
Animations in pdfTEX-generated PDF

Jan Holeček
Faculty of Informatics, Masaryk University
Botanická 68a
602 00 Brno
Czech Republic
holecek@fi.muni.cz

http://www.fi.muni.cz/~xholecek

Petr Sojka
Faculty of Informatics, Masaryk University
Botanická 68a
602 00 Brno
Czech Republic
sojka@fi.muni.cz

http://www.fi.muni.cz/usr/sojka

Abstract

This paper presents a new approach for creating animations in Portable Doc-
ument Format (PDF). The method of animation authoring described uses free
software (pdfTEX) only. The animations are viewable by any viewer that sup-
ports at least some features of Acrobat JavaScript, particularly Adobe (Acrobat)
Reader, which is available at no cost for a wide variety of platforms. Furthermore,
the capabilities of PDF make it possible to have a single file with animations both
for interactive viewing and printing.

The paper explains the principles of PDF, Acrobat JavaScript and pdfTEX
needed to create animations for Adobe Reader using no other software except
pdfTEX. We present a step by step explanation of animation preparation, to-
gether with sample code, using a literate programming style. Finally, we discuss
other possibilities of embedding animations into documents using open standards
(SVG) and free tools, and conclude with their strengths and weaknesses with re-
spect to the method presented.

1 Introduction

Extensive use of electronic documents leads to new
demands being made on their content. Developing
specific document versions for different output de-
vices is time consuming and costly. A very natural
demand, especially when preparing educational ma-
terials, is embedding animations into a document.

A widely used open format for electronic doc-
uments is the Adobe PDF [2] format, which com-
bines good typographic support with many inter-
active features. Even though it contains no pro-
gramming language constructs such as those found
in PostScript, the format allows for the inclusion
of Document Level JavaScript (DLJS) [1]. Widely
available PDF viewers such as Adobe Reader (for-
merly Acrobat Reader) benefit from this possibility,
allowing interactive documents to be created.

One of the first applications showing the power
of using JavaScript with PDF was Hans Hagen’s cal-
culator [5]. Further, the AcroTEX bundle [9] uses
several LATEX packages and the full version of the
Adobe Acrobat software for preparing PDF files with
DLJS [10]; macro support for animations is rudimen-
tary and it is stressed in the documentation that it
works only with the full commercial version of Ac-
robat.

Our motivation is a need for PDF animations
in a textbook [3] published both on paper and on
CD. We have published it using Acrobat [7, 8], and
eventually discovered a method to create animations
using pdfTEX [11] only.

pdfTEX facilitates the PDF creation process in
several ways. We can directly write the PDF code
which is actually required to insert an animation.
We can also utilise the TEX macro expansion power

Preprints for the 2004 Annual Meeting 35

Jan Holeček and Petr Sojka

to produce PDF code. And finally, we can write
only the essential parts directly, leaving the rest to
pdfTEX. pdfTEX introduces new primitives to take
advantage of PDF features. The ones we are going
to use will be described briefly as they appear.

In this paper, we present this new ‘pdfTEX only’
way of embedding animations. We require no pre-
vious knowledge either of the PDF language or of
pdfTEX extensions to TEX. However, the basics of
TEX macro definitions and JavaScript are assumed.

The structure of the paper is as follows. In the
next section we start with the description of the PDF

internal document structure with respect to anima-
tions. The core of the paper consists of commented
code for the pdfTEX that generates a simple all-in-
one animation. The examples are written in plain
TEX [6], so that others can use it in elaborate macro
packages, in a literate programming style. In the
second example the animation is taken from an ex-
ternal file, allowing the modification of the anima-
tion without modifying the primary document. Fi-
nally, we compare this approach with the possibili-
ties of other formats, including the new standard for
Scalable Vector Graphics (SVG) [12] from the W3C.

2 The PDF Document Structure

A PDF file typically consists of a header, a body,
a cross-reference table and a trailer. The body is
the main part of the PDF document. The other
parts provide meta-information and will not be dis-
cussed here. A PDF document is actually a graph
of interconnected objects, each being of a certain
type. There are basic data types (boolean, numeric,
string) and some special and compound types which
require some explanation.

