Adapting Q) to OpenType Fonts

Anish Mehta

Département Informatique

Ecole Nationale Supérieure des Télécommunications de Bretagne
CS 83818, 29238 Brest Cédex, France

anish_mca@yahoo.com

Gabor Bella

Gabor.Bella@enst-bretagne.fr

Yannis Haralambous
Yannis.Haralambous@enst-bretagne.fr

http://omega

.enstb.org/yannis

Abstract

Nowadays, TEX and its successors still use METAFONT or PostScript Type 1 as their primary font
formats, while the “outside world” is moving on to OpenType, a likely candidate for #he future
font standard in computer-based typography. The project we are going to present in this article
represents the first step of a long-term plan of adapting the full {2 system to OpenType. Asa result of
our work, the first version of a new, OpenType-compatible 0Zzips is available. This article presents
the basic concepts of our solution as well as our further development plans for the project.

Résumé

De nos jours, TEX et ses successeurs utilisent toujours METAFONT ou type I comme principaux
formats de fonte alors que le «monde réel» se tourne de plus en plus vers OpenType, un candidat
tres probable pour étre /e format de fonte standard du futur. Le projet présenté dans cet article
est la premiére étape vers une adaptation d’Q2 a OpenType. Notre résultat est une nouvelle version
d’odvips, compatible OpenType. Cet article présente les concepts de base de notre solution ainsi

que nos projets de développement futurs.

Introduction

OpenType is a relatively new font format developed
jointly by Adobe and Microsoft. The goal of the two
companies was to replace the widely used PostScript and
TrueType fonts with a single, backward compatible for-
mat that also provides better support for international
scripts and advanced typography. In fact, OpenType is
but a wrapper format that can either embed PostScript
(CFF, Compact Font Format) or TrueType fonts, plus
some additional tables that provide the extra features.
OpenType’s possible advantages or drawbacks put
aside, one must realise that, due to the strong technolog-
ical and economic support of its creators, it is very likely
to become a de facto digital font standard. Until now, the
market’s reaction to this new technology has been rather
slow, mainly because of the amount of investment a new
font format requires from foundries and application de-
velopers, not to mention customers. Nevertheless, newly
designed fonts come out more and more often in Open-
Type format, and for non-Latin scripts OpenType’s im-
pact is even greater. So, if the TEX community would
like to avoid isolation as far as new high-quality fonts are
concerned, it is time to jump on the bandwagon and em-

550

brace the format as soon as possible.’

Our work aims to provide OpenType support for the
Q2 typesetting system. Among TEX-based systems, €2 is
known for its support of non-Latin scripts such as Arabic,
Hebrew or various Indic scripts. Since OpenType is the
first format to offer proper typesetting for these scripts,
implementing OpenType support in € is a logical and de-
sirable step forward.

Design Principles

Ideally, OpenType compatibility should mean that Open-
Type fonts are recognised by every link in the document
production chain, from the typesetting phase right up
to printing. As of today, €2, just like all TEX-based sys-
tems, needs to load a plethora of files at each step of the
typesetting process: font metrics and kerning from OFM
and OVF files, script-specific typographic features from
QTP’s (2 Translation Processes), and finally the glyphs
themselves from the actual font file, either in PostScript
or bitmap format. With OpenType fonts, this would
not be necessary: all information mentioned above could
be directly retrieved from the OpenType font file itself.
The virtual font concept could also be eliminated, as both

1. We are not the first to do this: pdf TEX supports OpenType.

TUGboat, Volume 24 (2003), No. 3 — Proceedings of EuroTEX 2003



2 and OpenType are Unicode-compatible. Finally, the
same OpenType font could be integrated, partially or in
whole, into the final document to be sent to the printer.

