
TUGboat, Volume 24 (2003), No. 2 245

Generating LATEX documents through

Matlab

S. E. Talole and S.B. Phadke

Abstract

Matlab, along with its family of toolboxes, is widely
used software for analysis and design of a large num-
ber of real life engineering problems encompassing
areas such as signal processing, control system de-
sign and so on. The output of a problem solved using
Matlab can be included in a Microsoft Word docu-
ment by using the Notebook supplied with Matlab
or the Matlab/Simulink Report Generator Toolbox
available separately. In academic institutions, doc-
umentation is commonly done using LATEX. While
the graphics generated by Matlab can be saved in
PostScript form and then included in a LATEX docu-
ment, at present there is no way to directly include
numerical data and text in a LATEX program. Man-
ual inclusion of such data is error prone and time
consuming.

The objective of this paper is to present the
idea of generating notes, precis or parts of books
through the use of Matlab engine for writing LATEX
programs. When sets of data or graphs are to be
included in a LATEX document, the programming
power of Matlab can be effectively employed. The
software presented here is written with feedback con-
trol applications in mind. The software needs the
Control Systems Toolbox Matlab module and aug-
ments its functionality.

1 Introduction

Matlab is one of the most widely used environments
for solving real-life engineering problems. It is a
valuable tool in teaching and research in several dis-
ciplines, such as control engineering, signal process-
ing and so on. A number of books have been written
illustrating the power and use of Matlab for solv-
ing practical problems. While solving a problem,
it is very important to document it along with its
solution; normally, this is done by typesetting the
problem and its solutions separately. Graphical re-
sults of the solution are incorporated by employing
copy and paste technique as is done with Microsoft
Word. Such a procedure is highly time consuming
and prone to errors. Even when the Notebook sup-
plied with Matlab is used, the output is of a poor
quality, especially when the document contains a lot
of mathematics.

LATEX (Buerger, 1990) is a highly regarded and
widely used publically available typesetting environ-
ment. Based on TEX, developed by Donald Knuth

(Knuth, 1986), LATEX provides a powerful means for
preparing high quality typeset documents and has
become a de facto standard for submitting techni-
cal papers in international journals and conferences
(Kwakernak, 1996). Many academic institutions as
well as universities and research establishments use
LATEX for typesetting.

In view of the wide use of LATEX, we felt that
when a problem is solved using Matlab, a documen-
tation of the problem and its solution in LATEX would
be highly useful. The power of Matlab as a compu-
tational engine needs to be combined with the power
of LATEX as a typesetting engine to achieve this end.
The purpose of this paper is to present a small de-
velopment to fulfill this need. The Matlab programs
described in this paper themselves generate the nec-
essary LATEX documents. Whenever repeated type-
setting tasks are involved, the programming power
of Matlab has been used to do the same.

2 Generating LATEX through Matlab

The software described in this paper is a set of Mat-
lab functions or script files designed to get time
and frequency response and write the text and/or
graphical output to a LATEX file. The LATEX file is
then processed separately. For example, the func-
tions PlaceLatex and BodeLatex developed here do
everything that the standard functions place and
bode in the Control Systems Toolbox do, while gen-
erating a LATEX file as output. As far as the user
is concerned, the only difference between the stan-
dard place and bode functions of Matlab and the
PlaceLatex and BodeLatex functions is that the
latter needs one extra argument, a string specify-
ing a filename in which the results are stored. In
addition, the legends and the plots are exported in
LATEX format without any additional manual entry.

Wherever several results of a similar nature are
needed, such as graphs generated by varying one or
more parameters, the programming power of Mat-
lab itself is used to do the job. This concept is illus-
trated by writing a Matlab script to obtain graphs
of a step response of a second order system as the
damping ratio is varied from 0.1 to 1 with a step
of 0.1. When this script file is executed in Matlab,
it generates a LATEX file containing all the graphs.
In the present version, functions have been written
to accomplish most of the common tasks needed in
time and frequency response and stability analysis,
and write corresponding LATEX documents.

The LATEX documents are generated by utiliz-
ing the file I/O and string functions provided in Mat-
lab. The LATEX commands provided in the Symbolic

246 TUGboat, Volume 24 (2003), No. 2

Math Toolbox can facilitate the document genera-
tion but are not essential. Knowledge of basics of
feedback control is utilized in generating appropri-
ate strings by interpreting the results generated by
Matlab so that the documentation will appeal to
the control engineer. In the next section the use of
PlaceLatex and BodeLatex for automatic genera-
tion of a LATEX document is illustrated by examples.
Further, a Matlab script file which generates a LATEX
document by employing the programming power of
Matlab is also presented.