A name object has the form /MYNAME. There
is a set of names with predefined meanings when
used as a dictionary key or value. Other names
can be defined by the user as human readable ref-
erences to indirect objects (dictionaries and indirect
objects are treated below). An array object is a
one-dimensional list, enclosed by square brackets, of
objects not necessarily of the same type. A dictio-
nary object is a hash, i.e., a set of key-value pairs
where the keys are name objects and the values are
arbitrary objects. A dictionary is enclosed by the <<
and >> delimiters. Stream objects are used to insert
binary data into a PDF document. There is also a
special null object used as an “undefined” value.

The body of a PDF file consists of a sequence of
labelled objects called indirect objects. An object of
any other type which is given a unique object iden-
tifier can form an indirect object. When an object
is required in some place (an array element, a value

of a key in a dictionary), it can be given explicitly
(a direct reference) or as an object identifier to an
indirect object (an indirect reference). In this way
objects are interconnected to form a graph. An in-
direct reference consists of two numbers. The first
number is a unique object number. The second is
an object version number and is always 0 in indi-
rect objects newly created by pdfTEX —the first one
therefore suffices to restore an indirect reference.

Various document elements are typically repre-
sented by dictionary objects. Each element has a
given set of required and optional keys for its dic-
tionary. For example, the document itself is repre-
sented by a Catalog dictionary, the root node of the
graph. Its key-value pairs define the overall proper-
ties of the document. A brief description of concrete
objects will be given when encountered for the first
time. See [2] for more detailed information.

3 Insertion of the Animation Frames

We are not interested in constructing the animation
frames themselves —any graphics program such as
METAPOST will do. Let us hence assume we have
a PDF file, each page of which forms a single an-
imation frame and the frames are in the order of
appearance.

Every image is inserted into PDF as a so-called
form XObject which is actually an indirect stream
object. There are three primitives that deal with im-
ages in pdfTEX. The \pdfximage creates an indirect
object for a given image. The image can be spec-
ified as a page of another PDF file. However, the
indirect object is actually inserted only if referred
to by the \pdfrefximage primitive or preceded by
\immediate. \pdfrefximage takes an object num-
ber (the first number of indirect reference) as its
argument and adds the image to the TEX list be-
ing currently built. The object number of the image
most recently inserted by \pdfximage is stored in
the \pdflastximage register.

A general PDF indirect object can be created
similarly by \pdfobj, \pdfrefobj and \pdflast-
obj. \pdfobj takes the object content as its argu-
ment. TEX macro expansion can be used for gener-
ating PDF code in an ordinary manner.

In our example, we first define four macros for
efficiency. The \ximage macro creates a form XOb-
ject for a given animation frame (as an image) and
saves its object number under a given key. The
\insertobj macro creates a general PDF object and
saves its object number under a given key. The
\oref macro expands to an indirect reference of an
object given by the argument. The last “R” is an op-
erator that creates the actual indirect reference from

36 Preprints for the 2004 Annual Meeting

Animations in pdfTEX-generated PDF

two numbers. We are not going to use \pdfref*
primitives, so \immediate must be present. Refer-
ences will be put directly into the PDF code by the
\oref macro. The \image macro actually places an
image given by its key onto the page.

1 % an image for further use
2 \def\ximage#1#2{%
3 \immediate\pdfximage
4 page #2 {frames-in.pdf}%
5 \expandafter\edef
6 \csname pdf:#1\endcsname
7 {\the\pdflastximage}}
8

9 % a general object for further use
10 \def\insertobj#1#2{%
11 \immediate\pdfobj{#2}%
12 \expandafter\edef
13 \csname pdf:#1\endcsname
14 {\the\pdflastobj}}
15

16 % expands to an indirect ref. for a key
17 \def\oref#1{%
18 \csname pdf:#1\endcsname\space 0 R}
19

20 % actually places an image
21 \def\image#1{%
22 \expandafter\pdfrefximage
23 \csname pdf:#1\endcsname}

Another new primitive introduced by pdfTEX
is \pdfcatalog. Its argument is added to the docu-
ment’s Catalog dictionary every time it is expanded.
The one below makes the document open at the first
page and the viewer fit the page into the window.
One more key will be described below.