However elegant and visionary (not to mention
utopian) this scenario might be, it would certainly re-
quire a major rewrite of the whole € system, YTP han-
dling included, as well as of the odvips utility. Support of
OpenType’s advanced typographic tables (GPOS, GSUB,
etc.) as well as access to metric information would have to
be implemented in {2 internally, thereby short-circuiting
OFM and OVF files. Such a solution, however, would
mean abandoning Knuth’s basic approach, which sepa-
rates metrics (information needed for text layout) from
glyph shapes (only needed at the final step of typesetting).
Although this approach was partly inspired by limitations
of memory and processing power at the time TEX was
designed, it could be argued that the TFM/OFM con-
cept has the advantage of acting as a common interface to
the layout engine, independently of the actual font tech-
nology used. It also has to be added that extraction of
TEX- and Q-compatible metric information from Open-
Type tables is far from a trivial operation, as it will be
shown later in this article.

s input processing will also need to be extended so
that users can turn on or off certain OpenType features
by hand. Most importantly, user control is crucial over
discretionary features like glyph alternates.

The real problem, however, comes at the final pro-
cessing step: the sad fact is that there are virtually no
printers today with OpenType support built in. What-
ever our document format, the OpenType fonts it uses
will necessarily have to be converted into a format the
printer will recognise, either by the printer driver (avail-
able only for Windows and Macintosh) or at the appli-
cation level. TgX-based systems, and more precisely,
(0)dvips, produce PostScript documents directly, without
using any drivers. Consequently, the only possible solu-
tion is to convert OpenType fonts, right before inclusion
in the PostScript document, into a common font format
recognised by most printers.

In summary, four major areas of the {2 system need
changes:

1. extension of {)’s control sequences to allow user con-
trol over OpenType features;

2. extraction of metric and kerning information from
the OpenType font;

3. support for OpenType’s advanced typographic ta-
bles, including GPOS, GSUB and BASE;

4. automatic conversion of OpenType fonts to a format
supported by a vast majority of today’s printers.
Due to the fact that full implementation of these

functionalities will require a major rewrite of the whole

Q-0dvips system, we have decided to approach the prob-

Adapting 2 to OpenType Fonts

lem in three steps. As a response to the needs of the
{2 user community, a basic but working solution is going
to be published as soon as possible, providing access to
OpenType fonts, even if the advanced feature support is
far from complete and not as user-friendly as it should
be. This transitional solution is still based on OFM and
OVF files, and only includes GSUB support. As a second
step, in the new {23 system (coming soon to a TEX Live
near you) metrics will be read directly from the Open-
Type font. Finally, full support of OpenType features as
well as their corresponding input control sequences will
be implemented in the long run.

The rest of the article deals with the improvements
we have made so far to provide basic OpenType support.
This includes metric extraction, GSUB support and font
conversion and subsetting. In order to read the Open-
Type font and produce the necessary OFM, OTP, etc.,
files, we have developed a handful of Python utilities,
based on Just van Rossum’s great #2x program and zzf2p¢1
from Mark Heath et al. Also, o4zips has been patched to
use and subset OpenType-originated fonts.

Conversion of Metric and Kerning Information

In its present state, {2 needs font metric files (OFM) in or-
der to typeset glyphs. As long as direct OpenType access
from €2 is not possible, the corresponding OFM file will
have to be created automatically during installation of the
OpenType font. Whatever our input method, conversion
of OpenType metric data into {2-compatible values is not
a trivial process: it is not always possible to find an equiv-
alence relation between the two approaches.

Information found in a TFM/OFM file can be di-
vided into the following three categories:

e global information;
e metric information on an individual glyph level;
e information on glyph pairs.

Global information corresponds to font-wide param-
eters including checksum, design size of the font, character
coding scheme, font family, font size, font face and font di-
mension parameters.

Checksum information could be kept as a trace of
the original OFM file, but obviously, there is no standard
OpenType table to host it.

Design size is usually a reference to the point size at
which glyph outlines and spacing display the best. Design
size information can be obtained from OpenType’s GPOS
table via the size feature tag, which contains both the
design size and a suggested range of sizes.

OpenType fonts use the Unicode encoding to allow
handling of large glyph sets. Font family information is
available in the naming table (name) with the help of the
predefined nameID of 1. However, this information is
not of much interest as it is not used consistently.

TUGboat, Volume 24 (2003), No. 3 — Proceedings of EuroTEX 2003 551



Anish Mehta, Gabor Bella and Yannis Haralambous

Global information also includes font dimension pa-
rameters such as slant, space, stretch|shrink, xheight and
extraspace. Slant in OFM corresponds to the italicAngle
entry in Openlype’s post table, which gives the angle
in counterclockwise degrees from the vertical, zero for
upright text and negative for text leaning right.

