variety
of output file types should be available, so that the
resulting images can be exchanged easily, used in
printed documents, or published on the Web.

Less technical but equally important are issues
of convenience and freedom. A program should sup-
ply sensible defaults, so that simple figures can be
drawn without micro-management. At the same
time, figure attributes should be modifiable with
short, easily-remembered commands. Users’ files
should compile quickly, preferably in no more than
a couple of seconds on a moderately fast machine.
Output files should be small, perhaps tens of KB, yet
of high typographical quality. The program should
be widely available, and free from proprietary algo-
rithms and file formats.

3.2 Logical Structuring and Input

Mathematical figures represent structured informa-
tion. Bitmapped images, and to a lesser extent eps
files, discard this structure. By contrast, a program-
ming language exploits logical structure through use
of symbolic constants, data structures, functional re-
lationships, and algorithms, including control state-
ments, loops, and recursion. A high-level figure de-
scription language is potentially both efficient and
convenient, for the same reasons that a Taylor poly-
nomial compactly encodes a trig table. Naturally,
users do not want to learn a new language in or-
der to create figures, but software can accommodate
users by providing intuitively-named functions that
implement common figure objects. Ultimately, how-
ever, a language that provides plotting and other
algorithmic and numerical capabilities must utilize
more complex syntax. To ease the learning curve,
a scene description language might piggyback itself
onto a widely-used programming language, such as
C++, Fortran, or Lisp.

ePiX attempts to meet these goals by furnish-
ing a user-friendly interface to C++, harnessing its

−2 0 2 4

y =
x

1 − x2

−2 0 2 4

y =
x

1 − x2

Figure 3: Rescaling: Two figures generated from
the input file in Figure 2.

speed, flexibility, and computational power to the
creation of mathematical figures. An ePiX source
file is a compact, high-level scene description writ-
ten in C++. Even moderately complicated figures
require no prior knowledge of C++, and the source
code comes with dozens of samples files suitable for
study and experimentation.

3.3 Page Coordinates and Resizing

Logical markup is fundamental to LATEX: a doc-
ument does not directly specify its visual appear-
ance, but relies on packages loaded at compile time.
Mathematical figures benefit similarly from logical
structuring. Designing and writing a figure in page
coordinates, as in the LATEX picture environment,
is conceptually WYSIWYG.

Except as required to size and place the finished
product, and to align text (below), an ePiX figure
refers exclusively to Cartesian coordinates. The use
of logical coordinates makes the input file easier for
a human to read, and enhances flexibility: software
can render a figure according to user-specified crite-
ria at compile time, changing the size, aspect ratio,
or viewpoint, for example.

Incorporation of typography imposes an addi-
tional requirement on a figure’s coordinate system.
A text box is attached to a specific logical location in
a figure. However, fonts do not (and usually should
not) scale when the size of a figure changes. Conse-
quently, a LATEX box cannot always be placed using
only its basepoint if the result is to compile attrac-
tively at various aspect ratios: the Cartesian loca-
tion of the basepoint does not generally undergo the
expected affine scaling when a figure is resized (Fig-
ure 3). ePiX handles this difficulty by positioning a

TUGboat, Volume 25 (2004), No. 2 175

label “coarsely” using Cartesian coordinates, then
offsetting it “finely” in true coordinates, namely,
aligning the text box on a point other than its LATEX
basepoint. In other words, a scale-invariant align-
ment point is manually attached to each label, and
Cartesian coordinates are used to position this align-
ment point. There seems to be no simple, high-
quality alternative to aligning labels visually and
individually.

3.4 Scene Representation

An ePiX input file describes a 3-dimensional world,
which is represented on an abstract 2-dimensional
screen. World and screen coordinates are Carte-
sian, and not directly related to the printed figure’s
size. The screen contains a bounding box, a user-
specified Cartesian rectangle that is affinely mapped
to a LATEX picture. The overall size of the figure
is given directly in the input file, while the aspect
ratio is determined by the relative aspect ratios of
the bounding box and the picture box.

Sea

Sky

Eye

Viewpoint

Screen

Object

Shadow

Target

Figure 4: ePiX’s point-projection camera model.

The camera, consisting of a body and a lens,
maps the world to the screen; indeed, the screen
should be regarded as the camera’s film plane. The
camera body contains information about the loca-
tion and spatial orientation of an abstract observer,
while the lens is the actual mapping, point projec-
tion by default (Figure 4). The camera is designed
to behave like a real camera: The viewpoint and tar-
get may be set arbitrarily, the camera rotated about
its axes (sea, sky, and eye), and the lens changed.

To control the abstract and/or printed size of a
figure, ePiX can remove figure elements that lie out-
side a user-specified “clip box” (Figure 1), and can
“crop” a figure by masking elements that lie outside
the bounding box (Figures 3 and 5). Clipping and
cropping are disabled by default, in accordance with

the design philosophy of imposing minimal default
behavior.

3.5 Layering and Hiding

The eepic file produced by ePiX is at some stage
converted to PostScript or PDF. In either case, the
output is layered: objects occlude earlier parts of the
file. For 2-dimensional black and white line draw-
ings, layering is a minor concern, but for shaded,
color, or 3-dimensional pictures, layering is usually
important.

Figure 5: Layering, shading, and cropping.

ePiX does not currently automate hidden ob-
ject removal, but manual techniques provide satis-
factory results. In Figures 1 and 5, paths and sur-
faces are broken into mesh elements, sorted by dis-
tance to the viewpoint, and printed to the file in de-
creasing order of distance. The shading in these fig-
ures exemplifies the use of programming constructs
in ePiX. For each mesh element, a normal vector and
illumination vector are calculated, and the shade of
gray is a simple function of the angle between these
vectors. Similar techniques can be used to simulate
multiple light sources, even light sources of varying
colors.

3.6 Implementation

Befitting its role as a bridge between the compu-
tational power of C++ and the high-quality typog-
raphy of LATEX, ePiX is not a stand-alone program,
but is instead assembled from standard components:
the C++ compiler, libraries and binutils; GNU bash;

176 TUGboat, Volume 25 (2004), No. 2

e
P
i
X

h
ea

d
er

e
P
i
X

li
b
ra

ry

Input file Output file
epix

User code

laps

LATEX file

PostScript

Figure 6: Processing an input file.

and optionally LATEX, Ghostscript, and ImageMag-
ick. The bulk of ePiX proper consists of a compiled
C++ library and header file.

An input file is a short program that incorpo-
rates functions from the ePiX library. The shell
script epix invokes the compiler on the input file.
The resulting binary executable writes the LATEX
code of the figure, which the script directs to a file
(Figure 6). Each of ePiX’s scripts accepts numerous
command-line options, which are listed by running
“<script> --help”.

From its inception, ePiX has used an external
compiler to read and parse input files. This require-
ment, which may at first seem limiting, is not essen-
tially different from reliance on an interpreter, be it
Java, METAPOST, Perl, PostScript, Python, or TEX
itself. Further, there are at least three practical rea-
sons for utilizing the C++ compiler.

First, any program processing user-supplied in-
put must recognize and cope with both well-formed
and malformed data. The use of an existing com-
piler avoids both the substantial complication and
needless duplication of effort that would result from
coding a compiler or interpreter from scratch.

Second, separately compiled code can be in-
corporated in an ePiX figure with a command-line
switch. Use of a widely-spoken language allows users
to extend ePiX easily.

Third, when a typical plot is generated, a few
functions are called repeatedly, possibly thousands
of times. Compiled code runs quickly enough (com-
pared to interpreted code) to justify the time over-
head of compiling code to process a figure. When
the plot depicts the outcome of a complicated algo-
rithm (such as solving a differential equation), the
extra efficiency of compiled code can be substantial.

4 Future Development

Until now, ePiX has existed as a single-developer
project, and has grown primarily along lines dic-
tated by a need for features. The current source
tree is nearing an evolutionary cul-de-sac, and future
work will focus on a redesigned and re-implemented
version, known informally as The Next Generation.
The author welcomes user feedback, design sugges-
tions, and additional coders. The source tree is on
the CVS server at savannah.gnu.org.

The Next Generation will separate input, repre-
sentation, and output, serving as a general-purpose
scene description and rendering utility rather than
merely a LATEX-specific image creation tool. How-
ever, incorporation of high-quality typography will
remain a primary goal. Additional aims of TNG in-
clude providing flexible page markup, allowing mul-
tiple scenes to be placed in a single figure; more
modularized output, so that a single input file can
generate a sequence of output files — in various for-
mats— from a single run; and better support for
object hiding in 3-dimensional figures.

A framework for high quality scientific draw-
ing and data visualization is of wide interest to the
mathematical, scientific, and typesetting communi-
ties. It is hoped that ePiX will contribute toward
the realization of a GPL-ed utility that is efficient,
intuitive, computationally powerful, and sufficiently
flexible to grow with its user base for the long-term
future.

⋄ Andrew D. Hwang

Department of Math and CS

College of the Holy Cross

Worcester, MA 01610-2395, USA

ahwang@mathcs.holycross.edu

http://mathcs.holycross.edu/

~ahwang/

TUGboat, Volume 25 (2004), No. 2 177

LATEX in 3D: OpenDX annotations

J. P. Hagon

Abstract

We present a system, DXfontutils, for adding high-
quality annotation to OpenDX objects using LATEX
as the typesetting engine. The system utilizes na-
tive OpenDX fonts converted from original outlines
(TrueType, OpenType or PostScript) using the au-
thor’s font2dx translator. Also we demonstrate how
OpenDX can be used as a tool for producing special
effects with OpenDX text elements which have been
typeset by LATEX.

1 Introduction

OpenDX [2] is a general purpose data visualization
system similar to Khoros, IDL, AVS, Amira and oth-
ers. As its name implies it is open source software
and freely available. It was formerly a product from
IBM known as Data Explorer. IBM released the Data

Explorer source code for public use under a special
licence in 1999.

OpenDX has an extremely versatile data model
and an excellent visual programming interface. Fig-
ure 1 shows the output of a simple example. This
output was produced with the visual program illus-
trated in figure 2. The program consists of an Im-
port module which reads in the data, and an Image
module which displays the data.

The modules contain input and output tags. In
this case, the output tab from Import is connected to

Figure 1: A simple 2D function plot in OpenDX.

the input tab of Image. The connection is made sim-
ply by clicking and dragging with a mouse. Clicking
on the Import icon produces an entry box in which
the name of the import file is typed. The appro-
priate tab then appears in the closed form shown in
figure 2 within the visual programming editor (VPE)
indicating that the parameter has explicitly been
set. In fact, I/O tabs can be hidden to simplify the
layout — Image has many more input tabs than the
one shown here. Note also that there can be more
than one output tab — the three output tabs from
Image provide information about the rendered ob-
ject, the viewing camera and the viewing position.
Here is the program:

Import

na
m

e
=

"e
xa

m
ple

.d
x"

Image

Figure 2: The OpenDX visual program which
produced figure 1.

The VPE can be used to build large-scale inter-
active GUIs for specialized data analysis. Further-
more, the user can write custom modules (plugins
usually written in C) and macros (a visual program
combining other modules and macros).

The writing of modules is facilitated by a Mod-
ule Builder interface and all of the standard OpenDX

modules are available via a set of C libraries for
skilled programmers. In fact, it is possible to pro-
duce an application using an external GUI library
combined with the OpenDX graphics and rendering
libraries. OpenDX can even be run in script mode
using its own scripting language. Visual programs
created through the VPE are stored in this scripting
language.

Although OpenDX is a rather intimidating piece
of software, there is extensive documentation, ac-
tive user forums, commercial third party support
and an introductory, tutorial based book [9]. Many
useful third party macro and module libraries are
available [2] for fields as wide-ranging as geophysics,
medical imaging, quantum chemistry, biology, as-
tronomy, social science, finance and engineering.

178 TUGboat, Volume 25 (2004), No. 2

2 OpenDX Font Format

Two types of font are supported by OpenDX — ‘line’
fonts and ‘area’ fonts. The former are similar to the
fonts that were common on pen-plotter output de-
vices some years ago. Such fonts are still useful for
screen display where hard copy quality is not impor-
tant since they can be rendered very quickly. They
are not our concern here and will not be discussed
further. ‘Area’ fonts rely on filled polygons and are
therefore capable of much higher quality than line
fonts. Unfortunately there is just one such font sup-
plied with the standard OpenDX release — the Pit-
man monospaced font.

2.1 Area Font Structure

Most outline fonts are fairly simple in concept — in-
ner and outer boundary lines (often defined in terms
of cubic splines) define an area to be filled. The
spline defining the inner outline is opposite in direc-
tion (clockwise/anti-clockwise) to a spline defining
an outer boundary. PostScript and TrueType fonts
have opposite conventions in this regard.

Things are more complicated with an OpenDX

area font. First, polygons rather than splines are
used to define the outlines. Second, areas to be
filled are not defined with clockwise/anti-clockwise
polygons; instead, the required area must be trian-
gulated to create an area mesh. These concepts are
illustrated in figure 3.

In an OpenDX font file, the boundary polygons
are defined through a set of positions and the con-
nections defining the triangulated mesh are defined
as a set of integer triples, each integer referring to a
particular position. For example, a simple hyphen
(essentially just a rectangle) might be defined in an
OpenDX font file as shown in figure 4.

OpenDX fonts have exactly 256 entries, mak-
ing them equivalent to 8-bit fonts commonly used
today. There is no flexibility in the format to allow
for larger (or smaller) fonts. The files themselves ad-
here to the OpenDX data model and can be in text or
binary format. The binary format is generally more
compact. The official description of the font format
can be found in the OpenDX User’s Guide [1].

3 The Font Conversion Method

In order to get from, say, a Type 1 PostScript outline
to an OpenDX font in the form illustrated in figure 4
requires roughly the following steps:

1. Obtain the boundary points corresponding to
all inner and outer lines for each character in a
font.

Figure 3: Comparing methodologies for
PostScript/TrueType and OpenDX fonts. The
letter B of the AMS Euler Bold Fraktur font as
represented in PostScript form (upper figure)
and OpenDX form (lower). In the upper diagram
there are three boundaries defined, the outer one
going clockwise and the two inner ones going
anti-clockwise. The lower diagram shows how a
filled area is represented in a OpenDX font using a
triangulated mesh bounded by the same outlines
as in the upper diagram.

object "positions_hyphen" class array type

float rank 1 shape 3 items 4 data follows

0.276 0.187 0.0

0.011 0.187 0.0

0.011 0.245 0.0

0.276 0.245 0.0

attribute "dep" string "positions"

#

object "connections_hyphen" class array type

int rank 1 shape 3 items 2 data follows

2 1 0

0 3 2

attribute "ref" string "positions"

attribute "element type" string "triangles"

attribute "dep" string "connections"

#

object "hyphen" class field

component "positions" value "positions_hyphen"

component "connections" value "connections_hyphen"

attribute "name" string "hyphen"

attribute "char width" number 0.333

attribute "series position" number 45.000000

Figure 4: An entry for the hyphen character from
a native OpenDX font file. Note the ‘char width’
and ‘series position’ attributes.

TUGboat, Volume 25 (2004), No. 2 179

2. Triangulate the appropriate regions and obtain
a set of connections for each character.

3. Output positions, connections and width infor-
mation for each character in OpenDX font for-
mat.

To perform this task, we make use of three software
packages, all of which are freely available. The pack-
ages are fontforge [10], pstoedit [6] and Triangle [8]. A
brief description of each package follows, along with
an explanation of its contribution to the OpenDX

font conversion process.

3.1 fontforge

This remarkable application, by George Williams, is
an outline font editor capable of creating and editing
both PostScript and TrueType fonts. It is similar to
commercial font editors such as Fontlab or Fontogra-

pher and provides much of the same functionality. It
is available for multiple platforms and can be com-
piled from source if required. Further details may
be obtained from the fontforge web site [10].

For all its many features, only limited use is
made of fontforge in the OpenDX font production
procedure. In particular it is used to obtain the
following vital font information:

• The official name of the font.

• The name, ASCII code and widths of each font
character. This is stored temporarily in one file
for each font.

• An Encapsulated PostScript (EPS) rendering of
each character in the font for subsequent pro-
cessing by pstoedit.

The above procedure can be automated via font-

forge’s own scripting language.

3.2 pstoedit

Written by Wolfgang Glunz, this is a well-estab-
lished and very useful package which converts Post-
Script (and PDF) files into a variety of vector for-
mats.

pstoedit is used to extract the boundary point
information for each character by converting the eps
files generated by fontforge into gnuplot [4] com-
mands. The gnuplot driver was chosen because its
output is in a very convenient form for subsequent
processing — the boundary points being returned as
a column of (x, y) pairs. When a full closed curve is
completed, this is indicated by a blank line and the
next set of points started, if there is more than a sin-
gle closed curve for the given character. The gener-
ated output file can then be loaded into gnuplot and
viewed via the gnuplot command plot <file> or
alternatively plot <file> with lines if you want

-100

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900 1000

’b.gp’

-100

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700 800 900 1000

’b.gp’

Figure 5: gnuplot rendering of the Euler Fraktur
B. The upper diagram shows a points plot, the
lower shows a line plot (each point is connected to
the next point (as ordered in the input file created
by pstoedit).

to see the points joined up. Some gnuplot output
for the Euler Fraktur character discussed earlier is
shown in figure 5. The remaining task is to add the
connection information.

3.3 Triangle

This program is the work of Jonathan Shewchuk. It
produces a triangulated mesh, given a set of input
points and constrained segments — i.e. the bound-
ary outlines of each font character. Triangle is a very
efficient program and makes the task of triangula-
tion relatively straightforward. The input required
is a simple text file (referred to as a .poly file — see
figure 6) with entries supplied for:

• A list of vertices — these are the nodes which
form the boundary outlines for each character.
They take the form of (x, y) pairs.

• A list of segments, i.e. the connection informa-
tion needed to construct the boundary polygon.
These are a list of integer pairs corresponding to

180 TUGboat, Volume 25 (2004), No. 2

Vertices, dimension, attributes, boundary markers

#

286 2 0 0

#

Vertex no., x, y

#

0 0.906 0.09

1 0.734 -0.021

.

.

284 0.528219 0.394703

285 0.527145 0.369736

#

Segments, boundary markers

#

286 0 0

#

0 0 1

1 1 2

2 2 3

.

.

192 192 193

193 193 0

194 194 195

.

.

243 243 244

244 244 194

245 245 246

.

.

284 284 285

285 285 245

#

Holes

#

2

#

0 0.640961 0.323633

1 0.6685625 0.6155

Figure 6: A Triangle ‘.poly’ file showing how
vertices, segments and holes are set up. Note the
termination segments which close each polyline
and the two hole coordinates.

the vertices mentioned previously. Since all the
vertices are correctly ordered, this list can be
generated easily; and since all polygons are of
the simple closed form, the last entry for a given
polyline will be of the form (n+m−1, n) where
n is the starting vertex and m is the number of
points in a given closed polyline.

• A list of ‘holes’, if any. These are points which
lie within regions inside certain polylines which
are not to be triangulated. In the case of the
Fraktur B, it is clear that there are two inte-
rior polygons which enclose regions which are
not to be triangulated. By specifying a hole
point anywhere in a given region, Triangle is in-
structed not to triangulate that region.

Triangle produces a set of triangulated elements con-
necting polyline vertices from this input and stores
the elements in a .ele file.

Vertices and segments are essentially provided
by pstoedit but holes need to be calculated explic-
itly. As mentioned previously, the sense of a polygon
(clockwise or anti-clockwise) determines if it should
be filled or not. If it is not to be filled, then a
hole coordinate must be placed somewhere within
the polygon.

In the Type 1 PostScript format an anti-clock-
wise polygon is one forming an inner boundary and
therefore containing a hole; for TrueType it’s the
other way round. A simple algorithm exists [5] for
determining if a polygon is clockwise. For a closed
polygon with n points (x0, y0), . . . , (xn−1, yn−1), cal-
culate the quantity:

A =
1

2

n−1
∑

i=0

(xiyi+1 − xi+1yi) with (xn, yn) ≡ (x0, y0)

If A > 0 then the polygon is anti-clockwise, other-
wise it is clockwise. Once a hole polygon has been
identified, any point within it serves as a hole point
for Triangle.

The following algorithm is used [3] to construct
an interior polygon point:

1. Identify a convex vertex v.

2. For each other vertex q do:

(a) If q is inside avb, where a and b are the
adjacent vertices to q, compute distance
to v (orthogonal to ab).

(b) Save point q if distance d is a new mini-
mum.

3. If no point is inside, return midpoint of ab, or
centroid of avb.

4. Else if some point inside, qv is internal: return
its midpoint.

Application of this algorithm usually results in a
hole point being set very close to a boundary seg-
ment — so close, that to the naked eye the point
often seems to lie on the segment.

4 Putting it all together

Two Perl scripts — g2poly and font2dx — have been
written to automate the above procedure. g2poly

converts a gnuplot input file (generated by pstoedit)
into a .poly file suitable for input into Triangle. Ev-
erything else is handled within the font2dx script,
which in fact calls g2poly. font2dx can optionally re-
encode a font according to several common encoding
schemes. At present font2dx outputs fonts only in

TUGboat, Volume 25 (2004), No. 2 181

text (ASCII) format, rather than the more compact
binary format.

The general form of a font2dx command is:

font2dx [OPTION]... FILENAME

where FILENAME is a PostScript Type 1, OpenType
or TrueType font file. At present, the following op-
tions are available:

--noclean Don’t clean up intermediate files (usu-
ally there are hundreds of these!) — by default
these files are deleted, leaving just the gener-
ated and original fonts.

--scale=<integer> Attempt rescaling of the font.
This can be used to correctly scale a font in
cases where the default scale factor fails.

--negate Reverse the normal convention for inner
and outer closed polygons.

--flat=<number> Set the pstoedit ‘flat’ parame-
ter. This defaults to 1.0 and the acceptable
range of values is [0.2–100.0]. This parameter
controls how accurately curves in fonts are ap-
proximated by polylines — higher numbers give
rougher approximations.

--enc=<encoding> Change font encoding. There is
a choice of many pre-defined schemes and if the
encoding is not one of these, then an encod-
ing file is looked for, with the assumed name
<encoding>.enc. Hence, many of the standard
encoding schemes in TEX can also be used.

--help Print usage information and help.

font2dx will process only the first 256 character
glyphs in a font. Modern fonts often have many
more than this. If there is a ‘hidden’ glyph not in one
of the first 256 slots, then you could try manually
re-encoding the font with a tool such as fontforge

prior to running font2dx.
A further issue is that OpenDX font characters

have a width attribute, but no explicitly defined
height. However, TEX is perfectly happy using char-
acters which have zero width. In such cases, it is
impossible to correctly scale such characters unless
there is a corresponding height (so that scaling ratios
can be calculated). font2dx therefore adds a char

height attribute, equivalent to 〈height〉 + 〈depth〉
enabling proper scaling even for zero width charac-
ters.

4.1 Quality Issues

It can be worth experimenting with the --flat op-
tion to optimize font quality. The default value for
this parameter is 1 which generally produces very
good quality fonts, i.e. unless the fonts are greatly
enlarged, it is almost impossible to detect the polyg-
onal character of the outlines. In fact, a value of 10

produces pretty decent results for most text fonts
we have tested. Figure 7 illustrates the effect of the
--flat parameter for the URW Times-Roman font.
For exceptionally fine and detailed fonts a flat pa-
rameter of less than 1 may prove necessary.

Figure 7: OpenDX rendering of URW

Times-Roman for different flat parameters:
flat = 100 (top); flat = 10 (middle); flat = 1
(bottom). Even a flat value of 100 produces
recognizable text albeit in effectively a different
font!

There is a trade-off between font size and qual-
ity with smaller flat parameters leading to larger file
sizes, as might be expected. However it is generally
true that as flat parameters get very large, the space
saved is not worth the enormous loss in quality. This
is illustrated in Table 1 where it is clear that there
is not much space to be gained in going from a flat
parameter of 10 to a flat parameter of 100 in the
case of URW Times-Roman — but there is an enor-
mous loss of quality. In the rest of this paper, we
use fonts generated with a flat parameter of 1.

‘flat’ parameter 100 10 1
URW Times 181717 254580 543254
WebOMints-GD 417797 709443 2036248

Table 1: Font file sizes (in bytes) for different flat
parameters in the case of URW Times and the
ornament font WebOMints-GD.

5 Annotation in OpenDX

This ability to create native OpenDX fonts from
industry-standard outlines, as described above, has
the potential to greatly improve annotation qual-
ity within OpenDX. It has been common for users
to post-process their OpenDX-generated images with
graphical editing tools such as Gimp or Photoshop in
order to add text elements. Either that, or the Pit-
man font was grossly overused (because it was the
only good quality font available) making many an-
notated images produced by OpenDX immediately

182 TUGboat, Volume 25 (2004), No. 2

identifiable.1 One remaining issue is the typographi-
cal quality of OpenDX annotation, particularly with
regard to mathematics. This is one area where TEX
can certainly help!

5.1 OpenDX Text and Caption Modules

Text within OpenDX is treated just like any other
OpenDX object. It can be scaled, rotated, coloured,
and manipulated in many different ways. There are
two modules within the core OpenDX system which
facilitate text entry and annotation.

The Text module allows text to be positioned
anywhere in 3D space with any rotation, size and
orientation. The position and height are given in
world (user) coordinates.

The Caption module displays a caption on the
screen independently of any other OpenDX objects
representing the user’s data. This produces text
which remains in the same position relative to the
screen. The position of the text is given in screen
(viewport) coordinates, i.e. a position of [0.9, 0.5]
means 9/10 of the way along the horizontal axis and
half way up the vertical axis. The height is given in
pixels.

Text and Caption have very rudimentary type-
setting capabilities. Escape sequences (using ‘back-
slash’ as the escape character) can be used to obtain
characters not available on some keyboards (e.g. di-
acriticals) and spacing is achieved via the ‘space’
character (ASCII 32) of the particular font in use.
Now this latter point raises a problem if one wishes
to use, say, Computer Modern Roman because this
font doesn’t have a space character! Position 32 is
taken up by the suppress character — . Of course,
this isn’t a problem in TEX since all spacing is calcu-
lated internally — removing the need for an explicit
‘space’ character.

5.2 The LaTeXText and LaTeXCaption

Macros

Two new OpenDX macros were developed as alter-
natives to the Text and Caption modules: LaTeX-
Text and LaTeXCaption. In OpenDX a macro is a
combination of modules (and other macros) and can
be created through the OpenDX visual programming
editor.

