
TEX Users Group

PREPRINTS

for the 2004 Annual Meeting

TEX Users Group

These preprints for the 2004 annual meeting are
published by the TEX Users Group.

Periodical-class postage paid at Portland, OR, and
additional mailing offices. Postmaster: Send address
changes to TEX Users Group, 1466 NW Naito
Parkway Suite 3141, Portland, OR 97209-2820,
U.S.A.

Memberships

2004 dues for individual members are as follows:
Ordinary members: $75.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site:
http://www.tug.org.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org) or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2004 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, and may not be reproduced,

distributed or translated without their permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

Sam Rhoads∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Jim Hefferon
Ross Moore
Arthur Ogawa
Gerree Pecht
Steve Peter
Cheryl Ponchin
Michael Sofka
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

Addresses

General correspondence,
payments, etc.

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 503 223-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: April 2004]

PREPRINTS

for the 2004 Annual Meeting

TEX Users Group

Twenty-fifth Annual Meeting

Xanthi, Greece

August 30 – September 3, 2004

A COMMUNICATION OF THE TEX USERS GROUP

EDITORS KARL BERRY

BADEN HUGHES

STEVE PETER

PORTLAND • OREGON • U.S.A. • 2004

Introduction

Welcome to this special communication from TUG!
Although it is formatted in the usual TUGboat pro-
ceedings style, as you can see, it is not officially a
TUGboat issue, there is no volume or issue number,
and it’s being produced before the meeting. Why?
These editorial notes (try to) explain the situation.

The 2004 TUG Annual Meeting (http://tug.
org/tug2004) is being organized by Apostolos Sy-
ropoulos and others, associated with the Greek TEX
Friends user group, in collaboration with the Dem-
ocritus University of Thrace in Xanthi, Greece. The
organizers were able to negotiate with Springer-
Verlag for the proceedings of the meeting to be pub-
lished in Springer’s prestigious series Lecture Notes

in Computer Science.
As TUG president, I felt such a publication was

in the best interests of TEX and TUG, as it would
expose our system to a wide new audience. On the
other hand, it is of course absolutely necessary for
every current TUG member to receive the proceed-
ings, as that is a benefit promised upon joining.

Unfortunately, it is not financially possible for
TUG to purchase the hardbound Springer volume for
every member. Therefore, with the consent of the
TUG board, we worked out this compromise. The
principal points of the agreement are these:

The present volume of “preprints” is fully edit-
ed and prepared to usual TUGboat publication
standards.

The present volume will be one of the usual
three TUG publications sent to members for
2004. The other two will be regular TUGboat

issues.

Springer’s volume will be the publication of rec-
ord for the 2004 meeting; this is why the present
volume is not an official TUGboat issue.

We also are not sending the present volume to
libraries, as it cannot easily be cataloged. Thus,
it would only cause trouble for the librarians.
Libraries will receive the Springer volume.

TUG will not sell this issue through our online
store (http://tug.org/store); it will be sent
only to those who join TUG for the 2004 mem-
bership year.

Springer or the authors may make the papers
available online; for any that are available, we
may link to them from the TUGboat web pages,
but we won’t publish them online ourselves.

I sincerely hope this one-time special arrangement
will meet with everyone’s understanding. We expect
future proceedings of TUG annual meetings to be
published as normal TUGboat issues.

The theme of the meeting is TEX in the era of

Unicode, and this is reflected in the contents here.
There is a wealth of material on Omega and other
multilingual typesetting, including a definitive study
of the historical Deseret alphabet. Additional pa-
pers include a comparative study of Type 1 font gen-
eration from METAFONT sources, a significant new
package for critical edition typesetting, and more.

As this volume is being prepared in advance of
the meeting, please email any comments you might
have directly to the authors, or to the editors at
tug2004@ocean1.ee.duth.gr, so the presentation
might be improved. And of course please consider
going to the conference. (Online registration is avail-
able from the conference web site.)

Production of the three issues of TUGboat for
the 2003 membership year is continuing. The pro-
ceedings of the TUG 2003 conference will probably
be the first to be completed.

As always, feel free to email the TUG board
(board@tug.org), or the TUGboat editorial staff
(tugboat@tug.org) with any questions, concerns,
or (most important of all) suggestions and submis-
sions for future articles.

⋄ Karl Berry

president@tug.org

Digital Typography in the New Millennium: Flexible Documents by a

Flexible Engine

Christos KK Loverdos
Department of Informatics and Telecommunications
University of Athens
TYPA Buildings, Panepistimioupolis
GR-157 84 Athens
Greece
loverdos@di.uoa.gr

Apostolos Syropoulos
Greek TEX Friends Group
366, 28th October Str.
GR-671 00 Xanthi
Greece
apostolo@obelix.ee.duth.gr

Abstract

The TEX family of electronic typesetters is the primary typesetting tools for
the preparation of demanding documents, and have been in use for many years.
However, our era is characterized, among others, by Unicode, XML and the in-
troduction of interactive documents. In addition, the Open Source movement,
which is breaking new ground in the areas of project support and development,
enables masses of programmers to work simultaneously. As a direct consequence,
it is reasonable to demand the incorporation of certain facilities to a highly mod-
ular implementation of a TEX-like system. Facilities such as the ability to extend
the engine using common scripting languages (e.g., Perl, Python, Ruby, etc.) will
help in reaching a greater level of overall architectural modularity. Obviously, in
order to achieve such a goal, it is mandatory to attract a greater programming
audience and leverage the Open Source programming community. We argue that
the successful TEX-successor should be built around a microkernel/exokernel ar-
chitecture. Thus, services such as client-side scripting, font selection and use, out-
put routines and the design and implementation of formats can be programmed
as extension modules. In order to leverage the huge amount of existing code,
and keep document source compatibility, the existing programming interface is
demonstrated to be just another service/module.

1 Introduction

The first steps towards computer typesetting took
place in the 1950s, but it was not until Donald E.
Knuth introduced TEX in 1978 [16] that true quality
was brought to software-based typesetting. The his-
tory of TEX is well-known and the interested reader
is referred to [16] for more details.

Today, the original TEX is a closed project in
the sense that its creator has decided to freeze its
development. As a direct consequence no other pro-
grams are allowed to be called TEX. In addition,
the freely available source code of the system was a
major step on the road towards the formation of the

Open Source movement, which, in turn, borrowed
ideas and practices from the Unix world. Furthe-
more, the development of TEX and its companion
system, METAFONT, had made obvious the need for
properly documented programs. This, in turn, ini-
tiated Knuth’s creation of the literate programming

program development methodology. This method-
ology advances the idea that the program code and
documentation should be intermixed and developed
simultaneously.

The source code of TEX and METAFONT be-
ing freely available has had enormous consequences.
Anyone can not only inspect the source code, but

Preprints for the 2004 Annual Meeting 3

Christos KK Loverdos and Apostolos Syropoulos

also experiment freely with it. Combined with TEX’s
(primitive, we should note, but quite effective for the
time) ability to extend itself, this led to such suc-
cess stories as LATEX and its enormous supporting
codebase, in the form of packages. As a direct con-
sequence of the fact that the source code is frozen,
stability was brought forth. Note that this was ex-
actly the intention Knuth had when developing his
systems. A common referred-to core, unchanged in
the passing of time and almost free of bugs, offered
a “secure” environment to produce with and even
experiment with.

However, in an everchanging world, especially
in the fast-paced field of computer science, almost
anything must eventually be surpassed. And it is
the emerging needs of each era that dictate possible
future directions. TEX has undoubtedly served its
purpose well. Its Turing-completeness has been a
most powerful asset/weapon in the battles for and of
evolution. Yet, the desired abstraction level, needed
to cope with increasing complexity, has not been
reached. Unfortunately, with TEX being bound to a
fixed core, it cannot be reached.

Furthermore, the now widely accepted user-un-
friendliness of TEX as a language poses another ob-
stacle to TEX’s evolution. It has created the myth
of those few, very special and quite extraordinary
“creatures”1 able to decrypt and produce code frag-
ments such as the following:2

\def\s@vig{{\EO@m=\EO@n
\divide\EO@n by20 \relax
\ifnum\EO@n>0\s@vig\fi
\EO@k=\EO@n\relax
\multiply\EO@k by-20\relax
\advance\EO@m by \EO@k\relax
\global\advance\EO@l by \@ne
\expandafter\xdef\csname EO@d\@roman{\EO@l}\endcsname{%

\ifnum\EO@m=0\noexpand\noexpand\EOzero
\else\expandafter\noexpand
\expandafter\csname EO\@roman{\EO@m}\endcsname\fi}

\expandafter\@rightappend
\csname EO@d\@roman{\EO@l}\endcsname

\t@\epi@lmecDigits}}

Of course, to be fair, programmers in several
languages (C and Perl among others) are often ac-
cused of producing ununderstandable code and the
well-known obfuscated code contests just prove it.
On the other hand, with the advent of quite so-
phisticated assemblers, today one can even write
well-structured assembly language, adhering even to
“advanced” techniques/paradigms, such as object-
oriented programming. Naturally, this should not
lead to the conclusion that we should start writing
in assembly (again)! In our opinion, software com-

1 The second author may be regarded as one of Gandalf’s

famuli, while the first author is just a Hobbit, wishing to have

been an Elf.
2 Taken from the documentation of the epiolmec package

by the second author.

plexity should be tackled with an emphasis on ab-
straction that will eventually lead to increased pro-
ductivity, as is shown in the following figure:

☛
✡

✟
✠Complexity ✲requires

☛
✡

✟
✠Abstraction ✲increases

☛
✡

✟
✠Productivity

TEX’s programming language is more or less an
“assembly language” for electronic typesetting. It
is true that higher level constructs can be made—
macros and macro packages built on top of that. But
the essence remains the same. Although it is true
that TEX is essentially bug free and its macro ex-
pansion facility behaves the way it is specified (i.e.,
as defined in [9]), it still remains a fact that it takes
a non-specialist quite some time to fully understand
the macro expansion rules in spite of Knuth’s initial
intentions [12, page 6].

The fact that one should program in the lan-
guage of his/her choice is just another reason for
moving away from a low-level language. And it
is true that we envision an environment where as
many programmers as possible can—and the most
important, wish to—contribute. In the era of the
Open Source revolution, we would like to attract
the Open Source community and not just a few dedi-
cated low-level developers. Open Source should also
mean, in our opinion, “open possibilities” to evolve
the source. This is one of our major motivations
for reengineering the most successful typesetting en-
gine.

Richard Palais, the founding chairman of TUG,
pointed out back in 1992 [12, page 7] that when
developing TEX, Knuth

. . . had NSF grant support that not only provided

him with the time and equipment he needed, but

also supported a team of devoted and brilliant

graduate students who did an enormous amount

of work helping design and write the large quan-

tity of ancillary software needed to make the TEX

system work . . .

and immediately after this, he poses the fundamen-
tal question:

Where will the resources come from what will

have to be at least an equally massive effort? And

will the provider of those resources be willing, at

the end of the project, to put the fruits of all his

effort in the Public Domain?

The answer seems obvious now. The way has been
paved by the GNU/Linux/BSD revolutionary devel-
opment model, as has been explained crystal clearly
in The Cathedral and the Bazaar [15].

This paper is an attempt to define a service-
oriented architecture for a future typesetting en-
gine, which will be capable of modular evolution.

4 Preprints for the 2004 Annual Meeting

Digital Typography in the New Millennium: Flexible Documents by a Flexible Engine

We take a layered approach of designing some core
functionality and then define extensible services on
top of the core. The engine is not restricted to a
specific programming language either for its basic/
bootstrapping implementation or, even more impor-
tant, for its future enhancement. At the same time,
we are bound to provide a 100% TEX-compatible
environment, as the only means of supporting the
vast quantity of existing TEX-based documents. We
intend to achieve such a goal by leveraging the pro-
posed architecture’s own flexibility. Specifically, a
TEX compatibility mode is to be supported and it
should give complete “trip-test” compliance. Later
on, we shall see that this compatibility is divided
into two parts: source code compatibility and inter-
nal core compatibility. Both are provided by plug-
gable modules.

Structure of the paper In the following sec-
tions we briefly review the most important and in-
fluential approaches to extending or reengineering
TEX, including TEX’s inherent abilities to evolve.
Then we discuss a few desired characteristics for any
next generation typesetting engine. We advance by
proposing an architecture to support these emerging
needs. Finally, we conclude by discussing further
and future work.

2 A Better TEX?

2.1 TEX the Program

TEX supports a Turing-complete programming lan-
guage. Simply, this means that if it lacks a feature,
it can be programmed. It contains only a few con-
cepts and belongs to the LISP family of languages.
In particular, it is a list-based macro-language with
late binding [5, Sec. 3.3]:

Its data constructs are simpler than in Common

Lisp: ‘token list’ is the only first order type.

Glue, boxes, numbers, etc., are engine concepts;

instances of them are described by token lists. Its

lexical analysis is simpler than CL: One cannot

program it. One can only configure it. Its control

constructs are simpler than in CL: Only macros,

no functions. And the macros are only simple

ones, one can’t compute in them.

Further analysis of TEX’s notions and inner workings
such as category codes, TEX’s mouth and stomach is
beyond the scope of this paper and the interested
reader is referred to the classic [9] or the excellent [3].

TEX the program is written in the WEB sys-
tem of literate programming. Thus, its source code
is self-documented. The programs tangle and weave

are used to extract the Pascal code and the docu-
mentation, respectively, from the WEB code. The

documentation is of course specified in the TEX no-
tation. Although the TEX source is structured in a
monolithic style, its architecture provides for some
kind of future evolution.

First, TEX can be “extended” by the construc-
tion of large collections of macros that are simply
called formats. Each format can be transformed to a
quickly loadable binary form, which can be thought
of as a primitive form of the module concept.

Also, by the prescient inclusion of the \special
primitive command, TEX provides the means to ex-
press things beyond its built-in “comprehension”.
For example, TEX knows absolutely nothing about
PostScript graphics, yet by using \special and with
the appropriate driver program (e.g., dvips), Post-
Script graphics can be easily incorporated into doc-
uments. Color is handled in the same way. In all
cases, all that TEX does is to expand the \special

command arguments and transfer the command to
its normal output, that is, the DVI file (a file format
that contains only page description commands).

Last, but not least, there is the notion of change

file [3, page 243]:

A change file is a list of changes to be made to

the WEB file; a bit like a stream editor script.

These changes can comprise both adaptations of

the WEB file to the particular Pascal compiler

that will be used and bug fixes to TEX. Thus the

TeX.web file needs never to be edited.

Thus, change files provide a form of incremental
modification. This is similar to the patch mecha-
nism of Unix.

Yet, no matter how foresighted these methods
may be, twenty years after its conception TEX has
started to show its age. Today’s trends, and more
importantly the programming community’s contin-
uing demand for even more flexible techniques and
systems, call for new modes of expressiveness.

2.2 The LATEX Format

LATEX [10], which was released around 1985, is the
most widely known TEX format. Nowadays, it seems
that LATEX is the de facto standard for the communi-
cation and publication of scientific documents (i.e.,
documents that contain a lot of mathematical no-
tation). LATEX “programs” have a Pascal-like struc-
ture and the basic functionality is augmented with
the incorporation of independently developed col-
lections of macro packages. In addition, classes are
used to define major document characteristics and
are in essence document types, such as book, article,
etc. Thus, each LATEX “program” is characterized
by the document class to which it belongs, by the

Preprints for the 2004 Annual Meeting 5

Christos KK Loverdos and Apostolos Syropoulos

packages it utilizes, and any new macro commands
it may provide.

The current version of LATEX is called LATEX2ε.
Work is in progress to produce and widely distribute
the next major version, LATEX3 [11]. Among the
several enhancements that the new system will bring
forth, are:

• Overall robustness

• Extensibility, relating to the package interface

• Better specification and inclusion of graphical
material

• Better layout specification and handling

• Inclusion of requirements of hypertext systems

The LATEX3 core team expects that a major reim-
plementation of LATEX is needed in order to support
the above goals.

The ConTEXt [13] format, developed by Hans
Hagen, is monolithic when compared to LATEX. As a
result, the lessons learned from its development are
not of great interest to our study.

2.3 NTS: The New Typesetting System

The NTS project [14] was established in 1992 as
an attempt to extend TEX’s typesetting capabilities
and at the same time to propose a new underlying
programmatic model. Its originators recognised that
TEX lacked user-friendliness and as a consequence it
attracted many fewer users than it could (or should).
Moreover, TEX (both as a name and a program) was
frozen by Knuth, so any enhancements should be
implemented in a completely new system.

NTS was the first attempt to recognize that
TEX’s monolithic structure and implementation in
an obsolete language (i.e., the Pascal programming
language) are characteristics that could only impede
its evolution. The techniques used to implement
TEX, particuarly its “tight”, static and memory con-
servative data structures have no (good) reason to
exist today (or even when NTS was conceived, in
1992), when we have had a paradigm shift to flexi-
ble programming techniques.

After considering and evaluating several pro-
gramming paradigms [19] including functional, pro-
cedural and logic programming, the NTS project
team decided to proceed with a Java-based imple-
mentation. Java’s object-oriented features and its
network awareness were the main reasons for adopt-
ing Java, as NTS was envisioned as a network-based
program, able to download and combine elements
from the network.

Today, there is a Java codebase, which has de-
constructed the several functional pieces of TEX and
reconstructed them in a more object-oriented way

with cleaner interfaces, a property that the original
TEX source clearly lacks. In spite of the promis-
ing nature of NTS, the directory listing at CTAN3

shows that the project is inactive since 2001.4 It
seems that the main focus is now the development
of ε-TEX, which is presented in the following section.

2.4 ε-TEX

ε-TEX [17] was released by the NTS team as soon
as it was recognized that NTS itself was very am-
bitious and that a more immediate and more easily
conceivable goal should be set. So, it was decided
that the first step towards a new typesetting system
was to start with a reimplemented but 100% TEX
compatible program.

ε-TEX was released in 1996, after three years of
development and testing. It adds about thirty new
primitives to the standard TEX core, including han-
dling of bidirectional text (right-to-left typesetting).
It can operate in three distinct modes:

1. “compatibility” mode, where it behaves exactly
like standard TEX.

2. “extended” mode, where its new primitives are
enabled. Full compatibility with TEX is not
actually sought and the primary concern is to
make typesetting easier through its new primi-
tives.

3. “enhanced” mode, where bidirectional text is
also supported. This mode is taken to be a
radical departure from standard TEX.

Today, ε-TEX is part of all widely used TEX distri-
butions and has proven to be very stable. Indeed,
in 2003 the LATEX team requested that future distri-
butions use ε-TEX by default for LATEX commands,
which has since been implemented in TEX Live and
other distributions.

2.5 Ω

Ω [16], which was first released in 1996, is primarily
the work of two people: Yannis Haralambous and
John Plaice. It extends TEX in order to support the
typesetting of multilingual documents. Ω provides
new primitives and new facilities for this reason. Ω’s
default character encoding is the Unicode UCS-2 en-
coding, while it can easily process files in almost any
imaginable character encoding. In addition to that,
Ω supports the parameterization of paragraph and
page direction, thus allowing the typesetting of text
in any imaginable writing method.5

3 http://www.ctan.org/tex-archive/systems/nts/.
4 We have last accessed the above URL in March 2004.
5 Currently the the boustrophedon writing method is the

only one not supported.

6 Preprints for the 2004 Annual Meeting

Digital Typography in the New Millennium: Flexible Documents by a Flexible Engine

Much of its power comes from its new notion
of ΩTPs (Ω Translation Processes). In general, an
ΩTP is normally used to transform a document from
a particular character encoding to another. Obvi-
ously, an ΩTP can be used to transform text from
one character set to another. An ΩTP is actually a
finite state automaton and, thus, it can easily han-
dle cases where the typesetting of particular charac-
ters are context dependent. For example, in tradi-
tional Greek typography, there are two forms of the
small letter theta, which are supported by Unicode
[namely ϑ (03D1) and θ (03B8)]. The first form is
used at the beginning of a word, while the second in
the middle of a word. The following code borrowed
from [16] implements exactly this feature:

input: 2; output: 2;

aliases:

LETTER = (@"03AC-@"03D1 | @"03D5 | @"03D6 |

@"03F0-@"03F3 | @"1F00-@"1FFF) ;

expressions:

^({LETTER})@"03B8({LETTER} | @"0027)

=> \1 @"3D1 \3;

. => \1;

For performance reasons, ΩTPs are compiled into
ΩCPs (Ω Compiled Processes).

External ΩTPs are programs in any program-
ming language that can handle problems that can-
not be handled by ordinary ΩTPs. For example,
one can prepare a Perl script that can insert spaces
in a Thai language document. Technically, external
ΩTPs are programs that read from the standard in-
put and write to the standard output. Thus, Ω is
forking a new process to allow the use of an external
ΩTP. In [16] there are a number of examples (some
of them were borrowed from [7]).

We should note that the field of multilingual
typesetting is an active research field, which is the
main reason why Ω is still an experimental system.
We should also note that ε-Ω [4], by Giuseppe Bil-
otta, is an extension of Ω that tries to incorporate
the best features of ε-TEX and Ω in a new typeset-
ting engine.

2.6 pdfTEX

pdfTEX [18] is yet another TEX extension that can
directly produce a file in Adobe’s PDF format. Re-
cently, pdf-ε-TEX was introduced, merging the ca-
pabilities of both pdfTEX and ε-TEX.

3 Towards a Universal Typesetting Engine

From the discussion above, it is obvious that there
is a trend to create new typesetting engines that
provide the best features of different existing type-
setting engines. Therefore, a Universal Typesetting

Engine should incorporate all the novelties that the
various TEX-like derivatives have presented so far.
In addition, such a system should be designed by
taking into serious consideration all aspects of mod-
ern software development and maintance. However,
our departure should not be too radical, in order to
be able to use the existing codebase. Let us now
examine all these issues in turn.

3.1 Discussion of Features

Data Structures TEX’s inherent limitations are
due to the fact that it was developed in a time when
computer resources were quite scarce. In addition,
TEX was developed using the now outdated struc-
tured programming program development method-
ology.

Nowadays, hardware imposes virtually no lim-
its in design and development of software. Also,
new programming paradigms (e.g., aspect-oriented
programming [8], generative programming [2], etc.)
and techniques (e.g., extreme programming [1]) have
emerged, which have substantially changed the way
software is designed and developed.

These remarks suggest that a new typesetting
engine should be free of “artificial” limitations. Nat-
urally, this is not enough as we have to leave behind
the outdated programming techniques and make use
of modern techniques to ensure the future of the Uni-
versal Typesetting Engine. Certainly, NTS was a
step in the right direction, but in the light of current
developments in the area of software engineering it
is now a rather outdated piece of software.

New Primitive Commands Modern document
manipulation demands new capabilities that could
not have been foreseen at the time TEX was cre-
ated. A modern typesetting engine should provide
a number of new primitive commands to meet the
new challenges imposed by modern document prepa-
ration. Although the new primitives introduced by
ε-TEX and Ω solve certain problems (e.g., bidirec-
tional or, more generally, multidirectional typeset-
ting), they are still unable to tackle other issues,
such as the inclusion of audio and/or animation.

Input Formats For reasons of compatibility, the
current input format must be supported. At the
same time the proliferation of XML and its applica-
tions makes it more than mandatory to provide sup-
port for XML content. Currently, XMLTEX is a TEX
format that can be used to typeset validated XML

Preprints for the 2004 Annual Meeting 7

Christos KK Loverdos and Apostolos Syropoulos

files.6 In addition, XLATEX [6] is an effort to recon-
cile the TEX world with the XML world. In partic-
ular, XLATEX is an XML Document Type Definition
(DTD) designed to provide an XMLized syntax for
LATEX. However, we should learn from the mistakes
of the past and make the system quite adaptable.
This means that as new document formats emerge,
the system should be easily reconfigurable to “com-
prehend” these new formats.

Output Formats The pdfLATEX variant has be-
come quite widespread, due to its ability to directly
produce output in a very popular document for-
mat (namely Adobe’s Portable Document Format).
Commercial versions of TEX are capable of directly
generating PostScript files without the need of any
driver programs. However, as in the case of the in-
put formats, it is quite possible that new document
formats will appear. Thus, we need to make sure
that these document formats will find their way into
TEX sooner or later.

In addition, XML initiatives such as MathML
and SVG (Scalable Vector Graphics) are increasingly
common in electronic publishing of scientific docu-
ments (i.e., quite demanding documents from a ty-
pographical point of view). Thus, it is absolutely
necessary to be able to choose the output format(s)
from a reasonable list of options. For example, when
one makes a drawing using LATEX’s picture environ-
ment, it would be quite useful to have SVG output
in addition to the “standard” output. Currently, Ω
can produce XML content, but it cannot generate
PDF files.

Innovative Ideas The assorted typesetting en-
gines that follow TEX’s spirit are not mere exten-
sions of TEX. They have introduced a number of
useful features and/or capabilities. For example,
Ω’s ΩTPs and its ability to handle Unicode input
by default should certainly make their way into a
new typesetting engine. In addition, ε-TEX’s new
conditional primitives are quite useful in macro pro-
gramming.

Typesetting Algorithms The paragraph break-
ing and hyphenation algorithms in TEX make the
difference when it comes to typographic quality. Ro-
bust and adaptable as they are, these algorithms
may still not produce satisfactory results for all pos-
sible cases. Thus, it is obvious that we need a mech-

6 Validation should be handled by an external utility. Af-

ter all, there are a number of excellent tools that can accom-

plish this task and thus it is too demanding to ask for the

incorporation of this feature in a typesetting engine.

anism that will adapt the algorithms so they can
successfully handle such difficult cases.

Fonts Typesetting means to put type (i.e., font
glyphs) on paper. Currently, only METAFONT fonts
and PostScript Type 1 fonts can be used with all
different TEX derivatives. Although Ω is Unicode
aware, still it cannot handle TrueType fonts in a
satisfactory degree (one has to resort to programs
like ttf2tfm in order to make use of these fonts).
In addition, for new font formats such as OpenType
and SVG fonts there is only experimental support, or
none at all. A new typesetting engine should provide
font support in the form of plug-ins so that support
for new font formats could be easily provided.

Scripting Scripting is widely accepted as a means
of producing a larger software product from smaller
components by “gluing” them together. It plays a
significant role in producing flexible and open sys-
tems. Its realization is made through the so-called
“scripting languages”, which usually are different
from the language used to implement the individ-
ual software components.

One could advance the idea that scripting in
TEX is possible by using TEX the language itself.
This is true to some extent, since TEX works in a
form of “interpretive mode” where expressions can
be created and evaluated dynamically at runtime—a
feature providing the desired flexibility of scripting
languages. But TEX itself is a closed system, in that
almost everything needs to be programmed within
TEX itself. This clearly does not lead to the desired
openness.

A next generation typesetting engine should be
made of components that can be “glued” together
using any popular scripting language. To be able
to program in one’s language of choice is a highly
wanted feature. In fact, we believe it is the only
way to attract as many contributors as possible.

Development Method Those software engineer-
ing techniques which have proven successful in the
development of real-world applications should form
the core of the program methodology which will
be eventually used for the design and implementa-
tion of a next generation typesetting engine. Obvi-
ously, generic programming and extreme program-
ming as well as aspect-oriented programming should
be closely examined in order to devise a suitable de-
velopment method.

All the features mentioned above as well as the
desired ones are summarized in Table 1.

8 Preprints for the 2004 Annual Meeting

Digital Typography in the New Millennium: Flexible Documents by a Flexible Engine

TEX NTS ε-TEX Ω LATEX(3) Desired

implementation language traditional Java traditional traditional traditional perhaps scripting
architecture monolithic modular? monolithic monolithic monolithic modular
TEX compatibility 100% yes 100% 100% 100% via module
input transformations ΩTPs pluggable
Unicode (Babel) (Java) (Babel) true true
XML yes via package yes
typesetting algorithms TEX TEX-like TEX-like TEX-like TEX-like pluggable
scripting language TEX NTS (?) ε-TEX Ω TEX any
output drivers dvi(ps,pdf) dvi(?) dvi(ps,pdf) dvi(ps,pdf) dvi(ps,pdf) any
TRIP-compatible yes almost ε-TRIP yes yes yes (via module)
library mode no no no no no yes
daemon (server) mode no no no no no yes
programming community < LATEX 1 person? < TEX very small big > LATEX

Table 1: Summary of features of TEX and its extensions.

3.2 Architectural Abstractions

Roughly speaking, the Universal Typesetting Engine

we are proposing in this paper, is a project to design
and, later, to implement a new system that will sup-
port all the “good features” incorporated in various
TEX derivatives plus some novel ideas, which have
not found their way in any existing TEX derivative.

Obviously, it is not enough to just propose the
general features the new system should have—we
need to lay down the concrete design principles that
will govern the development of the system. A rea-
sonable way to accomplish this task is to identify the
various concepts that are involved. These concepts
will make up the upper abstraction layer. By fol-
lowing a top-down analysis, eventually, we will be
in position to have a complete picture of what is
needed in order to proceed with the design of the
system.

The next step in the design process is to choose
a particular system architecture. TEX and its deriva-
tives are definitely monolithic systems. Other com-
monly used system architectures include the micro-
kernel and exokernel architectures, both well-known
from operating system research.

Microkernel Architecture A microkernel-based
design has a number of advantages. First, it
is potentially more reliable than a conventional
monolithic architecture, as it allows for mov-
ing the major part of system functionality to
other components, which make use of the mi-
crokernel. Second, a microkernel implements a
flexible set of primitives, providing high level of
abstraction, while imposing little or no limita-
tions on system architecture. Therefore, build-
ing a system on top of an existing microkernel
is significantly easier than developing it from
scratch.

Exokernel Architecture Exokernels follow a rad-
ically different approach. As with microkernels,
they take as much out of the kernel as pos-
sible, but rather than placing that code into
external programs (mostly user-space servers)
as microkernels do, they place it into shared
libraries that can be directly linked into appli-
cation code. Exokernels are extremely small,
since they arbitrarily limit their functionality
to the protection and multiplexing of resources.

Both approaches have their pros and cons. We
believe that a mixed approach is the best solution.
For example, we can have libraries capable of han-
dling the various font formats (e.g., Type 1, True-
Type, OpenType, etc.) that will be utilized by ex-
ternal programs that implement various aspects of
the typesetting process (e.g., generation of Post-
Script or PDF files). Let us now elaborate on the
architecture we are proposing. The underlying com-
ponents are given in Figure 1.

The Typesetting Kernel (TK) is one of the two
core components at the first layer. It can be viewed
as a “stripped-down” version of TEX, meaning that
its role as a piece of software is the orchestration
of several typesetting activities. A number of ba-
sic algorithms are included in this kernel both as
abstract notions—necessary for a general-purpose
typesetting engine—and concrete implementations.
So, TK incorporates the notions of paragraph and
page breaking, mathematical typesetting and is Uni-
code-aware (utilizing UCS-4 internally). It must be
emphasized that TK “knows” the concept of para-
graph breaking and the role it plays in typesetting
but it is not bound to a specific paragraph breaking
algorithm. The same principle applies to all needed
algorithms.

Preprints for the 2004 Annual Meeting 9

Christos KK Loverdos and Apostolos Syropoulos

L1

☛
✡

✟
✠TK
☛
✡

✟
✠ASK

❅❘
TEX, ε-TEX, Ω

L2

☛
✡

✟
✠Fonts
☛
✡

✟
✠TAs
☛
✡

✟
✠DMs
☛
✡

✟
✠SEs
☛
✡

✟
✠HyP . . .

❅
❅❘

Type 3, dvips + Type 1

❅❘
LATEX, XLATEX

L3

☛
✡

✟
✠WFs
☛
✡

✟
✠Tools

❅
❅❘
latex && bibtex && latex

❅❘
bibtex, makeindex

Terms

TK Typesetting Kernel

ASK Active Scripting Kernel

TAs Typesetting Algorithms

DMs Document Models

SEs Scripting Engines

HyP Hyphenation Patterns

WFs Workflows

Figure 1: The proposed microkernel-based layered architecture. The arrows show rough correspondence
between the several architectural abstractions and their counterparts in existing monolithic typesetting
engines.

The Active Scripting Kernel (ASK) is the sec-
ond of the core components and the one that al-
lows scripting at various levels, using a programming
(scripting) language of one’s choice. It is in essence
a standardized way of communicating between sev-
eral languages (TEX, Perl, Python), achieved by pro-
viding a consistent Application Programming Inter-
face (API). The most interesting property of ASK

is its activeness. This simply means that any ex-
tension programmed in some language is visible to
any other available languages, as long as they ad-
here to the standard Active Scripting Kernel API.
For example, an external module/service written in
Perl that provides a new page breaking algorithm is
not only visible but also available for immediate use
from Python, C, etc.

Above TK and ASK, at the second layer, we find
a collection of typesetting abstractions.

Fonts are at the heart of any typesetting engine.
It is evident that font architectures change with the
passing of time, and the only way to allow for flex-
ibility in this part is to be open. Although there
many different font formats, all are used to define
glyphs and their properties. So instead of directly
supporting all possible font formats, we propose the
use of an abstract font format (much like all font ed-
itors have their own internal font format). With the
use of external libraries that provide access to popu-
lar font formats (e.g., a Free Type library, a Type 1
font library, etc.), it should be straightforward to
support any existing or future font format.

The various Typesetting Algorithms (TAs)—al-
gorithms that implement a particular typographic
feature—should be coded using the Active Scripting
Kernel API. In a system providing the high degree
of flexibility we are proposing, it will be possible to
exhibit, in the same document, the result of applying

several paragraph and page breaking algorithms. By
simply changing a few runtime parameters it will be
possible to produce different typographic “flavors”
of the same document.

A Scripting Engine (SE) is the realization of the
ASK APIs for a particular scripting language. For
reasons of uniformity, the TEX programming lan-
guage will be provided as a Scripting Engine, along
with engines for Perl, Ruby and Python. This will
make all the existing TEX codebase available for im-
mediate use and it will provide for cooperation be-
tween existing LATEX packages and future enhance-
ments in other languages. Thus, a level of 100% TEX
compatibility will be achieved, merely as a “side-
effect” of the provided flexibility.

The idea of a Document Model (DM) concerns
two specific points: The document external repre-
sentation, as it is “edited” for example in an editor,
or “saved” on a hard disk, and its internal repre-
sentation, used by the typesetting engine itself. It
is clear that under this distinction, current LATEX
documents follow the (fictional) “LATEX Document
Model”, XLATEX documents follow the “XLATEX doc-
ument model” and an XML document with its cor-
responding DTD follows an analogous “XML+DTD

Document Model”.
We strongly believe that how a document is

written should be separated by its processing. For
the last part, an internal representation like the Ab-

stract Syntax Trees (ASTs) used in compiler technol-
ogy is highly beneficial. One way to think of DM is as
the typographic equivalent of the Document Object
Model (DOM). That is, it will be a platform-neutral
and language-neutral representation allowing scripts
to dynamically access and update the content, struc-
ture and style of documents.

10 Preprints for the 2004 Annual Meeting

Digital Typography in the New Millennium: Flexible Documents by a Flexible Engine

Several Document Processors (DPs) may be ap-
plied to a specific document before actual type-
setting takes place. DPs are the analog of ΩTPs.
By leveraging the scripting power of ASK, the rep-
resentation expressiveness of DPs is increased—as
opposed to algorithmic expressiveness (Turing-com-
pleteness), which is evident, e.g., in Ω, but is not
the sole issue.

The Workflows (WF) and Tools are at the high-
est architectural layer. Currently, there are a num-
ber of tools that may not produce a final typeset re-
sult, but are important for the proper preparation of
a document. For example, such tools include bibli-
ography, index and glossary generation tools. In the
proposed architecture, all these programs will take
advantage of other architectural abstractions—such
as the Document Model or the Scripting Engines—
in order to be more closely integrated in the type-
setting engine as a whole.

Of particular importance is the introduction of
the Workflows notion. A workflow is closely related
to the operation or, to be more precise, cooperation
of several tools and the typesetting engine in the
course of producing a typeset document. In effect,
a workflow specifies the series of execution (proba-
bly conditional) steps and the respective inputs/out-
puts during the “preparation” of a document. By
introducing a workflow specification for each tool,
we relieve the user from manually specifying all the
necessary actions in order to get a “final” .pdf (or
whatever output format has been requested). In-
stead, the user will declaratively specify that the
services of a tool are needed and the engine will load
the respective workflows, compose them and execute
them.

We shall give a workflow example concerning a
bibtex-like tool. What we do here is to transform
our exerience of using bibtex into declarations spec-
ifying its behaviour in cooperation with latex:

WORKFLOW DEFINITION bibtex

SERVICE bibtex NEEDS latex

SERVICE bibtex INTRODUCES latex

In effect, this translates a hypothetical Makefile:

all:

latex mydoc

bibtex mydoc

latex mydoc

for the preparation of the fictitious mydoc.tex doc-
ument into a declarative specification that is given
only once as part of the bibtex tool!

3.3 On Design and Evolution

Recent advances in software engineering advocate
the use of multidimensional separation of concerns
as a guiding design principle. Different concerns
should be handled at different parts of code and
ideally should be separated. For example, the repre-
sentation of a document and its processing are two
separate concerns and should be treated as such.
Their interaction is better specified out of their in-
dividual specifications. Thus, we have introduced
the Document Models notion to cope with the exist-
ing TEX/LATEX base as well as any future document
representation.

Several architectural abstractions of Figure 1
are candidates to be specified as “services” at dif-
ferent granularities. For example, any Tool of the
third layer can be thought of as a service that is
registered with a naming authority and discovered
dynamically, for immediate use on demand. A True-
Type Font Service, regarding the second layer Font

abstraction, is another example, this time more of a
fine-grained nature, in the sense that a Tool (coarse-
grained service) utilizes a Font (fine-grained ser-
vice).

The proposed architecture makes special provi-
sions for evolution by keeping rigid design decisions
to a minimum. Built-in Unicode awareness is such a
notable rigid design decision, but we feel that its in-
corporation is mandatory. Besides that, the ideas of
pluggable algorithms and scripting are ubiquitious
and help maintain the desired high degree of flexi-
bility.

At the programming level, any style of design
and development that promotes evolution can be
applied. In the previous section we have actually
demonstrated that the proposed architecture can
even handle unanticipated evolution at the work-
flow level: the bibtex tool workflow specification
causes the execution of an existing tool (latex) but
we have neither altered any workflow for latex nor
does latex need to know that “something new” is
using it. In effect, we have introduced (the use of the
keyword INTRODUCE was deliberate) a new aspect [8].

4 Conclusions and Future Work

In this paper we have reviewed the most widespread
modern approaches to extending TEX, THE type-
setting engine. After analyzing weaknesses of the
approaches and the existing support for several fea-
tures, we have presented our views on the architec-
ture of an open and flexible typesetting engine.

We have laid down the basic architectural ab-
stractions and discussed their need and purpose. Of

Preprints for the 2004 Annual Meeting 11

Christos KK Loverdos and Apostolos Syropoulos

course, the work is still at the beginning stages and
we are now working on refining the ideas and eval-
uating design and implementation approaches.

The introduction of the Active Scripting Kernel
is of prime importance and there is ongoing work to
completely specify a) the form of a standard pro-
cedural API and b) support for other programming
styles, including object-oriented and functional pro-
gramming. This way, an object may for example
take advantage of an algorithm that is better de-
scribed in a functional form. There are parallel
plans for transforming TEX into a Scripting Engine
and at the same time providing Engines powered by
Perl and Python.

We are also investigating the application of the
workflow approach at several parts in the architec-
ture other than the interaction among tools. This,
in turn, may raise the need for the incorporation of
a Workflow Kernel at the core layer, along with the
Typesetting Kernel and the Active Scripting Kernel.

References

[1] chromatic. Extreme Programming Pocket

Guide. O’Reilly & Associates, Sebastopol, CA,
USA, 2003.

[2] Krzysztof Czarnecki and Ulrich Eisenecker.
Generative Programming: Methods, Tools, and

Applications. Addison–Wesley Publ. Co., Read-
ing, MA, USA, 2002.

[3] Victor Eijkhout. TEX by Topic. http://www.

cs.utk.edu/∼eijkhout/tbt.

[4] ε-Ω Project home page. http://www.ctan.

org/tex-archive/systems/eomega/.

[5] NTS FAQ. http://www.ctan.org/

tex-archive/info/NTS-FAQ.

[6] Yannis Haralambous and John Plaice. Omega,
OpenType and the XML World. The 24th An-

nual Meeting and Conference of the TeX Users

Group, TUG 2003.

[7] Yannis Haralambous and John Plaice. Traite-
ment automatique des langues et compositions
sous omega. Cahiers GUTenberg, pages 139–
166, 2001.

[8] Gregor Kiczales, John Lamping, Anurag Mend-
hekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-
Oriented Programming. In M. Aksit and
S. Matsuoka, editors, ECOOP ’97—Object-

Oriented Programming: 11th European Confer-

ence, Jyväskylä, Finland, June 1997. Proceed-

ings, number 1241 in Lecture Notes in Com-
puter Science, pages 220–242. Springer-Verlag,
Berlin, 1997.

[9] Donald Erwin Knuth. The TEXbook. Addison-
Wesley, 1984.

[10] Leslie Lamport. LATEX: A Document Prepara-

tion System. Addison–Wesley Publ. Co., Read-
ing, MA, USA, 2nd edition, 1994.

[11] LATEX3 Project home page. http://www.

latex-project.org/latex3.html.

[12] Richard Palais. Position Paper on the future of
TEX. http://www.loria.fr/services/tex/

moteurs/nts-9207.dvi, reached from http:

//tex.loria.fr/english/moteurs.html,
October 1992.

[13] PRAGMA Advanced Document Engi-
neering. ConTEXt home page. http:

//www.pragma-ade.com/.

[14] NTS Project home page. http://www.dante.

de/projects/nts/.

[15] Eric E. Raymond. The Cathedral and
the Bazaar. http://www.catb.org/∼esr/

writings/cathedral-bazaar/.

[16] Apostolos Syropoulos, Antonis Tsolomitis, and
Nick Sofroniou. Digital Typography Using

LATEX. Springer-Verlag, New York, NY, USA,
2003.

[17] NTS Team and Peter Breitenlohner. The ε-TEX
manual, Version 2. MAPS, (20):248–263, 1998.

[18] Hàn Thé̂ Thành, Sebastian Rahtz, and Hans
Hagen. The pdfTEX users manual. MAPS,
(22):94–114, 1999.

[19] Jǐŕı Zlatuška. NTS: Programming Lan-
guages and Paradigms. EuroTEX 1999,
http://www.uni-giessen.de/partosch/

eurotex99/zlatuska.pdf.

12 Preprints for the 2004 Annual Meeting

Migrating to XML: The Case of the GUST Bulletin Archive

W lodzimierz Bzyl
Instytut Matematyki, Uniwersytet Gdański
80-952 Gdańsk
ul. Wita Stwosza 57
Poland
matwb@univ.gda.pl

Tomasz Przechlewski
Wydzia l Zarzadzania, Uniwersytet Gdański
81-824 Sopot
ul. Armii Krajowej 119/121
Poland
tomasz@gnu.univ.gda.pl

Abstract

Ten years of experience with TEX publishing of the GUST bulletin shows that
Knuth’s dream of highly portable TEX files is apparently an illusion in practice.
Over the last decade, articles in the GUST bulletin have used at least six major
formats (LATEX 2.09, transitional LATEX+NFSS, LATEX 2ε, plain-based TUGboat,
Eplain, and ConTEXt), numerous macro packages, fonts, and graphic formats.
Many old articles are typeset differently nowadays, and some even cause TEX
errors.

This situation motivates the following question: how do we avoid the same
problem in the future? As the World Wide Web is quickly becoming the main-
stream both of publishing and of information exchange we argue for migration to
XML—a Web compatible data format.

In the paper we examine a possible strategy for storing GUST articles in a
custom XML format and publishing them with both TEX and XSLT/FO. Finally,
the problems of converting the TEX files to XML and possibility of using TEX4ht—
an authoring system for producing hypertext—are discussed.

1 Introduction

The dominant role played by the Web in information
exchange in modern times has motivated publishers
to make printed documents widely available on the
Internet. It is now common that many publications
are available on the Web only, or before they are
printed on paper. Articles published in the GUST

bulletin are available on the Web in PostScript and
PDF. Unfortunately, these formats decrease doc-
ument accessibility, searching and indexing by Web
search engines. For broad accessibility to automated
services, it is better to use XML as the format of
such data. However, one issue with XML is that it
is difficult to maintain the high quality presentation
of TEX documents. This is caused by incompatibil-
ities between browsers and incomplete or immature
implementations of W3C Consortium standards.

We are optimistic that these issues will disap-
pear in the near future, and believe that XML will
become pervasive in the online environment. How-
ever, in our context, a key to the adoption of XML

is the degree to which it can be integrated with ex-
isting TEXnologies.

In this paper we examine one strategy for stor-
ing GUST articles in a custom XML format and pub-
lishing them with both TEX and XSLT/FO. Also, the
problems of converting the existing TEX files to XML

and the possibility of using TEX4ht—an authoring
system for producing hypertext—are discussed.

2 TEX/LATEX and Other Document
Formats

When the authors started work with TEX (many
years ago), there was only a choice between closed-
source applications based on proprietary formats, or

Preprints for the 2004 Annual Meeting 13

W lodzimierz Bzyl and Tomasz Przechlewski

TEX, for publishing significant documents. Nowa-
days, the choice is much wider, as XML-based so-
lutions are based on open standards and supported
by a huge number of free applications. We do not
need to write the tools ourselves. Thus the strategy
of reusing what is publicly available is key in our
migration plan.

On the other hand it would be unwise to switch
to XML as the only acceptable submission format,
because it would force many authors to abandon
their powerful TEX-based editing environments to
which they are accustomed, just to submit texts to
our bulletin. Following this route, we would more
likely end up with a shortage of submissions. Thus,
we are preparing a mixed strategy with both TEX
and XML as accepted formats. Papers submitted
in LATEX will ultimately be converted to XML as an
archival or retrieval format. Presentation formats
will be XHTML, with corresponding PDF generated
by a variety of tools. The work-flow of documents
in this proposed framework is depicted on Fig. 1.

XML LaTeX

PDF

HTML

. . .

tex4ht

XSLT db2latex

XSLT

DOCBOOK

pdfTeX

Figure 1: Processing diagram for XML/LATEX
documents.

The XML implementation project described in
the paper can be broadly divided into the following
subtasks: DTD development, formatting develop-
ment, and legacy information conversion [19]. We’ll
now describe these stages in detail.

3 DTD Development Considerations

There is no doubt (see for example [14, 19]) that
the DTD development phase is of critical impor-
tance for the overall success of any SGML/XML

project. Fortunately, thanks to the great interest in
XML technology in recent years, there are several
production-quality publicly available DTDs which
could be adapted for our project. To make this

choice, we preferred those which are widely used
and for which formatting applications and tools are
available. The following possible schemes were con-
sidered:

• DocBook [21], a complete publishing frame-
work, i.e., schemes plus XSLT/DSSSL style-
sheets for conversion to presentation formats;
actively developed and maintained; the de facto
standard of many Open Source projects; widely
known and used.

• TEI [1], another complete, actively developed
publishing framework. Not as popular as Doc-
Book, used mainly in academia.

• The LATEX-based DTD developed in [7] (further
referred as LWC DTD). The similarity to the
structure of LATEX is an advantage of this DTD

for our project.

• Others, such as DTD for GCA/Extreme confer-
ences, X-DiMi from the Electronic Thesis and
Dissertations Project, and the LATEX-like PMLA

developed by one of the authors [15].

Industry-standard DTDs tend to be too big, too
complex, and too general for practical use in specific
cases (cf. [14, p. 29]). In particular, the DocBook
and TEI DTDs seem to be too complex for marking-
up documents conforming to LATEX format.

As a result, users frequently employ the tech-
nique of using different DTDs at different stages of
the editorial process. Following Maler [14], we will
call the DTD common to a group of users within
an interest group as a reference DTD, while those
used solely for editing purposes as an authoring

DTD. Translation from one DTD to another may
be easily performed with an XSLT stylesheet.

We decided to use a simplified LWC DTD as
authoring DTD and DocBook as reference DTD.
Providing a simple DTD should expand the group
of prospective authors. For example, many GUST

members are experts in typography or Web design
but not necessarily TEX hackers.

The simplification consists of restricting the
document hierarchy only to article-like documents,
and removing back matter tags (index, glossary)
and all presentation tags (newline, hspace, etc.).
Also, the optional status of meta-data, for example
the title, abstract, keywords tags, was changed
to required. The resulting DTD contains 45 elements
compared to 64 in the original one.

For better maintainability, we rewrote our ver-
sion of LWC DTD into RNC syntax. The RNC

schema was introduced by Clark [6], and recently
adopted as an ISO standard. It has many advantages

14 Preprints for the 2004 Annual Meeting

Migrating to XML: The Case of the GUST Bulletin Archive

over DTD or W3C Schema syntax, namely simplicity
and an included documentation facility.1

As the structure of our documents is not partic-
ularly complex, it may be feasible to develop several
authoring DTDs targeted at different groups of au-
thors, for example one for those preferring ConTEXt-
like documents, another for those used to GCA con-
ference markup, etc., and then map those docu-
ments to the reference DTD with XSLT.

4 Formatting with XSLT

For presentation, LWC documents are first trans-
formed to DocBook with a simple XSLT stylesheet.

The DocBook XSL stylesheets [22] translate an
XML document to XHTML or FO [18]. As they are
written in a modular fashion, they can be easily
customized and localized. To publish XHTML from
XML documents, an XSLT engine is needed such as
Kay’s saxon [11] or Veillard’s xsltproc [20].

For hard copy output, a two-step process is
used. First, the XSLT engine produces format-
ting objects (FO) which then must be processed
with a formatting object processor for PDF output.2

The detailed transformation work-flow is depicted in
Fig. 2.

xslt processor
xslt stylesheet

LWC
document

DocBook
document

PDF

HTML

FO

other

latex

xslt processor

dblatex.xsl
html/docbook.xsl

fo/docbook.xsl

?.xsl

Figure 2: Processing details of LWC documents
with XSLT/FO.

With just a few customizations the translation
from XML to XHTML presents no obstacles (except
for math formulas). On the other hand, the quality
of the PDF produced with the publicly available fop
processor from the Apache project is poor compared
to that obtained with TEX.

Instead of generating FO objects one can use
XSLT to translate XML directly to high-level LATEX.
That is the method used in db2latex [3] (see also
a clone project: dblatex/dbcontext [9]; the latter,
of course, generates files processable by ConTEXt).

1 It is possible to convert between different schema lan-
guages for XML with the trang program [5]. There is also a
nxml-mode for GNU Emacs for editing of XML which features
highlighting, indentation, and on the fly validation against an
RNC schema [4].

2 Modern browsers have XSLT engines built-in. So, it suf-
fices to attach to a document appropriate stylesheets to make
the transformation on the fly.

The output can be customized at XSLT stylesheet
level as well as by redefining appropriate LATEX style
files. MathML markup is translated with XSLT to
LATEX and supported natively.3

The translation from DocBook to LATEX imple-
mented in these tools is incomplete. To get reason-
able results, prior customization to local needs is re-
quired. The main advantage of this approach is that
we use TEX—a robust and well known application.

5 The GUST Bulletin Archive

When considering the conversion of the GUST ar-
chive to XML we have two points in mind: first,
we recognize the long-term benefits of an electronic
archive of uniformly and generically marked-up doc-
uments; and second, to take the opportunity to test
the whole framework using ‘real’ data.

During the last 10 years, 20 volumes of the
GUST bulletin were published, containing more than
200 papers. From the very beginning GUST was
tagged in a modified TUGboat style [2]. The total
output is not particularly impressive, but the con-
version of all articles to XML isn’t a simple one-night
job for a bored TEX hacker:

• they were produced over an entire decade and
were written by over 100 different authors.

• they were processed with at least six major
formats (LATEX 2.09, transitional LATEX+NFSS,
LATEX 2ε, plain-based TUGboat, Eplain, and fi-
nally ConTEXt), using numerous macro pack-
ages, fonts, and graphic formats.4

As a group, the GUST authors are not ama-
teurs, producing näıve TEX code. On the contrary
they are TEX experts, writing on a diverse range
of subjects using non-standard fonts, packages and
macros. For example, Fig. 3 shows the detailed dis-
tribution of the TEX formats used in GUST.

In total, there were 134 plain TEX articles, com-
pared to 87 for LATEX. LATEX authors used 74 differ-
ent packages, while those preferring plain TEX nol-
ogy used 139 different style files. The proportion
of other formats (Eplain, ConTEXt, BLUE) was in-
significant (only a few submissions). It can also be
noted from Fig. 3 that in recent years, the propor-
tion of plain TEX submissions has decreased sub-
stantially in favor of LATEX.

It is obviously very difficult to maintain a repos-
itory containing papers requiring such a diverse

3 One approach which we did not try is to format FO files
with TEX. This method is implemented by S. Rahtz’ Passive
TEX [17].

4 Needless to say, all of these packages have been evolving
during the last 10 years, many of them becoming incompati-
ble with each other.

Preprints for the 2004 Annual Meeting 15

W lodzimierz Bzyl and Tomasz Przechlewski

93 94 95 96 97 98 99 00 01 02 03 year

papers

25

plain latex other total

Figure 3: Distribution of TEX formats used by
GUST authors.

range of external resources (macros, fonts). As a
result, many old papers are now unable to be type-
set owing to changes in underlying macros or fonts.

6 Conversion from TEX to XML

It may be surprising that only few papers report
successful conversion from TEX to XML: Grim [8]
describes successful large-scale conversion in a large
academic institution, while Rahtz [16] and Key [12]
describe translation to SGML at Elsevier.

Basically when converting TEX to XML the fol-
lowing three approaches have been adopted [16]:

• Perl/Python hackery combined with manual re-
typing and/or manual XML marking-up.

• Parsing TEX source files not with tex, but
with another program which generates SGML/
XML. This is the approach used by ltx2x [23],
tralics [8] and latex2html,5 which replace
LATEX commands in a document by user-defined
strings.

• Processing files with TEX and post-processing
the DVI files to produce XML. This is the way
tex4ht works.

Although the conversion performed with tralics

is impressive, we found the application very poorly
documented. After evaluation of the available tools
and consulting the literature [7], we decided to use
TEX4ht—a TEX-based authoring system for produc-
ing hypertext [10].

Because TEX formats contain many visually-
oriented tags, we could not expect to automatically
convert them to content-oriented XML markup.6

For example, the TUGboat format requires
only the metadata elements title and author
name(s); author address(es) and webpage(s) of the

5 latex2html was not considered as its output is limited
to HTML.

6 For example, see [16, 8]. Other examples, based on
GUST articles, are presented below.

author(s) are often absent and there is no obligation
for abstracts and keywords. Therefore, most of the
GUST articles lack these valuable elements. More-
over, bibliographies are inconsistently encoded.7

Having said that, our plan is to markup as many
elements as possible.

7 Translating TEX to XML with TEX4ht

Out of the box, the TEX4ht system is configured
to translate from plain, LATEX, TUGboat (ltugboat,
ltugproc), and Lecture Notes in Computer Science
(llncs) formats to HTML, XHTML, DocBook, or TEI.
To translate from, say, TUGboat to our custom
XML format the system needs to be manually con-
figured. Because the configuration of TEX4ht from
scratch is a non-trivial task, we consider other more
efficient possibilities.

The TEX4ht system consists of three parts:
(1) Style files which enhance existing macros with
features for the output format (HTML, XHTML,
etc.).8 (2) The tex4ht processor which extracts
HTML or XHTML, or DocBook, or TEI files from
DVI files produced by tex. (3) The t4ht processor
which is responsible for translating DVI code frag-
ments which need to be converted to pictures; for
this task the processor uses tools available on the
current platform.

As mentioned above, the conversion from a vi-
sual format to an information-oriented one cannot
be done automatically. Let’s illustrate this state-
ment with the following example marked with plain
TEX macros:9

\noindent {\bf exercise, left as an}

{\it adj\/} {\ss Tech} Used to complete

a proof when one doesn’t mind a

{\bf handwave}, or to avoid one entirely.

The complete phrase is: {\it The proof

\rm(or \it the rest\/\rm) \it is left as an

exercise for the reader.\/} This comment

has occasionally been attached to unsolved

research problems by authors possessed of

either an evil sense of humor or a vast

faith in the capabilities of their

audiences.\hangindent=1em

After translation of this fragment to XHTML by
tex4ht we obtain:

<p class="noindent"><span

class="cmbx-10">exercise, left as an

adj

7 Publicly available tools (see [13] for example) can auto-
matically mark up manually keyed bibliographies.

8 Altogether over 2.5M lines of TEX code. Compare this
with 1M code of the LATEX base macros.

9 The text comes from “The Project Gutenberg Etext of
The Jargon File”, Version 4.0.0.

16 Preprints for the 2004 Annual Meeting

Migrating to XML: The Case of the GUST Bulletin Archive

Tech

Used to complete a proof when one

doesn’t mind a <span

class="cmbx-10">handwave, or to

avoid one entirely. The complete phrase

is: The proof

(or the

rest) is left

as an exercise for the reader.

This comment has occasionally been

attached to unsolved research problems by

authors possessed of either an evil sense

of humor or a vast faith in the capabilities

of their audiences.</p>

and this could be rendered by a browser as:

We can see that tex4ht uses ‘span’ elements
to mark up font changes. These visual tags could
be easily remapped to logical ones unless fragments
of text with different meaning are marked with the
same tag. Here the tag cmti-10 was used to tag
both the short form ‘adj’ and the example phrase
(shown in the green italic font). To tag them differ-
ently we need different TEX macros specially config-
ured for TEX4ht. Note that the \hangindent=1em

was ignored by tex4ht. This command could not be
simulated, because hanging indentation is not sup-
ported by browsers.

So, the markup produced by the tex4ht pro-
gram is not logical markup. To get logical markup
the GUST format should be reworked and reconfig-
ured for TEX4ht.

Instead of configuring TEX4ht we could use an
XSLT stylesheet to remap elements referencing XML

format. This could be an easier route than config-
uring the system from scratch, while some TEX4ht
configuration could also help. So, a combination of
the two methods is envisaged to provide the best
results.

8 Conclusion and Future Work

We have not completed the conversion yet. How-
ever, based on the experience gained so far we can es-
timate that almost 70% of the whole archive should
be converted with little manual intervention. Semi-
automatic conversion of another 15% (34 papers) is
possible, with prior extensive changes in markup.
Conversion of remaining 15% is impossible or use-
less, where ‘impossible’ means the paper is easier

to retype than try to recompile and adjust tex4ht

just for a particular single case, and ‘useless’ applies
to papers demonstrating complicated graphical lay-
outs, or advanced typesetting capabilities of TEX.

Although our system needs improvement—con-
version of math is the most important remaining
item to investigate—we are determined to start to
use it in a production environment.

Finally, we note that many of our conclusions
and methods are also applicable to TUGboat, be-
cause the format used for typesetting GUST bulletin
differs only slightly from the one used for TUGboat.

References

[1] Lou Burnard and C. M. Sperberg-McQueen.
TEI lite: An introduction to text encoding for
interchange. http://www.tei-c.org/Lite/,
2002.

[2] W lodek Bzyl and Tomasz Przechlewski. An
application of literate programming: creating
a format for the Bulletin of the Polish TUG.
TUGboat, 14(3):296–299, October 1993.

[3] Ramon Casellas and James Devenish.
DB2LaTeX XSL stylesheets. http://db2latex.
sourceforge.net, 2004.

[4] James Clark. NXML mode for the GNU

Emacs editor. http://www.thaiopensource.

com/download, 2003.

[5] James Clark. Trang—multi-format schema
converter based on RELAX NG. http://www.

thaiopensource.com/relaxng/trang.html,
2003.

[6] James Clark and Makoto Murata. Relax NG

specification. http://www.relaxng.org/,
2001.

[7] Michel Goossens and Sebastian Rahtz. LATEX

Web Companion. Addison-Wesley, 2001.

[8] Jose Grim. Tralics. In EuroTEX Preprints,
pages 38–49, 2003. http://www-sop.inria.

fr/miaou/tralics. Final version to appear in
TUGboat.

[9] Benôıt Guillon. DocBook to LATEX/ConTEXt
publishing. http://dblatex.sourceforge.

net, 2004.

[10] Eitan Gurari. tex4ht: LATEX and TEX for
hypertext. http://www.cis.ohio-state.

edu/∼gurari/TeX4ht/mn.html, 2004.

[11] Michael Kay. SAXON—the XSLT and XQuery
Processor. http://saxon.sourceforge.net,
2003.

[12] Martin Key. Theory into practice: working
with SGML, PDF and LATEX. Baskerville,

Preprints for the 2004 Annual Meeting 17

W lodzimierz Bzyl and Tomasz Przechlewski

5(2), 1995. ftp://tug.ctan.org/pub/tex/

usergrps/uktug/baskervi/5 2/.
[13] Language Technology Group. LT TTT version

1.0. http://www.ltg.ed.ac.uk/software/

ttt, 1999.
[14] Eve Maler and Jeanne El Andaloussi.

Developing SGML DTDs: From Text to Model

to Markup. Prentice Hall PTR, 1995.
[15] Tomasz Przechlewski. Definicja dokumentu

typu PMLA. http://gnu.univ.gda.pl/
∼tomasz/sgml/pmla/, 2002.

[16] Sebastian Rahtz. Another look at LATEX to
SGML conversion. TUGboat, 16(3):315–324,
September 1995. http://www.tug.org/

TUGboat/Articles/tb16-3/tb48raht.pdf.
[17] Sebastian Rahtz. PassiveTEX. http:

//www.tei-c.org.uk/Software/passivetex,
2003.

[18] Robert Stayton. Using the DocBook XSL

Stylesheets. Sagehill Enterprises, http://
www.sagehill.net/docbookxsl/index.html,
2003.

[19] Brian E. Travis and Dale C. Waldt. The

SGML Implementation Guide: A Blueprint for

SGML Migration. Springer-Verlag, 1996.

[20] Daniel Veillard. LIBXSLT—the XSLT C
library for Gnome. http://xmlsoft.org/

XSLT, 2003.

[21] Norman Walsh and Leonard Muelner.
DocBook: The Definitive Guide. O’Reilly,
1999. http://www.docbook.org/tdg/en/

html/docbook.html.

[22] Wiki. DocBook XSL Stylesheets.
http://docbook.org/wiki/moin.cgi/

DocBookXslStylesheets, 2004.

[23] Peter R. Wilson. LTX2X: A LATEX to X
Auto-tagger. http://www.ctan.org/

tex-archive/support/ltx2x, 1999.

18 Preprints for the 2004 Annual Meeting

Managing TEX Resources with XML Topic Maps

Tomasz Przechlewski
Uniwersytet Gdański, Wydzia l Zarzadzania
81-824 Sopot
ul. Armii Krajowej 119/121
Poland
tomasz@gnu.univ.gda.pl

Abstract

For many years the Polish TEX Users Group newsletter has been published online
on the GUST web site. The repository now contains valuable information on
TEX, METAFONT, electronic documents, computer graphics and related subjects.
However, access to the content is very poor: it is available as PS/PDF files with
only a simple HTML page facilitating navigation. There is no integration with
information resources from other sections of the site, nor with the resources from
other LUG or CTAN sites.

Topic maps were initially developed for efficient preparation of indices, glos-
saries and thesauruses for electronic documents repositories, and are now codified
as both the ISO standard (ISO/IEC 13250) and the XTM 1.0 standard. Their ap-
plications extend to the domain of electronic publishing. Topic maps and the
similar RDF standard are considered to be the backbone of corporate knowledge
management systems and/or the Semantic Web [3].

The paper contains an introduction to the Topic Maps standard and discusses
selected problems of Topic Map construction. Finally the application of Topic
Maps as an interface to the repository of TEX related resources is presented, as
well as the successes and challenges encountered in the implementation.

1 Introduction

All the papers published for the last 10 years in
the bulletin of the Polish TEX Users’ Group (GUST,
http://www.gust.org.pl/) are now available on-
line from the GUST web site. The repository con-
tains valuable information on TEX, METAFONT,
electronic documents, computer graphics, typogra-
phy and related subjects. However, access to the
content itself is very poor: the papers are available
as PS/PDF files with only a simple HTML interface
facilitating navigation. There is no integration with
other resources from that site. As CTAN and other
LUGs’ sites provide more resources it would obvi-
ously be valuable to integrate them too.

At first glance, the Topic Maps framework ap-
pears to be an attractive way to integrate vast
amounts of dispersed TEX related resources. A pri-
mary goal of the proposed interface should be to
support learning. If the project succeeds, we hope
it will change slightly the opinion of TEX as a very
difficult subject to become acquainted with.

The paper is organized as follows. The stan-
dard is introduced and selected problems of topic
maps construction are discussed in the subsequent

three sections. Then a short comparison of Topic
Maps and RDF is presented. The application of
Topic Maps as an interface to the GUST resource
repository is described in the last two sections.

2 What is a Topic Map?

Topic Maps are an SGML/HYTIME based ISO stan-
dard defined in [1] (ISO/IEC 13250, often referred
as HYTM). The standard was recently rewritten by
an independent consortium, TopicMaps.org [19] and
renamed to XML Topic Maps (XTM). XTM was de-
veloped in order to simplify the ISO specification
and enable its usage for the Web through XML syn-
tax. Also, the original linking scheme was replaced
by XLINK/XPOINTER syntax. XTM was recently
incorporated as an Annex to [1].

The standard enumerates the following possible
applications of TMs [1]:1

• To qualify the content and/or data contained
in information objects as topics, to enable nav-
igational tools such as indexes, cross-references,
citation systems, or glossaries.

1 Examples of application of Topic Maps to real world
problems can be found in [9, 21, 5, 18, 11, 12].

Preprints for the 2004 Annual Meeting 19

Tomasz Przechlewski

• To link topics together in such a way as to en-
able navigation between them.

• To filter an information set to create views
adapted to specific users or purposes. For ex-
ample, such filtering can aid in the management
of multilingual documents, management of ac-
cess modes depending on security criteria, de-
livery of partial views depending on user profiles
and/or knowledge domains, etc.

• To add structure to unstructured information
objects, or to facilitate the creation of topic-
oriented user interfaces that provide the effect
of merging unstructured information bases with
structured ones.

In short, a topic map is a model of knowledge repre-
sentation based on three key notions: topics which
represent subjects, occurrences of topics which are
links to related resources, and associations (rela-
tions) among topics.

A topic represents, within an application con-
text, any clearly identified and unambigous subject
or concept from the real world: a person, an idea,
an object etc.

A topic is a instance of a topic type. Topic
types can be structured as hierarchies organized
by superclass-subclass relationships. The standard
does not provide any predefined semantics to the
classes. Finally, topic and topic type form a class-
instance relationship.

Topic have three kinds of characteristics: names

(none, one, or more), occurrences, and roles in asso-
ciations. The links between topics and their related
information (web page, picture, etc.) are defined by
occurrences. The linked resources are usually lo-
cated outside the map. XTM uses a simple link
mechanism as defined in XLINK, similar to HTML

hyperlinks.
As with topics, occurrences can be typed; oc-

currence types are often referred as occurrence roles.
Occurrence types are also defined as topics. Using
XML syntax, the definition of topic is quite simple:

<topic id="t-przechlewska-wanda">

<instanceOf>

<topicRef xlink:href="#person"/>

</instanceOf>

<baseName>

<baseNameString>Plata-Przechlewska,

Wanda</baseNameString>

</baseName>

</topic>

Topic associations define relationships between
topics. As associations are independent of the re-
sources (i.e., data layer) they represent added-value

information. This independency means that a con-
crete topic map can describe more than one informa-
tion pool, and vice versa. Each association can have
an association type which is also a topic. There are
no constraints on how many topics can be related by
one association. Topics can play specific roles in as-
sociations, described with association role types —
which are also topics.

The concepts described above are shown in
Fig. 1. Topics are represented as small ovals or cir-
cles in the upper half of the picture while the large
oval at the bottom indicates data layer. Small ob-
jects of different shapes contained in the data layer
represents resources of different types. The lines be-
tween the data layer and topics represents occur-
rences, while thick dashed ones between topics de-
picts associations.

Figure 1: Topic map and resource layer.

Besides the above mentioned three fundamen-
tal concepts, the standard provides a notion of
scope. All characteristics of topics are valid within
certain bounds, called a scope, and determined in
terms of other topics. Typically, scopes are used to
model multilingual documents, access rights, differ-
ent views, and so on.

Scopes can also be used to avoid name conflicts
when a single name denotes more than one concept.
An example of scope for the topic latex might be
computer application or rubber industry depending
on the subject of the topic. Only the topic charac-
teristics can be scoped, not the topic itself.

20 Preprints for the 2004 Annual Meeting

Managing TEX Resources with XML Topic Maps

3 Subject Identity and Map Merging

From the above short tour of TM concepts it should
be clear that there is an exact one-to-one correspon-
dence between subjects and topics. Thus, the identi-
fication of subjects is crucial to individual topic map
applications and to interoperability between differ-
ent topic maps.

The simplest and most popular way of identify-
ing subjects is by identifyng them via some system
of unique labels (usually URIs). A subject identi-
fier is simply a URI unambiguously identifying the
subject. If the subject identifier points to a re-
source (not required) the resource is called a sub-
ject indicator. The subject indicator should contain
human-readable documentation describing the non-
addressable subject [22].

As there are no restrictions to prevent every
map author from defining their own subject iden-
tifiers and resource indicators, there is a possibility
that semantic or syntactic overlap will occur. To
overcome this, published subject indicators (PSIs)
are proposed [17]. PSIs are stable and reliable in-
dicators published by an institution or organization
which desires to promote a specific standard. Any-
one can publish PSIs and there is no registration
authority. The adoption of PSIs can therefore be an
open and spontaneous process [17, 6].2

Subject identity is of primary importance for
topic map merging when there is a need to recognize
which topics describe the same subject.

Two topics and their characteristics can be
merged (aggregated) if the topics share the same
name in the same scope (name-based merging), or
if they refer to the same subject indicator (subject-

based merging). Merging results in a single topic
that has the union of all characteristics of merged
topics. Merged topics play the roles in all the
associations that the individual topics played be-
fore [22, 15].

4 Constraining, Querying, and Navigating

the Map

The notion of a topic map template is used fre-
quently in literature. As the name suggests, a topic

map template is a sort of schema imposing con-
straints on topic map objects with TM syntax. The
standard does not provide any means by which the
designer of the TM template can put constraints
onto the topic map itself. Standardisation of such
constraints are currently in progress [14].

2 For example, the XTM 1.0 specification contains a set
of PSIs for core concepts, such as class, instance, etc., as well
as for the identification of countries and languages [19].

Displaying lists of indexes which the user can
navigate easily is the standard way of TM visual-
ization. As this approach does not scale well for
larger maps, augmenting navigation with some sort
of searching facility is recommended. Other visu-
alization techniques such as hyperbolic trees [15],
cone trees, and hypergraph views (Fig. 2) can be
used for visualization and navigation of topic maps.
They display TMs as a graph, with the topics and
occurrences as nodes and the associations as arcs.
The drawback of such ‘advanced’ techniques is that
users are usually unfamilar with them.

Figure 2: Hypergraph visualization with TMNav.

There are several proposed query languages for
topic maps. None of them are part of the standard
and there are inconsistencies in different TM engines.
Two of the most prominent proposals are:

• TMQL (Topic Maps Query Language, [9]), with
SQL-like syntax, provides both for querying and
modifying topic maps (select, insert, delete, up-
date).

• Tolog, inspired by logic programming language
Prolog, supports requirements for TMQL with
clearer and simpler syntax.

The introduction to the TM standard presented
in this paper does not cover all the details of the
technology. Interested readers can find an exhaus-
tive description in [15], which contains detaileda in-
troduction with numerous examples, and [16].

5 Topic Maps and RDF

The W3C promotes the Resource Description Frame-
work (RDF) [10] as another framework for expressing
metadata. RDF is a W3C standard envisioned to be
a foundational layer of the Semantic Web.

The fundamental notion in the RDF data model
is a statement, which is a triple composed of a

Preprints for the 2004 Annual Meeting 21

Tomasz Przechlewski

resource, property, and value. The RDF Schema
(RDFS) [4] is a W3C working draft aimed at defin-
ing a description language for vocabularies in RDF.
More expressive RDFS models have been proposed
recently [23].

One key difference between RDF and topic
maps is that topic maps are modelled on a concept-
centric view of the world. For example, in RDF there
are no ‘predefined’ properties, so to assign a name to
a resource one has to use another standard (such as
Dublin Core), something that is not necessary with
topic maps. The notion of scope is also absent from
RDF too.

The RDF and Topic Maps standards are similar
in many respects [7]. Both offer simple yet powerful
means of expressing concepts and relationships.

6 Building Topic Maps for the GUST

Bibliographic Database

Similar to writing a good index for a book, creating
a good topic map is carried out by combining man-
ual labour with the help of some software applica-
tions. It is usually a two-stage task, beginning with
the modelling phase of building the ‘upper-part’ of
the map, i.e., the hierarchy of topic types and as-
sociation types (the schema of the map) and then
populating the map with instances of topic types,
their associations and occurrences.

Approaches for developing a topic map out of a
pool of information resources include [2]:

• using standard vocabularies and taxonomies
(i.e., www.dmoz.org) as the initial source of top-
ics types.

• generating TMs from the structured databases
or documents with topic types and association
types derived from the scheme of the database/
document.

• extraction of topics and topic associations from
pools of unstructured or loosely structured doc-
uments using NLP (Natural Language Process-
ing) software combined with manual labour.

The first approach is concerned with the modelling
phase of topic map creation, while the third one
deals with populating the map.

Following the above guidelines, the structure
of the BibTEX records was an obvious candidate to
start with in modelling our map of GUST articles.
It provides a basic initial set of topics including:
author, paper, keyword, and the following associa-
tion types: author-paper, paper-keyword and author-

keyword. Abstracts (if present in BibTEX databases)
can be considered as occurrences of the topic paper.

The publication date and language can be used as
scopes for easy navigation using them as constraints.

Other TAOs (topics, associations, and occur-
rences [16]) to consider are: author home pages
(occurrence type), applications described in the pa-
per (association type), papers referenced (associa-
tion type). This information is absent from BibTEX
files but, at least theoretically, can be automatically
extracted from the source files of papers.

We started by analyzing the data at our dis-
posal, i.e., TEX and BibTEX source files. Unfortu-
nately, in the case of the GUST bulletin the BibTEX
database was not maintained. This apparent over-
sight was rectified with simple Perl scripts and a few
days of manual labour. The bibliographic database
was created and saved in a XML-compatible file.3

TEX documents are often visually tagged and
lack information oriented markup. The only ele-
ments marked up consistently and unambiguously
in the case of the GUST bulletin are the paper ti-
tles and authors’ names. Authors’ home pages were
rarely present, while email addresses were available
but not particularly useful for our purposes. Nei-
ther abstracts nor keyword lists had been required
and as a consequence were absent from the major-
ity of the papers. Similarly, any consistent scheme
of marking bibliographies (or attaching .bib files)
was lacking, so there was no easy way to define the
related to association between papers.

The benefit derived from keywords is much
greater if they are applied consistently according to
some fixed classification; otherwise, the set of key-
words usually consists of many random terms which
are nearly useless. Since we didn’t want to define
yet another ‘standard’ in this area, we would have
liked to adopt an existing one. The following sources
were considered: the TEX entry at dmoz.org, Gra-
ham Williams’ catalogue.4, collections of BibTEX
files and .tpm files [20]

The accuracy of the TEX taxonomy subtree
at dmoz.org was somewhat questionable, and we
quickly rejected the idea of using it. Williams’ cat-
alogue of TEX resources does not include any infor-
mation except the location of the resource in the
structure of CTAN. As for BibTEX files, it appeared
only MAPS and TUGboat were complete and up-to
date5 but only the latter contains keywords. Un-
fortunately, they don’t comply with any consistent

3 We reused the XML schema developed for the MAPS

bulletin (http://www.ntg.org.ln/maps/).
4 http://www.ctan.org/tex-archive/help/Catalogue
5 Cahiers GUTenberg was not found, but the impressive

portal of Association GUTenberg indicates appropriate meta-
data are maintained, but not published.

22 Preprints for the 2004 Annual Meeting

Managing TEX Resources with XML Topic Maps

scheme. Due to the lack of any existing standard,
the keywords were added manually on a common-
sense basis, with the intention of being ‘in sync’ with
the most frequent terms used in MAPS.6

Finally the following TAOs were defined (the
language of the publication was considered to be the
only scope):

• topic types: author, paper, and keyword ;

• association types: author-paper, paper-keyword ,
and author-keyword ;

• occurrence types: papers and abstracts.

The schema of the map was prepared manually and
then the rest of the map was generated from the
content of intermediate XML file with an XSLT style-
heet [8, 13]. The resulting map consists of 454 top-
ics, 1029 associations, and 999 occurrences. A frag-
ment of the map rendered in a web browser with
Ontopia Omnigator (a no-cost but closed-source ap-
plication, http://www.ontopia.net/download/) is
shown in Fig. 3.

Figure 3: A fragment of GUST topic map
rendered with Omnigator.

Omnigator shows the map as a list of links ar-
ranged in panels. Initially only a list of subjects
(index of topic types) is displayed. When a link for
a topic is clicked on, the topic is displayed with all
the information about its characteristics (names, as-
sociations, occurrences). In Fig. 3, an example page
for author Kees van der Laan is shown. The right
panel contains all the relevant resources while the

6 There are 814 bibliographic entries in MAPS base and
895 different keywords. The most popular keywords in MAPS

BibTEX file are: LATEX –51, NTG – 42, plain TEX – 37, Post-
Script – 28, ConTEXt, TEX-NL, METAFONT, SGML, and so
forth. There are small number of inconsistent cases (special
commands vs. specials, or configuration vs. configuring) and
fine-grained keywords (Portland, Poland, Bachotek, USSR!).

lower left has all the related topics, i.e., papers writ-
ten by Kees and other subjects covered. The user
can easily browse both papers authored by him and
switch to pages on some other interesting subject.
The panel with resources contains information on
the resource type allowing fast access to the required
data.

Similar functionality can be obtained with the
freely available TM4Nav or even by using a simple
XSLT stylesheet [13].

7 Integrating Other TEX Resources

So far there is nothing in TMs which cannot be ob-
tained using other technologies. The same or bet-
ter functionality can be achieved with any database
management system (DMS). But integrating TEX
resources on a global scale needs flexibility, which
traditional RDBMS-based DMS applications lack.
For example, topic maps can be extended easily
through merging separate maps into one, while
DMS-based extensions usually require some prior
agreement between the parties (e.g., LUGs), schema
redefinitions, and more.

To verify this flexibility in practice, we extended
the GUST map with the MAPS and TUB BibTEX
databases. For easy interoperability in a multi-
language environment, the upper half of the map
was transferred to a separate file. With the use of
scope, the design of multi-language topic types was
easy, for example:

<topic id="english">

<subjectIdentity>

<subjectIndicatorRef

xlink:href="http://www.topicmaps.org/\

xtm/1.0/language.xtm#en"/>

</subjectIdentity>

<baseName>

<baseNameString>EN</baseNameString>

</baseName>

</topic>

...

<topic id="author">

<baseName><scope>

<topicRef xlink:href="#english"/></scope>

<baseNameString>author</baseNameString>

</baseName>

<baseName><scope>

<topicRef xlink:href="#polish"/> </scope>

<baseNameString>autor</baseNameString>

</baseName>

</topic>

Other topic types were designed similarly. Scopes
for other languages can easily be added.

The ‘lower part’ of the map was generated
from (cleaned) BibTEX records with bibtex2xml.py

Preprints for the 2004 Annual Meeting 23

Tomasz Przechlewski

(http://bibtexml.sf.net) and than transformed
to MAPS XML with an XSLT stylesheet. Keywords
were added to TUB entries using a very crude pro-
cedure.7

Figure 4: Topic map fragment from Fig. 3 scoped
to Polish language.

Simple name-based merging of all three maps
results in over 25,000 TAOs (≈ 1000 authors, more
than 2000 papers). Some of the subjects were rep-
resented with multiple topics. As an example the
Grand Wizard was represented as the following four
distinct topics: ‘Knuth, Don’, ‘Knuth, Donald’,
‘Knuth, Donald E.’, ‘Knuth., Donald E.’.8

As identity-based merging is regarded as more
robust, some identifiers have to be devised first. Es-
tablishing a PSI for every TEX author seemed overly
ambitious. Instead, a dummy subject identifier
was chosen, such as: http://tug.org/authors#

initials-surname. This can still produce multiple
topics for the same subject, but now we can elimi-
nate unwanted duplicates by defining an additional
map consisting solely of topics like the following [18]:

<topic id="de-knuth">

<subjectIdentity>

<subjectIndicatorRef

xlink="http://tug.org/authors#d-knuth"/>

<subjectIndicatorRef

xlink="http://tug.org/authors#d-e-knuth"/>

</subjectIdentity>

</topic>

Merging this map with the ‘base’ map(s) will
result in a map free of unwanted duplicated topics
with all variant names preserved.

7 Acronyms, such as LATEX, METAFONT, or XML, present
in the title were used as keywords.

8 First name variants, abbreviations and middle names
cause problems in many more cases.

For further extensions, we plan to incorporate
CTAN resources. For that purpose, Williams’ cata-
logue and/or the TPM files from TEX Live project
can be used. As the catalogue contains author
names, it would be for example possible to enrich the
map with the author-application association. Fur-
ther enrichment will result if we can link applica-
tions with documents describing them. However,
some robust classification scheme of TEX resources
should be devised first.

8 Topic Map Tools

As with any other XML-based technology, topic
maps can be developed with any text editor and pro-
cessed with many XML tools. However, for larger-
scale projects specialized software is needed. There
are a few tools supporting topic map technology,
developed both commercially and as Open Source
projects. We have considered both Ontopia Omni-
gator (mentioned in the previous section) and TM4J

(free software).
TM4J (http://tm4j.org) is a suite of Java

packages which provide interfaces and default imple-
mentations for the import, manipulation and export
of XML Topic Maps. Features of the TM4J engine
include an object model which supports XTM spec-
ification with the ability to store topic map in an
object-oriented or relational database, and an im-
plementation of the tolog query language.

Based on TM4J a few projects are in progress:
TMNav for intuitive navigation and editing of topic
maps, and TMBrowse for publishing maps as set of
HTML pages (similarly to Omnigator).

These projects are in early stages and our expe-
rience with TMBrowse indicates that current version
frequently crashes with bigger maps and is signifi-
cantly slower than Omnigator. There were problems
with tolog queries as well.

As all these projects are actively maintained
progress may be expected in the near future.