24 % set up the document
25 \pdfcatalog{/OpenAction [0 /Fit]}

Now we are going to insert animation frames
into the document. We will use the \ximage macro
defined above. Its first argument is the name to be
bound with the resulting form XObject. The sec-
ond one is the number of the frame (actually a page
number in the PDF file with frames). One needs to
be careful here because pdfTEX has one-based page
numbering while PDF uses zero-based page number-
ing internally.

26 % all animation frames are inserted
27 \ximage{fr0}{1} \ximage{fr1}{2}
28 \ximage{fr2}{3} \ximage{fr3}{4}
29 \ximage{fr4}{5} \ximage{fr5}{6}
30 \ximage{fr6}{7} \ximage{fr7}{8}
31 \ximage{fr8}{9}

4 Setting up an AcroForm Dictionary

The interactive features are realized by annotation
elements in PDF. These form a separate layer in ad-
dition to the regular document content. Each one
denotes an area on the page to be interactive and
binds some actions to various events that can hap-
pen for that area. Annotations are represented by
Annot dictionaries. The way pdfTEX inserts anno-
tations into PDF is discussed in the section “Anima-
tion Dynamics” below.

Annotations are transparent by default, i.e., the
page appearance is left unchanged when adding an
annotation. It is up to the regular content to provide
the user with the information that some areas are
interactive.

We will be interested in a subtype of annota-
tions called interactive form fields. They are repre-
sented by a Widget subtype of the Annot dictionary.
Widgets can be rendered on top of the regular con-
tent. However, some resources have to be set. The
document’s Catalog refers to an AcroForm dictionary
in which this can be accomplished.

The next part of the example first defines the
name Helv to represent the Helvetica base-font (built
in font). This is not necessary but it allows us to
have a smooth control button. Next we insert the
AcroForm dictionary. The DR stands for “resource
dictionary”. We only define the Font resource with
one font. The DA stands for “default appearance”
string. The /Helv sets the font, the 7 Tf sets the
font size scale factor to 7 and the 0 g sets the color
to be 0 % white (i.e., black). The most important en-
try in the AcroForm dictionary is NeedAppearances.
Setting it to true (line 43) makes the Widget anno-
tations visible. Finally, we add the AcroForm dictio-
nary to the document’s Catalog.

32 % the Helvetica basefont object
33 \insertobj{Helv}{
34 << /Type /Font /Subtype /Type1
35 /Name /Helv
36 /BaseFont /Helvetica >> }
37

38 % the AcroForm dictionary
39 \insertobj{AcroForm}{
40 << /DR << /Font <<
41 /Helv \oref{Helv} >> >>
42 /DA (/Helv 7 Tf 0 g)
43 /NeedAppearances true >> }
44

45 % add a reference to the Catalog
46 \pdfcatalog{/AcroForm \oref{AcroForm}}

To make a form XObject with an animation
frame accessible to JavaScript, it has to be assigned

Preprints for the 2004 Annual Meeting 37

Jan Holeček and Petr Sojka

a name. There are several namespaces in PDF in
which this can be accomplished. The one searched
for is determined from context. We are only in-
terested in an AP namespace that maps names to
annotation appearance streams. pdfTEX provides
the \pdfnames primitive that behaves similarly to
\pdfcatalog. Each time it is expanded it adds its
argument to the Names dictionary referred from doc-
ument’s Catalog. The Names dictionary contains the
name definitions for various namespaces. In our ex-
ample we put definitions into a separate object Ap-
pearanceNames.

The name definitions may form a tree to make
the lookup faster. Each node has to have Limits set
to the lexically least and greatest names in its sub-
tree. There is no extensive set of names in our ex-
ample, so one node suffices. The names are defined
in the array of pairs containing the name string and
the indirect reference.