The above macros take LATEX commands as
their main argument. The user may enter, option-
ally, a set of LATEX preamble commands if certain

1Not unlike the situation some years ago where almost

any document produced using TEX used the Computer Mod-

ern fonts— not because TEX was incapable of using other

fonts but because at that time it was not straightforward to

do so.

packages are required. Hence,
\\usepackage{cmbright}

might be entered as a preamble option if the CM

Bright fonts were required. The double backslash
is not an error — it’s an unfortunate consequence of
the previously mentioned fact that backslash itself
is treated as an escape character in text arguments
of the Text and Caption modules.

If there is a lot of text to be typeset, it is more
convenient to supply a file containing the text rather
than type the text in as an argument to a macro.
For this reason, two modified versions of LaTeX-
Text and LaTeXCaption are available, which accept
a file of LATEX commands rather than a string of
commands. These macros are LaTeXFileText and
LaTeXFileCaption respectively. Another advantage
of using these modules, in addition to their primary
purpose, is that backslash characters do not need to
be doubled-up. Within the VPE, the macros appear
like this:

Figure 8: LaTeXText and LaTeXCaption macros
as they appear in the OpenDX VPE.

LaTeXText takes the following inputs:

latex string A string of LATEX commands.

height Height of text in user (world) coordinates.

position Position vector of reference point (see be-
low) in user coordinates.

baseline Direction of baseline expressed as a vec-
tor.

angle Euler-type angle specifying rotation about
the baseline axis.

preamble A string of LATEX preamble commands —
for example, to load font definitions or special
packages.

extrusion A scalar defining the extrusion in user
coordinates. A number ≤ 0 produces no extru-
sion.

reference An integer (1–9) specifying the reference
point on the formatted text object to be used
for positioning. (1) refers to bottom left (the
default); (2) is bottom centre; (3) is bottom
right, etc., up to (9) which refers to top right.

There are 4 outputs:

text Complete object including extrusions and sur-
faces.

nosurface Just the extrusion (no upper or lower
surfaces).

TUGboat, Volume 25 (2004), No. 2 183

top surface The top surface.

bottom surface The bottom surface.

The four outputs allow the upper/lower surfaces and
extrusion to be handled differently. For example,
the upper and lower surfaces can be given different
colours.

LaTeXCaption has just a single output and the
following inputs:

latex string A string of LATEX commands.

coords An integer specifying the type of coordi-
nates used: (1) viewport, (2) pixel, (3) world
or (4) stationary. Using stationary coordinates,
the text string will be attached to a particular
point in world coordinates but will retain the
same orientation with respect to the viewing
camera.

direction Direction of baseline expressed as a vec-
tor.

priority An integer specifying how the text is lay-
ered relative to the other OpenDX objects: (−1)
behind, (0) equal or (1) in front.

position The screen position. How this vector is
interpreted depends on the value of the coords

parameter.

height Height, in pixels unless stationary position,
in which case world coordinates are used.

preamble A string of LATEX preamble commands.

reference An integer (1–9) specifying the reference
point on the formatted text object to be used
for positioning. See description above for La-
TeXText

The conversion of LATEX commands to OpenDX

objects is handled by two Perl scripts — dvidx and
latex2dx:

dvidx is a TEX dvi driver program similar to dvips

et al. It takes a dvi file as input and generates
an OpenDX object. This object contains the
correctly scaled and positioned characters from
the OpenDX fonts converted from outline orig-
inals. It understands dvips colour specials and
can output in two different OpenDX formats: a
compact form which consists of external refer-
ences to OpenDX fonts; and an inclusive format
in which all the relevant data from the external
font files is included in the output. dvidx can
be used standalone to produce OpenDX output
if desired. Multiple pages are handled by col-
lecting individual pages in an OpenDX Group
object.

latex2dx is essentially a wrapper Perl script around
dvidx. It takes raw LATEX input, produces a

temporary dvi file and then calls dvidx to gen-
erate OpenDX output.

It is latex2dx that is actually called by the LaTeX-
Text and LaTeXCaption macros but it is dvidx which
does all the hard work.

6 The dvidx Perl Script

The writing of dvidx was made considerably easier
by the use of two clever Perl packages written by Jan
Pazdziora — Font::TFM and TeX::DVI::Parse [7].
The working of dvidx is roughly as follows:

1. First, run dvicopy2 on the original dvi input to
translate all the virtual font references to base
fonts.

2. Parse the dvicopy output using the Perl package
TeX::DVI::Parse.

3. For each font encountered, obtain the appropri-
ate metrics from the TEX font metric (tfm) file
using Font::TFM.

4. Map the base font to a raw OpenDX font and
extract the appropriate characters.

5. Position and scale the character via an OpenDX

rotation/translation operation (in OpenDX jar-
gon, this is an XForm transformation object).

dvidx cannot read the packed font (PK) files tra-
ditionally used by dvi drivers and usually created
(indirectly) from METAFONT source files. There is
no reason in principle why it could not be made
to use such files but the approach described here
produces higher quality and is much easier to im-
plement. However, it does mean that METAFONT

sources which have not been converted to outline
form cannot currently be rendered using dvidx.

6.1 The dvidx Map File

The mapping of raw TEX font names to OpenDX

font files is done via a map file similar to (but much
less versatile than) the map file used by dvips. The
dvidx map file contains two columns, the first col-
umn giving the name of the raw TEX font and the
second column giving the name of the corresponding
OpenDX font file. It is possible that a single OpenDX

font file may map to more than one raw TEX font
but not vice-versa. If a raw TEX font maps to more
than one OpenDX font file then the last entry in the
map file is the one that is used.

One of the features of the dvips map file is that
one can re-encode a PostScript font on the fly via
a re-encoding directive within the map file itself.

2dvicopy is a program which is routinely available as part

of all modern TEX implementations. Its primary purpose is to

expand virtual font definitions. This is useful in cases where

a dvi driver doesn’t understand virtual fonts.

184 TUGboat, Volume 25 (2004), No. 2

For example, a re-encoding to TeXBase1 is achieved
within a dvips map file with the following directive:

" TeXBase1Encoding ReEncodeFont " <8r.enc

where 8r.enc is a file containing the appropriate
PostScript encoding commands. This type of func-
tionality could be added to the dvidx map file, but
in many cases would be redundant. This is because
OpenDX fonts always contain exactly 256 characters
whereas Type 1 PostScript fonts generally contain
‘hidden’ glyphs that are not contained within the
visible 256 character slots. It is often the case that
the purpose of re-encoding is actually to place many
of these hidden glyphs in visible slots.

Our solution to this problem is somewhat brute-
force but effective. A program such as fontforge can
be used to re-encode the original outline font using
the required encoding file (such as 8r.enc, for ex-
ample). The re-encoded PostScript font is then con-
verted to an OpenDX font using font2dx but given
a different name to the original. The convention we
use, is to append the string -<enc> to the OpenDX

file name. This produces map file entries like:

ptmri8r Times-Italic-8r.dx

tii Times-Italic-8y.dx

whereas in the dvips map file we would have:

ptmri8r Times-Italic

" TeXBase1Encoding ReEncodeFont " <8r.enc

tii Times-Italic

" TeXnANSIEncoding ReEncodeFont " <texnansi.enc

A similar brute-force approach can be used to
deal with ‘slanted’ fonts created on the fly via a dvips

map file entry such as:

ptmro8r Times-Roman " .167 SlantFont ...

7 Examples of Text Annotation in OpenDX

Suppose we wish to add a title to the image shown
in figure 1. The normal way to do this in OpenDX

would be via the Caption module. The visual pro-
gram would look like that shown in figure 9. We
have created a caption object and added it to the
original object (using the Collect module). The re-
sult is shown in figure 10.

Now the function we are plotting is quite a com-
plicated one:

z =

√

sin(ωx) cos(2ωy) + 1

1 +
√

x2 + y2

and we have tried to indicate the form of the func-
tion in the caption. The core facilities of OpenDX

limit what we can do here and the result is both dif-
ficult to read and cumbersome to position because
it consists of one relatively long line of monospaced
text.

Caption

str
ing

 =
 "z

=s
qr

t(s
in(

...
"

po
sit

ion
 =

 [.
05

 .0
25

]

Import

na
m

e
=

"e
xa

m
ple

.d
x"

Color

co
lor

 =
 "b

lac
k"

Collect

Image

Figure 9: Modified visual program using Caption.

Figure 10: OpenDX-annotated figure.

So, we instead use the LaTeXCaption macro.
In addition, to make the mathematics easier to read
on-screen, we anti-alias the output using the Text-
Alias macro. The resulting visual program is shown
in figure 11. The main argument to LaTeXCaption
is the following piece of LATEX code:

TUGboat, Volume 25 (2004), No. 2 185

Import

na
m

e
=

"e
xa

m
ple

.d
x" LaTeXCaption

lat
ex

_s
tri

ng
 =

 "$
$z

=\
\fr

ac
{\\

sq
rt{

...
"

sc
re

en
_p

os
 =

 [0
.3

5,
0.

05
,0

]

he
igh

t =
 5

0.
0

Color

co
lor

 =
 "b

lac
k"

TextAlias

ba
ck

gr
ou

nd
 =

 {[
1,

1,
1]

}

Collect

Image

Figure 11: Modified visual program using
LaTeXCaption.

$$z=\\frac{\\sqrt{\\sin(\\omega x)

\\cos(2\\omega y)+1}}{1+\\sqrt{x^2+y^2}}$$

where, as mentioned earlier, the backslashes have
been doubled because backslash is an escape char-
acter in OpenDX. LaTeXCaption’s other arguments
include an orientation vector, a position vector and
optional LATEX preamble text. Standard OpenDX

modules can be used to make other modifications,
such as colour changes.

8 Special Effects with LaTeXText

LaTeXCaption provides flat 2D screen annotation
within a 3D OpenDX space. LaTeXText has similar
functionality except that it operates in 3D and the
text can be oriented and positioned arbitrarily in 3D
space. In this section we show how OpenDX can be
used as a tool to produce 3D special effects. All the
examples which follow were typeset with LATEX via
the LaTeXText macro (or its equivalent LaTeXFile-
Text) but the effects described can all be applied to
standard OpenDX text objects no matter how they
were created. These examples really just scratch the
surface of what can be done with special effects in
OpenDX — the possibilities are almost limitless.

Figure 12: LATEX-annotated figure.

8.1 Warped Text

Many of the operations that can be done on OpenDX

objects can also be done on text. So, for example,
we can warp a piece of text by transforming its coor-
dinates as shown in figure 13. Note that the warped
text has a distinct ‘sheen’ due to reflected light. The
properties of the lighting can be precisely controlled
within OpenDX, as can the reflective properties of
the surfaces of objects.

Figure 13: Warping text.

8.2 Texture Mapping

Texture mapping, i.e. the overlaying of a 2D image
onto a 2D surface, is a common technique in com-
puter graphics. It is most useful when the surface
itself has a low resolution. Overlaying a high reso-
lution image then produces an impressive visual ef-
fect but with an underlying simplicity allowing fast
geometric transformations. In figure 14 we overlay
an image (texture) onto the font characters. Note
that as well as being texture mapped, the text has

186 TUGboat, Volume 25 (2004), No. 2

also been extruded to give it a thickness. We show
another example of extrusion later. At present, tex-
ture mapping in OpenDX relies on OpenGL hard-
ware rendering and there are some technical limi-
tations on the quality of hard-copy output one can
obtain.

Figure 14: Texture mapping.

8.3 Text Boundaries

It is easy within OpenDX to embellish the character
boundaries of text in many different ways. In figure
15, spherical glyphs are used to define boundaries
but almost anything is possible — and often easy to
set up. The density and size of the glyphs can be
adjusted within OpenDX by first extracting the out-
line information for each character and populating
the outlines with graphical glyphs.

Figure 15: Glyph boundaries: spheres in this
case.

8.4 Exploiting Transparency

The opacity of the 3D text can be changed to make
it semi-transparent. For example, a stained glass ef-
fect can be achieved by wrapping a tube around the
boundary of each character (to simulate the lead)
and reducing the opacity of the text to some suit-
able value (< 1). This is illustrated in figure 16.

Figure 16: Stained glass effects — note the
transparency of the ‘glass’.

8.5 Extrusion

In figure 17, we illustrate extruded 3D text — i.e.
the text has a thickness as well as width, height and
depth!

Figure 17: Extruded 3D text.

It should be emphasized at this point that as
far as OpenDX is concerned, this is just an ordinary
3D object. In the image display window, you can
rotate, zoom and even walk through the zero in the
subscript on the

∑

∞

i=0
sum! Such manipulations

are possible with all the objects we have described.
Note that in figure 17, the text has been rotated
and the image generated with perspective. These
properties can be controlled interactively from the
OpenDX image window.

8.6 Foreign Languages

LATEX has excellent support for many of the world’s
languages, including an increasing number of non-
Latin languages such as Arabic, Japanese, Chinese
and Hebrew, through packages such as ArabTEX,
CJK and babel. Many of these packages have been

TUGboat, Volume 25 (2004), No. 2 187

successfully applied to OpenDX captioning using
DXfontutils.

9 Getting DXfontutils

The complete DXfontutils system consists of:

• three Perl scripts, font2dx, dvidx and latex2dx;

• five OpenDX macros: TextAlias, LaTeXText,
LaTeXCaption, LaTeXFileCaption and LaTeX-
FileText ;

• a set of TEX fonts in OpenDX format: Computer
Modern, AMS Euler and a selection of others
converted from outlines in the TEX Live 2004
distribution;

• several example OpenDX networks showing how
to achieve the various effects described in this
document and a sample dvidx map file.

The complete system can be downloaded from:

http://www.njph.f2s.com/dxfontutils

10 Summary

We have shown one way that LATEX can be used as a
back-end typesetting engine: to enhance the limited
annotation facilities provided in the core OpenDX

system. To facilitate this, a font conversion pro-
gram was written, allowing native OpenDX fonts to
be utilized throughout for maximum efficiency. Ad-
ditional requirements were an OpenDX dvi driver
and a set of macros to be used in the visual pro-
gramming editor of OpenDX.

We have also demonstrated how OpenDX can be
used as a powerful tool for producing special effects
on LATEX generated typeset material. LATEX and
OpenDX are therefore complementary, each able to
enhance the output from the other.

The main problem to date has been the speed
with which the various Perl scripts, external pro-
grams, and OpenDX macros link together. For ex-
ample, the standard OpenDX Text macro is much,
much faster than the LaTeXText macro. The bot-
tleneck is primarily the dvidx script.

OpenDX has a caching mechanism which means
that for a given piece of LATEX formatted text, the
dvidx and latex2dx scripts are run just once. Sub-
sequent operations such as rotation or shading are
done on the cached object. Of course, if the LATEX
commands are changed, then the scripts are auto-
matically re-executed. Generally, re-execution hap-
pens only if any of the inputs to LaTeXText or
LaTeXCaption are changed.

Finally, there are several other improvements
which could be made, such as:

• modifying font2dx to produce OpenDX fonts in
the more compact binary format;

• modifying dvidx to read binary format OpenDX

fonts (at present it works only with text format
fonts);

• adding “SlantFont” transformation directives
to the dvidx map file following a similar scheme
to that used by dvips;

• adding \special support within dvidx for the
inclusion of native OpenDX objects;

Currently, DXfontutils is more a proof-of-concept
system than a well-tuned production software prod-
uct. However, it is a proof-of-concept with consider-
able functionality. We have illustrated its use with
LATEX, but there is no reason why plain TEX or other
formats could not be used instead — all that would
be required are minor edits to the latex2dx script.

References

[1] IBM Visualization Data Explorer User’s
Reference. http://opendx.npaci.edu/docs/

html/refguide.htm, 1999–2004.

[2] OpenDX. http://www.opendx.org,
1999–2004.

[3] comp.graphics.algorithms FAQ, §2.06.
http://www.faqs.org/faqs/graphics/

algorithms-faq, 2004.

[4] Gnuplot. http://www.gnuplot.info, 2004.

[5] P. Bourke. Determining whether or not a
polygon (2D) has its vertices ordered clockwise
or counter-clockwise.
http://astronomy.swin.edu.au/∼pbourke/

geometry/clockwise, 2004.

[6] W. Glunz. pstoedit. http://www.pstoedit.

net, 2004.

[7] J. Pazdziora. TEX::DVI::PARSE, Font::TFM.
http://www.cpan.org, 2004.

[8] J. Schewchuk. Triangle. http://www.cs.cmu.

edu/∼quake/triangle.html, 2004.

[9] D.L. Thompson, J.A. Braun, and R. Ford.
OpenDX: Paths to Visualization. Visualization
and Imagery Solutions Inc., 2001.

[10] G. Williams. Fontforge. http://fontforge.

sourceforge.net, 2004.

⋄ J. P. Hagon
Physics Centre
School of Natural Sciences
University of Newcastle upon Tyne
NE1 7RU
United Kingdom
jerry.hagon@newcastle.ac.uk

188 TUGboat, Volume 25 (2004), No. 2

LATEX

dramatist: Another package for typesetting
drama with LATEX

Massimiliano Dominici

Abstract

As the name plainly says, dramatist is a package de-
signed to handle all the typographical specialities
which arise in the edition of a dramatic work. It
was originally designed to support a private edi-
tion of a mid-19th century Italian tragedy in verse:
G. B. Niccolini’s Arnaldo da Brescia. Being a pack-
age, it can be used with any class, from standard
LATEX classes to the more specialized ones, such as
from the KOMA-script bundle, memoir (this is the ac-
tual class I’ve used the package with, for my work)
and the like.

The package provides a general environment,
drama, and specific commands for handling stage
oriented document divisions (acts, scenes), charac-
ters lists and speakers’ name appearance, stage di-
rections. Both plays in prose and in verse are sup-
ported; for the latter, however, not in an explicit
way, but relying instead on the verse environment
and facilities provided by either the main class or
packages like verse.

1 Introduction

The edition of a dramatic work needs specific sup-
port for several features, from special document divi-
sions (acts and scenes, rather than chapters and sec-
tions) to special typographical treatment concern-
ing the characters. This kind of support cannot be
given by the standard LATEX classes without redefin-
ing a large number of macros, a quite undesirable
approach. Hence the need for a class or package ex-
pressly designed for this purpose, handling all the
specialities involved in the job

The following packages dealing with stage plays
and dramatic works are at present available on the
CTAN archives and in most TEX distributions:

• plari (Kaijanaho, 2003): a small class that re-
places, in the standard LATEX report class, the
set of usual document divisions with another
one more suited for stage scripts, and adds some
other minor features (the sides package is a new
update of plari which we unfortunately did not
have time to investigate);

• play (Kilfiger, 1999): coming with both a class
covering most of the basic features of a stage

play and a package designed for supporting in-
sertion of small drama citations in the middle
of a document of a different kind;

• drama (Swift, 1996): being part of the ambi-
tious Frankenstein bundle, whose unusual phi-
losophy it shares;

• dramatist (Dominici, 2003): the package to be
introduced here.

The aforesaid packages are characterized by dif-
ferent approaches to the basic class vs. package de-
cision and by different degrees of user configurabil-
ity. It’s a matter of opinion, and at last of taste,
whether it is better to rely, for anything concerning
layout adjustments, placement of floats, indexing,
page numbering, appearance of headers and table
of contents and so on, upon the facilities provided
by a sophisticated class like memoir or scrbook, or to
make use of the many packages which cover the same
facilities. I found the first way easier, and that’s why
I wrote a package rather than a class.

From this point of view, a classification can be
made which divides the four packages in two groups:
on the one hand, plari and play come as a class, while
on the other, drama and dramatist come as a package.

In the first group, the use of plari class can be
recommended only for simple documents: the class
lacks some basic features, such as a proper command
for defining and typesetting a “Dramatis personæ”
list, gives poor support for plays in verse and offers
only a low degree of configurability. As it disables
all the standard LATEX sectioning commands, the
class prevents the author or editor from inserting
any material standing outside the stage play script
itself, such as a preface, foreword, or introduction.

A more complete class is play. Except for the
“Dramatis personæ” list, it covers all the major fea-
tures relating to dramatic works, offers full internal
support for plays in verse via a dedicated environ-
ment, and shows a reasonable degree of configura-
bility. However, as the definition of the basic \act

and \scene relies on the standard LATEX macros
\chapter and \section, the user cannot redefine
single portions of these commands in a simple way:
the entire macro must be redefined. Together with
the class, a small package is also distributed, which
provides a few basic features to be used for printing
short citations from a play in the body of a docu-
ment of a different kind.

As for drama, the argument is more compli-
cated. drama is part of the Frankenstein bundle and
shares its unusual philosophical lines. This sort of
object-oriented interface to LATEX, while remarkable
from many points of view, makes difficult any at-
tempt at customization by a user who is not en-

TUGboat, Volume 25 (2004), No. 2 189

tirely familiar with it. However, it is quite usable as
it comes, and it shows itself a powerful tool, cover-
ing almost all features (though no specific support is
given for typesetting plays in verse), notably includ-
ing a continuation message when a single speech of
one character is broken across two pages and divided
by a stage direction.

A closer examination of the dramatist package
is the subject of the next section.

2 Overview of the dramatist package

2.1 The drama environment

The first task of a package designed for typesetting
drama is to provide an environment which may work
as a wrapper for the text to be formatted. In the
case of dramatist, this is the drama environment.

The package provides two versions: the normal
version, to be used when typesetting plays in prose,
and a starred version for plays in verse. This is
due to the different tasks to be performed in the
two cases, mainly regarding text arrangement and
speech tags’ definitions. In the case of a play in
prose, the dialogue is arranged in a description-like
environment, where the item label is the speaking
character’s name. In the case of a play in verse,
drama* calls the verse environment (provided by the
main class used or by a package like verse) to arrange
the text and simply prints the speech tag above the
dialogue lines. If line numbering is allowed (see sec-
tion 2.5 below), drama* also handles the features
concerned with this.

In both cases, nothing, except for the dialogue
and short directions within the dialogue, should
be enclosed within the drama environment. Acts,
scenes, stage directions and definitions of characters
should be given outside the environment itself.

2.2 Document divisions

In a drama, the ordinary document division into
chapters and sections is replaced by a division into
acts and scenes. dramatist provides an interface for
such a scheme with the commands \act and \scene.
They start a new act or a new scene (the act on a
new page, by default), respectively, take no argu-
ments and by default print in small caps the name
Act or Scene, followed by a roman numeral. An
internal counter is charged to hold this numeral, in-
creasing it every time \act or \scene is called. Like
the standard \chapter and \section commands,
\act and \scene have a starred form, which does
not make an entry for the table of contents.

An optional argument can be specified; it is
meant only for insertion of footnotes and endnotes,
like this:

\act[\footnote{Content of the footnote}]

If a title for the act or scene is needed, the \Act
or \Scene commands are available:

\Act[Short Title]{Title}

\Scene[Short Title]{Title}

dramatist provides no oneact/multiact switch
(as the drama package does), which avoids printing
the act number for one-act plays, because I think it
unnecessary. To achieve such a result, the user need
only redefine the single command \printscenenum,
whose default is printing the act number, an en-
dash, and the scene number, like this:

\renewcommand{\printscenenum}{%

\scenenumfont \thescene}

As another example of customization, some-
thing other than the English word “Scene” may
well be required. This is controlled by the com-
mand \scenename. To redefine it as the Italian word
“Quadro”, for example, this is all that is needed:

\renewcommand{\scenename}{Quadro}

2.3 Characters

Dealing with the characters of the play is another
important task when typesetting drama. This in-
volves many aspects and features of the document:

• Usually a “Dramatis Personæ” list is placed be-
fore any other material.

• One may want the name of the characters to
appear in some particular typographical shape
within the stage directions.

• Finally every part of the dialogue should be in-
troduced by the name of the speaker printed in
a standard recognizable form.

One can find support for all these features in the
dramatist package.

The typographical appearance of the characters
is defined once and for all by calling the command
\Character. It takes up to three arguments: the
first, optional, argument specifies what is to appear
in the “Dramatis Personæ” list; the second the name
of the character throughout the document, both in
the stage directions and as a speaker; and the third
provides the commands for calling the name spec-
ified by the second argument. In short, if 〈arg2 〉
and 〈arg3 〉 are respectively the second and the third
argument, \Character creates a pair of commands
\〈arg3 〉 and \〈arg3 〉speaks which can be used for
printing 〈arg2 〉 in a stage direction or as a speaker
(see the examples below).

The “Dramatis Personæ” list is produced by
the command \DramPer. It prints only those entries
defined by \Character with the first, optional, ar-
gument specified. This can be useful to omit some

190 TUGboat, Volume 25 (2004), No. 2

speakers from the “Dramatis Personæ” list, or when
two or more individual characters act simultane-
ously as a single speaker (and thus, no related entry
exists in the “Dramatis Personæ” list).

However, a \speaker command is also provided
to deal with these occurrences: it takes one argu-
ment, the name of the character to print, but it does
not define any command for printing the name in a
stage direction.

Characters listed in the Dramatis Personæ may
need to be grouped and given a common designa-
tion. For this occurrence the package provides an
environment, CharacterGroup, taking a mandatory
argument specifying the designation for the charac-
ters in the following group.

Inside this environment, the characters have to
be defined by \GCharacter, whose syntax is the
same of \Character, except that the first argument
is here, obviously, mandatory. In the output, the
characters will be grouped by a big parentheses with
the common designation printed, centered, to the
right. The user can define the amount of space
reserved for the characters’ names, the parenthe-
ses, and the designation by means of \CharWidth,
\ParenWidth and \GroupWidth, respectively.

2.4 Stage directions and settings

Finally, the package provides support for printing
stage settings and small indications in the body of
the dialogue. The user can issue a \StageDir com-
mand (or the equivalent stagedir environment for
longer stage directions) in the first case or a \direct

command in the second case.
When working with a verse play, the \direct

command also takes a starred form, to be used when
the command itself occurs at the end of a stanza.
This works only with the verse package and the verse

environment provided by the memoir class.

2.5 Support for plays in verse and line
numbering

When dealing with a play in verse, the author must
take into consideration not only the specific features
of a play but those of verse, too. Of course, the spe-
cialities he will deal with will be, generally speaking,
different from those encountered when strictly type-
setting verse. He will seldom make use of stanzas,
for instance, while he will often break a verse line
over several physical lines — every time a new char-
acter begins to speak in the middle of the verse line
itself. Line numbering also might be required.