9 Summary

Topic maps are an interesting new technology which
can be used to describe the relation between TEX
resources. The main problem is topic map visual-
ization. Available tools are in many cases unstable
and non-scalable, but we can expect improvement.

The system presented here can certainly be im-
proved. It is planned to extend it with the content
of Williams’ catalogue. The maps developed in the
project are available from http://gnu.univ.gda.

pl/∼tomasz/tm/. At the same address, the inter-
ested reader can find links to many resources on
topic maps.

24 Preprints for the 2004 Annual Meeting

Managing TEX Resources with XML Topic Maps

References

[1] ISO/IEC. Topic Maps, ISO/IEC 13250, 2002.
http://www.y12.doe.gov/sgml/.

[2] Kal Ahmed, Danny Ayers, Mark Birbeck, and
Jay Cousins. Professional XML Meta Data.
Wrox Press, 2001.

[3] Tim Berners-Lee, James Hendler, and Ora Las-
sila. The semantic web. Scientific American,
284(5):35–43, 2001. http://www.sciam.com/

2001/0501issue/0501berners-lee.html.

[4] Dan Brickley and R. V. Guha. RDF vocabulary
description language 1.0: RDF schema, 2002.
http://www.w3.org/TR/rdf-schema/.

[5] Anna Carlstedt and Mats Nordborg. An evalu-
ation of topic maps. Master’s thesis, Göteborg
University, 2002. http://www.cling.gu.se/
∼cl8matsn/exjobb.html.

[6] Paolo Ciancarini, Marco Pirruccio, and
Fabio Vitali. Metadata on the Web. On
the integration of RDF and topic maps.
In Extreme Markup Languages, 2003.
http://www.mulberrytech.com/Extreme/

Proceedings/xslfo-pdf/2003/Presutti01/

EML2003Presutti01.pdf.

[7] Lars M. Garshol. Living with Topic Maps and
RDF. http://www.ontopia.net/topicmaps/

materials/tmrdf.html, 2002.

[8] Michael Kay. XSLT Programmer’s Reference

2nd Edition. Wrox Press, 2001.

[9] Rafa l Ksieżyk. Trying not to get lost with
a topic map. In XML Europe Conference,
1999. http://www.infoloom.com/gcaconfs/

WEB/granada99/ksi.HTM.

[10] Ora Lassila and Ralph R. Swick. Resource de-
scription framework (RDF). Model and syntax
specification, 1999. http://www.w3.org/TR/

REC-rdf-syntax/.

[11] Xia Lin and Jian Qin. Building a
topic map repository, 2000. http:

//www.knowledgetechnologies.net/

proceedings/presentations/lin/xialin.

pdf.

[12] Ashish Mahabal, S. George Djorgovski,
Robert Brunner, and Roy Williams. Topic
maps as a virtual observatory tool, 2002.
http://arxiv.org/abs/astro-ph/0110184.

[13] Sal Mangano. XSLT Cookbook. O’Reilly, 2002.

[14] Mary Nishikawa and Graham Moore. Topic
map constraint language requirements, 2002.
http://www.isotopicmaps.org/tmcl/.

[15] Jack Park and Sam Hunting, editors. XML

Topic Maps. Creating and using Topic Maps for

the Web. Addison-Wesley, 2002.

[16] Steve Pepper. The TAO of topic maps,
2000. http://www.ontopia.net/topicmaps/

materials/tao.html.

[17] Steve Pepper. Published subject: Introduction
and basic requirements, 2003. http://www.

oasis-open.org/committees/.

[18] Steve Pepper and Marius L. Garshol. Lessons
on applying topic maps. http://www.ontopia.
net/topicmaps/materials/xmlconf.html,
2002.

[19] Steve Pepper and Graham Moore. XML

topic maps (XTM) 1.0, 2000. http://www.

topicmaps.org/xtm/1.0/.

[20] Fabrice Popineau. Directions for the TeXlive
systems. In EuroTEX 2001, The Good, the Bad

and the Ugly, Kerkrade, pages 152–161. NTG,
2001. http://www.ntg.nl/maps/pdf/26 20.

pdf.

[21] Tomasz Przechlewski. Wykorzystanie map
pojeć w zarzadzaniu repozytoriami doku-
mentów elektronicznych. In Materia ly Konfer-

encji: MSK 2003, 2003.

[22] Hans Holger Rath. Semantic resource exploita-
tion with topic maps. In Proceedings of the

GLDV-Spring Meeting 2001, 2001. http://

www.uni-giessen.de/fb09/ascl/gldv2001/.

[23] Michael K. Smith, Chris Welty, and Debo-
rah L. McGuinness. OWL web ontology lan-
guage guide, 2003. http://www.w3.org/TR/

owl-guide/.

Preprints for the 2004 Annual Meeting 25

Interactive Editing of MathML Markup Using TEX Syntax∗

Luca Padovani
Department of Computer Science, University of Bologna

Mura Anteo Zamboni, 7

40127 Bologna

Italy

lpadovan@cs.unibo.it

http://www.cs.unibo.it/~lpadovan/

Abstract

We describe the architecture of a syntax-directed editor for authoring struc-
tured mathematical documents which can be used for the generation of MathML
markup [4]. The author interacts with the editor by typing TEX markup as he
would do in a normal text editor, with the difference that the typed markup is
parsed and displayed on-the-fly. We discuss issues regarding both the parsing and
presentation phases and we propose implementations for them. In contrast with
existing similar tools, the architecture we propose offers better compatibility with
TEX syntax, a pervasive use of standard technologies and a clearer separation of
content and presentation aspects of the information.

1 Introduction

MathML [4] is an XML [2] application for the rep-
resentation of mathematical expressions. Like most
XML applications, MathML is unsuitable to be writ-
ten directly because of its verbosity except in the
simplest cases. Hence the editing of MathML doc-
uments needs the assistance of dedicated tools. As
of today, such tools can be classified into two main
categories:

1. WYSIWYG (What You See Is What You Get)
editors that allow the author to see the format-
ted document on the screen while it is being
composed. The editor usually provides some
“export mechanism” that creates XML

with embedded MathML from the internal rep-
resentation of the document;

2. conversion tools that generate MathML markup
from different sources, typically other markup
languages for scientific documents, such as
TEX [5].

Tools in the first category are appealing, but
they suffer from at least two limitations: a) edit-
ing is typically presentation oriented — the author
is primarily concerned about the “look” of the docu-
ment and tends to forget about its content. b) They
may slow down the editing process because they of-
ten involve the use of menus, palettes of symbols,

∗ This work has been supported by the European Project

IST-2001-33562 MoWGLI.

and, in general, the pointing device for completing
most operations.

In this paper we describe the architecture of
a tool that tries to synthesize the “best of both
worlds”. The basic idea is to create a WYSIWYG

editor in which editing is achieved by typing con-
crete markup as the author would do in an actual
plain text editor. The markup is then tokenized
and parsed on-the-fly, a corresponding presentation
is created by means of suitable transformations, and
finally displayed. The editor is meant not only as an
authoring tool, but more generally as an interface for
math applications.

Although in the paper we assume that the con-
crete markup typed by the user is TEX (more pre-
cisely the subset of TEX concerned about mathe-
matics) and that presentation markup is MathML,
the system we are presenting is by no means tied to
these languages and can be targeted to other con-
texts as well. One question that could arise is: “why
TEX syntax?” We can see at least three motivations:
first of all because of TEX popularity in many com-
munities. Second, because macros, which are a fun-
damental concept in TEX, are also the key to editing
at a more content-oriented level, which is a primary
requirement for many applications handling mathe-
matics. Finally, because, as we will see, TEX markup
has good locality properties which make it suitable
in the interactive environment of our concern.

26 Preprints for the 2004 Annual Meeting

Interactive Editing of MathML Markup Using TEX Syntax

The body of the paper is structured into four
main sections: in Section 2 we overview the architec-
ture of the tool while in Sections 3, 4, 5 we describe
in more detail the main phases of the editing process
(lexing, parsing, and transformation). Familiarity
with TEX syntax and XML-related technologies is
assumed.

2 Architecture

Several tools for the conversion of TEX markup suf-
fer from two major drawbacks that we are not willing
to tolerate in our design: (1) they rely on the TEX
system itself for parsing the markup. While guaran-
teeing perfect compatibility with TEX, this implies
the installation of the whole system. Moreover, the
original TEX parser does not meet the incremental
requirements that we need; (2) the lack of flexibility
in the generation of the target document represen-
tation, which is either fixed by the conversion tool
or it is only slightly customizable by the user.

To cope with problem (1) we need to write our
own parser for TEX markup. This is well known to
be a non-trivial task, because of some fancy aspects
regarding the very nature of TEX syntax and the
lack of a proper “TEX grammar”. We will commit
ourselves with a subset of TEX syntax which appears
to be just what an average author needs when writ-
ing a document. As we will see, the loss in the range
of syntactic expression is compensated by a cleaner
and more general transformation phase. As for the
lack of a TEX grammar, we perceive this as a fea-
ture rather than a weakness: after all TEX is built
around the fact that authors are free to define their
own macros. Macros are the fundamental entities
giving structure to the document.

Let us now turn our attention to problem (2):
recall that the general form of a TEX macro defini-
tion (see The TEXbook, [5]) is

\def〈control sequence〉〈parameter text〉
{〈replacement text〉}

where the 〈parameter text〉 gives the syntax for in-
voking the macro and its parameters whereas the
〈replacement text〉 defines somehow the “semantics”
of the macro (typically a presentational semantics).
Thus the ultimate semantic load of a macro is invari-
ably associated with the configuration of the macro
at the point of definition.

We solve problem (2) by splitting up macro
definitions so that structure and semantics can be
treated independently. A well-formed TEX docu-
ment can be represented as a tree whose leaves are
either literals (strings of characters) or macros with
no parameters, and each internal node represents a

(a) “TEX tree” (b) MathML tree

g

over

1 sp

g

x + 1

2

math

mfrac

mn

1

msup

mrow

mi

x

mo

+

mn

1

mn

2

Figure 1: Tree representation for
{1\over{x+1}^2} and corresponding MathML

markup.

macro and the node’s children are the macro’s pa-
rameters. Entities like delimiters, square brackets
surrounding optional parameters or literals occur-
ring in the 〈parameter text〉 of macro definitions are
purely syntactic and need not be represented in the
tree if our main concern is capturing the structure
of the document. Fig. 1(a) shows the tree structure
of a simple mathematical formula.

Once the document is represented as a tree,
the process of macro expansion — that is, interpre-

tation —can be defined as a recursive transforma-
tion on the nodes of the tree. As we will represent
trees using XML, transformations can be very natu-
rally implemented by means of XSLT stylesheets [3].
Fig. 1(b) shows the MathML tree corresponding to
the TEX tree on the left hand side. The two trees
are basically isomorphic except for the name of the
nodes and the presence of explicit token nodes for
literals in the MathML tree. This is to say that the
MathML tree can be generated from the TEX tree
by simple transformations. However, once the in-
terpretation phase is independent of parsing (some-
thing which does not happen in TEX) it is natural to
define much more general transformations that are
not just node-by-node rewritings.

The following are the main components of an
interactive, syntax-based editor for structured doc-
uments:

Input Buffer: the sequence of concrete charac-
ters typed by the author;

Lexical Analyzer: responsible for the tokeniza-
tion of the characters in the input buffer;

Dictionary: a map from 〈control sequence〉 to
〈parameter text〉 which is used to know the syn-
tax of macros;

Parser: for the creation of the internal tree struc-
ture representing the document;

Preprints for the 2004 Annual Meeting 27

Luca Padovani

Transformation Engine: for mapping the inter-
nal tree into the desired format.

No doubt these entities are common to all tools con-
verting TEX markup into a different format, but the
degree of mutual interdependence and the way they
are implemented may differ considerably, especially
when interactivity is a main concern. The added
value of our approach is that it allows the author
to independently customize both the dictionary and
the transformation engine, and the advanced user of
the editor the possibility of adapting the lexical an-
alyzer to languages other than TEX (we will spend
a few more words on this topic in the conclusions).

Notation We will use the following conventions
regarding lists. Lists are uniformly typed, that is
elements of a list are all of the same type. We use
α∗ to denote the type of a list whose elements have
type α. [] is the empty list; n :: x is the list with
head element n and tail x; x@y is the concatenation
of two lists x and y; [n1; . . . ; nk] is a short form for
n1 :: · · · :: nk :: [].

3 Lexical Analysis

The purpose of this phase is to tokenize the input
buffer. As we are talking about an interactive tool,
the presence of an input buffer may look surprising.
Implementations for the input buffer range from vir-

tual buffers (there is no buffer at all, characters are
collected by the lexical analyzer which outputs to-
kens as they are completed) to flat buffers (just a
string of characters as in a text editor) to structured

buffers. For efficiency, we do not investigate in detail
all the possibilities in this paper, but early experi-
ments have shown that working with virtual buffers
can be extremely difficult. As long as insert oper-
ations are performed at the right end of the buffer
the restructuring operations on the parsing tree are
fairly easy, but when it comes to deletion or to mod-
ifications in arbitrary positions, the complexity of
restructuring operations rises rapidly to an unman-
ageable level. Hence, from now on we will assume
that a flat input buffer is available. Whether the
buffer should be visible or not is a subjective matter,
and may also depend on the kind of visual feedback
given by the editor on incomplete and/or incorrect
typed markup.

The outcome of the lexer is a stream (list) of
tokens. Each token may have one of three forms: a
literal, that is a single character to be treated “as is”,
a space, that is a sequence of one or more space-like
characters, or a control sequence, that is the name
of a macro.

Since the token stream is the only interface be-
tween the lexer and the parser, the lexer has the free-
dom to perform arbitrary mappings from the char-
acters in the input buffer to tokens in the stream.
In particular, some TEX commands like \alpha or
\rightarrow are just placeholders for Unicode char-
acters. There is no point in communicating these
entities as control sequences as the internal tree rep-
resentation (XML) is able to accommodate Unicode
characters naturally; also, treating them as literals
simplifies the subsequent transformation phase.

On the other hand, there are characters, such
as curly braces { and } or scripting operators _ and
^, that have a special meaning. Logically these are
just short names for macros that obey their own
rules regarding parameters. What we propose is a
general classification of parameter types which, in
addition to parameters in normal TEX definitions,
allows us

• to deal with optional parameters as LATEX [6]
does;

• to treat { as just an abbreviation for \bgroup

and make \bgroup a macro with one parameter
delimited by \egroup, which we treat as the
expansion for }. In order for this “trick” to
work we have to design the parser carefully, as
we will see in Sect. 4;

• to treat scripting operators _ and ^ as the two
macros \sb and \sp both accepting a so-called
pre-parameter (a parameter that occurs before

the macro in the input buffer) and a so-called
post-parameter (a parameter that occurs after

the macro in the input buffer);

• to deal with macros that have “open” parame-
ters. For instance \rm affects the markup fol-
lowing it until the first delimiter coming from
an outermost macro is met. We treat \rm as
a macro with an open post-parameter that ex-
tends as far as possible to the right. Similarly,
\over can be seen as a macro with open pre-
and post-parameters.

In order to describe parameter types we need to
define the concept of term. A term is either a literal
or a macro along with all its parameters (equiva-
lently, a term is a subtree in the parsing tree). A
simple parameter consists of one sole term. A com-

pound parameter consists of one or more terms ex-
tending as far as possible to the left or to the right
of the macro depending on whether the parameter
is “pre-” or “post-”. A delimited parameter consists
of one or more terms extending as far as possible
to the right up to but not including a given token

28 Preprints for the 2004 Annual Meeting

Interactive Editing of MathML Markup Using TEX Syntax

Table 1: Examples of TEX and LATEX macros along with their signature.

Parameters
Macro pre post

overline [simple]
sqrt [simple] (TEX)

[optional; simple] (LATEX)
root [delimited(control(of)); simple]
over, choose [compound] [compound]
frac [simple; simple]
rm, bf, tt, it [compound]
left [simple; delimited(control(right)); simple]
sb, sp [simple] [simple]
bgroup [delimited(control(egroup))]
begin [simple; optional; delimited(control(end)); simple]
proclaim [token(space); delimited(literal(.)); token(space);

delimited(control(par))]

t. An optional parameter is either empty or it con-
sists of one or more terms enclosed within a pair or
square brackets [and]. The absence of the open-
ing bracket means that the optional parameter is
not given. A token parameter is a given token t rep-
resenting pure syntactic sugar. It does not properly
qualify as a parameter and does not appear in the
parsing tree.

Formally tokens and parameter types are de-
fined as follows:

token ::= literal(v) | space | control〈p1,p2〉(v)
type ::= simple | compound | delimited(t)

| optional | token(t)

where t ∈ token, v ∈ string is an arbitrary string of
Unicode characters, p1 ∈ {simple, compound}∗ and
p2 ∈ type∗ are lists of parameter types for the pre-
and post-parameters respectively. Note that pre-
parameters can be of type simple or compound only.

The dictionary is a total map

dictionary : string 7→ token

such that for each unknown control sequence v we
have dictionary(v) = control〈[],[]〉(v). Table 1 shows
part of a possible dictionary for some TEX and LATEX
commands (mostly for mathematics). Note how it is
possible to encode the signature for the \begin con-
trol sequence, although it is not possible to enforce
the constraint that the first and the last parameters
must have equal value in order for the construct to
be balanced.

4 Parsing

We now come to the problem of building the TEX
parsing tree starting the stream of tokens produced
by the lexical analyzer. As we have already pointed

out there is no fixed grammar that we can use to
generate the parser automatically: authors are free
to introduce new macros and hence new ways of
structuring the parse tree. Thus we will build the
parser “by hand”. More reasons for writing an ad-
hoc parser, namely error recovery and incremental-
ity, will be discussed later in this section.

The following grammar captures formally the
structure of a TEX parsing tree, which is the out-
come of the parser:

node ::= empty

| literal(v) v ∈ string

| macro(v, x) v ∈ string , x ∈ param∗

param ::= {a} a ∈ node∗

Note that a parameter is made of a list of nodes and
that literals are strings instead of single characters.
The empty node is used to denote a missing term
when one was expected; its role will be clarified later
in this section.

The appendix contains the Document Type
Definition for the XML representation of TEX pars-
ing trees. It is simpler than the TEXML DTD [7]
and we are providing it as mere reference.

4.1 Parsing Functions

Table 2 gives the operational semantics of the parser.
In this table only, for each a ∈ node∗ we define
a! = [empty] if a = [] and a! = a otherwise. There
are four parsing functions: T for terms, A for pre-
parameters, B for post-parameters, and C for de-
limited sequences of terms. Each parsing function
is defined by induction on the structure of its ar-
guments. Axioms (rules with no horizontal line) de-
note base cases, while inference rules define the value

Preprints for the 2004 Annual Meeting 29

Luca Padovani

Table 2: Parsing functions for the simplified TEX markup.

∀d ∈ token∗ T (d)
−→ : node∗ × token∗ → node∗ × token∗

A
−→ : node∗ × type∗ → node∗ × param∗

∀d ∈ token∗ B(d)
−→ : type∗ × token∗ → param∗ × token∗

∀d ∈ token∗, ∀b ∈ bool
C(d,b)
−→ : node∗ × token∗ → node∗ × token∗

(T.1) a, []
T (d)
−→ a, [] (T.2) a, t :: l

T (d)
−→ a, t :: l (t occurs in d)

(T.3) a, literal(v) :: l
T (d)
−→ a@[literal(v)], l (T.4)

a, l
T (d)
−→ a′, l′

a, space :: l
T (d)
−→ a′, l′

(T.5)
a, p1

A
−→ a′, x p2, l

B(d)
−→ y, l′

a, control〈p1,p2〉(v) :: l
T (d)
−→ a′@[macro(v, x@y)], l′

(A.1) a, []
A
−→ a, [] (A.2)

[], p
A
−→ a, x

[], s :: p
A
−→ a, x@[{[empty]}]

(A.3)
a, p

A
−→ a′, x

a@[n], simple :: p
A
−→ a′, x@[{[n]}]

(A.4)
[], p

A
−→ a′, x

a, compound :: p
A
−→ a′, x@[{a}]

(B.1) [], l
B(d)
−→ [], l (B.2)

p, t′ :: l
B(d)
−→ x, a

token(t) :: p, t′ :: l
B(d)
−→ x, a

† (t 6= t′)

(B.3)
p, []

B(d)
−→ x, l

token(t) :: p, []
B(d)
−→ x, l

† (B.4)
p, l

B(d)
−→ x, l′

token(t) :: p, t :: l
B(d)
−→ x, l′

(B.5)
[], l

T (d)
−→ a, l′ p, l′

B(d)
−→ x, l′′

simple :: p, l
B(d)
−→ {a!} :: x, l′′

(B.6)
[], l

C(d,false)
−→ a, l′ p, l′

B(d)
−→ x, l′′

compound :: p, l
B(d)
−→ {a!} :: x, l′′

(B.7)
p, []

B(d)
−→ x, l

optional :: p, []
B(d)
−→ {[]} :: x, l

(B.8)
[], l

C(literal(])::d,true)
−→ a, l′ p, l′

B(d)
−→ x, l′′

optional :: p, literal([) :: l
B(d)
−→ {a} :: x, l′′

(B.9)
p, t :: l

B(d)
−→ x, l′

optional :: p, t :: l
B(d)
−→ {[]} :: x, l′

(t 6= literal([))

(B.10)
[], l

C(t::d,true)
−→ a, l′ p, l′

B(d)
−→ x, l′′

delimited(t) :: p, l
B(d)
−→ {a!} :: x, l′′

(C.1) a, []
C(d,b)
−→ a, []

(C.2) a, t :: l
C(t::d,true)

−→ a, l (C.3) a, t :: l
C(d,b)
−→ a, t :: l (t occurs in d)

(C.4)
a, t :: l

T (d)
−→ a′, l′ a′, l′

C(d,b)
−→ a′′, l′′

a, t :: l
C(d,b)
−→ a′′, l′′

(t 6∈ d)

30 Preprints for the 2004 Annual Meeting

Interactive Editing of MathML Markup Using TEX Syntax

of a parsing function (the conclusion, below the line)
in terms of the value of one or more recursive calls
to other functions (the premises, above the line).
Right arrows denote the action of parsing. Arrows
are decorated with a label that identifies the parser
along with its parameters, if any. The T , B, and
C parsers have a parameter representing the list of
delimiters in the order they are expected, with the
head of the list being the first expected delimiter.
The C parser also has a boolean parameter indicat-
ing whether the parser should or should not “eat”
the delimiter when it is eventually met.

The root parsing function is T . Given a delim-
iter t ∈ token and a token stream l ∈ token∗ we
have

[], l
T ([t])
−→ [n], l′

where n ∈ node is the parsed term and l′ ∈ token∗

is the part of the token stream that has not been
consumed. Spaces are ignored when parsing terms
and pre-parameters (rule T.4), but not when pars-
ing post-parameters (rule B.4). The A function dif-
fers from the other parsing functions because by the
time a macro with pre-parameters is encountered,
pre-parameters have already been parsed. The lists
a ∈ node∗ in the T , A, and C parsers represent the
terms accumulated before the term being parsed.
Note that pre-parameters are inserted at the end
of the parameter list (rules A.2 to A.4) and that
post-parameters are inserted at the beginning of the
parameter list (rules B.5 to B.10). This way pa-
rameter nodes appear in the parse tree in the same
order as in the original token stream (rule T.5).

4.1.1 Example

Given that the input buffer contains the TEX source
shown in Fig. 1, the lexical analyzer would produce
the following stream of tokens:

l0
def
= [control〈[],[delimited(control(egroup))]〉(bgroup);

literal(1); control〈[compound],[compound]〉(over);
control〈[],[delimited(control(egroup))]〉(bgroup);
literal(x); literal(+); literal(1);
control(egroup); control〈[simple],[simple]〉(sp);
literal(2); control(egroup)]

By the application of the parsing rules given in Ta-
ble 2 it can be shown that

[], l0@[control(eoi)]
T ([control(eoi)])

−→ [n], [control(eoi)]

where n ∈ node is the same tree shown in Fig. 1
except that the g nodes are labeled with bgroup.

4.2 Error Recovery

Parsing functions are all total functions, they al-
ways produce a result, even when the input token

stream is malformed. Unlike parsers of batch TEX
converters or the TEX parser itself, there will often
be moments during the editing process when the in-
put buffer contains incorrect or incomplete markup,
for example because not all the required parameters
of a macro have been entered yet. The parser must
recover from such situations in a tolerant and hope-
fully sensible way. We distinguish three kinds of
situations: missing parameters, pattern mismatch,
and ambiguity, which we examine in the rest of this
section.

4.2.1 Missing Parameters

Consider an input token stream representing the sole
\over macro with no arguments provided:

l1
def
= [control〈[compound],[compound]〉(over);

control(eoi)]

It is easy to check that

[], l1
T ([control(eoi)])

−→ [macro(over, [empty; empty])],
[control(eoi)]

More generally the parser inserts empty nodes
in the parsing tree wherever an expected parameter
is not found in the token stream. This behavior
can be seen in rule A.2 and also in rules B.5, B.6,
and B.10 where the ! operator is used. For optional
parameters an empty node list is admitted (rules
B.7 and B.8).

The presence of empty nodes guarantees that
the generated tree is structurally well-formed, which
is crucial for the subsequent transformation phase.
It also allows the application to give the user feed-
back indicating the absence of required parameters.
In the example above, for instance, the application
may display something like �

�
suggesting that a frac-

tion was entered, but neither the numerator nor the
denominator have been.

4.2.2 Pattern Mismatch

Rules B.2 and B.3 have been marked with a † to
indicate that the parser expects a token which is
not found in the token stream. In both cases the
parser will typically notify the user with a warning
message.

4.2.3 Ambiguities

In TEX one cannot pass a macro with parameters as
the parameter of another macro, unless the parame-
ter is enclosed within a group. For example, it is an
error to write \sqrt\sqrt{x}, the correct form is
\sqrt{\sqrt{x}}. Because we treat the left curly
brace like any other macro, grouping would not help
our parser in resolving ambiguities. However, the

Preprints for the 2004 Annual Meeting 31

Luca Padovani

parser knows how many parameters a macro needs,
because the token representing the control sequence
has been annotated with such information by the
lexer. When processing a macro with arguments
the parser behaves “recursively”, it does not let an
incomplete macro to be “captured” if it was passed
as parameter of an outer macro. A consequence of
this extension is that any well-formed fragment of
TEX markup is accepted by our parser resulting in
the same structure, but there are some strings ac-
cepted by our parser that cause the TEX parser to
fail.

4.3 Incremental Parsing

Parsing must be efficient because it is performed in
real-time, in principle at every modification of the
input buffer, no matter how simple the modifica-
tion is. Fortunately TEX markup exhibits good lo-

cality, that is small modifications in the document
cause small modifications in the parsing tree. Con-
sequently we can avoid re-parsing the whole source
document, we just need to re-parse a small inter-
val of the input buffer around the point where the
modification has occurred, and adjust the parsing
tree accordingly. Let us consider again the example
of Fig. 1 and suppose that a change is made in the
markup

{1\over{1+x}^2} ⇒ {1\over{1+x+y}^2}

(a +y is added to the denominator of the fraction).
To be conservative we can re-parse the smallest term
within braces that includes the modified part (the
underlined fragments). Once the term has been re-
parsed it has to be substituted in place of the old
term in the parsing tree.

In order to compute the interval of the input
buffer to be re-parsed we annotate the nodes of the
parsing tree with information about the first and
the last characters of the buffer which were scanned
while building the node and all of its children. A
simple visit of the tree can locate the smaller interval
affected by the modification.

Curly braces occur frequently enough in the
markup to give good granularity for re-parsing. At
the same time limiting re-parsing to braced terms
helps control the costs related to the visit to the
parsing tree and to the implementation of the incre-
mental parsing and transformation machinery.

5 Transformation

The transformation phase recognizes structured pat-
terns in the parsing tree and generates correspond-
ing fragments of the result document. We have al-
ready anticipated that XSLT is a very natural choice

for the implementation of this phase. Besides, XSLT

stylesheets can be extended very easily, by providing
new templates that recognize and properly handle
new macros that an author has introduced.

We can see in Fig. 2 two sample templates taken
from an XSLT stylesheet for converting the internal
parsing tree into a MathML tree. Both templates
have a preamble made of an xsl:if construct which
we will discuss later in this section. Since the TEX
tree and the MathML tree are almost isomorphic
(Fig. 1) the transformation is generally very sim-
ple and in many cases it amounts at just renam-
ing the node labels. Template (a) is one such case:
it matches any node in the parsing tree with label
macro and having the name attribute set to over.
The node for the \over macro corresponds natu-
rally to the mfrac element in MathML. The two
parameters of \over are transformed recursively by
applying the stylesheet templates to the first and
second child nodes (p[1] means “the first p child
of this node”, similarly p[2] refers to the second p

child).
Template (b) is slightly more complicated and

shows one case where there is some change in the
structure. For combined sub/super scripts TEX ac-
cepts a sequence of _ and ^ no matter in what order
they occur, but MathML has a specific element for
such expressions, namely msubsup. The template
matches an sb node whose first parameter contains
an sp node, thus detecting a ...^..._... fragment
of markup, then the corresponding msubsup element
is created and its three children accessed in the
proper position of the parsing tree. A symmetric
template will handle the case where the subscript
occurs before the superscript.

5.1 Incremental Transformation

As we have done for parsing, for transformations we
also need to account for their cost. In a batch, one-
shot conversion from TEX this is not generally an
issue, but in an interactive authoring tool a trans-
formation is required at every modification of the
parsing tree in order to update the view of the doc-
ument.

Intuitively, we can reason that if only a frag-
ment of the parsing tree has changed, we need re-
transform only that fragment and substitute the re-
sult in the final document. This technique makes
two assumptions: (1) that transformations are
context-free; that is, the transformation of a frag-
ment in the parsing tree is not affected by the con-
text in which the fragment occurs; (2) that we are
able to relate corresponding fragments between the
parsing and the result trees.

32 Preprints for the 2004 Annual Meeting

Interactive Editing of MathML Markup Using TEX Syntax

<xsl:template
match="macro[@name=’over’]">
<m:mfrac>
<xsl:if test="@id">
<xsl:attribute name="xref">
<xsl:value-of select="@id"/>
</xsl:attribute>

</xsl:if>
<xsl:apply-templates select="p[1]"/>
<xsl:apply-templates select="p[2]"/>

</m:mfrac>
</xsl:template>

<xsl:template
match="macro[@name=’sb’]

[p[1]/*[1][self::macro[@name=’sp’]]]">
<m:msubsup>
<xsl:if test="@id">
<xsl:attribute name="xref">
<xsl:value-of select="@id"/>

</xsl:attribute>
</xsl:if>
<xsl:apply-templates select="p[1]/*/p[1]"/>
<xsl:apply-templates select="p[2]"/>
<xsl:apply-templates select="p[1]/*/p[2]"/>

</m:msubsup>
</xsl:template>

(a) (b)

Figure 2: Example of XSLT templates for the transformation of the internal parsing tree into a MathML

tree. MathML elements can be distinguished because of the m: prefix.

Template (b) in Fig. 2 shows one case where
the transformation is not context free: the deeper sp
node is not processed as if it would occur alone, but
it is “merged” together with its parent. More gener-
ally we can imagine that transformations can make
almost arbitrary re-arrangements of the structure.
This problem cannot be solved unless we make some
assumptions, and the one we have already commit-
ted to in Sect. 4 is that braces define “black-box”
fragments which can be transformed in isolation,
without context dependencies.

As for the matter of relating corresponding frag-
ments of the two documents, we use identifiers and
references. Each node in the parsing tree is anno-
tated with a unique identifier (in our sample tem-
plates we are assuming that the identifier is a string
in the id attribute). Templates create correspond-
ing xref attributes in the result document “point-
ing” to the fragment with the same identifier in the
parsing tree. This way, whenever a fragment of the
parsing tree is re-transformed, it replaces the frag-
ment in the result document with the same identi-
fier.

More generally, back-pointers provide a mecha-
nism for relating the view of the document with the
source markup. This way it is possible to perform
operations like selection or cut-and-paste that, while
having a visual effect in the view, act indirectly at
the content/markup level.

6 Conclusion

We have presented architectural and implementa-
tion issues of an interactive editor based on TEX syn-
tax which allows flexible customization and content-
oriented authoring. TEXmacs2 is probably the exist-
ing application that most closely adopts such archi-
tecture, with the difference that TEXmacs does not

2 http://www.texmacs.org/

stick to TEX syntax as closely as we do and that,
apart from being a complete (and cumbersome) edit-
ing tool and not just an interface, it uses encoding
and transformation technologies not based on stan-
dard languages (XML [2] and XSLT [3]).

Among batch conversion tools we observe a ten-
dency to move towards the processing of content.
The TEX to MathML converter by Igor Rodionov
and Stephen Watt at the University of Western On-
tario [8, 9] is one such tool, and the recent Her-
mes converter by Romeo Anghelache [10] is another.
These represent significant steps forwards when
compared to converters such as LATEX2HTML.3

A prototype tool called EdiTEX, based on the
architecture described in this paper, has been de-
veloped and is freely available along with its source
code.4 No mention of MathML is made in the name
of the tool to remark the fact that the architec-
ture is very general and can be adapted to other
kinds of markup. The prototype is currently be-
ing used as interface for a proof-assistant applica-
tion where editing of complex mathematical formu-
las and proofs is required. In this respect we should
remark that TEX syntax is natural for “real” math-
ematics, but it quickly becomes clumsy when used
for writing terms of programming languages or λ-
calculus. This is mainly due to the conventions re-
garding spaces (for instance, spaces in the λ-calculus
denote function application) and identifiers (the rule
“one character is one identifier” is fine for math-
ematics, but not for many other languages). Note
however that, since the lexical analyzer is completely
separate from the rest of the architecture, the token
stream being its interface, it can be easily targeted
to a language with different conventions than those
of TEX.

3 http://www.latex2html.org/
4 http://helm.cs.unibo.it/software/editex/

Preprints for the 2004 Annual Meeting 33

Luca Padovani

The idea of using some sort of restricted TEX
syntax for representing mathematical expressions is
not new. For example, John Forkosh’s MimeTEX5

generates bitmap images of expressions to be em-
bedded in Web pages. However, to the best of our
knowledge the formal specification of the parser for
simplified TEX markup presented in Sect. 4 is unique
of its kind. A straightforward implementation based
directly on the rules given in Table 2 amounts at
only just 70 lines of functional code (in an ML di-
alect), which can be considered something of an
achievement given that parsing TEX is normally re-
garded as a hard task. By comparison, the parsing
code in MimeTEX amounts to nearly 350 lines of C
code after stripping away the comments.

One may argue that the simplified TEX markup
is too restrictive, but in our view this is just the sen-
sible fragment of TEX syntax that the average user
should be concerned about. In fact the remaining
syntactic expressiveness provided by TEX is mainly
required for the implementation of complex macros
and of system internals, which should never surface
at the document level. By separating the transfor-
mation phase we shift the mechanics of macro ex-
pansion to a different level which can approached
with different (more appropriate) languages. Since
this mode of operation makes the system more flex-
ible we believe that our design is a valuable contri-
bution which may provide an architecture for other
implementers to adopt.

References

[1] The Unicode Consortium: The Unicode Stan-
dard, Version 4.0, Boston, MA, Addison-Wesley
(2003). http://www.unicode.org/

[2] Tim Bray, Jean Paoli, C.M. Sperberg-
McQueen, Eve Maler (editors): Extensible
Markup Language (XML) 1.0 (2nd Edi-
tion), W3C Recommendation (2000). http:

//www.w3.org/TR/2000/REC-xml-20001006

[3] James Clark (editor): XML Transformations
(XSLT) Version 1.0, W3C Recommenda-
tion (1999). http://www.w3.org/TR/1999/

REC-xslt-19991116

[4] Ron Ausbrooks, Stephen Buswell, Stéphane
Dalmas, Stan Devitt, Angel Diaz, et al.:
Mathematical Markup Language (MathML)
Version 2.0 (2nd Edition) W3C Recommen-
dation, (2003). http://www.w3.org/TR/2003/
REC-MathML2-20031021/

5 http://www.ctan.org/tex-archive/support/mimetex/

[5] Donald E. Knuth: The TEXbook, Addison-
Wesley, Reading, MA, USA (1994).

[6] Leslie Lamport: A Document Preparation Sys-
tem: LATEX, Addison-Wesley, Reading, MA,
USA (1986).

[7] Douglas Lovell: TEXML: Typesetting XML with
TEX, TUGboat, 20(3), pp. 176–183 (September
1999).

[8] Sandy Huerter, Igor Rodionov, Stephen
M. Watt: Content-Faithful Transformations
for MathML, Proc. International Confer-
ence on MathML and Math on the Web
(MathML 2002), Chicago, USA (2002).
http://www.mathmlconference.org/2002/

presentations/huerter/

[9] Stephen M. Watt: Conserving implicit mathe-
matical semantics in conversion between TEX
and MathML, TUGboat, 23(1), pp. 108–108
(2002).

[10] Romeo Anghelache: LATEX-based authoring
tool, Deliverable D4.d, MoWGLI Project
(2003). http://relativity.livingreviews.

org/Info/AboutLR/mowgli/index.html

Appendix: The TML DTD

<!ENTITY % TML.node "

empty|space|literal|macro">

<!ENTITY % TML.common.attrib "

id CDATA #IMPLIED

xref CDATA #IMPLIED

start NMTOKEN #IMPLIED

end NMTOKEN #IMPLIED">

<!ELEMENT empty EMPTY>

<!ATTLIST empty %TML.common.attrib;>

<!ELEMENT space EMPTY>

<!ATTLIST space

%TML.common.attrib

name NMTOKEN #IMPLIED

literal CDATA #IMPLIED>

<!ELEMENT literal #PCDATA>

<!ATTLIST literal

%TML.common.attrib;

name NMTOKEN #IMPLIED>

<!ELEMENT macro (p)*>

<!ATTLIST macro

%TML.common.attrib;

name NMTOKEN #REQUIRED

literal CDATA #IMPLIED>

<!ELEMENT p (%TML.node;)*>

<!ATTLIST p %TML.common.attrib;>

34 Preprints for the 2004 Annual Meeting

Animations in pdfTEX-generated PDF

Jan Holeček
Faculty of Informatics, Masaryk University

Botanická 68a

602 00 Brno

Czech Republic

holecek@fi.muni.cz

http://www.fi.muni.cz/~xholecek

Petr Sojka
Faculty of Informatics, Masaryk University

Botanická 68a

602 00 Brno

Czech Republic

sojka@fi.muni.cz

http://www.fi.muni.cz/usr/sojka

Abstract

This paper presents a new approach for creating animations in Portable Doc-
ument Format (PDF). The method of animation authoring described uses free
software (pdfTEX) only. The animations are viewable by any viewer that sup-
ports at least some features of Acrobat JavaScript, particularly Adobe (Acrobat)
Reader, which is available at no cost for a wide variety of platforms. Furthermore,
the capabilities of PDF make it possible to have a single file with animations both
for interactive viewing and printing.

The paper explains the principles of PDF, Acrobat JavaScript and pdfTEX
needed to create animations for Adobe Reader using no other software except
pdfTEX. We present a step by step explanation of animation preparation, to-
gether with sample code, using a literate programming style. Finally, we discuss
other possibilities of embedding animations into documents using open standards
(SVG) and free tools, and conclude with their strengths and weaknesses with re-
spect to the method presented.

1 Introduction

Extensive use of electronic documents leads to new
demands being made on their content. Developing
specific document versions for different output de-
vices is time consuming and costly. A very natural
demand, especially when preparing educational ma-
terials, is embedding animations into a document.

A widely used open format for electronic doc-
uments is the Adobe PDF [2] format, which com-
bines good typographic support with many inter-
active features. Even though it contains no pro-
gramming language constructs such as those found
in PostScript, the format allows for the inclusion
of Document Level JavaScript (DLJS) [1]. Widely
available PDF viewers such as Adobe Reader (for-
merly Acrobat Reader) benefit from this possibility,
allowing interactive documents to be created.

One of the first applications showing the power
of using JavaScript with PDF was Hans Hagen’s cal-
culator [5]. Further, the AcroTEX bundle [9] uses
several LATEX packages and the full version of the
Adobe Acrobat software for preparing PDF files with
DLJS [10]; macro support for animations is rudimen-
tary and it is stressed in the documentation that it
works only with the full commercial version of Ac-
robat.

Our motivation is a need for PDF animations
in a textbook [3] published both on paper and on
CD. We have published it using Acrobat [7, 8], and
eventually discovered a method to create animations
using pdfTEX [11] only.

pdfTEX facilitates the PDF creation process in
several ways. We can directly write the PDF code
which is actually required to insert an animation.
We can also utilise the TEX macro expansion power

Preprints for the 2004 Annual Meeting 35

Jan Holeček and Petr Sojka

to produce PDF code. And finally, we can write
only the essential parts directly, leaving the rest to
pdfTEX. pdfTEX introduces new primitives to take
advantage of PDF features. The ones we are going
to use will be described briefly as they appear.

In this paper, we present this new ‘pdfTEX only’
way of embedding animations. We require no pre-
vious knowledge either of the PDF language or of
pdfTEX extensions to TEX. However, the basics of
TEX macro definitions and JavaScript are assumed.

The structure of the paper is as follows. In the
next section we start with the description of the PDF

internal document structure with respect to anima-
tions. The core of the paper consists of commented
code for the pdfTEX that generates a simple all-in-
one animation. The examples are written in plain
TEX [6], so that others can use it in elaborate macro
packages, in a literate programming style. In the
second example the animation is taken from an ex-
ternal file, allowing the modification of the anima-
tion without modifying the primary document. Fi-
nally, we compare this approach with the possibili-
ties of other formats, including the new standard for
Scalable Vector Graphics (SVG) [12] from the W3C.

2 The PDF Document Structure

A PDF file typically consists of a header, a body,
a cross-reference table and a trailer. The body is
the main part of the PDF document. The other
parts provide meta-information and will not be dis-
cussed here. A PDF document is actually a graph
of interconnected objects, each being of a certain
type. There are basic data types (boolean, numeric,
string) and some special and compound types which
require some explanation.

A name object has the form /MYNAME. There
is a set of names with predefined meanings when
used as a dictionary key or value. Other names
can be defined by the user as human readable ref-
erences to indirect objects (dictionaries and indirect
objects are treated below). An array object is a
one-dimensional list, enclosed by square brackets, of
objects not necessarily of the same type. A dictio-
nary object is a hash, i.e., a set of key-value pairs
where the keys are name objects and the values are
arbitrary objects. A dictionary is enclosed by the <<
and >> delimiters. Stream objects are used to insert
binary data into a PDF document. There is also a
special null object used as an “undefined” value.

The body of a PDF file consists of a sequence of
labelled objects called indirect objects. An object of
any other type which is given a unique object iden-
tifier can form an indirect object. When an object
is required in some place (an array element, a value

of a key in a dictionary), it can be given explicitly
(a direct reference) or as an object identifier to an
indirect object (an indirect reference). In this way
objects are interconnected to form a graph. An in-
direct reference consists of two numbers. The first
number is a unique object number. The second is
an object version number and is always 0 in indi-
rect objects newly created by pdfTEX —the first one
therefore suffices to restore an indirect reference.

Various document elements are typically repre-
sented by dictionary objects. Each element has a
given set of required and optional keys for its dic-
tionary. For example, the document itself is repre-
sented by a Catalog dictionary, the root node of the
graph. Its key-value pairs define the overall proper-
ties of the document. A brief description of concrete
objects will be given when encountered for the first
time. See [2] for more detailed information.

3 Insertion of the Animation Frames

We are not interested in constructing the animation
frames themselves —any graphics program such as
METAPOST will do. Let us hence assume we have
a PDF file, each page of which forms a single an-
imation frame and the frames are in the order of
appearance.

Every image is inserted into PDF as a so-called
form XObject which is actually an indirect stream
object. There are three primitives that deal with im-
ages in pdfTEX. The \pdfximage creates an indirect
object for a given image. The image can be spec-
ified as a page of another PDF file. However, the
indirect object is actually inserted only if referred
to by the \pdfrefximage primitive or preceded by
\immediate. \pdfrefximage takes an object num-
ber (the first number of indirect reference) as its
argument and adds the image to the TEX list be-
ing currently built. The object number of the image
most recently inserted by \pdfximage is stored in
the \pdflastximage register.

A general PDF indirect object can be created
similarly by \pdfobj, \pdfrefobj and \pdflast-

obj. \pdfobj takes the object content as its argu-
ment. TEX macro expansion can be used for gener-
ating PDF code in an ordinary manner.

In our example, we first define four macros for
efficiency. The \ximage macro creates a form XOb-
ject for a given animation frame (as an image) and
saves its object number under a given key. The
\insertobj macro creates a general PDF object and
saves its object number under a given key. The
\oref macro expands to an indirect reference of an
object given by the argument. The last “R” is an op-
erator that creates the actual indirect reference from

36 Preprints for the 2004 Annual Meeting

Animations in pdfTEX-generated PDF

two numbers. We are not going to use \pdfref*

primitives, so \immediate must be present. Refer-
ences will be put directly into the PDF code by the
\oref macro. The \image macro actually places an
image given by its key onto the page.

1 % an image for further use

2 \def\ximage#1#2{%

3 \immediate\pdfximage

4 page #2 {frames-in.pdf}%

5 \expandafter\edef

6 \csname pdf:#1\endcsname

7 {\the\pdflastximage}}

8

9 % a general object for further use

10 \def\insertobj#1#2{%

11 \immediate\pdfobj{#2}%

12 \expandafter\edef

13 \csname pdf:#1\endcsname

14 {\the\pdflastobj}}

15

16 % expands to an indirect ref. for a key

17 \def\oref#1{%

18 \csname pdf:#1\endcsname\space 0 R}

19

20 % actually places an image

21 \def\image#1{%

22 \expandafter\pdfrefximage

23 \csname pdf:#1\endcsname}

Another new primitive introduced by pdfTEX
is \pdfcatalog. Its argument is added to the docu-
ment’s Catalog dictionary every time it is expanded.
The one below makes the document open at the first
page and the viewer fit the page into the window.
One more key will be described below.

24 % set up the document

25 \pdfcatalog{/OpenAction [0 /Fit]}

Now we are going to insert animation frames
into the document. We will use the \ximage macro
defined above. Its first argument is the name to be
bound with the resulting form XObject. The sec-
ond one is the number of the frame (actually a page
number in the PDF file with frames). One needs to
be careful here because pdfTEX has one-based page
numbering while PDF uses zero-based page number-
ing internally.

26 % all animation frames are inserted

27 \ximage{fr0}{1} \ximage{fr1}{2}

28 \ximage{fr2}{3} \ximage{fr3}{4}

29 \ximage{fr4}{5} \ximage{fr5}{6}

30 \ximage{fr6}{7} \ximage{fr7}{8}

31 \ximage{fr8}{9}

4 Setting up an AcroForm Dictionary

The interactive features are realized by annotation
elements in PDF. These form a separate layer in ad-
dition to the regular document content. Each one
denotes an area on the page to be interactive and
binds some actions to various events that can hap-
pen for that area. Annotations are represented by
Annot dictionaries. The way pdfTEX inserts anno-
tations into PDF is discussed in the section “Anima-
tion Dynamics” below.

Annotations are transparent by default, i.e., the
page appearance is left unchanged when adding an
annotation. It is up to the regular content to provide
the user with the information that some areas are
interactive.

We will be interested in a subtype of annota-
tions called interactive form fields. They are repre-
sented by a Widget subtype of the Annot dictionary.
Widgets can be rendered on top of the regular con-
tent. However, some resources have to be set. The
document’s Catalog refers to an AcroForm dictionary
in which this can be accomplished.

The next part of the example first defines the
name Helv to represent the Helvetica base-font (built
in font). This is not necessary but it allows us to
have a smooth control button. Next we insert the
AcroForm dictionary. The DR stands for “resource
dictionary”. We only define the Font resource with
one font. The DA stands for “default appearance”
string. The /Helv sets the font, the 7 Tf sets the
font size scale factor to 7 and the 0 g sets the color
to be 0 % white (i.e., black). The most important en-
try in the AcroForm dictionary is NeedAppearances.
Setting it to true (line 43) makes the Widget anno-
tations visible. Finally, we add the AcroForm dictio-
nary to the document’s Catalog.

32 % the Helvetica basefont object

33 \insertobj{Helv}{

34 << /Type /Font /Subtype /Type1

35 /Name /Helv

36 /BaseFont /Helvetica >> }

37

38 % the AcroForm dictionary

39 \insertobj{AcroForm}{

40 << /DR << /Font <<

41 /Helv \oref{Helv} >> >>

42 /DA (/Helv 7 Tf 0 g)

43 /NeedAppearances true >> }

44

45 % add a reference to the Catalog

46 \pdfcatalog{/AcroForm \oref{AcroForm}}

To make a form XObject with an animation
frame accessible to JavaScript, it has to be assigned

Preprints for the 2004 Annual Meeting 37

Jan Holeček and Petr Sojka

a name. There are several namespaces in PDF in
which this can be accomplished. The one searched
for is determined from context. We are only in-
terested in an AP namespace that maps names to
annotation appearance streams. pdfTEX provides
the \pdfnames primitive that behaves similarly to
\pdfcatalog. Each time it is expanded it adds its
argument to the Names dictionary referred from doc-
ument’s Catalog. The Names dictionary contains the
name definitions for various namespaces. In our ex-
ample we put definitions into a separate object Ap-

pearanceNames.
The name definitions may form a tree to make

the lookup faster. Each node has to have Limits set
to the lexically least and greatest names in its sub-
tree. There is no extensive set of names in our ex-
ample, so one node suffices. The names are defined
in the array of pairs containing the name string and
the indirect reference.

47 % defining names for frames

48 \insertobj{AppearanceNames}{

49 << /Names

50 [(fr0) \oref{fr0} (fr1) \oref{fr1}

51 (fr2) \oref{fr2} (fr3) \oref{fr3}

52 (fr4) \oref{fr4} (fr5) \oref{fr5}

53 (fr6) \oref{fr6} (fr7) \oref{fr7}

54 (fr8) \oref{fr8}]

55 /Limits [(fr0) (fr8)] >> }

56

57 % edit the Names dictionary

58 \pdfnames{/AP \oref{AppearanceNames}}

5 Animation Dynamics

We have created all the data structures needed for
the animation in the previous section. Here we in-
troduce the code to play the animation. It uses Ac-
robat JavaScript [1], an essential element of inter-
active forms. Acrobat JavaScript is an extension of
Netscape JavaScript targeted to PDF and Adobe Ac-
robat. Most of its features are supported by Adobe
Reader. They can, however, be supported by any
other viewer. Nevertheless, the Reader is the only
one known to us that supports interactive forms and
JavaScript.

The animation is based on interchanging frames
in a single widget. Here we define the number of
frames and the interchange timespan in milliseconds
to demonstrate macro expansion in JavaScript.

59 % animation properties

60 \def\frames{8}

61 \def\timespan{550}

Every document has its own instance of a Java-
Script interpreter in the Reader. Every JavaScript

action is interpreted within this interpreter. This
means that one action can set a variable to be used
by another action triggered later. Document-level
JavaScript code, e.g., function definitions and global
variable declarations, can be placed into a JavaScript

namespace. This code should be executed when
opening the document.

Unfortunately, there is a bug in the Linux port
of the Reader that renders this generally unusable.
The document level JavaScript is not executed if
the Reader is not running yet and the document
is opened from a command line (e.g., ‘acroread
file.pdf’). Neither the first page’s nor the docu-
ment’s open action are executed, which means they
cannot be used as a workaround. Binding a Java-
Script code to another page’s open action works well
enough to suffice in most cases.

We redeclare everything each time an action is
triggered so as to make the code as robust as possi-
ble. First we define the Next function, which takes a
frame index from a global variable, increases it mod-
ulo the number of frames and shows the frame with
the resulting index. The global variable is modified.

The animation actually starts at line 78 where
the frame index is initialized. The frames are dis-
played on an interactive form’s widget that we name
"animation"— see “Placing the Animation” below.
A reference to this widget’s object is obtained at
line 79. Finally, line 80 says that from now on,
the Next function should be called every \timespan

milliseconds.

62 % play the animation

63 \insertobj{actionPlay}{

64 << /S /JavaScript /JS (

65 function Next() {

66 g.delay = true;

67 if (cntr == \frames) {

68 cntr = 0;

69 try { app.clearInterval(arun); }

70 catch(except) {}

71 } else { cntr++; }

72 g.buttonSetIcon(

73 this.getIcon("fr" + cntr));

74 g.delay=false;

75 }

76 try { app.clearInterval(arun); }

77 catch(except) {}

78 var cntr = 0 ;

79 var g = this.getField("animation");

80 var arun = app.setInterval("Next()",

81 \timespan);

82) >> }

38 Preprints for the 2004 Annual Meeting

Animations in pdfTEX-generated PDF

Now, let us describe the Next function in more
detail. Line 66 suspends widget’s redrawing until
line 74. Then the global variable containing the cur-
rent frame index is tested. If the index reaches the
number of frames, it is set back to zero and the pe-
riodic calling of the function is interrupted. The
function would be aborted on error, but because we
catch exceptions this is avoided. The getIcon func-
tion takes a name as its argument and returns the
reference to the appearance stream object according
to the AP names dictionary. This explains our ap-
proach of binding the names to animation frames —
here we use the names for retrieving them. The
buttonSetIcon method sets the object’s appear-
ance to the given icon.

Line 76 uses the same construct as line 69 to
handle situations in which the action is relaunched
even if the animation is not finished yet. It aborts
the previous action. It would have been an error
had the animation not been running, hence we must
use the exception catching approach.

6 Placing the Animation

The animation is placed on an interactive form
field— a special type of annotation. There are
two primitives in pdfTEX, \pdfstartlink and
\pdfendlink, to produce annotations. They are in-
tended to insert hyperlink annotations but can be
used for creating other annotations as well. The cor-
responding \pdfstartlink and \pdfendlink must
reside at the same box nesting level. The resulting
annotation is given the dimensions of the box that
is enclosed by the primitives. We first create a box
to contain the annotation. Note that both box and
annotation size are determined by the frame itself—
see line 91 where the basic frame is placed into the
regular page content.

We will turn now to the respective entries in the
annotation dictionary. The annotation is to be an
interactive form field (/Subtype /Widget). There
are many field types (FT). The only one that can
take any appearance and change it is the pushbutton.
It is a special kind of button field type (/FT /Btn).
The type of button is given in an array of field bit
flags Ff. The pushbutton has to have bit flag 17
set (/Ff 65536). To be able to address the field
from JavaScript it has to be assigned a name. We
have assigned the name animation to it as men-
tioned above (/T (animation)). Finally, we define
the appearance characteristics dictionary MK. The
only entry /TP 1 sets the button’s appearance to
consist only of an icon and no caption.

83 % an animation widget

84 \centerline{\hbox{%

85 \pdfstartlink user{

86 /Subtype /Widget /FT /Btn

87 /Ff 65536 /T (animation)

88 /BS << /W 0 >>

89 /MK << /TP 1 >> }%

90 \image{fr0}%

91 \pdfendlink}}

For the sake of brevity and clarity we are going
to introduce only one control button in our exam-
ple. However, we have defined a macro for creating
control buttons to show a very simple way of includ-
ing multiple control buttons. The \controlbutton

macro takes one argument: the caption of the but-
ton it is to produce. The macro creates a pushbutton
and binds it to an action defined like actionPlay.

We have chosen control buttons to be push-
buttons again. They are little different from the
animation widget— they are supposed to look like
buttons. The BS dictionary (i.e., border style) sets
the border width to 1 point and style to 3D button
look. The MK dictionary (appearance characteris-
tics dictionary) sets the background color to 60%
white and the caption (line 98). The /H /P entry
tells the button to push down when clicked on. Fi-
nally, an action is bound to the button by setting
the value of the A key.

92 % control button for a given action

93 \def\controlbutton#1{%

94 \hbox to 1cm{\pdfstartlink user{

95 /Subtype /Widget /FT /Btn

96 /Ff 65536 /T (Button#1)

97 /BS << /W 1 /S /B >>

98 /MK << /BG [0.6] /CA (#1) >>

99 /H /P /A \oref{action#1}

100 }\hfil\strut\pdfendlink}}

And finally, we add a control button that plays
the animation just below the animation widget.

101 % control button

102 \centerline{\hfil

103 \controlbutton{Play}\hfil}

104

105 \bye

7 External Animation

Let us modify the example a little so that the anima-
tion frames will be taken from an external file. This
has several consequences which will be discussed at
the relevant points in the code.

We are going to completely detach the anima-
tion frames from the document. As a result, we will
need only the \insertobj and \oref macros from
lines 1–23 from the previous example. Lines 26–31
are no longer required.

Preprints for the 2004 Annual Meeting 39

Jan Holeček and Petr Sojka

A problem arises here: the basic frame should
be displayed in the animation widget when the doc-
ument is opened for the first time. This can be ac-
complished by modifying the OpenAction dictionary
at line 25 as follows.

\pdfcatalog{ /OpenAction <<

/S /JavaScript /JS (

var g = this.getField("animation");

g.buttonImportIcon(

"frames-ex.pdf",0);

this.pageNum = 0;

this.zoomType = zoomtype.fitP;

) >> }

This solution suffers from the bug mentioned in
the “Animation Dynamics” section. The animation
widget will be empty until a user performs an action
every time the bug comes into play.

We still do need an AcroForm dictionary, so lines
32–46 are left without a change. Lines 47–58 must
be omitted on the other hand, as we have nothing to
name. We are going to use the same animation as
in the previous example, so lines 59–61 are left un-
touched. There is one modification of the JavaScript
code to be done. The buttonSetIcon function call
is to be replaced by

g.buttonImportIcon(

"frames-ex.pdf", cntr);

We have used the basic frame to determine a
size of the widget in the previous example. This is
impossible now because it has to be done at compile
time. The replacement for lines 83–91 is as follows

% an animation widget

\centerline{\hbox to 6cm{%

\vrule height 6cm depth 0pt width 0pt

\pdfstartlink user{

/Subtype /Widget /FT /Btn

/Ff 65536 /T (animation)

/BS << /W 0 >>

/MK << /TP 1

/IF << /SW /A /S /P

/A [0.5 0.5] >> >> }%

\hfil\pdfendlink}}

Dimensions of the widget are specified explicitly
and an IF (icon fit) dictionary is added to attributes
of the pushbutton so that the frames would be al-
ways (/SW /A) proportionally (/S /P) scaled to fit
the widget. Moreover, frames are to be centered in
the widget (/A [0.5 0.5]) which would be the de-
fault behavior anyway. The basic frame is not placed
into the document— there is only glue instead.

Lines 92–105 need not be modified.

8 Two Notes on Animation Frames

The examples with full TEX source files can
be found at http://www.fi.muni.cz/∼xholecek/

animations/. As one can see in these examples, the
all-in-one approach allows all frames to share a sin-
gle background which is formed by the frame actu-
ally inserted into the page. However, it is possible to
overlay pushbuttons. Elaborate constructions, the
simplest of which is to use a common background
frame in the example with external animations, can
be achieved in conjunction with transparency.

One must ensure the proper size of all frames
when fitting them into the widget. We have en-
countered situations (the given example being one of
them) where the bounding box of METAPOST gen-
erated graphics with TEX label was not set properly
using \convertMPtoPDF and a white line had to be
drawn around the frames to force the proper bound-
ing box as a workaround.

9 Animations in Other Formats

It is fair to list and compare other possible ways of
creating animations. In this section we give a brief
overview of a dozen other formats and technologies
capable of handling animations.

9.1 GIF

One of the versions of the GIF format is the GIF89a

format, which allows multi-image support, with
bitmap only animations to be encoded within a sin-
gle GIF file. GIF format supports transparency, in-
terlacing and plain text blocks. It is widely sup-
ported in Internet browsers. However, there are li-
censing problems due to the compression methods
used, and the format is not supported in freely avail-
able TEXware.

9.2 SWF

The SWF format by Macromedia allows storing
frame-based animations, created e.g., by Macro-
media’s Flash authoring tool. The SWF authoring
tools have to compute all the animation frames at
export time. As proprietary Flash plug-ins for a
wide range of Internet browsers are available, ani-
mations in SWF are relatively portable. The power
of SWF can be enriched with scripting by Action-
Script. At the time of writing, we are not aware of
any TEXware supporting SWF.

9.3 Java

One can certainly program animations in a gen-
eral programming language like Sun’s Java. The
drawback is that there are high demands on one’s

40 Preprints for the 2004 Annual Meeting

Animations in pdfTEX-generated PDF

programming capabilities in Java when creating
portable animations. With NT S (a TEX reimple-
mentation in Java), one can possibly combine TEX
documents with fully featured animations, at the
expense of studying numerous available classes, in-
terfaces and methods.

9.4 DOM

It is possible to reference every element in an HTML

or XML document by means of the W3C’s Document
Object Model (DOM), a standard API for document
structure.

DOM offers programmers the possibility of im-
plementing animations with industry-standard lan-
guages such as Java, or scripting languages as
ECMAScript, JavaScript or JScript.

9.5 SVG

The most promising language for powerful vector
graphic animation description seems to be Scal-
able Vector Graphics (SVG), a W3C recommenda-
tion [12]. It is being developed for XML graphical
applications, and since SVG version 1.1 there is rich
support for animations. The reader is invited to
look at the freely available book chapter [13] about
SVG animations on the publisher’s web site, or read-
ing [4] about the first steps of SVG integration into
TEX world. There are freely available SVG view-
ers from Adobe (browser plug-in), Corel, and the
Apache Foundation (Squiggle).

SVG offers even smaller file sizes than SWF or
our method. The description of animations is time-
based, using another W3C standard, SMIL, Synchro-
nised Multimedia Integration Language. The au-
thor can change only one object or its attribute in
the scene at a time, allowing detailed control of ani-
mated objects through the declarative XML manner.
Compared to our approach, this means a much wider
range of possibilities for creators of animations.

The SVG format is starting to be supported in
TEXware. There are SVG backends in VTEX and
BaKoMaTEX, and a program Dvi2Svg by Adrian
Frischauf, available at http://www.activemath.

org/∼adrianf/dvi2svg/. Another implementation
of a DVI to SVG converter in C is currently being
developed by Rudolf Sabo at the Faculty of Infor-
matics, Masaryk University in Brno.

10 Conclusions

We have shown a method of preparing both space-
efficient and high-quality vector frame-based anima-
tions in PDF format using only freely available, TEX-
integrated tools.

11 Acknowledgments

Authors thank Oleg Alexandrov and Karl Berry for
comments on an early draft of the paper.

The work has been supported by VZ MSM

143300003.

References

[1] Adobe Systems Incorporated. Acrobat Java-
Script Object Specification, Version 5.1, Tech-
nical Note #5186. Technical report, Adobe,
2003. http://partners.adobe.com/asn/

developer/pdfs/tn/5186AcroJS.pdf.

[2] Adobe Systems Incorporated. PDF Reference:
Adobe Portable Document Format Version 1.5.
Addison-Wesley, Reading, MA, USA, fourth
edition, August 2003.

[3] Zuzana Došlá, Roman Plch, and Petr Sojka.
Mathematical Analysis with Maple: 2. Infinite
Series. CD-ROM, http://www.math.muni.cz/
∼plch/nkpm/, December 2002.

[4] Michel Goossens and Vesa Sivunen. LATEX,
SVG, Fonts. TUGboat, 22(4):269–280, October
2001.

[5] Hans Hagen. The Calculator Demo, Integrating
TEX, METAPOST, JavaScript and PDF. TUG-
boat, 19(3):304–310, September 1998.

[6] Petr Oľsák. TEXbook naruby (in Czech). Kon-
voj, Brno, 1997.

[7] Petr Sojka. Animations in PDF. In Proceed-
ings of the 8th Annual Conference on Innova-
tion and Technology in Computer Science Ed-
ucation, ITiCSE 2003, page 263, Thessaloniki,
2003. Association of Computing Machinery.

[8] Petr Sojka. Interactive Teaching Materials in
PDF using JavaScript. In Proceedings of the 8th
Annual Conference on Innovation and Technol-
ogy in Computer Science Education, ITiCSE
2003, page 275, Thessaloniki, 2003. Association
of Computing Machinery.

[9] Donald P. Story. AcroTEX: Acrobat and TEX
team up. TUGboat, 20(3):196–201, Sep. 1999.

[10] Donald P. Story. Techniques of introduc-
ing document-level JavaScript into a PDF file
from LATEX source. TUGboat, 22(3):161–167,
September 2001.

[11] Hán Thé̂ Thánh. Micro-typographic exten-
sions to the TEX typesetting system. TUGboat,
21(4):317–434, December 2000.

[12] W3C. Scalable Vector Graphics (SVG) 1.1 Spec-
ification, January 2003.

[13] Andrew H. Watt. Designing SVG Web Graph-
ics. New Riders Publishing, September 2001.

Preprints for the 2004 Annual Meeting 41

Arabic Mathematical e-Documents

Mustapha Eddahibi
m.eddahibi@ucam.ac.ma

Azzeddine Lazrek
lazrek@ucam.ac.ma

Khalid Sami
k sami@ucam.ac.ma

Department of Computer Sciences,

Faculty of Sciences,

University Cadi Ayyad

P.O. Box 2390,

Marrakech, Morocco

http://www.ucam.ac.ma/fssm/RyDArab

Abstract

What problems do e-documents with mathematical expressions in an Arabic pre-
sentation present? In addition to the known difficulties of handling mathematical
expressions based on Latin script on the web, Arabic mathematical expressions
flow from right to left and use specific symbols with a dynamic cursivity. How
might we extend the capabilities of tools such as MathML in order to structure
Arabic mathematical e-documents? Those are the questions this paper will deal
with. It gives a brief description of some steps toward an extension of MathML

to mathematics in Arabic exposition. In order to evaluate it, this extension has
been implemented in Mozilla.
Keywords: Mathematical expressions, Arabic mathematical presentation, Mul-
tilingual documents, e-documents, Unicode, MathML, Mozilla.

1 Overview

It is well known that HTML authoring capabilities
are limited. For instance, mathematics is difficult
to search and web formatting is poor. For years,
most mathematics on the web consisted of texts
with scientific notation rendered as images. Image-
based equations are generally harder to see, read
and comprehend than the surrounding text in the
browser window. Moreover, the large size of this
kind of e-document can represent a serious prob-
lem. These problems become worse when the doc-
ument is printed. For instance, the resolution of
the equations will be around 72 dots per inch, while
the surrounding text will typically be 300 or more
dots per inch. In addition to the display problems,
there are encoding difficulties. Mathematical ob-
jects can neither be searched nor exchanged between
software systems nor cut and pasted for use in dif-
ferent contexts nor verified as being mathematically
correct. As mathematical e-documents may have to

be converted to and from other mathematical for-
mats, they need encoding with respect to both the
mathematical notation and mathematical meaning.

The mathematical markup language MathML

[14] offers good solutions to the previous problems.
MathML is an XML application for describing math-
ematical notation and capturing both its structure,
for high-quality visual display, and content, for more
semantic applications like scientific software. XML

stands for eXtensible Markup Language. It is de-
signed as a simplified version of the meta-language
SGML used, for example, to define the grammar and
syntax of HTML. One of the goals of XML is to
be suitable for use on the web by separating the
presentation from the content. At the same time,
XML grammar and syntax rules carefully enforce
document structure to facilitate automatic process-
ing and maintenance of large document collections.

MathML enables mathematics to be served, re-
ceived, and processed on the web, just as HTML

42 Preprints for the 2004 Annual Meeting

Arabic Mathematical e-Documents

has enabled this functionality for text. MathML el-
ements can be included in XHTML documents with
namespaces and links can be associated to any math-
ematical expression through XLink. Of course, there
are complementary tools. For instance, the project
OpenMath [12] also aims at encoding the semantics
of mathematics without being in competition with
MathML.

Now, what about some of the MathML interna-
tionalization aspects — say, for instance, its ability
to structure and produce e-documents based on non
Latin alphabets, such as mathematical documents
in Arabic?

2 Arabic Mathematical Presentation

Arabic script is cursive. Small curves and ligatures
join adjacent letters in a word. The shapes of most
of the letters are context dependent; that is, they
change according to their position in the word. Cer-
tain letters have up to four different shapes.

Although some mathematical documents using
Arabic-based writing display mathematics in Latin
characters, in general, not only the text is encoded
with the Arabic script but mathematical objects and
expressions are also encoded with special symbols
flowing from right to left according to the Arabic
writing. Moreover, some of these symbols are ex-
tensible.

Mathematical expressions are for the most part
handwritten and introduced as images. A highly-
evolved system of calligraphic rules governs Arabic
handwriting. Though Arabic mathematical docu-
ments written by hand are sometimes of fair quality,
the mere presentation of scientific documents is no
longer enough, since there is a need for searchability,
using them in software and so on.

The RyDArab [8] system makes it possible to
compose Arabic mathematical expressions of high
typographical quality. RyDArab complements TEX
for typesetting Arabic mathematical documents.
RyDArab uses the Computer Modern fonts and those
of Ω [4] or ArabTEX [7]. The output is DVI, PS, PDF

or HTML with mathematical expressions as images.
The RyDArab [2] system does not replace or modify
the functionality of the TEX engine, so it does not
restrict in any way the set of macros used for author-
ing. Automatic translation from and to Latin-based
expressions is provided beginning with the latest Ry-

DArab version. Will this be enough to structure and
typeset e-documents with mathematics even when
they are based on an alternative script? Starting
from this material with TEX and Ω, will MathML

be able to handle Arabic mathematics?

3 MathML and Arabic Mathematics

Of course, semantically speaking, an Arabic mathe-
matical expression is the same as a Latin-based one.
Thus, only display problems need be taken into ac-
count. In any way, encoding semantics are beyond
the scope of this paper.

In order to know if there really is a need to
construct a new tool or only to improve an already
available one, what are the possibilities offered by
the known MathML renderers? As much of the work
is built around TEX, an open source community ef-
fort, it is hard to be precise about the current status
of all TEX/MathML related projects. Most of these
projects belong to one of three basic categories:

• Conversions from TEX to MathML. Of partic-
ular note here, are Ω [5, 6] and TeX4ht [13],
a highly specialized editor/DVI driver. Both
of these systems are capable of writing presen-
tation MathML from TEX documents. There
are other converters such as LaTeX2HTML and
tralics [1].

• Conversions from MathML to TEX. The con-
version from MathML to TEX can be done for
instance, through reading MathML into Math-
ematica or other similar tools and then sav-
ing the result back out as TEX, or using Scien-
tific WorkPlace for suitable LATEX sources. The
ConTEXt system is another example.

• Direct typesetting of MathML using TEX.

Currently, MathML is supported by many ap-
plications. This fact shows not only that it is the
format of choice for publishing equations on the web
but also that it is a universal interchange format for
mathematics. More than twenty implementations
are listed on the MathML official website, show-
ing that all categories of mathematical software can
handle MathML. Actually,

• most mathematical software, such as Scientific
WorkPlace, Maple, MathCad and Mathemat-
ica, can export and import MathML;

• all common browsers can display MathML

equations either natively or through the use of
plug-ins;

• editors such as MathType, Amaya, TEXmacs,
and WebEQ support MathML.

Once non-free or non-open-source tools are
omitted, two web browsers remain: the well-known
Mozilla system [11] and Amaya. The W3C’s Amaya
editor/browser allows authors to include mathemat-
ical expressions in web pages, following the MathML

specification. Mathematical expressions are han-
dled as structured components, in the same way

Preprints for the 2004 Annual Meeting 43

Mustapha Eddahibi, Azzeddine Lazrek and Khalid Sami

and in the same environment as HTML elements.
All editing commands provided by Amaya for han-
dling text are also available for mathematics, and
there are some additional controls to enter and edit
mathematical constructs. Amaya shows how other
W3C specifications can be used in conjunction with
MathML.

In the end, we chose to adapt Mozilla to the
needs of the situation, mainly because of its popular-
ity and widespread adoption as well as the existence
of an Arabic version. The layout of mathematical
expressions in Latin writing, and consequently that
of the mathematical documents in Mozilla is more
elegant and of good typographical quality compared
to other systems.

For this implementation, we used the Mozilla
1.5 C++ source under Linux. Until now, there was
no Mozilla version with support for bidirectional-
ity or cursivity in a mathematical environment. In
math mode, only left to right arrangement is sup-
ported. Thus, the first step is to find out how to
get bidirectionality and cursivity inside a MathML

passage.
In fact, adding the property of bidirectionality

to MathML elements is a delicate task. It requires a
careful study of the various possible conflicts. The
bidirectionality algorithm for mathematical expres-
sions is probably different from that originally in use
for text.

Now, let us have a look at what would happen
if the bidirectionality algorithm for HTML were used
for MathML elements.

The MathML expression

<mn>1</mn>

<mo>+</mo>

<mi>❍
✳
</mi>

<mo>-</mo>

<mn>2</mn>

will be rendered as instead of the ex-
pected equation: .

Since XML supports Unicode, we might expect
that the introduction of Arabic text into MathML

encoding would go without any problem. In other
words, the Arabic text would be rendered from right
to left, and letters would be connected just as they
should be in their cursive writing. Will the use of
the element <mtext> (similar to the use of the TEX
command \hbox) be enough to get a satisfactory
rendering of Arabic?

The following Arabic text is a sample of what
is obtained with <mtext> in Mozilla:

<mtext>

ú
✡
æ ✠➉❆❑✡P ➅✠✢

</mtext>

The following Arabic abbreviation of the cosine
function is an example of what we get if we introduce
it with <mi>:

<mi> ❆
✏
❏❦✳ </mi>

In order to allow the arrangement of sub-expres-
sions from right to left in a given mother expression,
a new element denoted <rl> is introduced.1

<mrow>

<rl>

<mi>❍✳ </mi>

<mo>+</mo>

<mi>⑨</mi>

</rl>

</mrow>

The use of the element <rl> also allows solving
the previous problem of introducing Arabic text in
a mathematical expression.

<mtext>

<rl>ú
✡
æ ✠➉❆❑✡P ➅✠✢</rl>

</mtext>

<mi><rl> ❆
✏
❏❦✳ </rl></mi>

The element <rl> can be used to transform
some mathematical objects, such as left/right or
open/close parentheses, into their mirror image.

<rl>

<mo><rl>[</rl></mo>

<mi>❍
✳
</mi>

<mo>,</mo>

<mn>3</mn>

<mo><rl>)</rl></mo>

</rl>

We can remark here that the symbol “,” has not
changed to its mirror image “ ❀”. The result is the
same even when the comma is governed by <rl>

(i.e., <rl>,</rl>).This symbol is not yet mentioned
in the Bidi Mirroring list in the Unicode Character
Database.

Particular arrangement of the arguments is
made necessary by the MathML renderer for any
presentation elements requiring more than one ar-
gument. On the other hand, elements of vertical
arrangement such as <mfrac> do not need special
handling.

1 The name rl reminds us of the initials of right-to-left.

Furthermore, because of the expected heavy use of this ele-

ment, its name should be as short as possible.

44 Preprints for the 2004 Annual Meeting

Arabic Mathematical e-Documents

<mfrac>

<rl>

<mi>❍✳ </mi>

<mo>+</mo>

<mi>⑨</mi>

</rl>

<mn>3</mn>

</mfrac>

Although the addition of <rl> helps to get Ara-
bic text rendered as expected and to solve arrange-
ment of sub-expressions within an expression, for
certain elements, it doesn’t work.

Using the element <rl> to get a superscript el-
ement <msup> or a subscript element <msub>, in the
suitable right to left positions, generates a syntax er-
ror because <msup> requires two arguments, whereas
there is only one argument, as can be seen in the fol-
lowing example:

<msup>

<rl>

<mi>⑨</mi>

<mi>❍✳ </mi>

</rl>

</msup>

In this case, we introduce a new markup ele-
ment <amsup>.2 It changes the direction of render-
ing expressions while keeping the size of superscripts
as it is with <msup>.

<amsup>

<mi>⑨</mi>

<mi>❍✳ </mi>

</amsup>

The same principle is applied to other elements
like <msub>. The notation of the arrangement in
the Arabic combination analysis is different from its
Latin equivalent.

<amarrange>

<mi>➮</mi>

<mn>5</mn>

<mn>2</mn>

</amarrange>

The next step is related to the shape of some
symbols. In Arabic mathematical presentation, cer-
tain symbols, such as the square root symbol or the
sum, in some Arabic areas, are built through a sym-
metric reflection of the corresponding Latin ones.
These symbols require first the introduction of a
new font family such as the one offered in the Arabic

2 The following new elements defined in this system are

prefixed with the initial of Arabic “a”.

Computer Modern fonts. This family corresponds to
the Computer Modern fonts with a mirror effect on
some glyphs. In the same way that the Computer
Modern fonts are used in the Latin mathematical
environment with <math> the new element <amath>
will allow the use of the Arabic Computer Modern
fonts in the Arabic mathematical environment. The
element <amath> would not be necessary if the Ara-
bic mathematical symbols were already added in the
Unicode tables. In fact, we use the same entity name
and code for some symbols and their mirror images
used in the Arabic presentation. For example, the
Unicode name N-ARY SUMMATION coded by U+02211

is associated simultaneously to the Latin sum3 sym-
bol

∑
and to its Arabic equivalent mirror

P
. Thus,

to specify which glyph, and consequently which font,
is called, the introduction of a new element <amath>
is necessary. This element would not be necessary if
the symbols were denoted with two different entity
names and consequently two different codes.

<amath>

<rl>

<mstyle displaystyle="true">

<munderover>

<mo>∑</mo>

<mrow>

<rl>

<mi>⑨</mi>

<mo>=</mo>

<mn>1</mn>

</rl>

</mrow>

<mi>
✠

➡</mi>

</munderover>

</mstyle>

<mi>⑨</mi>

</rl>

</amath>

In order to distinguish alphabetical symbols, in
different shapes, from letters used in Arabic texts,
and to avoid the heterogeneity resulting from the
use of several fonts, there is a need for a complete
Arabic mathematical font. That’s exactly what we
are trying to do in another project discussed else-
where in this volume [10]. While waiting for their
adoption by Unicode, the symbols in use in this font
will be located in the Private Use Area E000-F8FF

in the Basic Multilingual Plane.

<mi></mi>

The use of the Arabic Computer Modern fonts
is not enough for composed symbols. For example,

3 introduced as ∑ or ∑.

Preprints for the 2004 Annual Meeting 45

Mustapha Eddahibi, Azzeddine Lazrek and Khalid Sami

the square root symbol is composed of the square
root glyph supplemented by an over bar. This over
bar is added by the renderer, which, thanks to a
calculation of the width of the base, gives the length
of this over bar.

In this case, neither the inversion of the glyph
nor the use of the right-to-left element <rl> changes
the direction of the visual rendering of the square
root. For this reason we have introduced a new ele-
ment (<amsqrt>), which uses the square root glyph
from the Arabic Computer Modern font that shows
the over bar to its left.

<amath>

<amsqrt>

<mfrac>

<rl>

<mi>❍✳ </mi>

<mo>+</mo>

<mi>⑨</mi>

</rl>

<mn>3</mn>

</mfrac>

</amsqrt>

</amath>

The root element <amroot> requires a treat-
ment similar to that of the square root combined
with the positioning of the index on the right of the
baseline.

<amath>

<amroot>

<mi>⑨</mi>

<mn>3</mn>

</amroot>

</amath>

For the elements <munderover>, <munder>,
<mover>, and <msubsup>, italic correction needs to
be done. In fact, mathematical symbols like the in-
tegral are slanted and the indices and exponents are
shifted in the direction of the symbol’s slant. This
fact appears clearly in the following example repre-
senting two integrals, while using <amsubsup> in the
first:

<amath>

<rl>

<mstyle displaystyle="true">

<amsubsup>

<mo>∫</mo>

<mn>0</mn>

<mn>1</mn>

</amsubsup>

</mstyle>

<amsup>

<mi>⑨</mi>

<mi>❍✳ </mi>

</amsup>

<mi>❩</mi>

<mi>⑨</mi>

</rl>

</amath>

or <amunderover> in the second:

<amath>

<rl>

<mstyle displaystyle="true">

<amunderover>

<mo>∫</mo>

<mn>0</mn>

<mn>1</mn>

</amunderover>

</mstyle>

<amsup>

<mi>⑨</mi>

<mi>❍✳ </mi>

</amsup>

<mi>❩</mi>

<mi>⑨</mi>

</rl>

</amath>

For the limit of an expression, manual lengthen-
ing of the limit symbol is performed. Of course, dy-
namic lengthening via automatic calculation of the
width of the text under the limit sign would be bet-
ter.

A lengthening of the straight line is not in con-
formity with the rules of the Arabic typography. A
curvilinear lengthening is required, which can be ob-
tained by using CurExt [9], which makes it possible
to stretch Arabic letters according to calligraphic
rules.

46 Preprints for the 2004 Annual Meeting

Arabic Mathematical e-Documents

The following mathematical expression is an ex-
ample of the use of <mover>, with automatic length-
ening of the over arrow.

In fact, the use of the element <rl> doesn’t rep-
resent a very practical solution as the encoding be-
comes heavier. The addition of this element must
be transparent for the user; the same for all other
new elements since they affect only the presenta-
tion and not the semantics of expression. An al-
ternative solution consists of either building a new
algorithm of bidirectionality for mathematics, or of
adding attributes that will make it possible to choose
the mathematical notation of the expression. We in-
tend to use a new attribute nota for the root element
<math>. It would indicate whether Arabic or Latin
is used inside the mathematical expression. As the
layout of a mathematical expression follows a pre-
cise logic, the direction of writing would be handled
automatically without requiring the use of direction
attributes for each child of the element <math>.

The FIGUE [3] system is an engine for the in-
teractive rendering of structured objects. It allows
the rendering of an Arabic text from right to left in-
cluding some Latin mathematical expressions flow-
ing from left to right thanks to a proposed bidirec-
tional extension of MathML.

4 Conclusion

Our goal was to identify the difficulties and limi-
tations that might obstruct the use of MathML for
writing mathematics in Arabic. The main adapta-
tion we made to MathML for Arabic mathematics
was the addition of the element <rl> that allows:

• writing mathematical expressions from right-
to-left;

• the use of specific symbols thanks to the modi-
fication of other elements;

• and handling the cursivity of writing.

Now, Arabic mathematical e-documents can be
structured and published on the web using this ex-
tended version of Mozilla. Such documents can thus
benefit from all the advantages of using MathML.
Our project for the development of communication
and publication tools for scientific and technical e-
documents in Arabic is still at its beginning. We
hope that the proposals contained in this paper will
help to find suitable recommendations for Arabic
mathematics in Unicode and MathML.