The equivalent of TEX’s global space parameter in
OpenType can be taken as the width of the space glyph.

Stretch/shrink information are not available in stan-
dard OpenType tables.?

Information regarding xheight is available as the sx-
Height field in the OpenType 0S/2 table. If it is not
present then we can take the height of the non-ascending
lowercase glyph ‘x’. This metric specifies the approx-
imate distance between the baseline and the height of
non-ascending lowercase letters.

Finally, no equivalent of the exzraspace parameter
exists in standard OpenType tables.

Metric information on an individual glyph level in an
OFM file corresponds to width, height, depth and italic
correction parameters of individual glyphs. The width pa-
rameter corresponds to the advancel¥idth value in Open-
Type’s hmtx (horizontal metrics) table.

Height and depth information are not explicitly
available in OpenType as there is some difference in the
way TEX/Q and OpenType deal with character dimen-
sions. Figures 1-2 compare the two approaches, which
we now describe further.

TEX and 2 have access to abstract height, depth and
width parameters, in the sense that these values may be
independent of the bounding box itself, of which they
have no direct information. OpenType, on the other
hand, provides bounding box, advance width and left and
right sidebearing values so that both the width of the
abstract box used for typesetting and the position of the
glyph inside that box are known.

For OpenType fonts with TrueType outlines, the
bounding box information is stored in the glyf table,
while for CFF/OpenType, it needs to be extracted from
the CFF data. Advance values and sidebearings come
from either the hmtx or vmtx table, depending on the
text direction. Nevertheless, the abstract height and
depth parameters of TFM/OFM files are not present in
OpenType in any form; vertical metric data such as ad-
vance height, top sidebearing, etc., are only used when
typesetting vertically, they bear no relation to TEX’s
height and depth fields. Whether bounding box size pa-

rameters are acceptable as a substitute is also not evi-

2. The JSTF table in OpenType contains prioritised sugges-
tions where each suggestion defines the action that can be used
to adjust a given line of text. When spaces are too large or too
narrow, JSTF substitutions can help producing better lines. But
this is by no means comparable to the global stretch and shrink
parameters which give the maximum and minimum values of in-
terword spaces.

height

depth

® = origin

Fi1c. 1: TEX’s notion of width, height and depth.

Bounding box

Isb rsb
B S
Advance
width

Fic. 2: OpenType’s notion of advance width and
bounding box.

dent. Nevertheless, this substitution has been used when
adapting PostScript Type 1 fonts to TEX for many years
already.

Information regarding italic correction is not explic-
itly available in OpenType. However, it is possible to
calculate it by subtracting the advance width value from
xMax.

Information on glyph pairs refers to ligatures and
kerning. Ligature substitution is handled by OpenType’s
GSUB table. It also supports contextual substitutions,
which is similar to TEX’s smart ligatures. Application of
GSUB features will be discussed later in the article.

In OpenType, kerning information is available via
both the GPOS and kern tables. In the former, a Pair
Positioning Subtable specifies kerning data for glyph pairs,
offering more flexibility than a typical kerning table:
glyph pairs can be adjusted in both horizontal and ver-
tical directions. It can also use the device table to adjust
the positions of glyphs at each font and device resolution.
The kern table, inherited from TrueType, provides a
more classical approach to kerning; its use is discouraged.

552 TUGboat, Volume 24 (2003), No. 3 — Proceedings of EuroTEX 2003



OFM and OVF Creation

As explained above, OFM file creation for OpenType
fonts is solely a temporary solution until direct Open-
Type access becomes available. Conversions described in
the previous section are done by a Python utility called
makeovp. The resulting OVP file can in turn be converted
into OVF (virtual font) and OFM (virtual and real font
metric) files by using the standard ovp2ovf utility.

In the virtual font, Unicode positions are mapped
to glyph ID’s according to the cmap table. Unencoded
glyphs (swash alternates, contextual forms etc.) are auto-
matically mapped to the private use area (PUA) of the Ba-
sic Multilingual Plane (U+Eooo...U+F8FF). The DVI
file will use this “mixed” encoding scheme, by which
odwips will later look up glyphs in the converted Open-
Type font (see section on PFC tables). It has to be stated
again that this is only a temporary solution: our long-
term plan is to eliminate the need for virtual fonts, as far
as OpenType is concerned.