So, a package for typesetting drama should pro-
vide some kind of support for these features. But,
in my opinion, there is no need for full internal sup-

port. I thought, indeed, it would be better to rely
on the facilities provided by the many extant classes
and packages, leaving it to the author to choose from
among them the one he finds most suited to the work
at hand.

dramatist, then, does not define a verse environ-
ment, but supposes it is already provided by the
class (and very usually this supposition is true),
or by loading a package such as verse or poemscol.
Since dramatist does not deal directly with the spe-
cific features of verse, no conflict can arise with a
specific verse environment,1 although the author will
of course be restricted to the facilities provided by
the chosen environment.

As for line numbering, dramatist defines three
options, provided the memoir class or the verse pack-
age has been loaded. The default is to number verse
lines consecutively throughout the entire drama,
with no regard to acts and scenes. The other two
possibilities are to number verse lines per act or per
scene; these can be specified by loading the pack-
age with the option lpna or lpns, respectively. If the
required package or class has not been loaded, the
option is simply ignored.

Of course, all this is meant only for the drama*

environment. If the code defined by one of these
options is called inside the drama environment (i.e.,
a passage in prose) a warning message will be writ-
ten to the log file and the option ignored. Generally
speaking, line numbering is not very useful for a
play in prose; if this is needed, the lineno package
may provide a workable solution.

2.6 User customization

Everything in the package has been made as custom-
izable as possible by means of user definable com-
mands. In particular, everything concerning the ty-
pographical appearance, such as spacing, fonts, and
so on, can be adjusted to the user’s taste by means of
simple \renewcommand or \setlength commands.

For example, the default behaviour of the pack-
age is to print the act name and number in small
caps. Suppose the author wants them printed bold-
face; also, he wants to insert a large amount of space
before the start of the act. The following lines, in-
serted in the preamble, perform this task.

\renewcommand{\actnamefont}{\bfseries}

\renewcommand{\actnumfont}{\actnamefont}

\setlength{\beforeactskip}{50pt}

Or, if the author wants, as for a play in verse,
the character name to have a negative indentation:

\setlength{\speaksskip}{-1em}

1 There is one exception to this statement; see section 2.4.

TUGboat, Volume 25 (2004), No. 2 191

Moreover, the user may store his preferred set-
tings in a dramatist.cfg file, placed either in the
working directory or any directory where TEX looks
for style files, and reuse them in future documents.

3 Examples

Figure 1 shows the output for a play in prose, from
Schiller’s The Robbers; figure 2 shows the input.

Another example is given for a play in verse,
taken from the tragedy Arnaldo da Brescia. Figure 5
shows the input, while figure 3 shows the output for
“Dramatis Personæ” list, and figure 4 the first page
of the first act.

References

Dominici, Massimiliano. “dramatist.sty”. Avail-
able from CTAN, macros/latex/contrib/

dramatist, 2003.

Kaijanaho, Antti-Juhani. “The plari document class.
Typesetting stageplay scripts with LATEX2ε”.
Available from CTAN, macros/latex/contrib/
plari, 2003.

Kilfiger, James. “Typesetting drama with LATEX”.
Available from CTAN, macros/latex/contrib/
play, 1999.

Swift, Matt. “The drama LATEX package”. Avail-
able from CTAN, macros/latex/contrib/

frankenstein/unsupported, 1996.

⋄ Massimiliano Dominici

Pisa, Italy

mlgdominici@interfree.it

Scene i. – Franconia.

Apartment in the Castle of COUNT

MOOR.

FRANCIS, OLD MOOR

FRANCIS But are you really well, father? You look
so pale.

OLD MOOR Quite well, my son – what have you to
tell me?

FRANCIS The post is arrived – a letter from our cor-
respondent at Leipsic.

OLD MOOR (eagerly). Any tidings of my son Charles?

FRANCIS Hem! Hem! – Why, yes. But I fear – I
know not – whether I dare – your health. – Are
you really quite well, father?

OLD MOOR As a fish in water. Does he write of my
son? What means this anxiety about my health?
You have asked me that question twice.

FRANCIS If you are unwell – or are the least appre-
hensive of being so – permit me to defer – I will
speak to you at a fitter season. – (Half aside.)
These are no tidings for a feeble frame.

OLD MOOR Gracious Heavens? what am I doomed
to hear?

1

Figure 1: First page of first act of The Robbers

\documentclass[a5paper,showtrims,11pt]{memoir}

\usepackage{dramatist}

%% Layout

\settrimmedsize{18,5cm}{13cm}{*}

\setlength{\trimedge}{\stockwidth}

\addtolength{\trimedge}{-\paperwidth}

\settrims{0pt}{\trimedge}

\settypeblocksize{*}{22pc}{1.71}

\setlrmargins{*}{*}{1.5}

\setulmargins{*}{*}{1}

\setlength{\footskip}{20pt}

\checkandfixthelayout

\ifpdf

\setlength{\pdfpageheight}{\stockheight}

\setlength{\pdfpagewidth}{\stockwidth}

\fi

\renewcommand{\printscenenum}{%

\scenenumfont \thescene}

\setlength{\beforesceneskip}{20pt}

\pagestyle{plain}

\begin{document}

\Character{MAXIMILIAN, COUNT VON MOOR.}{OLD MOOR}

{moor}

\Character{FRANCIS, his Sons.}{FRANCIS}{fran}

[...]

\scene[. -- Franconia.]

\StageDir{\begin{center} Apartment in the Castle of

COUNT MOOR.\\\fran, \moor\end{center}}

\begin{drama}

\franspeaks But are you really well, father?

You look so pale.

\moorspeaks Quite well, my son -- what have

you to tell me?

\franspeaks The post is arrived -- a letter

from our correspondent at Leipsic.

\moorspeaks \direct{eagerly}. Any tidings of my son

Charles?

\franspeaks Hem! Hem! -- Why, yes. But I fear

-- I know not -- whether I dare -- your health.

-- Are you really quite well, father?

[...]

\end{drama}

[...]

\end{document}

Figure 2: A play in prose: input code for The

Robbers

192 TUGboat, Volume 25 (2004), No. 2

P

ARNALDO da Brescia.

ADRIANO IV; pontefice.

GIORDANO PIERLEONI.

LEONE FRANGIPANI.

ANNIBALDO; nobile Romano.

GUIDO; cardinale di Santa Pudenziana.

OTTAVIANO; cardinale di Santa Cecilia.

Un CARDINALE di Santa Maria in Portico.

Alcuni altri CARDINALI.

SENATORI ROMANI.

POPOLO ROMANO.

LEGATI della Repubblica Romana.

PIETRO; prefetto di Roma.

Un SACERDOTE che annunzia la scomunica al Popolo
Romano.

ALCUNI DEL CLERO.

OSTASIO; conte di Campania e seguace di Arnaldo.

ADELASIA; sua moglie.

DONNE ROMANE devote e penitenti del cardinal Guido.

Un Monaco; Mandato di un cardinale.

Un CAMERIERE segreto del papa.

Un ARALDO del papa.

CAPITANI E SOLDATI SVIZZERI, seguaci di Arnaldo.

CAPITANI E SOLDATI della Repubblica Romana.

GALGANO E FERONDO, soldati di Giordano.



Figure 3: The “Dramatist Personæ” list from
Arnaldo da Brescia

A 

Piazza vicina al Campidoglio.

S  – 

GIORDANO, LEONE, POPOLO

GIORDANO
Destatevi. . . sorgete. . . il nostro sangue
Si traffica nel tempio; e son raccolti,
Tenebrosa congrega, i cardinali
A vestir del gran manto un altro lupo
Che pastore si chiami. Un dì sceglieste, 

O Romani, il pontefice : gli antichi
Dritti il fero Innocenzo appien vi tolse,
E compì l’opra d’Ildebrando audace.
Cesare colla stola, ei far volea
Del mondo un tempio onde l’amor fuggisse, 

Uno il pensiero, uno il volere, ed uno
Tiranno a un tempo, e sacerdote, e Dio.
Mirate l’opra sua! Roma deserta
Dal Laterano al Colosseo : guidava
Il normando furore e il saracino; 

Fremea la sua preghiera, e maledisse
Colui che non insanguina la spada .
Imprecando morì: così perdonano
I vicari di Cristo ai lor nemici.
Barbari cardinali alzan dall’are 

Colle man sanguinose un Dio di pace,
E coi rifiuti delle mense opime
Dopo i veltri ci pascono. Latino
Sangue gentile, sopportar saprai
Servitù così vile? ognor costoro 



Figure 4: First page of first act of Arnaldo da

Brescia

\documentclass[a5paper,showtrims,11pt]{memoir}

\usepackage[T1]{fontenc}

\usepackage[latin1]{inputenc}

\usepackage[italian]{babel}

\usepackage{dramatist}

\settrimmedsize{18,5cm}{13cm}{*}

\setlength{\trimedge}{\stockwidth}

\addtolength{\trimedge}{-\paperwidth}

\settrims{0pt}{\trimedge}

\settypeblocksize{*}{22pc}{1.71}

\setlrmargins{*}{*}{1.5}

\setulmargins{*}{*}{1}

\setlength{\footskip}{20pt}

\checkandfixthelayout

\ifpdf

\setlength{\pdfpageheight}{\stockheight}

\setlength{\pdfpagewidth}{\stockwidth}

\fi

\frenchspacing

\pagestyle{plain}

\Character{ARNALDO da Brescia.}{ARNALDO}{arn}

\Character{ADRIANO IV; pontefice.}{ADRIANO}{adr}

\Character{GIORDANO PIERLEONI.}{GIORDANO}{gior}

[...]

\DramPer

\begin{drama*}

\act

\StageDir{Piazza vicina al Campidoglio.}

\scene

\StageDir{\gior, \leo, \popo}

\begin{drama*}

\giorspeaks

Destatevi\dots\ sorgete\dots\ il nostro sangue\\

Si traffica nel tempio; e son raccolti,\\

Tenebrosa congrega, i cardinali\\

A vestir del gran manto un altro lupo\\

Che pastore si chiami. Un dı̀ sceglieste,\\

[...]

\end{drama*}

[...]

\end{document}

Figure 5: A play in verse: input code for Arnaldo

da Brescia

TUGboat, Volume 25 (2004), No. 2 193

Variable width boxes in LATEX

Simon Law

Seasoned LATEX users are familiar with the default
box commands: \makebox, \framebox and \parbox.
They are the building blocks for page layout, and
are commonly used. After all, being able to create
boxes allows a typesetter great flexibility in posi-
tioning objects on a page. Figure 1 illustrates a
simple use of \parbox.

Hello
brave
world

Goodbye
cruel
world

Figure 1: Using \parbox to position text

1 Traditional \parbox

As you can see, I was able to align the two boxes so
that each would be aligned. Looking at the source
code in Figure 2, you’ll see that I had to manually
specify the box widths.

\parbox[t]{1cm}{Hello\\brave\\world}

\parbox[b]{1.5cm}{Goodbye\\cruel\\world}

Figure 2: \parbox source code

Of course, guessing the width of the longest line
gets tedious. You can try using \settolength on
the longest line, but that might change as your text
changes.

2 Using \pbox

In order to automatically determine the width of the
box, we will use the pbox1 package. It provides the
\pbox command, which is analogous to the \mbox

command. In Figure 3, I typeset the same text using
\pbox instead.

\pbox[t]{\textwidth}{Hello\\brave\\world}

\hspace{0.1cm}

\pbox[b]{\textwidth}{Goodbye\\cruel\\world}

Figure 3: \pbox source code

The syntax for \pbox is quite similar to that of
\parbox. You must provide the maximum width of
the box (max-width) and the contents (text):

\pbox[pos][height][inner-pos]{max-width}{text}

By default, the centre of each box will be vertically
aligned. However, the three optional arguments al-

1 http://www.ctan.org/tex-archive/macros/latex/

contrib/pbox/

low you to align the \pbox as necessary. These op-
tions work exactly like their \parbox counterparts.

3 Now with minipage

This works well for simple paragraphs, where en-
vironments need not be embedded. However, once
you start needing the features of the minipage envi-
ronment, you begin to run into the same problems.
David Arseneau has solved this problem with his
varwidth2 package.

An example use would be to centre a verbatim

environment. This is normally done in a minipage

because the verbatim environment left-flushes all
its text against the left margin. In order to use the
minipage, you still have to figure out the width of
its contents and specify it manually.

#include <stdio.h>

int main()

{

printf ("Hello world!\n");

return 0;

}

Figure 4: Centered source code example

Figure 4 shows a snippet of source code that is
representative of a sample in an article or a text-
book. The code in Figure 5 illustrates how to type-
set this without manually determining the width.

\centering

\begin{varwidth}{\columnwidth}

\begin{verbatim}

#include <stdio.h>

int main()

{

 printf ("Hello world!\n");

 return 0;

}

\end{verbatim}

\end{varwidth}

Figure 5: varwidth source code

4 Conclusion

Both the pbox and varwidth packages are useful ex-
tensions to standard LATEX2ε. They allow typeset-
ters to place boxes and minipages throughout their
documents without the need for guessing widths.

⋄ Simon Law

sfllaw@law.yi.org

http://www.law.yi.org/~sfllaw/

2 http://www.ctan.org/tex-archive/macros/latex/

contrib/misc/varwidth.sty

194 TUGboat, Volume 25 (2004), No. 2

Macros

xkeyval — new developments and

mechanisms in key processing

Hendri Adriaens and Uwe Kern

Abstract

This article introduces the xkeyval (LA)TEX pack-
age, an extension of the well-known keyval package.
The new package provides more flexible commands,
syntax enhancements, and a new option processing
mechanism for class and package options using the
key=value syntax.

1 Introduction

The keyval package [2] written by David Carlisle is
widely used by package authors to provide the means
for users to easily specify numerous optional argu-
ments for macros. The main advantages of using
keyval are that (1) the number of optional arguments
is no longer limited to 9 and that (2) the arguments
are named, and hence there is less chance of confu-
sion about the syntax of a macro.

The package provides ways to define so-called
“key macros” which handle the input of the user.
These key macros end up defined with the form
\KV@family@keyname, where the KV is a literal pre-
fix to avoid collisions. They should take one argu-
ment to handle user input. A macro to handle the
key pi can, for instance, be defined by

\define@key{myfam}{pi}{\setlength{\parindent}{#1}}

This defines a macro named KV@myfam@pi. Such
key macros are called when \setkeys is invoked to
set the keys. In our case, when pi is used, the key
macro will set \parindent to the given value. Here
is a typical example of its use:

\setkeys{myfam}{pi=10pt,pn=Page~\thepage}

The packages keyval and xkeyval are mainly di-
rected to class and package authors. The various
\define@key commands usually go into the docu-
ment preamble or the package and the main inter-
face for users is given by \setkeys.

The xkeyval.tex can be used with plain TEX;
all the functionality described here is available, with
the exception of the ‘X’ macros listed in section 3.

Editor’s note: This article was first published in MAPS 31
(2004), and is reprinted, with additions, by kind permission
of the authors and editor.

2 Why a new package?

When working on another package, the need arose
to have multiple families in the package. Each fam-
ily would provide keys for a particular macro or en-
vironment. This provided the means to block the
use of illegal keys in a macro argument, which could
have a destructive effect on the rest of the docu-
ment. However, it would also be nice to be able to
allow the user to set specific keys of each macro or
environment globally in the preamble. One could,
for instance, think of allowing the user to set the
markup of all example and exercise environments
in the document in the preamble, but disallowing
changing the markup of example environments lo-
cally in exercise environments and vice versa. In
more complicated settings, specifying keys in macros
which are not designed to handle those keys can eas-
ily lead to almost untraceable errors. That was the
start of the xkeyval package [1].

However, in the process of generalizing keyval,
we noticed that a lot of packages had already tried
extending the features, all in their own way. Quite
a few packages, for instance, provide a system to
allow the use of keys and values in \usepackage

commands. The most famous examples are the hy-

perref, geometry and beamer packages. All of these
approaches differ in details and are not portable to
other packages without reprogramming. This called
for a unified approach.

Another extra feature, found for instance in the
hyperref package, is the availability of boolean keys
which can only be true or false. hyperref actually im-
plements this within the ordinary key system, using
\define@key. However, since (part of) the function
to be executed on the use of the key is known in
advance (namely, set an “if” command to true or
false depending on the input), the system can be
simplified.

A final motivation for the new package is based
on the fact that the development of the keyval pack-
age seemed to have paused since 1999 and that
fundamental changes and improvements to the sys-
tem could more easily be made with a new package.
Among the improvements, we find macros for creat-
ing package options that can take values, new types
of keys, the use of multiple families in \setkeys,
the pointer syntax, the preset system, robust in-
put parsing and support for the PSTricks family of
packages. The remaining sections of this article will
discuss these new developments.

3 Keys and values in package options

First of all, the package supplies macros to declare

TUGboat, Volume 25 (2004), No. 2 195

class or package options, execute them and process
them. The macros are available under the usual
LATEX names, but all with the suffix X, namely

\DeclareOptionX

\DeclareOptionX*

\ExecuteOptionsX

\ProcessOptionsX

These commands allow the user to assign a value to
an option just like when using \setkeys. The first
macro is based on \define@key and the final two
are based on \setkeys. Supposing that a package
mypack is set up with these commands, a user could
for instance do

\usepackage[textcolor=red,font=times]{mypack}

These macros are fully integrated with the LATEX op-
tion system. This, for instance, allows packages to
copy global options specified in the \documentclass
command, to pass options to other classes or pack-
ages and to update the list of unused global options
that will be displayed by LATEX in the log file.

However, key values like author=\textit{Me}

in class or package options are not allowed, although
they could easily be processed by \setkeys. This
restriction results from the design of LATEX’s option
processing mechanism, which expands the entire op-
tion list (keys and values) completely, causing obvi-
ous trouble.1

To avoid these premature expansions, several
kernel macros need to be redefined. xkeyval includes
the xkvltxp package which contains these new defini-
tions. Loading this package before loading the class
or package which uses xkeyval for option processing
will allow class and package options to contain ex-
pandable macros. This file will not be included in
the LATEX2ε kernel since it might introduce com-
patibility conflicts for those using an old kernel with
new packages which might depend on this new func-
tionality.

4 Prefixes, families, keys and pointers

The package provides extended syntax for all of the
commands provided by keyval.2 The syntax for
defining keys has been extended with an optional
argument to set the prefix of the key macro. It is
good practice for package authors to use a pack-
age specific prefix for all internal macros so as to
avoid possibly redefining a macro of another pack-
age. Moreover, this optional argument allows for

1 Note that author=\protect\textit{Me} is not a solu-
tion for this problem.

2 Please refer to the documentation of the xkeyval pack-
age to learn about further syntactical details which are not
discussed in this article.

defining and setting keys in specialized systems such
as implemented in the PSTricks package. More de-
tails about this system will be discussed later, in the
section about the pst-xkey package.

The syntax for setting keys using \setkeys has
been adjusted accordingly. Also, one can specify a
list of families which should be scanned when setting
keys, as discussed in the introduction. For instance,

\setkeys{font,page}{fs=10pt,pn=Page~\thepage}

The package also provides new types of keys.
These are choice keys, which allow for a limited num-
ber of possible input values, and boolean keys, which
are a special type of choice key and only take the
values true and false. An example is below.

\define@choicekey{fam}{keya}{\fbox,\mbox}{#1{text}}

\define@boolkey{fam}{keyb}{%

\ifKV@fam@keya we continue\else we stop here\fi

}

\setkeys{fam}{keya=\mbox,keyb=false}

These keys generate an error when the user specifies
a value that is not allowed.2 The package provides
a viewer utility in xkvview to generate tables with
information about defined keys.

Part of the new syntax is also the possibility
of using pointers to keys. Pointers allow assigning
to keyb the value that has been assigned to keya,
irrespective of what that value is. For example

\setkeys{family}{\savevalue{keya}=red,%

keyb=\usevalue{keya}}

Here, \savevalue will make xkeyval save the value
submitted to keya. \usevalue will use this value
again. (One can use the \savekeys command to
avoid typing \savevalue every time.) If, in this ex-
ample, red is changed to blue no changes are nec-
essary to the value of keyb to assign it blue as well.
This is an obvious similarity to TEX’s behaviour in
the macro case \def\cmdb{\cmda}.

This pointer system can be used as well in the
default value system. This system submits a default
value to the key macro in case the user has used the
particular key, but didn’t assign a value to it. One
could, for example, define the keys

\define@key{fam}{keya}{keya: #1 }

\define@key{fam}{keyb}[\usevalue{keya}]{keyb: #1 }

Then the following use of \setkeys

\setkeys{fam}{\savevalue{keya}=test,keyb}

would result in typesetting

keya: test keyb: test

196 TUGboat, Volume 25 (2004), No. 2

We will discuss some technical details regard-
ing the pointer syntax. First of all, the control se-
quences \savevalue and \usevalue are not defined!
Instead, the package uses them as delimiters. A sim-
ple parsing step determines if \savevalue has been
used in the key name part. Parsing is also used to
substitute occurrences of \usevalue by the saved
value. When a pointer is replaced, its replacement
will also be scanned again for pointers. This al-
lows for nested pointers in key values. Moreover,
it ensures that, once the value is submitted to a
key macro, this value does not contain pointers any-
more.3

The replacement process is a little trickier when
the user did not submit a value to the key. In this
case, the default value of a key (if present) should
be scanned for pointers. Default value macros are
set up like this:

\def\prefix@fam@key@default{%

\prefix@fam@key{the default value}%

}

The macro \prefix@fam@key@default will be exe-
cuted when the user did not supply a value to the
key.

This system has been introduced by keyval and
many packages use it. However, some packages do
not use it in the way intended by keyval. For in-
stance, the fancyvrb package defines default value
macros to execute arbitrary code rather than the
standard \prefix@fam@key. To retain compatibil-
ity with existing packages, we must support this;
otherwise, we could do something much cleaner, e.g.,
define \prefix@fam@key@default as ‘the default
value’ in the first place, without the extra macro
invocation.

This is an important restriction for the pointer
system since we want to retrieve the default value
from the default value macro and scan it for point-
ers. So, xkeyval proceeds as follows. It first checks
whether the default key macro starts as expected,
namely with a key macro \prefix@fam@key. If that
is the case, it locally redefines the key macro to save
the value to a temporary macro and then executes
the key macro. The temporary macro then contains
the default value which can be scanned for pointers.
If the default value macro is not of the expected
form, as with fancyvrb, then xkeyval just executes it
without attempting to retrieve the default value or
replace pointers.

3 Unless the pointer is hidden to xkeyval inside a group.

5 Preset system

The default value system operates when users spec-
ify keys, but no value for the keys. But the keyval

package does not provide a way to assign values to
keys that have not been used at all by the user. In
many applications, one would like to implement de-
fault values for keys when they are not used. For
instance, ‘scale this figure with factor 1 unless spec-
ified otherwise by the user’. One could go ahead
and call the key macro with a preset value and af-
terwards, submit the user input to \setkeys and
possibly overwrite the values that you have just set.
This is possible (but quite cumbersome when there
are many keys) in cases where keys do not gener-
ate material themselves, but, for instance, only set
a length.

But what happens if we apply this scheme to
keys which are defined as follows?

\define@key{fam}{keya}{Your input was: #1}

\define@key{fam}{keyb}{\edef\list{\list,#1}}

If we follow the scheme in the first example, both our
preset value as well as the user input (if present) will
be typeset. In the second example, both the preset
value and the user input will be added to the list
contained in \list.

To avoid this, xkeyval introduces the preset sys-
tem. First one declares the keys that should always
be assigned and their values using \presetkeys, for
instance

\savekeys{fam}{head}

\presetkeys{fam}{head=red}{tail=\usevalue{head}}

The reason to have two arguments containing key
presets in the \presetkeys macro will become clear
in a moment.

Now, when submitting user input for keys in
the family fam, the macro \setkeys will determine
which keys will be set by the user and will avoid
setting them again with the preset values. Keys that
are not set by the user will be set by the values
specified in \presetkeys.

However, when pointers are used, there is one
thing about this system that we should keep in mind.
If the pointer points to a key which is assigned a
value afterwards, the pointer cannot know this value
yet and errors will occur. Hence, it is best (in most
situations) to execute preset pointers at the very end
as done in the example above.

A similar discrepancy can occur when keys with-
out pointers in the values are preset after setting the
user input. Users then can’t use pointers to these
presets as they are preset in a later stage of execu-
tion. Hence, for keys without pointers in the value,

TUGboat, Volume 25 (2004), No. 2 197

it is best to execute them at the very beginning,
before setting user input.

That is why the \presetkeys macro has two
arguments: the first one (usually containing keys
and values without pointers) will be inserted before
setting user input keys, the second one (containing
pointers to preset values or user input) afterwards.

This system is especially useful when you can’t
rely on key values remaining local to a macro or envi-
ronment since the preset system will, at every use of
your macro or environment, reset key values to the
preset value unless overwritten locally by the user.
This needs some more explanation. \def definitions
(for instance made by key macros) will be destroyed
by TEX when leaving a group or environment. Hence
the values will remain local. However, if your keys
do not always use \def, but for instance, \gdef,
such global definitions will escape the group or en-
vironment and might distort all following macros or
environments. Hence, you will have to take care to
reinitialize the key values at every use of the macro
or environment.

This is, however, not necessary anymore with
the preset system. Once the preset keys have been
defined for a specific family, each time this family is
used in the \setkeys command, the preset values
will be taken into account together with the user
input.

The following example will demonstrate the
power of the preset system in combination with
pointers. Below the example, you can find its out-
put and the explanation. Let’s assume we want to
create a simple frame/shadow box command with
the following default behaviour:

• a shadow will be drawn if and only if the box is
framed;

• the shadow color should be a 40% tint of the
frame color, thus being clearly discernible;

• the shadow size (or width) should be 4 times
the width of the frame.

Certainly, the user should be able to overrule each
of these default parameter relations when the box
command is actually applied.