References

[1] http://www-sop.inria.fr/miaou/tralics/.

[2] Mustapha Eddahibi and Azzeddine Lazrek,
Arabic scientific document composition, Inter-
national Conference on Information Technology
and Natural Sciences (ICITNS 2003, Amman,
Jordan), 2003.

[3] Hanane Naciri et Laurence Rideau, Affichage et
diffusion sur Internet d’expressions en langue
arabe de preuves mathématiques, CARI 2002
(Cameroun), 2002.

[4] Yannis Haralambous and John Plaice, Multilin-
gual Typesetting with Ω, a Case Study: Arabic,
Proceedings of the International Symposium on
Multilingual Information Processing (Tsukuba),
1997, pp. 137–154.

[5] Yannis Haralambous and John Plaice, Produire
du MathML et autres *ML à partir d’Ω : Ω
se généralise, Cahiers GUTenberg, vol. 33-34,
1999, pp. 173–182.

[6] Yannis Haralambous and John Plaice, XLATEX,
a DTD/Schema Which is Very Close to LATEX,
EuroTEX 2003: 14th European TEX Conference
(ENST Bretagne, France), 2003 (to appear in
TUGboat).

[7] Klaus Lagally, ArabTEX — Typesetting Ara-
bic with Vowels and Ligatures, EuroTEX’92
(Prague), 1992.

[8] Azzeddine Lazrek, A package for typesetting
arabic mathematical formulas, Die TEXnische
Komödie, DANTE e.V., vol. 13. (2/2001), 2001,
pp. 54–66.

[9] Azzeddine Lazrek, CurExt, Typesetting
variable-sized curved symbols, EuroTEX 2003
preprints: 14th European TEX Conference
(Brest, France), 2003, pp. 47–71 (to appear in
TUGboat).

[10] Mostafa Banouni, Mohamed Elyaakoubi and
Azzeddine Lazrek, Dynamic Arabic mathemat-
ical fonts, International Conference on TEX,
XML and Digital Typography (TUG 2004, Xan-
thi, Greece), 2004.

[11] Mozilla, http://www.mozilla.org.

[12] OpenMath, http://www.openmath.org/.

[13] TEX4ht, http://www.cis.ohio-state.edu/
∼gurari/TeX4ht/mn.html.

[14] Presentation MathML and Content MathML,
http://www.w3.org/TR/MathML2.

Preprints for the 2004 Annual Meeting 47

Dynamic Arabic Mathematical Fonts

Mostafa Banouni
mbanouni@voila.fr

Mohamed Elyaakoubi
m.elyaakoubi@ucam.ac.ma

Azzeddine Lazrek
lazrek@ucam.ac.ma

Department of Computer Sciences

Faculty of Sciences

University Cadi Ayyad

P.O. Box 2390

Marrakech, Morocco

http://www.ucam.ac.ma/fssm/rydarab

Abstract

This contribution describes a font family designed to meet the requirements of
typesetting mathematical documents in an Arabic presentation. Thus, not only is
the text written in an Arabic alphabet-based script, but specific symbols are used
and mathematical expressions also spread out from right to left. Actually, this
font family consists of two components: an Arabic mathematical font and a dy-
namic font. The construction of this font family is a first step of a project aiming
at providing a complete and homogeneous Arabic font family, in the OpenType
format, respecting Arabic calligraphy rules.
Keywords: Mathematical font, Dynamic font, Variable-sized symbols, Ara-
bic mathematical writing, Multilingual documents, Unicode, PostScript, Open-
Type.

1 Overview

The Arabic language is native for roughly three hun-
dred million people living in the Middle East and
North Africa. Moreover, the Arabic script is used,
in various slightly extended versions, to write many
major languages such as Urdu (Pakistan), Persian
and Farsi (Iran, India), or other languages such as
Berber (North Africa), Sindhi (India), Uyghur, Kir-
giz (Central Asia), Pashtun (Afghanistan), Kurdish,
Jawi, Baluchi, and several African languages. A
great many Arabic mathematical documents are still
written by hand. Millions of learners are concerned
in their daily learning by the availability of systems
for typesetting and structuring mathematics.

Creating an Arabic font that follows calligra-
phic rules is a complex artistic and technical task,
due in no small part to the necessity of complex
contextual analysis. Arabic letters vary their form
according to their position in the word and accord-
ing to the neighboring letters. Vowels and diacrit-

ics take their place over or under the characters,
and that is also context dependent. Moreover, the
kashida, a small flowing curve placed between Ara-
bic characters, is to be produced and combined with
characters and symbols. The kashida is also used
for the text justification. The techniques for man-
aging the kashida are similar to those that can be
used for drawing curvilinear extensible mathemati-
cal symbols, such as sum, product or limit.

There are several Arabic font styles. Of course,
it is not easy to make available all existing styles.
The font style Naskh was the first font style adopted
for computerization and standardization of Arabic
typography. So far, only Naskh, Koufi, Ruqaa, and
to a limited extent Farsi have really been adapted
to the computer environment. Styles like Diwani
or Thuluth, for example, don’t allow enough sim-
plification, they have a great variation in characters
shapes, the characters don’t share the same baseline,
and so on. Considering all that, we have decided to
use the Naskh style for our mathematical font.

48 Preprints for the 2004 Annual Meeting

Dynamic Arabic Mathematical Fonts

The RyDArab [10] system was developed for the
purpose of typesetting Arabic mathematical expres-
sions, written from right to left, using specific sym-
bols. RyDArab is an extension of the TEX system. It
runs with K. Lagally’s Arabic system ArabTEX [8]
or with Y. Haralambous and J. Plaice’s multilingual
Ω [6] system. The RyDArab system uses characters
belonging to the ArabTEX font xnsh or to the omsea
font of Ω, respectively. Further Arabic alphabetic
symbols in different shapes can be brought from the
font NasX that has been developed, for this special
purpose, using METAFONT. The RyDArab system
also uses symbols from Knuth’s Computer Modern
family, obtained through adaptation to the right-to-
left direction of Arabic.

Since different fonts are in use, it is natural that
some heterogeneity will appear in mathematical ex-
pressions typeset with RyDArab [9]. Symbol sizes,
shapes, levels of boldness, positions on the base-
line will not quite be in harmony. So, we undertook
building a new font in OpenType format with two
main design goals: on the one hand, all the symbols
will be drawn with harmonious dimensions, propor-
tions, boldness, etc., and on the other hand, the font
should contain the majority of the symbols in use in
the scientific and technical writing based on an Ara-
bic script.

Both Arabic texts and mathematical expres-
sions need some additional variable-sized symbols.
We used the CurExt [11] system to generate such
symbols. This application was designed to gener-
ate automatically curvilinear extensible symbols for
TEX with the font generator METAFONT. The new
extension of CurExt does the same with the font gen-
erator PostScript.

While METAFONT generates bitmap fonts and
thus remains inside the TEX environment, Open-
Type [14] gives outline and multi-platform fonts.
Moreover, since Adobe and Microsoft have devel-
oped it jointly, OpenType has become a standard
combining the two technologies TrueType and Post-

Script. In addition, it offers some additional typo-
graphic layout possibilities thanks to its multi-table
feature.

2 A Mathematical Font

The design and the implementation of a mathemat-
ical font are not easy [5]. It becomes harder when
it is oriented to Arabic presentation. Nevertheless,
independent attempts to build an Arabic mathemat-
ical font have been undertaken. In fact, F. Alhar-
gan [1] has sent us proofs of some Arabic mathemat-
ical symbols in TrueType format.

Now we will describe the way we constructed
the OpenType Arabic mathematical font RamzArab.
The construction of the font started by drawing the
whole family of characters by hand. This task was
performed by a calligrapher. Then the proofs were
scanned to transform them into vectors. The scan-
ning tools alone don’t produce a satisfying result, so
once the design is finalized, the characters are pro-
cessed and analyzed using special software to gener-
ate the file defining the font.

In Arabic calligraphy, the feather’s head (ka-
lam) is a flat rectangle. The writer holds it so that
the largest side makes an angle of approximately 70◦

with the baseline. Except for some variations, this
orientation is kept all along the process of drawing
the character. Furthermore, as Arabic writing goes
from right to left, some boldness is produced around
segments from top left toward the bottom right and
conversely, segments from top right to the bottom
left will rather be slim as in Figure 1.

The RamzArab font in Figure 4 contains only
symbols specific to Arabic mathematics presentation
plus some usual symbols found even in text mode.
It is mainly composed of the following symbols:

• alphabetic symbols: Arabic letters in various
forms, such as characters in isolated standard
form, isolated double-struck, initial standard,
initial with tail, initial stretched and with loop
(e.g., ✈ ➙ ❻ ➵❻ ➯❻ ➇ respectively);

• punctuation marks (e.g., ❀ ✿ ✾ ✦ ❃);

• digits as used in the Maghreb Arab (North Afri-
ca), and as they are in the Machreq Arab (Mid-
dle East);

• accents to be combined with alphabetic symbols
(e.g., ❳❚ s❚ t❚);

• ordinary mathematical symbols such as delim-
iters, arithmetic operators, etc.

• mirror image of some symbols such as sum, in-
tegral, etc.

In Arabic mathematics, the order of the alpha-
betic symbols differs from the Arabic alphabetic or-
der. Some problems can appear with the alphabetic
symbols in their multi-form.

Generally, in Arabic mathematical expressions,
alphabetic symbols are written without dots (e.g.,
❅
❚

❆
❚

❇
❚) or diacritics. This helps to avoid confu-

sions with accents. The dots can be added when-
ever they are needed, however. Thus, few symbols
are left.

Moreover, some deviation from the general rules
will be necessary: in a mathematical expression, the
isolated form of the letter ALEF can be confused
with the Machreq Arab digit ONE. The isolated

Preprints for the 2004 Annual Meeting 49

Mostafa Banouni, Mohamed Elyaakoubi and Azzeddine Lazrek

form of the letter HEH can also present confusion
with the Machreq Arab digit FIVE. The choice of
the glyphs ❩ and ➳② to denote respectively these
two characters will help to avoid such confusions.
Even though these glyphs are not in conformity with
the homogeneity of the font style and calligraphic
rules, they are widely used in mathematics. In the
same way, the isolated form of the letter KAF ❝ ,
resulting from the combination of two other basic el-
ements, will be replaced by the KAF glyph in Ruqaa
style, ❫.

For the four letters ALEF, DAL, REH and WAW,
the initial and the isolated forms are the same, and
these letters will be withdrawn from the list of letters
in initial form. On the other hand, instead of a
unique cursive element, the stretched form of each of
the previous letters will result from the combination
of two elements. It follows that these letters will not
be present in the list of the letters in the stretched
form.

The stretched form of a letter is obtained by the
addition of a MADDA-FATHA or ALEF in its final
form ➯ to the initial form of the letter to be stretched
(e.g., ❻ + ➯ −→ ➯❻). The glyph of LAM-ALEF ❜ has
a particular ligature that will be added to the list.
The stretched form of a character is used if there is
no confusion with any usual function abbreviation
(e.g., ➯❼ or ➯❼❅ for the sine function).

The form with tail is obtained starting from
the initial form of the letter followed by an alter-
native of the final form of the letter HEH ➵ (e.g.,
❻ + ➵ −→ ➵❻). These two forms are not integrated
into the font because they can be obtained through
a simple composition.

The form with loop is another form of letters
with a tail. It is obtained through the combination
of the final form with a particular curl that differs
from one letter to another (e.g., ➔ ➣). This
form will be integrated into the font because it can-
not be obtained through a simple composition.

The following particular glyphs are also in use:

❩ ❬ ➳② ❭ ❪ ❫ ➳⑦ ❴ ❵ ❛ ❜.
The elements that are used in the composition

of the operator sum, product, limit and factorial in
a conventional presentation (➲❞ ❣➲❼ ➯➲❢ ➲➀) are
added also. These symbols are extensible. They are
stretched according to the covered expression, as we
will see in the next section.

Reversed glyphs, with respect to the vertical —
and sometimes also to the horizontal — axis, as in
Figure 1, are taken from the Computer Modern font
family. For example, there are:

➻ ➽ ➚ ➶ ➹ ➘ ➴ ➷ ➬ ➮ ➱.

−→ −→

Figure 1: Sum symbol with vertical then
horizontal mirror image

Other symbols with mirror image forms already
in use1 are not added to this font. Of course, Latin
and Greek alphabetic symbols can be used in Arabic
mathematical expressions. In this first phase of the
project, we aren’t integrating these symbols into the
font. They can be brought in from other existing
fonts.

3 A Dynamic Font

The composition of variable-sized letters and curvi-
linear symbols is one of the hardest problems in
digital typography. In high-quality printed Arabic
works, justification of the line is performed through
using the kashida, a curvilinear variable lengthen-
ing of letters along the baseline. The composition of
curvilinear extensible mathematical symbols is an-
other aspect of dynamic fonts. Here, the distinction
between fixed size symbols and those with variable
width, length, or with bidimensional variability, ac-
cording to the mathematical expression covered by
the symbol, is of great importance.

Certain systems [11] solve the problem of ver-
tical or horizontal curvilinear extensibility through
the a priori production of the curvilinear glyphs for
certain sizes. New compositions are therefore neces-
sary beyond these already available sizes. This op-
tion doesn’t allow a full consideration of the curvilin-
earity of letters or composed symbols at large sizes.
A better approach to get curvilinear letters or ex-
tensible mathematical symbols consists of parame-
terizing the composition procedure of these symbols.
The parameters then give the system the required
information about the size or the level of extensi-
bility of the symbol to extend. As an example, we
will deal with the particular case of the opening and
closing parenthesis as vertically extensible curvilin-
ear symbol and with the kashida as a horizontally
extensible curvilinear symbol. This can be general-
ized to any other extensible symbol.

The CurExt system was developed to build ex-
tensible mathematical symbols in a curvilinear way.

1 The Bidi Mirrored property of characters used in Uni-

code.

50 Preprints for the 2004 Annual Meeting

Dynamic Arabic Mathematical Fonts

The previous version of this system was able to pro-
duce automatically certain dynamic characters, such
as parentheses, using METAFONT. In this adapta-
tion, we propose to use the Adobe PostScript Type
3 format [13].

The PostScript language defines several types
of font, 0, 1, 2, 3, 9, 10, 11, 14, 32, 42. Each one of
these types has its own conventions to represent and
to organize the font information. The most widely
used PostScript font format is Type 1. However, a
dynamic font needs to be of Type 3 [3].

Although the use of Type 3 loses certain advan-
tages of Type 1, such as the possibility of producing
hints for when the output device is of low resolution,
and in the case of small glyphs, a purely geometrical
treatment can’t prevent the heterogeneity of char-
acters. Another lost advantage is the possibility of
using Adobe Type Manager (ATM) software. These
two disadvantages won’t arise in our case, since the
symbols are generally without descenders or serifs
and the font is intended to be used with a composi-
tion system such as TEX, not directly in Windows.

The PostScript language [7] produces a draw-
ing by building a path. Here, a path is a set of
segments (lineto) and third degree Bézier curves
(curveto). The path can be open or closed on its
origin (closepath). A path can contain several con-
trol points (moveto). Once a path is defined, it can
be drawn as a line (stroke) or filled with a color
(fill). From the graphical point of view, a glyph
is a procedure defined by the standard operators of
PostScript.

To parameterize the procedure, the form of the
glyph has to be examined to determine the different
parts of the procedure. This analysis allows deter-
mining exactly what should be parameterized. In
the case of an opening or closing parenthesis, all the
parts of the drawing depend on the size: the width,
the length, the boldness and the end of the paren-
thesis completely depend on the size. Figure 2 shows
the variation of the different parameters of the open
parenthesis according to the height. We have cho-
sen a horizontally-edged cap with a boldness equal
to half of the boldness of the parenthesis. The same
process is applied to the kashida.

Producing a dynamic parenthesis such as that
in Figure 3 follows these steps:

• collecting the various needed sizes in a param-
eter file par;

• generating a file pl with the local tool par2pl
starting from the par file;

• converting the file pl into a metric file tfm with
the application pltotf;

• compiling the document to generate a dvi file;

141

2

3

4

5

6

7 8

9

10

11

12

13 141

2

3

4

5

6

7 8

9

10

11

12

13
141

2

3

4

5

6

7 8

9

10

11

12

13

Figure 2: Parametrization of dynamic parenthesis

• converting the file from dvi to ps format.

This process should be repeated as many times as
needed to resolve overlapping of extensible symbols.

The curvilinear parentheses is produced by Cur-

Ext with the following encoding:
�✂✁☎✄✝✆✟✞✡✠☞☛✡✌✎✍✝✠✑✏☞✠✝✏✟✒
✁✔✓✕✆✟✌✂✞✗✖✙✘✝✒✗✚✜✛✣✢✤✛✦✥✡✁✡✧★✞

✩ ✛✣✪✤✛✦✫✡✁✡✧★✞
✬ ✛✣✭✤✛✦✮✡✁✡✧★✞
✯ ✛✰✚✱✛✦✢✡✁✡✧★✞✝✲

✲✂�

✳✵✴✷✶
✸ ✹✷✺
✻✽✼✿✾
❀ ✳❁✴

instead of the straight parentheses given by the usual
encoding in TEX:

$\left(

\matrix{1 & 2 & 3\cr

4 & 5 & 6\cr

7 & 8 & 9\cr

0 & 1 & 2\cr}

\right)$







1 2 3
4 5 6
7 8 9
0 1 2







In the same way, we get the curvilinear kashida
with CurExt:�✂✁☎✄✆✁✞✝✟✁✞✠✞✄✆✁✞✡✂☛

☞✍✌✍�✏✎✍✑☎✒✞✄✔✓✂✌✕✠✟✖✂✗✙✘✛✚✢✜✙✣✕✌✍✑✤✜✍✜✤☞
✥

✦ ✧✍★✩✫✪✭✬✯✮✱✰

Preprints for the 2004 Annual Meeting 51

Mostafa Banouni, Mohamed Elyaakoubi and Azzeddine Lazrek

doc.tex
latex

curext
✲ parent.par

❄

par2pl

parent.pl

pltotf
❄

parent.tfm

parent.t3

parent.map

✛
dvips -u

doc.ps

doc.dvi

⊕

✛
latex

curext

Figure 3: Generation of dynamic parentheses

instead of the straight lengthened one obtained by
RyDArab:

\amarabmath

${\lsum_{b=T-1}^{s}}$

➄

✞✞✞✞✞✞✞✞✞✞✞✞✞✞♠
✳

×

1−➔=❍

We can stretch Arabic letters in a curvilinear
way through the kashida by CurExt:�✂✁☎✄✆�✞✝✟✁☎✄✆�✞✠ ✁☎✄

4 Conclusion

The main constraints observed in this work were:

• a close observation of the Arabic calligraphy
rules, in the Naskh style, toward their formal-
ization. It will be noticed, though, that we are
still far from meeting all the requirements of
Arabic calligraphy;

• the heavy use of some digital typography tools,
rules and techniques.

RamzArab, the Arabic mathematical font in
Naskh style, is currently available as an OpenType
font. It meets the requirements of:

• homogeneity: symbols are designed with the
same nib. Thus, their shapes, sizes, boldness
and other attributes are homogeneous;

• completeness: it contains most of the usual spe-
cific Arabic symbols in use.

These symbols are about to be submitted for
inclusion in the Unicode standard. This font is un-
der test for Arabic mathematical e-documents [12]
after having been structured for Unicode [2, 4].

The dynamic component of the font also works
in PostScript under CurExt for some symbols such
as the open and close parenthesis and the kashida.
That will be easily generalized to other variable-
sized symbols. The same adaptation can be per-
formed within the OpenType format.

References

[1] http://www.linux.org.sa.

[2] Jacque André, Caractères numériques : intro-
duction, Cahiers GUTenberg, vol. 26, 1997.

[3] Daniel M. Berry, Stretching Letter and Slanted-
baseline Formatting for Arabic, Hebrew and
Persian with ditroff/ffortid and Dynamic
POSTSCRIPT Fonts, Software–Practice & Expe-
rience, no. 29:15, 1999, pp. 1417–1457.

[4] Charles Bigelow et Kris Holmes, Création d’une
police Unicode, Cahiers GUTenberg, vol. 20,
1995.

[5] Yannis Haralambous, Une police mathématique
pour la Société Mathématique de France : le
SMF Baskerville, Cahiers GUTenberg, vol. 32,
1999, pp. 5–19.

[6] Yannis Haralambous and John Plaice, Multilin-
gual Typesetting with Ω, a Case Study: Arabic,
Proceedings of the International Symposium on
Multilingual Information Processing (Tsukuba),
1997, pp. 137–154.

[7] Adobe Systems Incorporated, POSTSCRIPT

Language Reference Manual, Second ed.,
Addison-Wesley, 1992.

[8] Klaus Lagally, ArabTEX — Typesetting Ara-
bic with Vowels and Ligatures, EuroTEX’92
(Prague), 1992.

[9] Azzeddine Lazrek, Aspects de la problématique
de la confection d’une fonte pour les
mathématiques arabes, Cahiers GUTen-
berg, vol. 39–40, Le document au XXIe siècle,
2001, pp. 51–62.

[10] Azzeddine Lazrek, A package for typesetting
arabic mathematical formulas, Die TEXnische
Komödie, DANTE e.V., vol. 13. (2/2001), 2001,
pp. 54–66.

[11] Azzeddine Lazrek, CurExt, Typesetting
variable-sized curved symbols, EuroTEX 2003
preprints, pp. 47–71 (to appear in TUGboat).

[12] Mustapha Eddahibi, Azzeddine Lazrek
and Khalid Sami, Arabic mathematical e-
documents, International Conference on TEX,
XML and Digital Typography (TUG 2004,
Xanthi, Greece), 2004.

[13] W lodzimierz Bzyl, The Tao of Fonts, TUGboat,
vol. 23, 2002, pp. 27–39.

[14] Thomas W. Phinney, TrueType, POSTSCRIPT

Type 1 & OpenType: What’s the Difference?,
Version 2.00 (2001).

52 Preprints for the 2004 Annual Meeting

Dynamic Arabic Mathematical Fonts

0 1 2 3 4 5 6 7 8 9

1x

2x

3x ✦ ✧ ★ ✩ ✪ ✫ ✬

4x ✭ ✮ ✯ ✰ ✱ ✲ ✳ ✴ ✵ ✶
5x ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✿ ❀
6x ❁ ❂ ❃ ❄ ❅ ❆ ❇ ❈ ❉ ❊
7x ❋ ● ❍ ■ ❏ ❑ ▲ ▼ ◆ ❖
8x P ◗ ❘ ❙ ❚ ❯ ❱ ❲ ❳ ❨

9x ❩ ❬ ❭ ❪ ❫ ❴ ❵ ❛ ❜ ❝

10x ❞ ❡ ❢ ❣ ❤ ✐ ❥ ❦ ❧ ♠

11x ♥ ♦ ♣ q r s t ✉ ✈ ✇

12x ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩

13x ❶ ❷ ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿

14x ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇ ➈ ➉

15x ➊ ➋ ➌ ➍ ➎ ➏ ➐ ➑ ➒ ➓

16x ➔ → ➣ ↔ ↕ ➙ ➛ ➜ ➝ ➞

17x ➟ ➠ ➡ ➢ ➤ ➥ ➦ ➧ ➨ ➩

18x ➫ ➭ ➯ ➲ ➳ ➵ ➸ ➺ ➻ ➼

19x ➽ ➾ ➚ ➪ ➶ ➹ ➘ ➴ ➷ ➬

20x ➮ ➱
Figure 4: RamzArab Arabic mathematical font

Preprints for the 2004 Annual Meeting 53

Creating Type 1 Fonts from METAFONT Sources:

Comparison of Tools, Techniques and Results

Karel Ṕı̌ska
Institute of Physics, Academy of Sciences

182 21 Prague

Czech Republic

piska@fzu.cz

http://www-hep.fzu.cz/~piska/

Abstract

This paper summarizes experiences in converting METAFONT fonts to PostScript
fonts with TEXtrace and mftrace, based on programs of autotracing bitmaps (Auto-

Trace and potrace), and with systems using analytic conversion (MetaFog and
MetaType1, using METAPOST output or METAPOST itself). A development
process is demonstrated with public Indic fonts (Devanagari, Malayalam). Ex-
amples from the Computer Modern fonts have been also included to illustrate
common problems of conversion. Features, advantages and disadvantages of var-
ious techniques are discussed. Postprocessing — corrections, optimization and
(auto)hinting — or even preprocessing may be necessary, before even a primary
contour approximation is achieved. To do fully automatic conversion of a perfect
METAFONT glyph definition into perfect Type 1 outline curves is very difficult at
best, perhaps impossible.
Keywords: font conversion, bitmap fonts, METAFONT, METAPOST, outline
fonts, PostScript, Type 1 fonts, approximation, Bézier curves.

1 Introduction

In recent years, several free programs for creating
PostScript outline fonts from METAFONT sources
have been developed. The aim of this paper is to
give a short comparison of these programs, with ref-
erences to original sources and documentation, and
to provide a brief description of their use. We will
discuss advantages and drawbacks, and demonstrate
numerous examples to compare important features
and to illustrate significant problems. We omit tech-
nical details described in the original documentation
and concentrate our attention on the quality of the
output, including hinting issues.

The programs TEXtrace and mftrace read origi-
nal METAFONT sources, generate high-resolution pk

bitmaps, call autotracing programs (AutoTrace or
potrace) and finally generate the files in the Type 1
format (pfb or pfa).

MetaType1 creates Type 1 output from META-
POST sources. Therefore it requires rewriting font
definitions from METAFONT into METAPOST.

Similarly, MetaFog converts the PostScript files
generated by METAPOST to other PostScript files
containing only outlines, that can be subsequently
assembled into Type 1 fonts. MetaFog is not a new

product, but its excellent results remain, in our com-
parisons, unsurpassed.

Additionally, we may need adequate encoding
files. If none are available, a TEX encoding (e.g.,
the standard TEX T1 encoding) is usually used as
the default.

2 Autotracing Bitmaps

2.1 TEXtrace with AutoTrace

Péter Szabó developed TEXtrace [18]. It is a col-
lection of Unix scripts. It reads the original META-
FONT sources, rendering the font bitmaps into Post-
Script (via dvips). For converting the resulting bit-
maps to outlines, it calls (in the version of 2001) the
AutoTrace program [21] created by Martin Weber,
and, finally, composites the final files in the Type 1
format. TEXtrace works fully automatically and can
be invoked by a command like this:
bash traceall.sh mfname psname psnumber

where mfname.mf is the name of the METAFONT

font, psname.pfb is the name of the Type 1 font
file, and psnumber denotes a Type 1 UniqueID [1].

The Adobe Type 1 Font Format documentation
[1, pp. 29–33] recommends observing certain Type 1

54 Preprints for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

¨

¨
Figure 1: TEXtrace: “¨” in cmr10.

conventions: 1) points at extremes; 2) tangent con-
tinuity; 3) conciseness; and 4) consistency.

The outline results from TEXtrace (that is, from
AutoTrace) are relatively faithful to the original bit-
maps. Some artifacts exist, but they are invisible
in usual font sizes and magnifications and for prac-
tical purposes may be negligible. Nonetheless, they
spoil our attempts to automatically produce perfect,
hinted, outline fonts.

The underlying reason is that the information
about the control points in the original METAFONT

is lost, and the Type 1 conventions are not satisfied,
as exemplified in figure 1. The endpoints (double
squares) are not placed at extremes (rule 1), most
of the horizontal and vertical points of extrema are
missing. On the other hand, the outline definition
is not concise (rule 3) — due to the large numbers of
control points in the glyph definitions, the font files
generated by TEXtrace are huge. Furthermore, the
two identical periods in the dieresis glyph “¨” are
approximated by different point sets (rule 4).

The following examples show the results of con-
version of Indic fonts submitted to TUG India 2002
[16], devanagari (dvng10) and Malayalam (mm10).
Typical irregularities produced by conversion with
TEXtrace are bumps and holes. Figure 2 demon-
strates bumps caused by the envelope being stroked
along a path with a rapid change of curvature, and
by cases of transition from a straight line to a sig-
nificantly small arc. The second clipped part of the
letter “pha” shows a hole.

I tried to remove those bumps and holes, and
(partially) other irregularities at the Type 1 level
with a set of special programs manually marking
places to be changed in a “raw” text, translated
by t1disasm and by t1asm back after modifications
(both programs are from the t1utils package [13]),
which achieves a better outline approximation, as
shown in figure 3. The postprocessing consisted of:

tta

a
d

VV

VV
a

a

b

d

c
bAA

AA
AA

pha
b

b b bhPPPPPPka

g

ckk

kk
Figure 2: Results of TEXtrace (AutoTrace):
bumps and a hole (h).

tta

a

VV

VV
a

a

bAA

AA
AA

pha
b

b

PPPPPPka

g

kk

kk
Figure 3: Improved results achieved with
postprocessing.

Preprints for the 2004 Annual Meeting 55

Karel Ṕı̌ska

˝̋
˝̋

Figure 4: TEXtrace (AutoTrace) first without and
then with postprocessing for the Malayalam “a”,
showing undetected corners.

inserting missing extrema points, changing the first
nodes of contour paths (if desirable), and the opti-
mization of merging pairs (or sequences) of Bézier
segments together, and joining nodes in horizon-
tal or vertical straight parts to eliminate redundant
nodes.

However, when this process was applied to the
Malayalam fonts, we meet another problem: unde-
tected corners in Figure 4. Instead of attempting
to correct them, I stopped my postprocessing at-
tempts, and switched to experiments with analytic
methods of conversion.

2.1.1 Examples of CM-super

Type 1 fonts [20] generated by Vladimir Volovich
(first announced in 2001) inherit typical bugs pro-
duced by tracing bitmaps by AutoTrace (as invoked
by TEXtrace) such as bumps and holes, improper se-
lection of starting points of contour paths, and prob-
lems in distinguishing sharp corners and small arcs.
We illustrate them in several following figures, in
order to demonstrate that fixing such irregularities
automatically is difficult.

In the period “.” from the sfrm1000 font (its
source is the original cmr10), an optimization cannot
exclude the redundant node (fig. 5) (it is still the
starting point of the path).

The minus “−” derived from cmr10 contains a
bump, and minus from cmtt10 two bumps (fig. 6).
Moreover, these bumps have been hinted and have
their own hints (probably as results of autohinting).

In the letter “M” from cmtt10, we observe miss-
ing dishes, a hole and a bad approximation of an arc

d....a....
Figure 5: CM-super: period in sfrm1000 and
sfsi1000, with redundant node.

d−−−−d

−−

−−
Figure 6: CM-super: minus in sfrm1000 and
sftt1000, with bumps.

a

f

MMMM

MM
a

c

iiiiii
ii

Figure 7: CM-super: “M” in sfrm1000 and “i” in
sfsi1000.

56 Preprints for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

d

b

b˝̋

˝̋̋̋
˝̋Figure 8: TEXtrace (using potrace), with different

corners.

(fig. 7). On the contrary, in “i” the corners are not
detected properly, we also have a hinted bump.

2.2 TEXtrace with potrace

The 2003 version of TEXtrace supports alternative
bitmap tracing with potrace [17], developed by Pe-
ter Selinger. In this version, the real corners are
detected or at least detected better than with Auto-

Trace (see fig. 8). Thus, bumps and holes have been
suppressed, but smooth connections have often been
changed to sharp corners (not present originally).
While the bumps demonstrated violation of consis-
tency and may produce invalid hinting zone coor-
dinates (fig. 6), the unwanted sharp corners mean
loss of tangent continuity (the middle clip in fig. 8).
Unfortunately, the approximation does not preserve
horizontal and vertical directions (the right clip), the
stem edges are oblique — the difference between the
two arrows on the left edge is 2 units in the glyph
coordinate space.

2.3 mftrace

Han-Wen Nienhuys created mftrace [15, 3], a Python
script which calls AutoTrace or potrace (as with TEX-

trace) to convert glyph bitmap images to outlines.
The results of tracing are thus expected to be very
similar to those of TEXtrace. In fact, for the ana-
lyzed Indic fonts, they are identical, as we can see in
the first image in figure 9 (compare with TEXtrace re-
sults in fig. 4). With the --simplify option, mftrace

calls FontForge [22] (previously named PfaEdit) to
execute postprocessing simplification; this helps to
exclude redundant nodes from outline contours, as
in the second image in figure 9.

˝
˝

Figure 9: mftrace without and with --simplify.

3 Analytic Conversions

3.1 MetaType1

MetaType1 [8, 9] is a programmable system for au-
diting, enhancing and generating Type 1 fonts from
METAPOST sources. MetaType1 was designed by
Bogus law Jackowski, Janusz M. Nowacki and Piotr
Strzelczyk. The MetaType1 package is available
from ftp://bop.eps.gda.pl/pub/metatype1 [10].

This “auditing and enhancing” is a process of
converting the Type 1 font into MetaType1 (text)
files, generating proof sheets, analysis, making cor-
rections and regenerating modified Type 1 fonts. It
is an important tool for checking, verifying and im-
proving existing Type 1 fonts.

MetaType1 works with the METAPOST lan-
guage. Therefore the METAFONT font sources must
be converted/rewritten into METAPOST. Macro
package extensions of METAPOST and other mis-
cellaneous programs provide generation of proper
structure of the Type 1 format, evaluate hints (not
only the basic outline curves), and create pfb and
also afm and pfm files.

During the rewriting process, users define sev-
eral parameters of the Type 1 font, including the
PostScript font encoding — PostScript glyph names
and their codes — because METAFONT sources do
not contain this data in a form directly usable for
Type 1 encoding vectors. METAFONT output com-
mands have to be changed to their METAPOST al-
ternatives. Similarly, it is necessary to substitute
METAFONT commands not available in METAPOST,
to define METAPOST variants of pen definitions and
pen stroking, etc.

Alternative METAPOST commands are defined
in the MetaType1 files fontbase.mp, plain ex.mp,

Preprints for the 2004 Annual Meeting 57

Karel Ṕı̌ska

a
a

Figure 10: MetaType1 — primary outlines and
overlap removal.

et al. Other (new) commands may be defined by
the user. Correspondence between METAFONT and
METAPOST is approximately as shown in the fol-
lowing table (of course, the details may vary from
font to font):

METAFONT METAPOST

fill path; Fill path;

draw path; pen stroke()(path)(glyph);

Fill glyph;

penlabels(1,2); justlabels(1,2);

beginchar(. . . beginglyph(. . .
endchar; endglyph;

Many METAFONT commands have no counter-
part in METAPOST [6]. For example, operations
with bitmap pictures: in METAPOST, font data is
represented as PostScript curves, not bitmaps. As a

1

2

3

4

56

7

8

9

10

11

12

13

14

15

16

17

Figure 11. MetaType1 — proof sheet.

result, writing METAPOST code that would produce
equivalent results as original METAFONT code using
these or other such features would be very difficult.

After the basic conversion, the next step is re-
moving overlaps (if any are present) using the Meta-
Type1 command find outlines. Figure 10 shows
the results before and after overlap removal for the
Malayalam vowel a (font mm10 using pen stroking
with a circular pen). This operation is not neces-
sary in METAFONT, since it generates bitmaps. In
the METAPOST environment of PostScript outlines,
however, we need to reduce overlapping curves to
single or pairs of paths.

MetaType1 also allows insertion of commands
for automatic computation of horizontal and vertical
hints (FixHStems, FixVStems). The Type 1 font
can be visualized in a proof sheet form containing
the control point labels (numbers) and hinting zones
(figure 11).

So far, so good. But there are two crucial prob-
lems. First, the METAFONT Malayalam fonts de-
signed by Jeroen Hellingman [5], use the command

currenttransform := currenttransform

shifted (.5rm, 0);

So all the glyphs should be shifted to the right.
METAFONT saves the transformation command and
does this operation automatically. By contrast, in
METAPOST we need to insert the shift commands
explicitly in all glyph programs. Also the labels
must be shifted! In my experiments, I did this shift
operation later, before final assembly of the Type 1
fonts.

The second problem is that in MetaType1 (I
used MetaType1 version 0.40 of 2003) a regular pen
stroking algorithm is not available, only a simpli-
fied method of connecting the points ‘parallel’ to the

58 Preprints for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

���
Figure 12: MetaType1 — bad pen stroking.

nodes on the path. Therefore the approximation of
the envelope is not correct. For example, in Fig-
ure 12 it should be asymmetric, but it is symmetric.
Inserting additional nodes cannot help, because the
bisection results will again be asymmetric. The fig-
ure shows the outline curves do not correspond to
the real pen in two midpoint locations. The enve-
lope there looks narrow and it is in fact narrower
than it should be. I hope that this problem could
be solved in a future release, at least for pen stroking
with a circular pen.

Even more serious is a situation with the ro-
tated elliptic pen used in the Devanagari fonts de-
signed by Frans Velthuis [19] (and also other In-
dic fonts derived from dvng). Absence of a regular
pen stroking in MetaType1 makes it impractical for
such complicated fonts. MetaType1 approximates
the pen statically in path nodes, tries to connect
their static end points, and ignores complicated dy-
namic correlations between the path, the pen and
the envelope. Unfortunately, in this case the results
of the envelope approximation are not correct and
cannot be used (figure 13).

3.2 MetaFog

Two programs using analytic conversion were pre-
sented in 1995. Basil K. Malyshev created his Ba-
KoMa collection [14] and Richard J. Kinch devel-
oped MetaFog [11]. BaKoMa is a PostScript and
TrueType version of the Computer Modern fonts.
Malyshev’s paper discusses some problems of con-
version, especially regarding hinting, but his pro-
grams and detailed information about the conver-
sion algorithm are not available.

R. Kinch created MetaFog along with weeder,
which supports interactive processing of outlines,

Figure 13: MetaType1 — Devanagari “i”, “a”.

and a package for making final fonts from out-
lines generated by MetaFog in TrueType, Type 1
and other formats. MetaFog itself (I used an
evaluation version graciously donated by Richard)
reads the METAPOST output from the command:

mpost ’&mfplain options;’ input fontname.mf

Thus, the conversion (from METAFONT sources) is
limited to fonts that can be processed by META-
POST, that is, do not contain METAFONT-specific
definitions and commands. MetaFog generates an-
other PostScript file consisting only of the outline
structures. A conversion process is described also in
the paper written by Taco Hoekwater [7].

MetaFog evaluates outline contours and pre-
cisely computes envelopes of an elliptical pen strok-
ing along a Bézier curve. We must notice that the
envelopes in general are not cubic Bézier curves and
their representation in a Type 1 font must be an ap-
proximation. The results for a circular pen, on the
other hand, can be considered perfect. Figures 14
and 15 show an example of the Malayalam letter
“a” (font mm10): the initial and final contours and
the final Type 1 font with control points (stroked

Preprints for the 2004 Annual Meeting 59

Karel Ṕı̌ska

g

bk

h

bl

i

j

k

l

g

m

n

o

p

q

r

m

s

t

u

v

w

x

s

y

z

ba

bb

bc

bd

y

be

bf

bgbh

bi

bj be

bu

bv

bw bx

by

bzbu ca

cb

cc

cd

ce

cf

ca

cg

ch

ci

cj

ck

cl

cg

cm

cn

co

cp

cq

cr

cm

cs

ct

cu

cv

cw

cx

cs

cy

cz

da

db

dc

dd

cy

de

df

dg

dh

di

dj

de

dr

ds

dt

du

dv

dw

dr

dx

dy

dz

ea

eb

ec

dx

ed

ee

ef

eg

eh

ei

ed

ej

ek

el

em

en

eo

ej

ep

eq

er

es

et

eu

ep

ev

ew

ex

ey

fb

ez

fc
fa

ev

bsu

bsv

bsw

bsx

bsy

bsz

bta
btb

btc

btd

bte

btf

btg

bth

bti

btj

btk

btl

btm

btn

bto

btp

btr

bts

btt

btu

btv

btw

btx

bty

btz

bsu

bua

bub

buc

bud

bua

bue

buf

bugbuh

bue

bui buj

buk

bul

bui

Figure 14: MetaFog — initial input contour and
final result.

�
�
Figure 15: MetaFog — final Type 1 font.

version) and its visual comparison with METAPOST

output embedded in a Type 3 font, respectively.

3.2.1 Problems with Complex Pen-stroking

A more complicated situation is the conversion of
fonts using pen stroking with a rotated elliptical pen,
such as the Devanagari font. Figure 16 illustrates
this case. The initial input contour and final result
contour (tta1) look good — in the first image we can
see the projections of the pen in nodes correspond-
ing to METAFONT source. But exact comparison
with the original METAPOST output embedded in
a Type 3 font (tta2) and primary MetaFog conver-
sion displayed together with the METAPOST source
(tta3) shows that this approximation is not correct.
Because these elements are very common in shapes

tta1

g

oi
p

h

qj
r

g

c

e d

fc

k

sm
t

l

un
v

kbc

bkbe
bl

bd

bmbf
bn

bc

y

ba

z

bb

y

bg

bobi
bp

bh

bqbj
br

bgca

dgcc
dh

cb

dicd
dj

ca

bw

by

bx

bz

bw

ce

dkcg
dl

cf

dmch
dn

cecm

doco
dp

cn

dqcp
dr

cm

ci

ck

cj

cl

ci

cq

dscs
dt

cr

duct
dv

cqcy

dwda
dx

cz

dydb
dz

cy

cu

cw

cv

cx

cu

dc

eade
eb

dd

ecdf
ed

dc

sk

sl sm

sn

so

sp

sqss
st

su

svswsx

sy

sz

tatb
tc

td tetf
tg

th

titjtk
tl

sk

tta2
g

tta3
g

sk

sl sm

sn

so

sp

sqss
st

su

svswsx

sy

sz

tatb
tc

td tetf
tg

th

titjtk
tl

sk so

sp

sy

sz

tta4
g

cnf

cng cnh

cni

cnj

cnk

cnl

cnm

cnn

cno

cnp

cnq

cnr

cns

cnt

cnu

cnv

cnw

cnxcnz
coa

cob

coccodcoe

cof

cog

coh
coicoj

cok

colcom
con

coo copcoq
cor

cos

cotcoucov
cow

cnf
cnj

cnk

cnl

cnm

cnn

cno

cnp

cnq

cnr

cns

cnt

cnu

cnv

cnw

cof

cog

coh
coicoj

cok

Figure 16: MetaFog contours, METAPOST

output, primary and secondary conversion on the
METAPOST background.

of all but the simplest Devanagari glyphs, correc-
tions are necessary.

I therefore applied a simple pen-dependent pre-
processing step before the MetaFog conversion, thus
adapting the METAPOST output as a modified form
of bisection, as discussed in a paper by R. Kinch
[11]. The preprocessing scans curves, searching for
points where the path direction and the direction of
main axis of the pen coincide (namely 135◦) and in-
serts these points as additional path nodes. In our
case, the transformation matrix is cos θ∗ [1, 1,−1, 1],
so we solve only a quadratic equation and can find
0, 1 or 2 (at most) of these points. This technique
corrects the MetaFog approximation of all such oc-
currences in the dvng font. The result of this sec-
ondary MetaFog conversion with METAPOST source
is shown in the last panel of Figure 16 (tta4).

Similar improvements for the Devanagari let-
ters “a” and “pha” are shown in figure 17. For
“pha”, the first 135 degree node was already present

60 Preprints for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

a1

d efn

efo efp

efq

efr

efs

eft

efu

efv

efwefx
efyefz

ega

egbegc
egd

ege

egfeggegh

egi

egjegkegl

egm

egnegoegp
egq

egr

egs egt

egu egv

egwegxegy
egz

eha
ehb

ehc

ehd

ehe

ehf

ehg

ehhehi
ehj

ehkehl

ehm

ehn

eho

ehp

ehq

ehr

ehseht
ehu

ehy ehzeia
eib

eic

eideieeif
eig

efn

efn

eft

efu

efv

efwefx
efyefz

egi

egjegkegl

egm

efn

pha1

g

ewg

ewh

ewi

ewj

ewk

ewl

ewm

ewn

ewo

ewp

ewq

ewr

ews

ewt

ewu

ewveww

ewx

ewy

ewz

exa

exbexc
exd

exe

exf exg exh

exi

exj

exk

exlexn

exo

expexqexs

ext

exu

exv

exw exxexy
exz

eya

eybeyceyd
eye

ewg

eyf

eyg

eyh

eyi eyj

eyk

eyl

eyf

ewj

ewk

ewl

ewm

ewn

ewo

ewp

ewq

ewr

ews

ewt

ewu

ewveww

eyf

eyg

eyl

eyf

a2

d oqe

oqf oqg

oqh

oqi

oqj

oqk

oql

oqm

oqn

oqo

oqp

oqq

oqr

oqs

oqt

oqu

oqv

oqw

oqx

oqy

oqz

ora

orborc
ord

ore

orforgorh

ori

orjorkorl

orm

ornoroorp
orq

orr

ors ort

oru

orvorworx

ory

orz

osaosb

osc
osd

ose

osf

osgosh
osi

osjosk

osl

osm

osn

oso

osp

osq

osr

oss

ost

osu

osv

oswosx
osy

otc otdote
otf

otg

othotiotj
otk

oqe

oqe

oqo

oqp

oqq

oqr

oqs

oqt

oqu

oqv

oqw

oqx

oqy

oqz

ori

orjorkorl

orm

oqe

pha2

g

lgt

lgu

lgv

lgw

lgx

lgy
lgz

lha

lhb

lhc

lhd

lhe

lhf

lhg

lhh

lhi

lhjlhk

lhl

lhm

lhn

lho

lhplhq
lhr

lhs

lht

lhu

lhv

lhwlhy

lhz

lialiblid

lie

liflig

lih

lii

lij

lik

lil

lim

lin

lio

lip

liq

lir

lis

lit

liu livliw
lix

liy

lizljaljb
ljc

lgt

ljd

lje

ljf

ljg ljh

lji

ljj

ljd

lht

lhu

lhv

lie

liflig

lih

lii

lij

lik

lil

lim

lin

lio

lip

liq

lir

lis

Figure 17: MetaFog output before and after
modification of METAPOST source.

in the path defined by the METAFONT source (first
panel, pha1); on the contrary, the second occurrence
of a 135 degree point was absent, and therefore it
was inserted in the METAPOST output (last panel,
pha2).

Of course, this improvement is not universal, it
only solves a special problem with a special pen for
a special font.

Figure 18 illustrates movement of a rotated el-
liptical pen stepping along a “nice” path (panel 1).
However, correlations with the pen are not trivial:
changes of curvature of the outer wingtip curve do
not have simple monotonic behavior, and the in-
ner wingtip curve (panel 2) is even more compli-
cated. This means that the pen-stroked wingtip
curves along a single Bézier curve cannot be approx-
imated by single Bézier curves (compare with the
starting fig. 16, panel tta1), i.e., an envelope edge of
a pen along a simple path is not simple.

1
g

2
g

Figure 18: Wingtip curves in METAPOST source.

��
��

Figure 19: MetaFog converted to Type 1 —
before and after postprocessing.

3.2.2 Automatic Conversion Problems

A “dark side” of improving the curve approxima-
tion is a fragmentation of an envelope curve into
many segments (often more than 10, and up to 16 in
Devanagari!). We achieve a faithful approximation
(limited only by numerical accuracy) at the expense
of conciseness. To make up for this, postprocess-
ing is needed. The original MetaFog output and a

Preprints for the 2004 Annual Meeting 61

Karel Ṕı̌ska

b
g

a
yhv

yhw yhx

yhy
yhz

yia

yibyic
yid

yie yifyig
yih

yii

yijyikyil
im

yhv

yin

yioyip
yiq

yir

yisyit
yiu

yin

yiv

yiw

yix

yiy

yiz

yja

yjb

yjc

yjd

yje

yjf

yjg

yjh

yji

yjj
yjk

yjlyjmyjnyjo

yjp

yjq

yjryjs
yjt

yju

yjv

yjw

yjx

yjy

yjz
yka

ykb ykc

ykd

yke

ykf

ykg

ykh yki

ykj

ykk
ykl

ykm

ykp

ykq

ykr

ykv

ykw

ykx

yky

ykz

yla

ylb

ylc

yld

yle

ylf
ylg
ylhyli

ylj

ylkyll
yiv

yjq

yjryjs
yjt

yju

yhy
yhz

yia

yibyic
yid

yin

yioyip
yiq

yir

yisyit
yiu

yin

yiv

yiw

yix

ylkyll
yiv

g

g

yjz
yka

ykb ykc

ykb ykc

Figure 20: MetaFog — problems with automatic
conversion.

result of my (preliminary) optimization assembled
into Type 1 fonts is shown in Figure 19.

Unfortunately, even a small computational in-
accuracy can make automatic conversion and opti-
mization impossible, and even make it very difficult
to design postprocessing algorithms. In Figure 20,
we demonstrate problems with the primary approxi-
mation of an envelope stroked by a rotated elliptical
pen, and also difficulties with automatic optimiza-
tion of the Devanagari ligature “d+g+r”.

In the first panel of fig. 20, we observe an ar-
tifact produced by MetaFog due to a complicated
correlation of the pen and the path. Fortunately,
those cases are very rare (less than 1 % of glyphs in
Devanagari).

In the second panel, the path and subsequently
the corresponding envelope edges are not absolutely
horizontal, thus (probably) MetaFog cannot prop-
erly find intersection points and join reconstructed
outline components. Those defects are present in

more than 12 % of the Devanagari glyphs. In all
cases, they have been successfully solved manually
by the interactive weeder program.

In the last two details in fig. 20 (the lower end-
ing part of the left stem) we can see that both nodes
of the left segment are outside the filled area bound-
ary defined by the METAPOST curve. The outer
wingtip edge is split there into many segments, some
being straight lines — and they should not be, e.g.,
the first and the third segment marked by 2 ar-
rows in the clip — their curvatures are for us unde-
fined. Additionally, we cannot detect the last seg-
ment (magnified in the figure) as horizontal because
its angle is “greater than some ε”.

Thus, neither node coordinates, nor segment
directions, nor curvatures are reliable. It gives a
visual comparison of the METAPOST output with
its outline approximation. Therefore, my (first and
“simple”) idea cannot succeed. This was to clas-
sify the behavior of directions and curvatures of all

the segments automatically, and then to divide seg-
ments into groups according to directions and cur-
vatures, then automatically merging the groups to
single Bézier segments. As demonstrated, this opti-
mization may fail or produce incorrect results and,
unfortunately, human assistance is needed.

4 Summary

Here we summarize the most important features of
the conversion programs found in our experiments.

4.1 Approximate Conversions: TEXtrace,

mftrace

Advantages:

• approximation covers original METAFONT fonts
and correspondence to pk bitmaps is (reason-
ably) close

• simple invocation, robust solution
• fully automatic processing can generate com-

plete, final Type 1 fonts

Disadvantages:

• approximate conversions give only approximate
outlines

• lost information about nodes and other control
points

• final fonts do not satisfy the Type 1 conventions

• AutoTrace: problems with recognizing corners,
generation of unwanted bumps and holes

• potrace: sharp connections, thus loss of tangent
continuity, violation of horizontal or vertical di-
rections

• automatic and correct (auto)hinting may yield
poor results due to these irregularities

62 Preprints for the 2004 Annual Meeting

Creating Type 1 Fonts from METAFONT Sources: Comparison of Tools, Techniques and Results

4.2 MetaType1

Advantages:

• complete support for Type 1 font generation

• manual insertion of hinting information possible
via simple hinting commands

• font file compression via subroutines

Disadvantages:

• conversion of METAFONT to METAPOST often
requires manual rewriting, possibly non-trivial
and time-consuming

• bad pen stroking algorithm; in particular, re-
sults for complicated fonts using rotated ellip-
tical pens are unusable

• difficulties with removing overlaps in tangential
cases

4.3 MetaFog

Advantages:

• fully automatic conversion of METAPOST out-
put to outlines

• “typical” fonts usually achieve perfect results

• even for very complex fonts (again, with rotated
elliptical pens), adaptations of METAPOST out-
put and manual editing with weeder make it
plausible to obtain perfect outlines

• results fulfill the Type 1 conventions in most
cases (except for those very complex fonts)

Disadvantages:

• MetaFog reads METAPOST output, thus cannot
process METAFONT-specific definitions

• complex fonts may still need manual reduction
with weeder or subsequent optimization of out-
lines to reach conciseness

• processing is slow

4.4 Final Font Processing and Common

Problems

The conversion systems discussed here, with the ex-
ception of MetaType1, do not include internal hint-
ing subsystems. To insert hints, we can use font
editors, for example FontForge [22]. For success-
ful automatic hinting, however, the font outlines
must fulfill certain conditions. Irregularities — ab-
sence of nodes at extrema or presence of bumps
and holes — are not compatible with autohinting,
because extrema points correspond to hinting zones
while bumps or holes do not fit them, thus caus-
ing outliers. The resulting difference of ±1 unit in
the integer glyph coordinate system, after rounding
to integers, is not acceptable for high-quality fonts.
Problems may also be caused by other “rounding to

integer” effects, and by the presence of close dou-
blets or triplets.

In my view, these experiments show that the
quality of primary outline approximation is crucial
to achieve perfect final Type 1 fonts. It is virtually
impossible to recreate discarded METAFONT infor-
mation, or to find exact conditions for a secondary
fit that corrects primary contours that were created
with irregularities or artifacts. Starting with high-
resolution bitmaps is problematic, as too much infor-
mation has been lost, making subsequent processes
of improvement, optimization and hinting difficult
at best, not possible to automate and usually not
successful.

5 Acknowledgements

I would like to thank all the authors of the free
conversion programs, Richard Kinch for donating
his MetaFog and weeder, the authors of the pub-
lic METAFONT fonts for Indic languages and other
sources used in the contribution, and Karl Berry for
help with editing of this article.

References

[1] Adobe Systems Inc. Adobe Type 1 Font Format.
Addison-Wesley, 1990.

[2] Alfred V. Aho, Brian W. Kernighan, and Peter
J. Weinberger, The AWK Programming Lan-

guage, Addison-Wesley, 1988.

[3] Karl Berry. “Making outline fonts from bitmap
images.” TUGboat, 22(4), pp. 281–285, 2001.

[4] Free Software Foundation. GNU awk, http://
www.gnu.org/software/gawk.

[5] Jeroen Hellingman. Malayalam fonts, CTAN:

language/malayalam.

[6] John D. Hobby. A User’s Manual for META-
POST. AT&T Bell Laboratories, Computing
Science Technical Report 162, 1994.

[7] Taco Hoekwater. “Generating Type 1 Fonts
from METAFONT Sources”, TUGboat, 19(3),
pp. 256–266, 1998.

[8] Bogus law Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk. “MetaType1: A METAPOST-based
Engine for Generating Type 1 Fonts”, Pro-

ceedings of the XII EuroTEX 2001 conference,
pp. 111–119, Kerkrade, the Netherlands, 23–27
September 2001.

[9] Bogus law Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk. “Programming PostScript Type 1
Fonts Using MetaType1: Auditing, Enhancing,
Creating. Preprints of the XIV EuroTEX 2003

Preprints for the 2004 Annual Meeting 63

Karel Ṕı̌ska

conference, pp. 151–157, Brest, France, 24–27
June 2003 (to appear in TUGboat).

[10] MetaType1distribution: ftp://bop.eps.gda.

pl/pub/metatype1.
[11] Richard J. Kinch. “MetaFog: Converting

METAFONT Shapes to Contours”, TUGboat,
16(3), pp. 233–243, 1995.

[12] Donald E. Knuth. The METAFONTbook.

Addison-Wesley, 1986. Volume C of Computers

and Typesetting.

[13] Eddie Kohler. t1utils (Type 1 tools), http://
freshmeat.net/projects/t1utils.

[14] Basil K. Malyshev, “Problems of the conver-
sion of METAFONT fonts to PostScript Type 1”,
TUGboat, 16(1), pp. 60–68, 1995.

[15] Han-Wen Nienhuys. mftrace, http://www.cs.
uu.nl/∼hanwen/mftrace.

[16] Karel Ṕı̌ska. “A conversion of public Indic fonts
from METAFONT into Type 1 format with TEX-

trace.” TUGboat, 23(1), pp. 70–73, 2002.

[17] Peter Selinger. potrace, http://potrace.

sourceforge.net.

[18] Péter Szabó. “Conversion of TEX fonts into
Type 1 format”, Proceedings of the XII Euro-

TEX 2001 conference, pp. 192–206, Kerkrade,
the Netherlands, 23–27 September 2001.
http://www.inf.bme.hu/∼pts/textrace;
http://textrace.sourceforge.net.

[19] Frans J. Velthuis. Devanagari fonts, CTAN:

language/devanagari.

[20] Vladimir Volovich: CM-super fonts: CTAN:

fonts/ps-type1/cm-super.

[21] Martin Weber. AutoTrace, http://autotrace.
sourceforge.net.

[22] George Williams. FontForge: A PostScript Font
Editor, http://fontforge.sourceforge.net.

64 Preprints for the 2004 Annual Meeting

OpenType and Ω: Past, Present and Future

Yannis Haralambous
Département Informatique
École Nationale Supérieure des Télécommunications de Bretagne
CS 83818, 29238 Brest Cédex, France
yannis.haralambous@enst-bretagne.fr

Gábor Bella
gabor.bella@enst-bretagne.fr

Abstract

This article presents our plans for integrating the OpenType font format into the
Ω typesetting system. Beginning with a short summary of what we have achieved
so far, we compare potential methods of adaptation. Since most OpenType-
related issues we present are valid not only for Ω but for all TEX-like systems, the
authors hope that the article will be interesting for the whole TEX community.

1 Past

The OpenType font format has been officially avail-
able since 1997. In contrast to its predecessors,
TrueType and PostScript Type 1 and 2, it provides
essential features for proper typesetting of non-LGC1

scripts, as well as handling LGC ones. Although
competing formats with similar capabilities (Apple
GX/AAT and Graphite) were and still are available,
the marketing force behind OpenType seems strong
enough to make it a de facto standard.

The decision to bring OpenType support to Ω
as a complement to the already available fonts was
taken sometime in 2002 and effective work began
around early 2003. At the EuroTEX 2003 confer-
ence, we presented our initial development plans
and our first results [1]. Since then, considerable
progress has been made, so that in the final version
of the EuroTEX proceedings we are finally able to
announce a working implementation [1].

However, this implementation is not likely to
become the final solution, for two reasons. First,
it was never intended to be such. Rather, it was
created to verify the validity of certain conversion
methods and also to provide users with the possibil-
ity to install and use OpenType fonts as quickly as
possible, even if not all advanced features are avail-
able yet. Secondly, as we will see later, complete and
robust OpenType support cannot simply be patched
onto the existing Ω: as the two do not always share
the same philosophy, some parts of Ω will need to

1 Latin-Greek-Cyrillic.

be reorganized in order to take advantage of certain
OpenType features.

In the following, we give a quick overview of
the present solution and then explain why and how
it needs to be revised.

2 Present: OpenType Support, the Quick

Way

The word ‘quick’ may seem ironic here: in total,
it took us almost a year to produce our first re-
sults. However, this was due more to organizational
problems than to the difficulty of the task. By ‘the
quick way’, we mean the solution that was the most
straightforward and the easiest to implement. It is
described in detail in the EuroTEX article [1]; here,
only a short summary is given.

The present solution is based on the approach
that OpenType fonts should be converted to Ω’s own
formats, i.e., OFM (metrics), OVF (virtual fonts)
and ΩTP (Ω Translation Process2). Anish Mehta
wrote several Python scripts to generate these files,
of which the most interesting is perhaps the one that
converts the whole OpenType GSUB table (see next
section) into ΩTP’s.

Moreover, as the OpenType format is generally
not understood by PostScript printers, a conversion
to Type 1 (or Type 42) is necessary. To speed up
the process, we create Type 1 charstring collections
using our own PFC tables (see [1] for details) which

2 An ΩTP describes a finite state automaton that can be

used to filter the input text to perform tasks such as contex-

tual analysis.

Preprints for the 2004 Annual Meeting 65

Yannis Haralambous and Gábor Bella

are later used by odvips to create small, subsetted
Type 1 fonts (a.k.a. minifonts) on the fly.

The above approach assumes that OpenType
can be converted to OFM and ΩTP files without sig-
nificant loss of information. This is not always the
case. In the next section, we will show the main dif-
ferences between the two formats and why we have
decided to abandon some of our results in favour
of a better concept. This does not mean that the
work done so far was useless: first, we managed to
prove that the conversion to Type 1 (which we are
planning to keep) is a viable approach and secondly,
we are able to provide Ω users with a working, al-
beit not complete and only temporary, OpenType
support.

3 Future: Alternatives of Adaptation

An OpenType font consists mainly of the following
parts:

1. font and glyph metrics;

2. Type 2 or TrueType glyph outlines (and hints
or instructions);

3. advanced typographic features (mainly GSUB

and GPOS);

4. other data tables.

In one form or another, all of them will certainly
need to be dealt with either inside Ω or odvips. Be-
low, we give a very concise description of our plans
regarding each of these fields.

3.1 Metrics

OpenType provides extensive font metric informa-
tion dispersed among various tables (post, kern,
hmtx, hdmx, OS/2, VORG, etc.), both for horizon-
tal and vertical typesetting. In most cases, Ω’s (or
TEX’s) and OpenType’s metrics can be converted
from one to another, with few but important excep-
tions (e.g., height/depth, see [1] and [2]). Despite
the occasional differences, it seems desirable to dis-
pose of the intermediary OFM files and read Open-
Type metrics directly from the font file.

3.2 Conversion

As explained in the last section, conversion of Open-
Type’s Type 2 and TrueType outlines to Type 1 has
already been implemented. We are also planning
to provide Type 42 support for TrueType-flavoured
OpenType that would also preserve instructions.

3.3 Advanced features: GSUB and GPOS

These advanced features are the most interesting
part of OpenType. The GSUB (glyph substitution)
and GPOS (glyph positioning) tables are essential

for typesetting many non-LGC scripts. In Ω, the
equivalent of GSUB features are the ΩTP’s: they can
do everything GSUB features can, including contex-
tual operations. Glyph positioning is a different is-
sue: since the ΩTPs are designed for text rearrange-
ment (substitutions, reordering etc.), they are not
suitable for doing glyph placement as easily. In fact,
the idea of microengines—ΩTP-like Ω plugins—was
introduced some time ago, exactly to provide mod-
ular, script- and language-specific positioning meth-
ods, along the lines of ΩTP files. With the appear-
ance of OpenType fonts, it became clear that posi-
tioning features as implemented by the GPOS table
and microengines provide essentially the same func-
tionality. It should then be possible to implement
microengines as GPOS features and vice versa.

A closely related problem is the fundamental
difference between Ω’s and OpenType’s way of de-
scribing features. Although both use the Unicode
encoding, OpenType’s GSUB and GPOS features are
based on strings of glyph ID’s and not of Unicode
characters. Ω and some of its ΩTP’s, on the other
hand, perform tasks such as contextual analysis or
hyphenation on character sequences and the passage
from characters to ‘real’ glyph ID’s happens only
when (o)dvips replaces virtual fonts by real ones.
Moreover, it is theoretically impossible to convert
a glyph-based OpenType feature into a character-
based ΩTP, as some glyphs (allographs) may not
even have Unicode equivalents.3 The solution to this
problem is either to use glyph- and character-based
ΩTP’s at the same time or else to read GSUB and
GPOS features directly from the OpenType font,
without conversion to ΩTP’s or microengines.

Whichever method we choose, Ω will need to
maintain both glyph and character representations
of the same text in parallel to be able to perform
font-specific (OpenType features) and font-indepen
dent (hyphenation) operations at the same time.
This dual representation of text is also crucial for the
searchability and modifiability of the output (PDF,
PS, SVG or any other) document.

3.4 Extensibility

Finally, the OpenType format has the important
feature of being extensible: new tables can be added
into the font file, containing, for example, data need-
ed by Ω with no OpenType-equivalents (such as
metrics or PFC charstrings). Of course, it is nec-
essary that the given font’s license allows such ad-
ditions.

3 There exist some workarounds though, for example to

map these glyphs to the Private User Area of Unicode, but

this solution is not very elegant, to say the least.

66 Preprints for the 2004 Annual Meeting

OpenType and Ω: Past, Present and Future

4 Conclusions

It is time to draw conclusions from the arguments
made above. First, OpenType seems capable of be-
ing a base font format for Ω. Its tabular file struc-
ture is flexible enough so that missing Ω-specific in-
formation can easily be added to fonts. Metrics can
be read directly from the font file (with some excep-
tions) and then converted on the fly, if necessary.
Also, virtual fonts are not useful for OpenType, as
it is more reasonable to use a Unicode-based en-
coding. Thus, neither OFM nor OVF files will be
needed when using OpenType fonts. This is one of
the arguments against the approach presented in the
previous section.

Secondly, in terms of capabilities, ΩTP’s and
GSUB features are very much compatible. The same
can be said for GPOS and microengines, although
no implementation exists for the latter yet. How-
ever, incompatibility is present on the character/
glyph level. As was shown, a dual approach can be
helpful, keeping strings of glyph ID’s and characters
in parallel—another reason why the simple conver-
sion method described in the previous section is not
adequate.

In summary, on the one hand we have opted
for a tighter integration of Ω and OpenType, by di-
rectly reading from (e.g., metrics) and writing to the
font file. On the other hand, advanced OpenType
features such as glyph positioning and substitution
necessitate modifications in Ω’s character handling
as well as in the ΩTP/microengine concept. The
companion article in this volume will give further
details on how we are planning to implement these
changes.

References

[1] Gábor Bella and Anish Mehta: Adapting Ω to

OpenType Fonts. EuroTEX 2003 Proceedings.
Final version to appear in TUGboat.

[2] Yannis Haralambous and John Plaice: Ω and

OpenType Fonts. Kyōto University 21st Cen-
tury COE Program, 2003.

[3] The OpenType Specification v1.4.
http://www.microsoft.com/typography

/otspec/default.htm

Preprints for the 2004 Annual Meeting 67

Moving Ω to a C++-based Platform

John Plaice
School of Computer Science and Engineering

The University of New South Wales

unsw sydney nsw 2052, Australia

plaice@cse.unsw.edu.au

Paul Swoboda
pswoboda@cse.unsw.edu.au

Abstract

The code for the Omega Typesetting System has been substantially reorganised.
All fixed-size arrays implemented in Pascal Web have been replaced with inter-
faces to extensible C++ classes. The code for interaction with fonts and Omega
Translation Processes (OTPs) has been completely rewritten and placed in C++

libraries, whose methods are called by the typesetting engine. The Pascal Web
part of Omega no longer uses change files. The overall Omega architecture is now
much cleaner than that of previous versions.

1 Introduction

Since the first paper on Omega was presented at the
1993 Aston TUG Conference, numerous experiments
have been undertaken in the realm of multilingual
typesetting and document processing. This over-
all work has given important insights into what a
future document processing system, including high
quality typesetting, should look like. See, for ex-
ample, the articles published in the 2003 EuroTEX
and TUG conferences. Clearly, building an extensive
new system will require substantial effort and time,
both at the design and the implementation levels.
In this article, we present the interim solution for
the stabilisation of the existing Omega code base,
with a view towards preparing for the design and
implementation of a new system.

The standard web2c infrastructure, which as-
sumes that a binary is created from a single Pas-
cal Web file and a single Pascal Web change file, is
simply not well suited for the development of large
scale software, of any genre. For this reason, we
have eliminated the change files, and broken up the
Pascal Web file into chapter-sized files. All fixed-
size arrays have been reimplemented in C++ using
the Standard Template Library. Characters are now
32 bits, using the wchar_t data type, and charac-
ter set conversion is done automatically using the
routines available in the stdc++ library. The entire
Pascal Web code for fonts and OTPs, including that
of Donald Knuth, has been completely rewritten in
C++ and placed in libraries. Clean interfaces have

been devised for the use of C++ code from the re-
maining Pascal code.

This exercise serves two purposes. The first is
to stabilise and to simplify the existing Omega dis-
tribution. The second is to lay the groundwork for
a forthcoming, complete reimplementation of open
typesetting software.

2 Problems with Pascal Web

When we examine the difficulties in creating Omega
as a derivation of tex.web, we should understand
that there is no single source for these difficulties.

Pascal was designed so that a single-pass com-
piler could transform a monolithic program into a
running executable. Therefore, all data types must
be declared before global variables; in turn, all vari-
ables must be declared before subroutines, and the
main body of code must follow all declarations. This
choice sacrificed ease of programming for ease of
compiler development; the resulting constraints can
be felt by anyone who has attempted to seriously
modify the TEX engine.

Pascal Web attempts to alleviate this draco-
nian language vision by allowing the arbitrary use
within code blocks — called modules — of pointers
to other modules, with a call-by-name semantics.
The result is a programming environment in which
the arbitrary use of GOTOs throughout the code
is encouraged, more than ten years after Dijkstra’s
famous paper. Knuth had responded correctly to
Dijkstra’s paper, stating that the reasonable use of

68 Preprints for the 2004 Annual Meeting

Moving Ω to a C++-based Platform

GOTOs simplifies code. However, the arbitrary use
of GOTOs across a program, implicit in the Pascal
Web methodology, restricts code scalability. Knuth
himself has stated that one of the reasons he stopped
working on TEX was his fear that he might break it.

For a skilled, attentive programmer, develop-
ing a piece of code that is not going to evolve, it
is possible to write working code, up to a certain

level of complexity. However, for a program that is
to evolve significantly, this approach is simply not
tenable, because the monolithic Pascal vision is in-
herited in the change file mechanism of Pascal Web.
Modifications to TEX are supposed to be undertaken
solely using change files; the problem with this ap-
proach is that the vision of the code maintainer is
that they are modifying functions, procedures, and
so on. However, the real structure of a Pascal Web
program is the interaction between the Pascal Web
modules, not the functions and procedures that they
define. As a result, maintaining a Pascal Web pro-
gram is a very slow process. Back in 1993, when
the first Omega work was being undertaken, “slow”
did not just mean slow in design and programming,
but also in compilation. The slightest modification
required a 48-minute recompilation.

The size limitations created by compile-time
fixed-size arrays are obvious and well known. This
was addressed publicly by Ken Thompson in the
early 1980s and has been addressed in Omega as
well as in the web2c framework, simply by changing
these sizes. However, there are other problems in
the way these arrays are used. The eqtb, str_pool,
font_info and mem arrays all have programming in-
terfaces using fixed-size arrays. Whenever these in-
terfaces are insufficient, the TEX code simply makes
direct accesses to these arrays. As a result, any at-
tempt to significantly modify these basic data struc-
tures requires the modification of the entire TEX
engine, and not simply the implementations of the
structural interfaces.

The single input buffer for all active files of
tex.web turned out to be truly problematic for im-
plementing Omega’s OTPs. Since an OTP can read
in an arbitrary amount of text before processing it, a
new input buffer had to be introduced to do this col-
lection. The resulting code is anything but elegant,
and could certainly be made more efficient.

Finally, problems arise from the web2c imple-
mentation of Pascal Web. Many of the routines
written in C to support the web2c infrastructure
make the implicit assumption that all characters are
8 bits, making it difficult to generalise to Unicode,
even though C itself has a datatype called wchar_t.

3 Suitability of C++

The advantages of the use of C++ as an implementa-
tion language for stream-oriented typesetting, over
the Pascal Web architecture, are manifold. The
chief reason for this is that the rich set of tools and
methodologies that have evolved in the twenty-five
years since the introduction of TEX includes devel-
opments not only in programming languages and en-
vironments, but in operating systems, file structure,
multiprocessing, and in the introduction of whole
new paradigms, including object-oriented software
and generic programming.

The STL offers built-in support for arbitrary
generic data structures and algorithms, including
extensible, random-access arrays. It would be fool-
ish to ignore such power when it is so readily avail-
able.

The Standard C++ library also provides built-
in wide character support, including, in the GNU

stdc++ implementation, the full iconv functionality
for character-set conversion between Unicode and
any other imaginably-used character set.

C++ is the de facto standard for object-oriented
systems development, with its capability to provide
low-level C-style access to data structures and sys-
tem resources (and, in the case of Unix-like systems,
direct access to the kernel system call API), for the
sake of efficiency.

Since C++ is fully compatible with C, one can
still take advantage of many existing libraries asso-
ciated with TEX, such as Karl Berry’s kpathsea file
searching library.

The abilities to use well-known design patterns
for generic algorithm support (plug-in paragraphers,
generic stream manipulation), as well as generic rep-
resentation of typesetting data itself, add a wealth of
possibilities to future, open typesetting implementa-
tions.

4 Organisation of the Omega 2 Code Base

Obviously, we are moving on. Our objective is to in-
clude the existing Omega functionality, to stretch it
where appropriate, leaving clean interfaces so that,
if others wish to modify the code base, they can do
so. Our current objective is not to rewrite TEX.

4.1 Pascal Web Components

The tex.web file has been split into 55 files called
01.web to 55.web. The tex.ch file has been con-
verted into 55 files, 01.ch to 55.ch. Data structure
by data structure, we have passed through the code,
throwing out the definitions of the data structures
and replacing their uses with Pascal procedure calls

Preprints for the 2004 Annual Meeting 69

John Plaice and Paul Swoboda

which, once passed through the web2c processor, be-
come C++ method calls. In the process, most of the
code in the change files ends up either being thrown
out, or directly integrated in the corresponding .web

files.

4.2 Characters, Strings and Files

For characters, TEX has two types, ASCII_code

and text_char, the respective internal and ex-
ternal representations of 8-bit characters. The
new Omega uses the standard C/C++ data type,
wchar_t. On most implementations, including GNU

C++, wchar_t is a 32-bit signed integer, where the
values 0x0 to 0x7fffffff are used to encode char-
acters, and the value 0xffffffff (-1) is used to en-
code EOF. Pascal Web strings, as interpreted by the
tangle program, are each assigned a str_number,
where values 0 to 255 are reserved for the 256 8-
bit characters. We have modified tangle so that the
strings are numbered -256 downwards, rather than
256 upwards. Hence, str_number and wchar_t can
be of the same data type.

When dealing with files, there are two separate
issues, the file names, and the file content. Inter-
nally, all characters are 4-byte integers, but on most
systems, file names are stored using 8-bit encod-
ings, specified according to the user’s locale. Hence,
character-set conversion is now built into the file-
opening mechanisms, be they for reading or writing.

The actual content of the files may come from
anywhere in the world and a single file system may
include files encoded with many different encoding
schemes. We provide the means for opening a file
with a specified encoding, as well as opening a file
with automatic character encoding detection, using
a one-line header at the beginning of the file. The
actual character set conversion is done using the
stdc++ local routines. As a result of these choices,
the vast majority of the Omega code can simply as-
sume that characters are 4-byte Unicode characters.

4.3 Fonts and OTPs

In terms of numbers of lines written, this is the most
significant part of the new Omega; however, because
we are using standard OO technology, it is also the
most straightforward.

With respect to fonts, significant energy ex-
pended, both in the original code as well as in previ-
ous Omega implementations, for bit packing of fields
in binary font formats, which are stored in memory
as they are on disk. By providing a simple OO inter-
face in the character-level typesetter of the Omega
engine, we have been able to greatly simplify the
code for both the typesetter, as well as the font util-
ities for conversion between formats.

Similarly, for the OTPs, filters can be imple-
mented as function objects over streams using iter-
ators, tremendously simplifying the code base.

5 Prospects

At the time we are writing, this work is not com-
pletely finished. Nevertheless, it is well advanced
and detailed documentation will be forthcoming on
the Omega website.

If we view things in the longer term, we are
clearly moving forward with two related goals, the
stabilisation of existing Omega infrastructure, and
abandonment of the TEX infrastructure for the de-
sign and implementation of a next-generation open
typesetting suite.

Such a suite should be a generic framework with
an efficient C++ core, that is universally extensible
through a number of well-known scripting interfaces,
for example, Perl, Python, and Guile. Implementa-
tion of libraries similar to the popular LATEX suite
could then be done directly in C++, on top of the
core API, or as a linked-in C++ stream filter.

70 Preprints for the 2004 Annual Meeting

Typesetting CJK Languages with Ω

Jin-Hwan Cho
Korean TEX Users Group
chofchof@ktug.or.kr

Haruhiko Okumura
Mie University
Faculty of Education
514-8507
Japan
okumura@acm.org

Abstract

This paper describes how to typeset Chinese, Japanese, and Korean (CJK) lan-
guages with Omega, a 16-bit extension of Donald Knuth’s TEX. In principle,
Omega has no difficulty in typesetting those East Asian languages because of its
internal representation using 16-bit Unicode. However, it has not been widely
used in practice because of the difficulties in adapting it to CJK typesetting rules
and fonts, which we will discuss in the paper.

1 Introduction

Chinese, Japanese, and Korean (CJK) languages are
characterized by multibyte characters covering more
than 60% of Unicode. The huge number of char-
acters prevented the original 8-bit TEX from work-
ing smoothly with CJK languages. There have been
three methods for supporting CJK languages in the
TEX world up to now.

The first method, called the subfont scheme,
splits CJK characters into sets of 256 characters or
fewer, the number of characters that a TEX font met-
ric file can accommodate. Its main advantage lies in
using 8-bit TEX systems directly. However, one doc-
ument may contain dozens of subfonts for each CJK

font, and it is quite hard to insert glue and kerns
between characters of different subfonts, even those
from the same CJK font. Moreover, without the help
of a DVI driver (e.g., DVIPDFMx [2]) supporting the
subfont scheme, it is not possible to generate PDF

documents containing CJK characters that can be
extracted or searched. Many packages are based on
this method; for instance, CJK-LATEX1 by Werner
Lemberg, HLATEX2 by Koaunghi Un, and the Chi-
nese module in ConTEXt3 by Hans Hagen.

On the other hand, in Japan, the most widely
used TEX-based system is pTEX [1] (formerly known
as ASCII Nihongo TEX), a 16-bit extension of TEX

1 Avaliable on CTAN as language/chinese/CJK/
2 Available on CTAN as language/korean/HLaTeX/
3 Available on CTAN as macros/context/

localized to the Japanese language. It is designed
for high-quality Japanese book publishing (the “p”
of pTEX stands for publishing; the name jTEX was
used by another system). pTEX can handle multi-
byte characters natively (i.e., without resorting to
subfonts), and it can typeset both horizontally and
vertically within a document. It is upward com-
patible4 with TEX, so it can be used to typeset
both Japanese and Latin languages, but it cannot
handle Chinese and Korean languages straightfor-
wardly. pTEX supports three widely-used Japanese
encodings, JIS (ISO-2022-JP), Shift JIS, and EUC-JP,
but not Unicode-based encodings such as UTF-8.

The third route, Omega [3], is also a 16-bit ex-
tension of TEX, having 16-bit Unicode as its internal
representation. In principle, Omega is free from the
limitations mentioned above, but thus far there is
no thorough treatment of how it can be used for
professional CJK typesetting and how to adapt it
to popular CJK font formats such as TrueType and
OpenType. We set out to fill in this blank.

2 CJK Typesetting Characteristics

Each European language has its own hyphenation
rules, but their typesetting characteristics are over-
all fairly similar. CJK languages differ from Euro-
pean languages in that there are no hyphenation

4 Although pTEX doesn’t actually pass the trip test, it
is thought to be upward compatible with TEX in virtually all
practical situations.

Preprints for the 2004 Annual Meeting 71

Jin-Hwan Cho and Haruhiko Okumura

rules. All CJK languages allow line breaking almost
anywhere, without a hyphen. This characteristic is
usually implemented by inserting appropriate glues
between CJK characters.

One fine point is the treatment of blank spaces
and end-of-line (EOL) characters. Korean uses blank
spaces to separate words, but Chinese and Japanese
rarely use blank spaces. An EOL character is con-
verted in TEX to a blank space and then to a skip,
which is unnecessary for Chinese and Japanese type-
setting. To overcome this problem, pTEX ignores an
EOL when it follows a CJK character.

Moreover, whereas Korean uses Latin punctu-
ation marks (periods, commas, etc.), Chinese and
Japanese use their own punctuation symbols. These
CJK punctuation symbols need to be treated some-
what differently from ordinary characters. The ap-
propriate rules are described in this paper.

3 CJK Omega Translation Process

We introduce here the CJK Omega Translation Pro-
cess (CJK-ΩTP)5 developed by the authors to imple-
ment the CJK typesetting characteristics mentioned
above.

An Omega Translation Process (ΩTP) is a pow-
erful preprocessor, which allows text to be passed
through any number of finite state automata, which
can achieve many different effects. Usually it is quite
hard or impossible to do the same work with other
TEX-based systems.

For each CJK language, the CJK-ΩTP is di-
vided into two parts. The first ΩTP (boundCJK.

otp) is common to all CJK languages, and controls
the boundaries of blocks consisting of CJK char-
acters and blank spaces. The second ΩTP (one
of interCHN.otp, interJPN.otp, and interKOR.otp) is
specific to each language, and controls typesetting
rules for consecutive CJK characters.

4 Common Typesetting Characteristics

The first task of boundCJK.otp is to split the input
stream into CJK blocks and non-CJK blocks, and
insert glue (\boundCJKglue) in between to allow line
breaking.

However, combinations involving some Latin
and CJK symbols (quotation marks, commas, pe-
riods, etc.), do not allow line breaking. In this case,
\boundCJKglue is not inserted so that the original
line breaking rule is applied. This corresponds to
pTEX’s primitives \xspcode and \inhibitxspcode.

boundCJK.otp defines seven character sets; the
role of each set is as follows.

5 Available at http://project.ktug.or.kr/omega-cjk/

1. {CJK} is the set of all CJK characters; its com-
plement is denoted by ^{CJK}.

2. {XSPCODE1} (e.g., ([{‘) is the subset of ^{CJK}
such that \boundCJKglue is inserted only be-
tween {CJK} and {XSPCODE1} in this order.

3. {XSPCODE2} (e.g.,)]}’;,.) is the subset of
^{CJK} such that \boundCJKglue is inserted
only between {XSPCODE2} and {CJK} in this or-
der.

4. {XSPCODE3} (e.g., 0-9 A-Z a-z) is the subset
of ^{CJK} such that \boundCJKglue is inserted
between {CJK} and {XSPCODE3}, irrespective of
the order.

5. {INHIBITXSPCODE0} (e.g., /012) is the sub-
set of {CJK} not allowing \boundCJKglue be-
tween {INHIBITXSPCODE0} and ^{CJK}, irre-
spective of the order.

6. {INHIBITXSPCODE1} (e.g., !"#$%&'(,
CJK right parentheses and periods) is the sub-
set of {CJK} not allowing \boundCJKglue be-
tween ^{CJK} and {INHIBITXSPCODE1} in this
order.

7. {INHIBITXSPCODE2} (e.g.,)*+,-.#$,
CJK left parentheses) is the subset of
{CJK} not allowing \boundCJKglue in between
{INHIBITXSPCODE2} and ^{CJK} in this order.