Advanced Typographic Table Support in ()

This section presents how € makes use of OpenType’s so-
called advanced typographic tables such as GSUB and GPOS.
As explained earlier, full support for these tables will
certainly require a major rewrite of the {2 source code,
which will most likely be a longer-term project. At the
moment, only pair kerning information is used from the
GPOS table (lookup type 2). If no GPOS table is present in
the font, the kern table will be used instead, but only for
TrueType outlines: CFF/OpenIype fonts can only use
the former.

The GSUB table is supported to a much greater ex-
tent: all kinds of lookups are handled with the excep-
tion of Extension Substitution. 'This is a major break-
through that makes available such Openlype features
as contextual ligature substitutions for Indic scripts, old
style forms or small capitals in Latin, etc.

As a first step, OpenType substitution lookups need
to be converted into QQTP’s (€ Translation Processes, [3])
by a Python utility named makeotp. This program will
extract every feature and lookup type of every script
from the OpenType font file given as input and generate,
for each one of them, a separate OTP file.3 The naming
convention for these (TP files is the following:

FontName-FeatName-LkupType-ScriptTag.otp
FontName is the name of the font. FeatName is the name
of the feature that the QTP provides; feature names con-
form to Microsoft’s feature tag registry. LkupType is
the type of lookup the given feature can perform. An

3. In some cases, this operation will result in dozens of files per
font. Do not forget: this temporary solution has been conceived
to bring some key OpenType support to €2 as quickly and easily
as possible.

Adapting 2 to OpenType Fonts

example QTP filename using the dlig (discretionary
ligatures) feature for the Palatino (pala.ttf) font is
pala-dlig-lkup4-latn.otp. Inside the newly gen-
erated {)TP file, one finds expressions such as:

@"0051 @"0075 => Q@"E010;
@"0073 @"0070 => Q@"E026;
@"0073 @"0074 => Q"FBO06;

where multiple glyphs are being replaced by a single lig-
ature glyph. The hexadecimal codes represent Unicode
character positions, coming from the cmap table. Here,
the third expression replaces ‘st’ with a single ligature
glyph ‘st’ (mapped onto the PUA). Behold, Dear Reader,
as this is the world premiere of an © document using
OpenType fonts, with GSUB features applied!
pala-frac-lkup5-latn.otp is another example
of a GSUB-originated QTP performing contextual substi-
tution. This QTP contains the expressions of the form:

@"0034 @"O02F @"0035 => @"2074 @"2044 ©@"2085;
©"0034 @"OO2F @"0036 => @"2074 ©@"2044 ©"2086;
©"0034 @"OO2F @"0037 => @"2074 @"2044 @"2087;

where the first one replaces ‘4/5’ by 45 through a con-
textual substitution: four, slash and five are replaced
by foursuperior, fraction and fiveinferior re-
spectively.

Using GSUB Features in ) Documents

While converting an OpenType font file, the makeotp
utility will automatically generate QQTP’s for the GSUB
features present in the font. In order to access these
features, one must include a s#y/e file corresponding
to the script and font. For a (font, script) pair, the
Fontname-LangTag.sty style file is generated auto-
matically by makeotp. For example, for the CourierStd
(CourierStd.otf) font and Latin, the file created will
be CourierStd-latn.sty. At this moment, the style
file does not turn on GSUB features automatically, it is up
to users to activate the features they need. One includes
the style file in the 2 document header, i.e.,

\usepackage{CourierStd-latn.sty}
Then, to apply a specific feature, include
\pushocplist\CourierStddliglatn

at the point where the d1ig (discretionary ligatures) fea-
ture of the Latin script is to be activated.

Devanagari with ): A Case Study

This section explains how to use TP’s for typesetting in
the Devanagari script (especially in the Hindi language).
The following two input methods may be used:

e Velthuis Transliteration Scheme;

e a Unicode compliant editor.

TUGboat, Volume 24 (2003), No. 3 — Proceedings of EuroTEX 2003 553



Anish Mehta, Gabor Bella and Yannis Haralambous

The Velthuis scheme needs two QTP’s to con-
vert the input transcription into Unicode: velthuis2-
unicode.otp and hindi-uni2cuni.otp, used to deal
with virama and dependent vowels. In the case of the
Hindi language, the final zirama is removed by this QTP.