1 \documentclass{article}

2 \usepackage{xkeyval}

3 \usepackage{calc,xcolor}

4

5 \makeatletter

6 \newdimen\shadowsize

7 \define@boolkey{Fbox}{frame}[true]{}

8 \define@boolkey{Fbox}{shadow}[true]{}

9 \define@key{Fbox}{framecolor}%

10 {\def\Fboxframecolor{#1}}

11 \define@key{Fbox}{shadowcolor}%

12 {\def\Fboxshadowcolor{#1}}

13 \define@key{Fbox}{framesize}%

14 {\setlength\fboxrule{#1}}

15 \define@key{Fbox}{shadowsize}%

16 {\setlength\shadowsize{#1}}

17 \savekeys{Fbox}{frame,framecolor,framesize}

18 \presetkeys{Fbox}%

19 {frame,framecolor=black,framesize=0.5pt}%

20 {shadow=\usevalue{frame},

21 shadowcolor=\usevalue{framecolor}!40,

22 shadowsize=\usevalue{framesize}*4}

23 \newcommand*\Fbox[2][]{%

24 \setkeys{Fbox}{#1}%

25 {\ifKV@Fbox@frame\else\fboxrule0pt\fi

26 \ifKV@Fbox@shadow\else\shadowsize0pt\fi

27 \sbox0{\fcolorbox{\Fboxframecolor}{white}{#2}}%

28 \hskip\shadowsize

29 \color{\Fboxshadowcolor}%

30 \rule[-\dp0]{\wd0}{\ht0+\dp0}%

31 \llap{\raisebox{\shadowsize}%

32 {\box0\hskip\shadowsize}}}%

33 }

34 \makeatother

35

36 \begin{document}

37 \Fbox{demo1}

38 \Fbox[framecolor=gray]{demo2}

39 \Fbox[shadow=false]{demo3}

40 \Fbox[framesize=1pt]{demo4}

41 \Fbox[frame=false,shadow]{demo5}

42 \end{document}

demo1 demo2 demo3 demo4 demo5

First of all, lines 7 to 16 define the keys to be
used in the example. The \presetkeys command in
line 18 defines the presets: the frame will be set to
true, its color to black and the frame size to 0.5 pt,
unless the user provides different specifications for
these keys. The requirements listed above are then
covered by the pointer expressions in the next argu-
ment.

The first box application now shows the default
box without additional user input. We see a frame
and a shadow, based on the color black. The second
box shows that the user input for the frame color will
overwrite the preset values and turn the box gray.
But since the shadow color equals the frame color
by default, the shadow is light gray. In the third
example, we have a frame, but no shadow. Notice
that the frame color has returned to black, the preset
value. The fourth box has an increased frame size
and hence an increased shadow size as well due to
the pointer use when presetting the keys. The last
example shows that it is possible to overwrite the
preset behaviour of linking shadows to frames: it
displays a shadow without a frame.

6 Robust parsing

Just as with the pointer delimiters \savevalue and
\usevalue, keyval and xkeyval treat the comma and

198 TUGboat, Volume 25 (2004), No. 2

the equality sign as delimiters. In the past, this
has led to problems. A well known incompatibility
exists between the Turkish language version of the
babel package and all packages using keyval. Since
Turkish babel changes the catcode of the equality
sign for shorthand notation, the parsing macros of
keyval cannot detect these characters anymore and
will generate errors.4

xkeyval solves this by sanitizing (i.e. setting
the catcode to 12) all characters necessary to parse
the input properly. This is done using the macro
\@selective@sanitize, which can sanitize one or
more different characters in a single run. Moreover,
the sanitize group depth can be controlled. xkey-

val implements the macro such that only commas
and equality signs appearing in the top level of a
key value will be sanitized, since that is all that’s
needed for input parsing. Characters inside groups
are left untouched and can hence contain even babel

shorthand notation without causing errors:

\usepackage[turkish]{babel}

...

\setkeys{fam}{key={some =text}}

In this example, the first ‘=’ will be sanitized for
parsing, whereas the second ‘=’ will remain un-
touched and thus keeps its original meaning.

7 Redefining macros?

Obviously, redefining existing macros is dangerous
in general. Nevertheless, the xkeyval package rede-
fines the two major keyval macros \define@key and
\setkeys. The reason is that this avoids any confu-
sion of having several systems running next to each
other, doing approximately the same things.

Although xkeyval supports all of the syntax al-
lowed by the original keyval package, we still had
to check the packages using keyval before we could
make the decision to redefine the macros. Three
major issues came up in that process.

First of all, we found that some packages were
using keyval internals directly instead of the user
interface formed by \define@key and \setkeys. To
avoid any errors of undefined control sequences in
these packages, xkeyval loads the keyval internals if
keyval hasn’t been loaded before.

Secondly, certain packages implemented a cre-
ative use of the default value system as has been dis-
cussed in the section about the pointer syntax. The
solution in xkeyval has also been discussed there.

4 See for more information concerning this problem of
keyval and babel: http://www.latex-project.org/cgi-bin/

ltxbugs2html?pr=babel/3523

Finally, we found that the pst-key package was
redefining \define@key and \setkeys itself to pro-
vide the means of setting PSTricks keys. After dis-
cussing this with the PSTricks maintainer Herbert
Voß, we agreed that xkeyval would develop a unified
approach to keys and values and that the pst-key

package would be abandoned. More information on
the development related to PSTricks is provided in
the final section of this article.

After redefining the necessary macros, xkeyval

will make sure that the keyval package cannot be
loaded subsequently, in order to avoid again redefin-
ing the xkeyval macros. This was the final step neces-
sary in safely redefining the keyval macros and pro-
viding a system to which all package authors can
convert their package without too much effort.

8 The pst-xkey package

An important stream of packages will be using xkey-

val in the near future. These are the PSTricks pack-
ages [3, 4]; for key and value processing, they cur-
rently rely on a combination of private definitions in
pstricks.tex and pst-key, the latter being a mod-
ification of the keyval package.

Due to the popularity and flexibility of the
PSTricks package, several people have contributed
extensions to the original distribution. Unfortu-
nately, all PSTricks keys used to have the same
form, namely \psset@somekey; thus, PSTricks au-
thors have needed to check all existing packages to
be sure not to redefine an existing key.

The PSTricks maintainer Herbert Voß has rec-
ognized this problem and soon the work on xkeyval

started to provide a way to define and set PSTricks

keys via this package. The major advantage would
be the possibility for individual package authors to
nest their keys in a well chosen family (for instance,
the package name) and avoid the need to check other
packages for existing keys.

In order to make this possible, \define@key

and \setkeys needed to be adjusted so that the
standard keyval prefix KV could be changed, for in-
stance to psset. Further, the \psset macro needed
to be redefined to use the new \setkeys and let this
scan all families available. When a PSTricks package
is loaded, it adds all families used in the package to
a list and this list will be used in \setkeys. Since all
separate packages will use different families, reusing
key names is not a problem anymore. The redefini-
tion of \psset, along with some other macros nec-
essary to do the job, is available in the pst-xkey

package which comes with the xkeyval package.
Due to the vastness of the PSTricks collection of

packages, the conversion of all packages to use pst-

TUGboat, Volume 25 (2004), No. 2 199

xkey instead of pst-key will take some time, but has
already started and should be finished in the near
future.

References

[1] Hendri Adriaens. xkeyval package, v2.4,
2005/03/31. CTAN:/macros/latex/contrib/

xkeyval.

[2] David Carlisle. keyval package, v1.13,
1999/03/16. CTAN:/macros/latex/required/

graphics.

[3] Herbert Voß. PSTricks web site.
http://www.pstricks.de.

[4] Timothy Van Zandt et al. PSTricks package,
v1.04, 2004/06/22. CTAN:/graphics/pstricks.

⋄ Hendri Adriaens

hendri[at]uvt.nl

http://stuwww.uvt.nl/~hendri

⋄ Uwe Kern

tex[at]ukern.de

http://www.ukern.de

TUGboat, olume (2004), No.

A non-expert looks at a small TEX macro

David Walden

Introduction

I use TEX a lot, but I seldom dig deeper into how
TEX works than I must in order to address the im-
mediate writing project I am working on. However,
once I think I have figured out something new, I like
to write it up to help me be sure I understand it. In
this piece I describe a simple LATEX macro I wrote,
how the macro evolved, and what I learned along the
way. Perhaps other intermediate users who have a
similar incremental approach to increasing their ca-
pabilities to use TEX will find reading my account a
short cut to understanding of their own.

My problem

In some documents I write, I use an extra blank line
and an extra large letter on the first character of
the first word of a paragraph to indicate a thought
break.

Here is an example.
A couple of years ago, I wrote a simple LATEX

macro to accomplish this:

\newcommand{\newthoughtgroup}[1]{%

\bigskip\noindent{\Large #1}}

It was called as follows:

\newthoughtgroup{H}ere is an example.

However, I didn’t like having the first word of
the paragraph in my LATEX file being split as in the
above line. I wished the macro call could be

\newthoughtgroup{Here} is an example.

but still only make the first character of the first
word larger.

Search and discovery

Therefore, I looked around for a way to have the
whole first word be part of the macro argument—
I had to look around since I didn’t understand TEX
macros well enough to be able to figure it out myself.

First approach. I discovered the following pair of
macros on comp.text.tex (April 6, 1994) in a post-
ing by Victor Eijkhout, who was answering a ques-
tion about making the first letter of a word be upper
case:1

\def\CapString#1{%

\CapFirstLetter#1$} %assumes no $ in arg 1

\def\CapFirstLetter#1#2${%

\uppercase{#1}#2}

Without fully comprehending how Eijkhout’s
macros worked, I changed them as follows to ac-
complish my purpose:

\def\newthoughtgroup#1{%

\BigFirstLetter#1$}

\def\BigFirstLetter#1#2${%

\bigskip\noindent{\Large #1}#2}

I suspect I am not alone among TEX user in blindly
copying or converting something that already exists
without much understanding of how it works.

Learning more. After using my version of Eijk-
hout’s macros for a while, I decided to try to un-
derstand them in detail. So, I looked at chapter
20 of Knuth’s The TEXbook ;2 in particular, I tried
to understand from the first dangerous bend signs
on page 203 to the first dangerous bend signs on
page 204. The following is what I think I learned.3

First, I noted the difference between LATEX
macro definitions and TEX macro definitions. My
original LATEX macro listed above might be written
as a TEX macro as follows:

1 I’ve suddenly jumped to TEX style macro definitions in-

stead of the LATEX form of macro definitions because that is

what I found searching comp.text.tex, and for another rea-

son that may become apparent.
2 Addison Wesley, Reading, MA, 1986.
3 I am not going to repeat the full explanation of a macro

definition or how a macro finds its arguments when called; I’ll

just use what I learned to explain the macros I was working

with.

200 TUGboat, Volume 25 (2004), No. 2

\def\newthoughtgroup#1{%

\bigskip\noindent{\Large #1}}

The TEX form of macro definition includes \def, fol-
lowed by the new macro name (\newthoughtgroup in
our case), followed by what Knuth calls the parame-

ter text which in this case is #1 indicating the macro
has one undelimited parameter, and ending with the
replacement text (\bigskip\noindent{\Large #1}).
The call-time argument of an undelimited parameter
is the first non-blank token,4 or the tokens enclosed
in matched braces, after the macro name.

This same format of TEX macro definition is
used for the first macro below.

\def\newthoughtgroup#1{%

\BigFirstLetter#1$}

\def\BigFirstLetter#1#2${%

\bigskip\noindent{\Large #1}#2}

The parameter text is #1, and the replacement text
is \BigFirstLetter#1$. Thus, when the first macro
is called with

\newthoughtgroup{Here}

the macro is expanded into its replacement text,
which thus becomes \BigFirstLetter Here$.5

But the second macro’s parameters specify a
slightly different form of macro call. The first pa-
rameter (#1) is undelimited and, thus, the macro
call’s first argument is the first (non-blank) token or
tokens enclosed in braces (as with the first macro).
The second parameter, however, is delimited by the
following $ and, thus, the macro call’s second ar-
gument is all the tokens from the end of the first
argument to the $, i.e., to the delimiter.

Thus, when the first macro calls the second
macro, that macro call (\BigFirstLetter{Here$})
finds its first argument to be H and its second ar-
gument to be ere with the $ being discarded after

4 Tokens are described between exercises 7.2 and 7.3 on
pages 38–39 of The TEXbook. As what the user typed
is read into TEX, the letters, numbers, command names,
etc., are stored as tokens. Tokens are internal representa-
tions of the characters in the input stream, with the no-
table exception that control sequences (e.g., \bigskip, \def,
\newthoughtgroup) are each stored as single tokens. Macro
definitions are stored as tokens, and macro calls are processed
in terms of tokens.

5 My macros are usually so simple that I can just think
of the literal characters of the macro definition replacing the
literal characters of the macro call in the sequence of charac-
ters that TEX reads, and so the definition \newthoughtgroup

in this section originally looked funny to me. I wondered why
the replacement text for \newthoughtgroup{Here} wasn’t
\BigFirstLetterHere$ and then wondered why TEX didn’t
report that as an undefined control sequence. The an-
swer, I believe, is that, as noted in footnote 4, TEX pro-
cesses macros in terms of tokens, and the replacement text,
\BigFirstLetter#1$, is manipulated as three distinct tokens:
\BigFirstLetter, #1, and $.

matching. In turn, the call to \BigFirstLetter is
replaced by

\bigskip\noindent{\Large H}ere}

producing the desired vertical space, no indentation,
a big H, and normalsize ere.

Second approach. I happily used these macro
definitions for a long time until I discussed them one
day recently with Karl Berry. He pointed out that
my version of Victor’s formulation can be changed
to remove that restriction on including $ in the ar-
gument. He explained that the second argument’s
delimiter doesn’t have to be a character; it can be
an arbitrary control sequence (even an undefined
control sequence), and he wrote down the following
for me:6

\def\newthoughtgroup#1{%

\BigFirstLetter#1\enddavesmacro}

\def\BigFirstLetter#1#2\enddavesmacro{%

\bigskip\noindent{\Large #1}#2}

Third approach. That sounded like a good im-
provement, but then Karl said, “Personally, I would
be inclined to a different approach, that has the ben-
efit of being called without braces —which thus ad-
dresses your original reason for moving from a macro
called with \newthoughtgroup{H}ere.” He showed
me the following definition for \newthoughtgroup:

\def\newthoughtgroup#1{%

\bigskip\noindent {\Large #1}}

When called, for example, as

\newthoughtgroup Here is an example.

the argument that replaces the parameter (#1) is the
H, i.e., the first non-blank token.7

Conclusion

As I started drafting this conclusion, it gradually
dawned on me that the Third Approach TEX macro
is the same as the TEX transliteration of my orig-
inal LATEX macro (“Learning more” section), and
perhaps my original LATEX macro (“My problem”
section) also worked when called without braces:

\newthoughtgroup Here is an example.

6 Victor also showed me a different formulation —one op-
timized for efficiency— that I will not try to explain in this
note.

7 Karl was not quite done yet. His final note was that
if I was willing to stop trying to figure out macros like
these, the “lettrine” package has support for many varia-
tions along the lines I desired. See http://www.tex.ac.

uk/cgi-bin/texfaq2html?label=dropping for mention of the
package and http://www.tex.ac.uk/tex-archive/macros/

latex/contrib/lettrine/doc/demo.pdf for a demonstration
document.

TUGboat, Volume 25 (2004), No. 2 201

It does — a bit of a startling conclusion for me.
There are two possible lessons here. Perhaps

I originally should have posed my real problem to
comp.text.tex rather than searching for “first let-
ter of a string”; I might have been pointed in the
right direction of understanding how TEX macro
calls find their arguments. Or perhaps it paid to
wander in some less-than-optimal directions; my
journey of discovery was enlightening and relatively
painless, and trying to explain it in writing definitely
consolidated my knowledge — and I hope helped
you.

Acknowledgements

I appreciate Victor Eijkhout’s deep understanding
of how the TEX program processes the TEX lan-
guage (his book TEX by Topic has a comprehen-
sive discussion of how TEX processes macros, http:
//www.eijkhout.net/tbt/) and also the deep un-
derstanding of Karl Berry and his suggestions as I
prepared this paper.

Biographical note

David Walden is retired after a career as an engi-
neer, engineering manager, and general manager in-
volved with research and development of computer
and other high tech systems. These days he does a
lot of writing.

⋄ David Walden

East Sandwich, MA

www.walden-family.com/dave

TUGboat, olume (2004), No.

Hints & Tricks

Glisterings

Peter Wilson

All that glisters is not gold —

Often have you heard that told.

Merchant of Venice, Act II scene 7

William Shakespeare

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two.

Corrections, suggestions, and contributions will
always be welcome.

An issue that has cropped up recently on the

comp.text.tex (ctt) newsgroup is what can be
done when two packages clash by defining the same
macro.

And we are here as on a darkling plain

Swept with confused alarms of struggle

and flight,

Where ignorant armies clash by night.

Dover Beach

Alfred, Lord Tennyson

1 Package/package clashes

A very simple method of undefining a macro, per-
haps \amacro, is to let it be undefined, as:

\let\amacro\undefined

Of course, \undefined must never be defined. You
might feel safer if instead you used, say

\let\amacro\uNdEFiNed

or some other unlikely name.
If two packages are being used, say packA and

packB, which both create \amacro then, provided
the second has used \newcommand and not the TEX
\def macro which will silently replace any prior def-
inition, it will complain that \amacro is already de-
fined. If the definitions in packA and packB are iden-
tical then the following resolves the problem.

\usepackage{packA}

\let\amacro\undefined

\usepackage{packB}

Life being what it is, the definitions are usually
different. In this case both definitions can be used
but the name of the first definition has to be altered.

\usepackage{packA}

\let\Aamacro\amacro

\let\amacro\undefined

\usepackage{packB}

Following this, you use \Aamacro when you want
packA’s version and \amacro for the packB version.

Of course, life gets even more awkward if packA

uses \amacro as part of another macro that you
might use, in which case you have to hope that the
author of at least one of the packages will change it
to eliminate the clash.

2 Class/package clashes

A slightly different version of the same problem is
when there is some clash between the code in a class
and the code in a package. I came across this when
I was developing the memoir class [3] which incor-
porates code from many1 packages. In some cases I

1 Mostly written by me.

202 TUGboat, Volume 25 (2004), No. 2

needed to make sure that a particular package was
not used with the class. I came up with this macro
that fooled LATEX into thinking that a package had
been loaded, even though it hadn’t been. The argu-
ment to the macro is the package name.

\newcommand*{\@memfakeusepackage}[1]{%

\@namelet{ver@#1.sty}\@empty}

\newcommand*{\@namelet}[1]{%

\expandafter\let\csname #1\endcsname}

(The code must be put where @ is treated as a letter.)
The LATEX kernel has two useful macros for

composing and using macro names which do not nec-
essarily consist only of letters, namely:
\@namedef{〈text〉}{〈def 〉}, and
\@nameuse{〈text〉}.
The first of these lets you define a macro called
\〈text 〉 and the second lets you call a macro called
\〈text 〉 As an example, the result of the next piece
of code is shown afterwards; note that you can’t
directly call a macro whose name includes analpha-
betic characters.

\makeatletter

\newcommand*{\ru}{are you}

\@namedef{ru4me}#1{#1, are you for me?}

‘\ru4me{Fred}’ he asked. \\

‘\@nameuse{ru4me}{Fred}’ he asked.

\makeatother

‘are you4meFred’ he asked.
‘Fred, are you for me?’ he asked.

In the same vein the macro
\@namelet{〈text〉}
defined above is for \leting. Thus, calling

\@memfakeusepackage}{pack}

effectively expands to

\let\ver@pack.sty\@empty

which appears to be the magic incantation to make
LATEX believe it has already used the pack package.

The memoir class includes code very similar,
but not identical, to the array, dcolumn, delarray and
tabularx packages and I used \@memfakeusepackage

to make sure these were not loaded again.
The memoir class also includes code correspond-

ing to Heiko Oberdiek’s ifpdf package [1] but I did
not do anything to prevent loading the package.
This resulted in a thread on ctt where the poster
was using

\documentclass{memoir}

\usepackage{ps4pdf}

only to be told that \ifpdf was already defined.
It turns out that the ps4pdf package uses the ifpdf

package which defines \ifpdf which was also defined
in memoir.

Heiko Oberdiek [2] gave the simple ‘let to unde-
fined’ solution and the following more complex one:

\documentclass{memoir}

%% memoir defines \ifpdf

\makeatletter

%% save memoir’s \ifpdf

\let\saved@ifpdf\ifpdf

%% then undefine it

\let\ifpdf\@undefined

%% use ifpdf package (defines \ifpdf)

\usepackage{ifpdf}

%% is \ifpdf undefined?

\@ifundefined{ifpdf}{%

%% yes, used the saved memoir version

\let\ifpdf\saved@ifpdf

}{%

%% no, check for matching definitions

\ifx\ifpdf\saved@pdf

\else

%% mismatch, write error message

\latex@error{Different meaning

of \@backslash ifpdf}\@ehc

\fi

}

\makeatother

%% use ps4pdf which uses \ifpdf

\usepackage{ps4pdf}

This scheme can be applied to similar situa-
tions. Note that it produces an error if the second
and first definitions are different, which could very
well be useful.

References

[1] Heiko Oberdiek. The ifpdf package, July 2001.
Available on CTAN in latex/macros/contrib/

oberdiek.

[2] Heiko Oberdiek. Re: memoir, ps4pdf and
\ifpdf. Post to comp.text.tex newsgroup,
3 September 2004.

[3] Peter Wilson. The memoir class for configurable
typesetting, 2004. Available on CTAN in latex/

macros/contrib/memoir.

⋄ Peter Wilson

18912 8th Ave. SW

Normandy Park, WA 98166

USA

herries.press@earthlink.net

TUGboat, Volume 25 (2004), No. 2 203

The Treasure Chest

This is a selected list of the packages posted to CTAN

from January 2004 through December 2004, with
descriptive text pulled from the announcement or
researched and edited for brevity. Please inform us
of any errors.

This installment, like the last, lists entries al-
phabetically within CTAN directories, rather than
by date. We’ve also omitted some packages which
had only minor updates, again for brevity.

Hopefully this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. Comments are welcome, as always.

⋄ Mark LaPlante
109 Turnbrook Drive
Huntsville, AL 35824
laplante@mac.com

biblio

babelbib in biblio/bibtex/contrib

Generates multilingual bibliographies in coopera-
tion with babel.

bib-fr in biblio/bibtex/contrib

French translations of classical BibTEX styles.

bib2xhtml in biblio/bibtex/utils

Convert BibTEX files into XHTML.

bibtool in biblio/bibtex/utils

Manipulation of BibTEX files, including: sorting
and merging, pretty-printing, syntax checks with
error recovery, semantic checks, generation of uni-
form reference keys, controlled rewriting with reg-
ular expressions, collection of statistics, and more.
Includes documentation. C source only (no binary).

ebib in biblio/bibtex/utils

BibTEX database manager for GNU Emacs.

IEEEannot in biblio/bibtex/contrib

Unofficial style for an annotated bibliography in the
IEEE citation format.

spain in biblio/bibtex/contrib

The traditional bibliographic style in Spain.

vancouver in biblio/bibtex/contrib

BibTEX style to meet the “Uniform Requirements
for Manuscripts Submitted to Biomedical Journals”
(the Vancouver style).

dviware

dvipng in dviware

Convert .dvi files to .png images.

fonts

accfonts in fonts/utilities

Programs to generate accented fonts.

antt in fonts/psfonts/polish/antt

Antykwa Toruńska is a two-element typeface de-
signed by Zygfryd Gardzielewski, a Polish typog-
rapher. A great variety of characters, including
many mathematical symbols, in many weights, are
included.

aurical in fonts

Calligraphic font resembling handwriting.

bera in fonts

New fonts Bera Serif, Bera Sans, and Bera Mono,
based on the Vera fonts made freely available by
Bitstream. (Renamed due to the license condi-
tions.)

cirth in fonts

Tolkien’s Cirth font.

cm-lgc in fonts/ps-type1

Type 1 fonts converted from METAFONT sources of
the Computer Modern font families.

courier-scaled in fonts/ps-fonts

Sets the default typewriter font to Courier with a
possible scale factor.

dictsym in fonts

Symbols commonly used in dictionaries.

esint in fonts/ps-type1

Eddie Saudrais’s font esint10 in Adobe PostScript
Type 1 format.

fc in fonts/jknappen

Fonts for African languages.

fourier-GUT in fonts

Fourier-GUTenberg is a math complement for Adobe
Utopia.

fpl in fonts

Small caps and oldstyle digits for URW Palladio L.

frcursive in fonts

This is the French Cursive font, a cursive handwrit-
ing font family in the style of the French academic
running-hand, written with METAFONT.

greektex in fonts/greek

Fonts for processing LATEX files written in a mixture
of Greek and English.

hfoldsty in fonts

Provides virtual fonts for using oldstyle figures with
the European Computer Modern fonts.

ibygrk in fonts/greek

A collection of fonts and macros to typeset ancient
Greek.

kerkis in fonts/greek

Kerkis font family, based on URW Bookman, with
complete Greek support.

lm in fonts/ps-type1

The massive Latin Modern font collection, in Type 1
format.

metatype1 in fonts/utilities

The tool used to build the excellent Latin Modern

fonts/utilities/metatype1

204 TUGboat, Volume 25 (2004), No. 2

fonts, among others. Has example source for an
extended version of Knuth’s logo font.