The second task of boundCJK.otp is to en-
close each CJK block in a group ‘{\selectCJKfont
. . . }’, and convert all blank spaces inside the block
to the command \CJKspace.

The command \selectCJKfont switches to the
appropriate CJK font, and \CJKspace is defined to
be either a \space (for Korean) or \relax (for Chi-
nese and Japanese) according to the selected lan-
guage.

Note that if the input stream starts with blank
spaces followed by a CJK block or ends with a CJK

block followed by blank spaces, then these spaces
must be preserved regardless of the language, be-
cause of math mode:

{{CJK} {SPACE} $...$ {SPACE} CJK}}

and restricted horizontal mode:

\hbox{{SPACE} {CJK} {SPACE}}

5 Language-dependent Characteristics

The line breaking mechanism is common to all of the
language-dependent ΩTPs (interCHN.otp, interJPN.

otp, and interKOR.otp). The glue \interCJKglue

is inserted between consecutive CJK characters, and
its role is similar to the glue \boundCJKglue at the
boundary of a CJK block.

72 Preprints for the 2004 Annual Meeting

Typesetting CJK Languages with Ω

Some combinations of CJK characters do not
allow line breaking. This is implemented by sim-
ply inserting a \penalty 10000 before the rele-
vant \interCJKglue. In the case of boundCJK.otp,
however, no \boundCJKglue is inserted where line
breaking is inhibited.

The CJK characters not allowing line breaking
are defined by the following two classes in interKOR.

otp for Korean typesetting.

1. {CJK_FORBIDDEN_AFTER} does not allow line
breaking between {CJK_FORBIDDEN_AFTER}

and {CJK} in this order.

2. {CJK_FORBIDDEN_BEFORE} does not al-
low line breaking in between {CJK} and
{CJK_FORBIDDEN_BEFORE} in this order.

On the other hand, interJPN.otp defines six classes
for Japanese typesetting, as discussed in the next
section.

6 Japanese Typesetting Characteristics

Most Japanese characters are designed on a square
‘canvas’. pTEX introduced a new length unit, zw (for
zenkaku width, or full-width), denoting the width of
this canvas. The CJK-ΩTP defines \zw to denote
the same quantity.

For horizontal (left-to-right) typesetting mode,
the baseline of a Japanese character typically divides
the square canvas by 0.88 : 0.12. If Japanese and
Latin fonts are typeset with the same size, Japanese
fonts appear larger. In the sample shown in Fig-
ure 1, Japanese characters are typeset 92.469 per-
cent the size of Latin characters, so that 10 pt (1 in =
72.27 pt) Latin characters are mixed with 3.25 mm
(= 13 Q; 4 Q = 1 mm) Japanese characters. Also,
Japanese and Latin words are traditionally sepa-
rated by about 0.25 zw, though this space is getting
smaller nowadays.

日本 Japan
Figure 1: The width of an ordinary Japanese
character, 1 zw, is set to 92.469% the design size
of the Latin font, and a gap of 0.25 zw is inserted.
The baseline is set to 0.12 zw above the bottom of
the enclosing squares.

Some characters (such as punctuation marks
and parentheses) are designed on a half-width can-
vas: its width is 0.5 zw. For ease of implementation,
actual glyphs may be designed on square canvases.

We can use the virtual font mechanism to map the
logical shape and the actual implementation.

interJPN.otp divides Japanese characters into
six classes:

1. Left parentheses:‘“（〔［｛〈《「『【
Half width, may be designed on square canvases
flush right. In that case we ignore the left half
and pretend they are half-width, e.g., \hbox to

0.5zw{\hss}. If a class-1 character is followed
by a class-3 character, then an \hskip 0.25zw

minus 0.25zw is inserted in between.

2. Right parentheses: 、，’”）〕］｝〉》」』】
Half width, may be designed flush left on square
canvases. If a class-2 character is followed by
a class-0, -1, or -5 character, then an \hskip

0.5zw minus 0.5zw is inserted in between. If a
class-2 character is followed by a class-3 char-
acter, then a \hskip 0.25zw minus 0.25zw is
inserted in between.

3. Centered points:・：；
Half width, may be designed centered on square
canvases. If a class-3 character is followed by
a class-0, -1, -2, -4, or -5 character, then an
\hskip 0.25zw minus 0.25zw is inserted in be-
tween. If a class-3 character is followed by a
class-3 character, then an \hskip 0.5zw minus

0.25zw is inserted in between.

4. Periods: 。．
Half width, may be designed flush left on square
canvases. If a class-4 character is followed by
a class-0, -1, or -5 character, then an \hskip

0.5zw is inserted in between. If a class-4 char-
acter is followed by a class-3 character, then an
\hskip 0.75zw minus 0.25zw is inserted in be-
tween.

5. Leaders: ―…‥
Full width. If a class-5 character is followed
by a class-1 character, then an \hskip 0.5zw

minus 0.5zw is inserted in between. If a class-5
character is followed by a class-3 character, then
an \hskip 0.25zw minus 0.25zw is inserted in
between. If a class-5 character is followed by a
class-5 character, then a \kern 0zw is inserted
in between.

0. Class-0: everything else.
Full width. If a class-0 character is followed
by a class-1 character, then an \hskip 0.5zw

minus 0.5zw is inserted in between. If a class-0
character is followed by a class-3 character, then
an \hskip 0.25zw minus 0.25zw is inserted in
between.

Chinese texts can be typeset mostly with the
same rules. An exception is the comma and the

Preprints for the 2004 Annual Meeting 73

Jin-Hwan Cho and Haruhiko Okumura

period of Traditional Chinese. These two letters are
designed at the center of the square canvas, so they
should be treated as Class-3 characters.

7 Example: Japanese and Korean

Let us discuss how to use CJK-ΩTP in a practical
situation. Figure 2 shows sample output contain-
ing both Japanese and Korean characters, which is
typeset by Omega with the CJK-ΩTP and then pro-
cessed by DVIPDFMx.

TEXはスタンフォード大学のクヌース教授に
よって開発された組版システムであり、組版の
美しさと強力なマクロ機能を特徴としている。

TEX!"#$%&'()*"+,-(./

01 23 4"567, 23(89 :;< =)

7 >?@ AB@C.

Figure 2: Sample CJK-ΩTP output.

The source of the sample above was prepared
with the text editor Vim as shown in Figure 3. Here,
the UTF-8 encoding was used to see Japanese and
Korean characters at the same time. Note that the
backslash character (\) is replaced with the yen cur-
rency symbol in Japanese fonts.

!"#$%&'()*+,-./0-1,)$2*

!31"4*567))'!$,8"#9*#&5!4:

;!/,$,#*1*
!<*=>?@ABCDEFGHIJD?KLMNOP
QRSTUVWX?YZ[\]^VWH_`Sab
cdeIfghijka`Plmn
o
!$,8!p10"$'qr$&
;!0(8*,#
!<*=!'"#$%'Fs&''("'tL)'&*'Qu

+'VW',"-./v'VW&'_0'1c2'3'/''

gh4'j546w

o

!xy*
z''

Figure 3: Sample CJK-ΩTP source.

The first line in Figure 3 calls another TEX file
omega-cjk-sample.tex which starts with the following
code, which loads6 the CJK-ΩTP.

\ocp\OCPindefault=inutf8

\ocp\OCPboundCJK=boundCJK

\ocp\OCPinterJPN=interJPN

\ocp\OCPinterKOR=interKOR

6 Omega requires the binary form of ΩTP files compiled
by the utility otp2ocp included in the Omega distribution.

Note that inutf8.otp has to be loaded first to
convert the input stream encoded with UTF-8 to
UCS-2, the 16-bit Unicode.

\ocplist\CJKOCP=

\addafterocplist 1 \OCPboundCJK

\addafterocplist 1 \OCPindefault

\nullocplist

\ocplist\JapaneseOCP=

\addbeforeocplist 2 \OCPinterJPN \CJKOCP

\ocplist\KoreanOCP=

\addbeforeocplist 2 \OCPinterKOR \CJKOCP

The glues \boundCJKglue and \interCJKglue

for CJK line breaking mechanism are defined by new
skip registers to be changed later according to the
language selected.

\newskip\boundCJKskip % defined later

\def\boundCJKglue{\hskip\boundCJKskip}

\newskip\interCJKskip % defined later

\def\interCJKglue{\hskip\interCJKskip}

Japanese typesetting requires more definitions
to support the six classes defined in interJPN.otp.

\newdimen\zw \zw=0.92469em

\def\halfCJKmidbox#1{\leavevmode%

\hbox to .5\zw{\hss #1\hss}}

\def\halfCJKleftbox#1{\leavevmode%

\hbox to .5\zw{#1\hss}}

\def\halfCJKrightbox#1{\leavevmode%

\hbox to .5\zw{\hss #1}}

Finally, we need the commands \japanese and
\korean to select the given language. These com-
mands have to include actual manipulation of fonts,
glues, and spaces.

\font\defaultJPNfont=omrml

\def\japanese{%

\clearocplists\pushocplist\JapaneseOCP

\let\selectCJKfont\defaultJPNfont

\let\CJKspace\relax % remove spaces

\boundCJKskip=.25em plus .15em minus .06em

\interCJKskip=0em plus .1em minus .01em

}

\font\defaultKORfont=omhysm

\def\korean{%

\clearocplists\pushocplist\KoreanOCP

\let\selectCJKfont\defaultKORfont

\let\CJKspace\space % preserve spaces

\boundCJKskip=0em plus .02em minus .01em

\interCJKskip=0em plus .02em minus .01em

}

It is straightforward to extend these macros to
create a LATEX (Lambda) class file.

8 CJK Font Manipulation

At first glance, the best font for Omega seems to be
the one containing all characters defined in 16-bit
Unicode. In fact, such a font cannot be constructed.

74 Preprints for the 2004 Annual Meeting

Typesetting CJK Languages with Ω

There are several varieties of Chinese letters:
Traditional letters are used in Taiwan and Korea,
while simplified letters are now used in mainland
China. Japan has its own somewhat simplified set.
The glyphs are significantly different from country
to country.

Unicode unifies these four varieties of Chinese
letters into one, if they look similar. They are not

identical, however. For example, the letter ‘bone’
has the Unicode point 9AA8, but the top part of the
Chinese Simplified letter and the Japanese letter are
almost mirror images of each other, as shown in Fig-
ure 4. Less significant differences are also distracting
to native Asian readers. The only way to overcome
this problem is to use different CJK fonts according
to the language selected.

骨
(a) Chinese Simplified

骨
(b) Japanese

Figure 4: Two letters with the same Unicode
point.

OpenType (including TrueType) is the most
popular font format for CJK fonts. However, it is
neither easy nor simple, even for TEX experts, to
generate OFM and OVF files from OpenType fonts.

The situation looks simple for Japanese and
Chinese fonts, having fixed width, because one (vir-
tual) OFM is sufficient which can be constructed
by hand. However, Korean fonts have proportional
width. Since most of the popular Korean fonts are in
OpenType format, a utility that extracts font met-
rics from OpenType fonts is required.

There are two patches of the ttf2tfm and ttf2pk

utilities7 using the freetype library. The first,8 writ-
ten by one of the authors, Jin-Hwan Cho, generates
OFM and OVF files from TrueType fonts (not Open-
Type fonts). The other,9 written by Won-Kyu Park,
lets ttf2tfm and ttf2pk run with OpenType (includ-
ing TrueType) fonts with the help of the freetype2

library. Moreover, two patches can be used together.
Unfortunately, ovp2ovf 2.0 included in recent

TEX distributions (e.g., teTEX 2.x) does not seem

7 Available from the FreeType project, http://www.

freetype.org.
8 Available from the Korean TEX Users group,

http://ftp.ktug.or.kr/pub/ktug/freetype/contrib/

ttf2pk-1.5-20020430.patch.
9 Available as http://chem.skku.ac.kr/∼wkpark/

project/ktug/ttf2pk-freetype2 20030314.tgz.

to work correctly, so the previous version 1.x must
be used.

9 Asian Font Packs and DVIPDFMx

A solution avoiding the problems mentioned above
is to use the CJK fonts included in the Asian font
packs of Adobe (Acrobat) Reader as non-embedded
fonts when making PDF output.

It is well known that Adobe Reader can display
and print several common fonts even if they are not
embedded in the document. These are fourteen base
Latin fonts, such as Times, Helvetica, and Courier—
and several CJK fonts, if Asian font packs10 are
installed. These packs have been available free of
charge since the era of Adobe Acrobat Reader 4.
Four are available: Chinese Simplified, Chinese Tra-
ditional, Japanese, and Korean. Moreover, Adobe
Reader 6 downloads the appropriate font packs on
demand when a document containing non-embedded
CJK characters is opened. Note that these fonts are
licensed solely for use with Adobe Readers.

Professional CJK typesetting requires at least
two font families: serif and sans serif. As of Adobe
Acrobat Reader 4, Asian font packs, except for Chi-
nese Simplified, included both families, but newer
packs include only a serif family. However, newer
versions of Adobe Reader can automatically substi-
tute a missing CJK font by another CJK font in-
stalled in the operating system, so displaying both
families is possible on most platforms.

If the CJK fonts included in Asian font packs are
to be used, there is no need to embed the fonts when
making PDF output. The PDF file should contain
the font names and code points only. Some ‘generic’
font names are given in Table 1, which can be han-
dled by Acrobat Reader 4 and later. However, these
names depend on the PDF viewers.11 Note that the
names are not necessarily true font names. For ex-
ample, Ryumin-Light and GothicBBB-Medium are the
names of commercial (rather expensive) Japanese
fonts. They are installed in every genuine (expen-
sive) Japanese PostScript printer. PDF readers and
PostScript-compatible low-cost printers accept these
names but use compatible typefaces instead.

While TEX generates DVI output only, pdfTEX
generates both DVI and PDF output. But Omega
and pTEX do not have counterparts generating PDF

10 Asian font packs for Adobe Acrobat Reader 5.x
and Adobe Reader 6.0, Windows and Unix versions,
can be downloaded from http://www.adobe.com/products/

acrobat/acrrasianfontpack.html. For MacOS, an optional
component is provided at the time of download.

11 For example, these names are hard coded in the exe-
cutable file of Adobe (Acrobat) Reader, and each version has
different names.

Preprints for the 2004 Annual Meeting 75

Jin-Hwan Cho and Haruhiko Okumura

Table 1: Generic CJK font names
Serif Sans Serif

Chinese Simplified STSong-Light STHeiti-Regular

Chinese Traditional MSung-Light MHei-Medium

Japanese Ryumin-Light GothicBBB-Medium

Korean HYSMyeongJo-Medium HYGoThic-Medium

output yet. One solution is DVIPDFMx [2], an ex-
tension of dvipdfm,12 developed by Shunsaku Hirata
and one of the authors, Jin-Hwan Cho.

10 Conclusion

We have shown how Omega, with CJK-ΩTP, can be
used for the production of quality PDF documents
using the CJK languages.

CJK-ΩTP, as it stands, is poorly tested and
documented. Especially needed are examples of Chi-
nese typesetting, in which the present authors are

12 The utility dvipdfm is a DVI to PDF translator devel-
oped by Mark A. Wicks. The latest version, 0.13.2c, was
released in 2001. Available from http://gaspra.kettering.

edu/dvipdfm/.

barely qualified. In due course, we hope to upload
CJK-ΩTP to CTAN.

References

[1] ASCII Corporation. ASCII Nihongo TEX
(Publishing TEX). http://www.ascii.co.jp/

pb/ptex/.

[2] Jin-Hwan Cho and Shunsaku Hirata. The
DVIPDFMx Project. http://project.ktug.

or.kr/dvipdfmx/.

[3] John Plaice and Yannis Haralambous. The
Omega Typesetting and Document Processing
System. http://omega.enstb.org.

76 Preprints for the 2004 Annual Meeting

MlBibTEX: Beyond LATEX

Jean-Michel Hufflen
LIFC (FRE CNRS 2661)

University of Franche-Comté
16, route de Gray
25030 Besançon Cedex
France
hufflen@lifc.univ-fcomte.fr

http://lifc.univ-fcomte.fr/~hufflen

Abstract

This article sums up our experience with MlBibTEX, our multilingual imple-
mentation of BibTEX, and points out some possible improvements for better co-
operation between LATEX and MlBibTEX. Also, MlBibTEX may be used to gen-
erate bibliographies written according to other formalisms, especially formalisms
related to XML, and we give some ways to ease that.
Keywords: Bibliographies, multilingual features, BibTEX, MlBibTEX, bst, nbst,
XML, XSLT, XSL-FO, DocBook.

1 Introduction

MlBibTEX (for ‘MultiLingual BibTEX’) is a reim-
plementation of BibTEX [21], the bibliography pro-
cessor associated with LATEX [19]. The project began
in October 2000, and has resulted in two experimen-
tal versions [9, 11] and the present version (1.3), that
will be available publicly by the time this article ap-
pears. As we explained in [15], a prototype using the
Scheme programming language is working whilst we
are developing a more robust program written in C.
The prototype has allowed us to get some experience
with real-sized bibliographies: this is the purpose of
the first part of this article, after a short review of
the modus operandi of MlBibTEX.

MlBibTEX’s present version no longer uses the
bst language of BibTEX for bibliography styles [20].
Such .bst files were used in MlBibTEX’s first version,
but since this old-fashioned language, based on sim-
ple stack manipulations, is not modular, we quickly
realised that this choice would have led us to styles
that were too complicated [12]. Thus, Version 1.3
uses the nbst (for ‘New Bibliography STyles’) lan-
guage, described in [13] and similar to XSLT,1 the
language of transformations designed for XML texts
[32]. More precisely, MlBibTEX 1.3 uses XML2 as
a central formalism in the sense that parsing files
containing bibliographical entries (.bib files) results

1 EXtensible Stylesheet Language Transformations.
2 EXtensible Markup Language. A good introduction

to this formalism issued by the W3C (World Wide Web
Consortium) is [24].

in a DOM3 tree. Bibliography styles written using
nbst are XML texts, too.

Of course, nbst can be used to generate bibli-
ographies for documents other than those processed
with LATEX.4 In particular, nbst eases the genera-
tion of bibliographies for documents written using
XML-like syntax. Nevertheless, dealing with .bib

files raises some problems: we go into them thor-
oughly in Section 4.

Reading this article requires only a basic knowl-
edge of LATEX, BibTEX and XML. Some examples
given in the next section will use the commands pro-
vided by the multilingual babel package of LATEX2ε

[2]. Other examples given in Section 4 will use the
Scheme programming language, but if need be, re-
ferring to an introductory book such as [28] is suffi-
cient to understand them.

2 Architecture of MlBIBTEX

2.1 How MlBIBTEX Works

As a simple example of using MlBibTEX with LATEX,
let us consider the silke1988 bibliographical entry
given in Figure 1. As we explain in [15], the sequence
‘[...] ! 〈idf〉’ is one of the multilingual features

3 Document Object Model. This is a W3C recommen-
dation for a standard tree-based programming approach [24,
p. 306–308], very often used to implement XML trees.

4 This is also the case with the bst language of BibTEX,
but in practice, it seems that this feature has not been used,
except for documents written in SCRIBE [25], a predecessor
of LATEX.

Preprints for the 2004 Annual Meeting 77

Jean-Michel Hufflen

@BOOK{silke1988,
AUTHOR = {James~R. Silke},
TITLE = {Prisoner of the Horned Helmet},
PUBLISHER = {Grafton Books},
YEAR = 1988,

NUMBER = 1,

SERIES = {Frank Frazetta’s Death Dealer},
NOTE = {[Pas de traduction fran\c{c}aise

connue] ! french

[Keine deutsche Übersetzung]

! german},
LANGUAGE = english}

Figure 1: Example of a bibliographical entry in
MlBibTEX.

provided by MlBibTEX, defining a string to be in-
cluded when the language of a corresponding refer-
ence, appearing within a bibliography, is idf . So if
this entry is cited throughout a document written in
French and the ‘References’ section is also written
in French, it will appear as:

[1] James R. Silke : Prisoner of the Horned
Helmet. No 1 in Frank Frazetta’s Death
Dealer. Grafton Books, 1988. Pas de tra-
duction française connue.

Here and in the bibliography of this article, we
use a ‘plain’ style, that is, references are labelled
with numbers. More precisely, the source processed
by LATEX, included into the .bbl file generated by
MlBibTEX, is:

\begin{thebibliography}{...}

...

\bibitem{silke1988}

\begin{otherlanguage*}{english}

James~R. \textsc{Silke}: \emph{Prisoner of the

Horned Helmet}.

\foreignlanguage{french}{\bblno~1 \bblof}

\emph{Frank Frazetta’s Death Dealer}. Grafton

Books, 1988. \foreignlanguage{french}{Pas de

traduction fran\c{c}aise connue}.

\end{otherlanguage*}

...

\end{thebibliography}

Let us examine this source text. We can no-
tice the use of additional LATEX commands to put
some keywords (‘\bblin’ for ‘in’, ‘\bblno’ for ‘No’,
that is, ‘number’ in French). In [14], we explain
how to put them into action within LATEX and how
MlBibTEX uses them. This source also shows how
English words, originating from an entry in English
(see the value of the LANGUAGE field in Figure 1), are
processed. If the document uses the babel package,
and if the french option of this package is selected, we
use the \foreignlanguage command of this pack-

<book id="silke1988" language="english">

<author>

<name>

<personname>

<first>James R.</first>

<last>Silke</last>

</personname>

</name>

</author>

<title>Prisoner of the Horned Helmet</title>

<publisher>Grafton Books</publisher>

<year>1988</year>

<number>1</number>

<series>

Frank Frazetta’s Death Dealer

</series>

<note>

<group language="french">

Pas de traduction française connue

</group>

<group language="german">

Keine deutsche Übersetzung

</group>

</note>

</book>

Figure 2: The XML tree corresponding to the
entry of Figure 1.

age [2], as shown above. Users do not have to select
its english option; if it is not active, the source text
generated by MlBibTEX looks like:

\bibitem{silke1988}James~R. \textsc{Silke}:

\emph{Prisoner of the Horned Helmet}. \bblno~1

\bblof\ \emph{Frank Frazetta’s Death Dealer}.

Grafton Books, 1988. Pas de traduction

fran\c{c}aise connue.

but the English words belonging to this reference
will be taken as French by LATEX and thus may be
processed or hyphenated incorrectly.

2.2 The Modules of MlBIBTEX

As mentioned in the introduction, parsing a .bib file
results in a DOM tree. In fact, .bib files are pro-
cessed as if they were XML trees, but without white-
space nodes.5 Following this approach, the entry
silke1988 given in Figure 1 is viewed as the tree of
Figure 2, except that the whitespace nodes that an
XML parser would produce are excluded.

5 These are text nodes whose contents are only whitespace
characters, originating from what has been typed between two
tags [27, p. 25–26]. For example, if the XML text of Figure 2
is parsed, there is a whitespace node, containing a newline
and four space characters between the opening tags <author>
and <name>. XML parsers are bound by the ‘all text counts’
constraint included in the XML specification [33, § 2.10], and
cannot ignore such whitespace characters.

78 Preprints for the 2004 Annual Meeting

MlBibTEX: Beyond LATEX

We can see that some LATEX commands and
special characters are converted according to the
conventions of XML.

• The commands used for accents and special let-
ters are replaced by the letter itself. This poses
no problem since DOM trees are encoded in Uni-
code [29]. As an example, the ‘\c{c}’ sequence
in the value of the NOTE field in Figure 1 is re-
placed by ‘ç’ in Figure 2. (By the way, let us re-
mark that MlBibTEX can handle the 8-bit latin1

encoding:6 notice the ‘Ü’ character inside this
value.)

• Likewise, the commands:

– ‘\ ’ for a simple space character,

– ‘\\’ for an end-of-line character,

and the sequences of characters:

– ‘~’, for an unbreakable space character,

– ‘--’, and ‘---’ for dash characters,

are replaced by the corresponding Unicode val-
ues for these characters:7

 – —

An example is given by the value of the AUTHOR
field, see Figures 1 & 2.

• Some characters escaped in LATEX (for example,
‘$’, ‘%’, ‘&’) lose the escape character:

\% =⇒ %

The escape is restored if MlBibTEX generates a
.bbl file to be processed by LATEX. Other char-
acters are replaced by a reference to a character
entity:8

\& =⇒ & < =⇒ < > =⇒ >

• Balanced delimiters for quotations (“ ‘ ” and
“ ’ ” or ‘ ‘‘ ’ and ‘ ’’ ’) are replaced by an emph

element:9

‘Tooth and Claw’ =⇒
<emph emf=’no’ quotedf=’yes’>

Tooth and Claw

</emph>

If ‘ ’ ’ or ‘ " ’ characters are unbalanced, they
are replaced by references to character entities
used in XML documents:

’ =⇒ ' " =⇒ "

6 See [7, Table C.4] for more details.
7 That was not the case in earlier versions; for instance,

[12, Figure 3] improperly includes a tilde character in a text
node. This bug was fixed at the end of 2003.

8 See [24, p. 48] for more details.
9 ‘emph’ is of course for ‘emphasise’: all the attributes

(for example, ‘quotedf’ for ‘quoted-flag’, used for specifying
a quotation) default to no, except emf, which defaults to yes.
The complete specification is given in [10].

Such an XML tree, resulting from our parser,
may be validated using a DTD;10 more precisely, by
a revised version of the DTD sketched in [10].

Some examples of using nbst for bibliography
styles are given in [12, 13, 14]. We give another ex-
ample in Figure 3. We can see that this language
is close to XSLT and it uses path expressions as in
the XPath language [31]. Also, the example shows
how multilingual features (for example, the sequence
‘[...] ! ...’) are processed: we use some external
functions in order to determine which LATEX com-
mand can be used to switch to another language.
These external functions are written using the lan-
guage of MlBibTEX’s implementation: Scheme for
the prototype, C for the final program.

3 MlBIBTEX with LATEX

When BibTEX generates a .bbl file, it does not use
the source file processed by LATEX, but only the
auxiliary (.aux) file, in which the definition of all
the labels provided by the commands \label and
\bibitem is stored. This file also contains the name
of the bibliography style to be used and the paths of
bibliography data bases to be searched, so BibTEX
need not look at any other file.

This is not true for MlBibTEX. It still uses the
.aux file as far as possible, but it also has to deter-
mine which multilingual packages are used: first of
all babel, but also some packages devoted to particu-
lar languages: french [6], german [23], . . . So we have
to do a partial parsing of the .tex file for that. For
better co-operation between LATEX and MlBibTEX,
this could be improved, in that information about
multilingual packages used, and languages available,
could be put in the .aux file. In fact, the external
functions of our new bibliography styles are only
used to manage information extracted from a .tex

file. Expressing such operations using nbst would
be tedious.

Another improvement regarding the natural
languages known by LATEX would be a connection
between:

a) the language codes used in XML, specified by
means of a two-letter language abbreviation,
optionally followed by a two-letter country code
[1] (for example, ‘de’ for ‘deutsch’ (‘German’),
‘en-UK’, ‘en-US, etc.)’; and

b) the resources usable to write texts in these lan-
guages.

For example, a default framework could be the use
of the babel package, and ‘de’ would get access to

10 Document Type Definition. A DTD defines a document
markup model [24, Ch.5].

Preprints for the 2004 Annual Meeting 79

Jean-Michel Hufflen

<nbst:template match="group">

<nbst:if test="@language=$language">

<!-- The $language variable is set to the current language. -->

<nbst:value-of select="call(language open change,@language)"/>

<!-- If the babel package is used and a known option has been selected, this external function

writes the \foreignlanguage command. . .
-->

<nbst:apply-templates use-language="@language"/>

<nbst:value-of select="call(language close change,@language)"/>

<!-- . . . and this external function puts a closing brace. -->

<nbst:if>

</nbst:template>

Figure 3: Example of calling an external function.

the german option of this package, although it could
be redefined to use the ad hoc package name german.
In the future, such a framework would allow us to
homogenise all the notations for natural languages
to those of XML. In addition, let us notice that
ConTEXt11 [8], already uses these two-letter codes
in its \selectlanguage command.

And last but not least, auxiliary files should in-
clude information about the encoding used in the
source text. As can be seen in the examples of Sec-
tion 2.1, accented letters are replaced by the com-
mands used to produce them in LATEX, even though
LATEX can of course handle 8-bit encodings (pro-
vided that the inputenc package is loaded with the
right option). This is to avoid encoding problems.
In addition, such information would ease the pro-
cessing of languages written using non-Latin alpha-
bets.

4 Towards the XML World

Since a .bib file can be processed as an XML tree by a
bibliography style written in nbst, MlBibTEX opens
a window on XML’s world. A converter from .bib

files to a file written using HTML,12 the language of
Web pages, becomes easy to write. So does a tool to
write a bibliography as an XSL-FO13 document [34].
More precisely, we give in Figure 4 an example of
using the root element of nbst. Possible values for
the method of the nbst:output element are:

11 TEX, defined by Donald E. Knuth [18], provides a gen-
eral framework to format texts. To be fit for use, the defi-
nitions of this framework need to be organised in a format.
Two such formats are plain TEX and LATEX, and another is
ConTEXt, created by Hans Hagen.

12 HyperText Markup Language.
13 EXtensible Stylesheet Language—Formatting Objects:

this language aims to describe high-quality print outputs.
Such documents can be processed by the shell command
xmltex (resp. the shell command pdfxmltex) from PassiveTEX

[22, p. 180] to get .dvi files (resp. .pdf files).

<nbst:bst version="1.3" id="plain" xmlns:nbst=

"http://lifc.univ-fcomte.fr/~hufflen/mlbibtex"

>

<nbst:output method="LaTeX"/>

...

</nbst:bst>

Figure 4: Root element for a bibliography style
written using nbst.

LaTeX xml html text

Nevertheless, this approach has an important
limitation in practice. Since BibTEX has tradition-
ally been used to generate files suitable for LATEX,
users often put LATEX commands inside values of
BibTEX fields.14 For example:

ORGANIZATION = {\textsc{tug}}

In such a case, we would have to write a mini-LATEX
program (or perhaps a new output mode for LATEX)
that would transform such a value into a string suit-
able for an XML parser.

The problem is more complicated when com-
mands are defined by end-users. For instance:

ORGANIZATION = {\logo{tug}}

works with BibTEX—or MlBibTEX when we use it
for generating LATEX output—even though \logo

has an arbitrary definition; for example,

\newcommand{\logo}[1]{\textsc{#1}}

according to LATEX’s conventions, or:

\def\logo#1{\textsc{#1}}

if a style close to plain TEX is used. Likewise, such
commands can be known when an output file from
MlBibTEX is processed by ConTEXt.

14 The author personally confesses to using many
\foreignlanguage commands within the values of BibTEX
fields, before deciding to develop MlBibTEX.

80 Preprints for the 2004 Annual Meeting

MlBibTEX: Beyond LATEX

<bibliography>

<title>References</title>

<biblioentry>

<abbrev>silke1989</abbrev>

<authorgroup>

<author>

<firstname>James R.</firstname>

<surname>Silke</surname>

</author>

</authorgroup>

<copyright><year>1989</year></copyright>

<isbn>0-586-07018-4</isbn>

<publisher>

<publishername>

Grafton Books

</publishername>

</publisher>

<title>Lords of Destruction</title>

<seriesinfo>

<title>

<othercredit>

<firstname>Frank</firstname>

<surname>Frazetta</surname>

</othercredit>’s Death Dealer

</title>

<volumenum>2</volumenum>

</seriesinfo>

</biblioentry>

</bibliography>

Figure 5: The bibliographical reference from
Figure 1 expressed in DocBook. Note the ad hoc
tag <othercredit>.

Moreover, let us consider the bibliographical
reference given in Figure 5, according to the con-
ventions of DocBook, a system for writing struc-
tured documents [36] (we use the conventions of the
XML version of DocBook, described in [26]). We
can see that some information is more precise than
that provided in Figure 1. But there are still com-
plexities: the person name given in the value of the
SERIES field is surrounded by an ad hoc element in
the DocBook version.

If we want to take advantage of the expressive
power of DocBook, we can:

• directly process an XML file for bibliographi-
cal entries. In this case, our DTD should be
extended; that is possible, but we still need a
solution to process the huge number of existing
.bib files;

• introduce some new syntax inside .bib files, that
might be complicated and thus perhaps unused
in practice,

• introduce new LATEX commands, to process like
the \logo example mentioned above.

We have experimentally gone quite far in the
third direction, which also allows to us to deal with
the LATEX commands already in .bib files. In Fig-
ure 6, we give some examples of such processing, as
implemented in the prototype.15

As can be seen, we have defined a new func-
tion in Scheme, named define-pattern, with two
formal arguments. The first is a string viewed as a
pattern, following the conventions of TEX for defin-
ing commands, that is, the arguments of a command
are denoted by ‘#1’, ‘#2’, . . . (cf. [18, Ch. 20]). The
second argument may also be a string, in which case
it specifies a replacement. The arguments of the cor-
responding command are processed recursively. In
case of conflict among patterns, the longest is cho-
sen. So, the pattern "\\logo{#1}"16 takes prece-
dence over the pattern "{#1}".

If the second argument of the define-pattern

function is not a string, it must be a zero-argument
function that results in a string. In this case, all
the operations must be specified explicitly, using the
following functions we wrote:

pattern-matches? returns a true value if its first
argument matches the second, a false value oth-
erwise;

pattern-process recursively processes its only ar-
gument, after replacing sub-patterns by corre-
sponding values;17

pattern-replace replaces the sub-patterns of its
argument by corresponding values; these value
are not processed, just replaced verbatim.

Whether given directly as the second argument to
define-pattern or resulting from applying a zero-
argument function, the string must be well-formed
w.r.t. XML’s conventions, that is, tags must be bal-
anced, attributes must be well-formed, etc. In other
words, such a string must be acceptable to an XML

parser: in our case, the parser is SSAX18 [17].
The examples given in Figure 6 allow us to see

that we can deal with simple commands, like:

\logo{...} =⇒ <emph ...>...</emph>

15 This feature has not yet been implemented in the final
version.

16 Let us recall that in Scheme, the backslash character
(‘\’) is used to escape special characters in string constants.
To include it within a string, it must itself be escaped.

17 In fact, using a string s as a second argument of
define-pattern yields the evaluation of the expression
(lambda () (pattern-process s)).

18 Scheme implementation of SAX. ‘SAX’ is for ‘Simple
API (Application Programming Interface) for XML’: this
name denotes a kind of parser, see [24, p. 290–292].

Preprints for the 2004 Annual Meeting 81

Jean-Michel Hufflen

(define-pattern "{#1}"
;; The asitis element is used for words that should never be uncapitalised, that is, proper names. In BIBTEX,
;; we specify such behaviour by surrounding words by additional braces.
"<asitis>#1</asitis>")

(define-pattern "\\logo{#1}" "<emph emf=’no’ scf=’yes’>#1</emph>")

(define-pattern "\\foreignlanguage{#1}{#2}"
"<foreigngroup language=’#1’>#2</foreigngroup>")

(define-pattern "\\iflanguage{#1}{#2}{#3}"
(lambda () ; Zero-argument function.

(string-append ; Concatenation of strings.
"<nonemptyinformation>"

"<group language=’" (pattern-replace "#1") "’>" (pattern-process "#2")

"</group>"

(let loop ((pattern (pattern-replace "#3")))

;; This form—named let (cf. [28, Exercise 14.8])—defines an internal function loop and
;; launches its first call:
(if (pattern-matches? "\\iflanguage{#4}{#5}{#6}" pattern)

(string-append "<group language=’" (pattern-replace "#4") "’>"

(pattern-process "#5")

"</group>"

;; The internal function loop is recursively called with a new value:
(loop (pattern-replace "#6")))

(string-append "<group>" (pattern-process pattern) "</group>")))

"</nonemptyinformation>")))

Figure 6: Patterns for some LATEX commands in Scheme.

as well as more complicated cases, like a cascade of
\iflanguage commands [2]:

\iflanguage{...}{...}{%

\iflanguage{...}{...}{ ... }}

which becomes:

<nonemptyinformation>

<group language=’...’>...</group>

<group language=’...’>...</group>

...

</nonemptyinformation>

The nonemptyinformation element is used for in-
formation that must be output, possibly in a default
language if no translation into the current language
is available.

What we do by means of our define-pattern

function is like the additional procedures in Perl19

that the converter LaTeX2HTML [4] can use to trans-
late additional commands.

5 Conclusion

Managing several formalisms can be tedious. This
fact was one of main elements in XML’s design: giv-
ing a central formalism, able to be used for repre-
senting trees, and allowing many tools using differ-
ent formalisms to communicate.

19 Practical Extraction and Report Language.

BibTEX deals with three formalisms: .aux files,
.bib files and .bst files. As Jonathan Fine notes
in [5], the applications devoted to a particular for-
malism cannot be shared with other applications.
MlBibTEX attempts to use XML as far as possible,
although there is still much to do. For example,
defining a syntax for the entries for which we are
looking, when using MlBibTEX to generate XSL-FO

or DocBook documents. (For our tests, this list of
entry names is simply given on the command line).

The next step will probably be a more inten-
sive use of XML, that is, the direct writing of bibli-
ographical entries using XML conventions. For this,
we need something more powerful than DTDs, with
a richer type structure, namely, schemas.20 In ad-
dition, we should be able to easily add new fields
to bibliographical entries: the example given using
DocBook shows that additional information must be
able to be supplied to take advantage of the expres-
sive power of this system. But such additions are

20 Schemas have more expressive power than DTDs, be-
cause they allow users to define types precisely, which in turn
makes for a better validation of an XML text. In addition,
this approach is more homogeneous since schemas are XML

texts, whereas DTDs are not.
There are currently four ways to specify schemas: Relax NG

[3], Schematron [16], Examplotron [30], XML Schema [35]. At
present, it seems to us that XML Schema is the most suitable
for describing bibliographical entries.

82 Preprints for the 2004 Annual Meeting

MlBibTEX: Beyond LATEX

difficult to model with DTDs.21 We are presently go-
ing thoroughly into replacing our DTD by a schema;
when this work reaches maturity, bibliographical en-
tries using XML syntax could be directly validated
using schemas.

6 Acknowledgements

Many thanks to Karl Berry for his patience while
waiting for this article. In addition he proofread a
first version and gave me many constructive criti-
cisms. Thanks also to Barbara Beeton.

References

[1] Harald Tveit Alvestrand: Request for Com-
ments: 1766. Tags for the Identification of Lan-
guages. UNINETT, Network Working Group.
March 1995. http://www.cis.ohio-state.

edu/cgi-bin/rfc/rfc1766.html.

[2] Joannes Braams: Babel, a Multilingual Pack-
age for Use with LATEX’s Standard Document
Classes. Version 3.7. May 2002. CTAN:macros/
latex/required/babel/babel.dvi.

[3] James Clark et al.: Relax NG. http://www.

oasis-open.org/committees/relax-ng/.
2002.

[4] Nicos Drakos: The LATEX2HTML Translator.
March 1999. Computer Based Learning Unit,
University of Leeds.

[5] Jonathan Fine: “TEX as a Callable Func-
tion”. In: EuroTEX 2002, (pp. 26–30). Ba-
chotek, Poland. April 2002.

[6] Bernard Gaulle : Notice d’utilisation du style
french multilingue pour LATEX. Version pro
V5.01. Janvier 2001. CTAN:loria/language/

french/pro/french/ALIRE.pdf.

[7] Michel Goossens, Sebastian Rahtz and Frank
Mittelbach: The LATEX Graphics Compan-
ion. Illustrating Documents with TEX and
PostScript. Addison-Wesley Publishing Com-
pany, Reading, Massachusetts. March 1997.

[8] Hans Hagen: ConTEXt, the Manual. Novem-
ber 2001. http://www.pragma-ade.com.

[9] Jean-Michel Hufflen: “MlBibTEX: A New
Implementation of BibTEX”. In: EuroTEX
2001, (pp. 74–94). Kerkrade, The Netherlands.
September 2001.

[10] Jean-Michel Hufflen: “Multilingual Features
for Bibliography Programs: From XML to
MlBibTEX”. In: EuroTEX 2002, (pp. 46–59).
Bachotek, Poland. April 2002.

21 Whereas that is easy with ‘old’ BibTEX, provided that
you use a bibliography style able to deal with additional fields.

[11] Jean-Michel Hufflen: Towards MlBIBTEX’s
Versions 1.2 & 1.3. MaTEX Conference. Bu-
dapest, Hungary. November 2002.

[12] Jean-Michel Hufflen: “European Bibliogra-
phy Styles and MlBibTEX”. EuroTEX 2003,
Brest, France. June 2003. (To appear in TUG-

boat.)

[13] Jean-Michel Hufflen: MlBIBTEX’s Ver-
sion 1.3. TUG 2003, Outrigger Waikoloa Beach
Resort, Hawaii. July 2003.

[14] Jean-Michel Hufflen: “Making MlBibTEX
Fit for a Particular Language. Example of the
Polish Language”. Biuletyn GUST. Forthcom-
ing. Presented at the BachoTEX 2003 confer-
ence. 2004.

[15] Jean-Michel Hufflen: “A Tour around
MlBibTEX and Its Implementation(s)”. Biule-
tyn GUST, Vol. 20, pp. 21–28. In Proc. Ba-
choTEX Conference. April 2004.

[16] ISO/IEC 19757: The Schematron. An XML

Structure Validation Language Using Pat-
terns in Trees. http://www.ascc.net/xml/

resource/schematron/schematron.html.
June 2003.

[17] Oleg Kiselyov: “A Better XML Parser
through Functional Programming”. In: 4th
International Symposium on Practical Aspects
of Declarative Languages, Vol. 2257 of Lecture
Notes in Computer Science. Springer-Verlag.
2002.

[18] Donald Ervin Knuth: Computers & Typeset-
ting. Vol. A: The TEXbook. Addison-Wesley
Publishing Company, Reading, Massachusetts.
1984.

[19] Leslie Lamport: LATEX. A Document Prepa-
ration System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[20] Oren Patashnik: Designing BIBTEX styles.
February 1988. Part of the BibTEX distribu-
tion.

[21] Oren Patashnik: BIBTEXing. February 1988.
Part of the BibTEX distribution.

[22] Dave Pawson: XSL-FO. O’Reilly & Associates,
Inc. August 2002.

[23] Bernd Raichle: Die Makropakete
”
german“

und
”
ngerman“ für LATEX2ε, LATEX 2.09,

Plain-TEX and andere darauf Basierende For-
mate. Version 2.5. Juli 1998. Im Software
LATEX.

[24] Erik T. Ray: Learning XML. O’Reilly & Asso-
ciates, Inc. January 2001.

Preprints for the 2004 Annual Meeting 83

Jean-Michel Hufflen

[25] Brian Keith Reid: SCRIBE Document Produc-
tion System User Manual. Technical Report,
Unilogic, Ltd. 1984.

[26] Thomas Schraitle: DocBook-XML—Medien-
neutrales und plattformunabhändiges Publizie-
ren. SuSE Press. 2004.

[27] John E. Simpson: XPath and XPointer.
O’Reilly & Associates, Inc. August 2002.

[28] George Springer and Daniel P. Friedman:
Scheme and the Art of Programming. The MIT
Press, McGraw-Hill Book Company. 1989.

[29] The Unicode Standard Version 3.0. Addison-
Wesley. February 2000.

[30] Eric van der Vlist: Examplotron. http://

examplotron.org. February 2003.

[31] W3C: XML Path Language (XPath). Ver-
sion 1.0. W3C Recommendation. Edited
by James Clark and Steve DeRose. Novem-
ber 1999. http://www.w3.org/TR/1999/

REC-xpath-19991116.

[32] W3C: XSL Transformations (XSLT). Ver-
sion 1.0. W3C Recommendation. Writ-
ten by Sharon Adler, Anders Berglund, Jeff
Caruso, Stephen Deach, Tony Graham, Paul
Grosso, Eduardo Gutentag, Alex Milowski,
Scott Parnell, Jeremy Richman and Steve
Zilles. November 1999. http://www.w3.org/

TR/1999/REC-xslt-19991116.

[33] W3C: Extensible Markup Language (XML)
1.0 (Second Edition). W3C Recommen-
dation. Edited by Tim Bray, Jean Paoli,
C. M. Sperberg-McQueen and Eve Maler. Oc-
tober 2000. http://www.w3.org/TR/2000/

REC-xml-20001006.

[34] W3C: Extensible Stylesheet Language (XSL).
Version 1.0. W3C Recommendation. Edited by
James Clark. October 2001. http://www.w3.

org/TR/2001/REC-xsl-20011015/.

[35] W3C: XML Schema. November 2003. http:

//www.w3.org/XML/Schema.

[36] Norman Walsh and Leonard Muellner:
DocBook: The Definitive Guide. O’Reilly & As-
sociates, Inc. October 1999.

84 Preprints for the 2004 Annual Meeting

iTEXMac: An Integrated TEX Environment for Mac OS X

Jérôme Laurens
Université de Bourgogne

jerome.laurens@u-bourgogne.fr

1 Introduction

iTEXMac is an integrated suite of three major com-
ponents: a text editor detailed in section 2, a PDF

viewer detailed in section 3, and a TEX front end
detailed in section 4. Some notes on installation
are followed by remarks concerning inter-application
communication in section 6 for other Mac OS X de-
velopers. Finally, the pdfsync feature and the TEX
Wrapper are discussed in sections 7 and 8. Since
they concern the synchronization between the TEX
source and PDF output, and a definition for a shared
TEX document structure, both will certainly interest
the whole TEX community.

2 The Text Editor

iTEXMac can be used either with a built-in text edi-
tor or an external one. All standard text editors like
TextEdit, BBEdit, AlphaX, vi, and emacs are sup-
ported and configuring iTEXMac for other editors is
very easy, even when coming from the X11 world.

The built-in text editor comes with flavours sim-
ilar to emacs and AlphaX modes. It relies on a plug-
in architecture that allows very different kinds of
user interfaces according to the type of the file being
edited. Whereas AlphaX uses Tcl and emacs uses
Lisp, iTEXMac utilizes the benefits of Objective-C

bundles, giving plug-ins great potential power to-
gether with the application.

Among the standard features shared by advan-
ced text editors (like key binding management, ad-
vanced regular expressions, command completion),
an interesting feature of iTEXMac’s text editor is
the syntax parsing policy. The syntax highlighting
deeply depends on the kind of text edited, whether
it is Plain, LATEX or METAPOST (support for HTML

is planned). The text properties used for highlight-
ing include not only the color of the text, but also
the font, the background color and some formatting
properties.

Moreover, the command shortcuts that refer to
mathematical and text symbols are replaced by the
glyph they represent, thus replacing \alpha with
α and so on. Conversely the built-in editor can
show a character palette with 42 menus gathering
text and mathematical symbols, as they would ap-
pear in the output. The editor thus serves as a
graphical front-end to the standard LATEX packages,
amsfonts.sty, amssymb.sty, mathbb.sty, math-

rsfs.sty, marvosym.sty and wasysym.sty, which
makes thousands of symbols available with just one
click. The result is a text editor that contains much
more WYSIWYG than others, with no source file
format requirement.

There is also advanced management of string
encoding, and iTEXMac supports more than 80 of
them with an efficient user interface. The text files
are scanned for hints about the text encoding:

LATEX \usepackage[encoding]{inputenc}
ConTEXt \enableregime[encoding]

emacs %-*-coding:character encoding;-*-

%!iTeXMac(charset):

character encoding

Mac OS X hidden internals

But this is not user friendly practice and will be en-
hanced by the forthcoming discussion of TEX wrap-
pers in section 8.

Spell checking for TEX input is available with
Rick Zaccone’s LATEX aware Excalibur1 and Anton

1 http://www.eg.bucknell.edu/∼excalibr/

Preprints for the 2004 Annual Meeting 85

Jérôme Laurens

Leuski’s TEX aware cocoAspell2, a port of the Free
and Open Source spell checker aspell. The latter
also knows about HTML code and is integrated to
Mac OS X allowing iTEXMac to check spelling as
you type, with misspelled words being underlined in
red. While this service is provided to all applications
for free, iTEXMac is the only one that truly enables
the TEX support by managing the language and the
list of known words on a file by file basis using TEX
Wrappers.

3 The PDF Viewer

iTEXMac can be used either with a built-in PDF

viewer or an external one. The built-in viewer lacks
many advanced features of Acrobat or Preview, but
it updates the display automatically when a PDF

file has been changed externally. Moreover, it allows
you to make selections and export them to other ap-
plications, like Word, TextEdit or Keynote for ex-
ample. Finally, it has support for the useful PDF

synchronization discussed below and is very well in-
tegrated in the suite.

iTEXMac can open PS, EPS and DVI files with
a double click, by first converting them to PDF. It
thus plays the role of a PostScript or a DVI viewer.
This feature is now partially obsolete since Mac OS
X version 10.3 provides its own PS to PDF translator
used by the Preview application shipped with the
system.

4 The TEX Front End

This component of the software serves two different
purposes. On one hand it is a bridge between the
user and the utilities of a standard TEX distribution:
a graphical user interface for the commands tex,
latex, pdftex, and so on. On the other hand, it has
to properly manage the different kinds of documents
one wants to typeset.

Actually, the iTEXMac interface with its under-
lying TEX distribution is fairly simple. Five basic
actions are connected to menu items, toolbar but-
tons or command shortcuts to

• typeset (e.g., running latex once, or twice in
advanced mode)

• make the bibliography (e.g. running bibtex)

• make the index (e.g., running makeindex)

• render graphics (e.g., running dvipdf)

All these actions are connected to shell scripts stored
on a per document basis. If necessary, the user can
customize them or even change the whole process by
inserting an in-line instruction at the very beginning

2 http://cocoAspell.leuski.net/

of a source file. For example, the following directive,
if present, will run pdflatex in escape mode.

%!iTeXMac(typeset): pdflatex

--shell-escape $iTMInput

The makeindex and bibtex command options
can be set from panels, and other commands are sup-
ported. Moreover, the various log files are parsed,
warnings and errors are highlighted with different
colors and HTML links point to lines where an error
occurred. Some navigation facilities from log file to
output are also provided, a string like [a number...],
pointing to the output page.

As for documents, iTEXMac manages a list of
default settings that fit a wide range of situations,
including for example

• LATEX documents with DVI, PS or PDF engines

• books

• METAPOST documents

• ConTEXt documents

• HTML documents

• B. Gaulle’s French Pro documents.

Users can extend this list with a built-in editor,
adding support for MusicTEX, maybe gcc, and so
on.

5 Installing TEX and iTEXMac

The starting point for a detailed documentation is
the MacOS X TEX/LATEX Web Site3 where one will
find an overview of the TEX related tools available
on Mac OS X. As a graphical front-end, iTEXMac
needs a TEX distribution to be fully functional. Ger-
ben Wierda maintains on his site4 the TEX Live5 dis-
tribution and a set of useful packages. Other teTEX
2.0.2 ports are available from fink6 (and through one
of its graphical user interfaces, such as finkcomman-
der7) and from Darwin Ports8, through a CVS in-
terface.

The official web site of iTEXMac is hosted by
the Open Source software development SourceForge
website at:

http://itexmac.sourceforge.net/

One can find in the download section the disk images
for the following products:

• iTEXMac, both stable and developer release

3 http://www.esm.psu.edu/mac-tex/
4 http://www.rna.nl/tex.html
5 http://www.tug.org/texlive/
6 http://fink.sourceforge.net/pdb/package.php/

tetex
7 http://finkcommander.sourceforge.net/
8 http://darwinports.opendarwin.org/ports/?by=

cat&substr=print

86 Preprints for the 2004 Annual Meeting

iTEXMac: An Integrated TEX Environment for Mac OS X

• an external editor for iTEXMac key binding

• the Hypertext Help With LATEX wrapped as a
searchable Mac OS X help file.

• the TEX Catalog On line wrapped as a search-
able Mac OS X help file.

• the French LATEX FAQ wrapped as a searchable
Mac OS X help file.

An updater allows you to check easily for new ver-
sions. To install iTEXMac, just download the latest
disk image archive, double click and follow the in-
structions in the read-me file.

Due to its Unix core, Mac OS X is no longer fo-
cused on only one user. To support multiple users,
iTEXMac configuration files can be placed in dif-
ferent locations to change defaults for all, or just
certain users. The search path is:

• the built-in domain as shipped with the appli-
cation (with default, read-only settings)

• the network domain (/Network/Library/
Application Support/iTeXMac), where an
administrator can put material to override or
augment the default behaviour of all the ma-
chines on a network

• the local domain (/Library/Application
Support/iTeXMac), where an administrator
can put material to override or augment the
network or default behaviour

• the user domain (~/Library/Application
Support/iTeXMac), where the user can put ma-
terial to override or augment the local or default
behaviour

This is a way to apply modifications to iTEXMac as
a whole.

6 Inter-application Communication

This section describes how iTEXMac communicates
with other components, in the hope that this syntax
will also be used by other applications when rele-
vant, to avoid the current situation where there are
as many AppleScript syntaxes as there are available
applications for TEX on the Macintosh. It also shows
why iTEXMac integrates so well with other editors
or viewers.

6.1 Shell Commands

iTEXMac acts as a server, such that other appli-
cations can send it messages. Each time it starts,
iTEXMac installs an alias to its own binary code in
~/Library/TeX/bin/iTeXMac. With the following
syntax,9 either from the command line, an Apple-
Script or shell script, one can edit a text file at the

9 These commands should be entered all on one line. They

are broken here due to the narrow TUGboat columns.

location corresponding to the given line and column
numbers

~/Library/TeX/bin/iTeXMac edit -file

"filename"

-line lineNumber -column colNumber

The following syntax is used to display a PDF file at
the location corresponding to the given line column
and source file name

~/Library/TeX/bin/iTeXMac display -file

"filename.pdf "

-source "sourcename.tex"

-line lineNumber -column colNumber

6.2 AppleScript

The same feature is implemented using this scripting
language. It would be great for the user if other TEX
front ends on Mac OS X would implement the same
syntax.

tell application "iTeXMac" to edit

"filename.tex"

at line lineNumber column colNumber

tell application "iTeXMac" to display

"filename.pdf "

at line lineNumber column colNumber

in source "Posix source name.tex"

iTEXMac support for AppleScript likewise covers the
compile, bibliography and index actions. They are
not given here since there is no Apple Events Suite
dedicated to TEX. However, configuration files and
instructions are given to let third-party applications
like Alpha X, BBEdit or emacs control iTEXMac
using those scripts.

6.3 HTML

iTEXMac implements support for a URL scheme
named file-special for editing, updating or dis-
playing files, for example

file-special://localhost/"filename.tex";

action=edit;line=lineNumber;

column=columnNumber

file-special://localhost/"filename.pdf ";

action=display;line=lineNumber;

column=columnNumber;

source="Posix source name.tex"

will ask iTEXMac to edit a TEX source file or display
the given file (assumed to be PDF) and when syn-
chronization information is available, scroll to the
location corresponding to the given line and column
in source (assumed to be TEX). This allows adding
dynamic links in HTML pages, in a TEX tutorial for
example.

Preprints for the 2004 Annual Meeting 87

Jérôme Laurens

7 The pdfsync Feature

7.1 About Synchronization

As the TEX typesetting system heavily relies on a
page description language, there is no straightfor-
ward correspondence between a part of the output
and the original description code in the input. A
workaround was introduced a long time ago by com-
mercial TEX frontends Visual TEX10 and TEXtures11

with a very efficient implementation. Then LATEX
users could access the same features — though in
a less-efficient implementation— through the use of
srcltx.sty, which added source specials in the DVI

files. The command line option -src-specials now
gives this task to the TEX typesetting engine.

When used with an external DVI viewer or an
external text editor, through an X11 server or not,
iTEXMac fully supports this kind of synchronization
feature.

For the PDF file format, Piero d’Ancona and the
author elaborated a strategy that works rather well
for Plain TEX, ConTEXt and LATEX users. While
typesetting a foo.tex file with LATEX for example,
the pdfsync package writes extra geometry informa-
tion in an auxiliary file named foo.pdfsync, subse-
quently used by the front ends to link line numbers
in source documents with locations in pages of out-
put PDF documents. iTEXMac and TEXShop12 both
support pdfsync.

The official pdfsync web site is:

http://itexmac.sourceforge.net/pdfsync.html

It was more convenient to use an auxiliary file
than to embed the geometric information in the PDF

output using pdftex primitives. The output file is
not polluted with extraneous information and the
front ends need not parse the PDF output to retrieve
such metrics.

7.2 The pdfsync Mechanism

A macro is defined to put pdfsync anchors at spe-
cific locations (for hbox’s, paragraphs and maths).
There are essentially three problems we must solve:
the position of an object in the PDF page is not
known until the whole page is composed, the ob-
jects don’t appear linearly in the output13 and fi-
nally, an input file can be entirely parsed long before
its contents are shipped out. To solve these, at each
pdfsync anchor the known information (line num-
ber and source file name) is immediately written to
the pdfsync auxiliary file and the unknown infor-

10 http://www.micropress-inc.com/
11 http://www.bluesky.com/
12 http://www.uoregon.edu/∼koch/texshop
13 The footnotes objects provide a good example.

mation (location and page number) will be written
only at the next ship out.

7.3 The .pdfsync File Specifications

This is an ASCII text file organized into lines. There
is no required end of line marker format from among
the standard ones used by operating systems.

Only the two first lines described in table 1 are
required, the other ones are optional. The remain-
ing lines are described according to their starting
characters, they consist of 2 interlaced streams. A
synchronous one detailed in table 2 is obtained with
\immediate\writes and concerns the input infor-
mation. An asynchronous one detailed in table 3
is obtained with delayed \writes and concerns the
output information.

The correspondence between the two kinds of
information is made through a record counter, which
establishes a many-to-many mapping from line num-
bers in TEX sources to positions in PDF output.

7.4 Known Problems

Unfortunately, the various pdfsync files for Plain,
LATEX or ConTEXt are not completely safe. Some
compatibility problems with existing macro pack-
ages may occur. Moreover, sometimes pdfsync ac-
tually influences the final layout; in a case like that,
it should only be used in the document preparation
stage.

Another mechanism widely used by ConTEXt
makes pdfsync sometimes inefficient, where the ma-
cro expansion only occurs long after it has been
parsed, such that the \inputlineno is no longer
relevant and the significant line number is no longer
accessible. This makes a second argument for the
implementation of the pdfsync feature at a very low
level, most certainly inside the pdftex engine itself.

8 TWS: A TEX Wrapper Structure

In general, working with TEX seems difficult due
to the numerous auxiliary files created. Moreover,
sharing TEX documents is often delicate as soon
as we do not use very standard LATEX. The pur-
pose of this section is to lay the foundation for the
TEX Wrapper Structure, which aims to help the user
solve these problems.

First, it is very natural to gather all the files
related to one TEX document in one folder we call a
TEX Wrapper. The file extension for this directory
is texd, in reference to the rtf and rtfd file exten-
sions already existing on Mac OS X. The contents
of a TEX wrapper named document.texd is divided
according to different criteria:

88 Preprints for the 2004 Annual Meeting

iTEXMac: An Integrated TEX Environment for Mac OS X

Line Format Description Comment

1st jobName jobName: case sen-
sitive TEX file name

In general, the extensionless name of
the file as the result of an
\immediate\write\file{\jobname}

2nd version V V : a 0 based non-
negative integer

The current version is 0

Table 1: pdfsync required lines format

Line Format Description Comment

“b” b name name: TEX file
name

TEX is about to begin parsing name,
all subsequent line and column
numbers will refer to name.
The path is relative to the directory
containing the .pdfsync file. Path
separators are the Unix “/”. The file
extension is not required, “tex” is the
default if necessary. Case sensitive.

“e” e The end of the input file has been
reached. Subsequent line and column
numbers now refer to the calling file.
Optional, but must match a corre-
sponding “b” line.

“l” l R L

l R L C

R: record number,
L: line number,
C : optional column
number.

Table 2: pdfsync line specifications of the synchronous stream

Line Format Description Comment

“s” s S S : physical page number TEX is going to ship out a new page.
“p”
“p*”

p R x y

p* R x y

R: record number,
x : horizontal coordinate,
y : vertical coordinate.

Both coordinates are respectively
given by
\the\pdflastxpos and
\the\pdflastypos

Table 3: pdfsync line specification of the asynchronous stream

• required data (source, graphics, bibliography
database)

• helpful data and hints (tex, bibtex, makeindex
options, known words)

• user-specific data

• front-end-specific data

• cached data

• temporary data

It seems convenient to gather all the non-required
information in one folder named document.texd/

document.texp such that silently removing this di-
rectory would cause no harm. As a consequence, no
required data should stay inside document.texp, and
this is the only rule concerning the required data.
The texp file extension stands for “TEX Project”.

In tables 4 to 9 we show the core file struc-
ture of the document.texp directory. This is a min-
imal definition involving only string encoding and
spelling information because there is no consensus
yet among users and all the developers of TEX so-
lutions, on Mac OS X at least. We make use of the
XML property list data format storage as defined by
http://www.apple.com/DTDs/PropertyList-1.0.dtd

Preprints for the 2004 Annual Meeting 89

Jérôme Laurens

Name Contents

Info.plist XML property list for any general purpose information
wrapped in an info dictionary described in table 5. Op-
tional.

spellingKey.spelling XML property list for lists of known words wrapped in
a spelling dictionary defined in table 9 and uniquely
identified by spellingKey. This format is stronger than
a simple comma separated list of words. Optional.

frontends directory dedicated to front-ends only.
frontends/name private directory dedicated to the front-end identified

by name. The further contents definition is left under
the front-end responsibility.

users directory dedicated to users. Should not contain any
front-end specific data.

users/name directory dedicated to the user identified by name (not
its login name). Not yet defined, but private and prefer-
ably encrypted.

Table 4: Contents of the TEX Project directory document.texp

Key Class Contents

isa String Required with value: info
version Number Not yet used but reserved
files Dictionary The paths of the files involved in the project wrapped

in a files dictionary. Optional.
properties Dictionary Attributes of the above files wrapped in a properties

dictionary. Optional.
main String The fileKey of the main file, if relevant, where fileKey

is one of the keys of the files dictionary. Optional.

Table 5: info dictionary description.

Key Class Contents

fileKey String The path of the file identified by the string fileKey, rel-
ative to the directory containing the TEX project. No
two different keys should correspond to the same path.

Table 6: files dictionary description.

However, this mechanism doesn’t actually pro-
vide the concrete information needed to typeset pro-
perly (engine, format, output format). For that we
can use Makefiles or shell scripts either embedded
in the TEX Wrapper itself or shipped as a stan-
dard tool in a TEX distribution. This latter choice
is less powerful but much more secure. Anyway,
a set of default actions to be performed on a TEX
Wrapper should be outlined (compose, view, clean,
archive...).

Technically, iTEXMac uses a set of private,
built-in shell scripts to typeset documents. If this
is not suitable, customized ones are used instead,

but no warning is given then. No security problem
has been reported yet, most certainly because such
documents are not shared.

Notice that iTEXMac declares texd as a docu-
ment wrapper extension to Mac OS X, which means
that document.texd folders are seen by other appli-
cations just like other single file documents, their
contents is hidden at first glance. Using another file
extension will prevent this Mac OS X feature with-
out losing the benefit of the TEX Wrapper Structure.

A final remark concerns the version control sys-
tem in standard use among TEX users. In the cur-
rent definition, only one directory level should be

90 Preprints for the 2004 Annual Meeting

iTEXMac: An Integrated TEX Environment for Mac OS X

Key Class Contents

fileKey Dictionary Language, encoding, spelling information and other at-
tributes wrapped in an attributes dictionary described
in table 8. fileKey is one of the keys of the files dic-
tionary.

Table 7: properties dictionary description.

Key Class Contents
isa String Required with value: attributes
version Number Not yet used but reserved
language String According to latest ISO 639. Optional.
codeset String According to ISO 3166 and the IANA Assigned Char-

acter Set Names. If absent the standard C++ locale
library module is used to retrieve the codeset from the
language. Optional.

eol String When non void and consistent, the string used as end
of line marker. Optional.

spelling String One of the spellingKeys of table 4, meaning that
spellingKeys.spelling contains the list of known words
of the present file. Optional.

Table 8: attributes dictionary description

Key Class Contents

isa String Required with value: spelling
version Number Not yet used but reserved
words Array The array of known words

Table 9: spelling dictionary description.

supported in a document.texp folder. The contents
of the frontend and users should not be monitored.

9 Nota Bene

Some features discussed here are still in the develop-
ment stage and are still being tested and validated
(for example, advanced syntax highlighting and full
TWS support).

Preprints for the 2004 Annual Meeting 91

ŞäferTEX: Source Code Esthetics for Automated Typesetting

Frank-Rene Schaefer
Franzstr. 21

50931 Cologne

Germany

fschaef@users.sourceforge.net

http://safertex.sourceforge.net

Abstract

While TEX [4] provides high quality typesetting features, its usability suffers due
to its macro-based command language. Many tools have been developed over
the years simplifying and extending the TEX interface, such as LATEX [5], LATEX3
[6], pdfTEX [2], and NTS [8]. Front-ends such as TEXmacs [10] follow the visual/
graphical approach to facilitate the coding of documents. The system introduced
in this paper, however, is radical in its targetting of optimized code appearance.

The primary goal of ŞäferTEX is to make the typesetting source code as close
as possible to human-readable text, to which we have been accustomed over the
last few centuries. Using indentation, empty lines and a few triggers allows one to
express interruption, scope, listed items, etc. A minimized frame of ‘paradigms’
spans a space of possible typesetting commands. Characters such as ‘ ’ and ‘$’
do not have to be backslashed. Transitions from one type of text to another
are automatically detected, with the effect that environments do not have to be
bracketed explicitly.

The following paper introduces the programming language ŞäferTEX as a
user interface to the TEX typesetting engine. It is shown how the development
of a language with reduced redundancy increases the beauty of code appearance.

1 Introduction

The original role of an author in the document pro-
duction process is to act as an information source.
To optimize the flow of information, the user has
to be freed from tasks such as text layout and doc-
ument design. The user should be able to delegate
the implementation of visual document features and
styles to another entity. With this aim in mind, the
traditional relationship between an author and his
typesetter before the electronic age can be consid-
ered the optimal case. Modern technology has in-
creased the speed and reduced the cost of document
processing. However, the border between informa-

tion specification and document design has blurred
or even vanished.

In typesetting engines with a graphical user in-
terface, an editor often takes full control over page
breaks, font sizes, paragraph indentation, references
and so on. Script-oriented engines such as TEX take
care of most typesetting tasks and provide high qual-
ity document design. However, quite often the task
to produce a document requires detailed insight into
the underlying philosophy.

ŞäferTEX tries to get back to the basics, as de-
picted in Figure 1. Like the traditional writer, a user
shall specify information as redundancy-free as pos-
sible with a minimum of commands that are alien
to him. Layout, features, and styles shall be im-
plemented according to predefined standards with a
minimum of specification by the user.

To the user, the engine provides a simple inter-
face, only requiring plain text, tables and figures.
A second interface allows a human expert to adapt
the engine to local requirements of style and output.
Ideally, the added features in the second interface do
not appear to the user, but are activated from con-
text. Then, the user can concentrate on the core
information he wants to produce, and not be dis-
tracted by secondary problems of formatting.

Document
Design

DocumentUser
Human

Human
Expert

pure
text, tables
and figures

features, style, formatting

Typesetting
Engine

Figure 1: Neo-traditional typesetting.

92 Preprints for the 2004 Annual Meeting

ŞäferTEX: Source Code Esthetics for Automated Typesetting

The abovementioned ideal configuration of en-
gine, user, and expert can hardly be achieved with
present automated text formatting systems. While
relying on TEX as a typesetting engine, ŞäferTEX
tries to progress towards a minimal-redundancy pro-
gramming language that is at the same time intu-
itive to the human writer.

2 The ŞäferTEX Engine

As shown in figure 2, the ŞäferTEX engine is based
on a three-phase compilation, namely: lexical anal-
ysis, parsing and code generation. Along with the
usual advantages of such modularization, this struc-
ture allows us to describe the engine in a very formal
manner. In this early phase of the project, it fur-
ther facilitates adding new features to the language.
Using interfacing tools such as SWIG [1] and .NET

[9], it would be possible in the future to pass the
generated parse tree to different programming lan-
guages. Such an approach would open a whole new
world to typesetters and document designers. Plug-
ins for ŞäferTEX could then be designed in the per-
son‘s favorite programming language (C++, Java,
Python, C#, anything). Currently, automated doc-
ument production mainly happens by preprocessing
LATEX code. Using a parse tree, however, gives ac-
cess to document contents in a structured manner,
i.e., through dedicated data structures such as ob-
jects of type section, item group, and so on.

This is some example text

\author Frank R. Schaefer
 Franzstr. 21
 50931 Cologne, Germany

() Abstract abstract.st

(*) Introduction intro.st
(**) Sense and Nonsense of Examples nonsense.st
(**) Explanations w/o examples explanation.st

(*) Examples in Daily Practis daily.st

(*) bla bla bla blah.st

document

code files

token stream

parse tree

code
generator

lexical
analysis

parsing

Typesetting
Engine Core

LATEX

ŞäferTEX

Figure 2: The ŞäferTEX compilation process.

GNU flex [7] (a free software package), is used
to create the lexical analyzer. It was, though, nec-
essary to deviate from the traditional idea of a
lexical analyzer as a pure finite state automaton.
A wrapper around flex implements inheritance be-
tween modes (start conditions). Additionally, the
lexical analyzer produces implicit tokens and deals
with indentation as a scope delimiter.

The parser is developed using the Lemon parser
generator [3] (also free software). Using such a pro-
gram, the ŞäferTEX language can be described with
a context-free grammar. The result of the parser is

a parse tree, which is currently processed in C++.
The final product is a LATEX file that is currently
fed into the LATEX engine. A detailed discussion of
the engine is not the intention of this paper, though.
The present text focuses on the language itself.

3 Means for Beauty

ŞäferTEX tries to optimize code appearance. The
author identifies three basic means by which this
can be achieved:

1. The first means is intuitive treatment of charac-
ters. For example, ‘$’ and ‘ ’ are used as normal
characters and do not function as commands, as
they do in LATEX.

2. The second is to use indentation as the scope
delimiter. This is reminiscent of the Python
programming language. It allows the user to
reduce brackets and enforces proper placement
of scopes. For table environments, this princi-
ple is extended so that the column positions can
be used as cell delimiters.

3. The third principle is automatic environment
detection. If an item appears, then the ‘itemize’
environment is automatically assumed. This
reduces redundancy, and makes the source file
much more readable.

Applying these principles leads to the eight rules
of ŞäferTEX as they are explained at the end (sec-
tion 5). We now discuss them in more detail.

3.1 Intuitive Treatment of Characters

In the design of a typesetting language, the user has
to be given the ability to enter both normal text and
commands specifying document structure and non-
text content. This can be achieved by defining func-
tions, i.e., using character sequences as triggers for a
specific functionality. This happens when we define,
say, sin(x) as a function computing the sine of x.
For a typesetter this is not a viable option, since the
character chain can be easily confused with normal
text. As a result, one would have to ‘bracket’ normal
text or ‘backslash’ functions. Another solution is to
use extra characters. This was the method Donald
Knuth chose when he designed TEX [4]. The first
solution is still intuitive to most users. The second,
however, is rather confusing, implying that ‘%’, ‘$’
and ‘ ’ have a meaning different from what one sees
in the file.

Historically, at the time TEX was designed, key-
boards had a very restricted number of characters.
Moreover, ASCII being the standard text encoding
in Knuth’s cultural context, the high cost of data

Preprints for the 2004 Annual Meeting 93

Frank-Rene Schaefer

Table 1: Comparison of treatment of special
characters in LATEX and ŞäferTEX.

LATEX: According to Balmun \& Refish

$<$www.b-and-r.org$>$ a

conversion of module \#5,
namely ‘propulsion\ control,’

into a metric system increases

code safety up to 98.7\% at

cost of \~ \ \$17,500.

ŞäferTEX: According to Balmun &

Refish <www.b-and-r.org> a

conversion of module #5, namely

‘propulsion control,’ into a

metric system increases code

safety up to 98.7% at cost of ~

$17,500.

storage, and the lack of advanced programming lan-
guages also all may have contributed to the design
choices made. Although the documents produced
still equal and even outclass most commercial sys-
tems of our days, the input language, it must be
admitted, is rather cryptic.

The first step towards readability of code is to
declare a maximum number of characters as ‘nor-
mal’. In ŞäferTEX, the only character that is not
considered normal is the backslash. All other char-
acters, such as ‘%’, ‘$’ and ‘ ’, appear in the text
as they are. Special characters only act abnormal
if they appear twice without whitespace in between.
These tokens fall into the category of alien things,
meaning that they look strange and thus are ex-
pected to not appear verbatim in the output.

Table 1 compares LATEX code to ŞäferTEX code,
showing the improvement with respect to code ap-
pearance. The advantages may seem minor. Con-
sider, however, the task of learning the difference
between the characters that can be typed normally
and others that have to be backslashed or bracketed.
The abovementioned simplification already removes
the chance of subtle errors appearing when LATEX
code is compiled. The subsequent sections show how
the code appearance and the ease of text input can
be further improved.

3.2 Scope by Indentation

In the preceding, we discussed how commands are
best defined in a typesetting engine. One way to
organize information is to create specific regions,
called scopes or environments. Most programming
languages use explicit delimiters for scopes with-
out giving any special meaning to white space of

Einstein clearly stated his disbelief in the

boundedness of the human spirit as becomes

clear through his sayings:

\quote The difference between genius and

stupidity is that genius has its limits.

Only two things are infinite, the

universe and human stupidity, and I’m

not sure about the former.

Similar reports have been heard from Frank

Zappa and others.

Figure 3: Scope by indentation.

any kind. This implies that the delimiters must
be visible. C++, for example, uses curly braces,
while LATEX uses \begin{...} ... \end{...} con-
structs to determine scope. This approach allows
one to place the scopes very flexibly. However, it
pollutes the text with symbols not directly related
to the information being described. The more scopes
that are used, and the deeper they are nested, the
more the source text loses readability.

Another approach is scoping by indentation. A
scope of a certain indentation envelopes all subse-
quent lines and scopes as long as they have more
indentation. Figure 3 shows an example of scope
by indentation. LATEX‘s redundancy-rich delimiters
add nothing but visual noise to the reader of the
file. ŞäferTEX, however, uses a single backslashed
command \quote in order to open a quote domain.
The scope of the quote is then simply closed by the
lesser indentation of the subsequent sentence.

This simple example was chosen to display the
principle. It is easy to imagine that for more deeply
nested scopes (e.g., picture in minipage in center

in figure), LATEX code converges to unreadability,
while ŞäferTEX code still allows one to get a quick
overview about the document structure. Scope by
indentation has proven to be a very convenient and
elegant tool.

An extension of this concept is using columns

as cell delimiters in a table scope. The implementa-
tion of tables in ŞäferTEX allows the source to omit
many ‘parboxes’ and explicit ‘&’-cell delimiters. To
begin with, a row is delimited by an empty line.
This means that line contents are glued together as
long as only one line break separates them. The
cell content, though, is collected using the position
of the cell markers ‘&&’ and ‘||’. Additionally, the
symbol ‘~~’ glues two cells together. This makes
cumbersome declarations with \multicolumn and

94 Preprints for the 2004 Annual Meeting

ŞäferTEX: Source Code Esthetics for Automated Typesetting

\table Food suppliers, prices and amounts.

Product || Price/kg && Supplier && kg || Total Price

==

Sugar || $0.25 && Jackie O‘Neil && 34 || $8.50

__

Yellow Swiss || $12.2 && United Independent && 100 || $1220.00

Cheese Farmers of

Switzerland

__

Green Pepper || $25.0 && Anonymous && 2 || $50.00

Genuine Indians Tribes

Mexican

==

Sum ~~ ~~ ~~ && $1278.50

__

Figure 4: Example of writing a table: identifying cell borders by column.

\parbox unnecessary. Figure 4 shows an example
of a ŞäferTEX table definition.

4 Implicit Environment Detection

A basic means of improving convenience of program-
ming is reducing redundancy. In LATEX, for example,
the environment declarations are sometimes unnec-
essary. To declare a list of items, one has to specify
something like

\begin{itemize}

\item This is the first item and

\item this one is the second.

\end{itemize}

Considering the information content, the occur-
rence of the \item should be enough to know that
an itemize environment has started. Using our sec-
ond paradigm, ‘scope by indentation’, the closing of
the environment could be detected by the first text
block that has less indentation than the item itself.
The \begin and \end statements are therefore re-
dundant. In ŞäferTEX, the token ‘--’ (two dashes)
is used to mark an item. Thus, in ŞäferTEX, the
item list above simply looks like:

-- This is the first item and

-- this one is the second.

As implied previously, this paradigm’s power
really unfolds in combination with scope by inden-
tation. Subsequent paragraphs simply need to be
indented more than the text block to which they
belong. Nested item groups are specified by higher
levels of indentation, as seen in figure 5.

Some important points from the example:

• The appearance of a ‘--’ at the beginning of
a line tells ŞäferTEX that there is an item and

Items provide a good means to

-- structure information

-- emphasize important points. There are

three basic ways to do this:

[[Numbers]]: Enumerations are good when

there is a sequential order

in the information being

presented.

[[Descriptions]]: Descriptions are

suitable if keywords

or key phrases are

placeholders for more

specific information.

[[Bullets]]: Normal items indicate that

the presented set of

information does not

define any priorization.

-- classify basic categories

There may be other things to consider of

which the author is currently unaware.

Figure 5: Example code showing ‘scope by
indentation’.

that an implicit token ‘list begin’ has to be cre-
ated before the token ‘item start’ is sent. The
next ‘--’ signals the start of the next item.

• The ‘[[’-symbol appears at the beginning of the
line. It indicates a descriptor item. Since it has
a higher indentation than the ‘--’ items, it is

Preprints for the 2004 Annual Meeting 95

Frank-Rene Schaefer

identified as a nested list. Therefore, an implicit
token ‘list begin’ has to be created again.

• The final sentence having less indentation than
anything before closes all lists, i.e., it produces
implicit ‘list end’ tokens for all lists that are to
be closed. Thus, the parser and code genera-
tor are able to produce environment commands
corresponding to the given scopes.

The above has discussed the fundamental ideas
to improve programming convenience for a typeset-
ting system. We now turn to defining a best set of
rules for expressions that implements these rules.

5 The Eight Rules of ŞäferTEX

Rules for command design shall be consistent with
the paradigms of intuitive treatment of characters,
scope by indentation, and automatic environment
detection. The following set of rules was designed
to meet these goals for ŞäferTEX while striving for
a intuitive code appearance:

[1] Every character and every symbol in the code
appears in the final output as in the source doc-
ument, except for Alien things.

[2] Alien things look alien.

In plain TEX, characters such as ‘$’, ‘%’ and
‘ ’ do not appear in the document as typed. The
fact that they look natural but trigger some TEX
specific behavior is prone to confuse the layman. In
ŞäferTEX, they appear as typed on the screen. Alien
things can be identified by their look. The next four
rules define the ‘alien look:’

[3] Any word starting with a single backslash \.
Examples are \figure and \table.

[4] Any non-letter character that appears twice or
more, such as ‘##’ (this triggers the start of an
enumeration item at the beginning of the line).

[5] Parentheses (at the beginning of a line) that
only contain asterisks ‘*’ or whitespace. Se-
quences such as ‘(*)’, ‘()’, ‘(***)’ indicate
sections and subsections.

[6] The very first paragraph of the file. It is inter-
preted as the title of the document.

Except for the first case, alien things do not in-
terfere with readability. In fact, the double minus
‘--’ for items and the ‘(*)’ for sections are used nat-
urally in many ASCII files. Internally, alien things
are translated into commands for the typesetting en-
gine, but the user does not need to know.

The last two issues are separation of the text
stream and identification of scope of an environ-
ment:

[7] Termination of paragraphs, interruptions of the
text flow, etc., are indicated by an empty line.

[8] The scope of an environment, table cells, etc.
is determined by its indentation. A line with
less indentation closes all scopes of higher in-
dentation.

These are the eight rules of ŞäferTEX which en-
able one to operate the typesetter. They are defined
as ‘rules’ but, in fact, they do not go much beyond
common organization of text files.

6 Commands

This section gives a brief overview of the commands
that are currently implemented. In this early stage
of development, the system’s structure and language
design has been in the foreground, in order to build
the framework for a more powerful typesetting en-
gine. In the current version of ŞäferTEX, the follow-
ing commands are implemented:

--, ++ starts a bullet item. The two can be used
interchangeably to distinguish different levels of
nested item groups.

starts an enumeration item.

[[]] bracket the beginning of a description item.

\table opens a table environment. It is followed
by a caption and the table body as described in
section 3.2.

\figure opens a figure environment. The text fol-
lowing this command is interpreted as the cap-
tion. Then file names of images are to be listed.
Images that are to be shown side by side are
separated by ‘&&’. Vertically adjacent images
are separated by empty lines.

\quote opens a quote environment.

(*) starts a section. The number of asterisks indi-
cates the level of the section.

() starts a section without a section number. The
number of blanks indicates the section level.

.... includes a file (more than four dots is equiv-
alent to four). The next non-whitespace char-
acter sequence is taken as the filename to be
included.

\author specifies information about the author of
the document.

Commands have been designed for footnotes,
labels, and more. However, due to the early stage of
development, no definite decision about their format
has been made. In the appendix, two example files
are listed in order to provide an example of ŞäferTEX
code in practical applications.

96 Preprints for the 2004 Annual Meeting

ŞäferTEX: Source Code Esthetics for Automated Typesetting

7 Conclusion and Outlook

Using simple paradigms for improving code appear-
ance and reducing redundancy, a language has been
developed that allows more user-friendly input than
is currently possible with TEX and LATEX. These
paradigms are: the intuitive processing of special
characters, the usage of indentation for scope and
the implicit identification of environments. As an
implementation of these paradigms, the eight rules
of ŞäferTEX were formed, which describe the funda-
mental structure of the language.

While developing ŞäferTEX, the author quickly
realized that the ability to provide the parse tree
to layout designers extends the usage beyond the
domain of TEX. Currently, much effort remains to
provide appropriate commands for document pro-
duction. Functionality of popular tools such as ps-

frag, fancyheaders, bibtex, makeindex, etc., are to be
implemented as part of the language. In the long
run, however, it may be interesting to extend its
usage towards a general markup language.

8 Acknowledgments

The author would like to thank the TEX Stammtisch
of Cologne in Germany for their valuable comments.
Special thanks to Holger Jakobs who helped trans-
late this text from Genglish to English.

References

[1] D. M. Beazley. Automated scientific software
scripting with SWIG. In Tools for program de-

velopment and analysis, volume 19, pages 599–
609. Elsevier Science Publishers B. V., Amster-
dam, The Netherlands, 2003.