The LATEX file generated by these programs can
be processed in any standard LATEX implementation.
It may be noted that many LATEX implementations
are freely available. On the Matlab side, the m-
file (Matlab scripts) functions require the Control
Systems Toolbox. Following similar procedures, sev-
eral other functions can be developed for step re-
sponse, Nyquist stability, Routh stability, lead and
lag compensation, etc., to provide for commonly
needed tasks in control system analysis and design.

3 Examples

In this section, the use of the new PlaceLatex and
BodeLatex functions, as well as the script file devel-
oped in the present software, are presented.

3.1 Pole placement problem

Consider a dynamic system, the state space model
of which is

ẋ =









0 1 0 0
20.601 0 0 0

0 0 0 1
−0.4905 0 0 0









x +









0
−1
0

0.5









u (1)

It is desired to place the closed loop poles at
−2 ± j3.464, −10, −10. The K=place(a,b,p)

command available with the Control Systems Tool-
box (Mathworks, 1998) gives the state feedback gain
vector K such that the closed loop poles of the sys-
tem are as specified in vector p. The arguments a

and b are the system and input matrix of the open
loop system. However, if one wishes to document
this problem and its solution, one will have to type-
set it separately by manually entering the arguments
of the Matlab function as well as the output gener-
ated by Matlab. We wish to avoid this manual entry.

To generate the documentation automatically,
a new Matlab function PlaceLatex has been writ-
ten, which when invoked along with its arguments,
generates a LATEX document. For example, using

PlaceLatex(a,b,p,‘placex.tex’)

creates placex.tex, which can be processed like any
LATEX document. The PlaceLatex function is writ-
ten by using the low level Matlab programming com-
mands. The function commences with the function
definition:

function out = PlaceLatex(a,b,p,filename)

which declares that the function needs four argu-
ments: the Matlab input data and the LATEX file to
write, as described earlier.

Next, the software checks whether four argu-
ments are in fact specified:

if nargin ~= 4

error(’Must have 4 input arguments!’)

end

The file named by filename as specified by user
is opened for writing:

fid=fopen(filename,’w’);

The function exports text as well as numerical
results through the Matlab command fprintf. The
function fprintf can be used in a variety of ways.
Static text relevant to the problem can be generated
by commands like

fprintf(fid,’Consider a system the state

space model of which is \n’);

Similarly, the statement

fprintf(fid,’\\begin{center}

$ \\dot x$’)

generates simple LATEX code for opening the cen-
tering environment and writing ẋ. Backslash is an
escape character in Matlab strings, thus we double
it to get one backslash in the LATEX output file.

The most interesting use of fprintf, however,
is for writing dynamic text that is not physically
entered by the user. An example of this is

fprintf(fid,’%g &’,a(i,j))

A section of code that can generate an array a of
numbers is as shown below:

ao=length(a);

for i=1:ao

for j=1:ao

if j==ao

fprintf(fid,’%g \\\\’,a(i,j));

else

fprintf(fid,’%g &’,a(i,j));

end

end

end

This Matlab code will insert the elements of a square
matrix in a LATEX document. With the addition
of suitable commands, full code for displaying the
matrix can be generated. A point worth noting is

TUGboat, Volume 24 (2003), No. 2 247

that the code remains the same irrespective of the
order of the matrix.

Returning to our PlaceLatex function, a tech-
nical check is made for the controllability of the sys-
tem; this code is omitted. Then, the pole placement
design is carried out with:

k=place(a,b,p);

The resulting gain matrix k is then written to
the user’s file with:

fprintf(fid,’\\begin{center}

\\mbox{State feedback

gain matrix,}

$ K = [’) for i=1:ao

fprintf(fid,’ \\ %g’,k(i));

end fprintf(fid,’]. $

\\end{center}’)

Finally, the output file is closed:

fclose(fid);

An excerpt from the typeset LATEX documenta-
tion for the present problem follows.

Pole placement:

Consider a system the state space model of which is

ẋ =









0 1 0 0
20.601 0 0 0

0 0 0 1
−0.4905 0 0 0









x +









0
−1
0

0.5









u

The open loop poles of the system are

Open loop poles = [0 0 4.53883 − 4.53883]

The open loop system is unstable as pole/s are lying in
RHP. The coefficients of the open loop characteristic
polynomial are :

Open loop characteristic polynomial coefficients =
[1 0 − 20.601 0 0].

The desired closed loop poles are given as : [. . .]

State feedback gain matrix,
K = [−298.146 − 60.6965 − 163.092 − 73.3931].