MnSymbol in fonts

Math symbol font for Adobe MinionPro.

nkarta in fonts

A corrected version of karta, containing map sym-
bols.

pandora in fonts/ps-type1

Type 1 versions of the Pandora fonts.

psethiop in fonts/ps-type1

For typesetting Ethiopian languages.

sanskrit in fonts/ps-type1

Type 1 version of Charles Wikner’s ‘skt’ font series
for the Sanskrit language.

sauter in fonts/cm

An update to the Sauter parameter package for
Computer Modern fonts.

skaknew in fonts/chess

For typesetting chess games.

t1infos in fonts/utilities

Two tiny tools for studying Type 1 fonts: t1area

gives information about the black area of a glyph,
and t1extremes tells if the “extremes” of Bezier
curves are at the right place.

tapir in fonts

A simple geometrical font mostly created from line
and circular segments with constant thickness.

tipa in fonts

An update of the TIPA typefaces.

tt2001 in fonts/ps-type1

Type 1 EC fonts generated by TEXtrace.

graphics

3DLDF in graphics

Three-dimensional (batch) drawing program with
METAPOST output.

a2ping in graphics

Unix command line utility written in Perl that con-
verts many raster image and vector graphics for-
mats to EPS, PDF, and other formats.

epix in graphics

Utility for mathematically accurate, camera quality
plots and line figures.

expressg in graphics/metapost/contrib/macros

Facilities to assist in drawing diagrams that consist
of boxes, lines, and annotations, such as IDEF or
UML. Particular support is provided for creating
EXPRESS-G diagrams.

featpost in graphics/metapost/macros

Three-dimensional drawing with METAPOST.

metaplot in graphics

Plot-manipulation macros for METAPOST.

pst-3dplot in graphics/pstricks/contrib

Plot 3D math functions.

pst-bar in graphics/pstricks/contrib

Produce bar charts.

pst-fr3d in graphics/pstricks/contrib

Draw 3D framed boxes.

pst-func in graphics/pstricks/contrib

Draw some special mathematical functions.

pst-geo in graphics/pstricks/contrib

Draw geographical projections.

pst-infixplot in graphics/pstricks/contrib

Macro commands for converting natural mathemat-
ical expressions to PostScript syntax. That is, al-
lows PSTricks plotting with infix expressions rather
than RPN.

pst-jftree in graphics/pstricks/contrib

Draw trees.

pst-light3d in graphics/pstricks/contrib

Draw a 3D shadowing effect on characters and
PSTricks graphics.

pst-math in graphics/pstricks/contrib

Enhancement of PostScript math operators for use
with PSTricks.

pst-poly in graphics/pstricks/contrib

Draw various polygons.

pstricks-add in graphics/pstricks/contrib

A collection of code from the pstricks mailing list.

sparklines in graphics

Sparklines are intense, simple, wordlike graphics.
This tool allows drawing sparklines using the pgf

package.

texcad32 in graphics

TEXCad32 is a clone of the DOS program Texcad
running under Windows.

tpic2pdftex in graphics

An awk bridge from tpic to PDFTEX.

help

uk-tex-faq in help

Major English-language FAQ, with information on
virtually all TEX-related topics. Available on the
web at http://www.tex.ac.uk/faq.

indexing

cooridx in indexing

Preprocessor for MakeIndex to sort chemical names
in an index.

info

beginlatex in info

A thorough manual on getting started with LATEX —
Formatting Information: A Beginner’s Guide to

LATEX, by Peter Flynn.

chroma in info/colour

A reference book of LATEX colors.

fonts/MnSymbol

TUGboat, Volume 25 (2004), No. 2 205

fontinstallationguide.pdf in info/Type1fonts

A comprehensive guide to installing Type 1 Post-
Script fonts.

guia-atx in info/spanish

A guide to writing LATEX documents with Emacs
and AucTEX.

l2tabu in info

Mark Trettin’s guide to common problems with
LATEX. Originally in German with translations
available in English, French and Italian.

lshort in info

“The Not Short Introduction to LATEX2ε”, by To-
bias Oettiker. Available in Bulgarian, Dutch, En-
glsh, Finnish, French, German, Italian, Japanese,
Korean, Mongolian, Polish, Portuguese, Russian,
Spanish, Slovak, Thai, and Ukrainian.

rgb in info/colour

X11 color swatches.

tex-references in info

Reference information for TEX and friends.

tlc2 in info/examples

Examples from The LATEX Companion, Second Edi-

tion.

ttb in info/biblio

A manual about bibliographies, especially BibTEX.

voss in info/math

Articles on math-related topics by Herbert Voss,
originally published in Die TEXnische Komödie.

language

CBcoptic in language/coptic

Typeset Coptic philological text with proper fonts
and hyphenation.

cjhebrew in language/hebrew

Hebrew typesetting package including fonts.

eehyph in language/hyphenation

Estonian hyphenation patterns.

elhyph in language/hyphenation

Greek hyphenation patterns.

gahyph in language/hyphenation

Irish hyphenation patterns.

ibycus-babel in language/greek/package-babel

Allows usage of the Ibycus 4 font for ancient Greek
with Babel.

ithyph in language/hyphenation

Italian hyphenation patterns.

MNT in language/mongolian

MnTTEX provides tools for typesetting The Secret

History of the Mongols.

pecha in language/tibetan

Print Tibetan text in the classic ‘pecha’ layout
style.

ushyph in language/hyphenation

Extended US English hyphenation patterns.

velthuis in language/devanagari

Velthuis Devanagari for TEX.

macros/context

bib in macros/context/contrib

ConTEXt bibliography module.

t-amsl in macros/context/contrib/maths

Provides some environments and commands that
AMS-LATEX users expect.

t-nath in macros/context/contrib/maths

Provides for ConTEXt the same functionality as the
nath package for LATEX.

macros/latex/contrib

12many in macros/latex/contrib

Provides generic way of writing “1, 2, many”, as in
{1, 2, . . . , m}.

anufinalexam in macros/latex/contrib

LATEX document shell to produce the standard for-
matting of final exams at The Australian National
University.

arcs in macros/latex/contrib

Place an arc over or under a short piece of text.

assignment in macros/latex/contrib

Class for writing homework and lab assignments.

beamer in macros/latex/contrib

Create slides and presentations for a projector; now
with much-improved support for verbatim code,
and many other bug fixes.

bigfoot in macros/latex/contrib

Critical edition work in progress; for now, just the
suffix package making it easy to define command
variations like \macro* and \macro\!.

caption in macros/latex/contrib

Very general customization of captions in floating
environments such as figure and table; cooperates
with many other packages.

clefval in macros/latex/contrib

Defines macros \TheKey and \TheValue to support
(the semblance of) hash tables.

cmap in macros/latex/contrib

Create PDF files with searchable and copyable text;
now also works with the CJK package.

contour in macros/latex/contrib

Generates a colored contour around a given text,
enabling printing text over a background without
the need for a color box around the text. Vector
outlines are now enabled when supported by the
backend driver, such as with dvips and pdftex.

cvsty in macros/latex/contrib

Another style file for preparation of curricula vitæ.

dramatist in macros/latex/contrib

Typeset dramatic works (plays), either prose or
verse, with support for ‘dramatis personæ’ lists,
stage directions, and more.

egameps in macros/latex/contrib

Formatting extensive games, a kind of specification
in game theory, using PSTricks.

macros/latex/contrib/egameps

206 TUGboat, Volume 25 (2004), No. 2

elmath in macros/latex/contrib

Direct support for Greek characters on Greek key-
boards.

empheq in macros/latex/contrib

A visual markup extension to amsmath for empha-
sizing equations, including extensible symbols, non-
delimiter scaling, and column alignments.

engrec in macros/latex/contrib

Enumerate lowercase and uppercase Greek letters,
with assorted variants.

eskd in macros/latex/contrib

Producing text documents in accordance with Rus-
sian (probably post-USSR) design standards.

europcv in macros/latex/contrib

Class for the standard model for curricula vitæ as
recommended by the European Commission.

exercise in macros/latex/contrib

Helps in typesetting exercises and lists of exercises.

extract in macros/latex/contrib

Extract arbitrary content, possibly conditionally,
from a source document and write it to a target doc-
ument; for instance, extract exercises from lecture
notes, or specific slides from a presentation. Also
provides an environment for sharing code, such as
a preamble, between the source and target files.

figbib in macros/latex/contrib

Supports organizing figures in BibTEX databases,
for general List of Figures formatting, simplifying
inclusion of figures, and more.

floatrow in macros/latex/contrib

Support for many float and caption layouts.

fontspec in macros/latex/contrib

Automatic and unified interface to feature-rich AAT

and OpenType fonts in XeLATEX.

functan in macros/latex/contrib

Macros for functional analysis, notably Sobolev
spaces, and PDE theory.

glossary in macros/latex/contrib

Assist in generating a glossary with makeindex.

ha-prosper in macros/latex/contrib

Extends the prosper class for slide presentations
with tables of contents, portrait slides, and more.

hepparticles in macros/latex/contrib

Typesetting high energy physics particle names in
or out of math, including in section titles and other
bold contexts.

IEEEconf in macros/latex/contrib

Format documents according to the IEEE Com-
puter Society Press guidelines; this package re-
places latex8.sty and latex8.bst.

juraabbrev in macros/latex/contrib

Handling abbreviations in German law, including
making a list of those actually used.

juramisc in macros/latex/contrib

Collection of packages and classes for typesetting
German juridical documents.

jurarsp in macros/latex/contrib

BibTEX style for citations of judgements and other
official documents in German law.

kerntest in macros/latex/contrib

Print tables and generate mtx files to help in ad-
justing font kerning tables.

koma-script in macros/latex/contrib

A versatile bundle of document classes and pack-
ages, aiming to be a replacement for the standard
LATEX2ε classes.

layaureo in macros/latex/contrib

Support wide page layouts for documents using the
A4 paper size, including binding offsets.

ledmac in macros/latex/contrib

Typeset critical editions; a LATEX port, and ex-
tension, of the plain edmac, tabmac, and edstanza

macros.
ledpar in macros/latex/contrib

Extension of ledmac enabling parallel typesetting,
in columns or on facing pages.

logpap in macros/latex/contrib

Draws logarithmic/linear graph paper, in all com-
binations.

ltabptch in macros/latex/contrib

Fixes bugs in longtable.sty.
ltxindex in macros/latex/contrib

Making indices in LATEX using GNU texindex in-
stead of makeindex.

makebox in macros/latex/contrib

Defines a \makebox* command, same as \makebox

but with the width given by a sample text instead
of an explicit length.

maybemath in macros/latex/contrib

Provides math commands \maybebm and \maybeit

which typeset their arguments in bold or italic, re-
spectively, if the surrounding context is appropri-
ate, such as a section title.

memoir in macros/latex/contrib

Peter Wilson’s flexible LATEX class for typesetting
general fiction, non-fiction, and mathematical works;
support for customized designs, trim marks, various
document sizes, and much more.

mentis in macros/latex/contrib

Adjustment for publishing at Mentis Publishers,
Paderborn, Germany.

mhchem in macros/latex/contrib

Support for typesetting chemical molecular formu-
lae, and chemical equations with these formulae.
Also includes the rsphrase package with the text,
in English and German, of all official Risk and
Safety Phrases used to label chemicals.

microtype in macros/latex/contrib

LATEX interface to the pdfTEX micro-typographic
features: character protrusion and font expansion.

movie15 in macros/latex/contrib

Package for multimedia inclusion, for use with PDF

version 1.5.
msg in macros/latex/contrib

Aims to localize any document class or package, so

macros/latex/contrib/elmath

TUGboat, Volume 25 (2004), No. 2 207

that messages may be reported in the end-user’s
preferred language.

nature in macros/latex/contrib

Unofficial support for preparing articles and letters
to the journal Nature.

ncctools in macros/latex/contrib

Many packages for general LATEX use, including
cropmarks, watermarks, hyphenation of compound
words, poor man’s blackboard bold, and more.

ofs in macros/latex/contrib

Oľsak’s Font System, containing plain and LATEX
macros for managing large font collections, includ-
ing support for many font encodings.

osa in macros/latex/contrib

Latest LATEX, REVTEX, and BibTEX tools for jour-
nals of the Optical Society of America.

pagenote in macros/latex/contrib

Supports tagged notes on a separate page, a.k.a.
end notes.

paresse in macros/latex/contrib

Abbreviations for typesetting of Greek letters in
math mode, using a new active character.

pbsheet in macros/latex/contrib

Typesetting of problem sheets including mathemat-
ics, programs, and graphics.

pclnfss in macros/latex/contrib

Support for selecting and using the standard 45
scalable fonts built into most PCL laser printers.

perltex in macros/latex/contrib

Allows defining LATEX macros with Perl code, thus
combining LATEX’s typesetting power with Perl’s
programmability.

pict2e in macros/latex/contrib

A picture-drawing package, described in the second
edition of LATEX: A Document Preparation System.

pittetd in macros/latex/contrib

A class that formats documents for submission as
electronic theses and dissertations (ETD) to the
University of Pittsburgh, including bookmarking.
It also has some generic features potentially useful
for ETD classes at other institutions.

probsoln in macros/latex/contrib

Generate new problem sheets, and answers, includ-
ing random selection of problems.

ptptex in macros/latex/contrib

Official class files for the journal Progress of Theo-

retical Physics.

rotfloat in macros/latex/contrib

Bridges the sidewaysfigure, sidewaystable and
float packages to allow floats that are both rotated
and (for example) ruled or boxed.

rrgtrees in macros/latex/contrib

Producing linguistic tree diagrams suitable for Role
and Reference Grammar (RRG); allows the con-
struction of trees with crossing lines, as required
by this theory for many languages.

sauerj in macros/latex/contrib

Miscellaneous styles by Jonathan Sauer, including:

optparams supports creating macros with multiple
optional parameters; parcolumns supports typeset-
ting in two or more columns in parallel; processkv
supports calling a user-defined macro for each key/
value pair in a list; zahl2string formats numbers
as German words.

scientificpaper in macros/latex/contrib

A simple, generic scientific paper format.

sgame in macros/latex/contrib

Formats strategic games, a game theory specifica-
tion.

SIstyle in macros/latex/contrib

Typesets physical units following the rules of the
International System of Units (SI).

splitbib in macros/latex/contrib

Split a bibliography into categories and subcate-
gories; does not depend on BibTEX.

stdpage in macros/latex/contrib

Produce standard pages of n lines with at most m

characters each, for translations, proofreading, etc.

struktex in macros/latex/contrib

Support for Nassi Shneidermann structure charts
in algorithm development.

subfig in macros/latex/contrib

Almost-compatible replacement for subfigure, us-
ing the caption package and with a keyword/value
interface.

switcheml in macros/latex/contrib

Obfuscates an email address so that it prints cor-
rectly but cannot be harvested.

umich-thesis in macros/latex/contrib

Produce a University of Michigan dissertation ac-
cording to the Rackham dissertation handbook.

underbracket in macros/latex/contrib

Draws brackets to underline text, especially but not
exclusively with musictex and musixlyr.

wallpaper in macros/latex/contrib

Easy addition of background images to LATEX doc-
uments, including tiling.

xarrow in macros/latex/contrib

Extensive arrows: \xlongequal, \xleftrightarrow,
\xlongleftrightarrow, \xlongleftarrow,
\xlongrightarrow, and \xLong variants for all.

xcolor in macros/latex/contrib

Driver-independent color extensions, including shad-
ing, color masking, color separation, and conversion
between color models such as RGB and CMYK.

xkeyval in macros/latex/contrib

A notable extension of the keyval package.

macros/latex/exptl

mem in macros/latex/exptl

An experimental environment for multilingual and

macros/latex/exptl/mem

208 TUGboat, Volume 25 (2004), No. 2

multiscript typesetting with LATEX in the Aleph
typesetting system.

xfrac in macros/latex/exptl

Produce visually pleasing split level fractions for
arbitrary fonts.

support

autoconf in support

Autoconf macros to test for the presence of LATEX.

bibex in support

Automates the extraction of bibliographic refer-
ences from BibTEX databases.

bmeps in support

A program to convert from PNG, TIFF, JPEG, and
NetPBM to EPS.

chktex in support

Finds typographic errors in LATEX.

easylatex in support

Turns “ASCII math” into LATEX source.

eukleides in support

A Euclidean geometry drawing language.

gellmu in support

GELLMU is an acronym for “Generalized Exten-
sible LATEX-Like MarkUp”, which is the author’s
concept for using LATEX-like markup to write con-
sciously for SGML document types such as HTML,
DocBook, TEI, or GELLMU’s own didactic LATEX-
like article format.

latexdiff in support

A Perl script for finding the differences between two
LATEX files as another LATEX file, with various out-
put format options.

latexrender in support

Use LATEX in PHP programs.

ldiff in support

A Python script for reporting the differences be-
tween two LATEX files, as a PostScript document.

maketable in support

Convert Word or Excel tables to TEX tabular struc-
tures.

mimetex in support

Parses well-formed LATEX math expressions, emit-
ting either GIF images or MIME xbitmaps.

orderrefs in support

Reorder the bibliography in a LATEX document by
order of citation.

pdfcrop in support

Takes a PDF as input, calculates the BoundingBox
for each page with the help of Ghostscript and gen-
erates an output PDF without margins.

png2pdf in support

Convert PNG images to PDF.

preview-latex in support

A system for displaying inline images of selected
parts of a file in Emacs source buffers. The style

file is independently useful for extraction of selected
text elements as images.

pydocstrip in support

An alternative to TEX docstrip.

references in support

Bibliographic software for authors of scientific man-
uscripts and for management of bibliographic data
of journal articles, books, book chapters, etc.

shortcuttool in support

Enables file import to the input tool Shortcut and
provides a shortcut file.

tex4ht in support

A complete system for translating (LA)TEX and
ConTEXt sources into HTML, XML, MathML, etc.

texconverter in support

Windows front-end to various LATEX to HTML con-
verters.

tif2eps in support/pstools

Convert TIFF images to EPS.

vpp in support/viewprintpspdf

A command line utility to view and print PostScript
and PDF documents.

systems

epmtfe in systems/os2

The “EPM TEX Front End”, a module for the OS/2

“Enhanced Editor” EPM. It turns the EPM into an
integrated TEX environment, providing (LA)TEXing,
previewing and executing of auxiliary programs
from the editor menu.

latexpix in systems/win32

A drawing program for Windows which generates
LATEX pictures.

oztex in systems/mac

OzTEX is a standalone Mac implementation of TEX;
also can be used as a front-end to teTEX on OS X.

pdftex in systems

An extension of TEX that can create PDF directly
from TEX source files. It also contains many new
features and extensions to TEX.

TeXmacs in systems/unix

GNU TEXmacs is a free scientific text editor, which
was inspired by both TEX and GNU Emacs.

WinShell in systems/win32

A graphical user interface for easily working with
TEX. It is not a TEX system itself, so requires a
system such as MikTEX or TEX Live.

vtex in systems

VTEX/Free for OS/2 and Linux (x86).

macros/latex/exptl/xfrac

TUGboat, Volume 25 (2004), No. 2 209

Abstracts

Editor’s note: This issue of TUGboat contains ab-
stracts and summaries from recent publications by
several other TEX user groups, translated to English
where needed. For a complete list of all user group
publications, see http://tug.org/pubs.html.

Zpravodaj 13(1)–14(2), 2003–2004

Zpravodaj is the bulletin of CSTUG, the TEX user
group for the Czech and Slovak languages. Their
web site is http://www.cstug.cz, and the Zpravo-

daj web site is http://bulletin.cstug.cz.

Zpravodaj 13(1), 2003

Petr Olšák, Úvodníček [Introduction]; p. 1–2

Jiří Kosek, Sazba XML [Typesetting XML];
p. 3–6

This article summarizes methods suitable for
processing XML documents by the TEX system —
direct typesetting (xmltex, ConTEXt), conversion to
TEX (XSLT) and TEX based stylesheet language im-
plementations (XSL, DSSSL). The article acts as an
introduction for more detailed articles about pro-
cessing XML with TEX.

Jiří Kosek, Použití parseru XML v TEXu [Use of
an XML parser in TEX]; p. 6–14

This article shows how to use xmltex—an XML

parser written in pure TEX— to directly typeset
XML documents. Special interest is devoted to
correct processing of localized Czech/Slovak doc-
uments.

Jiří Kosek, JadeTEX; p. 15–26
JadeTEX is a TEX macro package which is able

to process SGML and XML documents according to
a DSSSL stylesheet in conjunction with (Open)Jade
DSSSL processor. This article briefly describes basic
principles of the DSSSL language and its usage for
formatting XML documents. Complete working ex-
ample of a DSSSL stylesheet is shown in the article.

Jiří Kosek, PassiveTEX; p. 26–38
PassiveTEX is a TEX-based XSL-FO processor

which is able to process XML documents according
to an XSL stylesheet in conjunction with any XSLT

processor. This article briefly describes basic princi-
ples of the XSL language and its usage for formatting
XML documents. Complete working example of an
XSL stylesheet is shown in the article.

Zdeněk Wagner, Fraktální obrazce v PostScriptu
[Fractal Images in PostScript]; p. 45–53

The picture used on the cover of this issue is
an example of a fractal image. The article describes
the PostScript macro by means of which the picture
was created.

Zpravodaj 14(1), 2004

Petr Olšák, Úvodníček [Introduction]; p. 1–2

Zdeněk Wagner, Anatomie virtuálních fontů
[Anatomy of Virtual Fonts]; p. 3–16

The article is a brief introduction to the concept
of virtual fonts. It is first explained how TEX works
with fonts. Afterwards a simple tool for building a
virtual font, namely qdTEXvpl, is presented. Finally
usage of virtual fonts is demonstrated by typesetting
spaced and underlined text. The macros and Perl
scripts described in this article are available from
the web page of the Bulletin.

Aleš Pavelka, Wordové plug-iny související s
TEXem aneb Možnosti a schopnosti produktů
Word2TEX a TEX2Word [Word Plug-Ins for TEX:
Possibilities and Abilities of the Word2TEX and
TEX2Word Products]; p. 16–28

The article describes two MS Word plug-ins
which allow conversion from and to TEX. The docu-
ments illustrating the results of conversion are avail-
able from the web page of the Bulletin.

Ladislav Bittó, TEX and PostScript in
Graphics of Programming Languages; p. 28–38

The article describes possibility of generating
PostScript graphics by means of a library of sub-
routines written in FORTRAN. The speed of the
program is compared to that of METAPOST. Exam-
ples of pictures created by the mentioned program
are available from the web page of the Bulletin.

Zpravodaj 14(2), 2004

Petr Olšák, Úvodníček [Introduction]; p. 45–46

Vít Zýka, Používáme pdfTEX IV:
mikrotypografické rozšíření [Using pdfTEX IV:
micro-typographic extensions]; p. 47–53

This article describes two micro-typographic
extensions being implemented by Hàn Thế Thành
in pdfTEX: character protruding and font expan-
sion. Expanded font metric preparation is also ad-
dressed.

Miroslav Balda, Výpočty a diagramy v LATEXu
[Calculations and diagrams in LATEX]; p. 54–110

The article deals with the title problem from
the point of view of a common user of LATEX. It de-
scribes a way of using the standard packages fp.sty

210 TUGboat, Volume 25 (2004), No. 2

and curves.sty, along with their new extensions
fp-contrib.sty and diagram.sty with an auxil-
iary package support.sty. The suite allows solving
rather complicated tasks in one run of the LATEX
compiler. A solution for processing fatigue data into
SN-curve, bands of confidence intervals, plots and a
table of results is presented as an example. The sys-
tem is also suitable for presentation purposes.

[Received from Zdeněk Wagner]

Die TEXnische Komödie

Contents of Issues 1–4/2003

Die TEXnische Komödie (DTK) is the publication
of DANTE, the German language TEX user group.
Their web site is http://www.dante.de.

15. Jahrgang, Heft 1/2003 (Februar 2003)

Gerd Neugebauer, [Editorial]; pp. 3–4

◦ Hinter der Bühne : Vereinsinternes

[Backstage : Club matters]; pp. 5–8:

Volker RW Schaa and Klaus Höppner,
Grußwort [Introduction]; pp. 5–7

Volker RW Schaa and Roland Weibezahn,
Einladung zur TEX-Tagung DANTE 2003 und
28. Mitgliederversammlung von DANTE e.V.
[Announcement of DANTE 2003 and the 28th
meeting of DANTE e.V.]; pp. 7–8

◦ Bretter, die die Welt bedeuten

[The stage is the world]; pp. 9–66:

Christian Faulhammer, Hüllen (nicht nur) für
Musik-CDs [Covers (not only) for CDs]; pp. 9–14

With the help of the document class cd-cover
one can very easily create inlays for the various
types of CD covers. It covers the whole range of CD

covers from single to paper sleeve.

Tim Doll, Digitaler Textsatz, digitale Typogra-
phie. Ein Überblick [Digital typesetting, digital
typography. An overview]; pp. 14–39

The goal of the article is to provide an overview
of the typographic progress in the workflow of digital
text production. After a short historical outline
of typesetting itself the current developments in
digital typesetting with an emphasis on PostScript
and PDF are presented. The influence of modern

T Gb at, olume (2004), No.

DTP in regard to shifting of the layout task from the
typesetter to the author is discussed in detail. The
author points out the advantages of a typesetting
system like LATEX which gives the opportunity to
bring back the old division of labor between author
and typesetter: content and logical structure of the
document to the author and the actual typesetting
to the typesetter.

Herbert Voß, Optische Darstellungen mit
pst-optic [Representations of optical lens
systems with pst-optic]; pp. 40–59

This article is part of a series which describes
the subpackages of pstricks. This one is about
pst-optic, with which one can draw optical lens
systems. This may prove especially useful for people
working in the educational field.

Rolf Niepraschk, Anwendungen des
LATEX-Pakets preview [Applications of the
LATEX package preview]; pp. 60–66

This article describes a method based on the
LATEX package preview to produce graphics files
which can be included, for example, in HTML pages.

◦ Spielplan [Repertory]; pp. 67–70:
The international and national calendar.

◦ Adressen [Addresses]; pp. 70–72:

15. Jahrgang, Heft 2/2003 (Mai 2003)

Gerd Neugebauer, [Editorial]; pp. 3–4

◦ Hinter der Bühne : Vereinsinternes

[Backstage : Club matters]; pp. 5–27:

Volker R.W. Schaa and Klaus Höppner,
Grußwort [Introduction]; pp. 5–7

Günter Partosch, Beschlüsse der 28. Mitglieder-
versammlung von DANTE e.V. am 3.April 2003
in Bremen [Report of the 28th general meeting of
DANTE e.V. on 3 April 2003 in Bremen]; pp. 8–11

Tobias Sterzl, Finanzbericht 2002
[Treasurer’s Report for 2002]; pp. 11–14

Volker RW Schaa, Projektfonds
[Project funds]; pp. 14–15

Günter Partosch, Der TEXnische Beraterkreis
[The TEXnical support list]; pp. 15–17

Günter Partosch, Vereinsinterne Kommunikation
per E-Mail [Communications within the group by
e-mail]; pp. 17–20

Volker RW Schaa, Lizenzabkommen für WinEdt
[Licensing arrangements for WinEdt]; pp. 20–21

Martin Etter and Daniel Kärcher and Jan
Theofel, LATEX trifft Seemann — Tagungsbericht
DANTE 2003 in Bremen [LATEX meets a sailor —
report on DANTE 2003 in Bremen]; pp. 21–26

Barbara Beeton, Michael John Downes; p. 27

◦ Bretter, die die Welt bedeuten
[The stage is the world]; pp. 28–66:

Werner Lemberg, Hyphenation Exception Log für
deutsche Trennmuster [Hyphenation Exception Log
for German hyphenation patterns]; pp. 28–31

For many years TUGboat has published ad-
ditions to the original US English hyphenation
patterns. The author wants to introduce such a
hyphenation exception log for the German hyphen-
ation patterns and is willing to take on the task.

Markus Kohm, Moderne Briefe mit KOMA-Script
[Modern letters with Koma-Script]; pp. 32–51

The author of KOMA-Script shows the use of
the package scrletter2 which can be used for
the writing of letters. The author also discusses
the typographical conventions in German speaking
countries for the positioning of the letterhead with
respect to the type area.

Torsten Bronger, Einfaches Setzen von
Texten in Fraktur mittels blacklettert1

[Simple typesetting of texts in Gothic using
blacklettert1]; pp. 52–66

There are many ways to typeset a text in
Blackletter or Gothic with LATEX. Most of them
prove to be somewhat awkward. Providing the fonts
in the T1 encoding, the package blacklettert1

tries to ease the task of setting texts in Gothic.