[2] T. T. Hàn, S. Rahtz, and H. Hagen. The
pdftex manual. http://www.ntg.nl/doc/han/
pdftex-a.pdf, 1999.

[3] R. D. Hipp. The Lemon Parser Generator.
http://www.hwaci.com/sw/lemon, 1998.

[4] D. E. Knuth. The TEXbook. Addison Wesley,
1983.

[5] H. Kopka and P. Daly. A Guide to LATEX. Ad-
dison Wesley, 1992.

[6] Frank Mittelbach and Chris Rowley. The
LATEX3 Project. TUGboat, 18(3):195–198, 1997.

[7] J. Poskanzer and V. Paxson. Flex, a fast lexi-
cal analyzer generator. http://sourceforge.

net/projects/lex, 1995.

[8] P. Taylor, J. Zlatuška, and K. Skoupy. The

NTS project: from conception to implementa-

tion. Cahiers GUTenberg, May 2000.

[9] A. Troelsen. C# and the .NET Platform.
APress, 2001.

[10] Joris van der Hoeven. GNU TEXmacs.
http://www.texmacs.org/tmweb/home/

welcome.en.html, 2003.

Preprints for the 2004 Annual Meeting 97

Frank-Rene Schaefer

Details about

The Elves and The Shoemaker

\Author Original:

Brothers Jakob & Wilhelm Grimm

Somewhere in Germany

() Abstract .. abstract.st

(*) Nocturne shoe productions strange.st

(**) Living in confusion confusion.st

(**) Women make trouble trouble.st

(*) Midnight observations midnight.st

(**) Elves in the cold freezing-elves.st

(*) New era for elves: luxury luxury.st

(*) Elves leave their job undone spoiled-elves.st

Figure 6: Example input ‘main.st’.

\figure ::fig:plots:: Performance a) productivity of shoemaker. b) gain.

ferry-tales/prod.eps && ferry-tales/capital.eps

Reviewing the plots of shoes produced (figure --<fig:plots>), the shoemaker

realized an instantaneous increase during the night period. He only could

think of two possible reasons:

He was sleepworking. Since he even used to work few when awake this

assumption was quickly refuted.

Elves must have come over night and did some charity work.

He further based his theory on the influence of the tanning material used. In

fact, there were differences in the number of shoes produced depending on acid

number and pH value (see table --<tab:tan-mat>).

\table ::tab:tan-mat::Influence of tanning materials on shoe production.

Tanning Mat. && pH value && acid number && shoes prod.

European && 3.4 - 3.7 && 30 - 40 && 32 @@

Indian 2.0 - 2.1 31 - 45 35 @@

African 4.5 - 4.6 33 - 37 36 @@

Australian 3.0 - 7.0 27 - 45 15 @@

Resourcing several leathers from indian & african suppliers allowed him to

increase profit ranges tremendously. Moreover, these shoes were sold at an

even higher price around $0.50. Pretty soon, the shoemaker was able to save a

good sum of $201.24.

Figure 7: Example input ‘confusion.st’.

98 Preprints for the 2004 Annual Meeting

FEATPOST and a Review of 3D METAPOST Packages

L. N. Gonçalves
CFMC-UL, Av. Prof. Gama Pinto 2

1649-003 Lisboa

Portugal

nobre@lince.cii.fc.ul.pt

http://matagalatlante.org

Abstract

METAPOST is able to produce figures that look almost like ray-traced raster im-
ages but that remain vector-based. A small review of three-dimensional perspec-
tive implementations with METAPOST is presented. Special emphasis is given to
the abilities of the author’s implementation: FEATPOST.

1 Introduction

There are at least four METAPOST packages related
to three-dimensional diagrams:

• GNU 3DLDF — http://www.gnu.org/

directory/graphics/3D/3DLDF.html

• 3d/3dgeom— http://tug.org/tex-archive/

graphics/metapost/macros/3d/

• m3D — http://www-math.univ-poitiers.

fr/∼phan/m3Dplain.html

• FEATPOST — http://matagalatlante.org/

nobre/featpost/doc/featexamples.html

All of these packages are individual and independent
works “under construction”. There has been neither
collaboration nor competition among the authors.
Each produces different kinds of diagrams and each
uses a different graphic pipeline. The following sec-
tions of this document describe these packages, in a
mainly independent way.

2 GNU 3DLDF

3DLDF is not a pure METAPOST package, as it is
written in C++ using CWEB. Diagrams are also
coded in C++ and are compiled together with the
package. Nevertheless, this is, of all four, the pack-
age with the greatest promise for a future three-
dimensional-capable METAPOST.

1. It outputs METAPOST.

2. Its syntax is similar to METAPOST.

3. It overcomes the arithmetic limitations inherent
in METAPOST.

4. Both the affine transformations and the graph-
ics pipeline are implemented through 4× 4 ma-
trices.

5. Its author, Laurence D. Finston, is actively im-
proving and maintaining the package. His plan

includes, among many other ideas, the develop-
ment of an input routine (to allow interactive
use) and the implementation of three-dimens-
ional paths via NURBS.

Given the possible computational efficiency of this
approach, one can foresee a system that merges the
METAPOST language with the capabilities of stan-
dard ray-tracing software.

3 3d/3dgeom

This was the first documented extension of META-
POST into the third dimension—and also into the
fourth dimension (time). Denis B. Roegel created,
back in 1997, the 3d package to produce animations
of polyhedra. In 2003 he added the 3dgeom “mod-
ule” which is focused on space geometry. It remains
the least computationally intensive package of those
presented here.

1. Each component of a point or a vector is stored
in a different numeric array. This eases control
of a stack of points. Points are used to define
planar polygons (faces of polyhedra) and the
polygons are used to define convex polyhedra.

2. When defining a polygon, a sequence of points
must be provided such that advancing on the
sequence is the same as rotating clockwise on
the polygon, when the polygon is visible. This
means that, when a polyhedron is to be drawn,
the selection of polygons to be drawn is very
easy: only those whose points rotate clockwise
(the visible ones). Hidden line removal is thus
achieved without sorting the polygons.

3. Points can also be used to define other points
according to rules that are common in the ge-
ometry of polyhedra or according to operations
involving straight lines and/or planes and/or
angles.

Preprints for the 2004 Annual Meeting 99

L. N. Gonçalves

4. The author plans to release an updated version
with the ability to graph parametric lines and
surfaces.

4 m3D

Anthony Phan developed this very interesting pack-
age but has not yet written its documentation. Cer-
tainly, this is, of all four, the package that can pro-
duce the most complex and beautiful diagrams. It
achieves this using, almost exclusively, four-sided
polygons.

1. Complex objects can be defined and composed
(see figure 1). For example, one of its many
predefined objects is the fractal known as the
“Menger Sponge”.

2. It can render revolution surfaces defined from a
standard METAPOST path (see figure 2).

3. Objects or groups of polygons can be sorted
and drawn as if reflecting light from a punctual
source and/or disappearing in a foggy environ-
ment.

Figure 1: A diagram produced by m3D showing a
single object, composed of spheres and cylindrical
connections, under a spherical perspective.

5 FEATPOST

Geared towards the production of physics diagrams,
FEATPOST sacrifices programming style and com-
putational efficiency for a large feature set.

1. Besides the usual parallel and central perspec-
tives it can make a sort of “spherical distortion”
as if a diagram is observed through a fish-eye
lens1. This kind of perspective is advantageous
for animations as it allows the point of view to
be inside or among the diagram objects. When
using the central perspective, points that are as

1 Also possible with m3D.

Figure 2: A diagram produced by m3D showing a
revolution surface under a central perspective.

distant from the projection plane as the point
of view get projected at infinity, and MetaPost
overflows and crashes. The spherical projection
is always finite.

2. It can mark and measure angles in space.

3. It can produce shadows of some objects (see
figure 9). Shadows are calculated in much the
same way as perspectives. The perspective pro-
jection, from 3D into 2D, is a calculation of
the intersection of a straight line and a plane.
A shadow is also a projection from 3D into
2D, only the line and the plane are different.
The shadow must be projected onto the paper
page before the object that creates the shadow.
Shadows are drawn after two projections, ob-
jects are drawn after one projection and after
their shadows.

4. It can correctly draw intersecting polygons (see
figure 12).

5. It knows how to perform hidden line removal on
some curved surface objects. Imagine a solid
cylinder. Now consider the part of the cylin-
der’s base that is the farthest away. You only
see a part of its edge. In order to draw that
part, it is necessary to know the two points at
which the edge becomes hidden. FEATPOST

calculates this. Note that the edge is a circle, a
curved line. FEATPOST does not use polygons
to hide lines on some curved surface objects.

6. Supported objects include: dots, vectors, an-
gles, ropes, circles, ellipses, cones, cylinders,
globes, other curved surface objects, polygons,
cuboids, polyhedra, functional and parametric

100 Preprints for the 2004 Annual Meeting

FEATPOST and a Review of 3D METAPOST Packages

surface plots, direction fields, field lines and tra-
jectories in conservative force fields.

Many of the drawable objects are not made of poly-
gons, but rather of two-dimensional paths. FEAT-
POST does not attempt to draw surfaces of these ob-
jects, only their edges. This is partly because of the
use of intrinsic METAPOST functions and partly be-
cause it eases the production of diagrams that com-
bine space and planar (on paper) objects.

One of the intrinsic METAPOST functions that
became fundamental for FEATPOST is the compo-
sition makepath makepen. As this converts a path

into its convex form, it very much simplifies the de-
termination of some edges.

Another important aspect of the problem is hid-
den line removal. Hidden line removal of a group of
polygons can, in some cases, be performed by draw-
ing the polygons by decreasing order of distance to
the point of view. FEATPOST generally uses the
Shell sorting method, although when the polygons
are just the faces of one cuboid FEATPOST has a
small specific trick. There is also a specific method
for hidden line removal on cylinders and another for
other curved surface objects.

5.1 Examples

Some of the FEATPOST macros are presented here.
Detailed information is available at

• http://matagalatlante.org/nobre/

featpost/doc/macroMan.html

• http://www.ctan.org/tex-archive/

graphics/metapost/macros/featpost/

Each perspective depends on the point of view.
FEATPOST uses the global variable f, of type color,
to store the (X, Y, Z) coordinates of the point of
view. Also important is the aim of view (global
variable viewcentr). Both together define the line
of view.

The perspective consists of a projection from
space coordinates into planar (u, v) coordinates on
the projection plane. FEATPOST uses a projection
plane that is perpendicular to the line of view and
contains the viewcentr. Furthermore, one of the
projection plane axes is horizontal and the other is
on the intersection of a vertical plane with the pro-
jection plane. “Horizontal” means parallel to the
XY plane.

One consequence of this setup is that f and
viewcentr must not be on the same vertical line
(as long as the author avoids solving this problem,
at least!). The three kinds of projection known to
FEATPOST are schematized in figures 3, 4 and 5.

The macro that actually does the projection is, in
all cases, rp.

�

Figure 3: Parallel projection.

�

✁✂✄☎✆✄✝✞✟

Figure 4: Central projection.

Physics problems often require defining angles,
and diagrams are needed to visualize their meanings.
The angline and squareangline macros (see figure
6 and the code below) support this.

f := (5,3.5,1);

beginfig(2);

cartaxes(1,1,1);

color va, vb, vc, vd;

va = (0.29,0.7,1.0);

vb = (X(va),Y(va),0);

vc = N((-Y(va),X(va),0));

vd = (0,Y(vc),0);

drawarrow rp(black)--rp(va);

draw rp(black)--rp(vb)--

rp(va) dashed evenly;

draw rp(vc)--rp(vd) dashed evenly;

drawarrow rp(black)--rp(vc);

squareangline(va, vc, black, 0.15);

Preprints for the 2004 Annual Meeting 101

L. N. Gonçalves

�

Figure 5: Spherical projection. The spherical
projection is the composition of two operations:
(i) there is a projection onto a sphere and (ii) the
sphere is plaited onto the projection plane.

angline(va,red,black,0.75,

decimal getangle(va,red),lft);

endfig;

x
y

z

76.63591

Figure 6: FEATPOST diagram using angline.

Visualizing parametric lines is another need of
physicists. When two lines cross, one should be able
to see which line is in front of the other. The macro
emptyline can help here (see figure 7 and the code
below).

f := (2,4,1.8);

def theline(expr TheVal) =

begingroup

numeric cred, cgre, cblu, param;

param = TheVal*(6*360);

cred = -0.3*cosd(param);

cblu = 0.3*sind(param);

cgre = param/850;

((cred,cgre,cblu))

endgroup

enddef;

beginfig(1);

numeric axsize, zaxpos, zaxlen;

color xbeg, xend, ybeg,

yend, zbeg, zend;

axsize = 0.85;

zaxpos = 0.55;

zaxlen = 2.1;

pickup pencircle scaled 1.5pt;

xbeg = (axsize,0,0);

xend = (-axsize,0,0);

ybeg = (0,0,-axsize);

yend = (0,0,axsize);

zbeg = (zaxpos,-zaxpos,0);

zend = (zaxpos,zaxlen,0);

drawarrow rp(xbeg)--rp(xend);

drawarrow rp(ybeg)--rp(yend);

defaultscale := 1.95;

label.rt("A", rp(xend));

label.lft("B", rp(yend));

emptyline(false,1,black,

0.5black,1000,0.82,2,theline);

drawarrow rp(zbeg)--rp(zend);

label.bot("C", rp(zend));

endfig;

A

B

C

Figure 7: FEATPOST diagram using emptyline.

Cuboids and labels are always needed. The
macros kindofcube and labelinspace fulfill this
need (see figure 8 and the code below). The macro
labelinspace does not project labels from 3D into
2D. It only Transforms the label in the same way as
its bounding box, that is, the same way as two per-
pendicular sides of its bounding box. This is only
exact for parallel perspectives.

f := (2,1,0.5);

ParallelProj := true;

verbatimtex

102 Preprints for the 2004 Annual Meeting

FEATPOST and a Review of 3D METAPOST Packages

\documentclass{article}

\usepackage{beton,concmath,ccfonts}

\begin{document}

etex

beginfig(1);

kindofcube(false,true,(0,-0.5,0),

90,0,0,1.2,0.1,0.4);

kindofcube(false,true,(0,0,0),

0,0,0,0.5,0.1,0.8);

labelinspace(false,(0.45,0.1,0.65),

(-0.4,0,0),(0,0,0.1),

btex

\framebox{\textsc{Label}}

etex);

endfig;

verbatimtex \end{document} etex

�✁✂
✄☎

Figure 8: FEATPOST diagram using the macros
kindofcube and labelinspace.

Some curved surface solid objects can be drawn
with FEATPOST. Among them are cones (very-
goodcone), cylinders (rigorousdisc) and globes
(tropicalglobe). These can also cast their shad-
ows on a horizontal plane (see figure 9 and the
code below). The production of shadows involves
the global variables LightSource, ShadowOn and
HoriZon.

f := (13,6,4.5); ShadowOn := true;

LightSource := 10*(4,-3,6);

beginfig(3);

numeric reflen, frac, coordg;

numeric fws, NumLines;

path ella, ellb;

color axe, cubevertex, conecenter,

conevertex, allellaxe, ellaaxe,

pca, pcb;

frac := 0.5; wang := 60;

axe := (0,cosd(90-wang),

sind(90-wang));

fws := 4; reflen := 0.35*fws;

coordg := frac*fws;

NumLines := 45;

HoriZon := -0.5*fws;

setthestage(0.5*NumLines,3.3*fws);

cubevertex = (0.3*fws,-0.5*fws,0);

tropicalglobe(7, cubevertex,

0.5*fws, axe);

allellaxe:=reflen*(0.707,0.707,0);

ellaaxe:= reflen*(0.5, -0.5, 0);

pcb := (-coordg, coordg, 0);

rigorousdisc(0, true, pcb,

0.5*fws, -ellaaxe);

conecenter =

(coordg, coordg, -0.5*fws);

conevertex = conecenter +

(0, 0, 0.9*fws);

verygoodcone(false,conecenter,

blue,reflen,conevertex);

endfig;

Figure 9: FEATPOST diagram using the macros
rigorousdisc, verygoodcone, tropicalglobe
and setthestage.

Another very common need is the plotting of
functions, usually satisfied by software such as Gnu-
plot (http://www.gnuplot.info/). Nevertheless,
there are always new plots to draw. One kind of
FEATPOST plot that just became possible is the
“triangular grid triangular domain surface” (see fig-
ure 10 and this code):

f := 16*(4,1,1);

LightSource := 10*(4,-3,4);

def zsu(expr xc, yc) =

cosd(xc*57)*cosd(yc*57)+

4*mexp(-(xc**2+yc**2)*6.4) enddef;

beginfig(1);

hexagonaltrimesh(false,52,15,zsu);

endfig;

Preprints for the 2004 Annual Meeting 103

L. N. Gonçalves

Figure 10: FEATPOST surface plot using the
macro hexagonaltrimesh.

One feature that merges 2D and 3D involves
what might be called “fat sticks”. A fat stick re-
sembles the Teflon magnets used to mix chemicals.
They have volume but can be drawn like a small
straight line segment stroked with a pencircle. Fat
sticks may be used to represent direction fields (uni-
tary vector fields without arrows). See figure 11 (the
code is skipped from now on).

Figure 11: FEATPOST direction field macro
director invisible was used to produce this
representation of the molecular structure of a
Smectic A liquid crystal.

Finally, it is important to remember that some
capabilities of FEATPOST, although usable, may be
considered “buggy” or only partially implemented.
These include the calculation of intersections among
polygons, as in figure 12, and the drawing of toruses,
as in figure 13. These two figures show “usable”
situations but their code is skipped.

FEATPOST has many macros: some are specif-
ically for physics diagrams, others may be useful for
general purposes, some do not fit in this article and,

Figure 12: Intersecting polygons drawn with the
macro sharpraytrace.

Figure 13: Final FEATPOST example containing
a smoothtorus and a rigorousdisc with a hole.
These macros may fail for some view points.

sadly, some are not anywhere documented. For in-
stance, the tools for producing animations are not
yet documented. (These tools are completely ex-
ternal to TEX: the control of an animation is done
with a Python script, and Ghostscript and netpbm

are used to produce MPEG videos.)

In summary, the collection of three-dimension-
al METAPOST software, such as the four reviewed
packages, is large and growing in many independent
directions. It constitutes an excellent resource for
those desiring to produce good diagrams.

6 Acknowledgements

Many people have contributed to make FEATPOST

what it is today. Perhaps it would have never come
into being without the early intervention of Jorge
Bárrios, providing access to his father’s computer.
Another fundamental moment happened when José
Esteves first spoke about METAPOST.

More recently, the very accurate criticism of
Cristian Barbarosie has significantly contributed to
the improvement of these macros. Jens Schwaiger
contributed new macros. Pedro Sebastião, João Di-
nis and Gonçalo Morais proposed challenging new
features. The authors of the other packages gra-
ciously reviewed the paper, and Karl Berry actually
entered new text into this document. They all have
my deep thanks.

104 Preprints for the 2004 Annual Meeting

The bigfoot Bundle for Critical Editions∗

David Kastrup
Kriemhildstr. 15

44793 Bochum

Germany

dak@gnu.org

Abstract

The LATEX package bigfoot and supporting packages solve many of today’s prob-
lems occurring in the contexts of single and multiple blocks of footnotes, and
more. The main application is with philological works and publications, but
simpler problems can be solved painlessly as well without exercising all of the
package’s complexities. For other problems not yet tackled in this area, a solid
framework is provided.

1 Introduction

Last year, the author was approached about creat-
ing the necessary LATEX style files for typesetting
a critical edition of the complete works of Ernst
Troeltsch1.

With the typical optimism2 that is customary
among programmers, the task was accepted. “Thus,
bigfoot was born” would be an exaggeration since
it only came into being after quite a few attempts
failed.3 The main reason for failure was the idea that
one might preprocess nested insertions in a way that
would make TEX’s own insertion splitting routines4

serve a useful purpose.
So let us concentrate on the present survivor

instead. Some of its features are due to the origi-
nal requirements, some of them are due to the au-
thor wanting to provide them in spite of not being
needed by the current project. I am grateful to TUG

for sponsoring some of those aspects that turn the
package into something more generally useful for the
TEX community.

2 Features

So what are the features that bigfoot provides?

• Multiple footnote apparatus5 are possible.6

∗ and a lot of other footnote applications

1 a theologist of the last century
2 read: mis-estimate of work and time 3 mostly because

of unmanageablea complexity 4 expletive deleted
5 An apparatus is one block of contiguous footnotes form-

ing a logical and physical unit. Separate apparatusb can be
independently broken to the next page.

6 Actually, manyfoot already provides this functionalityc

a Well, for me b Yes, this is the correct plural form.
c and is loaded by bigfoot

• Footnotes can be nested.7

• Footnotes are numbered in the order they ap-
pear on the page, and numbering may start
from 1† on each page. In each apparatus, the
footnotes are arranged in numerical order iden-
tical to page order. This does not sound excit-
ing at all until you consider the implications of
footnotes being nested: if the main text has
some footnote8 and then the publisher com-
ments the main text with a footnote,d the logi-
cal order of footnotes (in which they appear in
the source text) would have been to let foot-
note f appear before footnote d. The footnotes
instead will be reordered to page order.9

• Footnotes may contain \verbatim commands10

and similar, and they will just work as expected.
This is achieved in a manner similar to the
\footnote command of plain TEX.

• Footnotes can be broken across pages.11

but it fails to address a number of intricacies inherent to this
sort of setup, a few of which follow.

7 You can anchor footnotes for some apparatus in the
main texte.

† or whatever the first footnote symbol happened to be
8 such as shown in this example footnotef
9 The style file perpage has been extended with additional

functionality for reordering such numbers.
10 even stuff like \verb-\iffalse-
11 While this does not sound like something excitingly new,

it must be noted that TEX does not do a satisfactory job at
splitting insertions, the underlying mechanism for split foot-
notes. In particular, TEX only manages to find a split when

d This is a subsequent comment to the main text.
e or any apparatus preceding it on the page
f which happens to have a comment attached to it. Notice

that bigfoot will prefer to leave this smaller footnote block
intact, as breaking it will not help fitting the above footnote
block on the page.

Preprints for the 2004 Annual Meeting 105

David Kastrup

• When footnotes are broken across pages, the
color stack is maintained properly. Color is
handled in LATEX with the help of specials that
switch the color (and, in the case of dvips,
restore it afterwards with the help of a color
stack). Restarting the footnote on the next
page with the proper color is something that
has never worked in LATEX. Now it simply does.

• Footnotes may be set in a compact form in one
running paragraph.12

no material whatsoever is added to the page after the oc-
curence of the split footnote. This might include another
footnote in a different apparatus, or simply a line tied to the
current line with an infinite penalty, for example because of
a respective setting of \widowpenalty. In contrast, bigfoot
breaks footnotes properly in such circumstances, and it uses a
backtracking algorithm (with early pruning of branches that
can’t beat the current optimum) for finding the best split po-
sitions for several footnote apparatus in parallel. The fill level
of the page is taken into account as well as the costs of the
individual splits. A split footnote is penalized with a penalty
of 10000 (which is pretty similar to what TEX itself does when
dealing with footnotes), so that in general TEX will tend to
avoid splitting more than a single footnote whenever possible.
One complication is that if the parts broken to the next page
contain footnotes themselves, those have to be moved to the
next page completely and adapted to the numbering of foot-
notes therea. This rather intricate and complicated mecha-
nism leads to results that look simple and natural.

12 While manyfoot and fnpara also offer this arrangement,
bigfoot offers a superior solution in several respects:

• The line breaking can be chosen much more flexibly:
with appropriate customization, it is possible to fine-
tune quite well when and where stuff will be placed in
the same line, and when starting a new line will be pre-
ferred.

• In-paragraph footnotes can be broken across pages auto-
matically, just like normal footnotes. They will only be
broken after the last footnote in the block has started.

• Pages will not become over- or underfull because of
misestimating the size of in-paragraph footnotes. Also
the total width of such footnotes is not restricted to
\maxdimen (which sounds generous at something like 6m
or 19 ft, until you realize that a few pages of text suffice
to burst that limit, and a few pages of text are reached
easily with longer variants of the main text). While TEX
will accumulate boxes exceeding this size without prob-
lem, it panics at its own audacity if you actually ask
about the total width of the acquired material. While
one may still not have material exceeding a total verti-

cal size of \maxdimen accumulate in one footnote block,
one would usually need a few dozen pages for that, and
so this limitation is much less noisome than the corre-
sponding restriction on the horizontal size.

• The decision of whether to make a footnote in-
paragraph or standalone can be changed for each foot-
note apparatus at any time, including on mid-page. In
fact, you can make this decision for each footnote sepa-
rately. Since display math requires vertical mode foot-
notes, this is convenient.

a which can be completely different!

• Split footnotes will not get jumbled in the pres-
ence of floats. bigfoot is not afflicted by this
bug in LATEX’s output routine since it does not
delegate the task of splitting footnotes to TEX
in the first place. While the faulty output rou-
tine of LATEX may still jumble the order of foot-
notes in that particular case (when one footnote
gets held over as an insertion ‘floated’ at infinite
cost), bigfoot will sort the jumbled footnotes
back into order before processing them.

• Each footnote apparatus can have its own pri-
vate variant of \@makefntext and a few other
macros and parameters responsible for format-
ting a footnote block. The default is to use what
the class provides, but special versions can be
defined, for example,

\FootnoteSpecific{variants}%

\long\def\@makefntext#1{...

for the footnote block called “variants”.

3 Drawbacks

What about current drawbacks?

• ε-TEX is used throughout. After it became clear
that the implementation of the package would
not be possible without using some of ε-TEX’s
features, its features were extensively employed:
rewriting the package to get along without ε-
TEX would be very hard, even if you came up
with ideas for those cases where I could find
no other solution. Free TEX distributions have
come with ε-TEX for a long time by now (in
fact, ε-TEX is now the recommended engine for
LATEX, and actually used as the default in the
latest TEX Live), but proprietary variants may
lack ε-TEX support. The same holds for quite
a few Ω versions.

• The licence is not the LPPL, but the GPL. In
my book, I consider this an advantage: the
functionality of the package is quite important,
and it is in its infancy yet. I would not like
to encourage a market of proprietary offspring
directly competing with it. While with suffi-
cient financial incentive I might feel confident
enough to have the means to reimplement what-
ever noteworthy extension somebody else might
come up with, at the current time I prefer this
way of ensuring that the free development does
not fall behind and that there is no incentive to

• bigfoot will make a good-faith effort to adapt the nor-
mal footnote layout provided by the document class
with the \@makefnmark and \@makefntext macros to in-
paragraph footnotes.

106 Preprints for the 2004 Annual Meeting

The bigfoot Bundle for Critical Editions

turn to developers with no qualms about creat-
ing proprietary versions.

• bigfoot requires twice as many box registers13

as manyfoot: one set in the form of an insertion
for each footnote apparatus, one set as mere
boxes.

• It can’t handle more footnotes in a single block
per page than the group nesting limit of TEX,
and that is usually hardwired at 255.†

• Since it meddles considerably with the output
routine’s workings, interoperation with other
packages doing the same might be problematic.
Considerable effort has been spent on minimiz-
ing possibly bad interactions, but the results
might not always be satisfactory and, at the
very least, might depend on the load order of
packages.

• It slows things down. This is not much of a
concern, and usually the package is astonish-
ingly fast.

• The complexity of the package makes it more
likely for things to go wrong in new ways.14

4 Additional New Packages

The bundle provides some more packages: perpage
is used for the sort of renumbering games mentioned
before, and suffix is used for defining augmented
commands.

As an example of use for those packages we had
previously a few examples where numbers like 7‡

and 255§ were given footnotes, and in order not to
confuse this with powers as the following 66615 is in
danger of, we have switched to per-page numbering
of footnotes with symbols for that purpose. The
source code simply uses

like~7\footnote’{a lucky number}

namely a variant footnote command. How is that
achieved? Just with

13 Since ε-TEX has an ample supply of box registers (32767
instead of 256), this is not really much of an additional limita-
tion. If you find yourself running out of insertions, etex.sty
offers the \reserveinserts command.

† This limit seems sufficient at first glance, but one could
use the various mechanisms available in connection with
in-paragraph footnotes to make sure that a footnote will be
broken across the page at a point closely related to the main
text’s breakpoint (for example, if you are doing an interlin-
ear translation in a footnote). In that case, this limit might
become problematic.

14 Most of those problems should arise under requirements
that could not possibly be met without the package, so this
would be reason for improving rather than not using the pack-
age.

‡ a lucky number § well, almost as lucky
15 strange, yes?

\newcounter{footalt}

\def\thefootalt{\fnsymbol{footalt}}

\MakeSortedPerPage[2]{footalt}

\WithSuffix\def\footnotedefault’{%

\refstepcounter{footalt}%

\Footnote{\thefootalt}}

A new counter is created, its printed representation
is set to footnote symbols, the counter is made to
start from 2 on each page (since symbol 1¶ is a bit
ugly), and then a variant of \footnotedefault is
defined which will step the given counter and use it
as a footnote mark.16

That’s all. One can define several suffixes, the
resulting commands are robust17, and one can use
arguments and other stuff. For example,

\WithSuffix\long\def\footnotedefault

[#1]{#2}{...

would augment the macro \footnotedefault by a
variant accepting an optional argument.

5 Some Internals

5.1 Basic Operation

The package uses most of the interfaces of manyfoot
for its operation. While it uses TEX’s insertions for
managing the page content, the material collected
in those insertions is in a pretty raw state and its
size is always overestimated.18 The actual material
that goes onto the finished page is generated from
the insertions at \output time.

Material that is put into insertions is prewrap-
ped into boxes without intervening glue.19 The box
dimensions are also somewhat special: while the to-
tal height (height+depth) corresponds to the actual
size of the footnote, the depth contains a unique
id that identifies the last footnote in each box (of
which there usually is just one, unless we are deal-
ing with the remnants of an in-paragraph footnote
apparatus broken across pages). The width is set to
a sort key that is used for rearranging the various
footnotes into an order corresponding to their order
of appearance on the page.

¶ which is ∗

16 manyfoot defines a two-argument command \Footnote

that takes a footnote mark and corresponding footnote text.
17 as long as their suffixes are so as well
18 bigfoot simply sets each footnote, even those that

should be typeset with others in one block, separately in its
own paragraph for estimating its size, which should be a safe
upper limit for the size a footnote can take when set in a
paragraph with others.

19 That way, there is never a legal breakpoint in an inser-
tion.

Preprints for the 2004 Annual Meeting 107

David Kastrup

The boxes are sorted by unvboxing them and
then calling the comparatively simple sorting rou-
tine (a straight insertion sort):

\def\FN@sortlist{{%

\setbox\z@\lastbox

\ifvoid\z@ \else

\FN@sortlist \FN@sortlistii

\fi}}

\def\FN@sortlistii{%

\setbox\tw@\lastbox

\ifvoid\tw@\else

\ifdim\wd\tw@<\wd\z@

{\FN@sortlistii}%

\fi

\nointerlineskip \box\tw@

\fi

\nointerlineskip \box\z@}

and then all consecutive runs of hboxes are joined
into vboxes. The desirability of breaking between
two in-paragraph footnotes depends on their respec-
tive size, on whether this would save lines when
typesetting, on whether a footnote apparatus can
be shrunk by more than a certain factor in this
manner, and whether the ratio of allowable joints
between footnotes20 to the number of footnotes ex-
ceeds a certain ratio.21 The criteria are configurable
per apparatus or globally.

There are some footnotes where a vertical ar-
rangement is mandatory,22 and the footnote must
not be set into a hbox to start with. This is the
case, for example, for footnotes containing display
math. Placing a + sign before the opening brace
of the footnote text will achieve that, and similarly
a - sign can be used for switching in an otherwise
vertically arranged footnote apparatus to horizontal
arrangement.

bigfoot hooks into the output routine and does
its accounting work before the main output routine
gets a chance to get called. This work involves sort-
ing the various contributions to a single insertion,
joining together all in-paragraph footnotes into a
single paragraph, measuring the resulting boxes, and
gathering more material from the page in case that

20 where both footnotes around the breakpoint are consid-
ered potentially horizontal material

21 A footnote apparatus in which there are just few hori-
zontally arranged footnotes would appear inconsistent.

22 like footnotes containing

• list environments

• display math like
∞∑

n=1

(−1)n

n

= log
1

2

this produces an underfull box. Since the insertions
bigfoot uses are unsplittable, this will often lead
to an overfull box. In that case, the various foot-
note blocks get split to an optimum size before the
real output routine gets called, and if this results in
an underfull box again, more material gets called in
again.

5.2 Dissecting \@makefntext

Document classes implement the desired footnote
layout with the macro \@makefntext. This macro
receives one argument, the body of the footnote.
We’ll now discuss several problems we want to tackle
in the context of using \@makefntext for imple-
menting the layout prescribed by the class file.

Robust footnotes We want footnotes with ro-
bust arguments, like those of plain TEX, to forestall
complaints when \verb and its catcode mongering
cousins fail to work in footnotes. The trick is to
have the macro argument of the \footnote macro
not really be a macro argument, but the content of
an \hbox or \vbox command, and have subsequent
code do its work with \aftergroup, once the com-
mand finishes.

This means that we have to cut \@makefntext
into parts before and after its argument. It turns
out that cutting the part before it starts processing
its argument is rather easy:

\@makefntext \iffalse \fi

will do that. It executes and expands \@makefntext
until it comes to the point where it would process
its argument, which happens to be \iffalse, and
then kills the rest of \@makefntext. At least as long
as the argument #1 does not happen to be in itself
inside of a conditional, in which case bad things will
happen. Very bad things. But a pretty thorough
sampling of \@makefntext variants on TEX Live did
not turn up such code.

Much more problematic is getting hold of the
second part of \@makefntext. It turns out that
about 95% of the variations out there in different
class files will work with

\expandafter \iffalse \@makefntext \fi

which looks rather similar to the above. Unfortu-
nately, it is not quite equivalent, since in the upper
code, \@makefntext is cut into two once it has been
expanded up to its macro parameter, whereas in the
lower version it is cut into two before any parts of
it get expanded. If any of the closing braces that
follow #1 in the definition of \@makefntext happen
to belong to the argument of a macro starting before
#1, they will cause spurious closing groups.

108 Preprints for the 2004 Annual Meeting

The bigfoot Bundle for Critical Editions

Getting the closing part at the end of the foot-
note without any remaining macro braces is more
tricky, inefficient and error prone. One possibility
is starting another instance of \@makefntext in-
side of a box to be discarded later. Then as its
macro argument you use code that will repeatedly be
closing opened groups until the outer group level is
reached again and the box can be discarded. ε-TEX’s
grouping status macros (\currentgrouplevel and
\currentgrouptype) make it possible to know how
to close the current group and whether it is the last
one involved. After everything that has been opened
has been discarded again, the remaining tokens in
the input stream should form a perfect complement
to the tokens that the initial \iffalse trick has dis-
carded at the start of the footnote.

One other mechanism probably worth playing
with is the use of alignment templates, since they
provide a natural way of having TEX switch input
contexts across groups. The best approach in that
regard would seem to parse the content of the foot-
note within a \noalign group of a \valign, but
that still suffers from the problem that no automatic
discretionaries are generated for explicit hyphens.

But since most of the the \@makefntext vari-
ants out in the field are covered with the simple
variant (basically, this is the case for all definitions
that do not use #1 within a macro argument itself),
bigfoot for now has not added any of the more com-
plicated versions. The group discarding trick might
perhaps be made available with a separate package
option at a later time, if there is sufficient demand
for it.

But it may be easier in most cases simply to re-
write the culprits: after all, \@makefntext is rarely
complicated. Most notably, the \@makefntext of
the ltugboat class is so ridiculously contorted that
the automated analysis of it fails. (It has been re-
placed with an equivalent for this article.)

Using \@makefntext for ‘para’ footnotes is a
tricky feat: the ‘para’ footnote style sets all foot-
notes within one continuous running paragraph, a
manner of operation quite different from the orig-
inal intent of \@makefntext. Single footnotes are
first collected in horizontal mode, and at \output

time the relevant footnotes making it to the current
page are pasted together. This has several problems:
for one, \@makefntext will set paragraph break-
ing parameters. We need these at the time that
we assemble the footnotes into one paragraph. But
\@makefntext also generates the footnote mark, so
we need to call it for each footnote.

So even when we set \@thefnmark23 equal to
an empty string at footnote assembly time, the as-
sembled footnote mark will likely take up some addi-
tional space. This is not the end of our worries: the
formatting will be right for standard footnotes, but
not cater for ‘para’ footnotes. If we want to have a
reasonable looking turnout, here are the conditions
we have to meet:

1. At the beginning of the footnote block, or if
a footnote starts right after a line break, the
specified formatting should be used.

2. Within the line, we shall keep the spacing be-
tween footnote mark and footnote text correct.
However, most styles right-justify the footnote
mark within a box of fixed size. If we keep this
sort of formatting, we will end up with a large
space before short footnote marks, and a small
one before longer marks. Since the amount of
whitespace inside of a line should not be so large
as to cause unsightly white holes, nor so small
to make the footnote mark confused to be a
part of the preceding footnote, we want a fixed
spacing before the footnote mark.

The solution to these problems is to do a few mea-
surements: we measure the width that an empty
footnote mark would cause in the footnote box (and
start our assembled footnotes with a negative space
compensating that), and we typeset the footnote
mark once on its own with \@makefntext, fishing
with \unskip and \lastbox for the footnote mark
box and resetting it to its natural size (which will kill
the particular justification prevalent in the majority
of class files doing justification). The difference in
box size gets recorded separately until the time that
the footnote gets set, and then the interfootnote glue
is calculated accordingly.24

Maintaining the color stack is a particularly
unwholesome field of study.25

What is the color stack, anyway? LATEX’s color
package provides color selection commands that will
change the current text color until the end of the
group, where it will be restored.

The involved macros are

\color@begin@group is called at the start of each
‘movable’ box: material that does not necessar-
ily appear right away. Without color support

23 the mark as displayed in the footnote
24 A few classes work with \parshape or \hangindent, ei-

ther directly or with a list environment, and this is also
taken into consideration as far as possible.

25 The main philosophy for work on the color stack has
been summarized well by David Carlisle: “It’s not my fault.”

Preprints for the 2004 Annual Meeting 109

David Kastrup

loaded, this does nothing. With color support
loaded, it is usually equal to \begingroup.

\color@end@group is the corresponding macro at
the end of ‘movable’ boxen. Any color restora-
tion initiated with \aftergroup in the box will
happen right here, still within the scope of the
box, instead of outside where it would not move
with the box.

\set@color will be called for setting the current
color. It will also use \aftergroup in order to
insert a call to \reset@color when the group
ends.

\reset@color will restore the current color to what
it was before the current group.

How will the color be restored? We have two differ-
ent models:

dvips restores colors by making use of a color stack:
dvips can ‘push’ a new color onto the stack,
and pop the previous color back. Consequently,
\reset@color inserts a special that tells dvips

to pop the stack once.
pdftex instead restores colors by reinstating the

color stored in \current@color after closing
the group.26

It is clear that the pdftex model is insufficient to
even keep the color of the main text across page
breaks, since on the next page there is no special
after the page break that could switch back to the
text color after the page footer27 from the last page
and headers from the current page have been placed
with a default color.28

But in the context of footnotes, the problem is
severely exacerbated: a footnote can be broken right
in the middle of a sequence of color changes. The
technically sound solution would be to switch to a
different color stack for each footnote block. Since
dvips does not offer multiple color stacks (and pdftex

does not even offer a single one), we have to revert
to trickery.

At each color change, the complete state of the
color stack gets recorded in a mark. When the foot-
note is broken, we use the information in the mark
in order to unwind the color stack to the state on
the page before the footnote was entered. When
the footnote is continued on the next page, the un-
wound color stack is reinstated again. Whenever
\color@begin@group is called, the whole record-
ing and restoration business is stopped (since a new

26 Of course this means that if we are at the end of a mov-
able box, the restored color will be that at the time the box
was assembled, not at the time it was used.

27 and footnotes
28 Heiko Oberdiek’s pdfcolmk package tries to deal with

that particular problem.

context has been started), the record of the color
stack essentially restored to empty, and only re-
sumed when the corresponding group has ended.

In order to keep these proceedings fit for con-
sumption by the general public, the reader is re-
ferred to the actual code for further details.

6 Outlook

At the time this article was written, quite a few tasks
remained to be done. Further improvements in the
footnote breaking decisions and their scoring met-
rics are needed. Flushing footnotes out in the mid-
dle of the page for short successive works would be
nice. Amending footnotes with marginals (including
line numbers) in a manner consistent with the main
text would seem desirable. Additional footnote ar-
rangements apart from the existing basic two styles
should be easily implementable on top of the general
scoring and breaking mechanisms.

7 Conclusion

It is hoped and expected that this bundle will be-
come a basic building block for critical typesetting
applications. While there are other packages avail-
able for that purpose, bigfoot (with its compan-
ions) offers the following important features:

• It is completely layout-neutral: while most so-
lutions for critical typesetting are provided in
the form of document classes, bigfoot does not
make layout decisions but instead just uses the
layout provided by a base class.

• Footnote arrangement and balancing is vastly
superior to and more flexible than any of the
other available solutions.

• Color works.

• The interfaces for creating new functionality fo-
cused around footnotes are reasonably simple.

At the time this article was written, not all interfaces
have been cast into stone. However, bigfoot can
be mostly used as an upwards-compatible drop-in
replacement of manyfoot.

All that remains is to profusely apologize for the
quite inappropriate use29 of footnotes in this article
for illustrative purposes.

References

[1] http://sarovar.org/projects/bigfoot

(developer site and CVS instructions)

[2] CTAN:macros/latex/contrib/bigfoot

(released packages)

29 or rather abuse

110 Preprints for the 2004 Annual Meeting

µoνo~2πoλυ: Java-based Conversion of Monotonic to Polytonic Greek

Johannis Likos
ICT Consulting
Rusthollarintie 13 E 35
Helsinki 00910
Finland
likosjo@yahoo.com

Abstract

This paper presents a successfully tested method for the automatic conversion of
monotonic modern Greek texts into polytonic texts, applicable on any platform.
The method consists of combining various freely available technologies, which
have much better results than current commercially available solutions. The aim
of this presentation is to introduce a way of applying this method, in order to
convert thousands of digitally available single-accented modern Greek pages into
attractive artworks with multi-accented contents, which can be easily transferred
either to the Web or a TEX-friendly printer. We will discuss the preparatory and
postprocessing efforts, as well as the editing of syntax rulesets, which determine
the quality of the results. These rulesets are embedded in extendable tables,
functioning as flat databases.

1 Introduction

During the past centuries, Greek and Hellenic schol-
ars have introduced and refined polytonism (mul-
tiple accenting) in the written word for the pre-
cise pronounciation of ancient Greek. Since spoken
modern Greek is comparatively less complicated, the
Greek government has officially replaced polytonism
by monotonism (single accenting) for purposes of
simplification, especially in the educational system.
Also, Greek authors commonly use monotonism,
since it is so much simpler to produce.

Classical, polytonic, Greek has three accents
(acute, grave, and circumflex) and two breathings

(rough and smooth—equivalent to an initial ‘h’ and
lack thereof). Accents are lexically marked, but
can change based on other factors, such as clitics

(small, unstressed words that lean on another word
to form a prosodic word—a single word for accent
placement). In addition, two other symbols were
used: diaeresis (to indicate two vowels that are not a
diphthong) and iota subscript (a small iota that was
once part of a diphthong but subsequently became
silent).

Monotonic Greek retains only the acute accent,
which was usually, though not always, the same as
the classical acute. To make a graphic break with
the past, the new acute accent was written as a
new tonos glyph, a dot or a nearly vertical wedge,
although this was officially replaced by a regular
acute in 1986.

So, why bother with the complexities of poly-
tonism? The benefits are increased manuscript read-
ability and, even more important, reducing ambigu-
ity. Despite the simplification efforts and mandates,
the trend nowadays is back to the roots, namely to
polytonism. More and more publishers appreciate,
in addition to the content, the public impression of
the quality of the printed work.

This paper discusses an innovative and flexible
solution to polytonism with an open architecture,
enabling the automatic multiple accenting of exist-
ing monotonic Greek digital documents.

2 Terminology

In this article, we will use the terms polytonism

and multiple accenting interchangeably to mean the
extensive usage of spiritus lenis, spiritus asper, iota
subscript, acute, gravis and circumflex. Similarly,
we use the terms monotonism and single accenting

to mean the usage of simplified accenting rules in
Modern Greek documents.

3 Historic Linguistic Development

During the last four decades the printed Greek word
has undergone both minor and radical changes. Ele-
mentary school text during the late 1960s and early
1970s made Purified Greek (καθαρεύουσα) impera-
tive, by strict government law of the time. The mid-
1970s saw a chaotic transition period from Purified
Greek to Modern Greek (δηµοτικ�) with simplified

Preprints for the 2004 Annual Meeting 111

Johannis Likos

grammar, where some publications were printed
with multiple accenting, some with single accenting
and even some without any accenting at all!

Even after the government officially settled on
monotonism in the early 1980s, Greek publishers
were not able to switch immediately to the mono-
tonic system. During the last decade, many comput-
erized solutions have been invented for assistance in
typing monotonic Greek. Today, there is a trend to-
ward a mixture of simplified grammar with multiple
accenting, decorated with Ancient Greek phrases.
See table 1.

4 Polytonic Tools

There are two programs for Microsoft Word users,
namely TONISMOS by DATA-SOFT and AUTO-
MATOS POLUTONISTHS (academic and profes-
sional version) by MATZENTA. A third is the exper-
imental µoνo~2πoλυ, an open source project, which
is the subject of this discussion.

These solutions are independent. The major
difference between the commercial and open source
programs is the control of the intelligence, such as
logic, rule sets and integrated databases. In the
case of the commercial solutions, users depend on
the software houses; in the open source case, users
depend on their own abilities. See table 2.

There is no absolutely perfect tool for polyton-
ism, so the ultimate choice is of course up to users
themselves.

5 Open Source Concept

µoνo~2πoλυ implements a modular mechanism for
multiple accenting of single-accented Greek docu-
ments. See figure 1.

5.1 Architecture

The µoνo~2πoλυ architecture consists of (figure 2):

• methods: DocReader, DocWriter,

DBParser, Converter

• configuration file: *.cfg

• flat database: *.xml

• document type definition: *.dtd

• optional spreadsheet: *.csv, *.xls

5.2 Configuration

The plain text configuration file defines (gray arrows
in fig. 2) the necessary filenames and pathnames.
The µoνo~2πoλυ components read this during ini-
tialization to determine where to find the input files
and where to write the output files (by default, the
current working directory).

Figure 1: Overview of the overall multiple
accenting concept, which involves many external
tools.

5.3 Database Connectivity

The dotted arrows in the architecture figure (fig. 2)
show the connection between a CSV spreadsheet, a
Document Type Definition (DTD), the actual XML

flat database, and the database parser.

5.4 Input Prerequisites

During the conversion process, invisible special con-
trol codes for formatting features (superscript, bold,
etc.) make it difficult to coherently step through
paragraphs, sentences and words. Therefore, plain
text files serve best for polytonism input.

The DocReader component of µoνo~2πoλυ ex-
pects the source document to be in the ISO 5589-7

encoding, and to be written according to the Modern
Greek grammar, especially regarding the monotonic
accenting rules.

Assistance for monotonic accenting while typ-
ing Modern Greek documents is provided by Mi-
crosoft’s commercially bundled spellchecker, or any
downloadable Open Source spellchecker.

112 Preprints for the 2004 Annual Meeting

µoνo~2πoλυ: Java-based Conversion of Monotonic to Polytonic Greek

Table 1: Selected examples of Greek publications from the last four decades.
Date Publisher Author Subject/Title Language Remarks Example

1968 EKDOSEIS S. TIMOSHENKO >AntoqŸ purified polytonic translation
A. KAPABIA D.H. YOUNG tÀn <UlikÀn including gravis

1971 O.E.D.B. M. KATSIKAS GEWGRAFIA purified no dative at all and nĂ
ST> DHMOTIKOU iota subscript seldom used âpidiwqjĺ

1978 IDRUMA I. QASTAS bibl. Teqn. k. modern polytonic
EUGENIDOU >Epagg. LukeÐou without gravis

1980 self-published R. GRAIKOUSHS STOIQEIA modern acute used instead of tĺc
MHQANWN gravis in polytonic text, klÐsewc

some feminine singular
genitive in purified version

1982 self-published E.S.M.A. PRAKTIKA EJN. modern monotonic typewriter
AEROPORIKOU text style
SUNEDRIOU

1989 INTERBOOKS GR. SFAKIANOS EMPORIKH modern monotonic with neutral ektȯc
ALLHLOGRAFIA accent and acute apȯ tȯn

1998 PARATHRHTHS A. SUROPOULOS LATEX modern acute only accent tì tìpi
type in monotonic text

2003 A. FWTIERHS several authors Ź lèxh modern polytonic without gravis kaÐ Ćp> tì

Table 2: Comparison of polytonic tools.
TONISMOS AUTOMATOS µoνo~2πoλυ

POLUTONISTHS
Greek language support

Ancient yes yes later
Hellenistic yes yes later
Byzantine no no later
Church/Biblical/NT yes yes later
Purified yes yes later
Modern yes yes yes
Mixed (Ancient and Modern) selectable selectable fixed
Editing assistance no yes no
Database fixed fixed (binary), editable

(binary) editable exception list (XML)
Manual corrections interactively post-processed
Automatic hyphenation unknown yes external task
Protection hardlock ID no
File formats

Input Word Word (Win, Mac) ISO 5589-7 encoded
(Win, Mac) other Greek formats ASCII on any platform

Output Word Word (Win, Mac) ASCII (ISO 10646-1 encoded),
(Win, Mac) other Greek formats, HTML HTML (ISO 10646-1 encoded)

Unicode support yes yes yes

TEX-specific filters TeXto737.lex, no Writer~2LATEX
737toTeX.lex

Requirements Microsoft Word Microsoft Word JDK 1.4
Platforms

Microsoft Windows 95, 98, ME, 95, 98, ME 95, 98, ME
NT, 2000, XP NT, 2000, XP NT, 2000, XP

Apple Macintosh no no Mac OS 9, Mac OS X
Linux no no Mandrake, Red Hat, SuSE
Unix no no AIX, HP-UX, Sinix, Solaris
Availability immediately immediately under development
Distribution purchased license purchased license open source

5.5 Converter

The bold arrows in the architecture figure (fig. 2)
show the data exchange between the internal com-
ponents, the document reader, the database parser
and the document writer to the converter. The
conversion process does not include grammar anal-
ysis, since µoνo~2πoλυ expects that monotonic proof
reading has been done previously, with other tools.

6 External Interfaces

The output from µoνo~2πoλυ (DocWriter method)
is in the ISO 10646-1 encoding, in various formats,

which are then post-processed. The dashed arrows
in fig. 2 show the relationship between the external
files.

6.1 Web Usage

For background, these web pages discuss polytonic
Greek text and Unicode1 (UTF) fonts:

1 Concerning missing Greek characters and other lin-
guistic limitations in Unicode, see Guidelines and Sug-

gested Amendments to the Greek Unicode Tables by Yannis
Haralambous at the 21st International Unicode Conference

Preprints for the 2004 Annual Meeting 113

Johannis Likos

Figure 2: Overview of internal architecture, with
external interfaces to existing standards.

Figure 3: External creation of monotonic Greek
with any word processor (e.g., OpenOffice) using a
separate spellchecker (e.g., elspell).

• http://www.ellopos.net/elpenor/lessons/

lesson2.asp

• http://www.stoa.org/unicode/

• http://www.mythfolklore.net/aesopica/

aphthonius/1.htm

on May 2002 in Dublin, Ireland (http://omega.enstb.org/
yannis/pdf/amendments2.pdf).

Figure 4: Example of original monotonic input.

Using the direct HTML polytonic output from
µoνo~2πoλυ requires that the layout of the web page
be done in advance, since manually editing the nu-
meric Unicode codes in the *.html file is impractical
(see figure 5). Dynamic web pages created through
CGI scripts, PHP, etc. have not yet been tested.

Figure 5: Example of polytonic HTML output.

6.2 OpenOffice Usage

The ISO 10646-1 encoded polytonic output (fig. 6)
from µoνo~2πoλυ could be inserted into the OpenOf-
fice Writer software, since the newest version can
directly output polytonic Greek .pdf files. Un-
fortunately, the quality of the result leaves much
to be desired. Better results can be produced by
converting from Writer to LATEX and doing further
processing in the LATEX environment.

Figure 6: Example of polytonic output.

6.3 (LA)TEX Usage

The most likely scenario for (LA)TEX users is using
the Greek babel package, and adding the µoνo~2πoλυ
7-bit polytonic output text into the source .tex file.
See figures 7 and 8.

The 7-bit output from µoνo~2πoλυ could pre-
sumably also be inserted into .fo files, and pro-
cessed through PassiveTEX, but this has not yet
been tested. Likewise, the ISO 10646-1 output could
presumably be processed directly with Ω/Λ, but this
has not been tested, either.

114 Preprints for the 2004 Annual Meeting

µoνo~2πoλυ: Java-based Conversion of Monotonic to Polytonic Greek

Figure 7: Example of polytonic TEX output, either
from µoνo~2πoλυ or Writer2LATEX.

Figure 8: Polytonic PDF output from TEX.

7 Technologies Used in µoνo~2πoλυ

After some evaluation, we chose to focus on Java,
Unicode and XML, due to their flexibility in process-
ing non-Latin strings, obviously a critical require-
ment of µoνo~2πoλυ.

7.1 Programming Language

Two major reasons for choosing Java (J2SE) as the
implementation language of µoνo~2πoλυ were the
capabilities for handling XML and Unicode through
widely-available and well-documented libraries. The
Java SDK provides extremely useful international-
ization features, with the ability to easily manipu-
late string values and files containing wide charac-
ters.

In order to concentrate on µoνo~2πoλυ’s essen-
tial features, no graphical user interface has been
designed.

7.2 Character Set

The choice of Unicode/ISO 10646-1 for the character
set should be clear. It combines monotonic and
polytonic Greek letters, is known worldwide and
standardized on most platforms, and contains most
(though not all) variations of Greek vowels and

consonants, in the Greek and the Greek Extended
tables.2

For further information on writing polytonic
Greek text using Unicode, see http://www.stoa.

org/unicode/.

7.3 Text Parsing Libraries

Most helpful for the parsing of XML-based database
entries are the SAX and DOM Java libraries.

The following Java source code, taken from the
µoνo~2πoλυ class DBparse, serves to demonstrate
usage of SAX and DOM. The code counts and then
outputs the total amount of all available entries in
the XML database file.

import java.io.*;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;
import org.w3c.dom.*;
public class DBparse{
static Document document;
String warn="No XML database filename given...";

public static void main(String param[]){
if (param.length!=1){

System.out.println(warn);
System.exit(1);}

File mydbfile=new File(param[0]);
boolean load=mydbfile.canRead();
if (load){
try{

DocumentBuilderFactory fct
= DocumentBuilderFactory.newInstance();

DocumentBuilder builder
= fct.newDocumentBuilder();

document = builder.parse(mydbfile);}
catch (SAXParseException error){

System.out.println("\nParse error at line: "
+ error.getLineNumber() + " in file: "
+ error.getSystemId());

System.out.println("\n" + error.getMessage());}
catch (ParserConfigurationException pce)

{pce.printStackTrace();}
catch (IOException ioe){ioe.printStackTrace();}
catch (Throwable t){t.printStackTrace();}}

else{System.out.println("XML database missing!");}
String mytag=’\u03C3’+"";
NodeList taglist=document.getElementsByTagName(mytag);
int amount=taglist.getLength();
System.out.println("amount of entries:\n" + amount);}}

Notice particularly the fourth-last line, where mytag
is assigned ’\u03C3’, namely the character σ, used
as the search string.

8 Database Structure

The XML standard from the W3C has proven to
be a simpler choice for storing either monotonic or
polytonic Unicode text than the alternatives, such
as spreadsheets or even SQL databases. The quality
of the final polytonic result depends on the precision
of the XML content, where ambiguities have to

2 http://www.unicode.org/versions/Unicode4.0.0/

ch07.pdf

Preprints for the 2004 Annual Meeting 115

Johannis Likos

be marked with special symbols for manual post-
processing.

Currently, the entries of the basic database
consist of tags with parameters and values. The tag
name indicates the type of the expression: a single
character, a prefix, a suffix, a substring, a word or a
chain of words. The five parameters are as follows:

1. The monotonic ISO 5589-7 encoded source ex-
pression to be converted.

2. The Unicode output text.

3. A 7-bit output text for (LA)TEX usage with the
Greek babel package.

4. The equivalent numeric value according to the
Extended Greek Unicode table for HTML usage.

5. An explanatory comment or example, in case of
ambiguities or linguistic conflicts.

Here, I have built on the work of prior Greek
TEX packages, such as GreekTEX (K. Dryllerakis),
Scholar TEX (Y. Haralambous), and greektex (Y.
Moschovakis and G. Spiliotis), for techniques of
using the iota subscript, breathings and accents in
7-bit transliterated .tex source files.

In the following examples, note carefully the
different bases used: ’074 is octal, #8172 is decimal
and ‘03D1’ is hexadecimal.

8.1 Data Type Definition

The required basic Data Type Definition is cur-
rently located in the experimental namespace
xmlns:β = http://koti.welho.com/ilikos/TeX/

LaTeX/mono2poly/mono2poly.dtd. It contains the
following information:

<!ELEMENT b (s+)>

<!ELEMENT s (#PCDATA)>

<!ATTLIST s

m CDATA #REQUIRED

p CDATA #REQUIRED

t CDATA #REQUIRED

d CDATA #REQUIRED

x CDATA #REQUIRED>

Thus, we have one element, called β (βάση
δεδοµένων = database). It contains multiple element
sets, called σ (στοιχεØα συllαβ¨c = syllable data).
Each element set has, at present, five attributes,
namely µ for monotonic expressions, π for polytonic
expressions, τ for 7-bit (LA)TEX code, δ for HTML

code, and finally ξ for comments.
The DTD can be overridden by a local .dtd file,

which must be specified in the header of the .xml

database file; for example:

<!DOCTYPE b SYSTEM "my_own_mono2poly.dtd">

Both the .dtd and .xml must reside in the same
directory.

8.2 Data Entries

Here is an example database entry, showing the only
Greek capital consonant with spiritus asper:

<s

m="R"

p="‘R"

t="\char’074 R"

d="Ῥ"

x="‘Rìdoc"

></s>

The slash symbol indicates the closing element
tags in XML, while the backslash symbol is used
for (LA)TEX commands. Both appear in the .xml

database file.

8.3 Header and Body

Although not explicitly documented, exotic charac-
ters may be used in .dtd and .xml files as long as
the appropriate encoding is declared:
<?xml version="1.0" encoding="UTF-16"?>

The header should include other information as
well. Schematically:

<?xml version="1.0" encoding="UTF-16"?>

<!DOCTYPE b SYSTEM "mono2poly.dtd">

<!-- author: ... -->

<!-- affiliation: ... -->

<!-- creation date: ... -->

...

<!-- notes: ... -->

<s m="..." p=".." t=".." d=".." z=".."></s>

...

<s m="..." p=".." t=".." d=".." z=".."></s>

For quality assurance, after database creation
and after each update a validation and verification
test should be run, to detect XML syntax errors and
linguistic content mistakes.

This concept of the database as a lookup/map-
ping table allows differentiating between initial and
intermediate consonants. For example:

6̆ (03D0) ↔ b (03B2)
j (03D1) ↔ θ (03B8)
̺ (03F1) ↔ r (03C1)
f (03D5) ↔ φ (03C6)

Therefore, by updating the XML file, post-proc-
essing may be reduced. Experienced linguists may
wish to use different tools for the correcting and the
updating of the flat database. Rows with multiple
columns from spreadsheets can be inserted directly
into XML data files, as long as the columns are
sorted in the expected order.

116 Preprints for the 2004 Annual Meeting

µoνo~2πoλυ: Java-based Conversion of Monotonic to Polytonic Greek

8.4 Expression Types

In each database entry, there is one source expres-
sion, at least three target expressions, and possibly
one explanation. The ISO 5589-7 encoded source
expression and the first ISO 10646-1 encoded target
expression may be a:

• single uppercase or lowercase character with or
without spiritus and/or accent

• partial word, such as prefix, intermediate sylla-
ble, suffix

• complete word

• chain of combined words

• combination of partial word pairs, such as a
suffix followed by a prefix

• mixture of complete and partial words, such as
a complete word followed by a prefix or a suffix,
followed by a complete word

The rest of the target expressions represent
the same information as the first in other output
formats, namely for 7-bit Greek (LA)TEX and HTML

as well. The intelligence of the µoνo~2πoλυ system
currently lies in the database, so while creating and
editing entries, it is crucial to write them correctly.

8.5 Editing Tools

One of the most powerful Unicode editors is the
Java-based Simredo 3.x by Cleve Lendon, which
has a configurable keyboard layout, and is thus
suitable for this sort of task. The latest ver-
sion of Simredo, 3.4 at this writing, can be down-
loaded from http://www4.vc-net.ne.jp/∼klivo/

sim/simeng.htm, and installed on any platform sup-
porting JDK 1.4.1 from Sun. Simredo can be started
by typing java Simredo3 or perhaps java -jar

Simredo3.jar in the shell window (Linux) or in the
command window (Windows). Unicode/XML with
Simredo has been successfully tested on Windows
XP and on SuSE Linux 8.1 Professional Edition.

The author would be happy to assist in the
preparation of a polytonic Greek keymap file (.kmp)
for Simredo, but the manual may prove sufficient.
The creation of such a keymap file is easily done by
simply writing one line for each key sequence defi-
nition. For instance, given the sequence 2keys;AVA
using the desired Unicode character, or the equiv-
alent sequence 2keys;A\u1F0D with the big endian
hexadecimal value, one can produce an uppercase
alpha with spiritus asper and acute accent by pres-
sing the ; and A keys simultaneously. According
to the Simredo manual, other auxiliary keys such as
Alt can be combined with vowel keys, but not Ctrl.

Some other Unicode editors:

Figure 9: Another useful tool is a character
mapping table like this accessory on Windows XP,
which displays the shape and the 16-bit big endian
hexadecimal code of the selected character.

• For Windows: http://www.alanwood.net/

unicode/utilities editors.html.

• For Linux: http://www.unicodecharacter.

com/unicode/editors.html.

• For Mac OS: http://free.abracode.com/
sue/.

Unfortunately, XMLwriter and friends neither
support configurable keyboard layouts nor display
16-bit Unicode.

8.6 Polytonic Keyboard Drivers

Instant interactive multi-accenting while edit-
ing Greek documents is available either through
plug-ins for some Windows applications, such
as SC Unipad (http://www.unipad.org/main/)
and Antioch (http://www.users.dircon.co.uk/
∼hancock/antioch.htm), or with the help of ed-
itable keyboard mapping tables, such as the Sim-
redo Java program described above. Regrettably,
the Hellenic Linux User Group (HEL.L.U.G., http:
//www.hellug.gr and http://www.linux.gr) has
no recommendations for polytonic Greek keybord
support.

Whatever polytonic keyboard driver has been
installed and activated may be useful for new docu-
ments, but does not much help the author who is not
familiar with the complicated rules of polytonism!

Preprints for the 2004 Annual Meeting 117

Johannis Likos

Figure 10: Using a spreadsheet to produce a long
extendable list with five columns, which then
can be saved as a .csv file. Be careful with the
parametrization!

8.7 Auxiliary Tables

Preparation and periodic updates of auxiliary tables
can of course be done with any software support-
ing Unicode. Spreadsheets have the advantage of
putting the entries into cells row-by-row and thus
organizing the parameters by column. This may
prove easier than directly writing the XML file. See
figure 10.

A row in such a .csv file looks like this:
"P","<Ρ","\char’074 R","Ῥ","<Ρόδοc"

Of course it then must be re-shaped with element
and attribute tags to make an XML-syntax database
entry.

8.8 Viewing Tools

Users without any programming knowledge may
find it useful to open and inspect the header and
the body of the XML database before using it in
polytonic documents. Here is a procedure for doing
that.

First, set the Unicode font in the preferences
of the desired browser (fig. 11). These days, most
browsers support this, including Internet Explorer,
Konqueror, Netscape Navigator and Opera.

Then, select Unicode UTF-16 as the default
encoding (fig. 12). The browser can now detect
syntax errors, giving immediate feedback (fig. 13).

8.9 Priorization of Database Entries

Polytonic exceptions (e.g., οÖτε and ¹στε without
circumflex) and especially ambiguities (e.g., που →
ποÌ or πού, που̇ → ποÜ; πωc → π°c or πώc, πω̇c
→ πÀc) have the highest priority in the database,
then the special expressions, while the simple, casual
and obvious accented syllables or particles have the
lowest priority. In order to avoid mis-accented and

Figure 11: Choosing the Unicode font for viewing
in a browser.

Figure 12: Selecting UTF-16 for the default
encoding.

mis-spirited syllables as much as possible, entries
must be in the appropriate order.

For example, table 3 shows lexical rules defining
eight variations of the Greek interrogative pronoun
τί (= “which”) as a single monotonic expression:

• with and without neutral accent

• with and without Greek question mark

• standalone

• leading word in the sentence

• intermediate word in the sentence

• trailing word in the sentence

Database entries like these are needed to ac-
count for the variations shown in table 4. As a rough
analogy in English, it is as if table 3 shows variations
on “I”: Initial position (“I went to the store”); after

Figure 13: Example error message from browser.

118 Preprints for the 2004 Annual Meeting

µoνo~2πoλυ: Java-based Conversion of Monotonic to Polytonic Greek

Table 3: Eight variations of τί as a monotonic expression.
<!-- ârwthmatikàc ĆntwnumÐec -->

<s m="Ti;" p="TÐ;" t="T’i;" d="Τί;" x="TÐ;"> </s>

<s m="Ti " p="TÐ " t="T’i " d="Τί " x="TÐ lèc;"> </s>

<s m=" ti;" p=" tÐ;" t=" t’i;" d=" τί;" x="Ki> êgraye tÐ;"> </s>

<s m=" ti " p=" tÐ " t=" t’i " d=" τί " x="KaÈ tÐ êgraye;"> </s>

<s m="Ti̇;" p="TÐ;" t="T’i;" d="Τί;" x="TÐ;"> </s>

<s m="Ti̇ " p="TÐ " t="T’i " d="Τί " x="TÐ lèc;"> </s>

<s m=" ti̇;" p=" tÐ;" t=" t’i;" d=" τί;" x="Ki> êgraye tÐ;"> </s>

<s m=" ti̇ " p=" tÐ " t=" t’i " d=" τί " x="KaÈ tÐ êgraye;"> </s>

Table 4: Similar but unrelated syllables treated
differently.

Position Syllable Polytonic examples

leading τι-, Τι- τιµή, Τισσαφέρνηc
intermediate -τι- �δυνάτισµα
trailing -τι κάτι, πράγµατι

leading τι̇-, Τι̇- τίποτα, Τίγρηc
intermediate -τι̇- âκτίµηση
trailing -τι̇ γατί, ψωµί, τυρÈ

a verb (“What do I know?”); etc., and then table 4
shows that “I” isn’t always capitalized: “It looks
good” vs. “Can you see it?”

The above does not cover all cases related to
τί. The monotonic text γιατι̇ may be accented in
two different ways in polytonic Greek (namely, γιατÈ
and γιατί); additional entries would be required to
handle this.

9 Polytonic Printing Press

The author has found several Greek newspapers,
magazines, and books, including university presses,
using polytonic Greek:

• daily newspapers:

– H KAJHMERINH

– ESTIA

• monthly magazines:

– NEMECIS

• book publishers:

– EKDOTIKH AJHNWN

– KURIAKIDHS

– GEWGRIADHS

– PAPANIKOLAOU

– INDIKTOS

– GNWSH

– KALOFWLIAS

• academic, polytechnic and university presses:

– Academy of Athens

– Polytechnics of Athens

– University Publications of Crete

– University of Ioannina

– Democritian University of Thrace

• private educational organizations:

– KORELKO
– MWR̨ ÛTH

• others:

– Hellenic Parliament

– military press

– Orthodox Church

10 Testing

The following testing procedure was used for µoνo~2-
πoλυ development. The author worked on SuSE
Linux and Windows XP, but any platform (Linux,
Unix, Mac or Windows) should work as well, as long
the JDK is installed.

1. Visit any web site with rich Modern Greek con-
tent, for example, news sources such as http:

//www.pathfinder.gr.

2. Open a new document with a word processor
supporting spell checking of monotonic Greek.

3. Copy a long excerpt of continuous text from the
web site.

4. Paste the selected and copied text into the word
processor window.

5. Correct any misspelled words, but do not use
any style or font effects.

6. Save the document as plain ISO 5589-7 encoded
text file.

7. Process the document with µoνo~2πoλυ, as a
Java application from a console window.

8. Take the 7-bit TEX result and add it to the
LATEX template file in your favourite environ-
ment (LyX, Kile, MiKTEX, etc.).

Preprints for the 2004 Annual Meeting 119

Johannis Likos

9. Produce a .ps or a .pdf file and check the final
result with GSview or some other reader.

The results improve as the database is enriched.
However, some manual editing is inevitable, depend-
ing on the complexity of the document to be multi-
accented, because authors may mix Ancient Greek
phrases into Modern Greek sentences.

11 Future Developments

One important improvement would be to relocate
some of the intelligence to external script files, for
defining and modifying the polytonic grammar rule
sets.

Another avenue is to integrate µoνo~2πoλυ
with the source and data files of the open source
Writer2LATEX project (by Henrik Just, http://www.
hj-gym.dk/∼hj/writer2latex/). That would pro-
vide a reverse conversion, from UTF-16BE/LE en-
coded Greek documents into 7-bit (LA)TEX.

12 Related links

Here we list some further readings on the complexity
of Greek multiple accenting and related subjects.
First, these articles (mainly written in Greek) on
the importance of the spiritus lenis and especially of
the spiritus asper:

• http://www.typos.com.cy/nqcontent.cfm?

a id=4681

• http://www.kairatos.com.gr/polytoniko.

htm

• http://www.krassanakis.gr/tonos.htm

• http://www.mathisis.com/nqcontent.cfm?

a id=1767

Further general sources are the following:

• Ministry of National Education and Reli-
gion Affairs— http://www.ypepth.gr/en ec

home.htm

• Institute for Language and Speech Process-
ing — http://www.ilsp.gr

• http://www.ekivolos.gr

References

Blomqvist, J., Toivanen, A., Johdatus Uuden
testamentin Kreikkaan. Yliopistopaino: Helsinki
(1993), 15–25.

Bornemann, E., Risch, E., Griechische Gram-
matik. Verlag Moritz Diesterweg: Frankfurt a./M.
(1978), 1–25.

Deitsch, A., Czarnecki, D., Java Internationaliza-
tion. O’Reilly: Beijing, Cambridge, Köln, Paris,
Sebastopol, Taipei, Tokyo (2001), 171–198.

Harold, E.R., Java I/O. O’Reilly: Beijing, Cam-
bridge, Köln, Paris, Sebastopol, Taipei, Tokyo
(1999), 387-413

Kaegi, A., Bruhn, E., Griechische Schulgram-
matik. Verlag Weidmann: Zürich, Hildesheim
(1989), 2–10.

Dr.Maier, F., Weiss, M., Zeller, A., ORGANON
Grammatik I+II. Bayerischer Schulbuch-Verlag:
München, C.C. Buchners Verlag, Salzburg (1979),
1–12.

ΟÊκονόµου, Μ.Χ., GRAMMATIKH THS ARQ-
AIAS ELLHNIKHS. INSTITOUTO NEOELL-
HNIKWN SPOUDWN: Θεσσαlονίκη (1993), 12–
21.

Pakarinen, W., Kreikan kielioppi. Suomalaisen
Kirjallisuuden Seura: Helsinki (1993), 1–13.

Seeboerger-Weichselbaum, M., Java/XML. DAS

bhv TASCHENBUCH. verlag moderne industrie:
Bonn Landsberg (2002), 181–208.

Syropoulos, A., Tsolomitis, A., Sofroniou, N.,
Digital Typography Using LATEX. Springer Profes-
sional Computing, Springer-Verlag: Berlin, Hei-
delberg, New York (2003), 315–319.

Τσάρτζανοc, Α., GRAMMATIKH THS ARQA-
IAS ELLHNIKHS GLWSSHS. EKDOTIKOS
OIKOS ADELFWN KURIAKIDH: Θεσσαlονίκη,
(1993), 9–14.

Τσοlάκηc, Χρ. L., NEOELLHNIKH GRAM-
MATIKH. EKDOSEIS KWDIKAS, Θεσσα-
lονίκη: (1988), 28–35.

Dr. Wendt, H.F., Langenscheidts Praktisches
Lehrbuch Neugriechisch. Ein Standardwerk für
Anfänger, Langenscheidt: Berlin, München,
Wien, Zürich, New York (1993), 20–35.

120 Preprints for the 2004 Annual Meeting

Hyphenation Patterns for Ancient and Modern Greek

Dimitrios Filippou
Kato Gatzea

GR-385 00 Volos

Greece

dfilipp@hotmail.com

Abstract

Several files with Greek hyphenation patterns for TEX can be found on CTAN.
However, most of these patterns are for use with Modern Greek texts only. Some
of these patterns contain mistakes or are incomplete. Other patterns are suitable
only for some now-outdated “Greek TEX” packages. In 2000, after having exam-
ined the patterns that existed already, the author made new sets of hyphenation
patterns for typesetting Ancient and Modern Greek texts with the greek option
of the babel package or with Dryllerakis’ GreeKTEX package. Lately, these pat-
terns have found their way even into the ibycus package, which can be used with
the Thesaurus Linguae Graecae, and into Ω with the antomega package.

The new hyphenation patterns, while not exhaustive, do respect the gram-
matical and phonetic rules of three distinct Greek writing systems. In general, all
Greek words are hyphenated after a vowel and before a consonant. However, for
typesetting Ancient Greek texts, the hyphenation patterns follow the rules estab-
lished in 1939 by the Academy of Athens, which allow for breaking up compound
words between the last consonant of the first constituent word and the first letter
of the second constituent word, provided that the first constituent word has not
been changed by elision. For typesetting polytonic (multi-accent) Modern Greek
texts, the hyphenation rules distinguish between the nasal and the non-nasal
double consonants µπ, ντ, and γκ. In accordance with the latest Greek grammar
rules, in monotonic (uni-accent) Modern Greek texts, these double consonants
are not split.

1 Introduction

Before 2000, one could find on CTAN four different
files with hyphenation patterns for Modern Greek
only, namely

• rgrhyph.tex by Yannis Haralambous [1],

• grkhyphen.tex by Kostis Dryllerakis [2],

• gehyphen.tex by Yiannis Moschovakis [3], and

• grhyph.tex by Claudio Beccari [4].

The first two hyphenation-pattern files [1, 2] are
almost identical. The only difference is that the
patterns by Dryllerakis contain an \endinput com-
mand several lines before the end-of-file. (Probably,
Dryllerakis cut down Haralambous’ patterns to re-
duce memory usage, at a time when memory space
was still rather limited.) The patterns by Moscho-
vakis [3] are not only limited to Modern Greek, but
they have been “frozen” based on an obsolete mixed
US-Greek codepage for DOS and an equally obso-
lete LATEX 2.09. The end result is that some words

containing vowels with combined diacritical marks
(e.g., εÚδοc, θεÄ, etc.) are not hyphenated at all.

Haralambous’ patterns [1] do not provide for
the correct hyphenation of combinations of three or
more consonants. In addition, they do not allow
for the hyphenation of the nasal consonant combi-
nations µπ (mb), ντ (nd) and γκ (ng), which must
be split in polytonic Modern Greek. Haralambous’
patterns erroneously split the combination τµ and
prohibit the hyphenation of all final two-letter com-
binations for no apparent reason.

Beccari’s patterns [4], which are commonly used
with the greek option of babel, contain a number
of mistakes and are also incomplete. For example,
the word πυκνότητα is hyphenated as πυκ-νό-τη-τα.
According to some rules outlined further in this text,
that word should have been hyphenated as πυ-κνό-
τη-τα. Similar bad hyphenations include Êσv-θµόc (it
should be Ê-σθµόc), >Αlκ-µή-νη (it should be >Αl-κµή-
νη), etc. Beccari’s patterns also allow for separation
of the consonant combinations δµ, δν and τl. These

Preprints for the 2004 Annual Meeting 121

Dimitrios Filippou

combinations should not be split, because one can
find some Ancient Greek words that start with such
combinations (δµώc, δνοφερόc, τlηµωσύνη).

In 2000, while typesetting a large volume in
polytonic Modern Greek, the author of the present
article noticed the mishaps in Beccari’s hyphenation
patterns and the inadequacy of all other Greek hy-
phenation patterns. He noticed also that hyphen-
ation patterns for Ancient Greek, although they had
been discussed by Haralambous back in 1992 [5],
were not available at all in the public domain. That
was the incentive for the author to revise the exist-
ing hyphenation patterns for Modern Greek and to
provide in the public domain a set of hyphenation
patterns for Ancient Greek.

The author has already presented these pat-
terns in the newsletter of the Greek TEX Friends [6,
7], but this communication is the first (and long
overdue) presentation of the patterns to the global
TEX community. The patterns were created for the
1988 de facto Levy Greek encoding [8], which later
became the Local Greek (LGR) encoding.

2 Creation of Patterns

One way to produce hyphenation patterns is by us-
ing PATGEN [9]. PATGEN scans a given database with
hyphenated words and prepares a set of hyphenation
patterns based on observations the programme has
made. Another way of using PATGEN is modular [10]:
first one creates a limited set of hyphenated words,
then runs PATGEN on these words, checks the pro-
duced hyphenation patterns and expands the list of
hyphenated words with those words that were badly
hyphenated. The whole cycle create word list–run
PATGEN–check bad hyphenations–expand word list is
repeated until an acceptable set of hyphenation pat-
terns is produced. To the author’s knowledge, an
electronic dictionary with hyphenated words does
not exist for Greek. Given the excessive morphology
of the Greek words, even the modular use of PATGEN
would be a daunting task. A less time-consuming
effort is the translation of the simple grammatical
rules for the hyphenation of Greek into patterns for
the TEX machine as it has already been done [1, 3, 4].
This is the solution chosen also by the author of the
present article.

Each language has its rules and exceptions that
must be duly respected. It is not rare for one lan-
guage to have different hyphenation rules for differ-
ent dialects, or to have different hyphenation rules
for texts written in different eras. The best-known
example is English, where some words are hyphen-
ated differently depending on the continent (e.g.,

pre-face in British English and pref-ace in Ameri-
can English).

In the case of Greek, one has to distinguish—
grossly—between three “dialects” that demand sep-
arate sets of hyphenation patterns:

1. Ancient Greek and old-style literate Modern
Greek (katharevousa),

2. polytonic Modern Greek, and

3. monotonic Modern Greek.

Ancient Greek is considered essentially every text
that has been written in Greek from Homeric times
(8th century B.C.) to about the end of the Byzan-
tine Empire (15th century A.D.). Katharevousa (lit-
erally, the purifying) is a formal written language
(almost never spoken) conceived by Greek scholars
in the period of the Enlightenment as a way to pu-
rify Modern Greek from foreign influences. It was
used in Greek literature of the 19th and early 20th
century, and by the Greek state from its creation in
1827 until 1976. It is still used by the Greek Ortho-
dox Church.

Polytonic and monotonic Modern Greek are es-
sentially the same language. The only difference
is that polytonic (literally, multi-accent) Modern
Greek uses all accents, breathings and diacritics
of Ancient Greek and katharevousa, while mono-
tonic (literally, uni-accent) Modern Greek, which
was adopted officially in Greece in 1982, has just
one accent mark (much to the dismay of some clas-
sicists).

The hyphenation rules for Ancient Greek and
katharevousa have special provisos for compound
words [11]. The hyphenation rules for polytonic
Modern Greek make a distinction between nasal µπ,
ντ and γκ (pronounced as mb, nd and ng respec-
tively) and non-nasal µπ, ντ and γκ (pronounced as
b, d and g) [12]. The hyphenation rules for mono-
tonic Modern Greek do not distinguish between na-
sal and non-nasal µπ, ντ and γκ, nor do they make
any special demand for compound words [13].

2.1 Patterns for Modern Greek

2.1.1 Monotonic Texts

The grammatical rules for the hyphenation of mono-
tonic Modern Greek [13] and the corresponding hy-
phenation patterns are the following:

1. One consonant between two vowels always re-
mains together with the second vowel. This rule
can be seen slightly differently: a word is hy-
phened after each vowel, for example, τη-lε-ό-
ρα-ση. With the Levy character encoding [8],
the corresponding hyphenation patterns are: a1
e1 h1 i1 o1 u1 w1.

122 Preprints for the 2004 Annual Meeting

Hyphenation Patterns for Ancient and Modern Greek

2. Double vowels (diphthongs in Ancient Greek)
that are pronounced as one are not hyphenated.
Hence the double vowels αι, αί, αυ, etc. should
not be split apart. The corresponding hyphen-
ation patterns are: a2i a2’i a2u . . . u2i u2’i.
However, when the first vowel is accented, the
two vowels are to be pronounced separately and
they can be hyphenated. Hence, we include
some exceptions: ’a3u ’e3u ’o3u ’u3i.

3. Semi-vowels are not hyphenated. Vowels, sim-
ple and double, that are usually pronounced
as i are sometimes semi-vowels, i.e., they are
not pronounced totally separately from the pre-
ceding or following vowel. Hence some vowel
combinations involving semi-vowel sounds (j)
should not be split apart. The most common
semi-vowel combinations are: aj (νε-ράι-δα), ej
(ζεð-µπέ-κηc) and oj (κο-ρόι-δο) when they are
accented on the first vowel or when they are not
accented at all, and the combinations ja (δια-
βάζω), je (ε-lιέc) and jo (Μα-ριώ) when they
are accented on the second vowel or when they
are not accented at all. The resulting hyphen-
ation patterns are: a2h a2"i . . . i2a i2’a . . .
u2w u2’w. Some notable exceptions are: ’a3h

. . . ’u3w.
It is worth noting that there is an inherent

difficulty in distinguishing between vowels and
semi-vowels. Sometimes, two words are writ-
ten the same, but they are pronounced with or
without a semi-vowel, thus completely chang-
ing their meaning, e.g., δό-lια (the adjective
devious in feminine singular) and δό-lι-α (the
adverb deviously). Distinguishing between a
semi-vowel and a true vowel is very difficult and
requires textual analysis [14]. For the purpose
of TEX, all such suspicious semi-vowel combi-
nations are treated as semi-vowels. The end
result is that the word απόηχοc will be hyphen-
ated as α-πόη-χοc. But it is better seeing some
words hyphenated with one less syllable, than
seeing extra syllables in other words, e.g., βό-
η-θα Πα-να-γι-ά! (Apparently, Liang took the
same approach, disallowing some valid hyphen-
ations for the sake of forbidding definitely in-
valid ones [15].)