Things are easier using a Unicode (UTF-8) compli-
ant editor: 2 can read Unicode-based text directly. In
this case, the two additional QXTP’s used for the translit-
eration scheme are not needed. Only these two lines

need be added to the header of the 2 document:
\DefaultInputMode UTF8
\InputMode currentfile UTF8

To turn on GSUB features inside €2, the following
line needs to be included in the header, supposing that
we are using the raghu.ttf font:

\usepackage{raghu-deva.sty}

The makeotp program is intelligent enough to as-
semble this style file in such a way that OpenType fea-
tures are applied in the correct order. For reference, the
correct order for the Devanagari script is:

e nukt-Nukta form.

e akhn-Akhand Ligature.

e rphf-Reph form.*

e blwf-Below-base form.

e half-Half-form (pre-base form).
e vatu-Vattu variants.

e pres-Pre-base substitution.

e abvs-Above-base substitution.

e psts-Post-base substitution.

e haln-Halant form substitution.

The example below has been created using the
Raghu OpenType font, with all GSUB features enabled.

Note that, due to the lack of support for GPOS features,
glyph positions may not always be correct.

T AT T A AecAqw IAFE A | HEd AT w= A
AT FI Hecdqu JHEHAN 9T eoare? g 2 oad sasars
T HFEAT FTa 1 UF Tgeh ARG A1 H anfaae € |

Font and Glyph Outline Conversion

The following sections of the article deal with outline
conversion issues. As it has already been pointed out,
there are virtually no printers today with built-in Open-
Type font support. OpenType fonts will thus in all cases
be converted before printing, either by a printer driver
or by the application itself, to an appropriate format. In
our case, no printer driver is available (native PostScript

4. The rphf and blwf features should not be used simultane-
ously. Two macros (in the form of ocplists) will be created, one
with the rphf feature and the other with blwf, so that the user
can switch between the two forms when necessary.

being produced), so we had to come up with our own font
conversion procedure.

Theoretically, several destination formats are possi-
ble: PostScript Type 1, CFF (Type 2), Type 3, and even
Type 42, for TrueType-flavoured OpenType. Each of

these formats has its advantages and drawbacks:

e Type 1 enjoys complete support by all kinds of
PostScript printers, including Level 1 printers. Its
disadvantage is that conversion of TrueType-based
OpenType fonts into PostScript is not trivial at all,
and converting TrueType hints seems to be espe-

cially difficult;

o CFF is the deluxe edition of Type 135 it would be an
ideal solution for Type 2 charstrings in CFF-based
OpenType (no conversion is needed), but for True-
Type outlines we face the same problems as with
the Type 1 format. In addition, CFF needs Level 3
printers.

e although Type 3 is also universally supported, its
major problem is that it is not suitable for PDF: Ac-
robat may render it very poorly. The PDF format
has little support for Type 3 fonts, so that their
glyphs end up being displayed as bitmap images.
"This not only affects rendering quality, but also ob-
structs glyph-to-character mapping mechanisms, so
that Type 3 rendered glyphs cannot be searched,

copied or indexed as characters;

e Type 42 could be a possible candidate for True-
Type-flavoured OpenType: OpenType to True-
Type conversion should not be difficult,5 and the
resulting TrueType font can easily be embedded in
the Type 42 wrapper and then sent to the printer
directly. However, a Level 2 printer is needed to
interpret the Type 42 format, and furthermore,
we know little about Type 42 compatibility with
PostScript font operators such as glyphshow and
charpath. Failure of these PostScript operators
to work would mean that PostScript code using
Type 42 fonts is of low quality.

After careful consideration of the advantages and
disadvantages of each format, the two most promising
choices seem to be Type 1 and Type 42. As our final
decision, we opted for Type 1, mainly because of its sim-
plicity and absolute support by printers — but this choice
does not necessarily mean that Type 42 conversion will
not be added later. If we consider discarding TrueType

5. Speaking here of converting outlines and other basic data
necessary for rendering, not about OpenType’s advanced typo-
graphic tables.