◦ Spielplan [Repertory]; pp. 67–70:
The international and national calendar.

◦ Adressen [Addresses]; pp. 70–72:

15. Jahrgang, Heft 3/2003 (September 2003)

Gerd Neugebauer, [Editorial]; p. 3

◦ Hinter der Bühne : Vereinsinternes
[Backstage : Club matters]; pp. 4–9:

Volker RW Schaa and Klaus Höppner,
Grußwort [Introduction]; pp. 4–7

TUGboat, Volume 25 (2004), No. 2 211

Uwe Siart, 1. Bayerischer TEX-Stammtisch in
Nürnberg [The first Bavarian TEX Stammtisch in
Nürnberg]; pp. 8–9

◦ Bretter, die die Welt bedeuten
[The stage is the world]; pp. 10–56:

Bogus law Jackowski and Janusz M. Nowacki,
[Accents, accents, accents . . . enhancing CM fonts
with ‘funny’ characters]; pp. 10–32

This article describes the history and the trou-
bles in the development of the ‘Latin Modern Fonts’,
which were sponsored by the European TEX User
Groups (DANTE, GUTenberg, NTG and GUST). The
Computer Modern Type 1 fonts from the American
Mathematical Society form the base for the LM

fonts. LM contains not only accented characters as
separate glyphs (at this time 527 per font at most),
but characters of the EC fonts are included too, in
order to get a complete replacement. This article
describes the methods for the realization and it
explains the reasons for the decision that the LM

fonts shall be compatible with the CM fonts.

Rolf Niepraschk, Tipps und Tricks: Mal anders
herum — excludeonly [Tips and Tricks: This
time the other way round — excludeonly];
pp. 32–33

The article describes the use of the packages
includeonly and excludeonly.

Herbert Voß, Erstellen von Schaltbildern mit
pst-circ [Drawing of Circuit Diagrams with
pst-circ]; pp. 33–49

This article continues the series on pstricks

with a description of the package pst-circ. The
package provides an easy method for the production
of circuit diagrams without the need of a drawing
program.

Rolf Niepraschk, PDF und PostScript — das
LATEX-Paket ps4pdf [PDF and PostScript — the
LATEX package ps4pdf]; pp. 49–56

This article shows a way to include PostScript
code directly within a pdflatex document with
comparatively modest effort.

◦ Rezensionen [Reviews]; pp. 57–63:

Typograpf der Zeit — Hans Peter Willberg ist tot
[Typographer for our times — Hans Peter Willberg
is dead]; pp. 57–58

Hilmar Preuße, “LATEX für Dummies” Christian
Baum [“LATEX for Dummies” by Christian Baum];
pp. 59–63

◦ Leserbrief(e) [Letters]; pp. 64–66:

Moriz Hoffmann-Axthelm, Zu Torsten Brongers
Artikel “Einfaches Setzen von Texten in Fraktur
mittels blacklettert1” [On Torsten Brongers’
article “Simple typesetting of texts in Gothic using
blacklettert1”]; pp. 64–66

◦ Spielplan [Repertory]; pp. 67–70:
The international and national calendar.

◦ Adressen [Addresses]; pp. 70–72:

15. Jahrgang, Heft 4/2003 (November 2003)

Gerd Neugebauer, [Editorial]; p. 1

◦ Hinter der Bühne : Vereinsinternes
[Backstage : Club matters]; pp. 4–31:

Volker RW Schaa and Klaus Höppner,
Grußwort [Introduction]; pp. 4–7

Günter Partosch, Protokoll der 29. Mitglieder-
versammlung von DANTE e.V. am 9. September
2003 in Rauischholzhausen [Program of the 29th
general meeting of DANTE e.V. on 9 September
2003 in Rauischholzhausen]; pp. 5–12

Sebastian Waschik, Bericht von der Herbsttagung
von DANTE e.V. [Report of the Fall meeting of
DANTE e.V.]; pp. 12–14

Thomas Lotze, [EuroTEX 2003 in Brest/
Bretagne]; pp. 15–23

Blandyna Bogdol, LATEX ist auch weiblich
[LATEX is for women too]; pp. 24–27

Volker RW Schaa, TEX Collection: Fehler und
Updates [TEX Collection: Errors and updates];
pp. 27–28

Volker RW Schaa, Danksagung
[Thanks]; pp. 29–30

Holger Grothe and Volker RW Schaa,
Einladung zur TEX-Tagung DANTE 2004 in
Darmstadt — 15 Jahre DANTE e.V. [Announce-
ment of DANTE 2004 in Darmstadt — 15 years of
DANTE e.V.]; pp. 30–31

212 TUGboat, Volume 25 (2004), No. 2

◦ Bretter, die die Welt bedeuten
[The stage is the world]; pp. 32–65:

David Kastrup and Markus Kohm and Torsten
Krüger and Michael Niedermair and Rolf
Niepraschk, ǫχTEX — ein Überblick [ǫχTEX — an
Overview]; pp. 32–38

In December 2002 a small group of developers
met to develop TEX further, based upon NTS.
Consisting at the beginning of only vague ideas, the
studying of the sources of ǫ-TEX, pdfTEX and Ω
led to the decision to develop a new system written
in Java — ǫχTEX. This article is about the current
status of the project.

Harald Harders, Mehrsprachige Literaturver-
zeichnisse: Anwendung und Erweiterung des
Pakets babelbib [Multilingual bibliographies:
Application and enhancement of babelbib];
pp. 39–63

The package babelbib provides two extensions
over most existing BibTEX styles: it is possible
to change the keywords according to the language,
and it is possible to change some typographical
elements in the bibliography without changing the
whole BibTEX style.

Rolf Niepraschk, Tipps und Tricks: Eine
minipage, die mitdenkt [Tips and Tricks: A
‘thinking’ minipage]; pp. 63–65

Usually one has to know the width of a mini-

page in advance to define it. The article describes
the package varwidth which circumvents this.

◦ Rezensionen [Reviews]; pp. 66–68:

Carsten Heinisch, TeX2Word und Word2TeX
[TeX2Word and Word2TeX]; pp. 66–68

Review of two file conversion tools from Chikrii
Softlab.

◦ Von fremden Bühnen
[On other stages]; pp. 69–70:

Martin Schröder, Der \year=2004 TEX
Kalendar [The \year=2004 TEX Calendar];
pp. 69–70

◦ Spielplan [Repertory]; pp. 71–74:
The international and national calendar.

◦ Adressen [Addresses]; pp. 74–75:

(Compiled by Wolfgang Huber and
Barbara Beeton)

TUGboat, Volume 25 (2004), No. 2 213

Biuletyn GUST 20–21, 2004

Biuletyn GUST is the publication of GUST, the Pol-
ish language TEX user group. The group’s web site
is http://www.gust.org.pl.

Biuletyn GUST 20, 2004

John Plaice and Paul Swoboda, Moving
Omega to a C++-based Platform; pp. 3–5

The code for the Omega Typesetting System
has been substantially reorganised. All fixed-size ar-
rays implemented in Pascal Web have been replaced
with interfaces to extensible C++ classes. The code
for interaction with fonts and Omega Translation
Processes (OTPs) has been completely rewritten and
placed in C++ libraries, whose methods are called
by the typesetting engine. The Pascal Web part
of Omega no longer uses change files. The overall
Omega architecture is now much cleaner than that
of previous versions.

Marcin Woliński, I my tak składamy? Rzecz o
parametrze topskip [So we do typeset like this?
The case of topskip]; pp. 6–8

When using the default Plain TEX value of the
topskip parameter, upper edges of some columns
can look unaligned. In this paper the problem is
illustrated and proposals for selecting other values
for topskip are given.

Janusz S. Bień, Standard Unicode 4.0. Wybrane
pojęcia i terminy [Unicode 4.0— basic notions and
terminology]; pp. 9–14

Selected features of Unicode are presented and
the standard is compared with earlier text encoding
approaches. The paper contains proposals for Polish
translations of the original English language terms
used in the Unicode standard.

David Kastrup, The bigfoot bundle for critical
editions; pp. 15–20

The LATEX package bigfoot and supporting
packages solve many of today’s problems occurring
in the contexts of single and multiple blocks of foot-
notes, and more. The main application is with philo-
logical works and publications, but simpler problems
can be solved painlessly as well without exercising
all of the package’s complexities. For other prob-
lems not yet tackled in this area, a solid framework
is provided.

Jean-Michel Hufflen, A Tour around
MlBibTEX and Its Implementations(s); pp. 21–28

This article describes the components of mlBib-
TEX, a new implementation of BibTEX including

multilingual features. We justify our choices and
show why our use of XML eases most operations
performed by MlBibTEX. Also, there are two im-
plementations of MlBibTEX, a prototype developed
in Scheme, and a more robust program in C. We also
explain how we take advantage of this approach.

Janusz M. Nowacki, Antykwa Toruńska wersja
2.0 [The new embodiment of Antykwa Toruñska];
pp. 29–33

The paper features extended version of the An-
tykwa Torunska family of fonts.

Szymon Zioło, Cocoon – środowisko publikacyjne
oparte na XMLu [Cocoon — an XML based
publishing environment]; pp. 34–38

Cocoon is an XML-based, open source applica-
tion for developing WWW sites and other web appli-
cations. It uses a clever transformation mechanism,
which enables separation of graphical layout design
tasks from site structure and information manage-
ment.

Radosław Tryc, SVG z TEX-em [SVG for TEX];
pp. 39–43

SVG is a publicly available, well documented
and easily extensible format used in the Internet and
multimedia. It is argued that SVG is useful for TEX
users as well. In the paper selected tools for pro-
ducing and processing SVG graphics are presented
(Sodipodi, Scribus, Apache Batik).

Włodzimierz Bzyl and Tomasz Przechlewski,
Wykorzystanie TEX4ht i XSLT do konwersji plików
LATEXa [LATEX-to-XML conversion with tex4ht

and XSLT]; pp. 44–47
The TEX4ht system is generally considered to

be the best application for converting TEX files
to HTML/XML format. TEXht consists of three
parts: style files which enhance existing macros with
HTML, or DocBook, or TEI like features; the tex4ht
processor which extracts HTML (or DocBook/TEI)
files from DVI files produced by TEX; and the t4ht

processor which is responsible for translating DVI

code fragments which need to be converted to pic-
tures; for this task, the processor uses tools available
on the current platform. Out of the box, TEX4ht is
configured to translate roughly from plain, LATEX,
ltugboat, ltugproc, Lecture Notes in Computer
Science (llncs) formats to HTML/XML. However,
the conversion from a visual format to information
oriented one cannot be done automatically; usually
prior configuration of TEX4ht is needed. Instead of
configuring TEX4ht —which is not easy —we could
use an XSLT style-sheet to remap elements to refer-
ence XML format. The paper introduces the TEX4ht

214 TUGboat, Volume 25 (2004), No. 2

system. Selected problems of configuring the sys-
tem and converting TEX/LATEX files to XML with
TEX4ht are discussed.

Halina Wątróbska and Ryszard Kubiak,
Wykorzystanie Emacsa, Haskella i TEXa
w pracach nad słownikiem języka staro-cerkiewno-
słowiańskiego [Emacs, Haskell and TEX;
cooperating on an Old-Church to Slavonic
dictionary]; pp. 48–53

The paper describes how TEX, the Haskell pro-
gramming language and the Emacs editor are used
for authoring of the Old-Church Slavonic to Polish
dictionary in the Slavic Department at the Gdańsk
University.

Tomáš Hála, The Implementation of Nested
Quotation Marks; pp. 54–56

In a lot of languages, quotation marks are set
using characters. In some styles, e.g. czech.sty

and slovak.sty, a special macro command is used.
However, none of these methods allow for correct
typesetting of nested quotation marks. This contri-
bution describes a solution to this problem in LATEX.
A set of macros in a special TEX-style has been com-
posed and settings for various languages have been
created. The presented solution is user-friendly and
general. In addition, the standard settings can be
configured by the user.

Biuletyn GUST 21, 2004

Jerzy Ludwichowski, Cicer cum caule –
aktualności stare i nowe [Cicer cum caule —old
and fresh news]; pp. 3–4

A chronicle of the most important, recent, TEX-
related events and achievements.

Antonina Liedtke, By kod giętki wyraził, co
wymyśli głowa [So that the code expresses all the
mind invents]; pp. 5–13

Using LATEX in a publishing house differs from
personal usage. Some packages are used infrequently,
e.g., BibTEX is not required if bibliographies are in-
cluded in the text of the manuscripts. On the other
hand some packages are vital for pre-press (for ex-
ample the Crop package) but rather unnecessary
for authoring. For publishers the typographical cor-
rectness, i.e. conformity to publishing standards is of
great importance. The paper deals with the graphi-
cal layout design, an issue important for publishers.
It is argued that designing graphically appealing
documents in LATEX is not only possible but also
easy—very often it is sufficient to include some two
or three additional packages. This is demonstrated

with code examples for designing chosen graphical
layouts originating from real books.

Jean-Michel Hufflen, Making mlBibTEX Fit
for a Particular Language. Example of the Polish
Language; pp. 14–26

The mlBibTEX project aims to provide a mul-
tilingual bibliography program. In this article, we
show how to make mlBibTEX’s Version 1.3 fit for a
particular language. In particular, we explain how
bibliographical keywords such as ‘and’, ‘chapter’, . . .
should be defined in this particular language. We
also show how to refine bibliography styles. For the
BachoTEX conference, we chose the Polish language;
nevertheless, reading this paper should be useful for
anyone who would like to adapt mlBibTEX.

Jacek Kmiecik and Marek A. Walenta,
O przetwarzaniu dużych dokumentów – duże
też może być piękne. . . [Processing large
documents —big can be beautiful. . .]; pp. 27–30

The main task of the BPP AGH (Bibliographic
List of Staff Publications) application is accumulat-
ing, processing and giving on-line accessibility to all
kinds of data relating to the publications authored
by the staff of the AGH University of Science and
Technology. The project is based on open software:
Linux, Apache, PHP, MySQL and TEX. Processing
of the database content into a PDF file is done with
ConTEXt.

Robin Fairbairns and Jim Hefferon and
Rainer Schöpf and Joachim Schrod and
Graham Williams and Reinhard Zierke,
CTAN – plany [CTAN plans]; pp. 31–34

The readers of TUGboat likely know the Com-
prehensive TEX Archive Network as a great pile of
TEX stuff. That is, it is full of TEX materials and it is
great, but it is also perhaps a pile —a bit of a mess.
We will sketch some plans for improving CTAN. As
part of that, we will outline its architecture, history,
and some issues.

Tomasz Łuczak, Małe marzenie [A small dream];
pp. 35–36

A short description of SlaX-TL, a CD bootable,
TEX dedicated Linux distribution based on SlaX.

Stanisław Wawrykiewicz, TEX Live 2004;
pp. 37–39

A short introduction to the forthcoming TEX
Live 2004 distribution.

Andrzej Borzyszkowski, 14th European TEX
Conference, 24–27 czerwca 2003, Brest [14th

TUGboat, Volume 25 (2004), No. 2 215

European TEX Conference, 24–27 June 2003,
Brest]; p. 40

A report from the 14th European TEX confer-
ence in Brest, France.

Tomasz Przechlewski, XII Ogólnopolska
Konferencja TEX-owa, 30.04.–2.05. 2004, Bachotek
[XII annual GUST TEX conference, 4/30–5/2, 2004,
Bachotek]; pp. 40–42

A report from BachoTEX 2004, the 12th annual
GUST TEX conference.

Włodzimierz Bzyl and Tomasz Przechlewski,
Konferencja TUG 2004, Xanthi, Grecja [TUG 2004
conference, Xanthi, Greece]; pp. 42–44

A report from the TUG 2004 TEX conference in
Xanthi, Greece.

Bogusław Jackowski and Jerzy Ludwichowski,
Konferencja TUG 2003, Waikoloa Beach Resort,
Big Island, Hawaje, USA [TUG 2003 conference,
Waikoloa Beach Resort, Big Island, Hawai‘i, USA];
pp. 45–52

A report from the TUG 2003 conference, Wai-
koloa Beach Resort, Big Island, Hawai‘i, USA.

[Received from Tomasz Przechlewski]

TUGboat, olume (2004), No.

Les Cahiers GUTenberg 43, December 2003

Les Cahiers GUTenberg is the publication of the
French language TEX user group, GUTenberg. Their
web site is http://www.gutenberg.eu.org, and ar-
ticles from Cahiers issues are available at http:

//www.gutenberg.eu.org/publications.

Jacques André, Éditorial: un siècle et demi
d’imprimerie [Editorial: A century and a half of
printing]; pp. 3–4

The editor begins by pointing out that, while for many
TEX users document composition ends with the file out-
put either displayed on a screen or printed on paper,
in the commercial world, such files still have a long
life, with many additional applications. And, going in
the other direction, before such output options as laser
printers and monitor screens, older technologies were the
norm, all the way back to shaping lead to form letters.

This history of printing technology over the past
150 years forms the basis of this issue, with the articles
presented in reverse chronological order, moving from
things which some of us are quite familar with, to those
which predate personal experience.

Maurice Laugier (the current GUTenberg presi-
dent) writes about his career at Louis Jean, a com-
pany which has, over the past half century, become a

large producer of French scientific publications, espe-
cially mathematics. His article, spanning the interval
between lead and laser, is as much about the company
history of composition equipment as about methods de-
veloped there. Three words sum it up: quality, cost,
speed of production.

These three words also appear in Éric Le Ray’s ar-
ticle on Marinoni, who was in some ways the French
equivalent of Citizen Kane, and an inventor of numer-
ous machines. The article itself is less in the Cahier

style, and more in that of the humanities, with lots of
dense paragraphs, figures of different sizes, many foot-
notes (some lengthy). At some 60 pages, its very produc-
tion was a test of TEX’s abilities to pleasantly surprise
in the face of such variability.

[Translated summary of editor’s text]

Maurice Laugier, La composition des
mathématiques. Évolution des techniques au
travers d’une expérience professionnelle [Math
composition: The evolution of techniques during a
professional career]; pp. 5–32

During the past forty years, composition and
printing techniques have undergone significant up-
heavals which have entailed conversions and the
questioning of traditions. The composition of math-
ematical texts has naturally been deeply affected by
these changes.

Techniques have changed, but if typographic
knowledge is an art which evolves, its fundamentals
still have a reason for existing. The confusion be-
tween the tools and the knowledge to use those tools
has often led to results detrimental to the entire en-
deavour, leading to an overall reduction in quality.

[Translated extracts of author’s abstract]

Éric Le Ray, Histoire de l’imprimerie et
de la presse, en marge d’un centenaire:
Hippolyte-Auguste Marinoni (1823–1904)
[History of Printing and the Press, on the eve
of a centennial: Hippolyte-Auguste Marinoni
(1823–1904)]; pp. 33–99

Marinoni was born in Paris in 1823, orphaned
early on in life, becoming an apprentice at the age
of 12. In 1837 he earned his machinist’s certificate
and began working on typography equipment the
next year— his career yielded many advances in the
field of printing. In 1882 he became head of Le Petit

Journal, which made it possible for this “Napoleon
of the Press” to become an influential figure in the
world of information and the press. He died of tu-
berculosis in 1904. As for the Marinoni Company, it
underwent various changes in ownership, eventually
becoming Heidelberg Web Systems in 1999.

[Translated extracts of author’s abstract]

[Compiled by Christina Thiele]

216 TUGboat, Volume 25 (2004), No. 2

MAPS 29–31, 2003–2004

MAPS is the publication of NTG, the Dutch lan-
guage TEX user group. Their web site is http:

//www.ntg.nl.

MAPS 29, Spring 2003

Wybo Dekker, Redactioneel [From the editor];
p. 1

Overview of the issue’s contents and an intro-
duction of the new editorial team.

Frans Goddijn, 32e NTG-bijeenkomst [32nd
NTG meeting]; pp. 2–5

Erik Frambach, TEX user groups worldwide —
what’s cooking?; pp. 6–9

This article is based on a presentation given at
the UK TUG meeting in Oxford in October 2002.
It describes some current problems that TEX user
groups face and it attempts to distill lessons learned
and recommendations from almost 25 years of TEX
user group history. [Author’s abstract]

Koen Wybo, LATEX: een newbie-ervaring [LATEX:
a newbie’s experience]; pp. 10–14

How I became a LATEX convert; arguments for
LATEX and against its GUI competitors: Word and
OpenOffice. [Translation of author’s abstract]

Kees van der Laan, BachoTEX 2003 [BachoTEX
2003]; pp. 15–23

A (partial) report of GUST’s 11th meeting at
Bachotek, Poland, is given. It is incomplete because
I could not understand most of the Polish contribu-
tions, and I skipped the LATEX day. It reflects just
of one of the threads through BachoTEX’03’s life.
A question is raised: can the TEX-world follow the
evolving PDF standard with pdfTEX?

[Author’s abstract (edited)]

Wybo Dekker, Toolbox; pp. 24–25
New adventures in TEX-land.

[Translation of author’s abstract]

Simon Pepping, Docbook In ConTEXt, a
ConTEXt-XML mapping for DocBook documents;
pp. 26–37

Docbook In ConTEXt combines two technolo-
gies that are widely used by authors of technical lit-
erature: the Docbook DTD and the ConTEXt macro
package for TEX. It is a ConTEXt module that al-
lows one to produce a typeset version of a Docbook
XML file, in DVI or PDF format.

[Author’s abstract]

Sjouke Mauw and Victor Bos, Drawing
Message Sequence Charts with LATEX; pp. 38–43

The MSC macro package facilitates LATEX users
easily including Message Sequence Charts in their
texts. This article describes the motivation for de-
veloping the MSC macro package, its features, and
its design. [Author’s abstract (edited)]

Roland Smith, Labels voor gevaarlijke stoffen
met LATEX [Labels for dangerous materials with
LATEX]; pp. 44–49

European legislation (67/548/EEC) requires
packaging for dangerous materials to have labels
that must contain certain information. Using the
labels package and a number of pictograms written
in PostScript, it is possible to make these labels
yourself. [Translation of author’s abstract]

Karel H. Wesseling, Aligning METAPOST

graphs in ConTEXt combinations; pp. 50–52
For scientific plotting I like to use the Graph

package by John Hobby within ConTEXt, and when
I have two or more separate graphs made I combine
them into one figure with one figure caption. Com-
bining is easy but aligning the graphs in a pleasing
way required a trick. [Author’s abstract]

Willi Egger, Drawing a type-case in ConTEXt;
pp. 53–59

There are different environments with which
one can typeset tables; all of them have their advan-
tages and disadvantages. One of the recent problems
I had to solve was to draw a typesetter’s type-case
from the lead-type era. Since it looks like a table, I
built the drawing in the \bTABLE ... \eTABLE en-
vironment. [Author’s abstract (edited)]

Siep Kroonenberg, Optisch uitvullen in de
MAPS [Optical justification in MAPS]; p. 60

This issue of MAPS features for the first time
optical justification via protruding characters. This
means that the right margin is aligned optically by
allowing characters that have horizontal projections,
among others the hyphen, to stick out into the mar-
gin. This is a PDF option that does not exist in
classic TEX. [Translation of author’s abstract]

Ferdy Hanssen, Installing fonts in LATEX: a
user’s experience; pp. 61–64

This paper presents a user’s experience with in-
stalling fonts for use in LATEX. It will be shown that
it is not hard to make a standard Type 1 font work, if
you use modern font installation software for LATEX.
All the steps necessary to install the example fonts
will be shown. The fonts used are Adobe Garamond
from Adobe and Mrs. Eaves from Emigre.

[Author’s abstract]

http://www.ntg.nl
http://www.ntg.nl

TUGboat, Volume 25 (2004), No. 2 217

Philipp Lehman, The font installation guide;
pp. 65–160

This guide is an unmodified printout of Philip
Lehman’s original guide, which is available from
CTAN. [Editor’s abstract]

MAPS 30, Spring 2004

Wybo Dekker, Redactioneel [From the editor];
p. 1

Overview of the issue’s contents.

Siep Kroonenberg, The MAPS style; pp. 2–4
This paper introduces the renewed MAPS class-

file and includes some usage notes.
[Author’s abstract]

Piet van Oostrum, Een uittreksel uit de recente
bijdragen in het CTAN archief [Extracts from
recent contributions to the CTAN archive]; pp. 5–7

This article describes a number of recent contri-
butions to the CTAN archive. The selection is based
on what I find interesting and what I think others
will find interesting. It is thus a personal choice.
There is no intention of giving a complete overview.
Consider this a kind of menu to whet the appetite
of the curious.

[Translation of author’s abstract]

Siep Kroonenberg, Schatgraven op TEX Live
[TEX Live treasure chest]; pp. 8–9

This piece brings to the attention of the reader
the rich contents of the TEX Live CD.

[Translation of author’s abstract]

Hans Hagen, TEX Live Collection; pp. 10–12
Past and future of the TEX Live Collection is

described. [Author’s abstract]

Taco Hoekwater, De CXTEX distributie [The
CXTEX distribution]; pp. 13–20

The aim of the CXTEX project is to be able to
execute a complete texexec call from beginning to
end within a single, as efficient as possible, system
process. The first components of this distribution
are presented in this article: traditional as well as
C-language versions of texexec, texutil and pdfetex.

[Translation of author’s abstract]

Hans Hagen, The SciTE-TEX integration;
pp. 21–24

Text editors are a sensitive, often emotional
subject. Some editors have exactly the properties
a software designer or a writer desires and one gets
attached to it. Still, most computer experts such as
TEX users often use three or more different editors
each day. SciTE is a modern programmer’s editor

which is very flexible, very configurable, and easily
extended. We integrated SciTE with TEX, ConTEXt,
LATEX, METAPOST and viewers and succeeded, in
that it is now possible to design and write your texts,
manuscripts, reports, manuals and books with the
SciTE editor without having to leave the editor to
compile and view your work. The article describes
what is available and what you need with special
emphasis on highlighting commands with lexers.

[Author’s abstract (edited)]

Wybo Dekker, Introducing oldstyle figures in
existing virtual fonts; pp. 25–32

This paper describes a Ruby script osf that can
be used to make a copy of a virtual font with its
figures replaced with old style figures.