4. Single or double consonants at the end or the
beginning of a word do not constitute separate
syllables. The corresponding patterns are 4b.

4g. . . . 4y., .b4 .g4y4. To these pat-
terns, one must add some other ones for the
case of elision: 4b’’ 4g’’ . . . 4y’’.

5. Double consonants are hyphenated. The pat-
terns for this rule are: 4b1b 4g1g . . . 4q1q 4y1y.

6. Consonant combinations that cannot be found
at the beginning of Greek words must be split af-
ter the first consonant The patterns are: 4b1z

4b1j . . . 4y1f 4y1q. No distinction is made be-
tween nasal and non-nasal µπ (mb/b), ντ (nd/
d) and γκ (ng/g); these consonant combina-
tions are not to be split. However, some other
patterns are inserted to deal with some thorny
combinations of three or more consonants:

4r5g2m έρ-γµα (Anc. Gr.)
tz2m µάνα-τζµεντ
4r5j2m πορ-θµόc
. . .
4m5y2t lάµ-ψτε
4g1kt εlεγ-κτήc
4n1tz νεραν-τζιά
4n1ts βιοlον-τσέlο

More patterns could have been inserted here
to deal with non-Greek proper names with se-
quences of three or more consonants translit-
erated into Greek. For example, the pattern
4r5l2s could have been added to hyphenate
the transliterated name Carlson as Κάρ-lσον
and not as Κάρl-σον (the latter is not allowed
according to Greek grammar rules). However,
the number of such words is infinite and the
effort most likely worthless.

7. Two or more consonants at the end of a word do
not constitute separate syllables. Such endings
are mostly found in Ancient Greek words, or
words of non-Greek origin which have became
part of the Modern Greek vocabulary: 4kl.

(πι-νάκl) . . . 4nc. (él-µινc, Anc. Gr.) . . . Such
words can be found easily in reverse dictionaries
of Modern Greek [16].

8. Combinations of double consonants are sepa-
rated. These are some rare combinations of
non-nasal µπ with ντ and/or γκ in words of non-
Greek origin which are now part of the Modern
Greek vocabulary, e.g., 4mp1nt (ροµπ-ντεσάµπρ
= robe-de-chambre).

2.1.2 Polytonic Texts

The hyphenation rules that apply to monotonic
Modern Greek texts apply also to polytonic Modern
Greek texts. Of course, the patterns for polytonic
Modern Greek had to be expanded to include all
possible combinations of vowel and diacritic (breath-
ing, accent and/or iota subscript).

As mentioned above, polytonic Modern Greek
has another notable difference in hyphenation: The
nasal µπ, ντ and γκ, which are pronounced as mb,
nd and ng respectively, are to be separated. On the

Preprints for the 2004 Annual Meeting 123

Dimitrios Filippou

contrary the non-nasal µπ, ντ and γκ, which are pro-
nounced as b, d and g, must not be separated. In
general, µπ, ντ and γκ are nasal, thus the patterns:
4m1p, 4n1t, and 4g1k. These consonant combina-
tion are non-nasal when they follow another conso-
nant: �l-µπου-ρο, σεβ-ντάc, �ρ-γκό, etc., or in words
of non-Greek origin: >Ι-µπραήµ, µπι-ντέc, etc.

For the creation of hyphenation patterns, the
non-nasals µπ, ντ and γκ can be treated in the same
way Haralambous treated Ancient Greek compound
words [5]. Hence, with the help of Andriotis’ etymo-
logical dictionary [17], a list of exceptions was built
such as:

.giou5g2k Γιου-γκοσlάβοc
5g2krant. Βόlγκο-γκραντ
. . .
.qa5n2to χα-ντούµηc
.qa5n2tr χα-ντρÀν
.q’a5n2tr χά-ντρα

The list of all these exceptions is quite lengthy and
covers five printed pages of Eutypon [6].

2.2 Patterns for Ancient Greek

The grammatical rules for hyphenation of Ancient
Greek are mostly the same as those for polytonic
Modern Greek. Apparently, the Ancient Greeks hy-
phenated following the simple rule that a single con-
sonant between two vowels in one word belongs with
the second vowel: σο-φί-ζω, κα-θά-περ. The Ancient
Greeks also considered non-accented words as being
part of the following word [18]. For example, the
Ancients would hyphenate âκ τούτου as â-κτού-του.
Nonetheless, rules introduced by later scholars do
not allow for such extravagant hyphenations.

A very tricky rule introduced by modern schol-
ars states that “[Ancient Greek] compound words
divide at the point of union” [18]. This rule has
been extended to katharevousa and some typogra-
phers are still using it for polytonic Modern Greek
(most likely mistakenly). That rule also appears in
two variations. In one variation, which has been
adopted by The Chicago Manual of Style [19], com-
pound words are divided into their original parts ir-
respective of whether those original parts have been
modified or not. Therefore, one should hyphenate
στρατ-ηγόc (στρατäν + �γω), ∆ιόσv-κουροc (∆ιäc +
κοÜροc), etc. This is the rule followed by Haralam-
bous for the creation of Ancient Greek hyphenation
patterns for the commercial package ScholarTEX [5].
In another variation, adopted by some 19th-century
scholars [20] and the Academy of Athens [21], com-
pound words are divided into their original consti-
tuent words only when the first word has not lost its
last vowels by elision. According to that rule varia-

tion, the word στρατηγόc should be hyphenated as
στρα-τηγόc, because the first word (στρατόν) has
lost its final ον.

For the creation of hyphenation patterns for
Ancient Greek, the author chose to follow the rule
adopted by the Academy of Athens, because this
rule has also been adopted in the manuals used in
the Greek high schools and lycées [11]. Thus, with
the help of two widely-used dictionaries [22, 23], a
list of exceptions for compound words was incorpo-
rated into the list of patterns for Ancient Greek:

>adi’e2x1 �διέξ-οδοc
>adie2x1 �διεξ-όδου
>adu2s1’w �δυσ-ώπητοc
>adu2s1w �δυσ-ωπήτου
. . .
i2s1qili’akic. δισ-χιlιάκιc, etc.
i2s1muri’akic. δισ-µυριάκιc, etc.

This list is quite extensive; it includes 1555 patterns
and covers twenty-eight printed pages [24].

It is worth mentioning here that special care
has been taken not to confuse Ancient and Mod-
ern Greek exceptions for the division of consonants.
For example, there are no Ancient Greek words that
start with the Modern Greek double consonants µπ,
ντ, γκ, τζ and τσv. Therefore, all these combinations
are divided in Ancient Greek texts, with no excep-
tion. Also, combinations of stopped consonants (π,
β, φ / τ, δ, θ / κ, γ, χ) and the nasals µ or ν are not
divided [20].

3 Putting the Patterns to Work

The patterns have been archived in three files, which
have already found their way onto CTAN [24]:

• GRMhyph?.tex for monotonic Modern Greek,

• GRPhyph?.tex for polytonic Modern Greek, and

• GRAhyph?.tex for Ancient Greek.

(The ? is a number indicating the current version.)
The first two patterns for Modern Greek were

tested on a sample text created by the author, af-
ter building a new bplain format [6]. (Incidentally,
bplain is just an extension of Knuth’s plain format
for the use of several languages with babel.) The
result showed considerable improvement in compar-
ison to hyphenation results obtained by earlier set
of patterns (Table 1). With another bplain format,
the hyphenation patterns for Ancient Greek were
tested on five classic texts in their original:

• Herodotus, The Histories A, I–III;

• Xenophon, Anabasis A, 1.IV.11–13;

• Plutarch, Lives Themistocles, II.1–5;

• Strabo, Geography, 7.1.1–5; and

124 Preprints for the 2004 Annual Meeting

Hyphenation Patterns for Ancient and Modern Greek

Mistakes Misses
Patterns (%) (%)
rgrhyph.tex [1] 25 13
grhyph.tex [4] 3 16
GRPhyph.tex (this work) – 3

Table 1: Results from hyphenation tests with
three different sets (files) of hyphenation patterns
available in the public domain. Mistakes represent
erroneous hyphenations. Misses represent missed
hyphenation points.

• Lysias, Defence against a Charge for Taking
Bribes.

Surprisingly, TEX correctly hyphenated all Ancient
Greek words found in these texts, which cover about
seven printed pages [7, 24].

The author, however, does not believe that his
patterns are error-free. The Ancient Greek adjective
προσκοπ� has two different etymologies and mean-
ings: “looking out for” hyphenated as προ-σκοπή
(πρä + σκοπέω), or “an offence” hyphenated as
προσv-κοπή (πρäc+ κόποc). Unfortunately, TEX does
not do textual analysis and will not understand the
difference. Syllables with vowel synizesis may be er-
roneously split apart, e.g., χρυ-σέ-ú instead of χρυ-
σέú. Again, TEX does not do textual analysis and
it is impossible for a typesetting system to capture
such small details. Finally, the use of the same pat-
terns for typesetting a mixed Ancient and Modern
Greek text will bring a few surprises. For the pur-
pose of TEX, Ancient and Modern Greek are better
treated as two different \languages.

4 Creation of Patterns for ibycus and Ω

The patterns created by the author have already
been picked up by other people who are working
on other packages or systems that use different font
encodings. Using a Perl script, Apostolos Syropou-
los adapted the hyphenation patterns for monotonic
Modern Greek and Ancient Greek for usage with
Ω [25]. Using another Perl script, Peter Heslin [26]
adapted the hyphenation patterns for Ancient Greek
for the ibycus package, which can be used for type-
setting texts obtained from the Thesaurus Linguae
Graecae.

5 Conclusions

The hyphenation patterns created by the author for
Ancient and Modern Greek are indeed superior to
those previously found on CTAN. Nonetheless, the
patterns are presently under revision to eliminate
a few minor mistakes. The author anticipates that

the improved patterns will be released in CTAN very
soon—probably before the TUG 2004 conference.
Hopefully, these patterns will shortly after migrate
into ibycus and Ω, and they will become the default
Greek hyphenation patterns in whatever system/
package becomes the successor of TEX.

6 Acknowledgements

The author would like to thank Dr Spyros Konstan-
datos, former lecturer of Classics at McGill Univer-
sity, Montreal, Canada, for giving him access to his
collection of Greek dictionaries. The author would
like also to express his gratitude to Karl Berry (pres-
ident, TEX Users Group, USA), Baden Hughes (Uni-
versity of Melbourne, Australia) and Steve Peter
(TEX Users Group/Beech Stave Press, USA) for me-
ticulously reviewing and editing this paper.

References

[1] Y. Haralambous. rgrhyph.tex, vers. 1.1.
CTAN: fonts/greek/yannis, 1990.

[2] K. J. Dryllerakis. grkhyphen.tex,
GreeKTEX, vers. 4.0α. ftp://laotzu.doc.

ic.ac.uk/pub/tex, 1994.

[3] Y. Moschovakis. gehyphen.tex. CTAN:
fonts/greek/greektex, 1994.

[4] C. Beccari. grhyph.tex. CTAN: fonts/
greek/cb, 1997.

[5] Y. Haralambous. Hyphenation patterns
for Ancient Greek and Latin. TUGboat,
13:459–467, 1992.

[6] D. Filippou. Beltiomenoi kodikes syllabismou
polytonikon kai monotonikon keimenon gia
to TEX kai to LATEX (Improved hyphenation
patterns for polytonic and monotonic Modern
Greek texts typeset by TEX and LATEX).
Eutypon, (4):1–16, 2000. In Greek.

[7] D. Filippou. Kodikes sullabismou gia ten
stoicheiothesia archaion hellenikon keimenon
me to TEX kai to LATEX (Hyphenation
patterns for typesetting Ancient Greek texts
by TEX and LATEX). Eutypon, (5):7–15, 2000.

[8] S. Levy. Using Greek fonts with TEX.
TUGboat, 9:20–24, 1988.

[9] F. M. Liang, P. Breitenlohner, and K. Berry.
PATGEN— PATtern GENeration Program, vers.
2.3. CTAN: systems/knuth/unsupported/
texware/patgen.web, 1996.

[10] P. Sojka. Hyphenation on demand. TUGboat,
20:241–247, 1999.

[11] M. Oikonomou. Grammatike tes Archaias
Hellenikes (Grammar of Ancient Greek).

Preprints for the 2004 Annual Meeting 125

Dimitrios Filippou

Organismos Ekdoseos Didaktikon Biblion,
Athena, 5th edition, 1987. In Greek.

[12] M. Triantafyllides. Mikre Neoellenike
Grammatike (Abridged Modern Greek
Grammar). Aristoteleion Panepistemion
Thessalonikes, Hidryma Manole Triantafyllide,
Thessalonike, 2nd edition, 1975. In Greek.

[13] Neoellenike Grammatike (Modern Greek
Grammar). Organismos Ekdoseos Didaktikon
Biblion, Athena, 8th edition, 1985. In Greek.

[14] G. Orphanos, Ch. Tsalides, and
A. Iordanidou. Hoi hellenoglossoi hypologistes
emathan na syllabizoun? (Have the
Greek-speaking computers learned how to
hyphenate?). In Praktika tes 23es Synanteses
Ergasias tou Tomea Glossologias, pages 1–8,
Thessalonike, 2002. Aristoteleio Panepistemio
Thessalonikes. In Greek.

[15] F. M. Liang. Hy-phen-a-tion by Com-put-er.
PhD thesis, Department of Computer Science,
Stanford University, 1983.

[16] G. Kourmoulakes. Antistrophon Lexikon
tes Neas Hellenikes (Reverse Dictionary of
Modern Greek). Athenai, 1967. In Greek.

[17] N. P. Andriotes. Etymologiko Lexiko tes
Koines Neoellenikes (Etymological Dictionary
of Common Modern Greek). Aristoteleion
Panepistemion Thessalonikes, Hidryma
Manole Triantafyllide, Thessalonike, 1967. In
Greek.

[18] H. W. Smyth. Greek Grammar. Harvard
University Press, Cambridge, Massachusetts,
USA, 1956. Revised by G. M. Messing.

[19] The Chicago Manual of Style. The University
of Chicago Press, Chicago and London, 1982.

[20] W. W. Goodwin. A Greek Grammar. Ginn
and Company, Boston, 1892.

[21] I. Kallitsounakes. Orthographikon diagramma
tes Akademias Athenon (The Academy of
Athens Dictation Diagramm). Praktika tes
Akademias Athenon, 14, 1939. In Greek.

[22] H. G. Liddell and R. Scott. A Greek-English
Lexicon. Oxford University Press, Clarendon
Press, Oxford, 1968.

[23] I. Dr. Stamatakos. Lexikon tes Archaias
Hellenikes Glosses (Dictionary of the Ancient
Greek Language). Ekdotikos Organismos “O
Phoinix” EPE, Athenai, 1972.

[24] D. Filippou. CTAN: fonts/greek/
package-babel/hyphenation/filippou,
2000.

[25] A. Kryukov. ANTOMEGA language support
package, vers. 0.7. CTAN: systems/omega/
contrib/antomega/, 2003.

[26] P. Heslin. CTAN: fonts/greek/
package-babel/ibycus-babel/, 2003.

126 Preprints for the 2004 Annual Meeting

The mayan Package and Fonts

Pablo Rosell-González
Facultad de Ciencias

Universidad Nacional Autónoma de México

pablo@ciencias.unam.mx

Abstract

The Mayans developed a complete positional numeral system. This fact facilitates
calculation, particularly adding and subtracting. Their number system was a
vigesimal (base 20) system, consisting of three different symbols: a dot which
represents ‘one’, a horizontal line which represents ‘five’, and a cacao seed or
stylized sea shell representing ‘zero’. Any number between 0 and 19 can be
represented with these symbols, for example, 12 is represented as two horizontal
lines, one above the other, and two dots on top of them.

In this paper I will present the mayan.sty package for typesetting Mayan
numbers, as well as the mayan*.mf METAFONT fonts and their PostScript Type 1
variants.

The mayan package allows the user to generate Mayan numbers by simply
invoking, e.g., \mayan{num} which in any display math environment will typeset
the number in a vertical stack using large symbols, while in paragraph mode will
separate each level with a diagonal using adequate size symbols depending on the
text font size.

Optional arguments are available for boxing the numbers when stacked ver-
tically, writing the numbers in “vertical style” inside paragraphs, and writing the
Arabic values beside each position.

1 Introduction

The ancient Mayan civilization developed sophisti-
cated knowledge in sciences, particularly astronomy
and mathematics. They adopted the numeral sys-
tem from the Olmecs, a vigesimal (base 20) posi-
tional system, which includes a special symbol— for
some a cacao seed, for others a stylized sea shell—
representing zero, primarily used for avoiding ambi-
guity when a position has no value. (Compare with
the Babylonian numeral system, see [4].)

This discovery (or invention) is of transcenden-
tal importance, because it allowed them to make
complex calculations needed for the development of
very advanced astronomical issues. They developed
very precise solar and lunar calendars, and were able
to predict the planetary positions, particularly the
position of Venus, which was very important in their
religion.

One of the four surviving Mayan codices, the
Dresden Codex, is of special interest. It contains as-
tronomical calculations of great accuracy concerning
eclipse predictions and the position of Venus. Fig-
ure 1 shows fragments from page 24 of the Dresden
Codex.

It can be seen that the ‘zero’ symbol is rep-
resented with different decorations. An important
future project is to create more fonts including dif-
ferent designs for ‘zero’ and an implementation that
allows a pseudo-random choice of them.

Part of the motivation for creating this package
and fonts is that the Mayan numeral system is part
of the curriculum in México and other Latin Amer-
ican countries when positional systems are studied,
and there are no tools for generating them.

On the other hand, when the mayancodex and
mayanstela packages are finished, they could be used
in conjunction with Apostolos Syropoulos’ epiolmec

and similar packages and fonts for archaeological
purposes.

2 The Mayan Numeral System

Given any integer b > 1 as a base, a complete po-

sitional number system consists of b symbols that
represent the values 0, 1, . . . , b−1 and any linear ar-
rangement where the first entry stands for b0, the
second for b1, and in general, entry n stands for
bn−1.

Preprints for the 2004 Annual Meeting 127

Pablo Rosell-González

Figure 1: Fragments of page 24 of the Dresden
Codex. The numbers as typically used are
highlighted.

This arrangement allows us to uniquely express
any number in any given base, except for the sym-
bols used and the arrangement direction chosen. For
example, if the direction of the arrangement is from
left to right, the number s0s1 . . . sn where si takes
any value from 0 to b − 1 represents the number
obtained by

∑n

i=0
si · b

i.
In our decimal system, the arrangement goes

from right to left, thus, any number is written as
snsn−1 . . . s2s1s0, where si ∈ 0, . . . , 9, and i is the
entry of the arrangement. For example, 876 repre-
sents the sum of 6 · 100 plus 7 · 101 plus 8 · 102.

The Mayans chose 20 as the base of their nu-
meral system, probably because their solar calendar
was divided in 18 months of 20 days each, plus a five
day period devoted to their infra-world festivities.

They used a dot to represent the unit and a
horizontal bar to represent 5 units. The ‘zero’ was
represented by a stylized shell and the 19 positive
numbers were built according to the following rules:

1. There should be no more than four dots. (Five
dots convert in a bar).

2. The dots are written above the bars.

3. The arrangement direction is vertical, from bot-
tom to top.

From (1) and (2) we obtain, without ambiguity, the
20 required symbols:

0 ✵ 1 ✶ 2 ✷ 3 ✸ 4 ✹
5 ✺ 6 ✻ 7 ✼ 8 ✽ 9 ✾

10 ❆ 11 ❇ 12 ❈ 13 ❉ 14 ❊
15 ❋ 16 ● 17 ❍ 18 ■ 19 ❏

Since the arrangement is vertical (rule 3), num-
bers greater than 19 are stacked. For example:

✸

✶

❊
which stands for 14 · 200 + 1 · 201 + 3 · 202 = 1234.

It is worth noticing that each Mayan “digit” is
built upon its predecessor. This allows us to add
Mayan numbers without being conscious of which
numbers they represent if we merely gather the re-
spective levels and follow the rules mentioned above,
along with the following:

4. Four bars at any level converts into a zero in
the same level and a dot in the next.

For example:

✷

❈
+
✸

❏
=
✻

❇
where, for the bottom level, we only have to notice
that by “passing” one dot of the left number to the
right, and applying (4) we are done. The next level
just consists of gathering 6 dots which converts into
a bar (rule 1) and a dot above it (rule 2).

Which are the actual values of each of the above
numbers? It doesn’t matter!

In other words, the symbols that represent each
“digit” are actually the value of the digit in terms
of bars and dots, and not an abstract glyph— in
contrast to our system.

Thus, this should be considered as an alterna-
tive method for teaching the concept of adding at
the earliest stages of education. This way the chil-
dren do not have to “translate” a symbol into a set
that is in bijection with the number that the symbol

128 Preprints for the 2004 Annual Meeting

The mayan Package and Fonts

represents (usually their fingers), but rather have it
already written.

3 The mayan Package

The mayan.sty style file provides two relevant fea-
tures: a base 10 to base 20 integer converter; and
macros for different style layouts. When the user
invokes \mayan[opts]{num}, the package performs
two main tasks:

1. Convert num10 to num20.

2. Depending on the context in which it is invoked,
and the given optional arguments, call the re-
quired fonts and macros to display the result.

3.1 The Base 20 Converter

The classic method for converting num10 to base 20
is to recursively divide the number by 20 and keep
the remainder. This is not useful because the num-
ber thus obtained would be written backwards. For
example, let num10 = 5246, then

5246 = 20 · 262 + 6

262 = 20 · 13 + 2

13 = 20 · 0 + 13

so 5246 = 6 · 200 + 2 · 201 + 13 · 202 but this way
(without reversing the result) it would be printed as
6, 2, 13.

So, a different approach is used. We obtain p,
the maximum power of 20 that is less than the given
number, and divide it by 20p. Print the result and
keep the remainder. Apply this method recursively,
until the remainder is less than 20. For example,

5246 ÷ 202 = 262 + 13

262 ÷ 20 = 2 + 6.

This time we obtain 5246 = 13·202+2·20+6, which
will be printed in the correct order.

The only tricky part is printing the middle po-
sitional zeros. For example, consider the number
320001 = 2 · 204 + 1 · 200. The problem is solved
by performing a subroutine which compares the re-
mainder (r) with 20p−1. If 20p−1/r < 20 do nothing;
else print a zero and divide 20p−1 by 20 to obtain
20p−2, and repeat until 20p−n/r < 20.

This approach is preferred because it avoids the
need for creating extra macros to keep and then re-
verse the result. Instead we print the partial results
‘on the fly’.

3.2 Layouts

The command \mayan is aware of the context from
which it is invoked, i.e., it will display the Mayan
number horizontally and at the same font size if in-

voked inside a paragraph, or vertically and in ‘dis-
play’ size if invoked within a display math environ-
ment (see Figure 2).

As well as the default layout, \mayan offers the
following optional arguments:

a Write the Arabic value to the right of each posi-
tion. This option is valid only when displaying
the number in vertical style. It is useful for
explaining positional number systems in text-
books.

b Display the number inside boxes, one for each po-
sition. Created for the same purpose as option
a, this option is useful for emphasizing the rel-
ative values of each “digit”.

h Forces horizontal style, even in display mode.

v Forces vertical style, even in horizontal mode.

Optional arguments can be given in any order.

4 The Fonts

One font family, mayanschem, is currently imple-
mented for use in mayan, which offers simple bars
and dots drawings, as well as a simple zero, mainly
designed for scholarly use. These glyphs have been
shown throughout the present paper.

Two more families are planned for the near fu-
ture: mayancodex for “handwriting” imitating the
Dresden Codex, and mayanstela for “engraved” de-
signs mimicking stelae (engraved stone and stucco),
like those found in Palenque and Tikal. Both will
also include diverse designs for the zero found in
the codices and in stelae. The user will be able
to choose specific zero designs or have the system
pseudo-randomly to choose a design.

5 A Complete Example

Figure 2 shows the output for the following code:

1 \begin{equation}

2 \mayan{5246} + \mayan{3556}

3 = \mayan{8802}

4 \end{equation}

5 since \mayan{5246} equals 5246 and

6 \mayan{3556} equals 3556, as shown below:

7 \begin{equation}

8 \mayan[ab]{5246} + \mayan[ab]{3556}

9 = \mayan[ba]{8802}

10 \end{equation}

11 {\large then $5246+3556=8802$ is

12 represented as \mayan{8802}}

Lines 1–4 show a displayed equation. Lines 5–6 show
text in standard layout, while lines 11–12 are \large
text. Notice that the \mayan macro is invoked in the
same way, no matter if math or text mode, and is
aware of font size.

Preprints for the 2004 Annual Meeting 129

Pablo Rosell-González

�

�

�

+
�

�

�

=

�

�

�

�

(1)

since �/�/� equals 5246 and �/�/� equals 3556, as shown below:

� 13× 20
2

� 2× 20
1

� 6× 20
0

+
� 8 × 20

2

� 17 × 20
1

� 16 × 20
0

=

� 1× 20
3

� 2× 20
2

� 0× 20
1

� 2× 20
0

(2)

then 5246 + 3556 = 8802 is represented as �/�/�/�

Figure 2: An example showing different layouts for mayan.

Lines 7–10 show the use of \mayan with optional
parameters a and b.

References

[1] M. Goossens, F. Mittelbach, A. Samarin, The

LATEX Companion, Addison-Wesley, 1994.

[2] D. E. Knuth, The METAFONTbook, Addison-
Wesley, 2000.

[3] D. E. Knuth, The TEXbook, Addison-Wesley,
2000.

[4] O. Ore, Number Theory and Its History, Dover,
1988.

[5] J. E. S. Thompson, Códice de Dresde. Un co-

mentario al Códice de Dresde. Libro de jeroglifos

mayas, FCE, México, 1988.

130 Preprints for the 2004 Annual Meeting

Using LATEX to Typeset a Marāt.h̄ı-English Dictionary

Manasi Athale and Rahul Athale
Research Institute for Symbolic Computation

Johannes Kepler University

Linz

Austria

manasi,athale@risc.uni-linz.ac.at

Abstract

We are using LATEX to typeset an old Marāt.h̄ı-English dictionary, dated 1857.
Marāt.h̄ı is the official language of Mahārāshtra, a western state of India. Marāt.h̄ı
(mrAWF) is written using the Devanāgar̄ı script. The printed edition of the dic-

tionary contains approximately 1000 Royal Quarto size (91

2

′′

× 12 2

3

′′

) pages with
around 60,000 words. The roots of the words come from many languages in-
cluding Sanskrit, Arabic and Persian. Therefore the original dictionary contains
at least three different scripts along with many esoteric punctuation marks and
symbols that are not used nowadays.

We have finished typesetting 100 pages of the original dictionary. We present
our experiences in typesetting this long work involving Devanāgar̄ı and Roman
script. For typesetting in Devanāgar̄ı script we used the devnag package. We have
not yet added the roots in other scripts but that extension can be achieved with
the help of ArabTEX. We want to publish the dictionary in electronic format, so
we generated output in pdf format using pdfLATEX. The bookmarks and cross-
references make navigation easy. In the future it would be possible to design the
old punctuation marks and symbols with the help of METAFONT.

1 Introduction

Marāt.h̄ı is a language spoken in the Western part of
India, and it is the official language of Mahārāshtra
state. It is the mother tongue of more than 50 mil-
lion people. It is written in the Devanāgar̄ı script,
which is also used for writing Hindi, the national lan-
guage of India, and Sanskrit. The script is written
from left to right. A consonant and vowel are com-
bined together to get a syllable, in some cases conso-
nants can be combined together to get conjuncts or
ligatures. While combining the vowel and a conso-
nant one might have to go to the left of the current
character—which is a big problem for a typesetting
program.

We are typesetting a Marāt.h̄ı-English dictio-
nary compiled by J. T. Molesworth and published
in 1857. The dictionary is old so there is no prob-
lem about copyright. This will be the first Marāt.h̄ı-
English dictionary in an electronic format.

2 Devanāgar̄ı Script

There are 34 consonants, 12 vowels, and 2 vowel-
like sounds in Marāt.h̄ı. Table 1 gives the conso-
nants along with some common English words to

illustrate the sounds. In some cases, there is no ex-
act equivalent English sound, and we give those with
standard philological transliteration. The h in this
table designates aspiration, and a dot under a con-
sonant designates retroflexion. Although Hindi and
Marāt.h̄ı use the same Devanāgar̄ı script, the con-
sonant ›, which is used in Marāt.h̄ı is not used in
Hindi. Similarly some characters used in Sanskrit
are not used in Marāt.h̄ı. All the consonants have
one inherent vowel a (a), and in order to write the
consonant itself without the vowel, a special “can-
cellation” character (^) called virāma, must be used.
For example, s , is ŝ + a , where a is a vowel.

Table 2 lists the vowels and the two vowel-like
sounds. The first two rows give the vowels and the
last row gives the vowel-like sounds, called anuswāra

and visarga, respectively. In general, the vowels are
paired with one member short, the other long. For
ff, make the r into a syllable by itself.

A vowel is added to a consonant to produce
a syllable, for example all the consonants written
above already have the vowel a» Suppose we want
to get the sound, Sarah, with a long a. We add the
second vowel aA to ŝ to get sA , where we can see a
bar added behind the consonant s»

Preprints for the 2004 Annual Meeting 131

Manasi Athale and Rahul Athale

k K g G R
car kh go gh nasal
c C j J 

chair cch jail zebra nasal
V W X Y Z
t. t.h d. d. h n.
t T d D n

Tehran th dark dh new
p P b B m

pair f ail bat bh man
y r l v

yellow road love way
f q s h ›

share s. sun happy

Table 1: Devanāgar̄ı consonants.

a aA i I u U
about car sit seat put root
ff ‰ e ẽ ao aO

under bottle say by road loud
a\ a,

Table 2: Devanāgar̄ı vowels.

Now to write sit we add the third vowel i to
ŝ , and here it gets difficult, because although the
i is pronounced after the s, it is written before the
consonant. We get Es , where a bar is added before
the character s»

Syllables can even be formed using more than
one consonant and a vowel. For example, d̂EvtFyA ,
here we add d̂ , v̂ and i» It can also be written as
EŠtFyA» There are many such variations when two or
more consonants are combined, and some conjunct
characters look nothing like their constituent parts.
For example, r or r is written in four different ways
depending on the other consonant in the conjunc-
tion.

The first vowel-like sound, anuswāra, is the
nasal consonant at the end of each of the first five
consonant rows in the consonant table. For exam-
ple, g\gA (Ganges), here the “ \” on the first charac-
ter is the anuswāra but it is pronounced as the nasal
sound in the row of the next character, which is gA»
The sound is like R» Visarga is more or less a very
brief aspiration following the inherent vowel (and
for this reason it is usually written h. in philological
transcription).

3 Problems

We tried many approaches before choosing LATEX.
Scanning the pages was out of question as the prin-
ted quality is very poor. Also many of the consonant

conjuncts are written in a different way nowadays,
so it would be difficult for the average modern reader
to decipher the old dictionary. There are some web
sites that have dictionaries in two scripts using Uni-
code. But in many cases it does not show the correct
output, and it is difficult to find suitable viewers.
We thank referees for mentioning an XML approach,
but we did not try that. We also tried Omega, but
there was hardly any information available when we
started our work more than two years ago and also
the setup was very difficult.

The first problem was having two scripts in the
text, and typesetting it such that both scripts mesh
well. Molesworth uses Marāt.h̄ı words to explain the
concepts so Devanāgar̄ı script text appears also in
the meaning. Also there are couplets of a poem in
places to explain the usage. Many Marāt.h̄ı words
have roots in Sanskrit, Hindusthani, Arabic and Per-
sian. Arabic, Persian, and the Urdu variant of Hin-
dusthani are written using the Arabic script, which
is the third script used in the dictionary. In Marāt.h̄ı,
a word is spoken—and also written—in a slightly
different way depending on the region of the publi-
cation. Therefore in the dictionary, the most used
form usually has the meaning listed for it, and all
other forms have a note pointing to the most used
form. This requires cross-referencing for faster use.

The dictionary has a long preface giving the de-
tails of how the words were chosen, which meanings
were added, and so on. It contains different sym-
bols and punctuation marks. Also in the meaning
of some words, symbols are used to show the short
form used during that period, which is obsolete now.

The printed dictionary is heavy, so carrying it
everywhere is out of question. We wanted to give
the user the possibility to carry the dictionary on
a compact disc or computer. Therefore the next
question was, which is the most user-friendly and/
or popular output format?

4 Solution

In a single word: pdfLATEX. We mainly used two
packages to do the typesetting: lexikon for dictio-
nary style, and devnag for Devanāgar̄ı script. It is
a two step process to typeset in Devanāgar̄ı script.
A file, usually with extension .dn, is processed with
devnag, a program written in the C language, to get
a .tex file. The preprocessing step is necessary due
to the problem of vowel placement, complex con-
junct characters, and so on, as mentioned in the
introduction. The style file dev is used to get the
Devanāgar̄ı characters in the output pdf file after
compiling using pdfLATEX.

132 Preprints for the 2004 Annual Meeting

Using LATEX to Typeset a Marāt.h̄ı-English Dictionary

Once we have a .tex file we can get output in
many formats, dvi, ps, pdf, etc. We chose pdf

as there are free readers for almost all platforms
and pdfLATEX makes it easy to go from TEX to pdf.
The hyperref package solved the problem of cross-
referencing and bookmarks. The user can click on a
hyperlinked word to go to the form of the word that
has the complete meaning, and come back to the
original word with the back button in his favourite
reader. In addition to the hyperlinks, bookmarks
make navigation much easier; for example, book-
marks point to the first words starting with aa, ab,
ac, etc. An additional nested level of bookmarks
is chosen if there are many words starting with the
character combination. For example, if there are
many words starting with ac then we also have book-
marks for aca, acc and so on. Usually there are fewer
than five pages between two bookmarks, so finding
a word is not time consuming.

The preface contains characters like aAA, which
is not part of the modern Marāt.h̄ı character set, but
which was used as a short form a hundred years ago.
To typeset this character we directly edited the .tex
file after preprocessing to get the required result.

We have attached at the end of this article an
annotated sample page from the typeset dictionary.
At the top of the page the first entry is the first
word on the page, then the copyright information
with our name for the dictionary, fNdEvŸ , simply
translated as “the world of words”, followed by the
entry of the last word on the page. On the right
hand side is the page number. At the bottom, the
page number is given in Devanāgar̄ı script.

5 Future Work

After completing the typesetting the whole dictio-
nary we will add the roots of the words in Hin-
dusthani, Arabic and Persian. Currently we denote
this using [H], [A] or [P], respectively. We have tried
typesetting in three secripts on some small examples
and did not find any conflicts between ArabTEX and
devnag. We have not yet created new symbols but
it is possible with the help of the pstricks package
or METAFONT.

References

[1] Devanāgar̄ı for TEX, http://www.ctan.

org/tex-archive/language/devanagari/

velthuis/doc/devnag/manual.ps

Preprints for the 2004 Annual Meeting 133

akYA or akYF - c©fNdEvŸ 2002 - 3 - akbrfAI 4

akYA or akYF a

[P] (a & kYZ̃\)
Unscalded or unheated—milk, oil, ghee. 2 Unheated
to the degree of fusion—metals.

The root of the previous word is Persian, which is denoted by [P]. In the original
dictionary the root is written in the original script. The word ghee appears in
Helvetica font to stress the fact that this word is of Indian origin.

akZ a Devoid of kZ or grit—cleaned rice. 2 wanting corn in
the car—standing or thrashed crops. 3 Having no corn
to eat. Ex. akZA kZ hoy aDnA Dn hoy»

a\kZkXṽ n (See aA\kZkXṽ) The burden or bob of a song.

The popular form of the previous word is different, which appears on the right
hand side in the paranthesis. A user can click on that word to get more meanings
on the current word.

a\kZF f A ruler. 2 (Verbal of a\kZ̃\) Marking &c. 3 A division
(as in a box), a compartment.

The previous word is a verbal of the word in the paranthesis on the right hand
side. To get the meaning of the original verb user can click on that on the right
hand side.

a\kZ̃\ v c a\kn [S] To mark, gen.; to number, stamp, dot, rule, mark with
lines, figures &c.: also to rule (lines); to trace (outlines);
to delineate, sketch, roughdraw, draw, describe.

The root of the previous word is Sanskrit, which is denoted by [S]. Note that
Sanskrit root is given only if it is different from the word.

a\kZ̃\ n The sloping divisions upon a DAb̃ or flat earthroof for
the water to roll off.

akETt a [S] Untold, unnarrated, unsaid.

akLy & akTnFy a

[S]
Unspeakable, ineffable, indescribable, inenarrable. Ex.
prb}Ĳ kFr a­

a\kn n [S] Marking gen.; numbering, stamping, dotting &c.

a\knFy a [S] To be marked, numbered &c. See the noun a\kn»

akpV corruptly,
akpVF a [S]

Free from malice or guile; forgiving, frank, ingenuous.
2 Real, true, genuine. 3 Used as s n Candor, openness,
ingenuousness, guilelessness, absence of malice or
grudge. Ex. mF t̀MhAfF akpVAñ vAgto»

a\kpÓF f The ticket or label appended (to a bale of cloth &c.)
showing the number and price.

a\kpAf m [S] In arithmetic. Permutation.

akbrfAI a Of the currency established by the emperor Akbar—a
rupee &c.; relating to the reign of Akbar.

4

Basque: A Case Study in Generalizing LATEX Language Support

Jagoba Arias Pérez
Alameda Urquijo s/n
Bilbao, 48013
Spain
jtparpej@bi.ehu.es

http://det.bi.ehu.es/~apert

Jesús Lázaro
Alameda Urquijo s/n
Bilbao, 48013
Spain
jtplaarj@bi.ehu.es

http://det.bi.ehu.es/~apert

Juan M. Aguirregabiria
Bo Sarriena s/n
Leioa, 48940
Spain
wtpagagj@lg.ehu.es

http://tp.lc.ehu.es/jma.html

Abstract

The multilingual support of LATEX presents many weak points, especially when a
language does not present the same overall syntactic scheme as English. Basque
is one of the official languages in the Basque Country, being spoken by almost
650,000 speakers (it is also spoken in Navarre and the south of France). The
origins of the Basque language are unknown. It is not related to any neighbor-
ing language, nor to other Indo-European languages (such as Latin or German).
Thus, dates, references and numbering do not follow the typical English pat-
tern. For example, the numbering of figure prefixes does not correspond to the
\figurename\thefigure structure, but is exactly the other way round. To make
matters worse, the presence of declension can turn this usually simple task into
a nightmare. This article proposes an alternative structure for the basic classes,
in order to support multilingual documents in a natural way, even in those cases
where the languages do not follow the typical English-like overall structure.

1 Introduction

The origins of LATEX are tied closely to the English
language. Since those days, however, it has spread
to many different languages and different alphabets.
The extent of the differences among these languages
is not only related to lexical issues, but to the struc-
ture of the languages themselves.

The main problem arises when the syntactic
structure of the language does not follow the En-
glish patterns. In these cases the adoption of a new
multilingual approach is required in order to pro-
duce documents for these languages.

Although LATEX is a highly parameterizable en-
vironment, it lacks resources to alter the order of
the parameters themselves. This is due to the fact
that both Germanic languages (such as English and
German) and Romance languages (such as French,
Italian, Spanish) —and therefore the most widely
spread European research languages that use the
Latin alphabet —share a similar word order for nu-
meric references. To make matters worse, the pres-
ence of declension in structure such as dates and
numbers leads to a complicated generalization of
procedures.

Preprints for the 2004 Annual Meeting 135

Jagoba Arias Pérez, Jesús Lázaro and Juan M. Aguirregabiria

This paper describes an alternative structure
for the basic classes, in order to support multilin-
gual documents in a natural way, even in those cases
where the languages do not follow the typical Eng-
lish-like overall structure. Specifically, the paper fo-
cuses on Basque, one of the official languages in the
Basque Country, being spoken by over half a million
speakers (it is also spoken in Navarre and the south
of France).

The rest of the paper is organized as follows:
section 2 describes the specific details of the Basque
language, in section 3 a brief description of prior
work is presented, section 4 describes the different
approaches that can be followed to solve the prob-
lem, section 5 shows the advantages and drawbacks
of the different solutions and finally, in section 6
some brief conclusions are presented.

2 Specific details of the Basque language

The origins of the Basque language are unknown.
It is not related to any neighboring language, nor
to other Indo-European languages (such as Latin or
German). This is one of the reasons why word order
and numbering schemes are different from those in
English.

Dates and numbers. Basque uses declension in-
stead of prepositions as many other languages. The
main difference from other languages that use de-
clension, such as German, is that in Basque numbers
are also fully declined, even in common structures
such as dates. These declensions depend not only
on the case, number and gender, but on the last
sound of the word. Another peculiarity of Basque is
the use of a base 20 numerical system instead of the
traditional decimal one.

This forces us to take into account not just the
last figure of the number but the last two figures,
in order to determine the correct declension for the
number [3]. In the following example, two dates are
represented using ISO 8601 and its translation into
Basque.

2004-01-11 : 2004ko urtarrilaren 11n
2005-01-21 : 2005eko urtarrilaren 21ean

Note that although both days end in the same
figure, the declension is slightly different. The same
happens to the year. The extra phonemes have been
added to avoid words that are difficult to pronounce.
This makes automatic date generation difficult, be-
cause it must take into account all the possible cases
(as base 20 is used, there may be as many as 20 dif-
ferent possibilities). The different number endings
are shown in table 2. Note that there are only twenty

Table 1: Endings
Number Ending (year) Ending (day)

00 ko -
01 eko ean
02 ko an
03 ko an
04 ko an
05 eko ean
06 ko an
07 ko an
08 ko an
09 ko an
10 eko ean
11 ko n
12 ko an
13 ko an
14 ko an
15 eko ean
16 ko an
17 ko an
18 ko an
19 ko an
20 ko an

possible terminations, and two declension classes are
necessary.

Word order When numbering a certain chapter,
section, etc., in English-like languages the order is
always the following: first, the item class (e.g. “fig-
ure”) is named and, afterwards, the number is writ-
ten. For example, we have “Figure 1.1” or “Table
2.3”. However, this is not the case in Basque. In this
language, we must reverse this order: “1.1 Irudia” or
“2.3 Taula”. The same applies for chapters, sections
and other kind of text partitioning structures.

3 Related Work

Multilingual support for LATEX is traditionally per-
formed using the Babel package [2]. In this package,
the overall structure of documents, such as books,
articles, etc., is fitted to different languages by us-
ing different variables for the different strings in each
language.

For example, we can take the way figure cap-
tions are numbered in these types of documents:
a variable called \figurename contains the string
corresponding to the word “figure” in the first part
of the caption, while another variable, \thefigure
contains the number assigned to that caption. When
a new figure is inserted in the document, the string
preceding the caption is always formed by using a

136 Preprints for the 2004 Annual Meeting

Basque: A Case Study in Generalizing LATEX Language Support

concatenation of both variables. However, this pro-
cess is not performed by Babel, which would allow
a general description of the language, but in the
different files that describe the document format:
book.cls, article.cls, etc. Thus, some of the
work that should be performed by the module in
charge of the multilingual support is made by the
formatting part of the typesetting software.

The file basque.ldf [1] currently provides sup-
port for Basque in Babel. In this file, the most com-
monly used words have been translated. However,
this does not solve the problem of the different or-
der of strings. In [1], a possible solution is proposed
using a new package for the document definition: in-
stead of using the multilingual capabilities of Babel
to solve the problem, a new document formatting
file is defined, where the specific corrections for the
language are performed. The limitation for multilin-
gual document generation is obvious in this scheme:
the format must be redefined whenever the language
of the document is changed. Besides, a new defini-
tion for every single class of document must be per-
formed for this particular language — as we are not
philologists, we do not know if the same happens in
other languages.

4 Approaches to the Solution

The solution to the problem described in this paper
must deal with the following issues:

• It must respect all the translations of the dif-
ferent strings generated automatically.

• It must respect not only the translation, but
the order of words as well.

• The last problem to solve is the use of the
\selectlanguage directive, which would allow
us to change the hyphenation patterns and the
automatic text generation structures dynami-
cally in the same document. This directive is
particularly useful for documents which contain
the same text in different languages (e.g. user’s
guides, where the manual has been translated).

The main possible avenues to the solution are
the following:

• Use of specific classes for the language:

This solution implies the redefinition of every
document format, in order to embed the cor-
responding word order alteration for automatic
string generation. The main drawback of this
alternative is the need for rewriting and adapt-
ing all the existing document formats.

• Use of a specific package for the language:

A second possibility could include the defini-
tion of a new package for those languages that

require a word order alteration. This pack-
age should redefine the \fnum@figure and the
\fnun@table variables (among others, which
define the chapter or section name) in order to
adapt them to the needs of the languages used.
A macro should be used to switch between the
two nodes.

• Inclusion of order parameters in the doc-

ument class definition files: This option re-
quires that a new input parameter is defined in
the document class to define the order of the
words. Basically, it is the same solution as the
first one, but merging all the different files for
a document class into a single (larger and more
complex) file.

• Redefinition of existing multilingual sup-
port files: This solution implies the addition
of several lines to every language support file,
where the definition of the automatic strings
such as the figure captions or the table cap-
tions is performed. For example, for the case
of table and figure captions, the definitions for
the Basque language would be the following:

\def\fnum@figure{\thefigure~\figurename}

\def\fnum@table{\thetable~\tablename}

These definitions should go into the basque.

ldf file, immediately after the definition of the
terms for caption or table names. Thus, when-
ever a \selectlanguage directive is introduced
in the document, the Babel package will read
the definitions for the new language, which will
include the definitions for every string.

5 Comparison of Solutions

We use the following criteria to compare the differ-
ent solutions:

• Extent of modification to existing files:

This criterion measures how many existing files
will be altered to fix the problem and how com-
plicated this alteration is.

• Addition of new files: This criterion mea-
sures how many new files are to be added to
the LATEX distribution for each solution.

• The \selectlanguage issue: This criterion
measures how well the solution deals with pos-
sibly changing the language of the document
dynamically.

• How easily new automatically-generated

strings are included: In the future, transla-
tion of new strings may be required. Therefore,
the proposed solution must provide an easy way
to include these new strings.

Preprints for the 2004 Annual Meeting 137

Jagoba Arias Pérez, Jesús Lázaro and Juan M. Aguirregabiria

5.1 Extent of Modification

Here is how the solutions fare with respect to the
first criterion:

• Use of specific classes for the language:

This option does not require that any file be
modified, because new definitions are described
in new files.

• Use of specific package for the language:

This approach requires no modifications of ex-
isting files, since all modifications are included
in a new package.

• Inclusion of order parameters in the doc-

ument class definition files: This alternative
entails the redefinition of every document class.
These should admit a language parameter to
determine the correct word order.

• Redefinition of existing multilingual sup-

port files: This choice implies that every file
containing the translation and definition of the
automatically-generated strings provides order
information for them, and therefore, all the files
in Babel should be changed.

5.2 Addition of New Files

Here’s how the solutions fare with respect to adding
new files:

• Use of specific classes for the language:

This option requires all document classes to be
rewritten for every language that does not fol-
low the English-like structure.

• Use of specific package for the language:

This approach requires one new file for every
language that has not been described success-
fully in the Babel approach.

• Inclusion of order parameters in the doc-

ument class definition files: This alterna-
tive entails no new files, as it is based on the
modification of the existing files.

• Redefinition of existing multilingual sup-

port files: This choice does not need new files,
as it is based on the modification of the existing
files.

5.3 The \selectlanguage Issue

Depending on how generalization of the multilingual
support is implemented, the different solutions may
(or not) solve the \selectlanguage problem:

• Use of specific classes for the language:

This option does not really use Babel and its
macros. As part of the translation of auto-
matic strings is performed by the file defining
the format of the document class, support for

the \selectlanguage directive should be im-
plemented in each document class for every lan-
guage (not only for those incorrectly supported
by the Babel system, but for all of them).

• Use of specific package for the language:

This approach requires one new file for every
language. Hence, a macro would be required in
each package to leave things as they were before

the package was initiated.

• Inclusion of order parameters in the doc-

ument class definition files: This alterna-
tive cannot solve the problem, because the or-
der specification is only made at the beginning
of the document. A macro could be added to
alter its value dynamically throughout the doc-
ument, but it would be an artificial patch that
would not fit naturally in the Babel structure.

• Redefinition of existing multilingual sup-

port files: This choice does solve the problem,
because when a new \selectlanguage com-
mand is issued, the definitions for the new lan-
guage are reloaded. It requires no new macro
definitions to suit the Babel scheme for multi-
lingual documents.

5.4 Inclusion of New Strings

Here’s how the solutions fare with respect to the pos-
sibility of including further modifications for strings
that could be necessary in the future:

• Use of specific classes for the language:

As some of the linguistic characteristics of the
document are included in the document class,
this option does not provide a straightforward
method for including changes for problems that
may arise.

• Use of specific package for the language:

The use of a package gives flexibility to the
scheme, allowing the insertion of new macros
to adapt to the peculiarities of the language.
However, the range of possibilities is so wide
that a very well-defined structure must be laid
down in order to keep a modicum of coherence
for creating a document in a different language.

• Inclusion of order parameters in the doc-

ument class definition files: This scheme
requires updating several files whenever a new
string or scheme must be added.

• Redefinition of existing multilingual sup-

port files: As this choice uses a single file for
every language, it makes updating the elements
for Babel very easy.

138 Preprints for the 2004 Annual Meeting

Basque: A Case Study in Generalizing LATEX Language Support

Table 2: Solution comparison

Solution Mod. Cr. Multi. Updates

Specific class X X Dif. Dif.
Specific pack. X X Dif. Dif.
Parameters X X Dif. Dif.
Redefinition X X X X

6 Conclusions

This paper discusses some alternatives to solve the
ordering problems that may arise in multilingual
documents.

The characteristics of the different proposed so-
lutions are summarized in table 2. Among the so-
lutions, the most suitable would be the redefinition

of all the existing Babel files. The reason is sim-
ple: it requires the addition of two lines to approxi-
mately 45 files, and allows the update of the system
in the future, as it maintains all the translating is-
sues within their natural context (Babel).

References

[1] Juan M. Aguirregabiria. Basque language def-
inition file. http://tp.lc.ehu.es/jma.html,
2001.

[2] Johannes Braams. Babel, a multilingual package
for use with LATEX’s standard document classes.
CTAN://macros/latex/required/babel/,
2001.

[3] Euskaltzaindia. Data nola adierazi.
http://www.euskaltzaindia.net/arauak/

dok/ProNor0037.htm, 1995.

Preprints for the 2004 Annual Meeting 139

Implementation Tricks in the Hungarian Babel Module

Péter Szabó
Department of Analysis

Budapest University of Technology and Economics

Műegyetem rakpart 3–9.

Budapest H-1111

Hungary

pts+tug@math.bme.hu

Abstract

magyar.ldf, the Hungarian Babel module, was rewritten in the autumn of 2003
to obey most of the Hungarian typographical rules. This article describes some
implementation issues, TEX macro programming hacks, and LATEX typesetting
trickery used in magyar.ldf. All features of the new magyar.ldf are enumerated,
but only those having an interesting implementation are presented in detail. Most
of the tricks shown are useful for developing other language modules.

1 The Name of the Language

Usually a Babel language module has the English
name of that language. For example, the German
module is called germanb.ldf, and not deutsch.ldf.
The Hungarian module is an exception to this rule,
because it has the name magyar.ldf, in which “ma-
gyar” is the Hungarian adjective meaning “Hungar-
ian”. A similar exception is portuges.ldf for Portu-
guese. The letter “a” in word magyar has to be
pronounced as in blah, and the consonant “gy” is
the same as “d” in due.

The name of a language that a Babel language
module (.ldf file) defines is usually specified as an
argument of \LdfInit in the file. Thus, if czech.ldf

is renamed to foo.ldf, it will have to be loaded
with \usepackage[foo]{babel}, but to activate it,
\selectlanguage{czech} should be used. This is
not the case with magyar.ldf, because it detects its
loaded filename using the \CurrentOption macro
set by the \ProcessOptions command called from
babel.sty. So whatever magyar.ldf is renamed to,
that name is the one to pass to \selectlanguage.

The only reason why someone may want to re-
name an .ldf file is to load two different versions in
the same LATEX run. This is possible with magyar.ldf,
but the user should be aware that the control se-
quences defined by the two copies will interact with
each other in an unpredictable way. Experiments
have shown that it is possible to load two copies
of magyar.ldf with different load options (this is the
so-called dual load):

\PassOptionsToPackage{frenchspacing=yes}

{magyar.ldf}

\PassOptionsToPackage{frenchspacing=no}

{hungarian.ldf}

\usepackage[hungarian,magyar]{babel}

Despite the name hungarian.ldf above, the
file magyar.ldf gets loaded twice, because Babel

translates the language name hungarian to file
name magyar.ldf, and magyar.ldf expects options for
\CurrentOption.ldf, which depends on the lan-
guage name passed to \usepackage[...]{babel}.
Since the dual load feature of magyar.ldf is experi-
mental, most of the load options cannot be differ-
ent in the two copies. So the safest way to load
two copies is to replace the occurrences of the word
magyar in the second copy with something else.

The latest magyar.ldf (version 1.5) is not part of
standard Babel yet, but it is available as part of Mag-

yarLATEX (see section 4.1). Most of the typographical
rules it tries to obey and problems it addresses were
proposed in [1].

2 What an .ldf File Contains

An .ldf file is a Babel language module, which con-
tains specific macros for the given language. It is
loaded by babel.sty in the document preamble, at the
time babel.sty itself is loaded. The macros defined in
foo.ldf take effect only after changing the language
with \selectlanguage{foo}. The default language
is the one specified last in the \usepackage[...]

{babel} command.
Babel itself contains the standard versions of

the .ldf files as tex/generic/babel/*.ldf. In
Babel 3.7 there are 41 of them; most are smaller
than 10 kB. The largest files are: the old magyar.ldf

defining the Hungarian language (25 kB), frenchb.ldf

140 Preprints for the 2004 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

defining the French language (23 kB), spanish.ldf

(21 kB), bulgarian.ldf (13 kB), ukraineb.ldf defining
the Ukrainian language (12 kB), russianb.ldf (12 kB)
and greek.ldf (9 kB). The new version of magyar.ldf

is much larger than any of these: it is 178 kB. The
size implies much more functionality, including sev-
eral features unique to this new magyar.ldf — they
will be discussed later in this document. Let’s pro-
ceed first by dealing with features common in most
.ldf files.

2.1 Selecting the Hyphenation Pattern Set

foo.ldf must define the control sequence \l@foo

to be a number (\newcount, \chardef, etc.) rep-
resenting the hyphenation pattern set to be used
for that language. The language selection macro
\selectlanguage{foo} calls \language=\l@foo,
which activates the hyphenation patterns for the
language foo.

The patterns were (presumably) defined with
the \patterns primitive at the time iniTEX was
called to generate the format file. The exact file-
name containing the \patterns command is speci-
fied in the file language.dat. If there is a line “foot
fthypen.tex” in language.dat, then \language

=\l@foot will activate \patterns found in fthyph.

tex. In that case, foo.ldf should contain a line
\let\l@foo\l@foot. But this line is omitted in
most actual .ldf files, because the Babel language
name and the hyphenation pattern set name is the
same (language.dat would contain an entry start-
ing with foo in our example). Note that the file
fthyph.tex is read by iniTEX, not LATEX, so the for-
mat files have to be re-generated each time fthyph.
tex is changed.

Three different hyphenation pattern sets have
been proposed for the Hungarian language (namely,
huhyph3.tex, huhyphc.tex and huhyphf.tex). All
of them are maintained by Gyula Mayer [4]. The
most important difference among them is the way
they hyphenate at subword boundaries of compound
words. The document author can select any of
these three by providing the appropriate load option
to magyar.ldf (discussed later). The options work
by redefining \l@magyar to be one of \l@magyarf,
\l@magyarc, or \csname l@magyar3\endcsname.

There are two different correct ways to hyphen-
ate compound words in Hungarian. magyarf hyphen-
ates the most common foreign compound words of
Hungarian text phonetically (e.g. szink-ron, mean-
ing synchronous), while magyarc hyphenates them
on the subword boundary (e.g. szin-kron). ma-

gyar3 is the old version of the hyphenation patterns
which hyphenates most composite words phoneti-

cally (even non-foreign ones), save only a few ex-
ceptions listed explicitly. However, in all the three
cases, hyphenation of foreign words cannot be per-
fect, because all of them cannot be specified in
\patterns.

magyar.ldf redefines \l@magyar depending on
the hyphenation= load option. If a given pattern set
may be missing from the user’s system, magyar.ldf

falls back to another set with a meaningful warn-
ing message. Hyphenation is disabled not by choos-
ing \language0, as Babel does, because \language0
may contain valid patterns for a different language,
but rather \language255, which is very likely to
be unused since LATEX assigns \language numbers
from zero.

2.2 Defining Captions

LATEX generates some words and phrases automati-
cally. For example, \tableofcontents should emit
the phrase “Table of contents” in the native lan-
guage. The same applies for \captions of figures
and tables, and also for \chapter titles. Thus Babel

expects foo.ldf to define a macro called \captions

foo containing definitions like \def\abstractname

{Absztrakt}. These definitions are executed by
\selectlanguage each time the language is acti-
vated. So it is possible to have an English and then
a Hungarian chapter in a book numbered ‘Chapter
1’ and ‘2. fejezet’, respectively:

\chapter{foo} ...

\selectlanguage{magyar}\chapter{bar}

magyar.ldf has the proper definitions of Hungarian
phrases. Some words contain accented letters, which
are specified as commands (e.g. \’a for á) and not
single 8-bit characters, so their interpretation does
not depend on the active input encoding, i.e. the
load option of inputenc.sty.

2.3 Generating Dates

foo.ldf should define a macro \datefoo to define
the macro \today, which emits a date (specified by
the \year, \month, \day registers) correctly for that
language. The month name should be printed as a
non-abbreviated word. The definition of \today is
used by \@date invoked in \maketitle in the stan-
dard document classes.

In addition to defining \today, magyar.ldf de-
fines the macro \ondatemagyar to further define
\ontoday, which emits the date with the Hungarian
equivalent of English on. The Hungarian language
has suffixes instead of prepositions, and each suffix
has several forms which must follow the vowel har-
mony of the word it is suffixed to. Thus “on March

Preprints for the 2004 Annual Meeting 141

Péter Szabó

15” is emitted as március 15-én, but “on March 16”
is március 16-án, showing that the -án/-én suffix
has two forms.

2.4 Minimum Hyphenation Length

TEX won’t insert an implicit hyphen into the first
\lefthyphenmin characters of words, nor in the last
\righthyphenmin characters. The default TEX val-
ues for these are 2 and 3, respectively, which are suit-
able for the English language. foo.ldf can override
the default by defining the macro \foohyphenmins

to be lr, two digits specifying the left and the right
minimum, respectively.

What magyar.ldf does depends on its load op-
tions. The default is to follow Hungarian typogra-
phy: \def\magyarhyphenmins{22}.

Nine of the 41 .ldf files in Babel 3.7 do only
the customizations described to this point. 25 lan-
guages go a little beyond these, and 7 languages go
much beyond. Of those 25 + 7 languages that go
beyond, we will compare frenchb.ldf in detail to ma-

gyar.ldf, because French and Hungarian share some
typographical rules.

2.5 Defining Special Letters

Many languages have letters that are missing from
the standard OT1 encoding, and some characters are
missing even from T1. These should be implemented
in .ldf files as control sequences. It is a common
practice to modify the meaning of an existing let-
ter, for example czech.ldf contains \DeclareText
CompositeCommand{\v}{OT1}{t}{...}. However,
this declaration is contained in \AtBeginDocument,
so they are in effect even when not the Czech lan-
guage is active. This should have been avoided.

The correct solution is to use the extras facil-
ity provided by Babel: foo.ldf can have a macro
\extrasfoo, which is executed each time the lan-
guage foo is activated; and the macro \noextrasfoo

is executed when the active language is about to
change (because of a \selectlanguage command
or when the end-of-group is reached). It is a com-
mon practice in \extrasfoo to save the meaning of
a macro with \babel@save, or a meaning of a count,
dimen or skip register with \babel@savevariable.
The saved meanings will be restored just after
\noextrasfoo is executed. Babel provides the com-
mand \addto that can append tokens to the defini-
tion of an existing macro. The idiom \addto\extras

foo{\babel@save\bar \def\bar{foo-bar}} is typical,
which gives a new meaning to \bar while the lan-
guage foo is active.

The macro to be saved for \DeclareText

CompositeCommand{\v}{OT1} is \OT1\v (with the
second backslash being part of the control sequence),
but assigning the new meaning would be problem-
atic, since DeclareTextCompositeCommand can be
used only in the preamble. Thus the correct solution
would involve fiddling with undocumented LATEX in-
ternals; which is probably why czech.ldf contains the
problematic workaround using \AtBeginDocument.

Fortunately, the only non-English letters in the
Hungarian language are accented vowels (á, é, ı́, ó,
ö, ő, ú, ü and ű), which are all part of the T1 encod-
ing. The letters ő and ű with the special Hungarian
double-acute accent are missing from the Latin-1 en-
coding (ISO-8859-1), but are part of Latin-2. So au-
thors dealing with Hungarian are encouraged to use
\usepackage[latin2]{inputenc}.1 \usepackage

{t1enc} is also recommended, so TEX will be able
to hyphenate words containing accented letters.

The finest Hungarian books have accents low-
ered a little bit. This is accomplished for the dieresis
accent (¨) by calling the \umlautlow command (de-
fined by Babel) in \extrasmagyar. No serious at-
tempt is made to make this work for all three Hun-
garian accents, because the technology \umlautlow

is based on works only for the OT1 encoding (which
composes accented letters), but most Hungarian
texts use the T1 encoding to allow hyphenation in
words with accented letters.

The lowering of accents is possible using virtual
fonts. But TEX font families come with too many
variations and design sizes, so the virtual font gen-
eration would need to be automated. The macro
\lower@umlaut in babel.def lowers accents by forc-
ing their top to be 1.45 ex above the baseline. The
\accent primitive lowers its accent by \fontdimen5

\font-1ex, so the top of the accent can be forced
to 1.45 ex by setting \fontdimen5\font:=\ht0 -

0.45ex, where \ht0 is the height of the accent char-
acter (\char127 in the OT1 encoding).

The lowering, in the case of ü, is as small as
0.43558 pt. Even this tiny displacement can make
a visible difference: “ü < ü”. The lowering method
could be made adaptive by rendering the glyphs in-
volved at high resolution, measuring the number of
pixels between the accent and the letter vertically,
and then lowering the accent so the distance will be
a prescribed constant value.

1 The most common incorrect letters found in Hungar-

ian texts are õ and û: their presence is caused by software

incapable of using Unicode or the Latin-2 encoding. These

letters can be seen even on some huge advertisement banners

on streets in Hungary. These texts were not typeset by TEX,

of course!

142 Preprints for the 2004 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

Neither home users nor professionals use low-
ered accents in Hungary today, not even with books
created with LATEX —the original fonts with the T1

encoding are acceptable enough not to bother chang-
ing. TypoTEX Ltd., one of the biggest Hungar-
ian publishing houses using TEX, developed the OM

fonts in the early 1990s for use with plain TEX. The
OM fonts are a variation of CM fonts with Hungar-
ian accented glyphs added (with lowered accents).
However, it is not worth creating .fd files for the
OM fonts for use with LATEX, because with the same
amount of work new virtual fonts could be created
from the EC fonts, which would take advantage of
the full T1 character set, and existing, hinted fonts
in Type 1 formats (such as the CM-Super fonts).

2.6 Hyphenation of Long Double

Consonants

Hyphenating long double consonants in Hungarian
is a difficult typographical problem. For example,
the correct way to hyphenate the double consonant
tty = ty + ty in the word hattyú (“swan”) is haty-
tyú. (There is a similar problem in German with
words containing ck ; [5] documents more languages
with more exceptions.) The long double consonants
involved are: ccs, ddz, ddzs, ggy, nny, ssz, tty and
zzs. TEX’s automatic hyphenation algorithm can-
not deal with such exceptions, but adding ligatures
dealing with the dash inserted by the implicit hy-
phenation can solve the problem. The simple trick
of having \patterns{t1ty} and t+- → ty-2 seems
to solve the problem, because it hyphenates tty as
ty-ty, but it also inserts an extra y before the hyphen
in fut-szalad. Normal patterns will also insert an im-
plicit hyphen into botcsinálta, yielding bot-csinálta.
The ligature program above would then incorrectly
alter that to boty-csinálta.

So a more elaborate set of ligatures would have
to be constructed, to detect the context of the hy-
phen and insert the y only into t-ty, yielding ty-
ty. Or, equivalently, using \patterns{tt1y gg1y}

with context-sensitive ligatures changing tt-y to ty-
ty and gg-y to gy-gy, etc. This solution uses up
many character positions from the font, and many
many extra ligatures are involved. Also, the user
must know that to produce an actual t-ty (which
almost never appears in Hungarian), t{}-ty must
be used.

All of this can be accomplished using virtual
fonts. The author has tested to see that the con-
cept works by decompiling aer10.vf to aer10.vpl and
modifying the (LIGTABLE). However, automation of

2 (LABEL C t) (LIG C - C y) in the .pl file.

the virtual font generation is work remaining for the
future.

Hyphenation of the double two-character con-
sonants ggy and ssz is similar to tty. However,
compound words such as leggyakoribb (“most fre-
quent”) and vasszekér (“iron chariot”) should be
hyphenated at the subword boundary without the
addition of extra letters, i.e. as leg-gyakoribb and
vas-szekér. Extra \patterns may be added, for
example \patterns{gg1y .leg1g4yakoribb.}, to
disable insertion of y for each important compound
word. This is quite straightforward, because it does
not require more ligatures (apart from the context
sensitive ligature program changing gg-y to gy-gy).

One might suggest context-sensitive ligatures
could be avoided if ty is introduced as a new sin-
gle letter. But this won’t work because, step (1):
‘t t y’ has to be converted to ‘ty ty’ using more than
one ligature, and then step (2): further conversion
to ‘t ty’ if there is no line break, but TEX won’t run
its hyphenation algorithm in the middle of ligature
processing, between steps (1) and (2).

The current approach of magyar.ldf for handling
long double consonants is a compromise. By de-
fault, the patterns do not hyphenate those conso-
nants, and the character ‘ is made active (with the
standard Babel command \declare@shorthand), so
that, for example ‘tty emits t\nobreak

\discretionary{y-}{}{}ty \nobreak \hskip

\z@skip. The first \nobreak is used to enable au-
tomatic hyphenation before the ‘tty construct, and
the last \nobreak plus the \hskip enable hyphen-
ation after the construct. Thus the word typed as
megho‘sszabbı́t will be hyphenated as meg-hosz-

szab-bı́t. Similar shorthands are added for the
other long consonants. The compromise is that the
user has to be aware that he has to insert ‘s man-
ually. A Perl script named ccs extract.pl was devel-
oped to collect all occurrences of double consonants
in a document so the user can review them and de-
cide about the insertion of ‘ for each.

2.7 Table and Figure Captions

The document class defines \@makecaption, which
is responsible for typesetting a caption for tables
and figures. Some .ldf files, including frenchb.ldf

and magyar.ldf override the default behaviour. ma-

gyar.ldf changes the colon separating the caption
heading (e.g. “1. táblázat”, or “Table 1”) from the
caption text to a full stop, in keeping with Hun-
garian typography. Furthermore, the longcaption=
load option controls what should happen when the
caption doesn’t fit in a single line: whether it should

Preprints for the 2004 Annual Meeting 143

Péter Szabó

be centered, and whether there should be a line
break after the caption heading.

The tablecaptions= and figurecaptions=

load options control the appearance of the caption
heading by redefining both \fnum@table and \fnum

@figure. The default in both cases is to follow Hun-
garian typography, which requires the number to
precede the table name.

2.8 Between the Section Title and the

Section Number

The default definitions of \@ssect and \@sect sep-
arate the section number from the section title
with a \quad. In Hungarian typopgraphy, only
an \enskip is needed, and a dot has to be in-
serted after the number. The old version of ma-

gyar.ldf changed \@sect etc., but this caused con-
flicts with the AMS document classes and other
packages, so that strategy has been given up in
the new version of magyar.ldf. Instead, dots were
moved into the \numberline, which adds the dot to
\tableofcontents lines (being careful not to ap-
pend the dot twice, see dot stripping code in sec-
tion 2.26), and to \@seccntformat, which adds the
dot and \enskip to the titles. The AMS document
classes do not use \@seccntformat, so the AMS-
specific \tocsection and \tocappendix commands
had to be modified.

\@numberline also adds a dot after table and
figure numbers in the \listoftables and \listof

figures, but the dot is needed there, too, anyway.
All three TOCs share a common problem re-

lated to language changes. Each time the language
is changed, Babel emits changing commands to the
three TOC files, so when they are re-read, each line
comes in its appropriate language. The implementa-
tion has a flaw, however, because the \write to the
TOC files gets executed when the page is shipped
out, and the order of \writes on the same page fol-
lows the document structure: \writes in top inser-
tions precede and bottom insertions follow those in
the main text. So when a table or figure is moved to
the top of the page, the writing of its TOC entry, to-
gether with the \selectlanguage command emit-
ted by Babel is moved away, so \selectlanguage

commands in the TOC files are reordered, which is
wrong. The solution is to emit a \selectlanguage

command for each TOC entry, so the TOC entries
can be freely reordered. magyar.ldf implements this
solution as a local fix, but it should be fixed gener-
ally in a new version of Babel.

2.9 Spacing Around Punctuation

It is quite easy to add extra space after punctua-
tion characters with \sfcode (see “space factor” in
chapter 13 of [3]). The LATEX \nonfrenchspacing

command (which is activated by default) assigns a
space factor of 3000 to ., ? and !, 2000 to :, 1500
to ;, and 1250 to ,.

However, adding extra space before punctua-
tion needs a different approach. Both frenchb.ldf

and magyar.ldf make the characters :, ;, ! and
? active with the Babel \initiate@active@char

interface, and insert unbreakable space in horizon-
tal mode (\ifhmode) just before the punctuation
character. This feature of magyar.ldf can be turned
off using the activespace= load option, partly be-
cause making these four common characters active
may lead to incompatibility with other packages,
and partly because the extra space before punctu-
ation is very rare in current Hungarian documents.
In French typography, about one-third of a normal
space is required before punctuation, and if it is not
possible to add that amount with the typesetting
technology, one full space should be added. How-
ever, in Hungarian, the fallback strategy is to omit
the extra space.

The last action the active punctuation charac-
ter should do is insert itself, but typing it verbatim
into the definition will lead to an infinite loop. For
example, \catcode‘?=13 \def?{\kern.1em ?} will
loop infinitely. The solution is to use \string? in
place of the last ?, so its catcode will be changed
to 12 (other). Using \edef with this approach will
make the macro a little bit faster, because \string

will be executed only once, at load time.

2.10 Quoted Material

In English, text can be quoted using ‘single’ or “dou-
ble” quotation marks. These can be nested into each
other both ways. Hungarian provides three nest-
ing levels:

”
outer »middle ’inner’« ”. Although the

guillemet symbols are missing from the CM fonts
with OT1 encoding, this is not a serious problem,
since Babel provides them (using the \ll relation:
≪ and ≫), and Hungarian text should be typeset
with the T1 font encoding anyway, to allow hyphen-
ation of words with accented characters.

frenchb.ldf provides \LasyGuillemets and
\CyrillicGuillemets so the user can select the ori-
gin of the replacement guillemets. magyar.ldf relies
on the defaults provided by Babel in the hope that
the T1 encoding is used, so replacements are not
needed. magyar.ldf doesn’t adjust spacing around

144 Preprints for the 2004 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

the quotation symbols, but provides a \textqq com-
mand which emits quotations with proper nest-
ing and spacing. For example, \textqq{outer

\textqq{middle \textqq{inner}\,}\,} gives the
above three-level sample. \textqq does English
quotations (with two alternating levels) when the
Hungarian language is not active.

2.11 List Environments

The default spacing, indentation and label item gen-
eration of list environments (such as itemize and
description) are incorrect for Hungarian. The la
belenums= and labelitems= load options control
whether labels are modified to match Hungarian tra-
ditions. Five levels of depth are provided for both
itemize and enumerate. The maximum depth is
hardwired to the LATEX definitions of these environ-
ments, so the \ifnum\@enumdepth>3 test had to be
changed to

\expandafter \ifx\csname \labelenum

\romannumeral\the\@enumdepth\endcsname\relax

(and similarly for \@itemdepth).
Although the vertical space that the standard

document classes leave around lists is too large,
and the indentation is also incorrect, these problems
have not yet been solved in magyar.ldf. (frenchb.ldf

modifies \itemsep and other spacing dimensions to
match French typographical rules.)

2.12 Modularity Using Load Options

The user can customize .ldfs using Babel’s lan-
guage attribute facility. For example, greek.ldf has
\bbl@declare@ttribute{greek} {polutoniko} {..},
and so if the user loads greek.ldf with

\usepackage[greek]{babel}

\languageattribute{greek}{polutoniko}

the code in the .. is run when \languageattribute

is called. If present, \languageattribute must be
part of the document preamble, and the .ldf file
must be already loaded.

The fundamental problem with language attri-
butes is that the user can pass only declared key-
words, and not arbitrary data to the .ldf file, and—
since attributes are processed too late — they can-
not be used to control which parts of the .ldf files
should be loaded.

Thus, magyar.ldf follows a different approach.
Options are 〈key〉=〈value〉 pairs, which can be de-
clared any time before magyar.ldf is loaded. The set
of keys is fixed, but values can be arbitrary. It is the
responsibility of the macro belonging to the key to
verify that the syntax of the value is correct. None
of the other .ldf files provide load option support
this flexible. This option-passing scheme is similar
to keyval.sty, but magyar.ldf doesn’t actually use key-

val.sty, because of a general design policy to avoid
dependencies.

Since .ldf file names are the LATEX options to
babel.sty in the \usepackage[· · ·]{babel} line, it is
not possible to pass options to the individual .ldf
files directly. However, LATEX provides the com-
mand \PassOptionsToPackage, which declares op-
tions for a package before the package is loaded. So
for example, \PassOptionsToPackage{a=b,c=d}

{foo.bar} appends a=b,c=d to the macro \opt@

foo.bar. magyar.ldf examines \opt@magyar.ldf,
so for example passing options with \PassOptions

ToPackage{titles=\enskip}{magyar.ldf} forces
the space in section headings between the section
number and the section title to be \enskip. (For
compatibility reasons, magyar.ldf also processes the
contents of \magyarOptions as options. This is use-
ful to make magyar.ldf work with plain TEX.)

TEX macro wizards may enjoy studying the op-
tion parsing code in magyar.ldf. The entry point of
the routine is \processOptions, whose argument
is a comma-separated option list of 〈key〉=〈value〉
pairs. The routine calls \processOption{〈key〉}
{〈value〉} for each pair found. This code is shown in
figure 1.

2.13 Default Option Sets

Since there are 51 load options in the current ma-

gyar.ldf, the user should not be forced to know all of
them. Reasonable defaults are provided (namely,
defaults=over-1.4), so novice users can simply
proceed. Intermediate users can select one of the
five defaults, and possibly change a few options they
don’t like in their preferred default, and only expert
users will change many options individually.

The number of bytes loaded were measured in a
recent version of magyar.ldf, totalling 177 353 bytes.
Out of that 177 kB, 32 417 bytes were used for ini-
tialization and providing the load option support
framework, and declaring the options for the five
defaults. After that, 138 872 bytes were used for im-
plementing features selected by the load options. In
the descriptions below, the number of feature bytes
skipped is listed. (The larger the number, the less
of magyar.ldf is processed at load time.)

The default sets are:

1. =over-1.4 (10 720 bytes not loaded) This is the
default among the defaults. Its main goal is to
make all documents with the previous version
of magyar.ldf (1.4) compile with the new ver-
sion and to provide emergency bugfixes to in-
compatibility problems caused by the old ver-
sion. It introduces a few essential typograph-
ical changes which have little impact on line

Preprints for the 2004 Annual Meeting 145

Péter Szabó

\def\processOptions#1{\processOptions@a#1,\hfuzz,}

\def\processOptions@a#1,{%

\if,\noexpand#1,% (1)

\expandafter\processOptions@a

\else

\csname fi\endcsname% (2)

\processOptions@b#1,=,%

\fi}

\@gobble\iftrue

\def\processOptions@b#1#2=#3,#4\fi{% (3) (4)

\ifx\relax#4\relax

\ifx#1\hfuzz% Terminator

\expandafter\expandafter\expandafter

\@gobble% (5)

\else

\if,\noexpand#1% OnlySpace

\else% MissingArg; #2 ends by comma

\if=\noexpand#1\missingKey#2%

\else \missingVal#1#2\fi

\fi

\fi

\else% Normal

\processOption{#1#2}{#3}%

\fi

\processOptions@a}

\def\missingKey#1,{\errmessage{Key missing

for value: #1}}

\def\missingVal#1,{\errmessage{Value (=) missing

for option: #1}}

\def\processOption#1#2{\typeout{Got option

key=(#1) val=(#2)}}

Figure 1: Option parsing code. Comments: (1)
ignores extra commas, detects them by testing
whether #1 is empty; (2) this is a \fi when
expanded, but doesn’t count as a \fi when being
skipped over because its surrounding condition is
false. The real \fi won’t be expanded, because
it is parsed as the parameter terminator of
\processOptions@b. (3) needs #1#2 instead of
just #1, so TEX will ignore space tokens in front
of #1. As a side effect, when the option begins
with =, the = will be put into #1, so \missingKey

can be reported. (4) There are four different cases
in which \processOptions@b can be invoked.
The exact case is determined by how the macro
parameter text separates parameters. The cases
are: Normal case: #1#2 is the key, #3 is the value,
#4 is =,; MissingArg case (=〈value〉 is missing, or
〈key〉 is missing, but =〈value〉 is present): #1#2

is 〈key〉, or =〈value〉,, #3 and #4 are empty;
Terminator case: #1#2 is \hfuzz, #3 and #4

are empty; OnlySpace case: #1 is ,, #2, #3 and
#4 are empty. (5) \@gobble removes the call of
\processOptions@a at the end of the macro, so
the iteration is finished.

and page breaks; it disables big, eye-catching
changes. It makes most new commands avail-
able, but doesn’t turn new features on.

2. =compat-1.4 (82 890 bytes not loaded) Imple-
ments a strict compatibility mode with version
1.4 of magyar.ldf. Documents look about the
same (exact match not guaranteed), even when
the output is typographically incorrect. It does
not define new commands such as \told or
\emitdate.

3. =safest (124 679 bytes not loaded) Turns off all
features, reverts to LATEX and Babel defaults in
every respect. It is useful only for debugging
purposes: if a document doesn’t compile, but it
compiles with defaults=safest, individual op-
tions can be turned on one-by-one to see which
is causing the compatibility problem.

4. =prettiest (1 221 bytes not loaded) Turns on
all new features, and tries to follow Hungar-
ian typography in the prettiest, most advanced
way. It is possible that compatibility problems
will arise with other packages, although the au-
thor is not currently aware of any.

5. =hu-min (1 317 bytes not loaded) Follows Hun-
garian typographical rules as closely as possible.
Compliance is not complete, of course, because
some aspects are not implemented; thus they
are not covered by load options, and they can-
not be controlled using defaults. If typograph-
ical rules allow choice (e.g. the first paragraph
of a section may or may not be indented), the
easiest and most compatible solution is chosen
(e.g. accept the indentation defined by the doc-
ument class).

2.14 Skipping Parts of the Input File

Since some parts of magyar.ldf can be disabled using
load options, as we have seen, it is desirable to skip
them completely. The easiest way of skipping part of
TEX code is wrapping it into \ifnum\MyFeature<1

. . . \fi. But this kind of skipping will consume hash
memory for new control sequences skipped over, and
it also requires that the skipped part is properly
nested with respect to \if. . . s. magyar.ldf defines
the following macro to do skipping without these
flaws.

\@gobble\iftrue

\def\skiplong#1{\fi

\bgroup% so ^} would close it

\catcode\string‘^13

\lccode\string‘~=\string‘^

\lowercase{\let~\fi}%

\catcode\string‘\\14

% comment, save hash memory

146 Preprints for the 2004 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

\catcode\string‘$14

\iffalse}

\@gobble\fi

Now, code can be skipped with the construct

\ifnum\MyFeature<1 \skiplong\fi

...

\@gobble

{^}

\lowercase is needed in the implementation
because \let^\fi does not work, since the catcode
of ^ is already assigned to be superscript when the
definition of \skiplong is read.

2.15 Detecting Digits for Definite Articles

\ref, \pageref and \cite generate numbers, which
are often prefixed by the definite article in Hungar-
ian. The construct ‘the \ref{foo}; works fine in
English, but the Hungarian definite article has two
forms: a and az. Az must be used if the following
words (as pronounced) starts with a vowel, and a
must be used for consonants. So we need a macro
that generates the definite article for numbers auto-
matically. magyar.ldf contains the macro \az, which
prefixes its argument by either a~ or az~. This kind
of macro is at present unique to magyar.ldf; other
.ldf files apparently do not implement solutions for
similar problems in other langages.

Unfortunately, \az is not expandable, because
it redefines the meaning of several commands be-
fore processing its argument. \az works by half-
expanding its argument (fully expanding, of course,
\ref, \pageref and \cite), ignoring braces and
most control sequences, non-digit and non-letter
characters, changing \romannumeral to \number (so
that x will become az x, but \az{\romannumeral

10} yields a x), looking for a number, a word or
a single letter in the beginning (in fact, az has to
be emitted if the starting digit is 5, and a has to
be emitted if the starting digit is not 1 or 5). For
words, single letters and positive numbers not be-
ginning with 1, the proper definite article depends
on the first letter only.

For numbers starting with 1, the definite arti-
cle must be az if and only if the number of digits
is 3k + 1 for an integer k. For example, the Hun-
garian words for 1, 12, 123, 1000 are egy, tizenkettő,
százhuszonhárom, ezer, respectively, and the definite
forms are az 1, a 12, a 123, and az 1000, respec-
tively. So we have to count the number of digits of
a number.