554 TUGboat, Volume 24 (2003), No. 3 — Proceedings of EuroTEX 2003



hints acceptable (it should not matter for printed docu-
ments), OpenType to Type 1 conversion becomes a fea-
sible, not too painful process.®

The solution we were looking for had to be intelli-
gent enough to meet two important requirements: first,
the same OpenType font should not be converted every
single time it is used in a document, but oz/y once, when
it is first used. Secondly, to decrease the number of the
resulting Type 1 fonts (and thus the size of the Post-
Script document), glyphs not referenced in the DVI file
(not used in the document) should not be included in the
Type 1 fonts. In other words, oZzips should be able to do
subsetting. These two points are justified by the following
arguments:

o If the OpenType font is large (CJKV fonts can oc-
cupy tens of megabytes), converting can take an ex-
cessive amount of time;

e Type 1 fonts can encode up to 256 glyphs, while
for OpenType this limit is 65,536. A CJKV Open-
Type font containing 10,000 glyphs would need to
be converted into no less than forty Type 1 fonts.

o the download time of large fonts to the printer is
slow, and printer memory is filled up quickly;

o we should keep the size of the final PostScript docu-
ment as small as possible (Internet downloads, etc.);

o cven if the OpenType file is small, why do the same
conversion over and over again?

The method we propose is to convert OpenType
fonts only at the time of their first use, and to store
the converted Type 1 outlines in an intermediate for-
mat called PFC (abbreviation of “PostScript Font Con-
tainer”, also a logical continuation of PFA and PFB). The
PFC format can be regarded as a Type 1 glyph direc-
tory that provides one-by-one access to charstrings (as op-
posed to monolithic Type 1 fonts), allowing 04zips to as-
semble Type 1 fonts on the fly, only including glyphs that
are used in the given document (see fig. 3). If, say, a Chi-
nese text contains only 500 different ideographs, odvips
will retrieve the corresponding glyphs from the PFC font
and create two Type 1 fonts (instead of forty!) to be in-
cluded in the PostScript document. We will call these
partial Type 1 fonts mini-fonts. The advantage of par-
tial font creation is that both document sizes and printer
overhead will be greatly reduced.

A Brief Description of the PFC format

We have chosen to design the PFC format to be compati-
ble with the modular, table-based file structure of True-
Type and OpenType (sometimes called sf##)7 so that all

6. According to unofhicial statements of Adobe people in the
OpenType discussion forum, even Adobe’s “official” OpenType-
ready applications like InDesign do an OpenType-to-Type1 con-
version before printing.

7. See [1] for an overview of the OpenType file format.

Adapting 2 to OpenType Fonts

D

PS

minifont1
minifont2
minifont3

makepfc

i
invokes  ,*

Fic. 3: Conversion and integration of Openlype
font data into a PostScript document.

PFC data may be included, as tables, into the original
OpenType font itself, instead of storing them in a sep-
arate file. However, if the font’s licence does not allow
modification of the font file, we have no choice but to cre-
ate a stand-alone PFC file.

Our PFC format defines the following tables:

o the header and table directory entries comply with
OpenType’s header format, although the checksum
is not used (at least for now);

e the oMAP table contains mapping information: for
all glyphs in the PFC, their glyph code (the same
code is used in the DVI file), the corresponding Uni-
code value, PostScript name, and the position of the
glyph’s charstring length in the oCHR table;

e the oCHR table contains the length of charstrings
as well as the charstrings themselves, already en-
crypted with charstring encryption;®

e 0oGFD (Global Font Data) includes general informa-
tion needed in Type 1 minifonts, such as italic angle
and bounding box values;

e oPRI and oSUB contain the beginning of the Private
dictionary and the subroutines of the Type I mini-
fonts, respectively. At the moment, these tables are
unstructured and their contents, including the en-
tire subroutine set, are embedded into each mini-
font without change. In the future, we plan to re-
place this dumb temporary solution with intelligent
subroutine handling (partial subroutine download).

It is important to point out that the PFC charstring
directory can be generated on demand, at the first use of
a given OpenType font. If 04vips, while reading the DVI
file, finds a reference to an OpenType font, it will first
check whether the corresponding PFC file already exists.
Ifit does not, the OpenType-to-PFC conversion starts au-
tomatically.