[Author’s abstract]

Adam T. Lindsay, Apple symbols; pp. 33–41
This Mac-specific article documents some fonts

available exclusively on Mac OS X 10.3, ‘Panther’,
and makes them available to Mac users with fairly
minimal installation effort. I do not distribute the
fonts themselves. [Author’s abstract (edited)]

Adam T. Lindsay, Unicode symbols; pp. 42–48
The Unicode standard includes a number of

signs, symbols, dingbats, bullets, arrows, graphical
elements, and other miscellaneous glyphs. Prompt-
ed by finding a font dedicated to many such Uni-
code symbols on Mac OS X systems, this article doc-
uments some ways of enabling these symbols on your
own system. [Author’s abstract (edited)]

Wybo Dekker, Woordafbreking op ë en ı̈
[Hyphenation at ë and ı̈]; p. 49

LATEX has issues hyphenating words that con-
tain ë. This article shows how to solve that problem:
use \"e or \"{e} instead of ë for a unitary ë, and
"e for all others. Analogously for ı̈.

[Translation of author’s abstract]

R.F. Smith, LATEX uitvoer genereren vanuit C
programma’s [Generating LATEX output from C
programs]; pp. 50–51

This article describes a simple way to generate
LATEX output from C programs.

[Author’s abstract]

Willi Egger, Help!— the typesetting area;
pp. 52–59

Typesetting (large) documents presents signif-
icant challenges that have to be resolved before a
satisfactory printed result is achieved; e.g. the inter-
nal structure of the document should be clear, and
the document’s typographical layout should match
its content. This article, based on a presentation

218 TUGboat, Volume 25 (2004), No. 2

given at the NTG meeting in Arnhem on 13 Novem-
ber 2003, describes a traditional design technique
known as the harmonic proportion.

[Author’s abstract (edited)]

Siep Kroonenberg, TEX and prepress; pp. 60–65
This article discusses preparing documents for

professional printing with TEX and pdfTEX, includ-
ing color printing and prepress standards.

[Author’s abstract]

Piet van Oostrum, Een tutorial over het gebruik
van BibTEX [A tutorial on the use of BibTEX];
pp. 66–86

This article describes the use of BibTEX, with
particular emphasis on aspects that present prob-
lems to inexperienced users. It is based on a pre-
sentation the author gave at the NTG meeting in
Arnhem on 13 November 2003.

[Translation of author’s abstract]

Siep Kroonenberg, De TEX flyer: doe er wat
mee! [The TEX flyer: Do something with me!];
pp. 87–89

On the following two pages we present once
more our printed TEX flyer. The front describes the
strong points of TEX, and the back contains all the
necessary information to give people a quick intro-
duction to TEX.

[Translation of author’s abstract]

MAPS Editors, Foto’s van de NTG-dag [Photos
from the NTG meeting]; pp. 90–91

MAPS 31, Fall 2004

Wybo Dekker, Redactioneel [From the editor];
p. 1

Overview of the issue’s contents.

Piet van Oostrum, Een uittreksel uit de recente
bijdragen in het CTAN archief [Extracts from
recent contributions in the CTAN archive]; pp. 2–4

This article describes a number of recent contri-
butions to the CTAN archive. The selection is based
on what I find interesting and what I think others
will find interesting. It is thus a personal choice.
There is no intention of giving a complete overview.
Consider this a kind of menu to whet the appetite
of the curious.

[Translation of author’s abstract]

Hans Hagen, The state of ConTEXt; pp. 5–7
In this article I will describe the current state

of the ConTEXt macro package and the forces that
play a role in its evolution. I will also indicate the

directions in which we look for further developments.
[Author’s abstract]

Taco Hoekwater, METAPOST developments;
p. 8

This item on the current status of METAPOST

was reprinted in TUGboat 25(1), p. 105.

Giuseppe Bilotta, The Aleph project; pp. 9–11
A brief introduction to the Aleph project, a

TEX extension providing most of Omega and ε-TEX
features. [Author’s abstract]

Maarten Sneep, Producing graphs with
METAPOST; pp. 12–18

Karel Wesseling described in MAPS 29 how sev-
eral METAPOST graphs can be aligned relative to
each other, by including them in a ConTEXt com-
mand \startcombination[1*2]. Here I describe
a different approach to the same problem: aligning
multiple graphs in a single figure. As a bonus, a de-
scription is added on how to create error-bars in a
METAPOST generated graph.

[Author’s abstract (edited)]

Dwight Aplevich, Circuit macros; pp. 19–24
The evolution of the Circuit macros package is

described, with some of the conventions for drawing
circuit elements and some of the lessons learned.

[Author’s abstract]

Frans Goddijn, Een briefhoofd maken [Making
a letterhead]; pp. 25–31

Shortly after successfully compiling my first
TEX document, I wanted to switch over as many
documents as possible to TEX. And the notion of
being able to typeset the letterhead at the same
time as the text of the document seemed to me to
be very nice. It seemed best not to clutter the indi-
vidual letter files with code, so I put all the necessary
commands into a separate style file. I also created
a simpler letterhead to put on following pages if the
letter is longer than one page. Thanks to the tips
of Henk de Haan, I have been able to help others in
the course of time to make their own letterhead.

[Translation of author’s abstract]

Brooks Moses, MetaPlot, MetaContour, and
other collaborations with METAPOST; pp. 32–39

Most methods of creating plots in METAPOST

work by doing all of their calculations in META-
POST, or by doing all of their calculations in a pre-
processing program. There are advantages to divid-
ing the work more equitably by doing the mathemat-
ical and data-visualization calculations in a prepro-
cessing program and doing the graphical and layout
calculations in METAPOST. The MetaPlot package

TUGboat, Volume 25 (2004), No. 2 219

provides a standard, flexible, interface for accom-
plishing such a collaboration between programs, and
includes a general-purpose set of formatting macros
that are applicable to a wide range of plot types. Ex-
amples are shown of linear plots with idiosyncratic
annotation and two-dimensional contour plots with
lines and filled contours on a non-Cartesian mesh.

[Author’s abstract]

Willi Egger and Hans Hagen, Support for
typesetting Greek in ConTEXt; pp. 40–45

There are situations where one needs to typeset
pieces of text in Greek. Until recently there was no
direct support to do this in ConTEXt. With the
integration of the module greek this has changed.
The basics were built by Giuseppe Bilotta (Italy).
The module uses a subset of the cb-greek fonts. The
article describes the module and the way Greek text
is coded. Several examples of Greek text are given.

[Author’s abstract (edited)]

Steve Grathwohl, A simple book design in
ConTEXt; pp. 46–51

I show how a simple book design can be imple-
mented in ConTEXt.

[Author’s abstract]

Adam Lindsay, OpenType in ConTEXt; pp. 52–58
This is a summary of issues encountered and

solutions implemented in order to support some ad-
vanced OpenType features in ConTEXt. This article
describes an accompanying set of support files that
address installation (using TEXfont), accommodat-
ing extended optical families, and some “pro” font
features. The extended character set afforded by
pro fonts enables support for comprehensive small
caps and old-style figures. Although the typescripts
and commands are described together, certain fea-
tures (like variant encodings for TEXfont and optical
typescripts) can be used independently of the other
features described. [Author’s abstract (edited)]

Hans Hagen, Fontgebruik [Font usage];
pp. 59–61

Hans Hagen presents a very extravagant title:
a back page from an 1899 handbook. The editors
of MAPS offer a prize for the best and most elegant
TEX-recreation of this layout.

[Translation of editor’s abstract]

Frans Goddijn, Conversies [Conversions];
pp. 62–66

A look back at 12 years with a software package
that in one way or another has made friendships.

[From the author’s introduction]

Siep Kroonenberg, Exact layout with LATEX;
pp. 67–70

This article describes several techniques useful
for implementing a professionally designed layout
such as a letterhead. [Author’s abstract]

Wybo Dekker, Boekdrukken en valkuilen [Book
printing and pitfalls]; pp. 71–76

To set a book, that’s one thing, but then to also
get it nicely printed. . . I’d like to take you along the
pitfalls. . . learn and have (malicious) fun.

[Translation of author’s abstract]

Eckhart Guthöhrlein, Object-oriented
graphics with MetaObj; pp. 77–86

MetaObj is a macro package for METAPOST, a
programming language for graphics producing Post-
Script output, based on the well-known METAFONT.
MetaObj is written and maintained by Denis B.
Roegel. It has been released under the LPPL and
is available from CTAN. MetaObj provides very
high-level object-oriented macros, which simplify
the construction of complicated drawings by defin-
ing objects of arbitrary complexity and combining
them into larger structures. This is already reflected
in the name of the package: MetaObj is short for
“METAPOST Objects”.

[Author’s abstract (edited)]

Patrick Gundlach, contextgarden.net;
pp. 87–90

The project contextgarden.net was started to
enhance the documentation of ConTEXt. It consists
of several web services that provide the technical
base for documentation. A large amount of the con-
tent is provided by the visitors to the web site.

[Author’s abstract (edited)]

Hans Hagen, Fonts, more than a sample;
pp. 91–94

Some time ago the NTG members received a col-
orful little booklet showing a lot of fonts. Since these
fonts come with TEX Live, a ConTEXt user may be
tempted to use them. The bad news is that fonts
are always a bit troublesome in TEX distributions
and recent changes in the TEX directory structure
haven’t made life easier. However, the good news is
that it is doable to get these fonts working for you.
Here I will present a few recipes, but I avoid dis-
cussing the ‘dirty details’. These are covered in the
manuals. [From the author’s introduction]

Willi Egger and Frans Goddijn, Bloei der
decadence [Flowering of decadence]; pp. 95–98

The book Flowering of decadence by Johan Po-
lak has been out of print for many years, but it
is now available as a PDF, freely downloadable via

220 TUGboat, Volume 25 (2004), No. 2

the Internet. For those who want to read on the
computer screen there is an interactive screen ver-
sion, and another version is suitable for print. Both
new editions of the book have been created via Con-
TEXt. This article describes some aspects of setting
up this project. It was a complicated matter, due
to the huge quantity of references to books, maga-
zines, persons, place names and other terms. Our
goal was to keep the process as simple as possible.
Therefore we used no Plain TEX hacks, but rather
simple methods typical of ConTEXt. Also we wanted
a screen version of the book with a relatively small
number of navigation files that could also be com-
piled as a paper version. A particular challenge was
a piece of Greek text in a footnote.

[Translation of author’s abstract]

Hendri Adriaens and Uwe Kern, Keys and
values; pp. 99–103

This article introduces the xkeyval package as
an extension of the well-known keyval package. The
package provides more flexible commands, syntax
enhancements, and a new option processing mecha-
nism for class and package options using the general
key=value syntax. [Author’s abstract]

Taco Hoekwater, Boekbespreking vormwijzer
[Book review]; pp. 104–105

Book review of Display: A guide to creating and
(re)producing printed matter, by K. F. Treebus.

[From the author’s introduction]

[Compiled by Steve Peter]

2005

Apr 30 –
May 3

BachoTEX 2005, 13th annual meeting of
the Polish TEX Users’ Group (GUST),
“The Art of TEX Programming”,
Bachotek, Brodnica Lake District,
Poland. For information, visit http://

www.gust.org.pl/BachoTeX/2005/.

May 10 –
Jul 17

In Flight: A traveling juried exhibition
of books by members of the Guild
of Book Workers. University
of Texas, Austin, Texas. Sites
and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

May 11 –
Jun 16

From chisel to pen: inscriptional
letterforms from early Christian Wales.
An exhibition at the St. Bride
Printing Library, London, England.
For information, visit http://

www.stbride.org/events.html.

May 22 – 27 Book History at A&M: The Fourth
Annual Texas A&M Workshop on the
History of Books and Printing. Texas
A&M University, College Station,
Texas. For information, visit
http://lib-oldweb.tamu.edu/cushing/

bookhistory/2005.html.

May 24 – 27 XTech Conference, “XML, the Web and
Beyond”, Amsterdam RAI Centre,
Netherlands. For information, visit
http://www.xtech-conference.org/.

May 25 – 28 CIDE.8, Conférence Internationale
sur le Document Electronique,
“Multilingualism”, Beirut,
Lebanon. For information, visit
http://www.certic.unicaen.fr/cide8/.

Jun 1 – 3 Society for Scholarly Publishing,

27th annual meeting, “Expanding the
World of Scholarly Publishing”, Boston,
Massachusetts. For information, visit
http://www.sspnet.org.

TUGboat, Volume 25 (2004), No. 2 221

Calendar

Jun 6 – 9 Seybold Seminars, Amsterdam,
Netherlands. For information, visit
http://www.seybold365.com/2005/.

Jun 6 –
Jul 29

Rare Book School, University of
Virginia, Charlottesville, Virginia.
Many one-week courses on topics
concerning typography, bookbinding,
calligraphy, printing, electronic texts,
and more. For information, visit
http://www.virginia.edu/oldbooks.

Jun 8 –
Nov 13

70 Years of Penguin Design: Exhibition,
Room 74, Twentieth Century
Gallery, Victoria & Albert Museum,
London, England.

Practical TEX 2005

Friday Center for Continuing Education,

Chapel Hill, North Carolina.

Jun 14 – 17 Workshops and presentations
on LATEX, TEX, ConTEXt, and
more. For information, visit
http://www.tug.org/practicaltex2005/.

Jun 15 – 18 ALLC/ACH-2005, Joint International
Conference of the Association for
Computers and the Humanities, and
Association for Literary and Linguistic
Computing, “The International
Conference on Humanities Computing
and Digital Scholarship”, University
of Victoria, British Columbia.
For information, visit
http://web.uvic.ca/hrd/achallc2005/

or the organization web site at
http://www.ach.org.

Jun 24 – 26 NTG 35th meeting, Terschelling,
Netherlands. For information, visit
http://www.ntg.nl/bijeen/bijeen35.html.

Status as of 1 June 2005

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at http://www.tug.org/calendar/.
Additional type-related events are listed in the Typophile calendar, at

http://www.icalx.com/html/typophile/month.php?cal=Typophile.

Jul 14 – 17 SHARP Conference (Society for the
History of Authorship, Reading and
Publishing), “Navigating Texts and
Contexts”. Dalhousie University,
Halifax, Canada. For information,
visit http://sharpweb.org/ or
http://www.dal.ca/~sharp05/.

Jul 20 – 24 TypeCon2005, “Alphabet City”,
Parsons School of Design,
New York City. For information,
visit http://www.tdc.org/news/

2004typecon2005.html.

Jul 22 – 25 “The Changing Book: Traditions in
Design, Production and Preservation”,
University of Iowa Libraries,
Iowa City, Iowa. For information, visit
http://www.lib.uiowa.edu/book2005/.

Jul 31 –
Aug 4

SIGGRAPH 2005, Los Angeles,
California. For information, visit
http://www.siggraph.org/s2005/.

Aug 1 – 5 Extreme Markup Languages 2005,
Montréal, Québec. For information, visit
http://www.extrememarkup.com/extreme/.

TUG 2005

Wuhan, China.

Aug 23 – 25 The 26th annual meeting of the TEX
Users Group. For information, visit
http://www.tug.org/tug2005/.

Aug 26 – 28 Celebrating Johnson’s Dictionary

(1755–2005), Pembroke College,
Oxford, England. For information,
visit http://www.pmb.ox.ac.uk/

pembroke_college/johnson_index.

Sep 7 –
Oct 6

The Graven Image Press: lettercutting
and visual metaphor in the work of
Stan Greer. An exhibition at the
St. Bride Printing Library, London,
England. For information, visit http://

www.stbride.org/events.html.

Sep 7 – 9 28th Internationalization and Unicode
Conference, “Unicode 4.1 — Multilingual
Challenges and Solutions for 2006”,
Orlando, Florida. For information, visit
http://www.global-conference.com/iuc28/.

Sep 11 – 13 The Third International Conference on
the Book, “Publishing, Libraries,
Literacy and the Information Society”,
Oxford International Centre for
Publishing Studies, Oxford Brookes
University, Oxford, UK. For information,
visit http://book-conference.com/.

222 TUGboat, Volume 25 (2004), No. 2

Sep 11 – 14 Seybold Seminars, Chicago, Illinois.
For information, visit
http://www.seybold365.com/2005/.

Sep 15 – 18 Association Typographique
Internationale (ATypI) annual
conference, “On the Edge”, Helsinki,
Finland. For information, visit
http://www.atypi.org/.

Sep 22 – 23 American Printing History Association
conference, “[r]Evolution in Print: New
Work in Printing History & Practice”,
Mills College, Oakland, California.
For information, visit http://www.

printinghistory.org/htm/conference/.

Oct 10 – 12 Fourth Annual St. Bride Conference,
“Temporary Type”, London, England.
For information, visit http://

www.stbride.org/conference.html.

Nov 2 – 4 ACM Symposium on Document
Engineering, Bristol, UK.
For information, visit
http://www.documentengineering.org/.

Nov 3 – 5 “Reaching the Margins: The Colonial
and Postcolonial Lives of the Book,
1765–2005”, The Open University
and the University of London,
London, England. For information, visit
http://www.sas.ac.uk/ies/Conferences/

Open_University.htm.

Nov 14 – 18 XML 2005 Conference, Atlanta,
Georgia. For information, visit
http://2005.xmlconference.org/.

Nov 29 –
Dec 2

Seybold Seminars, San Francisco.
For information, visit
http://www.seybold365.com/2005/.

2006

Jul 12 – 14 SHARP Conference (Society for the
History of Authorship, Reading
and Publishing). The Hague,
Netherlands. For information, visit
http://sharpweb.org/.

Jul 30 –
Aug 3

SIGGRAPH 2006, Boston,
Massachusetts. For information, visit
http://www.siggraph.org/s2006/.

Sep 29 – 30 American Printing History Association
conference, “The Atlantic World of Print
in the Age of Franklin”, Philadelphia,
Pennsylvania. For information, visit
http://www.printinghistory.org/htm/

conference/.

TUGboat, Volume 25 (2004), No. 2 223

A brief report on the first guIt meeting

Onofrio de Bari∗

Maurizio Himmelmann†

The first public meeting of guIt (Gruppo Utilizza-
tori Italiani di TEX, http://www.guit.sssup.it)
was held on 9th October 2004 in Pisa, Italy, at the
Sant’Anna School of Advanced Studies.

We started our work in 2000 with just a small
website built around a web forum, strongly empha-
sizing the idea of virtual community. The simple
idea of gathering people in Italy interested in LATEX
and its future is something that some years ago
could have not been imagined, because of the ab-
sence of a gathering place in the TEX Italian world.

From our point of view the meeting was a great
success. We needed some months to organize every-
thing, but it was a great satisfaction for us to have
about 50 people attend the conference.

After the talks were introduced, Klaus Hoepp-
ner from DANTE e.V. spoke about upcoming TEX
events worldwide, followed by talks about the status
of LATEX in Italian universities, and common mis-
takes in LATEX syntax and font installation. It was
then time for a nice coffee break (appreciated in-
deed by people attending there) followed by a talk
about page layout and another about the generation
of STATA (statistics software) tables to be embedded
in a LATEX document.

The afternoon session started with a lecture
about critical editions in LATEX, followed by multi-
lingual bibliographies and XML (many thanks to our
other foreign guest, Jean-Michel Hufflen), graphics
and diagrams with XY-pic, tex4ht and a short dis-
cussion about the future goals of the Italian TUG,
mainly focused on the shifting from our present vir-

tual community to a real community.
The guIt meeting was conceived to involve more

people from Italy in the staff and organization af-
fairs, and to have more members to reach further
effectiveness in our activities. As we achieved this
goal, the next guIt meeting will be focused on boost-
ing LATEX knowledge across Italy and developing
stronger ties with other TEX user groups. For these
and many other reasons we would be very glad of
your presence! It will be held in October 2005 in
Pisa. More information is available on the web, at
http://www.guit.sssup.it/guitmeeting/2005/.

Last but not least, we are extremely grateful for
the valuable DANTE e.V. support, and look forward
to having more foreign guests next time.

∗
guIt Public Relations Officer

† President of guIt

TUG 2005

International Typesetting Conference

Announcement and Call for Participation

TUG 2005 will be held in Wuhan, China from August
23–25, 2005. CTUG (Chinese TEX User Group) has
committed to undertake the conference affairs.

Wuhan is close to the birthplace of Taoism and the
Three Gorges Reservoir. China is also the birthplace
of typography in ancient times, and is simply a very
interesting place to go.

For more information, see the conference web page at
http://tug.org/tug2005, or email tug2005@tug.org.

Conference program

The keynote speaker will be Wai Wong, from the
Chinese University of Hong Kong, on “Typesetting
Chinese: A personal perspective”.

Other speakers include Nelson Beebe, Jin-Hwan
Cho, Hong Feng, Eitan Gurari, Hans Hagen, Yannis
Haralambous, Jonathan Kew, Ross Moore, Karel Ṕı̌ska,
Chris Rowley, Karel Skoupý, Philip Taylor, and Suki
Venkat. A complete list of presentations and tutorials
are available on the conference web site.

Conference registration

The conference fees and deadlines for members of any
TEX user group (in US dollars):

Normal registration July 1, 2005 $220
Late registration August 1, 2005 $380

In all cases, non-user group members add $20.

Hope to see you there!

224 TUGboat, Volume 25 (2004), No. 2

TUG Business

TEX Development Fund 2003–05 Report

Karl Berry and Kaja Christiansen

The TEX Development Fund was created by the
TEX Users Group in 2003, under the aegis of the
TUG Technical Council, to foster growth of TEX-
related technical projects. The first set of grants was
awarded in March 2003, with more grants awarded
on a rolling basis after that. This report covers
all projects, both completed and pending, as of
April 2005. “Completed” refers to the work for
the grant; they are generally ongoing development
efforts, rather than projects which are done once-
and-for-all.

We are especially appreciative of the ongoing
support from individuals. Since its inception, more
than 200 donations have been received, allowing us
to make several more grants than would otherwise
have been possible. Thank you, everyone!

For application information, the complete list of
donors, and more, please see the development fund
web site.

⋄ Karl Berry and Kaja Christiansen

devfund@tug.org

http://tug.org/tc/devfund/

Completed projects

1 Latin Modern extensions

Applicants: Boguslaw Jackowski, Janusz Nowacki,
Poland,
http://www.ctan.org/tex-archive/fonts/lm.

Amount: US$2000; acceptance date: 19 May 2004.
Continuing enhancement of the Latin Modern

family of fonts.
This was completed by 20 April 2004, with the

Latin Modern 0.98.3 release. The related article
“Latin Modern: Enhancing Computer Modern with
accents, accents, accents”, was presented at TUG

2003 and published in TUGboat 24(1).

2 pdfTEX extensions

Applicant: Hàn Thé̂ Thành, Vietnam,
http://www.pdftex.org.

Amount: US$1500; acceptance date: 26 March 2004.

1. New primitives to provide more control over
the quality of typesetting complex documents
(feedback as well as manipulating the result of
breaking paragraphs into lines).

2. A primitive to ease the use of font expansion
with pdftex, so one can use font expansion hav-
ing expanded TFM’s (which are complicated to
generate for an average user).

This was completed by 14 October 2004, and
the pdftex 1.20a release includes this work. The
related article “Micro-typographic extensions of pdf-
TEX in practice” was presented at Practical TEX
2004 and published in TUGboat 25(1).

3 Source release of i-Installer v2

Applicant: Gerben Wierda, The Netherlands,
http://sourceforge.net/projects/ii2.

Amount: US$1500; acceptance date: 3 November
2003.

Make source release of new version of i-Installer,
the engine used for installing and configuring the
applicant’s gwTEX distribution for Mac OS X.

This was completed on 28 February 2004, and
the new version is available online. Article forth-
coming.

Projects underway

4 TEXmuse

Applicant: Federico Garcia, USA.
Amount: US$1000; acceptance date: 11 April 2005.

Design of algorithms and code implementation
for the first stage of the TEXmuse project for musical
typesetting.

The ‘first stage’ consists of code that is able
to typeset the basic musical text of Bach’s 15 in-
ventions. These pieces are for piano and only two
voices: two staves and one voice per staff. Being
from the Baroque, they feature interpretative nota-
tion (slurs, articulations, etc.) only in a very limited
way. All of this makes these pieces a good first stage
in the development of TEXmuse.

5 Baskerville

Applicant: Hrant Papazian, USA,
http://themicrofoundry.com.

Amount: US$3000; acceptance date: 19 October
2004.

Design and implementation of a Baskerville
typeface revival to high standards of typographic
quality, historical sensitivity, and usability.

The typeface family will include two weights
(regular and bold), each with a true italic. The fonts
will cover the character ranges Basic Latin, Latin-1
Supplement, and Latin Extended-A, as defined by
Unicode.

http://www.ctan.org/tex-archive/fonts/lm
http://www.pdftex.org
http://sourceforge.net/projects/ii2
http://themicrofoundry.com

TUGboat, Volume 25 (2004), No. 2 225

6 Using Omega to generate XML and

MathML from TEX documents

Applicant: John Plaice, Australia.
Amount: US$2000; date: April 2003.

Since 1998, the Omega Project has been capa-
ble of generating MathML and XML directly from
the typesetting engine. In this project, we pro-
pose to further develop the XML- and MathML-
generation capabilities of the Omega Project.

The Omega approach to generating markup
languages from TEX input consists of two parts:

• modifying the mathematics part of the typeset-
ting engine so that MathML can be automati-
cally generated;

• adding new macro primitives so that XML open-
ing and closing tags can be produced by the
programmer.

In this project, we propose to comprehensively
cover the high-level LATEX and AMS-LATEX macros
and define a matching DTD/schema, and ensure
that Omega can correctly translate a correct LATEX
document with mathematics into XML and MathML.
High-level macros will be written, new macro primi-
tives will be defined, and modifications will be made
to the typesetting engine.

Although this work is not complete, the related
article “XLATEX, a DTD/schema which is very close
to LATEX” was presented at EuroTEX 2003 and pub-
lished in TUGboat 24(3).

7 Combining the extensions of TEX into

one system

Applicant: John Plaice, Australia.
Amount: US$2000; date: April 2003.

There are currently three large extensions to
TEX:

• Omega has focused on extensions supporting
multilingual typesetting;

• ε-TEX has focused on extensions to the macro
language and its tracing;

• pdfTEX has focused on producing PDF rather
than DVI.

ε-TEX and pdfTEX have already been combined
into pdf-ε-TEX, and more recently Giuseppe Bilotta
has created e-Omega (now named Aleph).

In this project, we propose to combine the key
elements of ε-TEX and pdfTEX with Omega. In ad-
dition to combining several Pascal Web change files
and integrating the associated C/C++ code, an im-
portant objective will be to harness the power of
Omega’s Translation Processes and context manip-
ulation code to generate high-quality PDF files.