It is not necessary to have 10 \if commands to
test whether macro argument #1 is a digit: it almost
always works fine to use \ifnum1<1\string#1 .
The space at the end is important, because it will

terminate the second number of the \ifnum if #1 is
a digit. The condition (1 < 1) is false if #1 is a
non-digit, and true (1 < 10, 1 < 11 etc.) otherwise.
\string cancels the special catcode #1 might have.
#1 shouldn’t be longer than a single token, because
the test makes TEX process the extra tokens when
#1 contains a digit followed by extra tokens. If #1
is \if or similar, the test isn’t skippable. The test
works even if #1 is empty.

The macro \Az is also defined to insert a capti-
talized definite article at the beginning of a sentence.
The macros \aref, \Aref, \apageref, \Apageref,
\acite and \Acite are combinations of \az and ref-
erencing commands, so for example \aref{foo} is
equivalent to \az{\ref{foo}}.

2.16 Counting Digits with Multiple

Sentinels

A “sentinel” is something placed at the end of a list
so that a conditional iteration over the list stops at
the sentinel. For example, section 2.12 uses \hfuzz
as a sentinel for the option processing of the macro
\processOptions@b. A sentinel is usually a single
token, but sometimes multiple sentinels have to be
used in a row, when a macro processing them takes
multiple parameters.

As mentioned in section 2.15, the Hungarian
definite article (a/az) for a number depends on its
pronounciation. The rule is: az has to be emitted for
numbers starting with 5, and for numbers starting
with 1 and having the number of digits following
1 divisible by 3. All other numbers are preceded
by a. magyar.ldf thus contains a macro that counts
number of digits following it:

\def\digitthree#1{\digitthree@#1///\hbox$}

\def\digitthree@#1#2#3{%

\csname digitthree@%

\ifnum9<1\string#1 \ifnum9<1\string#2

\ifnum9<1\string#3 %

\else b\fi\else b\fi\else z\fi\endcsname}

\def\digitthree@z#1\hbox${z}

\def\digitthree@b#1\hbox${}

\message{1:\digitthree{} 100:\digitthree{23+}

1000:\digitthree{456}}

In this example the macro \digitthree ex-
pands to z if its argument starts with digits of the
multiple of 3. \hbox$ is used as a sentinel to skip
everything after the last digit has been found. The
sentinel must not be present in the parameter itself.
\hbox$ makes no sense in TEX, so it is quite reason-
able to assume that the parameter doesn’t contain
this. magyar.ldf uses \hfuzz and \vfuzz when only

Preprints for the 2004 Annual Meeting 147

Péter Szabó

a single token is allowed, because these two unex-
pandable tokens are quite rare. The three consec-
utive slashes in the example are three sentinels, so
\digitthree@ has always enough arguments.

However, the test doesn’t work if the param-
eter of \digitthree contains braces. For example
\digitthree{1{2x}} would look for the undefined
control sequence \digitthree@x.

In the example the \csname trick was used to
avoid \expandafter in the nested \ifs. See the def-
inition of \@@magyar@az@set in magyar.ldf for using
three multi-character sentinels in the same macro.

2.17 Definite Articles Before Roman

Numerals

\az in magyar.ldf works differently for \az{x} and
\az{\romannumeral 10} (see section 2.15), but
how should it distinguish when \romannumeral has
already been expanded by the time \az is called?
Although there is no general solution to the problem,
magyar.ldf addresses the case when \az{\ref{my-

part}} is called, having the label my-part point to
a \part, when \def\thepart{\@Roman\c@part} is
active. (This is so with the standard book.cls.) \ref

gets the part number from the \newlabel{my-part}
{{x}{42}} command written to the .aux in the pre-
vious run of LATEX. \label, which has emitted this
\newlabel has already expanded \romannumeral in
the previous run, long before our \ref is called.

To make the definite article work in this spe-
cial case, magyar.ldf redefines \label so it writes
\hunnewlabel in addition to \newlabel to the .aux
file. The arguments of \hunnewlabel are pre-expan-
ded when \let\romannumeral\number is in effect.
This solution also works when \pageref refers to a
roman numeral page number.

Expanding the page number at the right time
is rather tricky. The LATEX \protected@write says
\let\thepage\relax, which prevents expansion in
the following \edef, so \thepage is expanded only
when the page is shipped out, and \c@page contains
the right page number. What we want is to half-
expand \thepage, so it gets expanded to \@roman

\c@page, and \@roman is expanded to \number (!),
but the expansion of \number\c@page is postponed
until the page is shipped out. This can be done by
defining \def\romannumeral {\noexpand\number}

before calling \protected@write. In practice, ma-

gyar.ldf itself expands the page number, so three
\noexpands are needed in front of \number.

Redefining \label (so it emits \hunnewlabel)
also raises a problem. Some packages loaded later
might also override \label, for example hyperref.sty

loads nameref.sty \AtBeginDocument, which over-

rides \label. magyar.ldf recognises the new defi-
nition when the Hungarian language is activated—
which is done after the \AtBeginDocument hooks
are run (see section 2.21). So \hunnewlabel works
fine with hyperref.sty.

2.18 Removing All Braces

Removing all braces from a token list is required
by the \az command (that inserts the a/az definite
article). \az can find the first letter of its argument
more easily if the argument doesn’t contain braces.

The \removebraces macro defined in figure 2
removes all braces and spaces (recursively) from the
tokens following it, until the first \hfuzz. The to-
kens may not contain a \hfuzz inside braces, but
they may contain expandable material, even with
unbalanced conditionals, because those are left un-
expanded in \removebraces@nobone by \noexpand.
The most important trick here is the construct
\ifcat{\noexpand#1, which is true if #1 starts with
a brace, and yields #1 with its first brace stripped.
\iffalse}\fi is needed so that the macro defini-
tion is nested with respect to braces. The usage of
\@firstoftwo is also worth mentioning: it is used to
change the \removebraces@nobone token following
the \if to \removebraces.

2.19 Changing \catcodes Safely

\makeatletter is equivalent to \catcode 64 11

on ASCII systems; this changes the category code
of characters having code 64 to 11 (letter). It is
possible to specify the character @ without know-
ing its character code: \catcode‘@12. Wherever
TEX looks for a number (after \catcode, \ifnum,
\number, etc.), it accepts a decimal number, an oc-
tal number prefixed by ’, a hexadecimal number
with digits 0-9A-F prefixed by ", an internal counter
(such as \linepenalty), a \count register (such as
\count42 or \@listdepth) or a character prefixed
by ‘. The character can be specified as a character
token, or as a single-character control sequence. It
is wise to specify {, }, % and space as \{, \}, \% and
\ , respectively, so the whole construct is properly
nested with respect to braces, and since % and space
tokens would be ignored.

However, many Babel language modules (.ldf
files) make the character ‘ active (i.e. \catcode

13), so the definition of ‘ in \catcode‘@12 gets
expanded. The expansion can be prevented by us-
ing \noexpand, but \noexpand‘ yields ‘13, which is
wrong, because ‘12 is needed, and moreover, will be
expanded in the second run, because TEX is look-
ing for a number. Fortunately, \string‘ solves the
problem, because \string changes the \catcode of

148 Preprints for the 2004 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

\@gobble\iftrue

\def\removebraces@stop#1#2\fi{#1}%

\def\removebraces#1{\ifx\hfuzz#1\removebraces@stop\fi

\expandafter\removebraces\expandafter{\ifcat{\noexpand#1\hfuzz\iffalse}\fi

\expandafter\removebraces\else\hfuzz}\removebraces@nob{#1}\fi}

\def\removebraces@nob#1#2{#2\ifx\hfuzz#1\hfuzz\expandafter\@firstoftwo% #2 is \fi

\expandafter\removebraces\fi\removebraces@nobone#1}

\def\removebraces@nobone#1{\noexpand#1\removebraces}

\message{R:\removebraces {{foo}{{}{b}{{{{a\fi}}}}r}}\hfuzz;}

Figure 2: \removebraces: A macro to remove all braces.

the following character token to 12 (other) or 10
(space); and, if a control sequence follows, \string
converts it to a series of character tokens with \cat

code other or space.
Thus, the ideal definition of \makeatletter is

\catcode\string‘\@11 , which doesn’t rely on the
previous \catcode of ‘ or of @. The space at the
end of the definition is needed so TEX knows that
the number 11 won’t be followed by subsequent dig-
its. Of course, the definition works only when the
characters catcodestring have \catcode letter, \
is an escape character (\cat code 0), and space is a
space (\catcode 10). These are reasonable assump-
tions, because none of the standard LATEX packages
change them.

The LATEX kernel’s definition of \makeatletter
is \catcode‘\@11\relax, having \relax instead of
space, which is equally good to mark the end of a
number. This definition doesn’t need \string, be-
cause at the time it is read, the \catcode of ‘ is
guaranteed to be 12 (other).

magyar.ldf saves the \catcode of ‘ ! & + -

= | ; : ’ " ? / in the beginning, changes them
to other, and restores them just before \endinput.
This is needed in case other .ldfs have been loaded
(e.g. \usepackage[french,magyar]{babel}) that
have redefined \catcodes. For example, french.ldf

activates ! ? ; :.
It is also good not to change \catcodes until

\begin{document} (not even \AtBeginDocument),
because other packages not yet loaded may depend
on the old, unchanged \catcodes. Babel, unfortu-
nately, activates a character immediately when a
shorthand is defined in an .ldf file, so this can
raise strange compatibility issues —which can be
partly resolved by loading most other packages be-
fore Babel. magyar.ldf solves this by not touch-
ing the \catcode of its own shorthands at the
time of definition, but instead calls \bbl@activate
in \extrasmagyar, and \bbl@deactivate in \no

extrasmagyar. This is a local and temporary solu-

tion only. Future versions of Babel are expected to
postpone character activation as far as \@preamble
cmds (see also section 2.21).

2.20 Shorthands

A shorthand is an active character defined by an
.ldf file with the \declare@shorthand command
provided by Babel. In this sense, all active punctu-
ation characters (see section 2.9) are shorthands.

The most important shorthand in magyar.ldf is
‘13. (Most .ldf files choose that character to be
the main shorthand, but some, such as germanb.ldf,
choose "13.) The use of Hungarian shorthands can
be disabled by the active= load option, and the
shorthand character can be changed from ‘ with the
activeprefix= load option. magyar.ldf also pro-
vides the \shu‘ command, which is a longer form of
‘13, but without the possibly hazardous \catcode

change.
Each shorthand is an active character, which

raises compatibility problems (see section 2.19). ma-

gyar.ldf tries as hard as possible to avoid problems,
but all efforts are in vain if another .ldf file is loaded
which activates the same shorthand in the default
(and unsafe) way.

For the user a shorthand is a control sequence
without a backslash, so a shorthand is a command
that can be typed and read quickly. germanb.sty pro-
vides "a to be equivalent to \"a, saving a keystroke
for every accented German letter. magyar.ldf doesn’t
provide this saving, because the letters o and u have
3 accented forms, and introducing different letters
for them would lead to confusion. Hungarian LATEX
authors are encouranged to use the latin2 encoding
to type accented letters as a single character.

But the shorthand does an important job con-
cerning (unaccented) long double consonants; for ex-
ample, ‘tty is an abbreviation for t\nobreak\dis

cretionary{y-}{ }{ }ty\nobreak\hskip\z@skip.
(Section 2.6 explains why this is needed.) It should

Preprints for the 2004 Annual Meeting 149

Péter Szabó

be noted that shorthands are implemented as TEX
macros, so ‘ {t}ty and ‘tty are equivalent.

The shorthand functionality of magyar.ldf for
non-letters is inspired by ukraineb.ldf. ‘= and ‘-

stand for a hyphen that separates words, so both
words are automatically hyphenated by TEX (imple-
mented as \leavevmode\nobreak-\hskip\z@skip);
‘- in math mode stands for a space character follow-
ing a delimiter (\mskip2.4mu plus3.6mu minus1.8

mu) that will magically be exactly as wide as if a
space was inserted outside math mode, because the
implicit \mskip0.6mu after the delimiter is already
subtracted; ‘-- emits \,--\,, to be used between
author names in Hungarian bibliographies; ‘| emits
a hyphen that is repeated at the beginning of the
next line if the line is broken there (implementation:
\leavevmode\nobreak-\discretionary {}{-}{-}

\nobreak\hskip\z@skip), to be used with long
words (e.g. nátrium--klorid) having important hy-
phens; ‘_ inserts a discretionary hyphen with au-
tomatic hyphenation enabled at both sides; ‘< in-
serts a French opening guillemet even if the liga-
ture << is missing from the current font; ‘> inserts
its paired closing; ‘" is equivalent to \allowbreak

with hyphenation enabled on both sides (implemen-
tation: \hskip\z@skip); ‘~ inserts a hyphen that
doesn’t form ligatures when repeated (implementa-
tion: \textormath{\leavevmode\hbox{-}}{-}).

2.21 Inserting Code at \@preamblecmds

Babel calls \selectlanguage to set the default lan-
guage \AtBeginDocument, which is (in general) too
early. Suppose that the default language redefines
\catcodes to be used with active characters. All
packages that are loaded after the default language
is activated will contain characters with unexpected
and invalid catcodes. For example, if hyperref.sty is
loaded after magyar.ldf, the \AtBeginDocument en-
tries of hyperref.sty contain \RequirePackage{name

ref}, which is executed after the entry \select

language{magyar} of babel.sty, so nameref.sty will
be loaded with wrong catcodes, and it will fail.

The solution is to postpone activation of the
default language until after the \AtBeginDocument

hooks. To accomplish this, magyar.ldf appends to
\@preamblecmds, which is executed by the LATEX
kernel in \document, after \AtBeginDocument.

But what about the call to \selectlanguage

inserted \AtBeginDocument by babel.def? For-
tunately, it becomes a no-op, because ma-

gyar.ldf modifies \selectlanguage to do nothing
if \languagename hasn’t changed —and this is ex-
actly the case when activating the default language.
On the other hand, \@preamblecmds has to force

the change even when \languagename is unchanged,
so it calls \select@language (notice the at-sign).
So magyar.ldf adds a call to \select@language to
\@preamblecmds.

It also runs \pagestyle{headings} for the rel-
evant document classes, so \ps@headings is exe-
cuted once more, and the Hungarian version of the
headings as defined by magyar.ldf will have a chance
to be installed.

2.22 Displaying Theorem Titles

In English, theorem titles are displayed as “Theorem
1”, but Hungarian requires “1. tétel.”. To imple-
ment this, the \@begintheorem and \@opargbegin

theorem macros are redefined each time the Hungar-
ian language is activated. However, if theorem.sty

or ntheorem.sty is loaded, the changes have to be
embedded into a theorem style. The chosen name
for the style is magyar-plain. It is activated by de-
fault when magyar.ldf is loaded, so theorem titles will
come out right unless the user calls \theoremstyle.
When amsthm.sty is loaded, magyar.ldf redefines the
macros \thmhead and \swappedhead so both will
emit the title properly.

2.23 Extra Symbols, \paragraph Titles, and

Description Items

Hungarian typography requires a separator charac-
ter other than a dot after the \paragraph title.
Thus, a paragraph in English starting with “title
text” should be something like “title � text”. ma-

gyar.ldf provides several pre-defined title separation
symbols, selected by the load option postpara=;
similarly, postsubpara= controls \subparagraphs
and postdescription= controls \items in the de-
scription environment.

magyar.ldf redefines \paragraph in a truly ugly
fashion when postpara= is active, so that no extra
horizontal space is inserted after the title, but the
title ends at the separation symbol. The default def-
inition of \paragraph is based on \@startsection,
whose argument #5 is a negative skip, which means
a positive horizontal skip after the title. This is
changed to -1sp by magyar.ldf to avoid the skip,
and an optional argument is always passed to the
original \paragraph so the title will be typeset with
the separator.

2.24 Indentation after Section Titles

Hungarian typography allows the first paragraph af-
ter a section title to be either indented or unin-
dented, so magyar.ldf provides afterindent= as the
load option to control this. LATEX calculates the
value of a boolean variable \if@afterindent from

150 Preprints for the 2004 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

\expandafter\addto\csname

\expandafter\ifx\csname mathoptions@on

\endcsname\relax check@mathfonts

\else mathoptions@on\fi

\endcsname{\catcode‘,12 \mathcode‘,"8000

\begingroup\lccode‘~‘,\lowercase

{\endgroup\def~}{\HuComma}}

Figure 3: \HuComma: Smart commas in math.

the signedness of a parameter of \@startsection,
and later uses that boolean to insert or omit the in-
dentation. The value is forced to true by magyar.ldf

by the simple definition \let\@afterindentfalse

\@afterindenttrue.

2.25 The Decimal Comma

The dot character is defined as ordinary in math-
ematical text by default, so decimal real numbers
can be typed simply as -12.34. Hungarian de-
notes the decimal point by a comma instead of a do,
but typing $-12,34$ yields ‘−12, 34’ with too much
space after the comma, because the comma is de-
fined as punctuation rather ordinary in math text.
$-12{,}34$ yields ‘−12,34’, which is correct, but
magyar.ldf provides two mechanisms to save the two
keystrokes of the curly braces around the comma.

First, the \HuComma macro below inserts an or-
dinary comma if it is followed by a digit, and an
operator comma otherwise:

\edef\hucomma@lowa#1#2 #3#4 #5#6\hfuzz{%

\noexpand\ifnum9<1#5 \noexpand\if#1t%

\noexpand\if#3c% (1)

\noexpand\mathord\noexpand\fi\noexpand\fi%

\noexpand\fi\mathchar%

\ifnum\mathcode‘,="8000 "613B \else\the%

\mathcode‘, \space\fi}%

\def\hucomma@lowb{\expandafter\hucomma@lowa

\meaning\reserved@a/ / /\hfuzz}%

\DeclareRobustCommand\HuComma

{\futurelet\reserved@a\hucomma@lowb}

The solution Donald Arseneau proposed to the com-
ma problem inspired these macros. In line (1)
\hucomma@lowa tests whether the \meaning of the
following character is ‘the character 〈digit〉’. A
\meaning is always at least three words, but it may
be more (e.g. ‘math shift character $’). Only the
character starts with letters t and c. An \edef is
needed above so the \mathchar emitted doesn’t de-
pend on \mathcode changes after the definition of
\HuComma. Then the comma character can be rede-
fined as \HuComma, as given in figure 3.

With these definitions, the formula ‘Fi(x, y) =
yi + 1,3x, x, y ∈ A, i = 1, 2, 3, . . .’ can be typed
simply as $F_{i}(x,y)=y^i+1,3x,\ x,y \in A,

\ i=1,\ 2,\ 3,\ldots$, if \ is breakable (such
as in nath.sty).

When nath.sty is loaded, the definitions are ap-
pended to \mathoptions@on, and if nath.sty is mis-
sing, to \check@mathfonts. The appropriate macro
is run just before \everymath by LATEX. Redefining
the \catcode and \mathcode this way ensures that
the proper comma is used inside math mode — un-
less the whole math formula is a macro argument
with already assigned \catcodes. Also, it is not
a good use of \begingroup, \lccode, \lowercase
and \endgroup to modify the active meaning of a
character without actually activating it. Calling
\catcode‘,13 before \def wouldn’t help here any-
way if the whole construct is embedded into a macro
definition, because \catcode wouldn’t be able to
change an already assigned catcode.

frenchb.ldf provides \DecimalMathComma and
\StandardMathComma to change the \mathcode of
the comma. However, the smart comma based on
\HuComma acts correctly without the user needing to
be aware of curly braces or redefinitions.

The solution above can be activated with the
loading option mathhucomma=fix. An alternative
approach doesn’t alter \mathcodes, but introduces
a special math mode in which the dot appears as a
comma only when the Hungarian language is active.
Thus the printout of \MathReal{-12.34} depends
on the current Babel language. The definition of
\MathReal in magyar.ldf is similar to:

\def\mathreal@lowa#1{\ensuremath{%

\mathreal@lowb#1\@gobble.}}

\def\mathreal@lowb#1.{%

#1\@secondoftwo\@gobble% (1)

{\mathchar"013B \mathreal@lowb}}% comma

\DeclareRobustCommand\MathReal{\ensuremath}%

{\catcode‘\ 11\relax\addto\extrasmagyar{%

\babel@save\MathReal %

\let\MathReal \mathreal@lowa}}

The argument of \MathReal must contain the
dot to be changed literally, outside braces. There is
a little macro wizardry in the implementation that
stops calling \mathreal@lowb infinitely. The call
\mathreal@lowa terminates its argument by a sen-
tinel \@gobble., so #1 of \mathreal@lowb will end
by \@gobble, which will gobble \@secondoftwo, so
the \@gobble in line (1) will take effect, which stops
the recursion.

\MathReal is going to be extended in the future
so it will handle physical units following the num-
ber properly, and it will also insert thin spaces after
each three digits. This feature has already been im-
plemented in frenchb.ldf.

Preprints for the 2004 Annual Meeting 151

Péter Szabó

2.26 Parsing Dates

There are many correct ways to write dates in Hun-
garian, and magyar.ldf provides an \emitdate com-
mand that can generate any of these formats. Doing
the reverse is a little more interesting.

Let’s suppose we have a Gregorian date consist-
ing of a year (4 or 2 digits), a month (a number or
a name) and a day-of-month in some standard for-
mat. We want a command \parsedate to detect the
format, split the date into fields, and call \fixdate:

\def\fixdate#1#2#3{%

\@tempcnta#1 \ifnum#1<50

\advance\@tempcnta2000 \fi

\ifnum\@tempcnta<100

\advance\@tempcnta1900 \fi

\typeout{found year=(\@tempcnta)

month=(#2) day=(#3)}}

Many dates have an optional dot at the end.
Since that dot doesn’t carry useful information, we
should remove it first. The \stripdot command de-
fined below expands to its argument with the trail-
ing dot removed. \stripdot works only if the argu-
ment doesn’t contain the token \relax. \relax is
not special; any other token would have worked.

\def\stripdot#1{\expandafter%

\stripdot@lowb\stripdot@lowa

#1\relax.\relax}%

\def\stripdot@lowa#1.\relax{#1\relax}%

\def\stripdot@lowb#1\relax#2\relax{#1}%

The definition of \parsedate is shown in fig-
ure 4. \parsedate first does some generic cleanup,
and puts the resulting date into \re@b. \endgroup

cancels the redefinition of \today etc., but \re@b

is expanded first, which defines itself, so the value
of \re@b will be retained after \endgroup. After
that, the trailing dot is stripped, and then vari-
ous \parsedate@· · · commands are run. If a com-
mand recognises the date format, it puts a call to
\fixdate into \re@a, which will be called at the end
of \parsedate. Strange strings like !//:!\hfuzz

are sentinels.
The idiom \expandafter\endgroup\re@b is an

important trick for expanding a macro before the
current group completes (and changes are undone).
It usually contains definitions of other control se-
quences whose meanings are about to be retained
after the end of the group. An alternative would be
to inject such a definition using \aftergroup, but
that only accepts a single token, so it would be very
painful to make a macro definition with spaces and
braces survive this way.

The individual \parsedate@· · · commands are
given in figure 5. This implementation of date pars-
ing isn’t error-proof. If something weird is passed
to \parsedate, it may produce surprising TEX er-

\def\parsedate#1{%

\begingroup

\def\today{\the\year-\the\month-\the\day}%ISO

\let\protect\string

% remove accents from Hungarian month names:

\let\’\@firstofone

\let~\space%change ‘2003.~okt’ to ‘2003. okt’

\edef\re@b{\def\noexpand\re@b{#1}}%

\expandafter\endgroup\re@b

\edef\re@b{\expandafter\stripdot\expandafter

{\re@b}}%

\let\re@a\@empty \expandafter\parsedate@a\re@b

!--!\hfuzz

\ifx\re@a\@empty \expandafter\parsedate@f\re@b

!//:!\hfuzz \fi

\ifx\re@a\@empty \expandafter\parsedate@b\re@b

!//!\hfuzz \fi

\ifx\re@a\@empty \expandafter\parsedate@c\re@b

!..!\hfuzz \fi

\ifx\re@a\@empty \expandafter\parsedate@d\re@b

!. xyz !\hfuzz \fi

\ifx\re@a\@empty \expandafter\parsedate@e\re@b

!xyz , !\hfuzz \fi

\ifx\re@a\@empty \errmessage{Unrecognised date:

\re@b}%

\else \re@a% call \fixdate

\fi}

Figure 4: \parsedate: Parse date formats.

rors. However, \parsedate can distinguish between
different formats of correct input.

2.27 Setting Up French Spacing

Hungarian typography requires \frenchspacing to
be turned on, but most LATEX users fail to fol-
low this requirement. Babel provides the com-
mand \bbl@frenchspacing, which turns French
spacing on if it was off. The frenchspacing= load
option of magyar.ldf controls how Hungarian text
should behave. For the sake of symmetry, magyar.ldf

provides \@@magyar@antifrenchspacing, which —
contrary to the typographical requirement —turns
french spacing off:

\def\@@magyar@antifrenchspacing{%

\ifnum\the\sfcode‘\.=\@m

\nonfrenchspacing

\let\@@magyar@nonfrenchspacing%

\frenchspacing

\else \let\@@magyar@nonfrenchspacing\relax

\fi}

\let\@@magyar@@nonantifrenchspacing%

\frenchspacing

\addto\extrasmagyar{\@@magyar%

@antifrenchspacing}

\addto\noextrasmagyar{\@@magyar%

152 Preprints for the 2004 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

\def\parsedate@a#1-#2-#3!#4\hfuzz{% ISO date: YYYY-MM-DD

\ifx\hfuzz#4\hfuzz\else \ifnum1<1\string#1\relax

\ifnum1<1\string#2\relax \ifnum1<1\string#3\relax

\def\re@a{\fixdate{#1}{#2}{#3}}%

\fi\fi\fi\fi}

\def\parsedate@b#1/#2/#3!#4\hfuzz{% LaTeX date: YYYY/MM/DD

\ifx\hfuzz#4\hfuzz\else \ifnum1<1\string#1\relax

\ifnum1<1\string#2\relax \ifnum1<1\string#3\relax

\def\re@a{\fixdate{#1}{#2}{#3}}%

\fi\fi\fi\fi}

\def\parsedate@c#1.#2.#3!#4\hfuzz{% English date: YYYY.DD.MM

\ifx\hfuzz#4\hfuzz\else \ifnum1<1\string#1\relax

\ifnum1<1\string#2\relax \ifnum1<1\string#3\relax

\def\re@a{\fixdate{#1}{#3}{#2}}%

\fi\fi\fi\fi}

% vvv English and Hungarian month names

\def\mon@jan{1} \def\mon@feb{2} \def\mon@mar{3} \def\mon@apr{4}

\def\mon@maj{5} \def\mon@may{5} \def\mon@jun{6} \def\mon@jul{7}

\def\mon@aug{8} \def\mon@sze{9} \def\mon@sep{9} \def\mon@okt{10}

\def\mon@oct{10} \def\mon@nov{11} \def\mon@dec{12}

\def\parsedate@d#1. #2#3#4#5 #6!#7\hfuzz{% {2003. oktober 25}

\ifx\hfuzz#7\hfuzz\else

% now: {#1}=={2003}, {#2#3#4#5}=={oktober}, {#6}=={25}

\ifnum1<1\string#1\relax \ifnum1<1\string#6\relax

\lowercase{%

\expandafter\ifx\csname mon@#2#3#4\endcsname\relax\else

\edef\re@a{\noexpand\fixdate{\number#1}{%

\csname mon@#2#3#4\endcsname}{\number#6}}\fi}%

\fi\fi\fi}

\def\parsedate@e#1#2#3#4 #5, #6!#7\hfuzz{% {October 25, 2003}

\ifx\hfuzz#7\hfuzz\else

\ifnum1<1\string#5\relax \ifnum1<1\string#6\relax

\lowercase{%

\expandafter\ifx\csname mon@#1#2#3\endcsname\relax\else

\edef\re@a{\noexpand\fixdate{\number#6}{%

\csname mon@#1#2#3\endcsname}{\number#5}}\fi}%

\fi\fi\fi}

\def\parsedate@f#1/#2/#3:#4!#5\hfuzz{% LaTeX default \today

% YYYY/MM/DD:XX:YY

\ifx\hfuzz#5\hfuzz\else \ifnum1<1\string#1\relax

\ifnum1<1\string#2\relax \ifnum1<1\string#3\relax

\def\re@a{\fixdate{#1}{#2}{#3}}%

\fi\fi\fi\fi}

Figure 5: Individual \parsedate· · · commands.

Preprints for the 2004 Annual Meeting 153

Péter Szabó

@nonantifrenchspacing}

2.28 varioref.sty Fixes

The magyar load option of varioref.sty (2001/09/04
v1.3c) is buggy, because it uses the never-defined
\aza command for adding definite articles, and it
also calls \AtBeginDocument too late, producing a
LATEX error each time the Hungarian language is
activated. magyar.ldf contains the correct definitions
for the language-specific text reference macros, such
as \reftextlabelrange, and also contains ugly fix-
up code to remove the wrong macros inserted by
varioref.sty. A patch has been sent recently to the
author of varioref.sty.

Some of these text reference macros use the \az
and the \told commands defined by magyar.ldf.

2.29 Removing Full Stops After Section

Titles in AMS Classes

AMS document classes always append a full stop af-
ter section titles, which is strictly forbidden in Hun-
garian typography. The solution is to remove the
tokens \@addpunct. from the definition of \@sect
(and also from \NR@sect in case nameref.sty has also
been loaded). But this simple idea is quite compli-
cated to program, and the result is ugly, as seen in
figure 6. This detects AMS classes by the presence
of \global\@nobreaktrue\@xsect in the definition
of \@sect, and adds code just before \@xsect. The
code added prepends \let\@addpunct\@gobble to
the definition of \@svsechd. \@svsechd is later
called by \@xsect, which calls \@addpunct, but by
that time \@addpunct is a no-op. The application
of this fix is controlled by the amspostsectiondot=

load option.

2.30 Reduced Math Skips

Investigations in [1] have shown that the following
settings produce the desired space for Hungarian
math mode:

\thickmuskip 4mu plus 2mu minus4mu

% LaTeX: 5mu plus5mu

\medmuskip 2mu plus1.5mu minus2mu

% LaTeX: 4mu plus2mu minus4mu

\thinmuskip 3mu % LaTeX: ditto

Notice that \medmuskip < \thinmuskip. These set-
tings can be selected in magyar.ldf with the load
option mathmuskips=. The difference between the
original and the reduced spacing:

a + b − c/d ∗ y ◦ x = z a+b−c/d∗y◦x = z

2.31 Breaking a Long Inline Math Formula

Hungarian typography requires that a binary rela-
tion or operator (e.g. in 1 + 2 = 3 + 4) must be
repeated in the next line if an inline math formula
is broken there. This can be accomplished for the
equation sign by substituting =\nobreak\discre

tionary{}{\hbox{\(=\)}}{} for = in math formu-
las. The long inline formula delimiters \(and \) are
used because the catcode of the $ would be wrong
if nath.sty was loaded after magyar.ldf. \nobreak is
necessary, so TEX itself won’t break the line after
the =.

The mathbrk= load option of magyar.ldf con-
trols whether the operators and relations should be
redefined. If so, the operators +, −, ∗ (as well as
37 operators available as control sequences) and the
relations <, >, =, : (as well as 43 relations avail-
able as control sequences) are modified so they get
repeated at the beginning of the line. The \cdot

and the \slash operators are also modified, because
Hungarian typography disallows breaking the line
around them.

2.32 Restarting Footnote Numbering on

Each Page

Although \usepackage[perpage]{footmisc} and
footnpag.sty provide these features, magyar.ldf al-
lows normal arabic footnote and page-restarting
asterisk-footnotes to be intermixed. It is common
in Hungarian article collections to have the notes
of the author numbered in arabic (by \footnote),
and the footnotes of the editor added with asterisks
(by \editorfootnote). The first four editorial foot-
notes on a page are marked with *, **, ***, and †.
magyar.ldf also inserts proper additional space be-
tween the footnote mark and the footnote text, and
the footnote facility is fully customizable with the
\footnotestyle command.

The basic idea behind the implementation of
pagewise numbering is creating a \label for each
footnote, and whenever the \pageref for that label
shows a different page, resetting the counter to zero.
This clobbering can be automated by abusing the
\cl@footnote hook. Each time \stepcounter ad-
vances a counter, the corresponding \cl@... hook
is called, which usually resets other counters (for ex-
ample, advancing the chapter counter resets the sec-
tion counter). But arbitrary code can be executed
after the automatic \stepcounter{footnote} by
appending that code to the macro \cl@footnote.

The famous problem of creating a macro that
will expand to n asterisks is proposed in appendix
D of The TEXbook [3]. David Kastrup has provided

154 Preprints for the 2004 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

\expandafter\amssect@fixa\@sect[][][][][][][][]%

\global\@nobreaktrue\@xsect\hfuzz\@sect

\expandafter\amssect@fixa\@sect[][][][][][][][]%

\global\@nobreaktrue\@xsect\hfuzz\NR@sect% with nameref.sty

\long\def\amssect@fixa#1\global\@nobreaktrue\@xsect#2\hfuzz#3{%

\ifx\hfuzz#2\hfuzz\else\amssect@fixb#3\fi}% fix if found

\def\amssect@fixb#1{% #1 is \@sect or \NR@sect

\expandafter\let\csname amssect@saved\string#1\endcsname#1%

\edef#1{\noexpand\expandafter\noexpand\amssect@low\expandafter

\noexpand\csname amssect@saved\string#1\endcsname}%

\let\@svsechd\@empty% prevent Undefined \cs

\long\def\amssect@low##1\global\@nobreaktrue{##1%

\expandafter\def\expandafter\@svsechd\expandafter{%

\expandafter\let\expandafter\@addpunct\expandafter\@gobble

\@svsechd}%

\global\@nobreaktrue}}

Figure 6: Removing full stops after AMS section titles.

a brilliant solution to the problem in [2], namely
\expandafter\mtostar\romannumeral\numbern00
0A, where \mtostar transforms ms to asterisks: \def
\mtostar#1{\if#1m*\expandafter\mtostar\fi}.
This solution is used in magyar.ldf.

magyar.ldf also provides the following command
to insert footnotes into section titles such that nei-
ther the table of contents nor the page headings are
affected:

\def\headingfootnote{%

\ifx\protect\@typeset@protect%

\expandafter\footnote

\else\expandafter\@gobble\fi

2.33 Class-specific Modifications

magyar.ldf does some modifications based on the cur-
rent document class (using the \@ifclassloaded

LATEX command). Only the standard classes ar-

ticle.cls, report.cls, book.cls and letter.cls are sup-
ported at present. The visual appearance of the
\part and \chapter output is changed, and the
page headers are also modified. For book.cls, part
numbering is spelled out, so “Part 1” becomes “Első
rész” (“Part One”) if the load option partnumber=

is set to Huordinal.
The command \ps@headings has to be exe-

cuted again to install its changed heading macros.
This is called from \@preamblecmds, after the de-
fault language has been activated (see section 2.21).

The typographically correct customization of
letter.cls is under development.

2.34 Spelling Out Numerals and Ordinals

The \@hunumeral and \@huordinal macros de-
fined in magyar.ldf can spell out integers between

−9999 and 9999. \@Hunumeral and \@Huordinal

are the capitalized versions of these macros.
For example, \@huordinal{2004} produces kéte-
zer-negyedik (“two thousand and fourth”) and
\@Hunumeral{2004} produces Kétezer-négy (“Two
thousand and four”). All of these macros are fully
expandable, so they can be used for \part num-
bering: \def\thepart{\@Huordinal\c@part}, or
more simply: \def\thepart {\Huordinal{part}}.

The most important implementation issue is the
method to retrieve the last digit of a number in an
expandable construct. If the number is between 0
and 9999, the following macro solves the problem:

\def\LastDigitOf#1{\expandafter%

\lastdigit@a\number#1;}%

\def\lastdigit@a#1;{% #1 in 0..9999

\ifnum#1<10 #1\else\ifnum#1<100

\lastdigit@b00#1%

\else\ifnum#1<1000 \lastdigit@b0#1%

\else\lastdigit@b#1\fi

\def\lastdigit@b#1#2#3#4{#4}

2.35 Suffix Generation

As mentioned earlier, the Hungarian language has
suffixes to represent relations in space and time, in-
stead of prepositions. For example, an English math
text might contain “It follows from (1)”, in which
“from (1)” can be typed as from (\ref{eq1}). The
LATEX referencing scheme guarantees that the text
above will come out right, even if the order of equa-
tions is changed in the document.

But in Hungarian, the suffix standing in place
of “from” has two forms: -ból/-ből, depending on the
vowel harmony of the pronounciation of \ref{eq1}.
So there is a need for automatic suffix generation.

Preprints for the 2004 Annual Meeting 155

Péter Szabó

magyar.ldf provides the command \told, with
which the Hungarian version of “from (1)” can be
typed as \told(\ref{eq1})+bol{}, which will gen-
erate “(1)-ből”, “(2)-ből”, but “(3)-ból”.

\told can handle 20 different suffixes, and 4 ·20
suffix combinations (such as \told3+adik+ra{},
meaning “to the third”). Only the last num-
ber is considered in references containing multiple
numbers. Roman numerals are recognised prop-
erly in references with the help of \hunnewlabel

(see section 2.17 — this is implemented similar to
\az). Suffix generation is supported only for inte-
gers and Hungarian document structure names (see
section 3.2), because writing a generic suffix genera-
tor without a database is quite a difficult task, and
definitely won’t give Hungarian LATEX users much
more comfort beyond the current \told implemen-
tation.

Although most Hungarian suffixes have 1, 2 or
3 forms,3 numbers can be classified into 23 paradigm
classes, so that the paradigm class uniquely deter-
mines the correct form of all known suffixes. The
reason that there are so many classes is because the
letter v of the -val/-vel suffix must be also changed
to the last letter of the number if that letter is a con-
sonant. Essentially each final digit has a class, and
there are classes for the powers of 10, and some of
the numbers 20, 30, . . . 90 also have their own classes.
To sum up, the suffix of a number depends on the
last nonzero digit, and the number of trailing zeroes.

The implementation of \told is suprisingly long
and ugly, full of recursive macros that parse the in-
put, and it doesn’t contain any bright ideas that are
not also found elsewhere in magyar.ldf. The curious
TEX hacker should study \az instead, because it is
shorter and its trick density is much higher.

2.36 Warning Messages

magyar.ldf has the unique feature that it displays
warning messages (called ‘suggestions’) at load time
to notify the user that they are using magyar.ldf in
a possibly incorrect way. If they are not disabled by
the suggestions= load option, the following sugges-
tions are displayed to standard output during the
\AtBeginDocument hook:

• the user forgot to load \usepackage{t1enc}—
so words with accented letters won’t hyphenate
automatically;

• the user forgot to load \usepackage[latin2]

{inputenc}, or the input encoding chosen is
not latin2, cp1250 or utf8— so there is a

3 Of course, suffixes with only one form are not supported

by \told.

good chance that accented characters will dis-
appear or come out wrong;

• the Hungarian hyphenation patterns requested
were not found—magyar.ldf tries to use the
other two possible Hungarian patterns, if they
are available;

• \def\magyarOptions or \PassOptionsToPac

kage{...}{magyar.ldf} was specified too late
— late options can be detected, but they have
no effect, since options do their work while ma-

gyar.ldf is being loaded;

• the buggy varioref.sty has been loaded as \use

package[magyar]{varioref}— this will hap-
pen until the patch is integrated to varioref.sty;
the current version is so buggy that it displays
an untraceable LATEX error each time the Hun-
garian language is activated (see section 2.28).

3 Miscellaneous Tricks

First we show some common expansion tool macros
defined by LATEX:

\def\@empty{}

\long\def\@gobble#1{}

\long\def\@gobbletwo#1#2{}

\long\def\@firstofone#1{#1}

\long\def\@firstoftwo#1#2{#1}

\long\def\@secondoftwo#1#2{#2}

\@firstofone differs from \@empty, because it
may not be followed by }, it ignores spaces in front
of its argument, and it removes at most one pair
of braces around its argument. All of these proper-
ties are consequences of the macro expansion rules
described in chapter 20 of The TEXbook [3].

This remainder of this section describes TEX
macro and typesetting tricks not tightly related to
the Hungarian language.

3.1 The Factorial Sign in Math Mode

nath.sty contains a smart definition of the factorial
operator, so (a + b)!/a! b! + c! · d!, with proper spac-
ing can be typed as $(a+b){!}/a!b!+c!\cdot d!$.
The only place where braces are needed is before the
slash. magyar.ldf adapts the definition:

\def\factorial{\mathchar"5021\mathopen{}%

\mathinner{}}

\expandafter\addto\csname \expandafter\ifx

\csname mathoptions@on\endcsname\relax

% detect nath.sty

check@mathfonts\else mathoptions@on\fi

\endcsname{\catcode‘!12

\mathcode‘!"8000

\begingroup\lccode‘~‘!\lowercase{%

\endgroup\def~}{\factorial}}

156 Preprints for the 2004 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

\def\NumbersToOne#1{\nonumbers@a#1\hfuzz}

\def\nonumbers@skipa#1\nonumbers@s{#1\nonumbers@a}

\def\nonumbers@a#1{% change first digit

\ifx#1\hfuzz \expandafter\@gobble

\else\if1<1\string#11\else\if\noexpand#1mi%

\else\if\noexpand#1di\else\if\noexpand#1ci%

\else\if\noexpand#1li\else\if\noexpand#1xi%

\else\if\noexpand#1vi\else\if\noexpand#1ii%

\else\if\noexpand#1MI\else\if\noexpand#1DI%

\else\if\noexpand#1CI\else\if\noexpand#1LI%

\else\if\noexpand#1XI\else\if\noexpand#1VI%

\else\if\noexpand#1II%

\else\noexpand#1\nonumbers@skipa

\fi\fi\fi\fi\fi\fi\fi \fi\fi\fi\fi

\fi\fi\fi\fi\fi \nonumbers@s}

\def\nonumbers@s#1{% gobble next digits

\ifx#1\hfuzz \expandafter\@gobble

\else\if1<1\string#1\else\if\noexpand#1m%

\else\if\noexpand#1d\else\if\noexpand#1c%

\else\if\noexpand#1l\else\if\noexpand#1x%

\else\if\noexpand#1v\else\if\noexpand#1i%

\else\if\noexpand#1M\else\if\noexpand#1D%

\else\if\noexpand#1C\else\if\noexpand#1L%

\else\if\noexpand#1X\else\if\noexpand#1V%

\else\if\noexpand#1I%

\else\noexpand#1\nonumbers@skipa

\fi\fi\fi\fi\fi\fi\fi \fi\fi\fi\fi

\fi\fi\fi\fi\fi \nonumbers@s}

Figure 7: \nonumbers: Change all roman and
arabic numbers to 1.

3.2 Including the Structure Name in

References

Text like “in subsection 5.6” is usually typed as
in subsection~\ref{that}. But it would be nice
if LATEX were able to guess that \ref{that} actu-
ally points to a subsection. The structure depth can
be deduced by counting the dots in the reference: a
subsection has one dot (in an article), and a subsub-
section has two dots.

magyar.ldf provides the \refstruc command
which has a smarter detection scheme: it changes
all roman and arabic numbers to one (1, i or I) in
the reference, and compares the result with the to-
kens generated by \thechapter, \thesection etc.,
with \c@chapter etc. set to 1 temporarily. This
should work in most cases, although it cannot refer
to equations, tables or figures. In Hungarian text,
the Hungarian structure names are emitted, and
other texts the original, English control sequence
names are printed. \refstruc includes the definite
article and suffixes support; for example,
\Az{\refstruc{that+tol}}

may emit az 1. fejezettől (“from chapter 1”).
The full implementation is quite long, and is

not included here, but the macro that changes all
roman and arabic numbers to one is presented in
figure 7.

\ifnum 0<%

\expandafter\ifx\csname setTrue\endcsname

\relax\else1\fi

\expandafter\ifx\csname allowttyhyphens\endcsname

\relax\else1\fi

\space

\def\amsfix#1#2#3#4#5#6#7\vfuzz{%

\def\reserved@a{#6}%

\ifx\@tocline#2\ifx\reserved@a\@empty%

\def#1{\@tocline{#3}{#4}{#5}{\parindent}{}}%

\fi\fi}

\expandafter\amsfix\expandafter\l@table \l@table

,,,,,,,\vfuzz

\expandafter\amsfix\expandafter\l@figure\l@figure

,,,,,,,\vfuzz

\fi

Figure 8: Fixing overfull \hboxes in AMS classes.

3.3 Enabling Long Page Numbers

If the width of a page number in the table of con-
tents is greater than \@pnumwidth, LATEX emits an
“Overfull \hbox” warning. This can be eliminated
by changing \@dottedtocline in the LATEX kernel.
The line \hb@xt@\@pnumwidth{\hfil \normalfont

\normalcolor #5} should be changed to:

\setbox\@tempboxa\hbox{\normalfont

R \normalcolor #5}%

\ifdim\wd\@tempboxa<\@pnumwidth\setbox%

\@tempboxa\hb@xt@\@pnumwidth{\hfil\unhbox

\@tempboxa}\fi \box\@tempboxa

Although this change isn’t related to the Hun-
garian language, magyar.ldf will do it given the
dottedtocline= load option.

3.4 Removing AMS Warnings from

\listoftables

Some AMS document classes (such as amsart.cls)
produce an “Overfull \hbox” warning for each line
in the \listoftables and \listoffigure. This
can be fixed by changing this line in the \l@table

and \l@figure macros in the AMS classes:
\@tocline{0}{3pt plus2pt}{0pt}{}{}{}

to:
\@tocline{0}{3pt plus2pt} {0pt}{}{\parindent}{}.

The code shown in figure 8 makes this change.
The control sequences \allowttyhyphens and

\setTrue are defined by each of the AMS document
classes, so their presence indicates that one of those
classes are loaded. The logical or operation using
\ifxs nested to the \ifnum test is also worth noting.

3.5 Discarding to End of File

The näıve solution \ifskiprest\endinput¶\fi re-
sults in the TEX error message “\end occurred when
\iftrue in line n was incomplete” if there is a line

Preprints for the 2004 Annual Meeting 157

Péter Szabó

break at the ¶ sign. Without the line break, the
näıve solution works perfectly, because \endinput

stops reading the current file after the current line,
so the \fi also gets evaluated.

It is possible to do something before \endinput:

\expandafter\ifx\csname

ver@foo.sty\endcsname\relax

\endinput \errmessage{I am incompatible

with foo.sty}\fi

All of the above must be put after \endinput

without a line break. The \csname fi\endcsname

construct closes the \ifx when the condition is true,
but is invisible when the condition is false, and TEX
is skipping tokens.

The LATEX kernel macro \@ifpackageloaded

implements the conditional end by a different trick.
The following two constructs are equivalent:

\@ifpackageloaded{foo}{\endinput\errmessage{I

am incompatible with foo.sty}}{}

and

\expandafter\ifx\csname ver@foo.sty\endcsname

\relax\expandafter\@gobble

\else \expandafter\@firstoftwo \fi

{\endinput

\errmessage{I am incompatible with foo.sty}}

In the trick above, \errmessage isn’t on the same
line as \endinput. This isn’t a problem, because
by the time \endinput is evaluated by TEX’s stom-
ach, \errmessage has been read from the file, and
it is already on the input stack. \endinput doesn’t
discard the input stack, it just prevents more lines
from being read from the current file.

3.6 Typesetting Text Verbatim

\catcodes are assigned when TEX’s eyes read the
next character from the current line, so a \catcode

command affects all subsequent characters of the
current line, as well as the following lines. But once a
category code has been assigned, it won’t be affected
by subsequent \catcode commands. For example,
\@firstofone{\catcode‘A 14 AAA} makes A into
a comment start character, but it emits three As,
because the category code of the three As is already
set by the time \catcode is executed.

The reason why the \verb command of the
LATEX kernel cannot be part of a macro argument
is the same: \verb changes the \catcode of most
characters to other, but these changes have no effect
inside a macro argument, because the argument has
been read from the input file by the time \catcode

can take effect.
Instead of altering \catcodes, a verbatim mac-

ro can be based on the \meaning primitive, so that
it can be passed as an argument. However, TEX’s

eyes will have destroyed some information such as
comments and the exact number of successive spaces
by the time \meaning is expanded. For example,
these definitions are from binhex.dtx:

\def\verbatize#1{\begingroup

\toks0{#1}\edef\next{\the\toks0}%

\dimen0\the\fontdimen2\font

\fontdimen2\font=0pt

\expandafter\stripit \meaning\next

\fontdimen2\font=\dimen0 \endgroup}

\def\stripit#1>{}

3.7 Stopping the Iteration

Let’s suppose we need a macro that capitalizes all
as and bs until the first “.”:

\def\ucab#1{%

\if\noexpand#1.\expandafter\@gobble

\else\if\noexpand#1aA%

\else\if\noexpand#1bB%

\else\noexpand#1%

\fi\fi\fi\ucab}

\message{\ucab abc.abc} % -> ABcabc

\noexpand prevents expansion of #1 in case it
is an expandable control sequence such as \the or a
macro. If \if is changed to \ifx, then not only the
character codes, but also the category codes would
be compared.

The trick that stops the iteration here is that
\expandafter expands the first \else that will re-
move everything up to the last \ucab. Then comes
\@gobble, which removes \ucab, and the iteration
is stopped.

The construct doesn’t work when #1 has braces
around it, or it is \if..., \else or \fi. Also, spaces
will be ignored because of macro expansion.

But what if we’d like to capitalize only the first

a or b? Then we would need \expandafter\expand

after\expandafter\@gobble after A, and seven
\expandafters after B. But \expandafter can be
completely avoided using a different approach, based
on macro arguments:

\def\helpif#1#2{#1\@firstoftwo}

\def\ucabs#1{%

\if\noexpand#1.\helpif\fi\@secondoftwo{}

{\if\noexpand#1a\helpif\fi\@secondoftwo{A}

{\if\noexpand#1b\helpif\fi\@secondoftwo{B}

{\noexpand#1\ucabs}}}%

}\message{\ucabs cbbas} % -> cBbas

It is not possible to move \fi into the defini-
tion of \helpif, because then TEX won’t see that
particular \fi when it is skipping the whole \if . . .
\helpif construction. With a small rearrangement
we can get rid of \@secondoftwo:

158 Preprints for the 2004 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

\@gobble{\iftrue\iftrue}

% \def\helpjf... contains 2*\fi

\def\helpjf#1\fi{#1\expandafter\@firstoftwo

\else\expandafter\@secondoftwo\fi}

\def\ucabj#1{%

\helpjf\if\noexpand#1.\fi{}

{\helpjf\if\noexpand#1a\fi{A}

{\helpjf\if\noexpand#1b\fi{B}

{\noexpand#1\ucabs}}}%

}\message{\ucabj cdabs} % -> cdAbs

The line containing \@gobble above is needed
so that \def\helpjf can be put inside \iffalse . . .
\fi, and TEX’s \fi count won’t decrease when see-
ing the two \fi tokens in the definition of \helpjf.

3.8 Appending Tokens to a Macro

TEX doesn’t provide primitives for modifying the ex-
pansion text of a macro, but it is possible to define a
new macro with the contents of the old one and some
additional tokens. For example, \expandafter\def
\expandafter\foo\expandafter{\foo\iffalse$}

appends the two tokens \iffalse$ to the macro
\foo. Three \expandafters were used to make the
old \foo only expanded once. None of the above to-
kens were expanded, fortunately. Any tokens can be
appended this way, as long as they are nested with
respect to braces. But care has to be taken when
doubling #s:

\def\AppendTo#1#2{\expandafter\def\expandafter

#1\expandafter{#1#2}}

\def\foo{} \AppendTo\foo{#}

yields the TEX error “Illegal parameter number in
definition of \foo”. This can be solved by using
token list registers, which double their hashmarks
when expanded in an \edef:

\def\AppendTo#1#2{\begingroup

\expandafter\toks\expandafter0%

\expandafter{\foo#2}%

\global\edef#1{\the\toks0}\endgroup}

\def\foo{} \AppendTo\foo{#x}

\show\foo % \foo=macro:-> ##x

Note that when a macro is defined, #s have to
be properly formulated, and it is \def which eats
half of #s (and converts #1 etc. to special, inaccessi-
ble tokens), but \edef doesn’t convert #6 to special
tokens if it comes from a token list register. The
disadvantage of the second definition of \AppendTo
is that it must be \global. (There is a much longer
solution that manually doubles the #s.) The \addto
command of Babel and the \vref@addto command
of varioref.sty are \global, similar to this solution.

3.9 Processing Arbitrary Package Options

LATEX packages can use the standard com-
mands \DeclareOption, \ExecuteOption and
\ProcessOptions to access package options passed
to them, and these commands work fine with a fixed
set of options. The \DeclareOption* command can
be used to declare arbitrary options:

%\DeclareOption{10pt}{\typeout{got ten-pt}}%(1)

\DeclareOption*{\typeout{got=(\CurrentOption)}}

\ProcessOptions % in file foo.sty

Two lines will be printed when foo.sty is loaded
as \usepackage[,foo=bar,,no,]{foo}. These are
got=(foo=bar) and got=no. The optional argu-
ment of \usepackage may contain spaces and/or
a single newline around commas and at the ends.
Class options are passed to \DeclareOption*, so
when \documentclass[10pt]{article} is active,
got=(10pt) will not appear, but when line (1) is
uncommented, got ten-pt will appear.

There is an alternative, low-level way for ac-
cessing all the options at once:

\AtEndOfPackage{\let\@unprocessedoptions

\relax}% prevent warning

\typeout{\csname opt@\@currname.\@currext

\endcsname}

This prints the full option list with extra spaces and
newlines removed, but commas, including superflu-
ous ones, are kept intact.

4 Beyond the Current magyar.ldf

4.1 Other Hungarian Typesetting Software

Although magyar.ldf contains most of the functional-
ity needed for following Hungarian typographic tra-
ditions, other utilities and packages can help in type-
setting Hungarian texts. Most of this software, in-
cluding magyar.ldf, is going to be available under the
name MagyarLATEX from http://www.math.bme.hu/

latex/.

magyar.ldf The new Hungarian module for Babel.
Version 1.5 was written by Péter Szabó begin-
ning in the autumn of 2003.

huhyph.tex or huhyph3.tex The old (version 3) Hun-
garian hyphenation \patterns for the T1 en-
coding, written by Gyula Mayer in 1998. Part
of most TEX distributions. See section 2.1.

huhyphc.tex The new version of the Hungarian hy-
phenation \patterns for the T1 encoding, writ-
ten by Gyula Mayer in 2002 [4]. Part of most
TEX distributions. Hyphenates foreign com-
pound words on the subword boundary, e.g.
szin-kron. See section 2.1.

Preprints for the 2004 Annual Meeting 159

Péter Szabó

huhyphf.tex The new version of the Hungarian hy-
phenation \patterns for the T1 encoding, writ-
ten by Gyula Mayer in 2002 r[4]. Part of most
TEX distributions. Hyphenates foreign com-
pound words phonetically, e.g. szink-ron. See
section 2.1.

ccs extract.pl A Perl script that helps with hyphen-
ation of words containing long double Hungar-
ian consonants. It finds all occurrences of such
words in the document and lets the user decide
whether to insert, for each unique word, the ma-

gyar.ldf shorthands for \discretionary breaks
for long double consonants. The program was
written by Péter Szabó in 2003.

lafmtgen.pl An easy-to-use Perl script that can gen-
erate format files (.fmt) containing all hyphen-
ation patterns required by the specified LATEX
document. It has some other features related
to generating and installing format files, and is
to be used with the Unix teTEX distribution. It
was written by Péter Szabó in 2003.

huplain.bst BibTEX style file for Hungarian biblio-
graphies, based on plain.bst. It encourages shar-
ing the same .bib database between Hungarian
and English documents. It follows the (simple)
convention that the style of a bibliography de-
pends on the language of the document con-
taining the entry, not the language of the entry
itself. It was written by Péter Szabó in 2003.

husort.pl A drop-in replacement of makeindex that
follows the Hungarian standards of index sort-
ing and typesetting. It is implemented as a Perl
script. It was written by Péter Szabó in 2003.

magyar.xdy Hungarian style file for the X̊ındy index
processing program. Implements the Hungar-
ian sorting order and a Hungarian typesetting
style. The implemented sorting order does not
follow Hungarian rules as strictly and elegantly
as husort.pl. It was written by Péter Szabó in
2003.

CM-Super The EC fonts in Type 1 format in T1 and
various other encodings. It is not part of Mag-

yarLATEX, but is available from CTAN. It is use-
ful for converting Hungarian text to PDF, so the
generated PDF file will contain the EC fonts in
Type 1 format, and will be rendered quickly and
nicely by Acrobat Reader.

MagyarISpell The Hungarian language database of
the Ispell spell checker for Unix. On Debian
systems, it can be installed with the command
apt-get install ihungarian.

Ispell has a TEX mode, which skips con-
trol sequences and comments when checking

TEX source. (Unfortunately, the arguments of
\begin{tabular} and many other non-textual
elements of LATEX documents are not skipped.)
Ispell can be used interactively, but this method
is not comfortable, and incremental checking is
not possible.

Ispell also has an interprocess communication
protocol, through which it can be integrated
into text editors. For example, Emacs has built-
in Ispell support to mark incorrect words vi-
sually. OpenOffice, LyX, editors in KDE and
newer versions of Vim can do the same. Ma-

gyarISpell works fine in these editors. It is not
part of MagyarLATEX, but it is freely available.

Note, however, that both the database and
the stemmer of MagyarISpell is far from perfect,
but among the Hungarian spell checkers only
this one works inside Ispell, so only this can be
easily integrated into editors.

MSpell A commercial Hungarian spell checker with
a no-cost Linux download, developed by Mor-
phologic (a company in Hungary that produces
linguistic software). Doesn’t have an interac-
tive mode, but can replace Ispell in inter-process
communication mode. A shell script is provided
that replaces the ispell command, so MSpell

can be integrated into text editors more easily.
It is not part of MagyarLATEX.

HunSpell The successor of MagyarISpell, but based
on a different spell checking architecture. It
understands Hungarian much better than Ma-

gyarISpell, but since it is not based on Ispell, it
is harder to integrate into text editors. For ex-
ample, it is not available from the Emacs spell
checking menu, even if it is installed. It is not
part of MagyarLATEX, but it is freely available.

4.2 Future Work

Some features are still missing from magyar.ldf:

• letter.cls is not customized properly, the left in-
dentation of the nested list environments is also
not customized;

• a macro to emit numbers with groups of three
digits separated is missing;

• layout.sty and many other packages don’t have
Hungarian captions yet;

• the shorthand ‘ is not disabled in math mode
to give nath.sty a chance to typeset Hsymm with
$H_{‘symm}$;

• \hunnewlabel should store table, figure or
equation, so \refstruc can insert it;

• new fonts and/or methods should be developed
in place of ‘tty;

160 Preprints for the 2004 Annual Meeting

Implementation Tricks in the Hungarian Babel Module

• Hungarian typography needs a baseline grid,
which is almost impossible to enforce in LATEX;

• some of the separation symbols proposed for af-
ter \paragraph are not available yet;

• section titles should not be larger than normal
text;

• bold fonts should be substituted for bold ex-
tended fonts, whenever available — and never
with an error or warning message; page num-
bers should be removed from blank pages;

• the width of \parindent should be computed
based on \textwidth;

• the length of the last line of a paragraph should
not be too near to the right margin, especially
if \parindent = 0;

• \vskips above and below sections should be re-
duced;

• providing the commands \H and \. for OT1-
encoded typewriter fonts;

• \MathReal should be extended with physical
units;

• virtual fonts to support \umlautlow in T1 en-
coding;

• bold in \begin{description} should be \emph;

• allow specifying some compile-time options at
run-time;

• \textqq should also work as an environment;

• \told should generate suffixes for month names.

Other features should be implemented outside
magyar.ldf, as external programs. All programs in
section 4.1 need improvement in one way or another.

4.3 Conclusion

An updated magyar.ldf which closely follows Hun-
garian typographical rules and works together with
the most popular LATEX packages without problems,
has been awaited for many years. This new version
is ready, as a single file longer than anything before,
and it is filled with many advanced features.

Most of the features adapt LATEX to Hungarian
typographical rules, but some of them are bug fixes
to various external packages, including design flaws
and compatibility issues in Babel itself.

The implementation of some features clearly
shows that TEX macro programming is an obscure
and ineffective way of solving some of the language-
related problems. It is hoped that new versions
of Ω, together with the new version of Babel, will
provide a framework in which such problems can
be addressed compactly and elegantly, without con-
stant awareness of actual and possible compatibility
glitches.

References

[1] Gyöngyi Bujdosó and Ferenc Wettl. On the
localization of TEX in Hungary. TUGBoat,
23(1):21–26, 2002.

[2] David Kastrup. De ore leonis. Macro expansion
for virtuosi. In EuroBachoTEX, May 2002.

[3] Donald E. Knuth. The TEXbook. Addison-
Wesley, 1984.

[4] Gyula Mayer. The Hungarian hyphenation mod-
ule of TEX and LATEX. Unpublished article in
Hungarian, 10 July 2002.

[5] Petr Sojka. Notes on compound word hyphen-
ation in TEX. TUGboat, 16(3):290–296, 1995.

Preprints for the 2004 Annual Meeting 161

Typesetting the Deseret Alphabet with LATEX and METAFONT

Kenneth R. Beesley
Xerox Research Centre Europe

6, chemin de Maupertuis

38240 Meylan

France

Ken.Beesley@xrce.xerox.com

http://www.xrce.xerox.com/people/beesley/

Abstract

The Deseret Alphabet was an orthographical reform for English, promoted by the
Church of Jesus Christ of Latter-day Saints (the Mormons) between about 1854
and 1875. An offshoot of the Pitman phonotypy reforms, the Deseret Alphabet is
remembered mainly for its use of non-Roman glyphs. Though ultimately rejected,
the Deseret Alphabet was used in four printed books, numerous newspaper arti-
cles, several unprinted book manuscripts, journals, meeting minutes, letters and
even a gold coin, a tombstone and an early English-to-Hopi vocabulary. This
paper reviews the history of the Deseret Alphabet, its Unicode implementation,
fonts both metal and digital, and projects involving the typesetting of Deseret
Alphabet texts.

1 Introduction

The Deseret Alphabet was an orthographical reform
for English, promoted by the Church of Jesus Christ
of Latter-day Saints (the Mormons) between about
1854 and 1875. While the Deseret Alphabet is usu-
ally remembered today as an oddity, a strange non-
Roman alphabet that seemed doomed to failure, it
was in fact used on and off for 20 years, leaving four
printed books (including The Book of Mormon), nu-
merous newspaper articles, several unprinted book
manuscripts (including the entire Bible), journals,
meeting minutes, letters and even a gold coin and
a tombstone. There is also growing evidence that
the Deseret Alphabet was experimentally used by
some Mormon missionaries to transcribe words in
Spanish, Shoshone, Hopi and other languages.

The Deseret Alphabet has been analyzed by a
number of historians [19, 11, 20, 21, 4, 1, 22, 6] and
justly criticized by typographers [21, 31], but what is
often overlooked is the corpus of phonemically writ-
ten documents, which are potentially interesting to
both historians and linguists. Because few people,
then or now, can be persuaded to learn the Alpha-
bet, the majority of the documents have lain unread
for 140 years. For example, in December of 2002,
an “Indian Vocabulary” of almost 500 entries, writ-
ten completely in the Deseret Alphabet, was finally
identified as being English-to-Hopi, being perhaps
the oldest written record of the Hopi language.

This paper will proceed with a short history
of the Deseret Alphabet, putting it in the context
of the Pitman phonotypy movement that inspired
it from beginning to end;1 special emphasis will be
placed on the variants of the Alphabet used over the
years, and on the cutting and casting of historical
fonts. Then I will review some modern digital fonts
and the implementation of the Deseret Alphabet in
Unicode, showing how some honest mistakes were
made and how the results are still awkward for en-
coding and typesetting some of the most interesting
historical documents. Finally, I will show how I have
used a combination of XML, LATEX, the TIPA pack-
age and my own METAFONT-defined [16, 10] des-

alph font to typeset a critical edition of the English-
to-Hopi vocabulary, and related documents, from
1859–60.

2 The Pitman Reform Context

2.1 The Pitman Reform Movements

To begin, it is impossible to understand the De-
seret Alphabet without knowing a bit about two
nineteenth-century orthographic reformers, Isaac
Pitman (1813–1897) and his younger brother Benn
(1822–1910). The Mormon experiments in ortho-
graphical reform, too often treated as isolated aber-
rations, were in fact influenced from beginning to

1 Parts of this paper were first presented at the 22nd In-
ternational Unicode Conference in San Jose, California, 11-13
September 2002 [6].

162 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

Figure 1: On 24 March 1854 the newly adopted Deseret Alphabet was first printed, probably using
wooden type, and presented to the Board of Regents of the Deseret University. Although this rare flier is
undated, it matches the 38-letter Alphabet as copied into the journal of Regent Hosea Stout on that date
[30]. Utah State Historical Society.

end by the Pitman movements, at a time when many
spelling reforms were being promoted.

2.1.1 Pitman Shorthand or Phonography

There have been hundreds of systems of stenogra-
phy, commonly called shorthand, used for writing
English; but Isaac Pitman’s system, first published
in his 1837 Stenographic Sound-hand and called
“phonography”,2 was soon a huge success, spreading
through the English-speaking world and eventually
being adapted to some fifteen other languages. Mod-
ern versions of Pitman shorthand are still used in
Britain, Canada, and in most of the cricket-playing
countries; in the USA it was taught at least into the
1930s but was eventually overtaken by the Gregg
system.

The main goal of any shorthand system is to
allow a trained practitioner, called a “reporter” in
the Pitman tradition, to record speech accurately at
speed, including trial proceedings,3 parliamentary
debates, political speeches, sermons, etc. Pitman’s
phonography, as the name implies, differs from most
earlier systems in representing the distinctive sounds
of English (what modern linguists call phonemes)

2 In 1839 he wrote Phonography, or Writing by Sound,

being also a New and Improved System of Short Hand.
3 In modern parlance we still have the term court reporter.

Figure 2: Early Pitman phonography.

Preprints for the 2004 Annual Meeting 163

Kenneth R. Beesley

rather than orthographical combinations. Simplic-
ity and economy at writing time are crucial: conso-
nants are reduced to straight lines and simple curves
(see Figure 2). The “outline” of a word, typically
just a string of consonants, is written as a single
connected stroke, without lifting the pen. Voiced
consonants are written as thick lines, their unvoiced
counterparts as thin lines, which requires that a Pit-
man reporter use a nib pen or soft pencil. Vow-
els are written optionally as diacritical marks above
and below the consonant strokes; one is struck by
the similarities to Arabic orthography. In advanced
styles, vowels are left out whenever possible, and
special abbreviation signs are used for whole sylla-
bles, common words, and even whole phrases.

2.1.2 Pitman Phonotypy

Pitman became justifiably famous for his phonog-
raphy. With help from several family members, he
soon presided over a lecturing and publishing in-
dustry with a phenomenal output, including text-
books, dictionaries, correspondence courses, jour-
nals, and even books published in shorthand, in-
cluding selections from Dickens, the tales of Sher-
lock Holmes, Gulliver’s Travels, Paradise Lost, and
the entire Bible. But while phonography was clearly
useful, and was both a social and financial success,
Pitman’s biographers [25, 24, 2] make it clear that
his real mission in life was not phonography but pho-

notypy,4 his philosophy and movement for reform-
ing English orthography, the everyday script used in
books, magazines, newspapers, personal correspon-
dence, etc.

The first Pitman phonotypy alphabet for which
type was cast was Alphabet No. 11, demonstrated
proudly in The Phonotypic Journal of January 1844
(see Figure 3). Note that this 1844 alphabet is bi-
cameral, sometimes characterized as an alphabet of
capitals; that is, the uppercase and lowercase let-
ters differ only in size. The letters are stylized, still
mostly recognizable as Roman, but with numerous
invented, borrowed or modified letters for pure vow-
els, diphthongs, and the consonants /T/, /D/, /S/,
/Z/, /Ù/, /Ã/ and /N/.5

4 According to one of Pitman’s own early scripts, which
indicates stress, he pronounced the word /fo"n6tipi/.

5 To provide a faithful representation of original Pitman
and Deseret Alphabet texts, I adopt a broad phonemic tran-
scription that uses, as far as possible, a single International
Phonetic Alphabet (IPA) letter for each English phoneme [12].
Thus the affricates á and ❐ are transliterated as the rarely
used IPA /Ù/ and /Ã/ letters, respectively, rather than the

sequences /tS/ and /dZ/ or even the tied forms /
>
tS/ and /

>
dZ/.

The diphthongs are shown in IPA as a combination of a nu-
cleus and a superscript glide. The Deseret Alphabet, and the

The goals of general spelling reform, to create
a new “book orthography”, are quite different from
those of shorthand. While shorthand is intended for
use by highly trained scribes, a book orthography is
for all of us and should be easily learned and used.
Where shorthand requires simplicity, abbreviation
and swiftness of writing, varying with the reporter’s
skill, a book orthography should aim for orthograph-
ical consistency, phonological completeness and ease
of reading. Finally, a book orthography must lend
itself to esthetic typography and easy typesetting;
Pitman’s phonographic books, in contrast, had to
be engraved and printed via the lithographic pro-
cess.6

Pitman saw his popular phonography chiefly as
the path leading to phonotypy, which was a much
harder sell. His articles in the phonographic (short-
hand) journals frequently pushed the spelling re-
form, and when invited to lecture on phonography,
he reportedly managed to spend half the time talk-
ing about phonotypy. Throughout the rest of his life,
Pitman proposed a long succession of alphabetic ex-
periments, all of them Romanic, trying in vain to
find a winning formula.

Pitman’s phonotypic publications include not
only his phonotypic journals but dozens of books,
including again the entire Bible (1850). But in the
end, phonotypy never caught on, and the various
phonotypic projects, including the constant cutting
and casting of new type, were “from first to last
a serious financial drain” [2]. In 1894, a few years
before his death, Pitman was knighted by Queen
Victoria for his life’s work in phonography, with no
mention made of his beloved phonotypy.

Today Pitman phonotypy is almost completely
forgotten, and it has not yet found a champion to
sponsor its inclusion in Unicode. But Pitman was
far from alone—by the 1880s, there were an esti-
mated 50 different spelling reforms under consider-
ation by the English Spelling Reform Association.
This was the general nineteenth-century context in
which the Deseret Alphabet was born; lots of people
were trying to reform English orthography.

Pitman-Ellis 1847 alphabet which was its phonemic model,
treat the /ju/ vowel in words like mule as a single diphthong
phoneme; see Ladefoged [17] for a recent discussion and de-
fense of this practice. Although in most English dialects the
vowels in mate and moat are diphthongized, the Deseret Al-
phabet follows Pitman in treating them as the simple “long
vowels” /e/ and /o/.

6 Starting in 1873, Pitman succeeded in printing phonog-
raphy with movable type, but many custom outlines had to
be engraved as the work progressed.

164 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

Figure 3: In January 1844, Isaac Pitman proudly printed the first examples of his phonotypy. This
Alphabet No. 11, and the five experimental variants that followed it, were bicameral, with uppercase and
lowercase characters distinguished only by size.

2.2 The Mormons Discover the Pitman

Movement

The Church of Jesus Christ of Latter-day Saints was
founded in 1830 in upstate New York by Joseph
Smith, a farm boy who claimed to have received a
vision of God the Father and Jesus Christ, who com-
manded him to restore the true Church of Christ. He
also claimed that he received from an angel a book,
engraved on golden plates, which he translated as
The Book of Mormon. His followers, who revered
him as a prophet, grew rapidly in number, and soon,
following the western movement and spurred by reli-
gious persecution, they migrated from New York, to
Ohio, to Missouri and then to Illinois, where in 1839
they founded the city of Nauvoo on the Mississippi
River.

Missionary work had started immediately, both
at home and abroad, and in 1837, the same year that
Pitman published his Stenographic Sound-hand, a
certain George D. Watt was baptized as the first
Mormon convert in England. Despite an unpromis-
ing childhood, which included time in a workhouse,
young George had learned to read and write; and be-
tween the time of his baptism and his emigration to
Nauvoo in 1842, he had also learned Pitman phonog-
raphy. The arrival of Watt in Nauvoo revolutionized
the reporting of Mormon meeting minutes, speeches
and sermons. Other converts flowed into Nauvoo,
so that by 1846 it had become, by some reports, the
largest city in Illinois, with some 20,000 inhabitants.

But violence broke out between the Mormons
and their “gentile” neighbors, and in 1844 Joseph
Smith was assassinated by a mob. In 1845, even dur-
ing the ensuing confusion and power struggles, Watt
gave phonography classes; one notable student was
Mormon Apostle Brigham Young. Watt was also
President of the Phonographic Club of Nauvoo [1].
In addition to phonography, Watt was almost cer-
tainly aware of the new phonotypy being proposed
by Pitman, and it is likely that he planted the idea
of spelling reform in Brigham Young’s mind at this
time.

In 1846, Watt was sent on a mission back to
England. The majority of the Church regrouped
behind Brigham Young, abandoned their city to the
mobs, and crossed the Mississippi River to spend the
bleak winter of 1846–47 at Winter Quarters, near
modern Florence, Nebraska. From here Brigham
Young wrote to Watt in April 1847:7

It is the wish of the council, that you procure
200 lbs of phonotype, or thereabouts, as you
may find necessary, to print a small book for
the benefit of the Saints and cause same to
be forwarded to Winter Quarters before nav-
igation closes, by some trusty brother on his
return, so that we have the type to use next
winter.

The “phonotype” referred to is the actual lead type
used for Pitman phonotypy. The Saints, meaning

7 The Latter-day Saints’ Millennial Star, vol. 11, 1847,
p. 8.

Preprints for the 2004 Annual Meeting 165

Kenneth R. Beesley

the members of the Church, were still in desperate
times—600 would die from exposure and disease at
Winter Quarters—and while there is no record that
this type was ever delivered, it shows that the Mor-
mons’ first extant plans for spelling reform involved
nothing more exotic than an off-the-shelf Pitman
phonotypy alphabet.

Figure 4: Alphabet No. 15 appeared in October
1844 and was the first of Pitman’s “lowercase”
or “small letter” alphabets, employing separate
glyphs for uppercase and lowercase letters.

It is not known exactly which version of Pit-
man phonotypy Young had in mind; Pitman’s al-
phabets went through no fewer than 15 variations
between January 1844 and January 1847, and the
isolated Mormons were likely out of date. In any
case, Pitman’s alphabets had by this time become
more conventionally Roman. Alphabet No. 15 (see

Figure 4), presented in The Phonotypic Journal of
October 1844,8 marked Pitman’s abandonment of
the bicameral “capital” alphabets, and his adop-
tion of alphabets that had distinguished uppercase
vs. lowercase glyphs, which he called “lowercase” or
“small letter” alphabets.

The Mormons started leaving Winter Quarters
as soon as the trails were passable, and the first
party, including Brigham Young, arrived in the val-
ley of the Great Salt Lake in July of 1847, founding
Great Salt Lake City. Mormon colonists were soon
sent throughout the mountain west. They called
their new land Deseret, a word from The Book of

Mormon meaning honey bee. In response to Mor-
mon petitions to found a State of Deseret, Congress
established instead a Territory of Utah, naming it
after the local Ute Indians. In spite of this nomi-
nal rebuff, Brigham Young was appointed Governor,
and the name Deseret would be applied to a newspa-
per, a bank, a university, numerous businesses and
associations, and even a spelling-reform alphabet.
The name Deseret, and the beehive symbol, remain
common and largely secularized in Utah today.

3 The History of the Deseret Alphabet

3.1 Deliberations: 1850–1853

Education has always been a high priority for the
Mormons, and on 13 March 1850 the Deseret Uni-
versity, now the University of Utah, was established
under a Chancellor and Board of Regents that in-
cluded the leading men of the new society. Actual
teaching would not begin for several years, and the
first task given to the Regents was to design and
implement a spelling reform.

Although serious discussion of spelling reform
began in 1850, I will jump ahead to 1853, when
the Regency met regularly in a series of well-doc-
umented meetings leading to the adoption of the
Deseret Alphabet. Throughout that year, the Re-
gents presented to each other numerous candidate
orthographies ranging from completely new alpha-
bets, to Pitman shorthand, to minimal reforms that
used only the traditional 26-letter Roman alphabet
with standardized use of digraphs. The discussion
was wide open, but by November of 1853, it was
clear that the “1847 Alphabet” (see Figure 5), a 40-
letter version backed jointly by Isaac Pitman and
phonetician Alexander J. Ellis [15], was the recom-
mended model. The 1847 Alphabet was presented
to the Board in a surviving chart (see Figure 6) and
the meeting minutes were even being delivered by

8 The Phonotypic Journal, vol. 3, no. 35, Oct. 1844.

166 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

Figure 5: The 1847 Alphabet of Alexander J. Ellis and Isaac Pitman as it appeared in Pitman’s 1850
Bible. This alphabet was the main phonemic model for the Deseret Alphabet in late 1853. The Board of
Regents of the Deseret University almost adopted a slightly modified form of this alphabet, but they were
persuaded, at the very last moment, to change to non-Roman glyphs. Compare the layout of this chart to
that of the Deseret Alphabet charts in the books of 1868–69 (see Figure 17).

reporter George D. Watt in the longhand form of
this alphabet.

Brigham Young, President of the Church of Je-
sus Christ of Latter-day Saints and Governor of the
Territory of Utah, took a personal interest in the
1853 meetings, attending many and participating
actively. On the 22nd and 23rd of November, he
and the Regents adopted their own modified ver-
sion of the 1847 Alphabet, with some of the glyphs

modified or switched, and names for the letters were
adopted. A couple of Pitman letters were simply
voted out, namely those for the diphthongs /Oj/
and /ju/, which are exemplified with the words oys-

ter and use in the 1847 chart. The result was a
38-letter alphabet, still very Pitmanesque and Ro-
manic. For the second time—the first was in 1847—
the Mormons were about to embark on a Pitman-
based spelling reform.

Preprints for the 2004 Annual Meeting 167

Kenneth R. Beesley

Figure 6: In November 1853, Parley P. Pratt presented “Pitman’s Alphabet in Small Letters” to the
Board of Regents in the form of this chart. These are in fact just the lowercase letters of the famous 1847
Alphabet devised by Isaac Pitman and Alexander J. Ellis. More stable than Pitman’s other alphabets, it
lasted several years and was used to print a short-lived newspaper called The Phonetic News (1849), the
Bible (1850), and other books. LDS Church Archives.

However, all plans were turned upside-down by
the sudden arrival of Willard Richards at the meet-
ing of 29 November 1853. Richards, who was Second
Counselor to Brigham Young, was gravely ill, had
not attended the previous meetings, and was not
up to date on the Board’s plans. But when he saw
the Board’s new Romanic alphabet on the wall, he
could not contain his disappointment. The following
excerpts, shown here in equivalent IPA to give the
flavor of George D. Watt’s original minutes, speak
for themselves:

wi w6nt e nju kajnd 6v ælfæbEt, dIfErIN fr6m
Di k6mpawnd mEs 6v st2f 2p6n Dæt Sit.... Doz
kæræktErz me bi Empl6Id In ImpruvIN Di IN-
glIS 6rT6græfI, Do æt Di sem tajm, It Iz æz
aj hæv s2mtajmz sEd, It simz lajk p2tIN nju
wajn Intu old b6tlz.... aj æm Inklajnd tu TINk
hwEn wi hæv riflEktEd l6NEr wi Sæl stIl mek
s2m ædvæns 2p6n Dæt ælfæbEt, ænd prhæps
Tro æwe Ol kæræktErz Dæt ber m2Ù rIzEm-
blEns tu Di INglIS kæræktErs, ænd Introdjus
æn ælfæbEt Dæt Iz 6rIÃInæl, so fAr æz wi no,
æn ælfæbEt EntajrlI dIfErEnt fr6m EnI ælfæbEt
In jus.9

9 “We want a new kind of alphabet, differing from the
compound mess of stuff upon that sheet. . . . Those charac-

Some objections were tentatively raised. It was
pointed out that the key committee had been in-
structed to keep as many of the traditional Roman
letters as possible, and that Brigham Young him-
self had approved the alphabet and had already dis-
cussed ordering 200 pounds of type for it. Richards
then attenuated his criticism a bit, but renewed his
call for a complete redesign, waxing rhetorical:

wh6t hæv ju gend baj Di ælfæbEt 6n Dæt kArd
aj æsk ju. So mi w2n ajtEm, kæn ju p6Int awt
Di fErst ædvæntEÃ Dæt ju hæv gend ovEr Di
old w2n? ... hw6t hæv ju gend, ju hæv Di
sem old ælfæbEt ovEr ægEn, onlI a fju ædiS-
næl mArks, ænd De onlI mIstIfaj It mor, ænd
mor.10

ters may be employed in improving the English orthography,
though at the same time, it is as I have sometimes said, it
seems like putting new wine into old bottles. . . . I am in-
clined to think when we have reflected longer we shall still
make some advance upon that alphabet, and perhaps throw
away all characters that bear much resemblance to the En-
glish characters, and introduce an alphabet that is original,
so far as we know, an alphabet entirely different from any
alphabet in use.”

10 “What have you gained by the alphabet on that card
I ask you. Show me one item, can you point out the first
advantage that you have gained over the old one? ... What
have you gained, you have the same old alphabet over again,

168 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

Richards believed fervently that the old Roman
letters varied too much in their values, that no one
would ever agree on their fixed use, and that keeping
them would just be a hindrance; a successful, lasting
reform would require starting with a clean slate. He
also argued for economy in writing time, paper and
ink. These arguments anticipated those advanced by
George Bernard Shaw in the 20th century to support
the creation of what is now known as the Shaw or
Shavian Alphabet [28, 18].11

Brigham Young and the Board of Regents were
persuaded, the Board’s modified Pitman alphabet
was defenestrated, and the first version of a new non-
Roman alphabet was adopted 22 December 1853,
with 38 original glyphs devised by George D. Watt
and perhaps also by a lesser-known figure named
John Vance. The Deseret Alphabet was born.

3.2 Early Deseret Alphabet: 1854–1855

In Salt Lake City, the Deseret News announced the
Alphabet to its readers 19 January 1854:

The Board of Regents, in company with the
Governor and heads of departments, have
adopted a new alphabet, consisting of 38
characters. The Board have held frequent
sittings this winter, with the sanguine hope
of simplifying the English language, and es-
pecially its Orthography. After many fruit-
less attempts to render the common alphabet
of the day subservient to their purpose, they
found it expedient to invent an entirely new
and original set of characters.

These characters are much more simple in
their structure than the usual alphabetical
characters; every superfluous mark suppos-
able, is wholly excluded from them.