47 % defining names for frames
48 \insertobj{AppearanceNames}{
49 << /Names
50 [(fr0) \oref{fr0} (fr1) \oref{fr1}
51 (fr2) \oref{fr2} (fr3) \oref{fr3}
52 (fr4) \oref{fr4} (fr5) \oref{fr5}
53 (fr6) \oref{fr6} (fr7) \oref{fr7}
54 (fr8) \oref{fr8}]
55 /Limits [(fr0) (fr8)] >> }
56

57 % edit the Names dictionary
58 \pdfnames{/AP \oref{AppearanceNames}}

5 Animation Dynamics

We have created all the data structures needed for
the animation in the previous section. Here we in-
troduce the code to play the animation. It uses Ac-
robat JavaScript [1], an essential element of inter-
active forms. Acrobat JavaScript is an extension of
Netscape JavaScript targeted to PDF and Adobe Ac-
robat. Most of its features are supported by Adobe
Reader. They can, however, be supported by any
other viewer. Nevertheless, the Reader is the only
one known to us that supports interactive forms and
JavaScript.

The animation is based on interchanging frames
in a single widget. Here we define the number of
frames and the interchange timespan in milliseconds
to demonstrate macro expansion in JavaScript.

59 % animation properties
60 \def\frames{8}
61 \def\timespan{550}

Every document has its own instance of a Java-
Script interpreter in the Reader. Every JavaScript

action is interpreted within this interpreter. This
means that one action can set a variable to be used
by another action triggered later. Document-level
JavaScript code, e.g., function definitions and global
variable declarations, can be placed into a JavaScript
namespace. This code should be executed when
opening the document.

Unfortunately, there is a bug in the Linux port
of the Reader that renders this generally unusable.
The document level JavaScript is not executed if
the Reader is not running yet and the document
is opened from a command line (e.g., ‘acroread
file.pdf’). Neither the first page’s nor the docu-
ment’s open action are executed, which means they
cannot be used as a workaround. Binding a Java-
Script code to another page’s open action works well
enough to suffice in most cases.

We redeclare everything each time an action is
triggered so as to make the code as robust as possi-
ble. First we define the Next function, which takes a
frame index from a global variable, increases it mod-
ulo the number of frames and shows the frame with
the resulting index. The global variable is modified.

The animation actually starts at line 78 where
the frame index is initialized. The frames are dis-
played on an interactive form’s widget that we name
"animation"— see “Placing the Animation” below.
A reference to this widget’s object is obtained at
line 79. Finally, line 80 says that from now on,
the Next function should be called every \timespan
milliseconds.

62 % play the animation
63 \insertobj{actionPlay}{
64 << /S /JavaScript /JS (
65 function Next() {
66 g.delay = true;
67 if (cntr == \frames) {
68 cntr = 0;
69 try { app.clearInterval(arun); }
70 catch(except) {}
71 } else { cntr++; }
72 g.buttonSetIcon(
73 this.getIcon("fr" + cntr));
74 g.delay=false;
75 }
76 try { app.clearInterval(arun); }
77 catch(except) {}
78 var cntr = 0 ;
79 var g = this.getField("animation");
80 var arun = app.setInterval("Next()",
81 \timespan);
82) >> }

38 Preprints for the 2004 Annual Meeting

Animations in pdfTEX-generated PDF

Now, let us describe the Next function in more
detail. Line 66 suspends widget’s redrawing until
line 74. Then the global variable containing the cur-
rent frame index is tested. If the index reaches the
number of frames, it is set back to zero and the pe-
riodic calling of the function is interrupted. The
function would be aborted on error, but because we
catch exceptions this is avoided. The getIcon func-
tion takes a name as its argument and returns the
reference to the appearance stream object according
to the AP names dictionary. This explains our ap-
proach of binding the names to animation frames —
here we use the names for retrieving them. The
buttonSetIcon method sets the object’s appear-
ance to the given icon.

Line 76 uses the same construct as line 69 to
handle situations in which the action is relaunched
even if the animation is not finished yet. It aborts
the previous action. It would have been an error
had the animation not been running, hence we must
use the exception catching approach.

6 Placing the Animation

The animation is placed on an interactive form
field— a special type of annotation. There are
two primitives in pdfTEX, \pdfstartlink and
\pdfendlink, to produce annotations. They are in-
tended to insert hyperlink annotations but can be
used for creating other annotations as well. The cor-
responding \pdfstartlink and \pdfendlink must
reside at the same box nesting level. The resulting
annotation is given the dimensions of the box that
is enclosed by the primitives. We first create a box
to contain the annotation. Note that both box and
annotation size are determined by the frame itself—
see line 91 where the basic frame is placed into the
regular page content.