Since the two steps of OpenType-to-PFC conversion
and assembly of minifonts are more or less independent,

8. See [2] for details.

TUGboat, Volume 24 (2003), No. 3 — Proceedings of EuroTEX 2003 555



Anish Mehta, Gabor Bella and Yannis Haralambous

there is no need to implement both inside s4zips. In our
solution, the converter is a separate utility called makepfc
that is called by v4ips when the font is used for the first
time.

OpenType Outline Conversion

Our work? related to the makepf utility revolves around
the conversion process of TrueType quadratic splines to
cubic Bézier curves of the PostScript Type 1 format. We
have decided to build our work on Just van Rossum’s #2x
utility as the parser, mainly because of its ability to read
OpenType tables, as well as its easy extendability to new
functionalities. The conversion itself, as far as TrueType
outlines are concerned, is based on the #2/2p71 program.
The conversion algorithm for TrueType fonts goes
as follows: suppose we are given a Truelype (i.e.,
quadratic) curve whose starting and ending points are
startx and endx respectively, with ctrlx as the single
control point. To split the single control point into two,
as needed for the Bézier cubic, the following calculations
need to be done (fig. 4):
e starting and ending points, i.e., startx and endx,
remain the same;

e the two control points are given by (2 * ctrlx +
startx)/3 and (2 * ctrlx + endx)/3.

ctrlx
+

startx
startx

Fic. 4: Quadratic TrueType and cubic Bézier curves.

For CFF/OpenType fonts, no outline conversion
is needed, except for Type 2-specific charstrings like
flex or random, where conversion can be difficult: the
random operator, for example, has no Type 1 equivalent
at all. Most information, however, can be directly copied
from OpenType’s CFF table.

Configuration of odvips
To understand exactly how odzips deals with OpenType

fonts, let us suppose that we are using verdana.ttf
as our OpenType font, and that a DVI file using Ver-
dana’s original OpenType glyph ID’s has already been

9. Anish Mehta (TTF) and Ghislain Putois (CFF) are the two
developers of the makepfc utility.

created by 2 (either by means of a virtual font or by
accessing OpenType tables directly). odwips will thus
find a verdana font referenced inside the DVI, where
rverdana is the TEX name (the name of the correspond-
ing OFM file) of the OpenType font. It will therefore
look through psfonts.map, trying to find an entry with
the same fontname. The following line would be added
to psfonts.map:

rverdana verdana <verdana.ttf

odvips will then realise that verdana is a TrueType-
flavoured OpenType font and that it needs to find its PFC
charstrings to be able to continue. First, it will try to find
the PFC tables inside verdana.ttf. If there are no PFC
tables in verdana.ttf (which is very probable as—due
to Microsoft’s restrictive licence—we are not allowed to
modify the font) or if 0dzips cannot even find the file, it
will look for a separate file called verdana.pfc, suppos-
ing that it must have already been created. If the PFC
is not found either, odvips will invoke the makepfc pro-
gram to produce the PFC tables on the fly. If both files
are missing, odvips falls back to a default font.

A Final Remark

The process described above (including metric, style and
OTP file creation, font conversion, modification of con-
figuration files, etc.) may seem complicated. And, to be
honest, it is, even if the individual steps are easy to carry
out. We therefore plan to write a single script that would
call the individual make* and other programs automati-
cally and thus let the user do the whole conversion pro-
cess in a single step.

References

[1] The OpenType Specification vI.4. http:
//www.microsoft.com/typography/otspec/
default.htm

[2] Adobe Type 1 Font Format.
http://partners.adobe.com/asn/

developer/pdfs/tn/T1Format . pdf

[3] Draft Documentation for the €2 system. 7 March
1998. http://www.loria.fr/services/tex/
moteurs/omega7mar1998. pdf

(4] Haralambous, Yannis, Plaice, Fohn: Low-level
Devanagari Support for Omega—Adapting
devnag. TUGboat 23(1), 2002, Proceedings of
the TUG Annual Meeting, pp. 50-56. http://
omega.enstb.org/yannis/pdf/tug2002.pdf

556 TUGboat, Volume 24 (2003), No. 3 — Proceedings of EuroTEX 2003