The written and printed hand are substan-
tially merged into one.

Type of some kind, almost certainly wooden,12 was
soon prepared in Salt Lake City, and on 24 March
1854 a four-page folded leaflet with a chart of the
Deseret Alphabet was presented to the Board (see
Figure 1). In this early 1854 version of the Alpha-
bet, we find 38 letters, the canonical glyphs being
drawn with a broad pen, with thick emphasis on
the downstrokes, and light upstrokes and flourishes.
The short-vowel glyphs are represented smaller than
the others.

George D. Watt was the principal architect of
the Deseret Alphabet and, judging by surviving doc-

only a few additional marks, and they only mystify it more,
and more.”

11 http://www.shavian.org/
12 Deseret News, 15 August 1855.

uments, was also the first serious user. Watt was a
Pitman stenographer, and the early documents (see
Figure 7) are written in a distinctly stenographic
style.13 Watt drew the outline of each word cur-
sively, without lifting the pen. Short vowels, shown
smaller than the other glyphs in the chart, were in-
corporated into the linking strokes between the con-
sonants; thus vowels were usually written on up-
strokes, which explains their canonical thin strokes
and shorter statures in the first chart. The writer
had to go back and cross the ❽ vowels after finishing
the outline; and often short vowels were simply left
out.

The demands of cursive writing seem to have
influenced the design of several of the letters. In
particular, the fussy little loops on the ↕ (/d/), ➩

(/s/), ➜ (/g/), ➃ (/O/) and ✾ (/aw/) were used to link
these letters with their neighbors. Watt also com-
bined consonants together with virtuosity, “amal-
gamating” them together to save space, but at the
expense of legibility. Another lamentable charac-
teristic of the early style was the inconsistent use of
letters, sometimes to represent their phonemic value
and sometimes to represent their conventional name.
Thus Watt writes people as the equivalent of /ppl/,
expecting the reader to pronounce the first p-letter
as /pi/, that being the letter’s conventional name
when the alphabet is recited. Similarly, Watt can
spell being as the equivalent of just /bN/, the let-
ters having names pronounced /bi/ and /IN/, respec-
tively. While probably seen by shorthand writers as
a clever way to abbreviate and speed their writing,
the confusion of letter names and letter values is a
mistake in any book orthography.

Like Isaac Pitman, the Mormons could not re-
sist experimenting with their new alphabet, chang-
ing both the inventory of letters and the glyphs.
The 1854 alphabet was almost immediately modi-
fied, substituting new glyphs for /I/ and /aw/ and
adding two new letters for the diphthongs /Oj/ and
/ju/, making a 40-letter alphabet as printed in the
1855 Deseret Almanac of W.W. Phelps. This chart
was almost certainly the one copied by Rémy and
Brenchley [27] who visited Salt Lake City in 1855
(see Figure 8).14

Watt apparently believed that the same basic
alphabet could serve for both stenography and ev-
eryday orthography, or as the Deseret News, cited
above, put it, “The written and printed hand are

13 James Henry Martineau was another early cursive
writer.

14 For yet another chart of this version of the Alphabet,
see Benn Pitman’s The Phonographic Magazine, 1856, pp.
102–103.

Preprints for the 2004 Annual Meeting 169

Kenneth R. Beesley

Figure 7: Extract from the minutes of a Bishops’ meeting, 6 June 1854, concerning the support of the
poor. These minutes, written in a cursive, stenographic style, were prepared by George D. Watt and
addressed directly to Brigham Young. LDS Church Archives.

substantially merged into one.” This was in fact an
early goal of phonotypy, but it was soon abandoned
by Pitman as impractical [15]. The retention of this
old idea contributed to making the Deseret Alpha-
bet an esthetic and typographical failure.

One of the fundamental design problems in the
Alphabet was the elimination of ascenders and de-
scenders. This was done in a well-intentioned at-
tempt to make the type last longer—type wears out
during use, and the ascenders and descenders wear
out first—but the lamentable result was that all
typeset words have a roughly rectangular shape, and
lines of Deseret printing become very monotonous.
Some of the glyphs, in particular ✾ and ➜, are overly
complicated; and in practice writers often confused
the pairs ➠ vs. ➜ and ↕ vs. ➇. These fundamental
design problems need to be distinguished from the
font-design problems, which will be discussed below.

3.3 The 1857 St. Louis Font

The reform was moving a bit slowly. On 4 February
1856 the Regents appointed George D. Watt, Wil-
ford Woodruff, and Samuel W. Richards to prepare
manuscripts and arrange for the printing of books.
The journals of Richards and Woodruff show that
they went at it hammer and tongs, working on ele-
mentary readers and a catechism intended for teach-

ing religious principles to children. The next step
was to get a font made.

There are references to an attempt, as early
as 1855, to cut Deseret Alphabet punches right in
Utah, by a “Brother Sabins”,15 but there is as yet no
evidence that this project succeeded. In 1857, Eras-
tus Snow was sent to St. Louis to procure type, en-
gaging the services of Ladew & Peer, which was the
only foundry there at the time [31]. But Snow aban-
doned the type and hurried back to Utah when he
discovered that President Buchanan had dispatched
General Albert Sydney Johnston to Utah with 2500
troops from Fort Leavenworth, Kansas, to put down
a reported Mormon rebellion and install a new non-
Mormon governor. The news of “Johnston’s Army”
reached Salt Lake City 24 July 1857, when the al-
leged rebels were gathered for a picnic in a local
canyon to celebrate the tenth anniversary of their
arrival in Utah. In the ensuing panic, Salt Lake
City and the other northern settlements were aban-
doned, and 30,000 people packed up their wagons
and moved at least 45 miles south to Provo. The ter-
ritorial government, including records and the print-
ing press, were moved all the way to Fillmore in
central Utah. While this bizarre and costly fiasco,

15 The Latter-day Saints’ Millennial Star, 10 November
1855. The reference is probably to John Sabin (not Sabins),
who was a general mechanic and machinist.

170 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

Figure 8: Rémy and Brenchley almost certainly copied this chart from an almost identical one in W.W.
Phelps’ Deseret Almanac of 1855. With the addition of letters for /Oj/ and /ju/, this 40-letter version of
the Deseret Alphabet had the same phonemic inventory as the Pitman-Ellis 1847 Alphabet.

often called the Utah War or Buchanan’s Blunder,
was eventually resolved peacefully, it was another
setback to the Deseret Alphabet movement.

By late 1858, the Utah War was over, the St.
Louis type had arrived in Salt Lake City, and work
recommenced. It is very likely that only the punches
and matrices were shipped to Utah,16 and that the
Mormons did the actual type casting themselves.
The children’s texts prepared by the committee of
Woodruff, Richards and Watt had been lost; un-
fazed, Brigham Young told Woodruff to “take hold
with Geo. D. Watt and get up some more”.17 The
first use of the new type was to print a business card
for George A. Smith, the Church Historian. The
stage was now set for the revival of the Deseret Al-
phabet reform in 1859–60.

16 Deseret News, 16 February 1859.
17 Journal History, 20 November 1858. The journal of Wil-

ford Woodruff for 22 November 1858 indicates that the manu-
scripts were soon found.

3.4 The Revival of 1859–1860

3.4.1 Sample Articles Printed in the

Deseret News

The period of 1859–60 was a busy and productive
one for the Deseret Alphabet. The type was finally
available, and on 16 February 1859 the Deseret News

printed a sample text from the Fifth Chapter of
Matthew, the Sermon on the Mount. Similar prac-
tice texts, almost all of them scriptural, appeared
almost every week to May 1860. Despite this pro-
gress, everyone involved was extremely disappointed
with the St. Louis font, which was crudely cut and
ugly by any standards. Young felt that the poor
type did as much as anything to hold back the re-
form.

The 1859 Alphabet as printed in the Deseret

News (see Figure 9) had reverted to 38 letters, lack-
ing dedicated letters for the diphthongs /Oj/ and
/ju/, which had to be printed with digraphs; but

Preprints for the 2004 Annual Meeting 171

Kenneth R. Beesley

Figure 9: The Deseret News printed sample
articles in the Deseret Alphabet in 1859–60, and
again in 1864, using the crude St. Louis type
of 1857. This article, of which only a portion is
shown here, appeared in the issue of 30 November
1864, vol. XIV, no. 9, which also included reports
of the fall of Atlanta, Georgia to General Sherman
during the American Civil War.

the Deseret News apologized for the lack of a /ju/
letter and promised a correction as soon as a new
punch could be cut.18

In 2002 I found the punches for the 1857 St.
Louis font in the LDS Church Archives (see Fig-
ure 10). There proved to be only 36 punches in

18 The Deseret News also promised a new letter for the
vowel in air, which was a highly suspect distinction made in
some Pitman alphabets.

each of three sizes, but investigation showed that
they were originally intended to support a 40-letter
version of the Alphabet. The trick was the double
use of four of the punches, rotating them 180 de-
grees to strike a second matrix. Thus the punch for
➫ also served to strike the matrix for ➡; the punch
for ➦ also served for ➈; and similarly for the pairs
✽–➝ and ❹–✿. The sets include punches for the /Oj/
and /ju/ diphthongs, being ❀ and ❂, respectively,
but these glyphs had apparently fallen out of favor
by 1859 and were not used in the Deseret News.

Figure 10: Some smoke proofs of the 1857 St.
Louis punches, found in 2002 in the LDS Church
Archives. The ❀ and ❂ glyphs, representing /Oj/
and /ju/, respectively, were not used when the
Deseret News finally started printing sample
articles with the type in 1859.

3.4.2 Handwritten Deseret Alphabet in

1859–60

Brigham Young directed his clerks to use the Al-
phabet, and the history or biography of Brigham
Young was kept in Deseret Alphabet at this time.
Another surviving text from this period is the fi-
nancial “Ledger C”, now held at Utah State Univer-
sity (see Figure 12). This ledger was probably kept
by clerk T.W. Ellerbeck who later wrote [19], “Dur-
ing one whole year the ledger accounts of President
Young were kept by me in those characters, exclu-
sively, except that the figures of the old style were
used, not having been changed.”

The Ledger C alphabet has 39 letters, including
the glyph ❁ for /ju/ but using a digraph for /Oj/.
The Ledger abandons the Alphabet in May of 1860,
at the same time that the Deseret News stopped
printing sample articles, and the Deseret text was
at some point given interlinear glosses in standard
orthography.

172 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

Figure 11: A portion of the errata sheet, printed in Utah using the St. Louis type of 1857, for The

Deseret First Book of 1868. A much better font was cut for printing the readers (see Figure 15), but it
was left in the care of Russell Bros. in New York City.

Figure 12: Ledger C of 1859-60, probably kept by T.W. Ellerbeck, illustrates an idiosyncratic 39-letter
version of the Deseret Alphabet. There are still cursive links and “amalgamations” in this text, but far
fewer than in George D. Watt’s early texts of 1854–55. Interlinear glosses in traditional orthography were
added later. Utah State University.

My own favorite document from this era is the
Deseret Alphabet journal of Thales Hastings Haskell
[29], kept from 4 October 1859 to the end of that
year while he and Marion Jackson Shelton19 were
serving as Mormon missionaries to the Hopi.20 They
were staying in the Third-Mesa village of Orayvi
(also spelled Oribe, Oraibi, etc.), now celebrated as
the oldest continuously inhabited village in North
America. Haskell used a 40-letter version of the al-
phabet, like the contemporary Deseret News ver-
sion, but adding ❁ for /ju/ and, idiosyncratically, ❂

for /Oj/. The original manuscript is faint and fragile;
the following is a sample in typeset Deseret Alpha-
bet and equivalent IPA:

19 Shelton also kept a journal in 1858–59, in a mix of stan-
dard orthography, Pitman shorthand, and some Deseret Al-
phabet. LDS Church Archives.

20 The original journal is in Special Collections at the Brig-
ham Young University Library. At some unknown time after
the mission, Haskell himself transcribed the Deseret text into
standard orthography, and this transcription was edited and
published by Juanita Brooks in 1944 [9].

❣✻t ✷♣ t❯❦ ❜❊❦❢✷st æ♥❞ st❆t■❞ ■♥❞■✷♥ ✇❊♥t æ❤❊❞ t✉ ♦r✵❜

✈■❧■➹ t✉ t❊❧ ❉❊♠ ❉æt ✇✐ ✇ær ❦✷♠■◆

g6t 2p tUk bEkf2st [sic] ænd stAtId IndI2n
wEnt æhEd tu orajb vIlIÃ tu tEl DEm Dæt wi
wær k2mIN

In standard orthography, this reads, “Got up, took
b[r]eakfast and sta[r]ted [;] Indian went ahead to
Oribe village to tell them that we were coming.”
The missing r in breakfast is just an isolated error,
but the spelling of /stAtId/ for started is character-
istic; Haskell was from North New Salem, Franklin
Country, Massachusetts, and he dropped his rs after
the /A/ vowel [5]. Other writers similarly leave clues
to their accents in the phonemically written texts.

Marion J. Shelton was a typical 40-letter De-
seret writer from this period, using the more or less
standard glyphs ❀ for /Oj/ and ❁ for /ju/, as in the

Preprints for the 2004 Annual Meeting 173

Kenneth R. Beesley

following letter,21 written shortly after his arrival in
Orayvi.

♦r✵❜ ✈■❧❊➹✳ ➤✹ ➢❊❦s■❦♦✳

➤♦✈✳ 13, 1859.

➣■❧✷✈❞ ➣r✷❉r③,
✽ æ♠ s■t■◆ ✻♥ t✻♣ ✻✈ ♠✵ ❞✇❊❧■◆

r✵t■◆✳ ❸ ✇❡ ✇✐ ❣❊t ■♥t❯ ✶r ❤✶s ■③ ❚r✉ ❡ ❧■t❧ s❦✇ær ❤♦❧ ■♥

❉ r✉❢✳ ➲✐ ❣♦ ❞✶♥ ❡ ❧æ❞r æ♥❞ ❤✇❊♥ ✇✐ ❣❊t ❞✶♥ ✇✐ ❤æ✈ t❯

stæ♥❞ st✉♣■◆ ✻r ❜✷♠♣ ✶r ❤❊❞③✳ ➟❊st❊r❞❡ ➢✻r♥■◆ ✵ t❯❦ ❜r❊❦❢æst

✇■❉ ✇✷♥ ✻✈ ♠✵ r❊❞ ❢r❊♥❞③✳ ✽ ✇❊♥t ✷♣ ■♥t❯ ❉ ❚✷r❞ st♦r■ æ♥❞

s✐t❊❞ ♠✵s❊❧❢ ✻♥ ❉ ❢❧♦r ❜■s✵❞ ♠✵ ❢r❊♥❞✳ ❸ ❧❡❞■ ✻✈ ❉ ❤✶s ❜r❖t

❡ “Ù❆❦❆♣t✷”✱ ✻r ✷r❚❊♥ ➹❆r✱ ❢❯❧ ✻✈ s✉♣✱ æ♥❞ ❡ ❜æs❦❊t ❢❯❧ ✻✈

“♣✐❦”✳ ✭❡ ❜r❊❞ r■③❊♠❜❧■◆ ❜❧✹ ræ♣■◆ ♣❡♣❊r ❢♦❧❞❊❞✮ ❸ ♦❧❞ ❧❡❞■

s✐t❊❞ ❤✷rs❊❧❢✱ ❡ ❧■t❧ ❜✸ ❖❧s♦ æ♥❞ ❧æst❧■ ❉ ❦æt t❯ ■ts ♣❧❡s ✇■❉

■ts ❤❊❞ ■♥ ❉ s✉♣ æ♥❞ ■ts t❡❧ ✻♥ ❉ ♣✐❦✳ s♦ ✇✐ ❜r♦❦ ♣✐❦ ❞■♣t

s✉♣ ✇■❉ ✶r ❢■◆❣❊r③ æ♥❞ ❤æ❞ ❡ ♠❊r■ ❜r❊❦❢æst✳

❸✐③ ♦r✵❜■③ ❜✐t ❉ ➢✻r♠✷♥③ ❢✻r Ù■❧❞r❊♥✱ ❡ ❢✹ ❞✻❣③ æ♥❞

❦æts æ♥❞ ❤✻rs❊③✱ ❡ ❣❯❞ ♠❊♥■ ❙✐♣✱ t✷r❦■③✱ æ♥❞ Ù■❦♥③ ✇■❉ ❧✻ts ✻✈

♣✐Ù❊③✱ ❦✻r♥✱ ❜✐♥③✱ ♠❊❧✷♥③✱ r❊❞ ♣❊♣❊r✱ s❦✇✻❙❊③ &c. ❸✐③ ❚■◆③ ❉❡

r❡③✳

❸❊r ✇✷r❦❙✻♣s ❆r ✷♥❞❊r ❣r✶♥❞✳ ❉❊r ✇✷r❦ ■③ Ù✐❢❧■ ♠❡❦■◆

❜❧æ◆❦❊ts æ♥❞ ❜❊❧ts ✻✈ ✇✉❧—❉❡ r❡③ s✷♠ ❦✻t♥✱ æ♥❞ ❆r ♥✻t æ❞■❦t❊❞

t❯ ❜❊❣■◆✱ ❜✷t ❆r ✈❊r■ ■♥t❊❧■➹❊♥t æ♥❞ æ♥❞ ■♥❞✷str■✷s ■♥❞■æ♥③

✽ r✵t ➹♦❦■◆❧■ ❜✷t tr✹❢❯❧■✳ ➣✷t✱ ➣r✷❉r③✱ ✵ ❙æ❧ s✐ ❥✹ ♥❊❦st

❢❖❧ æ♥❞ ✇■❧ ❤æ✈ ❧✷r♥❞ ♠♦r æ❜✶t ❉✐③ ❢♦❦s ❜✵ ❉æt t✵♠ æ♥❞ ❉❊♥

✇✐’❧ ❤æ✈ ❜■❣ t❖❦s t❯❣❊❉r✳ ➟✹r③✱

♠✳➹✳❙❊❧t♥✳

➫❯ ❐✳➡✳ ➩♠■❚✱ ➨✳ ➣❊♥t❧■✱ ➨✳ ➠æ♠❜❧✱ ❐✳❐✱ ❐✳➯✳ æ♥❞ ✷❉r③✳

Here is the same letter transcribed into tradi-
tional orthography.

Oribe Village New Mexico.
Nov. 13. 1859.

Beloved Brothers,
I am sitting on top of my

dwelling writing. The way we get into our house is
through a little square hole in the top. We go down
a ladder and when we get down we have to stand
stooping or bump our heads. Yesterday morning I
took breakfast with one of my red friends. I went up
into the third story and seated myself on the floor
beside my friend. The lady of the house brought a
“chahkahpta” [tsaqapta], or earthen jar, full of soup,
and a basket full of “peek”. (a bread resembling blue
wrapping paper folded) The old lady seated herself,
a little boy also and lastly the cat to its place with
its head in the soup and its tail on the peek. So we

21 Marion Jackson Shelton to George A. Smith and others,
13 November 1859, George A. Smith Incoming Correspon-
dence, LDS Church Archives.

broke peek dipped soup with our fingers and had a
merry breakfast.

These Oribes beat the Mormons for children. a
few dogs and cats and horses, a good many sheep,
turkeys, and chickens with lots of peaches, corn,
beans, melons, and pepper, squashes &c. These
things they raise.

Their workshops [kivas] are underground. Their
work is chiefly making blankets and belts of wool—
they raise some cotton, and are not addicted to beg-
ging, but are very intelligent and industrious indi-
ans.

I write jokingly but truefully [sic]. But, broth-
ers, I shall see you next fall and will have learned
more about these folks by that time and then we’ll
have big talks together. Yours,

M.J.Shelton.

To G.L.[sic] Smith, R. Bentley, R. Campbell,
J.J, J.V. and others.

Over the years, Shelton proposed a number of
modifications to the Deseret Alphabet, including the
addition of the letter ⑨; its use in the following text22

shows that it was intended to represent the schwa, or
neutral vowel, a phoneme missing from the standard
Deseret Alphabet and from the 1847 Ellis-Pitman
Alphabet that was its principal model.

✽ ❞■❞ ♥✻t s✷❦s✐❞ ■♥ ❧✷r♥■◆ ❉❊♠ t❯ r✵t æ③ ❉ ❞æ♥s■◆ ❦✻♠❊♥st

❙✻rt❧■ ❆❢t❅r ✶r ❅r✵✈❅❧ ❉❡r æ♥❞ ❦✻♥t■♥❥❅❞ ✷♥t■❧ ✇✐ ❧❊❢t✳ ❜✷t ✵

æ♠ sæt■s❢✵❞ ❉æt ✇■❉ ♣r✻♣❅r ❦❆r❞③ ✽ ❦æ♥ ❧✷r♥ ❉❊♠ t❯ r✵t ■♥ ✇✷♥

✇■♥t❅r ♠♦r✳ ✵ ❤æ✈ ❉ ✵s t✻❧❅r❅❜❧■ ✇❊❧ ❜r♦❦❅♥✳

This experiment, which never caught on, re-
sulted in a 41-letter Deseret Alphabet. The text
in equivalent phonemic IPA is the following:

aj dId n6t s2ksid In l2rnIN DEm tU rajt æz D
dænsIN k6mEnst S6rtlI Aft@r awr @rajv@l Der ænd
k6ntInj@d 2ntIl wi lEft. b2t aj æm sætIsfajd Dæt wID
pr6p@r kArdz aj kæn l2rn DEm tU rajt In w2n wInt@r
mor. aj hæv D ajs t6l@r@blI wEl brok@n.23

22 Marion J. Shelton to Brigham Young, 3 April 1860,
Brigham Young Incoming Correspondence, LDS Church
Archives.

23 “I did not succeed in learning them to write as the danc-
ing commenced shortly after our arrival there and continued
until we left, but I am satisfied that with proper cards I can
learn them to write in one winter more. I have the ice toler-
ably well broken.”

174 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

3.5 The 1860s and the Printed Books

Most of the enthusiasm for the Deseret Alphabet col-
lapsed in 1860, and by 1862 it was dead, except in
the determined mind of Brigham Young. When Su-
perintendent of Common Schools Robert L. Camp-
bell presented Brigham Young with a manuscript of
a “first Reader” in standard orthography, Young re-
jected it emphatically, insisting that “he would not
consent to have his type, ink or paper used to print
such trash”.24

Figure 13: The 1855 Benn Pitman or American
Pitman Alphabet. In 1852, Benn Pitman
carried the Pitman phonography and phonotypy
movement to the United States, setting up The
Phonographic Institute in Cincinnati in 1853.
Whereas Isaac Pitman was an incurable tinkerer,
constantly modifying his alphabets, brother Benn
recognized the virtues of stability.

In 1864, the Regents considered adopting the
phonotypy of Benn Pitman, the brother of Isaac who
had established his own Phonographic Institute in
Cincinnati in 1853, but the ultimate response was a
recommitment to the Deseret Alphabet; sample Al-
phabet articles reappeared defiantly in the Deseret

24 Journal History, 22 May 1862.

News 11 May 1864 and continued to the end of the
year.

There were in fact several attempts during the
1860s to abandon the Deseret Alphabet. In Decem-
ber of 1867,25 the Board of Regents, with Brigham
Young, resolved unanimously to adopt “the phonetic
characters employed by Ben [sic] Pitman of Cincin-
nati, for printing purposes, thereby gaining the ad-
vantage of the books already printed in those pho-
netic characters.” However, on 3 February 1868,26

the Board once again did an about-face, recommit-
ted to the Deseret Alphabet and started the seri-
ous and expensive work of getting books prepared
for publication. Apostle Orson Pratt was hired to
transcribe The Deseret First Book and The Deseret

Second Book into the Deseret Alphabet.
After the disappointment with the crude St.

Louis type, the Regents in 1868 sent their agent
D.O. Calder to New York to get better workman-
ship. Calder engaged the firm of Russell Bros.,27

which cut and cast an English (14-point) font for
the project. The new school books (see Figures 14
and 15) were delivered to Salt Lake City in late 1868,
at which time Orson Pratt had already turned his
dogged energy to the transcription of The Book of

Mormon.
In 1869, Pratt was sent as the agent to New

York, to supervise the printing of The Book of Mor-

mon. He too chose Russell Bros. and had a font of
Long Primer (10-point) type cut and cast for the
body of the text.28 The bicameral nature of the
Deseret Alphabet allowed him to save some money
by using the lowercase letters of the existing En-
glish (14-point) font as the uppercase letters of the
Long Primer (10-point) font. Pratt also had fonts
prepared in the Great Primer (18-point) and Dou-
ble English (28-point) sizes to serve in headings and
titles. Not surprisingly, Pratt complained that the
three unlucky compositors assigned to the project
were making “a great abundance of mistakes in set-
ting type”, and he had to give the proofs four good
readings and supervise many corrections before the
pages could be stereotyped.29

25 Deseret News, 19 December 1867.
26 Deseret News, 3 February 1868.
27 Russell’s American Steam Printing House, located at

28, 30 and 32 Centre Street, New York City, Joseph and
Theodore Russell, Props.

28 Small Pica (11-point) type was also considered and, un-
fortunately, rejected. With the inherent design problems of
the Deseret Alphabet, the Long Primer type is too small for
comfortable reading.

29 Orson Pratt to Robert L. Campbell, 12 June 1869, De-
seret Alphabet Printing Files 1869, LDS Church Archives.

Preprints for the 2004 Annual Meeting 175

Kenneth R. Beesley

Figure 14: In 1868, The Deseret First Book, shown here, and The Deseret Second Book were printed by
Russell Bros. of New York and shipped to the Territory of Utah. The print run for each book was 10,000
copies.

The Book of Mormon (see Figure 16) was pub-
lished in two formats. The Book of Mormon Part I,
intended to serve as an advanced reader, consisted
of The First Book of Nephi, The Second Book of
Nephi, The Book of Jacob, The Book of Enos, The
Book of Jarom, The Book of Omni and The Words
of Mormon.30 The entire Book of Mormon was also
printed on better paper, and was more expensively
bound.

30 The Book of Mormon Part I is usually known, inac-
curately, among used-book dealers as “The First Book of
Nephi”. The Regents’ plan was eventually to offer the whole
book in three parts, printing Parts II and III with proceeds
from the sale of the first four books.

Receipts from 1868 and 186931 show that the
punches, matrices, type and other printing para-
phernalia remained the property of the Board of Re-
gents of the Deseret University, but they were left
in the care of Russell Bros. in expectation of future
work, which in fact never materialized. Although a
large collection of nineteenth-century punches sur-
vives at Columbia University in New York City, at-
tempts to locate the Russell Bros. Deseret Alphabet
punches have so far been unsuccessful.

31 Deseret Alphabet Printing Files 1868 and 1869, LDS

Church Archives.

176 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

Figure 15: A page from The Deseret First Book.

3.6 The 1868–69 “Book” Alphabet and

Fonts

After the disappointing debut of the St. Louis type,
used reluctantly to print sample articles in the De-

seret News in 1859–60 and 1864, Brigham Young
had vowed to go to England the next time to get
better workmanship.32 But in fact in 1868 and 1869
the Mormons went only as far as New York City,
engaging Russell Bros. to cut new punches, strike
matrices, cast type, typeset and print the books.

This time they did get professional workman-
ship, but the resulting book font is still somewhat
bizarre, partly because of the inherent awkwardness
of the basic shapes, and partly because of choices
in font design that now seem old-fashioned. A look

32 Journal History, 16 February 1859.

at the book font (see Figures 15, 16 and 17) shows
that the glyphs, compared to the earlier charts, have
been Bodonified: made rigidly vertical, symmetri-
cal wherever possible, and with extreme contrasts
of thick and thin. Thom Hinckley, an expert ty-
pographer and printer (personal communication),
has pointed out that the extreme thins of the font
reveal the punch cutter as a master; at the same
time, these thin lines would have caused the type to
wear quickly, which was one of the very problems
the Regents were trying to avoid; printing the ex-
treme thins also required the use of unusually high-
quality paper. The 38 glyphs of the 1868–69 book
font were basically the same as the 38 glyphs used in
printing articles in the Deseret News in 1859–60 and
1864; the only significant difference was that the old
➙ glyph was mirror-imaged to ➙.

Preprints for the 2004 Annual Meeting 177

Kenneth R. Beesley

Figure 16: In 1869, The Book of Mormon, a book of Mormon scripture, was published in two formats:
the first third of the book, which cost 75 cents, and the full text, which cost $2. Part I had a print run of
8000 copies, and a good specimen today sells for perhaps $250 to $300. Only 500 copies of the full Book of

Mormon were printed, and in 2004 an average copy sells for about $7000 or $8000.

Nash [21, pp. 23–29] lays out in devastating de-
tail how the Deseret Alphabet type violates prin-
ciple after principle of good book type, including
the catastrophic lack of ascenders and descenders.
In the words of printing historian Roby Wentz [31],
“The result was a very monotonous-looking line of
type.” Hinckley has emphasized the problems of
“weight” and “color” in the book font, resulting
from the extreme contrast of thicks and thins and
the uniformly thin short vowels.

I believe that the problems of weight and color,
including the thin representation of short vowels,
the fussy loops that overcomplicate some glyphs,
and the overall inharmonious collection of glyphs,
go all the way back to the original amateur concep-
tion of the Deseret Alphabet as being suitable for
both shorthand and everyday orthography. It was
awkward enough as shorthand, and the translation
to type was a failure that no amount of good type
design can really cure. One need only compare the

178 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

Figure 17: The 1868–69 Book Version of the Deseret Alphabet consisted of 38 letters, with uppercase
and lowercase characters distinguished only by size. Aside from the strange glyphs, the inventory,
grouping and alphabetical order of the Alphabet are based solidly on the 1847 Alphabet of Alexander J.
Ellis and Isaac Pitman (see Figure 5).

Deseret Alphabet to the Shavian Alphabet (see Fig-
ures 18 and 19) to see the difference between an
amateur and a professional design.

3.7 The 1870s: Decline and Fall

The Deseret First Book and The Deseret Second

Book had print runs of 10,000 copies each and sold
for 15 and 20 cents, respectively. The first third (in
actual quantity about a fourth) of the Book of Mor-

mon, intended as an advanced reader, had a print
run of 8,000 copies, and sold for 75 cents. Only 500
copies of the full Book of Mormon were printed, and
they sold for $2. Or more to the point, the books
did not sell.

By the mid 1870s, the Deseret Alphabet was
recognized as a failure even by Brigham Young. The
bottom line was that books were expensive to pro-
duce, and not even loyal Mormons could be per-
suaded to buy and study them. On 2 October 1875
The Juvenile Instructor, a magazine for Mormon
youth, laid the Deseret Alphabet to rest.

The Book of Mormon has been printed in the
Deseret Alphabet, but President Young has
decided that they are not so well adapted for
the purpose designed as it was hoped they
would be. There being no shanks [ascen-
ders or descenders] to the letters, all being
very even, they are trying to the eye, because

Preprints for the 2004 Annual Meeting 179

Kenneth R. Beesley

Figure 18: The Shaw or “Shavian” Alphabet
was designed by typographer Kingsley Read
and has inspired a number of other professional
typographers, including Ross DeMeyere (http:
//www.demeyere.com/shavian/). The glyphs are
simple and harmonious; ascenders and descenders
give words distinctive shapes and avoid monotony.
Copyright c© 2002 DeMeyere Design Incorporated.
All rights reserved. Reproduced by permission.

Figure 19: In this extract of Shavian script, the
title is set in the Ghoti (pronounced “fish”) font,
and the body in the Androcles font, both by Ross
DeMeyere. Copyright c© 2002 DeMeyere Design
Incorporated. All rights reserved. Reproduced by
permission.

of their uniformity. Another objection some
have urged against them has been that they
are entirely new, and we should have charac-
ters as far as possible with which we are fa-
miliar: and they have felt that we should use
them as far as they go and adopt new char-
acters only for the sounds which our present
letters do not represent.

There is a system known as the [Benn] Pit-
man system of phonetics which possesses the
advantages alluded to. Mr. Pitman has used
all the letters of the alphabet as far as possi-
ble and has added seventeen new characters
to them, making an alphabet of forty-three
letters. The Bible, a dictionary and a num-
ber of other works, school books, etc., have
been printed in these new characters, and it is
found that a person familiar with our present
method of reading can learn in a few minutes
to read those works printed after this system.
We think it altogether likely that the regents
of the University will upon further examina-
tion adopt this system for use in this Terri-
tory.

So while the Deseret Alphabet was dead, the Mor-
mons hadn’t yet given up on spelling reform. In July
of 1877, Orson Pratt was sent to Liverpool to ar-
range to have The Book of Mormon and The Book of

Doctrine and Covenants, another book of Mormon
scripture, printed in the Benn Pitman orthography,
“with the exception of two or three characters”.33

33 Journal of Discourses, vol. XIX, p. 112.

180 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

But in August of that year, after most of the spe-
cially ordered phonotype had arrived from London,
Brigham Young died; Orson Pratt was called back
home, and the Mormons never dabbled in ortho-
graphical reform again.

It has been written, and repeated numerous
times, that “the Deseret Alphabet died with Brig-
ham Young”; however, the Deseret Alphabet had
already been dead for at least a couple of years, and
what died with Brigham Young was a very serious
project, well in progress, to print Mormon scripture
in a slight modification of Benn Pitman’s “American
phonotypy”.

4 The Deseret Alphabet in Unicode

4.1 The Character Inventory and Glyphs

The Deseret Alphabet was first added to the Uni-
code 3.1 standard34 in 2001, in the surrogate space
10400–1044F, mostly through the efforts of John H.
Jenkins of Apple Computer.35 It holds some dis-
tinction as the first script proposed for the surrogate
space; as Jenkins describes it, “Nobody started to
implement surrogates because there were no charac-
ters using them, and nobody wanted their charac-
ters to be encoded using surrogates because nobody
was implementing them.”36 The Deseret Alphabet,
being a real but pretty dead script, was chosen as
a pioneer—or sacrificial lamb—to break the vicious
circle.

The Unicode 3.1 encoding handled only the 38-
letter version of the Deseret Alphabet (this made 76
characters, including uppercase and lowercase) used
in the printed books of 1868–69. The implementors
were honestly unaware that earlier 39- and 40-letter
versions of the Alphabet had been seriously used,
and so might need to be encoded. I later argued
vigorously37 for the addition of the /Oj/ and /ju/ let-
ters used in several earlier versions of the Alphabet,
including the one used in the Haskell journal and
Shelton letters that I have transcribed. John Jenk-
ins backed me up38 and again deserves the credit
for dealing with most of the paperwork and bureau-
cracy.

The two new letters were included in Unicode
4.0, but unfortunately I could not persuade them
to use the 1859–60 glyphs ❀ and ❁ as the citation
glyphs; instead they went all the way back to the
primitive glyphs of the 1854–55 charts. Unicode

34 http://www.unicode.org/
35 http://homepage.mac.com/jenkins/
36 http://homepage.mac.com/jenkins/Deseret/Unicode.html;

http://homepage.mac.com/jenkins/Deseret/Computers.html
37 Unicode discussion document N2474 2002-05-17.
38 Unicode discussion document N2473 2002-05-17.

Figure 20: The Deseret Alphabet as it appears
in Unicode 4.0. Copyright c© 1991–2003
Unicode, Inc. All rights reserved. Reproduced by
permission of Unicode, Inc.

Preprints for the 2004 Annual Meeting 181

Kenneth R. Beesley

Table 1: The Deseret Alphabet was added to
Unicode by General American English speakers
who honestly misunderstood the ❃ (/6/) and ➃

(/O/) vowels, which have collapsed to /A/ in their
dialect, and renamed them confusingly as SHORT

AH and LONG AH.

Char. IPA Original Name Unicode Name
➞ /i/ e as in eat LONG I

➙ /e/ a as in ate LONG E

⑩ /A/ ah as in art LONG A

➃ /O/ aw as in aught LONG AH

➥ /o/ o as in oat LONG O

➭ /u/ oo as in ooze LONG OO

❽ /I/ i as in it SHORT I

❹ /E/ e as in et SHORT E

î /æ/ a as in at SHORT A

❃ /6/ o as in ot SHORT AH

✿ /2/ u as in ut SHORT O

➉ /U/ oo as in book SHORT OO

fonts based on the current heterogeneous collection
of glyphs will be useless for any practical typesetting
of 40-letter Deseret Alphabet documents.

4.2 Unicode Character Names

The Unicode implementation of the Deseret Alpha-
bet is also flawed by some changes to the letter
names. Not to criticize anyone personally, but just
for the record, there are several reasons why the
name changes were ill-advised:

1. The Deseret Alphabet had a traditional set of
letter names already established and available.
Arbitrary changes in the names make it more
difficult to compare the original charts and the
Unicode charts.

2. Some early Deseret Alphabet writers, including
George D. Watt, consciously or unconsciously
confused the traditional letter names and their
phonological values. Some of their spellings
make sense only if the letters are read with their
original names.

3. Some letter-name changes were made because
the implementors simply did not hear and un-
derstand some of the vowel distinctions pro-
vided in the Deseret Alphabet; they were speak-
ers of General American English, a dialect that
has lost some of the vowel distinctions still pres-
ent in English and New England dialects.

The last point is the most unfortunate. Con-
sider Table 1: The original name for the Deseret ⑩

letter, which is /A/ in IPA, was “ah”, using a com-

mon convention in English romanization whereby
“ah” represents an unrounded low-back vowel. Most
English speakers use this vowel in the words father,
bah and hah. In England, and in much of New
England, this vowel is distinct from the first vowel
in bother, represented in Deseret Alphabet as ❃ or
in IPA as /6/, which is a rounded low-back vowel;
thus for these speakers the words father and bother

do not rhyme. But the rounded /6/ has collapsed
into unrounded /A/ in General American English, so
the words do rhyme for most Americans. Similarly,
the Deseret ➃ letter, IPA /O/, represents a mid-low
back rounded vowel that has also collapsed into /A/
for many American speakers. It can still be heard
quite distinctly in the speech of many New York-
ers, Philadelphians, and New Englanders in general.
The original Deseret name for the ➃, “aw”, used a
common convention for representing this rounded
vowel, which occurs in words like law, flaw, paw,
aught, caught, etc. The equivalent letter in the Shaw
Alphabet is appropriately named AWE. Not under-
standing the phonological distinctions involved, the
implementors of Unicode renamed ❃ as SHORT AH

and ➃ as LONG AH, giving precisely the wrong clues
to the pronunciation of these rounded vowels. Un-
fortunately, Unicode policy values consistency over
accuracy, and it’s almost impossible to change char-
acter names once they have been adopted.

5 Digital Fonts for the Deseret Alphabet

5.1 Non-METAFONT Fonts

5.1.1 Kearney’s Deseret Font

A number of digital fonts have been designed for
the Deseret Alphabet, most of them based on the
38-letter inventory and glyphs of the book font of
1868–69. The following is a very preliminary survey
of fonts that I was able to find and test in early
2004.39

The prize for the first digital font would seem to
go to Greg Kearney, whose Deseret font was created
about 1991 using Fontographer. Kearney (personal
communication) says that his font, now in the public
domain, was created for the LDS Church History
Department, now the LDS Church Archives, as a
display font for an exhibit.

I had difficulty testing this font40 to input spe-
cific texts on my Mac OS X system, but see Figure 21

39 The world of fonts, and especially amateur fonts, is woe-
fully lacking in documentation. I would be extremely grateful
for corrections and additions to the information in this sec-
tion.

40 http://www.fontage.com/pages/deseret.html; http:

//funsite24.com/fo/d/

182 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

Figure 21: Kearney’s Deseret font.

Figure 22: Bateman’s Deseret font.

for a sample of the glyphs as displayed by the Font-
Book application.

5.1.2 Bateman’s Deseret Font

Edward Bateman, a graphic designer in Salt Lake
City, scanned the Russell Bros. fonts from a copy of
The Deseret Second Book, cleaned them up electron-
ically using Fontographer, and created his font, also
called Deseret, in August 1995 [3]. The font came
out of his graphics work on the delightfully tongue-
in-cheek 1995 science-fiction film Plan 10 from Outer

Space,41 with a plot that revolves around a myste-
rious plaque written by aliens in the Deseret Al-
phabet. The font (see Figure 22) is still available
from Bateman,42 in both a TrueType version for
Windows and a PostScript version for Macintosh.43

He has plans (personal communication) to repack-
age the font on a CD-ROM for modern Mac owners
who no longer have a floppy-disk drive.

An unusual feature of the Bateman font is that
it contains only lowercase letters, or perhaps only
uppercase—you really can’t tell the difference in the
Deseret Alphabet. This font is notable for reproduc-
ing the extreme contrast of thicks and thins seen in
the original Russell Bros. font.

41 http://www.cc.utah.edu/∼th3597/kolob1.htm
42 http://www.xmission.com/∼capteddy/
43 Macintosh OS X can now handle Windows TrueType

fonts.

5.1.3 Jenkins’ Zarahemla and Sidon Fonts

John Jenkins of Apple has created two fonts. The
first, named Zarahemla, was created about 1995,
originally using Fontographer (personal communi-
cation). Jenkins scanned the 1868–69 Russell Bros.
glyphs, traced them, and cleaned them up digitally.
This font is still available stand-alone and was part
of Jenkins’ DLK44 (Deseret Language Kit) for typ-
ing Deseret Alphabet in Apple operating systems up
to OS 9. The Zarahemla glyphs (see Figure 23) are
now included in the Apple Symbols font distributed
with OS X. Real Unicode Deseret Alphabet text can
be typed using the Character Palette or the Unicode
Hex Keyboard.

A second Jenkins font, called Sidon, was cre-
ated about 1999, originally using METAFONT, with
the glyphs later copied into FontLab. “The idea was
to have a Deseret Alphabet font which was not in-
tended to just slavishly copy what the Church did
in the 1860s.” Sidon is not yet available stand-alone,
but the glyphs (see Figure 24) are now incorporated
into the Apple Simple font used to demonstrate the
Apple Font Tools.45

5.1.4 Brion Zion’s Beehive Font

A certain Brion Zion (perhaps a pseudonym) at
some point created a font named Beehive. As far

44 http://homepage.mac.com/jenkins/Deseret/
45 http://fonts.apple.com/

Preprints for the 2004 Annual Meeting 183

Kenneth R. Beesley

Figure 23: Jenkins’ Zarahemla font.

Figure 24: Jenkins’ Sidon font.

Figure 25: Kass’s Code2001 font.

184 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

as I can tell, it is no longer available, and numer-
ous Internet links to Zion pages are dead. A web-
page46 dedicated to Deseret Alphabet fonts is a vir-
tual cemetery of dead links.

5.1.5 Kass’s Code2001 Font

The freely available Code2001 font47 by James Kass
is a Plane 1 Unicode-based font, providing glyphs
for the characters in the surrogate space, including
Old Persian Cuneiform, Deseret, Tengwar, Cirth,
Old Italic, Gothic, etc. Kass informs me that the
glyphs (see Figure 25) were designed from scratch
and resided originally in the Private Use Area of the
Code2000 font until Deseret was officially accepted
and assigned code points in the surrogate space.

5.1.6 Thibeault’s Deseret and Bartok’s

HuneyBee Fonts

Daniel Thibeault took the Deseret Alphabet glyphs
from the Code2001 font and transposed them into
the ANSI range to make yet another font named De-

seret.48 Stephen Bartok’s HuneyBee font49 was cre-
ated in September 2003 by rearranging the glyphs in
Thibault’s Deseret font to effect a different keyboard
layout (personal communication). In both fonts the
glyphs are ultimately from the Code2001 font, al-
ready illustrated in Figure 25.

5.1.7 Elzinga’s Brigham Font

Dirk Elzinga of the Department of Linguistics and
English Language at Brigham Young University is
working on a new font called Brigham (see Fig-
ure 26), using FontForge, that is largely mono-width
but judiciously uses thinner strokes for the loops.

5.1.8 Robertson’s Fonts

Graphic designer Christian Robertson is working on
two fonts, “trying to make the Deseret Alphabet
look good in type” (personal communication), which
is quite a challenge. In his first font, Robertson is
not afraid to “take out some of the curly queues that
really mucked things up”, to rethink the represen-
tation of the short vowels, to add serifs, and even
to introduce something like ascenders. The sample
in Figure 27, kindly provided by Robertson, does
not represent the latest version of his font, and the
text is gibberish, but it illustrates his innovative ap-
proach. Robertson’s next font will be even more

46 http://cgm.cs.mcgill.ca/∼luc/deseret.html
47 http://home.att.net/∼jameskass/code2001.htm
48 http://www.angelfire.com/pq/Urhixidur/Fonts/

Fonts.html
49 http://home.earthlink.net/∼slbartok/projects/

fonts.htm

challenging, designed for typesetting the early cur-
sive manuscripts from 1854–55.

5.2 Beesley’s METAFONT desalph Font and

LATEX Package

My own desalph font (see Figure 28) was created
with METAFONT for the specific purpose of typeset-
ting 40-letter Deseret Alphabet manuscripts from
1859–60. These documents were typically written
with narrow nib pens, producing some thick-thin
distinction, so the coding relies heavily on META-
FONT penstroke commands. I took my inspiration
from the pre-book charts of 1854–55, and from real
handwriting. The penstrokes follow the path used to
draw the glyphs, giving a hint of the original hand-
writing that is completely obscured in the Bodoni-
fied book font of 1868–69.

The desalph font is made available in a desalph

package, which can be used in a LATEX document
much like the TIPA package.50 The input of Deseret
Alphabet characters can be done somewhat clumsily
using commands like \dalclongi (Deseret Alphabet
lowercase long i) for ✐ or \dauclongi (Deseret Al-
phabet uppercase long i) for ➞. Inside \textda{}

commands, a more convenient system of translitera-
tion “shortcuts” can be used. As I was already some-
what comfortable with the shortcuts of the TIPA

package, for entering IPA letters, I laid out the des-

alph font internally so that the same shortcuts could
be used wherever possible. Simple commands were
defined to enter diphthongs and affricates, which
have no shortcuts in TIPA. A simply defined \ipa{}

command allows the same commands to be used to
enter equivalent IPA diphthongs and affricates. The
principal entry commands are summarized in Ta-
ble 2, and some extra commands for unusual and
idiosyncratic glyphs are shown in Table 3. Upper-
case letters, found in Deseret Alphabet but not in
IPA, can be entered with corresponding uppercase
“uc” commands with names like \dauclongi, or by
placing the shortcut in the \uc{} command, e.g.
\uc{i}.

The use of METAFONT allowed me to define
the proper glyphs for the 1859–60 manuscripts, es-
pecially the ❀ used for /Oj/ and the ❁ used for /ju/,
which I have never seen in a printed chart or doc-
ument.51 When I found a manuscript with the ex-
perimental new letter ⑨ for the neutral vowel called
schwa (/@/), making a 41-letter alphabet, adding it
to my METAFONT font was a simple exercise.

50 http://tooyoo.l.u-tokyo.ac.jp/∼fkr/
51 An ❀ punch appears in the set of St. Louis punches of

1857, but it was not used when printing finally started in
1859.

Preprints for the 2004 Annual Meeting 185

Kenneth R. Beesley

Figure 26: Elzinga’s Brigham font.

Figure 27: Robertson’s experimental font.

Figure 28: Beesley’s desalph font.

Table 3: Extra commands used to enter rare and idiosyncratic Deseret Alphabet glyphs.

❂ \daucslju St. Louis 1857 font, unused glyph for /ju/
❂ \dauchaskoi Haskell’s idiosyncratic glyph for /Oj/
⑨ \daucschwa Shelton’s proposed glyph for schwa /@/
➮ \daucspellerow Deseret Phonetic Speller glyph for /aw/

186 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

Table 2: Commands from the desalph package
to insert 1859–60 Deseret Alphabet glyphs
into running text, and shortcuts that can be
used in desalph environments. The single-letter
shortcuts are parallel to the input transliteration
for the TIPA package. The commands defined
for diphthongs and affricates can also be used
inside \ipa{} commands, allowing the same entry
method to be used for both the Deseret Alphabet
and equivalent phonemic IPA.

Deseret Command Shortcut IPA

✐ \dalclongi i i
❡ \dalclonge e e
❆ \dalclonga A A
❖ \dalclongaw O O
♦ \dalclongo o o
✉ \dalclongu u u
■ \dalcshorti I I
❊ \dalcshorte E E
æ \dalcshorta \ae æ
✻ \dalcshortaw 6 6
✷ \dalcshorto 2 2
❯ \dalcshortu U U
✵ \dalcay \aI or \aJ aj

✸ \dalcoi \OI or \OJ Oj

✶ \dalcow \aU or \aW aw

✹ \dalcyu \ju or \Ju ju
✇ \dalcwu w w
❥ \dalcye j j
❤ \dalch h h
♣ \dalcpee p p
❜ \dalcbee b b
t \dalctee t t
❞ \dalcdee d d
Ù \dalcchee \tS Ù
➹ \dalcjee \dZ Ã
❦ \dalckay k k
❣ \dalcgay g g
❢ \dalcef f f
✈ \dalcvee v v
❚ \dalceth T T
❉ \dalcthee D D
s \dalces s s
③ \dalczee z z
❙ \dalcesh S S
❩ \dalczhee Z Z
r \dalcer r r
❧ \dalcel l l
♠ \dalcem m m
♥ \dalcen n n
◆ \dalceng N N

The skeleton example in Figure 29 illustrates
the use of the desalph and tipa packages, and the
definition of the \ipa{} command. This file yields
the following output:

A sample of Deseret Alphabet entered using
shortcuts:

✐ ❡ ❆ ❖ ♦ ✉ ■ ❊ æ ✻ ✷ ❯ ✵ ✸ ✶ ✹ ✇ ❥ ❤ ♣ ❜ t ❞ Ù ➹ ❦ ❣ ❢ ✈ ❚

❉ s ③ ❙ ❩ r ❧ ♠ ♥ ◆

Parallel phonemic IPA entered using the same
shortcuts:

i e A O o u I E æ 6 2 U aj Oj aw ju w j h p b t d Ù Ã
k g f v T D s z S Z r l m n N

6 Current and Future Projects

6.1 The Deseret Alphabet and Native

American Languages

Although the Deseret Alphabet was intended for
writing English, there was some hope and expec-
tation that it could be used to transcribe other lan-
guages, that it could serve as a kind of international
phonetic alphabet.52 The Deseret Alphabet reform
coincided with a period of intense Mormon interest
in Native Americans, and there is growing evidence
that missionaries tried to use the Alphabet in the
field. For example, Isaac Bullock wrote a Shoshone
vocabulary that includes Deseret Alphabet pronun-
ciations for at least some of the Shoshone words.53

In 1859, Marion J. Shelton tried to teach the De-
seret Alphabet to the Paiutes in the area of Santa
Clara, Utah, and there are hints that missionaries
may have tried to introduce Deseret-Alphabet-based
literacy to the Navajo, the Zuñi, the Creeks, and
other tribes. Much research remains to be done in
this area.

6.2 The Second Mormon Mission to the

Hopi: 1859–60

In the last couple of years, it has become clear that
there was a serious attempt to introduce Deseret-
Alphabet-based literacy to the Hopi. In 1859, Pres-
ident Brigham Young personally chose Marion J.
Shelton, instructed him to go to Hopi-land, stay a
year, learn the language and try to “reduce their
dialect to a written language” using the Deseret Al-
phabet.54 This was the second of fifteen early mis-
sions to the Hopi [23, 13, 14]. In December of 2002

52 Parley P. Pratt to Orson Pratt, 30 January 1854, Or-
son Pratt Incoming Correspondence, LDS Church Archives.
Journal History, 4 June 1859.

53 Glossary of Isaac Bullock, University of Utah Library,
Special Collections.

54 Brigham Young to Jacob Hamblin, 18 September 1859,
Brigham Young Outgoing Correspondence, LDS Church
Archives.

Preprints for the 2004 Annual Meeting 187

Kenneth R. Beesley

\documentclass[]{article}

\usepackage{times}

\usepackage{desalph}

\usepackage{tipa}

% commands used in \ipa{}, parallel to commands in \textda{}, to get

% an equivalent phonemic IPA transliteration of Deseret Alphabet

\newcommand{\ipa}[1]{{\tipaencoding%

\providecommand{\aI}{}\renewcommand{\aI}{aj\xspace}%

\providecommand{\aJ}{}\renewcommand{\aJ}{aj\xspace}%

\providecommand{\OI}{}\renewcommand{\OI}{Oj\xspace}%

\providecommand{\OJ}{}\renewcommand{\OJ}{Oj\xspace}%

\providecommand{\aU}{}\renewcommand{\aU}{aw\xspace}%

\providecommand{\aW}{}\renewcommand{\aW}{aw\xspace}%

\providecommand{\ju}{}\renewcommand{\ju}{ju\xspace}%

\providecommand{\Ju}{}\renewcommand{\Ju}{ju\xspace}%

\providecommand{\dZ}{}\renewcommand{\dZ}{\textdyoghlig\xspace}%

\providecommand{\tS}{}\renewcommand{\tS}{\textteshlig\xspace}#1}}

\begin{document}

\begin{center}

A sample of Deseret Alphabet entered using shortcuts:\\

\textda{i e A O o u I E \ae{} 6 2 U \aI{} \OI{} \aU{} \ju{}

w j h p b t d \tS{} \dZ{} k g f v T D s z S Z r l m n N}

\smallskip

Parallel phonemic IPA entered using the same shortcuts:\\

\ipa{i e A O o u I E \ae{} 6 2 U \aI{} \OI{} \aU{} \ju{}

w j h p b t d \tS{} \dZ{} k g f v T D s z S Z r l m n N}

\end{center}

\end{document}

Figure 29: A skeleton LATEX example using the TIPA and desalph packages

I discovered an uncatalogued and unidentified “In-
dian Vocabulary” in the LDS Church Archives, and
I was able to identify it as English-to-Hopi. I have
argued [8] that it was written by Marion J. Shelton
during this mission, and it appears to be the oldest
written evidence of the Hopi language.

The entire vocabulary has now been typed into
an XML format, with fields added for modern En-
glish and Hopi orthography, modern dictionary def-
initions, and comments and references of various
kinds. The XML file is downtranslated using a Perl-
language script, with the helpful Perl XML::Twig
package,55 to produce LATEX source code with De-
seret Alphabet output, using the desalph package
and font, and equivalent phonemic IPA output, us-
ing the TIPA package. The use of XML, the desalph

font, TIPA and LATEX allows me and my co-author
Dirk Elzinga to reproduce this extraordinary docu-
ment for study and publication. Creating and main-
taining the original data in an XML format gives us
all the advantages of XML validation and abstrac-
tion; and the flexibility of downtranslation to LATEX

55 http://www.xmltwig.com/xmltwig/

allows us to format the output in different ways suit-
able for proofreading or for final publication.

The English-Hopi Vocabulary (see Figure 30)
is written entirely in the Deseret Alphabet and in-
cludes 486 entries like the following

ræ❜■t✲st■❦ ♣❡Ù✳❦♦✳❤♦

with an English word on the left and a Hopi word in
Third Mesa (Orayvi) dialect on the right. Encoded
as XML, and with auxiliary information added, this
entry appears as shown in Figure 31. The XML file
is validated using a Relax NG schema. Downtrans-
lation of the XML entry currently yields the LATEX
output in Figure 32, which is a line in a table. When
typeset, the entry appears as shown in Table 4. This
open tabular format is ideal for proofreading, and for
the final paper all that will be required is a modified
Perl script to downtranslate the same XML file into
other LATEX codes that waste less space.

I have also transcribed the journal of Thales H.
Haskell, kept in the Deseret Alphabet from October
through December of 1859, and will include it in a
general history of the second mission to the Hopi
[7]. Here, for reading practice, is an extract from

188 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

Figure 30: A selection from the English-to-Hopi vocabulary showing parts of the entries for words
starting with /b/ and /t/ in English. The entry for bread, /brEd/=/pik/ (❜r❊❞=♣✐❦), is the second from
the top on the left; the Hopi word is now written piiki. The entry for boy, /bOj/=/ti.o/ (❜✸=t✐✳♦), is the
fourth from the top; the word is now written tiyo. LDS Church Archives.

<entry>

<left>r\ae{}bIt-stIk</left>

<eng>rabbit stick</eng>

<right>pe\tS{}.ko.ho</right>

<hd pages="449">puts$|$koho ‘rabbit stick, a flat

boomerang-like stick used for hunting; used for throwing

and hitting it on the run’</hd>

<mk></mk>

</entry>

Figure 31: An XML entry for the Hopi vocabulary.

his journal in the original Deseret Alphabet and in
equivalent phonemic IPA. Haskell idiosyncratically
uses the ❂ glyph for the /Oj/ diphthong instead of
the ❀ glyph used by most other writers in 1859.

✇❊♥t ❞✶♥ t✉ ♠✵ ✇❯❧❢ træ♣ ❜✷t ♥♦ ✇❯❧✈③ ❤æ❞ ❜❊♥ t❯ ■t ❦❡♠

❤♦♠ æ♥❞ ❢✶♥ ❜r ❙❊❧t♥ ♣r✐♣ær■◆ ❡ ❦r■st♠✷s ❢✐st ❣✻t ■t r❊❞■ æ♥❞

■♥✈✵t■❞ .3. ❖✈ ❉ ❤❊❞ ♠❊♥ ❖✈ ❉ ✈■❧■➹ t✉ ✐t ✇■❉ ✷s ❤æ❞ ❜✺❧❞

♠✷t♥ st✹❞ ♣✐Ù■③ s✹■t ❞✷♠♣❧■♥③ ❢r✵❞❦❡❦s ♣æ♥❦❡❦s æ♥❞ ♣✐❦ æ❢tr

❞■♥r ✇✐ s♠♦❦t s✷◆ ❡ ❤■♠ æ♥❞ ❤æ❞ s✷♠ ❦✻♥✈rs❡❙✷♥ ✇■❉ ✶r ■♥❞■✷♥

❢r❊♥❞③ ❉❡ æ♣✐r❞ t✉ ❊♥➹✺ ❉❊♠s❊❧✈③ ✈❊r■ ♠✷Ù

wEnt dawn tu maj wUlf træp b2t no wUlvz hæd
bEn tU It kem hom ænd fawn br SEltn pripærIN e
krIstm2s fist g6t It rEdI ænd InvajtId .3. Ov D hEd
mEn Ov D vIlIÃ tu it wID 2s hæd bOjld m2tn stjud
piÙIz sjuIt d2mplInz frajdkeks pænkeks ænd pik æftr
dInr wi smokt s2N e hIm ænd hæd s2m k6nvrseS2n
wID awr IndI2n frEndz De æpird tu EnÃOj DEmsElvz
vErI m2Ù

6.3 Other Possible Deseret Alphabet

Typesetting Projects

Around 1985 the original Deseret Alphabet Book of

Mormon was scanned and OCRed under the direc-
tion of Prof. John Robertson of the Brigham Young
University Linguistics department, and the text was
proofread by Kristen McKendry.56 The surviving
files from this project are not well organized, and
may not be complete, but it appears that the De-
seret Alphabet Book of Mormon could now be re-
produced without too much difficulty. As the orig-
inal Book of Mormon had a print run of only 500
copies, and as a copy today can fetch upwards of

56 This project, circa 1985–86, used a Kurzweil scanner,
which was trained to recognize Deseret text. However,
McKendry reports (personal communication) that the raw
output of the OCR was so poor and the proofreading so oner-
ous that it might have been easier just to type in the text
manually.

Preprints for the 2004 Annual Meeting 189

Kenneth R. Beesley

340 & \raggedright \index{rabbit stick, 340} rabbit stick \\

\textda{r\ae{}bIt-stIk} \\

\ipa{r\ae{}bIt-stIk} & \raggedright \ipa{pe\tS{}.ko.ho} \\

\textda{pe\tS{}.ko.ho} & HD p.\@ 449: puts$|$koho

‘rabbit stick, a flat boomerang-like stick

used for hunting; used for throwing and hitting

it on the run’\\

Figure 32: LATEX output from downloading an XML entry.

Table 4: Entry of the English-Hopi vocabulary typeset for proofreading.

340
rabbit stick
ræ❜■t✲st■❦

ræbIt-stIk

peÙ.ko.ho
♣❡Ù✳❦♦✳❤♦

HD p. 449: puts|koho ‘rabbit stick, a
flat boomerang-like stick used for hunt-
ing; used for throwing and hitting it on
the run’

$7000 or $8000, there has always been some interest
in retypesetting it.

The Deseret First Book and The Deseret Sec-

ond Book had print runs of 10,000 copies each, are
therefore much more plentiful, and copies today go
for around $200. The Deseret First Book has even
been reprinted photographically for sale to tourists
as a Utah curiosity [26], and the text has been keyed
in by John Jenkins, and proofread by Michael Ever-
son and by myself. Such projects are of interest to
linguists who want to search the texts electronically.

In 1967, LDS Church archivists found a bun-
dle of forgotten Deseret Alphabet manuscripts, some
of them ready for the typesetter but never printed
[32]. These include The Doctrine and Covenants,
with the Lectures on Faith; the Catechism of John
Jaques; and the entire text of the Bible. The LDS

Church Archives also hold the History of Brigham

Young, a number of letters, an unfinished Deseret

Phonetic Speller, journals, letters and probably a
number of other documents still to be found.

7 Conclusion

Although the Deseret Alphabet was never intended
for secrecy [6], few people then or now can be per-
suaded to learn it, and a number of interesting doc-
uments have been ignored and unstudied for over
140 years. The letters and journals are of interest to
historians, and the phonemically written texts are
also of interest to linguists. With the help of XML,
LATEX, TIPA and new digital fonts for the Deseret
Alphabet, these neglected documents are coming to
light again.

References

[1] Douglas D. Alder, Paula J. Goodfellow, and
Ronald G. Watt. Creating a new alphabet for
Zion: The origin of the Deseret Alphabet. Utah

Historical Quarterly, pages 275–286, 1984.

[2] Alfred Baker. The Life of Sir Isaac Pitman: In-

ventor of Phonography. Isaac Pitman and Sons,
New York, 1908.

[3] Edward Bateman. A brief history of the Deseret
Alphabet. Emigre, (52):72–77, 1999. Fall.

[4] Kenneth R. Beesley. The Deseret Alphabet:
Can orthographical reform for English succeed?
1975.

[5] Kenneth R. Beesley. Dialect determinants in
the Deseret Alphabet journal of Thales H.
Haskell. Deseret Language and Linguistic Soci-

ety Bulletin, (3):2–35, 1977.

[6] Kenneth R. Beesley. The Deseret Alphabet
in Unicode. In Proceedings of the 22nd Inter-

national Unicode Conference, volume 2, San
Jose, California, September 11–13 2002. Uni-
code Consortium. Paper C10.

[7] Kenneth R. Beesley. The second Mormon mis-
sion to the Hopi: 1859–60. Forthcoming, 2004.

[8] Kenneth R. Beesley and Dirk Elzinga. An 1860
English-to-Hopi vocabulary written in the De-
seret Alphabet. Forthcoming, 2004.

[9] Juanita Brooks. Journal of Thales H. Haskell.
Utah Historical Quarterly, pages 69–98, 1944.

[10] Bernard Desgraupes. METAFONT: Guide pra-

tique. Vuibert, Paris, 1999.

[11] Leah R. Frisby and Hector Lee. The Deseret
readers. Utah Humanities Review, 1:240–244,
1947.

190 Preprints for the 2004 Annual Meeting

Typesetting the Deseret Alphabet with LATEX and METAFONT

[12] IPA. Handbook of the International Phonetic

Association: A Guide to the Use of the Inter-

national Phonetic Alphabet. Cambridge Univer-
sity Press, Cambridge, 1999.

[13] Harry C. James. The Hopi Indians: Their his-

tory and their culture. Caxton, Caldwell, ID,
1956.

[14] Harry C. James. Pages from Hopi History. The
University of Arizona Press, Tucson, AZ, 1974.

[15] J. Kelly. The 1847 Alphabet: An episode of
phonotypy. In R. E. Asher and Eugénie J. A.
Henderson, editors, Towards a History of Pho-

netics, pages 248–264. Edinburgh University
Press, Edinburgh, 1981.

[16] Donald E. Knuth. The METAFONTbook.
Addison-Wesley, New York, 1986.

[17] Peter Ladefoged. A Course in Phonetics. Har-
court College Publishers, Orlando, FL, fourth
edition, 2001.

[18] P. A. D. MacCarthy. The Bernard Shaw al-
phabet. In Werner Haas, editor, Alphabets for

English, pages 105–117. Manchester University
Press, Manchester, 1969.

[19] Samuel C. Monson. The Deseret Alphabet.
Master’s thesis, Columbia University, 1947.

[20] Samuel C. Monson. The Deseret Alphabet. In
Utah Academy of Sciences, Arts & Letters, vol-
ume 30, pages 1952–53, 1953.

[21] William V. Nash. The Deseret Alphabet.
Master’s thesis, University of Illinois Library
School, Urbana, Illinois, May 1957.

[22] Douglas Allen New. History of the Deseret Al-

phabet and other attempts to reform English

Orthography. PhD thesis, Utah State Univer-
sity, 1985.

[23] Charles S. Peterson. The Hopis and the Mor-
mons: 1858-1873. Utah Historical Quarterly,
39(2):179–194, Spring 1971.

[24] Benn Pitman. Sir Isaac Pitman: His Life and

Labors. C. J. Krehbiel, Cincinnati, 1902.

[25] Thomas Allen Reed. A Biography of Isaac Pit-

man: Inventor of Phonography. Griffith, Far-
ran, Okeden and Welsh, London, 1890.

[26] Regents of the Deseret University. Deseret Al-

phabet: The Deseret First Book. Buffalo River
Press, Salt Lake City, historical reprint edition,
1996.

[27] Jules Rémy and Julius Brenchley. A Journey to

Great-Salt-Lake City. W. Jeffs, London, 1861.

[28] Bernard Shaw. Androcles and the Lion. Pen-
guin, Harmondsworth, Middlesex, Shaw Alpha-
bet edition, 1962.

[29] Albert E. Smith. Thales Hastings Haskell:
Pioneer, scout, explorer, Indian missionary.
Typescript, Brigham Young University Library,
1964.

[30] Hosea Stout. Journal of Hosea Stout. Univer-
sity of Utah Press, Salt Lake City, 1964.

[31] Roby Wentz. Thirty-Eight Mormon Charac-

ters: A Forgotten Chapter in Western Typo-

graphic History: For the Zamorano Club Ju-

bilee. Zamorano Club, Los Angeles, 1978.

[32] Albert L. Zobell. Deseret Alphabet manu-
scripts found. Improvement Era, pages 10–11,
July 1967.

Preprints for the 2004 Annual Meeting 191

2004

Mar 22 –
May 7

In Flight: A traveling juried exhibition of
books by members of the Guild of
Book Workers. University of
Washington, Seattle, Washington.
Sites and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Apr 5 – 8 Book History Workshop,
Institute d’histoire du livre,
Lyon, France. For information, visit
http://ihl.enssib.fr/.

Apr 19 – 21 Seybold Seminars Amsterdam 2004,
Netherlands. For information, visit
http://www.seybold365.com/ams2004/.

Apr 29 –
May 1

Wells Book Arts Center symposium,
Matter & Spirit: The Genesis
& Evolution of the Book, Aurora,
New York. For information, visit
http://aurora.wells.edu/~wbac/

bookarts/events.html.

Apr 30 –
May 3

BachoTEX 2004, 12th annual meeting of
the Polish TEX Users’ Group (GUST),
Bachotek, Brodnica Lake District,
Poland. For information, visit http://

www.gust.org.pl/BachoTeX/2004/.

May 20 –
Jul 7

In Flight: A traveling juried
exhibition of books by members of
the Guild of Book Workers. Emory
University, Atlanta, Georgia. Sites
and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Jun 11 – 16 ALLC/ACH-2004, Joint International
Conference of the Association for
Computers and the Humanities,
and Association for Literary and
Linguistic Computing, “Computing
and Multilingual, Multicultural
Heritage”, Göteborg University,
Sweden. For information, visit
http://www.hum.gu.se/allcach2004/

or the organization web site at
http://www.ach.org.

Calendar

Jun 14 GUTenberg Journée LATEX, Paris,
France. For information, visit
http://www.gutenberg.eu.org/

manifestations/gut2004/.

Jul 5 –
Aug 6

Rare Book School, University of
Virginia, Charlottesville, Virginia.
Many one-week courses on topics
concerning typography, bookbinding,
calligraphy, printing, electronic texts,
and more. For information, visit
http://www.virginia.edu/oldbooks.

Jun 24 – 29 2nd International Conference on
Typography and Visual Communication:
Communication and new technologies,
Thessaloniki, Greece. For information,
visit http://www.uom.gr/uompress/.

July 16 –
Aug 28

In Flight: A traveling juried exhibition
of books by members of the Guild
of Book Workers. Columbia
College, Chicago, Illinois. Sites
and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Jul 19 – 22 Practical TEX 2004, San Francisco,
California. A user-oriented conference
sponsored by TUG. For information, visit
http://www.tug.org/practicaltex2004/.

Jul 20 – 24 SHARP Conference (Society
for the History of Authorship,
Reading and Publishing),
Lyon, France For information, visit
http://sharpweb.org/.

Jul 22 – 25 TypeCon2004, “Type High”, San
Francisco, California. For information,
visit http://www.typecon2004.com/.

Aug 2 – 6 Extreme Markup Languages 2004,
Montréal, Québec. For information, visit
http://www.extrememarkup.com/extreme/.

Aug 14 – 17 International Conference on Computing,
Communications and Control Technologies,
University of Texas, Austin, Texas.
For information, visit
http://www.iiisci.org/ccct2004/website/.

Status as of 1 April 2004

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at http://www.tug.org/calendar/.
Additional type-related events are listed in the Typophile calendar, at

http://www.icalx.com/html/typophile/month.php?cal=Typophile.

192 Preprints for the 2004 Annual Meeting

Aug 8 – 12 SIGGRAPH 2004, Los Angeles,
California. For information, visit
http://www.siggraph.org/calendar/.

Aug 16 – 20 Seybold San Francisco, San Francisco,
California. For information, visit http://

www.seybold365.com/sf2004/.

TUG 2004

Democritus University of Thrace,

Xanthi, Greece.

Aug 30 –
Sep 3

The 25th annual meeting of the TEX
Users Group, “XML and Digital
Typography”. For information, visit
http://www.tug.org/tug2004/.

Oct 9 First meeting of GuIT (Gruppo
utilizzatori Italiani di TEX),
Pisa, Italy. For information, visit
http://www.guit.sssup.it/

GuITmeeting/2004/2004.en.html.

Oct 18 – 19 Third Annual St. Bride Conference,
“Bad Type”, London, England.
For information, visit http://

www.stbride.org/conference.html.

Institutional

Members

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia,
Roma, Italy

Center for Computing Science,
Bowie, Maryland

Certicom Corporation,
Mississauga, Ontario, Canada

CNRS - IDRIS,
Orsay, France

CSTUG, Praha, Czech Republic

Duke University, Vesic Library,
Durham, North Carolina

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

KTH Royal Institute of
Technology, Stockholm, Sweden

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

Max Planck Institut
für Mathematik,
Bonn, Germany

National Association of
Mathematics Students,
Lagos, Nigeria

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Siemens Corporate Research,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Uppsala University,
Uppsala, Sweden

Vanderbilt University,
Nashville, Tennessee

Preprints for the 2004 Annual Meeting 193

Promoting the use of
TEX throughout the

world.

mailing address:

P.O. Box 2311

Portland, OR 97208-2311 USA

shipping address:

1466 NW Naito Parkway

Suite 3141

Portland, OR 97209-2820 USA

phone: +1 503-223-9994

fax: +1 503-223-3960

email: office@tug.org

web: http://www.tug.org

President Karl Berry

Vice-President Kaja Christiansen

Treasurer Samuel Rhoads

Secretary Susan DeMeritt

Executive Director Robin Laakso

2004 TEX Users Group Membership Form
TUG membership rates are listed below. Please check the appropriate boxes and
mail the completed form with payment (in US dollars, drawn on a US bank) to
the mailing address at left. If paying by credit/debit card, you may alternatively
fax the form to the number at left or join online at http://tug.org/join.html.
The web page also provides more information than we have room for here.

Status (check one) New member Renewing member
Rate Amount

Early bird membership for 2004 (TUGboat, software)
After May 31, dues are $75.

$65

Special membership for 2004 (TUGboat, software)
You may join at this special rate ($45 after May 31) if you are a
senior (62+), student, new graduate, or from a country with a
modest economy. Please circle the applicable choice.
See http://tug.org/join.html for more information.

$35

Subscription for 2004 (TUGboat, software) non-voting $85

Institutional membership for 2004 (TUGboat, software)
Includes up to seven individual memberships.

$500

Last year’s materials
If you were not a TUG member in 2003, this is your option
to receive software immediately.

TEX Live 2003 software
2 CD’s and 1 DVD which also includes CTAN.

$15

CTAN 2003 CD-ROMs $15
TUGboat Volume 24 $15

Voluntary donations

General TUG contribution
Bursary Fund contribution

Financial assistance for attending the TUG Annual Meeting.

TEX Development Fund contribution
Financial assistance for technical projects.

Send me CTAN on CD (shipped on DVD to everyone) n/a

Total $

Tax deduction: $30 of the early bird membership fee is deductible, at least in the US.

Multi-year orders: To join for more than one year at this year’s rate, just multiply.

Payment (check one) Payment enclosed Visa/MasterCard/AmEx

Account Number:

Exp. date: Signature:

Privacy: TUG uses your personal information only to send products, publications, notices, and (for voting members)
official ballots. TUG neither sells its membership list nor provides it to anyone outside of its own membership.

Electronic notices will generally reach you much earlier than printed ones. However, you may choose not to receive
any email from TUG, if you prefer.

Do not send me any TUG notices via email.

Name

Department

Institution

Address

City State/Province

Postal code Country

Email address

Phone Fax

Position Affiliation

Loew, Elizabeth

President, TEXniques, Inc.
675 Massachusetts Avenue, 6th Floor
Cambridge, MA 02139
(617) 876-2333; Fax: (781) 344-8158
Email: loew@texniques.com

Complete book and journal production in the areas of
mathematics, physics, engineering, and biology. Services
include copyediting, layout, art sizing, preparation of
electronic figures; we keyboard from raw manuscript or
tweak TEX files.

Ogawa, Arthur

40453 Cherokee Oaks Drive
Three Rivers, CA 93271-9743
(209) 561-4585
Email: arthur ogawa@teleport.com

Bookbuilding services, including design, copyedit, art,
and composition; color is my speciality. Custom TEX
macros and LATEX2ε document classes and packages.
Instruction, support, and consultation for workgroups and
authors. Application development in LATEX, TEX, SGML,
PostScript, Java, and C++. Database and corporate

publishing. Extensive references.

Veytsman, Boris

2239 Double Eagle Ct.
Reston, VA 20191
(703) 860-0013
Email: borisv@lk.net

I provide training, consulting, software design and

implementation for Unix, Perl, SQL, TEX, and LATEX. I
have authored several popular packages for LATEX and

latex2html. I have contributed to several web-based
projects for generating and typesetting reports.
For more information please visit my web page:
http://users.lk.net/~borisv.

TEX Consulting & Production Services

The Unicorn Collaborative, Inc., Ted Zajdel

115 Aspen Drive, Suite K
Pacheco, CA 94553
(925) 689-7442
Email: contact@unicorn-collab.com

We are a technical documentation company, initiated
in 1990, which time, strives for error free, seamless
documentation, delivered on time, and within budget. We
provide high quality documentation services such as

document design, graphic design and copy editing. We have
extensive experience using tools such as FrameMaker, TEX,

LATEX, Word, Acrobat, and many graphics programs. One
of our specialties is producing technical manuals and
books using LATEX and TEX. Our experienced staff
can be trained to use any tool required to meet your
needs. We can help you develop, rewrite, or simply
copy-edit your documentation. Our broad experience with
different industries allows us to handle many types of
documentation including, but not limited to, software
and hardware systems, communications, scientific

instrumentation, engineering, physics, astronomy, chemistry,
pharmaceuticals, biotechnology, semiconductor technology,
manufacturing and control systems. For more information

see our web page: http://www.unicorn-collab.com.

The information here comes from the consultants

themselves. We do not include any information we know to

be false, but we cannot check out any of the information;
we are transmitting it to you as it was given to us and do
not promise it is correct. Also, this is not an endorsement
of the people listed here. We have no opinions and usually
no information about the abilities of any specific person.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

The TUG office mentions the consultants listed here to
people seeking TEX workers. If you’d like to be included, or
run to a larger ad in TUGboat, please contact the office or
see our web pages:

TEX Users Group
1466 NW Naito Parkway, Suite 3141
Portland, OR 97208-2311, U.S.A.

Phone: +1 503 223-9994
Fax: +1 503 223-3960
Email: office@tug.org

Web: http://tug.org/consultants.html

http://tug.org/TUGboat/advertising.html

Preprints for the 2004 Annual Meeting 195

Helmut Kopka and Patrick W. Daly

In this completely revised edition, the authors cover the

LATEX2ε standard and offer more details, examples,

exercises, tips, and tricks. They go beyond the core

installation to describe the key contributed packages

that have become essential to LATEX processing. Guide

to LATEX, Fourth Edition, will prove indispensable to

anyone wishing to gain the benefits of LATEX.

Guide to LATEX
Fourth Edition

ISBN: 0-321-17385-6

Guide to LATEX
Fourth Edition

For more information, visit: www.awprofessional.com/titles/0321173856

Available at fine bookstores every where.

TUG 2005 Announcement and Call for Papers

TUG 2005 will be held in Wuhan, China during August 23–25, 2005. CTUG
(Chinese TEX User Group) has committed to undertake the conference affairs, and
now announces the call for papers.

Why go to China for TUG 2005?

For fun!

This is the first TUG conference to be held in China. Wuhan is close to the
birthplace of Taoism and the Three Gorges Reservoir. China is also the birthplace
of typography in ancient times, and is simply a very interesting place to go.

For keeping up with the community!

The TEX community in China has been growing over the years. China is one of
the few countries in the world which has heavily applied free software (including
TEX, GNU/Linux, and more) in industry. The rich human resources and the
creative TEXackers have become a part of the engine driving the global TEX
community. TUG’05 is a good opportunity to meet them.

For your future!

The growing market is ready to use your expertise. Many libraries, publishing
houses, and scientific organizations in China are eager to use your TEX expertise.

Please submit abstracts for papers to tug2005@tug.org. For more information
about TUG 2005, please visit:

http://tug.org/tug2005

Workshops and Presentations:

LATEX, TEX, AMS-LATEX,

ConTEXt

Practical TEX 2004:

Training and Techniques

Holiday Inn Fisherman’s Wharf

San Francisco, California

July 19–22, 2004

http://tug.org/practicaltex2004
conferences@tug.org

Keynote address: Peter Flynn, Silmaril Consultants

Who should attend?

Mathematicians ❃ University & corporate (LA)TEX documentation staff ❃

Students ❃ Publishing company production staff ❃ Scientists ❃ Researchers

. . . and anyone who uses or is considering using the LATEX and TEX technical
documentation system.

Further information

This three-day conference will have user-oriented presentations and workshops
on LATEX, TEX, AMS-LATEX, ConTEXt and their use in document production.
Parallel tracks will be offered to accommodate a wide range of users, from
beginning to advanced. Expert speakers and lecturers will present experiences
and techniques useful to all.

Conference attendees will enjoy an opening night reception and a Chinatown
banquet. Coffee and lunch will be served each day of the meeting. You will
have easy access to many of San Francisco’s colorful sights, just steps from the
Fisherman’s Wharf area.

Post-conference workshops

On the fourth day, July 22, courses will be offered focusing on specific areas:
Intermediate and Advanced LATEX training, Introduction to ConTEXt, and
TEX on the Web.

Contact: conferences@tug.org

Registration forms and hotel reservations are on the web site.

If you’d like to promote your products and services, or simply support the
conference, see the web site for sponsorship and advertising options.

Hope to see you there! (Sponsored by the TEX Users Group.)

TEX Users Group

Preprints for the 2004 Annual Meeting:

TEX in the Era of Unicode

2 Karl Berry / Editorial remarks

Electronic

Documents

3 Christos KK Loverdos and Apostolos Syropoulos / Digital typography in

the new millennium: Flexible documents by a flexible engine

13 W lodzimierz Bzyl and Tomasz Przechlewski / Migrating to XML:

The case of the GUST Bulletin archive

19 Tomasz Przechlewski / Managing TEX resources with XML topic maps

26 Luca Padovani / Interactive editing of MathML markup using TEX syntax

35 Jan Holeček and Petr Sojka / Animations in pdfTEX-generated PDF

42 Mustapha Eddahibi, Azzeddine Lazrek, and Khalid Sami / Arabic mathematical

e-documents

Fonts 48 Mostafa Banouni, Mohamed Elyaakoubi, and Azzeddine Lazrek /

Dynamic Arabic mathematical fonts

54 Karel Ṕı̌ska / Creating Type 1 fonts from METAFONT sources: Comparison

of tools, techniques and results

Omega 65 Yannis Haralambous and Gábor Bella / OpenType and Ω: Past, present

and future

68 John Plaice and Paul Swoboda / Moving Ω to a C++-based platform

71 Jin-Hwan Cho and Haruhiko Okumura / Typesetting CJK languages with Ω

Software &

Tools

77 Jean-Michael Hufflen / MlBIBTEX: Beyond LATEX

85 Jérôme Laurens / iTEXMac: An integrated TEX environment for MacOS X

92 Frank-Rene Schaefer / ŞäferTEX: Source code esthetics for

automated typesetting

Graphics 99 L. N. Gonçalves / FEATPOST and a review of 3D METAPOST packages

Critical Editions 105 David Kastrup / The bigfoot bundle for critical editions

Philology 111 Johannis Likos / µoνo~2πoλυ: Java-based conversion of monotonic to

polytonic Greek

121 Dimitrios Filippou / Hyphenation patterns for ancient and modern Greek

127 Pablo Rosell-González / The mayan package and fonts

131 Manasi Athale and Rahul Athale / Using LATEX to typeset a Marāt. h̄ı-English

dictionary

135 Jagoba Arias Pérez, Jesús Lázaro and Juan M. Aguirregabiria /

Basque: A case study in generalizing LATEX language support

140 Péter Szabó / Implementation tricks in the Hungarian babel module

162 Kenneth R. Beesley / Typesetting the Deseret alphabet with LATEX

and METAFONT

News &

Announcements

192 Calendar

196 TUG 2005 conference announcement

c3 Practical TEX 2004 conference announcement

TUG Business 193 Institutional members

194 TUG membership application

Advertisements 195 TEX consulting and production services

196 Guide to LATEX, 4th Edition, by Helmut Kopka and Patrick W. Daly