Although this work is not complete, the re-
lated article “Moving Omega to a C++-based plat-
form” was presented at TUG 2004 and published by
Springer-Verlag in the conference proceedings, TEX,

XML, and Digital Typography.

8 CTAN release of critical edition support

for LATEX

Applicant: David Kastrup, Germany.
Amount: US$1500; date: April 2003.

The project described here is very large. Only
a small part is funded through this grant: making it
possible for the main work to be included on CTAN

and integrated into the main LATEX sources. For
background information, the full description is at
http://tug.org/tc/devfund/grants.html.

Although this work is not complete, the related
article “The bigfoot bundle for critical editions”
was presented at TUG 2004 and published in the
conference preprints distributed to TUG members.

Accommodation of the footnote apparatus

Critical editions usually contain multiple footnote
apparatus. A typical set for an edition of a com-
mentary would be

1. Footnotes of the original commentator to the
basic text, numbered sequentially.

2. Footnotes pointing out variations of various edi-
tions or manuscripts of the original publication.
Those would typically be indicated with letters
starting from “a” on each side.

3. Footnotes containing comments of the current
editor.

Of course, this is just a simple example: much
more contrived apparatus can be seen, too. In the
first stage of the project, a separate footnote style
will be designed that overrides only small parts
of the standard LATEX2ε output routine, probably
building upon the ncctools package.

Other issues While LATEX provides for margin
notes and paragraphs, the mechanism is not versa-
tile enough to cater for either margin notes in foot-
notes or multiple levels of margin notes.

The possibilities for editions of course are lim-
itless, nevertheless there are basic building blocks
from which a page layout may be built up. The cur-
rent LATEX output routine does not accommodate
such formats, nor would it be useful to accommo-
date it in the base class. However, there are a lot
of elements that can be systematically tackled and
given interfaces, so that the average document de-
signer could merely aggregate boxes, insertions and
their processing in a reasonably easy way.

http://tug.org/tc/devfund/grants.html

226 TUGboat, Volume 25 (2004), No. 2

TUG financial statements for 2004

Robin Laakso

This financial report for 2004 also includes numbers
from 2003, for purposes of comparison. As usual, the
accounts have been reviewed by TUG’s accountant
but have not been audited.

Revenue highlights

Overall, the TEX Users Group suffered an 11 per-
cent drop in income in 2004 compared to 2003. TUG

membership dues were $94.5K at the end of 2004,
compared to $105.5K in 2003. This represents a
decline in membership of approximately 200: from
about 1800 TUG members in 2003 to just over 1600
in 2004. Joint member dues from NTG (the Dutch
group) and UK-TUG dropped 15 percent and 8 per-
cent, respectively.

Interest income was down 29 percent in 2004
compared to 2003, almost entirely due to the 24
month CD coming due in May of 2004, which re-
newed (for 12 months) at half the previous rate, in
turn due to prevailing economic conditions.

TUG also realized some income-producing suc-
cesses in 2004:

• TUG store sales increased from $2040 (the store
opened in April, 2003) to $5640 in 2004, pri-
marily due to a full year of operation, and an
increase in software sales.

• The Pearson Publishing Group (which includes
Addison-Wesley) and TUG affiliated to offer
TEXnical books to members and non-members
alike at a 30 percent discount via the TUG web
site. TUG receives 15 percent of the gross sales,
which resulted in over $800 increase in royalties
compared to 2003.

• In the last quarter of 2004 TUG partnered with
WinEdt to offer a discount on their licenses for
TUG members. Members receive a 25 to 30 per-
cent discount on WinEdt licenses, depending on
which category is purchased.

• General contribution income increased 17 per-
cent from 2003 to 2004, largely due to a contri-
bution and matching endowment received from
an individual TUG member.

• A LATEX3 donation line item was added to the
membership forms in 2004 resulting in over
$1000 in contributions for that purpose.

• The Practical TEX 2004 conference held in San
Francisco essentially broke even (as was bud-
geted).

The total dollar increase from the above was $6736.

Expense highlights

Payroll, software production and mailing, and TUG-

boat production and mailing continue to be the ma-
jor expense items.

Payroll was down 1 percent in 2004 from 2003.
Software production and mailing was down 12

percent, from $10.2K in 2003 to $9K in 2004. The
savings is mostly due to having some of the software
manufactured locally rather than overseas, and be-
cause the lesser weight of the TEX Collection in 2004
resulted in lower postage costs.

TUGboat production and mailing at $26.2K in
2004 consists of three publications, the first one of
which (the special non-TUGboat “preprints” publi-
cation) was produced and mailed at a cost of $10.2K;
the remaining two issues are booked at the accrued
amount of $8K each.

Notable contributions and allocations made by
TUG in 2004:

• TEX Development Fund: $5000

• TUG Bursary: $2000

• Adobe/Apple Technical Group: $1000

• Apple developer membership: $500

• Miscellaneous donations: $950

If you have any questions about TUG’s finances,
or if you would like to help with any TUG-related
activities, please contact the TUG office.

⋄ Robin Laakso

TUG Executive Director

office@tug.org

TUGboat, Volume 25 (2004), No. 2 227

 TeX Users Group

 Balance Sheet Prev Year Comparison
 As of December 31, 2004

Dec 31, 04 Dec 31, 03

ASSETS

Current Assets

Checking/Savings

OregonTelco PrimeShare 5 133,750

OregonTelco 12 Mo CD 101,056

OregonTelco Mmarket 10,406

BofA 9 Mo CD 10,058

BofA Maximizer 19,645 28,902

BOA Checking

Paypal 1,511

BOA Checking 1,080 -7,527

Total BOA Checking and PayPal 2,591 -7,527

BOA Money Mkt Bursry 1,202 1,711

Petty Cash 10 10

Total Checking/Savings 144,973 156,846

Accounts Receivable

Accounts Receivable 525 300

Total Accounts Receivable 525 300

Other Current Assets

Deferred PracTeX expense 790

Deferred Intl conf expense 250

Deposits 10 10

Total Other Current Assets 1,050 10

Total Current Assets 146,548 157,156

Fixed Assets

Equipment 44,895 44,625

Accumulated Depreciation -42,605 -40,300

Total Fixed Assets 2,290 4,325

Total Fixed Assets 2,290 4,325

TOTAL ASSETS 148,838 161,481

LIABILITIES & EQUITY

Liabilities

Current Liabilities

Accounts Payable

Accounts Payable 23,574 31,104

Total Accounts Payable 23,574 31,104

Other Current Liabilities

Deferred conference donations 100

Deferred conference income 265

Deferred contributions 200

Deferred member income 680

AMS Prepaid Memberships 1,800

Payroll Liabilities

Federal P/R Taxes Payable 875 885

State P/R Taxes Payable 192 195

Total Payroll Liabilities 1,067 1,080

Total Other Current Liabilities 2,212 2,980

Total Current Liabilities 25,786 34,084

Total Liabilities 25,786 34,084

Equity

Restricted DevFund as of 12/31 4,058 3,433

Restricted Bursary as of 12/31 1,202 1,711

Restricted LaTeX3 as of 12/31 1,074 -76

Unrestricted as of 1/1 121,064 122,588

Net Income -4,346 -259

Total Equity 123,052 127,397

TOTAL LIABILITIES & EQUITY 148,838 161,481

 TeX Users Group

 Profit & Loss Prev Year Comparison
 January through December 2004

Jan - Dec 04 Jan - Dec 03

Ordinary Income/Expense

Income

Membership Dues 101,631 113,597

Product Sales 8,259 4,656

Contributions Income 7,453 5,743

Practical TeX Conference 259 4,915

Conference Classes -555

Interest Income 4,295 6,064

Advertising Income 950 400

Bursary -1,009 381

TeX Development Fund 625 3,433

LaTeX 3 1,149 -234

Miscellaneous Income 0

Total Income 123,057 138,955

Cost of Goods Sold

TUGboat Prod/Mailing 26,242 22,500

Software Production/Mailing 8,962 10,207

Postage/Delivery - Members 5,111 3,684

Conf Exp, office + overhead 1,115 3,698

Member Renewal 469

Copy/Printing for members 389 67

Total COGS 41,819 40,625

Gross Profit 81,238 98,330

Expense

Contributions made by TUG 8,449 21,100

Office Overhead 12,788 13,233

Payroll Exp 59,768 60,091

Contract Labor 735

Professional Fees 2,016 1,505

Depreciation Expense 2,305 3,334

Total Expense 85,326 99,998

Net Ordinary Income -4,088 -1,668

Other Income/Expense

Other Income

Prior year adjust -4,292 -3,592

Other Income 4,034 5,000

Total Other Income -258 1,408

Net Other Income -258 1,408

Net Income -4,346 -260

228 TUGboat, Volume 25 (2004), No. 2

TUG 2005 Election Report

Barbara Beeton
for the Elections Committee

The deadline has come, the ballots have been counted,
and the results are in.

Karl Berry has been elected TUG president for
the term that ends with the 2007 annual meeting.
The following votes were counted:

Karl Berry, 183
Lance Carnes, 177

Both candidates made a good showing, although the
total number of voters was only a third of those
eligible.

Of 1080 members as of the ballot closing date
(May 17), 360 valid ballots were received. Ten bal-
lots postmarked after the closing date, and three
received with no return address were not opened or
counted. (Although there may be a concern for pri-
vacy, the return address is the only way to tell that a
ballot is coming from an eligible member. The count
was made by a teller with no stake in the outcome,
who was supplied with a list of eligible voters; ev-
ery envelope was checked against this list before the
envelopes were opened, and care was taken to make
sure that only the envelope with the latest postmark
was processed from any one voter.)

As previously announced, the number of can-
didates for open board positions was fewer than
positions, so these board candidates were declared
duly elected for a term ending with the 2009 an-
nual meeting: Steve Grathwohl, Jim Hefferon, Klaus
Höppner, Ross Moore, Arthur Ogawa, Steve Pe-
ter and David Walden. Continuing board members
with terms ending in 2007, are: Barbara Beeton,
Kaja Christiansen, Susan DeMeritt, Gerree Pecht,
Cheryl Ponchin, Sam Rhoads and Philip Taylor.
Also, Lance Carnes has been appointed to the board,
for a term ending in 2007.

In this issue, statements for all the candidates,
both for President and for the Board, are appended
(in alphabetical order). They are also available
through the election web page.

The Committee gratefully acknowledges the dili-
gent work of the TUG executive director, Robin
Laakso, in receiving, organizing, and validating the
membership of nominees and their respective nomi-
nators.

This was the first contested election since 1991.
Thanks to everyone for their participation.

⋄ Barbara Beeton

for the Elections Committee

Karl Berry

Biography:
I have served as TUG president since 2003,

and was a board member for two terms prior to
that. During my term as president, we’ve enacted
some new initiatives, notably: expanded the avail-
ability of the special reduced membership rate (to
past graduates and citizens of countries with mod-
est economies); increased the memberships available
to our institutional supporters; joined with Addison-
Wesley in making their TEX (and other) books avail-
able at a substantial discount; and opened the online
TUG store.

As president, I also serve on the conference com-
mittee, and thus was (and am) one of the organizers
for all TUG-sponsored conferences, including TUG

2004 in Greece, TUG 2005 in China, and the new
Practical TEX conference series, so far in San Fran-
cisco (2004) and Chapel Hill (2005).

I have also been on the TUG technical council
for many years. I co-sponsored the creation of the
TEX Development Fund in 2002, and act as one of
the system administrators and webmasters for the
TUG servers. I’m also one of the production staff
for the TUGboat journal. I’ve administered TEX in-
stallations at many universities and companies over
the years.

On the TEX development side, I’m currently co-
editor of TEX Live, the largest free software TEX
distribution. Previously, I maintained Unix TEX
(Web2c) for several years. Along with Web2c, I de-
veloped Kpathsea, a freely redistributable library for
path searching, and modified Dvips, Xdvi, and other
drivers to use it; Eplain, a macro package extend-
ing plain TEX; a naming scheme for fonts; and other
projects. I am also the maintainer of GNU Texinfo,
the standard TEX-based documentation format for
the GNU Project.

I am a co-author of TEX for the Impatient, an
early comprehensive book on TEX, which is now
freely available. I’ve also produced a number of
books, articles, collections, and ephemera with and
about TEX, studied typeface design, and co-written
several articles on reading research and mathemati-
cal analysis of type. I first encountered and installed
TEX in 1982, as a college undergraduate.

TUGboat, Volume 25 (2004), No. 2 229

Personal statement:
I believe TUG can best serve the TEX commu-

nity by working in partnership with the other TEX
user groups worldwide, and sponsoring projects and
conferences that will increase interest in and use of
TEX. The quality of TEX’s output remains unsur-
passed, even now. It is our challenge to bring that
quality to an even broader audience.

Lance Carnes

Biography:

• Involved with the TEX Users Group since its
beginning in 1980

• Served on the Board of Directors from 1981 to
1991

• Proposed and helped organize the PracTEX
2004 conference

• Headed the Editorial Board to launch The Prac-

TEX Journal in 2005 (see http://www.tug.

org/pracjourn).

The main reason for submitting my name as a
candidate for TUG President is to put an emphasis
on Users in the TEX Users Group. For the past
25 years TUG has focused mostly on TEX software
developers and power-users, while often forgetting
the needs of day-to-day LaTEX and TEX users. From
my experiences with PracTEX conference attendees
and PracTEX Journal readers, it is clear they have
many needs which TUG is not currently fulfilling.
I feel TUG should shift its priorities to concentrate
more on user education and training, and to provide
more practical information in print and on-line.

In addition, there are challenges facing TUG,
and I am ready to work with the Board to address
them. Three areas I feel need attention are:

1. Membership is down. Some ideas for correcting
this:

• Reduce membership fees. By making
TUGboat and TEX-Live optional benefits,
the price of a membership could be about
one-half what it is now.

• Increase membership privileges. For ex-
ample, give members exclusive on-line ac-
cess to TUGboat and other resources.

• Promote Institutional Memberships.
Change to a sliding membership fee scale

based on institution size, and provide
membership privileges to everyone at the
institution.

2. There are not enough training classes and ma-
terials.

I think TUG should be the leader in provid-
ing training guidelines and curricula, and in
offering classes and workshops. I would pro-
pose forming an Education Committee, com-
posed of Board members and others in the com-
munity, which will design courses and materials
for LATEX and TEX training.

3. Conference attendance is low.

Some possibilities to boost conference atten-
dance: require all TUG-sponsored conferences
to have a mix of beginning, intermediate, and
high-level presentations, possibly in parallel ses-
sions. Require conferences to include classes
and workshops appropriate for beginning and
intermediate users.

I look forward to working with the Board and
with all TUG members to continue TUG’s traditional
activities while putting several of the above ideas
into practice. Together we can make this an orga-
nization which responds to the wishes and needs of
both TEXperts and practical LATEX and TEX users.

Steve Grathwohl

Biography:
I began using TEX in 1986 when a friend gave

me his copy of the TEXbook and a pre-release version
of Textures, which I tried with mixed success to run
on my old Mac512K with only a single floppy drive.
In a short time I had tossed off Word, WordPerfect,
and other word processing systems; but it wasn’t
until I typeset my wife’s dissertation (600pp, Middle
English, Old French, multi-page tables) and began
work at Duke University Press that I began using
TEX in a serious, systematic way.

For the Press, in 1993, TEX was a peculiar di-
alect that mathematicians spoke, not really useful
for production. Now, in 2005, TEX is used to pro-
duce seven of our journals, only one of them a math-
ematics journal. I am very pleased that I was able to
demonstrate to the Press that TEX was more than
capable of being a dependable production platform.

I think I bring to the TUG board the sensibili-
ties of both an enthusiastic user of TEX and a rea-
sonably hard-headed journals production guy who
has to make decisions about what works within tight
scheduling constraints.

230 TUGboat, Volume 25 (2004), No. 2

Jim Hefferon

I’ve been involved with TEX for years, lately by
maintaining the TUG branch of CTAN. I’ve been
serving in an appointed position on the board, and
I hope I can continue to help out.

Klaus Höppner

Biography:
I got a PhD in Physics in 1997. After some

post-doctoral fellowships I have been working work-
ing in the Control Systems group of an accelerator
center in Darmstadt, Germany, since 2002. My first
contact to LATEX was in 1991, using it frequently
since then.

I was preparing the CTAN snapshot on CD, dis-
tributed to the members of many user groups, from
1999 until 2002. I was heavily involved in the organi-
zation of several DANTE conferences and EuroTEX
2005. Since 2000, I am a member of the DANTE

board, acting as vice president since 2002.

Personal statement:
In the years since Karl Berry’s presidency the

cooperation of TUG and European user groups im-
proved a lot. My candidacy is in the hopes of help-
ing to continue this trend. Projects like TEXLive
and CTAN owe their success to the work of active
volunteers, but also to the support and cooperation
of the user groups.

I appreciate the start of The PracTEX Journal,
the first online journal about TEX. I wish it could
become a part of a future pool for TEX articles where
authors can give their permission for translations
and publishing these in the journals of other user
groups.

Arthur Ogawa

The most important issue facing TUG today is
its declining membership. I am running for mem-
bership on the TUG Board of Directors because I
take this issue seriously.

I have served on the TUG Board from 1997 to
the present and have served in the past as Secretary
and Vice President, involving myself in the business
of TUG as a member of its Executive Committee.
During this time, I have watched as TUG’s mem-
bership first staged a modest recovery from the lows
of 1997 and then leveled off. The current trend is
a slight yearly decline. Attendance at TUG confer-
ences has also declined during this time. TUG’s con-
tinued existence was greatly imperiled by the mea-
ger membership numbers of the late 1990s, and the
current situation does not bode well.

While I do not feel that I possess the only an-
swer to the problem, my committment is to address
the matter and to find a solution, by working with
the TUG Board, its Executive Director, and TUG’s
membership.

At the present time, TUG is a vigorous and vital
organization. Its day-to-day operations are compe-
tently served by our office, staff and volunteers, and
its Board of Directors and President work together
effectively. I am convinced that TUG provides its
members with valuable services and products, and
that TUG supports important software efforts that
most certainly benefit TEX users, whether or not
members of TUG or any other user group.

Now it is time for TUG to ensure that its efforts
to support and benefit TEX users will continue. How
this is to be done is not clear at present, but I firmly
believe that the TEX Users Group, which has been
helping TEX users for over 25 years, can continue to
do so. TEX is a free, popular, and robust software,
and it continues to benefit people all over the world.
It is our opportunity as TUG members to help with
its further development, its dissemination, and its
use by the many people who have embraced it.

I hope that you agree with me on the impor-
tance of TUG in this effort.

TUGboat, Volume 25 (2004), No. 2 231

Steve Peter

Biography:
I am a linguist and publisher originally from

Illinois, but now living in New Jersey. I first encoun-
tered TEX as a technical writer documenting Mathe-
matica. Now I use TEX and friends (these days, lots
of ConTEXt) for a majority of my publishing work,
and occasionally consult on it. I am especially in-
terested in multilingual typography and finding a
sane way to typeset all of those crazy symbolisms
linguists create. As if that weren’t bad enough, I’ve
recently begun studying typeface design.

I got involved in TUG via translations for TUG-

boat, where I also work on the production team.
This past year, I was on the organizing committee
for PracTEX San Francisco, co-edited the TUG 2004
conference pre-proceedings, and was appointed to
the TUG Board (thanks, Karl!). Working with and
for the community has been so rewarding that I’ve
decided to run for a regular term on the board.

Personal statement:
The future of TEX and TUG lies in communica-

tion and working together to promote and sustain
the amazing typographic quality associated with
TEX and friends. I am especially interested in hav-
ing TUG support various projects (technical and
artistic) that will serve to bolster TEX and TUG’s
visibility in the world at large.

David Walden

Biography:
I was supposed to be studying math as an un-

dergraduate at San Francisco State College; but,
from my junior year I was hacking on the school’s
IBM 1620 computer. While working as a computer
programmer at MIT’s Lincoln Laboratory, I did the
course work for a master’s degree in computer sci-
ence at MIT. Most of my career was at Bolt Be-
ranek and Newman Inc. (BBN) in Cambridge, Mas-
sachusetts, where I was, in turn, a computer pro-
grammer, technical manager, and general manager.
At BBN, I had the good fortune to be part of BBN’s
small ARPANET development team. Later I was
involved in a variety of high tech professional ser-
vices and product businesses, working in a variety
of roles (technical, operations, business, and cus-
tomer oriented). For more about me, see http:

//www.walden-family.com/dave.

Personal statement:
Throughout my business career and now during

my so-called retirement years, I have always done
considerable writing and editing. This led to my
involvement since the late 1990s with TEX and as
a member of TUG and now as a TUG volunteer
(The PracTEX Journal editorial board, TUG Inter-
view Corner, etc.). I am interested in serving on the
TUG Board for three reasons:

1. To more explicitly serve the community that
has so generously served me via comp.text.tex,
CTAN, TUGboat, etc.

2. As a way of helping maintain the viability for
years to come of TEX and the TEX world, enti-
ties I would call ”national treasures” except for
their world wide nature.

3. Because rubbing shoulders more closely with
various TUG members will help me learn more
about TEX faster.

As a TUG Board member, my frame of mind
would be to get things done quickly and pragmat-
ically with enough generality so evolution is possi-
ble.

Institutional

Members

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia,
Roma, Italy

Center for Computing Science,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario Canada

CNRS - IDRIS,
Orsay, France

CSTUG, Praha, Czech Republic

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

KTH Royal Institute of
Technology, Stockholm, Sweden

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Uppsala University,
Uppsala, Sweden

Vanderbilt University,
Nashville, Tennessee

Ogawa, Arthur

40453 Cherokee Oaks Drive
Three Rivers, CA 93271-9743
(209) 561-4585
Email: arthur ogawa@teleport.com

Bookbuilding services, including design, copyedit, art,
and composition; color is my speciality. Custom TEX
macros and LATEX2ε document classes and packages.
Instruction, support, and consultation for workgroups and
authors. Application development in LATEX, TEX, SGML,
PostScript, Java, and C++. Database and corporate
publishing. Extensive references.

Veytsman, Boris

2239 Double Eagle Ct.

Reston, VA 20191
(703) 860-0013

Email: boris@lk.net

I provide training, consulting, software design and

implementation for Unix, Perl, SQL, TEX, and LATEX. I
have authored several popular packages for LATEX and
latex2html. I have contributed to several web-based
projects for generating and typesetting reports.

For more information please visit my web page:
http://users.lk.net/~borisv.

TEX Consultants

The information here comes from the consultants
themselves. We do not include information we know to be
false, but we cannot check out any of the information; we
are transmitting it to you as it was given to us and do not
promise it is correct. Also, this is not an endorsement of
the people listed here. We provide this list to enable you to
contact service providers and decide for yourself whether to
hire one.

The TUG office mentions the consultants listed here to
people seeking TEX workers. If you’d like to be included, or
place a larger ad in TUGboat, please contact the office or
see our web pages:

TEX Users Group

1466 NW Naito Parkway, Suite 3141
Portland, OR 97208-2311, U.S.A.

Phone: +1 503 223-9994
Fax: +1 503 223-3960

Email: office@tug.org

Web: http://tug.org/consultants.html

http://tug.org/TUGboat/advertising.html

232 TUGboat, Volume 25 (2004), No. 2

TUGBOAT Volume 25 (2004), No. 2 / 2004

Introductory

124 Barbara Beeton / Editorial comments
• typography and TUGboat news

123 Karl Berry / From the president
• TUG activities and information for 2004

134 Peter Flynn / Typographers’ Inn
• common typographical pitfalls and recommendations

126 Jim Hefferon / CTAN for starters
• introduction to the TEX software archives

126 Steve Peter / \starttext: Practical ConTEXt
• for new users of ConTEXt

Intermediate

136 Claudio Beccari and Christiano Pulone / Philological facilities for Coptic script
• support for Coptic typesetting

188 Massimiliano Dominici / dramatist: Another package for typesetting drama with LATEX
• for playwrights and dramatic publishing

172 Andrew D. Hwang / ePiX: A utility for creating mathematically accurate figures
• for users drawing math figures

203 Mark LaPlante / The treasure chest
• new and updated CTAN packages in 2004

193 Simon Law / Variable width boxes in LATEX
• for moving beyond box basics

131 Thomas A. Schmitz / Virtual fonts — a tutorial
• for learning about font handling

199 David Walden / A non-expert looks at a small TEX macro
• developing and understanding basic macro definitions, an example

Intermediate Plus

166 Marcelo Castier and Vladimir F. Cabral / Automatic typesetting of formulas using computer algebra
• about exporting math from Mathematica to TEX

177 J. P. Hagon / LATEX in 3D: Annotations for OpenDX

• about LATEX captions and labeling in visual programming
159 Siep Kroonenberg / TEX and prepress

• about preparing documents for physical printing
141 Azzeddine Lazrek / RyDArab— Typesetting Arabic mathematical expressions

• about a large system for Arabic math typesetting
201 Peter Wilson / Glisterings: Package/package and class/package clashes

• handling command name conflicts

Advanced

194 Hendri Adriaens and Uwe Kern / xkeyval — new developments and mechanisms in key processing
• about key/value arguments, for package writers

150 Scott Pakin / PerlTEX: Defining LATEX macros using Perl
• using the Perl language to create macro definitions

Contents of publications from other TEX groups

213 Biuletyn GUST : Contents of issues 20–21 (2004)
215 Les Cahiers GUTenberg : Contents of issue 43 (December 2003)
216 MAPS : Contents of issues 29–31 (2003–04)
210 Die TEXnische Komödie: Contents of issues 1–4/2003
209 Zpravodaj : Contents of issues 13(1), 14(1), 14(2) (2003–04)

Reports and notices

223 Onofrio de Bari and Maurizio Himmelmann / A brief report on the first GuIT meeting
228 Barbara Beeton / TUG 2005 election report
224 Karl Berry and Kaja Christiansen / TEX Development Fund 2003–05 report
226 Robin Laakso / Financial statements for 2004
221 Calendar
223 TUG2005 announcement
232 Institutional members
232 TEX consulting and production services

	On your mark …
	Get ready …
	Get set …
	Go!
	Through the back straightaway …
	Out of the final turn …
	Across the line
	In the circle with the leaders
	A note on places
	One more note: what shows
	MAPS 29, Spring 2003
	MAPS 30, Spring 2004
	MAPS 31, Fall 2004
	Latin Modern extensions
	pdfTeX extensions
	Source release of i-Installer v2
	TeXmuse
	Baskerville
	Using Omega to generate XML and MathML from TeX documents
	Combining the extensions of TeX into one system
	CTAN release of critical edition support for LaTeX
	Revenue highlights
	Expense highlights