We will turn now to the respective entries in the
annotation dictionary. The annotation is to be an
interactive form field (/Subtype /Widget). There
are many field types (FT). The only one that can
take any appearance and change it is the pushbutton.
It is a special kind of button field type (/FT /Btn).
The type of button is given in an array of field bit
flags Ff. The pushbutton has to have bit flag 17
set (/Ff 65536). To be able to address the field
from JavaScript it has to be assigned a name. We
have assigned the name animation to it as men-
tioned above (/T (animation)). Finally, we define
the appearance characteristics dictionary MK. The
only entry /TP 1 sets the button’s appearance to
consist only of an icon and no caption.

83 % an animation widget
84 \centerline{\hbox{%

85 \pdfstartlink user{
86 /Subtype /Widget /FT /Btn
87 /Ff 65536 /T (animation)
88 /BS << /W 0 >>
89 /MK << /TP 1 >> }%
90 \image{fr0}%
91 \pdfendlink}}

For the sake of brevity and clarity we are going
to introduce only one control button in our exam-
ple. However, we have defined a macro for creating
control buttons to show a very simple way of includ-
ing multiple control buttons. The \controlbutton
macro takes one argument: the caption of the but-
ton it is to produce. The macro creates a pushbutton
and binds it to an action defined like actionPlay.

We have chosen control buttons to be push-
buttons again. They are little different from the
animation widget— they are supposed to look like
buttons. The BS dictionary (i.e., border style) sets
the border width to 1 point and style to 3D button
look. The MK dictionary (appearance characteris-
tics dictionary) sets the background color to 60%
white and the caption (line 98). The /H /P entry
tells the button to push down when clicked on. Fi-
nally, an action is bound to the button by setting
the value of the A key.

92 % control button for a given action
93 \def\controlbutton#1{%
94 \hbox to 1cm{\pdfstartlink user{
95 /Subtype /Widget /FT /Btn
96 /Ff 65536 /T (Button#1)
97 /BS << /W 1 /S /B >>
98 /MK << /BG [0.6] /CA (#1) >>
99 /H /P /A \oref{action#1}

100 }\hfil\strut\pdfendlink}}

And finally, we add a control button that plays
the animation just below the animation widget.

101 % control button
102 \centerline{\hfil
103 \controlbutton{Play}\hfil}
104

105 \bye

7 External Animation

Let us modify the example a little so that the anima-
tion frames will be taken from an external file. This
has several consequences which will be discussed at
the relevant points in the code.

We are going to completely detach the anima-
tion frames from the document. As a result, we will
need only the \insertobj and \oref macros from
lines 1–23 from the previous example. Lines 26–31
are no longer required.

Preprints for the 2004 Annual Meeting 39

Jan Holeček and Petr Sojka

A problem arises here: the basic frame should
be displayed in the animation widget when the doc-
ument is opened for the first time. This can be ac-
complished by modifying the OpenAction dictionary
at line 25 as follows.

\pdfcatalog{ /OpenAction <<
/S /JavaScript /JS (
var g = this.getField("animation");
g.buttonImportIcon(

"frames-ex.pdf",0);
this.pageNum = 0;
this.zoomType = zoomtype.fitP;

) >> }

This solution suffers from the bug mentioned in
the “Animation Dynamics” section. The animation
widget will be empty until a user performs an action
every time the bug comes into play.