Two points about this output are worth noting:

1. None of the numerical data is physically en-
tered.

2. The program for generating the document is to-
tally independent of the problem being solved
and documented.

3.2 Bode plots

For our next example, consider a feedback system
the open loop transfer function of which is given as

G(s)H(s) =
20s + 20

s(s3 + 7s2 + 20s + 50)
(2)

Frequency (rad/sec)

P
h

a
s
e

 (
d

e
g

);
 M

a
g

n
it
u

d
e

 (
d

B
)

Bode Diagrams

−80

−60

−40

−20

0

20

10
−2

10
−1

10
0

10
1

10
2

−250

−200

−150

−100

Figure 1: Open loop bode plots

To generate its bode plot, one can use the bode
command as bode(num,den) where num = [20 20]
and den = [1 7 20 50 0]. Execution of this command
in Matlab with Control Systems Toolbox displays the
bode plot of the considered transfer function.

To generate the documentation of this problem
automatically, a new Matlab function BodeLatex

has been written, analogous to PlaceLatex. For ex-
ample, BodeLatex(num,den,‘bodex.tex’) creates
bodex.tex, which when latexed generates the fol-
lowing (excerpted).

Bode Plot:

This is an example of Bode plot report generated
through Matlab. Consider a feedback system having
open loop transfer function as

G(s)H(s) =
20(s + 1)

s(s + 5)(s2 + 2s + 10)

[. . .]
The open loop bode plots for the considered system
are as shown in Figure 1. To see the gain and phase
margins, one can use the margin command which gives
the bode plots as shown in Figure 2.
[. . .]
Since ωg < ωp, the system is stable.

248 TUGboat, Volume 24 (2003), No. 2

Frequency (rad/sec)

P
h

a
s
e

 (
d

e
g

);
 M

a
g

n
it
u

d
e

 (
d

B
)

Bode Diagrams

−80

−60

−40

−20

0

20

Gm=9.9293 dB (at 4.0131 rad/sec), Pm=103.66 deg. (at 0.44264 rad/sec)

10
−1

10
0

10
1

−250

−200

−150

−100

Figure 2: Open loop bode plots with gain and
phase margins

3.3 Matlab script files

Now let us consider a task of plotting a step re-
sponses of a second order system

G(s) =
ω2

n

s2 + 2ζωns + ω2
n

as its damping ratio, ζ is varied from 0.1 to 1.0 in the
steps of 0.1, thus, a series of 10 graphs. If one wishes
to include these 10 graphs in a LATEX document,
it’s clearly best not to write the code for inclusion
of graphics, caption and label, and copy it (with
modifications) 10 times.

It is important to note that here a task (inclu-
sion of a graph in LATEX document) is repeated, and
so the power of Matlab programming itself can be
invoked as is evident from the following portion of a
Matlab script file:

%Plots of second order system response

%with varying damping ratio

for i=1:10, zeta=i/10;

s=num2str(zeta);

This is followed by code (not shown here) that gen-
erates the step response.

Next, the code for generating distinct file names
and storing the graphs as EPS files and then calling
the graphs in \includegraphics commands with
an appropriate caption including the corresponding
value of ζ is shown. This code uses the Matlab
function num2str to convert numbers to strings and
strcat to concatenate strings.

s=num2str(i);

filename = strcat(’sresp’,s);

print(’-deps’, filename);

fprintf(fid,’\\begin{figure}\n

\\begin{center}\n\\includegraphics

[width=3in,height=3in]{sresp%i’,i);

fprintf(fid,’.eps}\n

\normalfont\normalfont \\

\caption{Step response for $ \\

zeta=%3.1f’,zeta);

Execution of this file in Matlab generates a file which
consists of inclusion of all ten graphs of step re-
sponses of a second order system

G(s) =
25

s2 + 10ζs + 25

as ζ is varied from 0.1 to 1.

4 Conclusion

In this paper, software which generates a LATEX doc-
ument from Matlab is introduced. The software al-
leviates the need to typeset the problem and its so-
lution separately by generating the documentation
automatically in LATEX. The document generation
is nearly transparent to the user, i.e., the user need
not know LATEX in great detail.

It is hoped that such suite of m-files will be
immensely useful to teachers and students and au-
thors of books on control systems. In a modification
of these m-files, it is intended to make the documen-
tation entirely transparent to the user, eliminating
altogether the need to know LATEX.

References

Buerger, D. J. LATEX for Scientists and Engineers.
McGraw-Hill, New York, 1990.

Knuth, D. E. The TEXbook. Addison-Wesley, 1986.

Kwakernak, H. “Electronic Text Processing, AUTO-

MATICA and Elsevier”. Automatica 32(3), 303–
304, 1996.

Mathworks. Control Systems Toolbox User’s Guide.
The MathWorks, Inc., 1998.

⋄ S. E. Talole
Scientist, G.M. faculty
Institute of Armament Technology
Girinagar, PUNE-411 025
setalole@hotmail.com

⋄ S. B. Phadke
Scientist, G.M. faculty
Institute of Armament Technology
Girinagar, PUNE-411 025
sbphadke@hotmail.com