We still do need an AcroForm dictionary, so lines
32–46 are left without a change. Lines 47–58 must
be omitted on the other hand, as we have nothing to
name. We are going to use the same animation as
in the previous example, so lines 59–61 are left un-
touched. There is one modification of the JavaScript
code to be done. The buttonSetIcon function call
is to be replaced by

g.buttonImportIcon(
"frames-ex.pdf", cntr);

We have used the basic frame to determine a
size of the widget in the previous example. This is
impossible now because it has to be done at compile
time. The replacement for lines 83–91 is as follows

% an animation widget
\centerline{\hbox to 6cm{%
\vrule height 6cm depth 0pt width 0pt
\pdfstartlink user{
/Subtype /Widget /FT /Btn
/Ff 65536 /T (animation)
/BS << /W 0 >>
/MK << /TP 1

/IF << /SW /A /S /P
/A [0.5 0.5] >> >> }%

\hfil\pdfendlink}}

Dimensions of the widget are specified explicitly
and an IF (icon fit) dictionary is added to attributes
of the pushbutton so that the frames would be al-
ways (/SW /A) proportionally (/S /P) scaled to fit
the widget. Moreover, frames are to be centered in
the widget (/A [0.5 0.5]) which would be the de-
fault behavior anyway. The basic frame is not placed
into the document— there is only glue instead.

Lines 92–105 need not be modified.

8 Two Notes on Animation Frames

The examples with full TEX source files can
be found at http://www.fi.muni.cz/∼xholecek/
animations/. As one can see in these examples, the
all-in-one approach allows all frames to share a sin-
gle background which is formed by the frame actu-
ally inserted into the page. However, it is possible to
overlay pushbuttons. Elaborate constructions, the
simplest of which is to use a common background
frame in the example with external animations, can
be achieved in conjunction with transparency.

One must ensure the proper size of all frames
when fitting them into the widget. We have en-
countered situations (the given example being one of
them) where the bounding box of METAPOST gen-
erated graphics with TEX label was not set properly
using \convertMPtoPDF and a white line had to be
drawn around the frames to force the proper bound-
ing box as a workaround.

9 Animations in Other Formats

It is fair to list and compare other possible ways of
creating animations. In this section we give a brief
overview of a dozen other formats and technologies
capable of handling animations.

9.1 GIF

One of the versions of the GIF format is the GIF89a

format, which allows multi-image support, with
bitmap only animations to be encoded within a sin-
gle GIF file. GIF format supports transparency, in-
terlacing and plain text blocks. It is widely sup-
ported in Internet browsers. However, there are li-
censing problems due to the compression methods
used, and the format is not supported in freely avail-
able TEXware.

9.2 SWF

The SWF format by Macromedia allows storing
frame-based animations, created e.g., by Macro-
media’s Flash authoring tool. The SWF authoring
tools have to compute all the animation frames at
export time. As proprietary Flash plug-ins for a
wide range of Internet browsers are available, ani-
mations in SWF are relatively portable. The power
of SWF can be enriched with scripting by Action-
Script. At the time of writing, we are not aware of
any TEXware supporting SWF.

9.3 Java

One can certainly program animations in a gen-
eral programming language like Sun’s Java. The
drawback is that there are high demands on one’s

40 Preprints for the 2004 Annual Meeting

http://www.fi.muni.cz/~xholecek/animations/
http://www.fi.muni.cz/~xholecek/animations/

Animations in pdfTEX-generated PDF

programming capabilities in Java when creating
portable animations. With NT S (a TEX reimple-
mentation in Java), one can possibly combine TEX
documents with fully featured animations, at the
expense of studying numerous available classes, in-
terfaces and methods.

9.4 DOM

It is possible to reference every element in an HTML

or XML document by means of the W3C’s Document
Object Model (DOM), a standard API for document
structure.

DOM offers programmers the possibility of im-
plementing animations with industry-standard lan-
guages such as Java, or scripting languages as
ECMAScript, JavaScript or JScript.

9.5 SVG

The most promising language for powerful vector
graphic animation description seems to be Scal-
able Vector Graphics (SVG), a W3C recommenda-
tion [12]. It is being developed for XML graphical
applications, and since SVG version 1.1 there is rich
support for animations. The reader is invited to
look at the freely available book chapter [13] about
SVG animations on the publisher’s web site, or read-
ing [4] about the first steps of SVG integration into
TEX world. There are freely available SVG view-
ers from Adobe (browser plug-in), Corel, and the
Apache Foundation (Squiggle).

SVG offers even smaller file sizes than SWF or
our method. The description of animations is time-
based, using another W3C standard, SMIL, Synchro-
nised Multimedia Integration Language. The au-
thor can change only one object or its attribute in
the scene at a time, allowing detailed control of ani-
mated objects through the declarative XML manner.
Compared to our approach, this means a much wider
range of possibilities for creators of animations.

The SVG format is starting to be supported in
TEXware. There are SVG backends in VTEX and
BaKoMaTEX, and a program Dvi2Svg by Adrian
Frischauf, available at http://www.activemath.
org/∼adrianf/dvi2svg/. Another implementation
of a DVI to SVG converter in C is currently being
developed by Rudolf Sabo at the Faculty of Infor-
matics, Masaryk University in Brno.

10 Conclusions

We have shown a method of preparing both space-
efficient and high-quality vector frame-based anima-
tions in PDF format using only freely available, TEX-
integrated tools.

11 Acknowledgments

Authors thank Oleg Alexandrov and Karl Berry for
comments on an early draft of the paper.

The work has been supported by VZ MSM

143300003.

References

[1] Adobe Systems Incorporated. Acrobat Java-
Script Object Specification, Version 5.1, Tech-
nical Note #5186. Technical report, Adobe,
2003. http://partners.adobe.com/asn/
developer/pdfs/tn/5186AcroJS.pdf.

[2] Adobe Systems Incorporated. PDF Reference:
Adobe Portable Document Format Version 1.5.
Addison-Wesley, Reading, MA, USA, fourth
edition, August 2003.

[3] Zuzana Došlá, Roman Plch, and Petr Sojka.
Mathematical Analysis with Maple: 2. Infinite
Series. CD-ROM, http://www.math.muni.cz/
∼plch/nkpm/, December 2002.

[4] Michel Goossens and Vesa Sivunen. LATEX,
SVG, Fonts. TUGboat, 22(4):269–280, October
2001.

[5] Hans Hagen. The Calculator Demo, Integrating
TEX, METAPOST, JavaScript and PDF. TUG-
boat, 19(3):304–310, September 1998.

[6] Petr Oľsák. TEXbook naruby (in Czech). Kon-
voj, Brno, 1997.

[7] Petr Sojka. Animations in PDF. In Proceed-
ings of the 8th Annual Conference on Innova-
tion and Technology in Computer Science Ed-
ucation, ITiCSE 2003, page 263, Thessaloniki,
2003. Association of Computing Machinery.

[8] Petr Sojka. Interactive Teaching Materials in
PDF using JavaScript. In Proceedings of the 8th
Annual Conference on Innovation and Technol-
ogy in Computer Science Education, ITiCSE
2003, page 275, Thessaloniki, 2003. Association
of Computing Machinery.

[9] Donald P. Story. AcroTEX: Acrobat and TEX
team up. TUGboat, 20(3):196–201, Sep. 1999.

[10] Donald P. Story. Techniques of introduc-
ing document-level JavaScript into a PDF file
from LATEX source. TUGboat, 22(3):161–167,
September 2001.

[11] Hán Thé̂ Thánh. Micro-typographic exten-
sions to the TEX typesetting system. TUGboat,
21(4):317–434, December 2000.

[12] W3C. Scalable Vector Graphics (SVG) 1.1 Spec-
ification, January 2003.

[13] Andrew H. Watt. Designing SVG Web Graph-
ics. New Riders Publishing, September 2001.

Preprints for the 2004 Annual Meeting 41

http://www.activemath.org/~adrianf/dvi2svg/
http://www.activemath.org/~adrianf/dvi2svg/
http://partners.adobe.com/asn/developer/pdfs/tn/5186AcroJS.pdf
http://partners.adobe.com/asn/developer/pdfs/tn/5186AcroJS.pdf
http://www.math.muni.cz/~plch/nkpm/
http://www.math.muni.cz/~plch/nkpm/

	Introduction
	The PDF Document Structure
	Insertion of the Animation Frames
	Setting up an AcroForm Dictionary
	Animation Dynamics
	Placing the Animation
	External Animation
	Two Notes on Animation Frames
	Animations in Other Formats
	GIF
	SWF
	Java
	DOM
	SVG

	Conclusions
	Acknowledgments

