TUGDboat, Volume 24 (2003), No. 2

MIBIBTEX’s Version 1.3
Jean-Michel Hufflen

Abstract

We present the features of the new version of
MIBIBTEX, a new multilingual implementation of
BIBTEX, the bibliography program associated with
(I3)TEX. The main point of this new version is the
use of a new language for designing bibliography
styles. This language is close to XSLT and we give
its manual as an annex.

Keywords bibliographies, multilingual features,
BIBTEX, bst, nbst, XML, XSLT, MIBIBTEX.

1 Introduction

It is well known that a bibliography program should
be associated with a text processor. If such a pro-
gram is used for documents such as history articles,
technical documentation, or research work, where
many references may be cited, the role of a bibli-
ography program is to search a database containing
bibliographical entries for the citations through-
out the document, sort them and arrange the infor-
mation associated with each selected entry. In short,
it has to build the ‘References’ section of the docu-
ment, containing bibliographical references, which
can be processed by the text processor at next run.
A bibliography program may look for keys sur-

rounded by special markers within a source text, as
does Tib [1]. Or it may use information included in
auxiliary (.aux) files, as does BIBTEX [16], most com-
monly used with (I&)TEX [14]. Here is an example
of a bibliographical entry using BIBTEX’s syntax:
©@BOO0K{howard1967b,

AUTHOR = {Robert~Ervin Howard},

TITLE = {Conan the Conqueror},

PUBLISHER = {Ace Books},

ADDRESS = {New York, New York},

NOTE = {Edited by L. Sprague de Camp},

YEAR 1967}

If the entry howard1967b is cited within a doc-
ument, this information is put into an auxiliary file
when KTEX runs, so BIBTEX can generate a .bbl
file containing the corresponding reference. When
IXTEX runs again, this reference will look like:

[1] Robert Ervin HOWARD. Conan the Con-
queror. Ace Books, New York, New York,
1967. Edited by L. Sprague de Camp.

according to the bibliography style chosen. Here
and in the ‘References’ section of this article, we use
a ‘plain’ style, that is, references are labelled with
numbers, authors’ last names are written using small
capitals, and first names are not abbreviated. Other

249

choices are possible: see [6, §13.2] for a survey of
available bibliography styles.

Due to its conception, BIBTEX has some lim-
itations: its syntax is rough, bibliographic styles
are written using an old-fashioned language [15],
and multilingual bibliographies are supported only
through workarounds. We personally missed this
last point very much, thus we have put into action a
new implementation of BIBTEX, named MIBIBTEX
(for ‘MultiLingual BIBTEX’), with many multilin-
gual features. The first version (1.1) was described
in [8]. But as we explained in [12], the new version
described here (1.3) takes advantage of XML! and
uses a new language, nbst, for ‘new bibliography
styles’, close to XSLT? [21].

This article aims to give a survey of all the
new features introduced by MIBIBTEXs present ver-
sion. It is not a complete reference manual, but
gives a good overview of the program. First, we
describe the new syntactical features provided by
MIBIBTEX.? Then, we give some words about the
implementation, showing the connection with XML
and discussing two approaches for multiligual bib-
liographies. Then we explain how the information
about languages is managed within our bibliography
styles and show that nbst allows creators of bibliog-
raphy styles to put them both into action. Last, a
manual of elements and functions of the nbst lan-
guage is given as an annex.

2 New syntactic features

Historically, we first added syntax for multilingual
features [8]. Then we realised that some fields’ val-
ues could be structured better with some new syn-
tax. Here are the results of our choices.

2.1 Syntax for names

When BIBTEX processes the value of an AUTHOR or
EDITOR field, it divides a family name into four fields:
First (for a first name), von (for a particle), Last (for
a last name), and Junior and recognizes these com-
ponents according to the following possible syntaxes
[16, §4]:

(i) First von Last

(ii) won Last, First
(iii) wvon Last, Junior, First
As suggested by the cases used within this terminol-
ogy, the words belonging to the von field are sup-
posed to use only lowercase characters, whereas the

1 EXtensible Markup Language.

2 EXtensible Stylesheet Language Transformations.

3 Let us note that ‘old’ .bib files are parsed successfully by
MIBIBTEX and give outputs comparable to BiBTEX’s, unless
square brackets are used in field values.

250

©@BO0K{howard1969,

TUGDboat, Volume 24 (2003), No. 2

AUTHOR = {Robert Ervin Howard, abbr => R. with
first => Lyon Sprague, von => de, last => Camp, abbr => L. Sprague with

Lin Carter}
TITLE = {Conan of {Cimmerial}},
PUBLISHER = {Ace Books},
ADDRESS = {New York, New York},

NOTE = {[Titre de la traduction fran\c{cl}aise :

‘““Conan le Cimm\’{e}rien’’] ! french

[Titel der deutschen \"{U}bersetzung: ‘‘Conan von Cimmerien’’] ! german}

YEAR = 1969,
LANGUAGE = english}

Figure 1: A multilingual entry using MIBIBTEX’s syntax.

words belonging to other fields are supposed to be
capitalised. These rules are too restrictive: some
particles may be capitalised, while some words be-
longing to a last name may be written using lower-
case characters. Using additional braces solves some
problems, but not all. In addition, BIBTEX abbre-
viates a first name by retaining only the first letter
of each word belonging to the First field, such let-
ters being followed with a period character. That
is sometimes incorrect: ‘Jon L White’ should be
abbreviated to ‘J. L White’ or ‘J. White’, not to
‘J. L. White’. First and middle American names
are handled differently from one name to another.
‘Robert Ervin Howard’ is usually written down as
‘Robert E. Howard’, which becomes ‘R. Howard’
when the first name is abbreviated. In contrast,
‘Henry Rider Haggard’ is usually written down as
‘H. Rider Haggard’, and becomes ‘H. R. Haggard’
in styles where first names are abbreviated. In ad-
dition, several letters may be retained when abbre-
viating a non-English first name:

e in French, ‘Charles Duits’ is abbreviated to ‘Ch.
Duits’, because the ‘ch’ group stands for one
digraph ([f]);

e likewise, 'Christian’ is abbreviated to ‘Chr.” in
German.

Since Version 1.2 [10], MIBIBTEX allows an explicit

syntax for these fields and the abbreviation of a first

name, if it is different from the ‘standard way’:
first => ..., von => ..., last => ...,
junior => ..., abbr =>

The order of the keywords is irrelevant and some

may be absent, provided that the last name is spec-

ified. For example:

first => Henry Rider, last => Haggard
where the von field is empty, and the abbreviation
of the first name is standard, that is, ‘H. R.” For a
more complex example, see the specification of ‘Lyon
Sprague de Camp’ in Figure 1. You can mix the ‘old’

and ‘new’ syntaxes, in which case a name is parsed
like (i) if no comma occurs, like (ii) (resp. (iii)) if
the number of commas not followed with a keyword
is one (resp. two) and the keywords give additional
information.* This is useful when we have to give a
specific abbreviation for a first name: see the spec-
ification of ‘Robert Ervin Howard’ in Figure 1. In
fact, this syntax is close to that for passing values
inside a subprogram call in Ada [18, §6.4] and other
languages.

When a name is not for a person but for an
organisation, it is well known to BIBTEX users that
such an expression should be surrounded by addi-
tional braces:

EDITOR = {{\TUGboard 2003}}

so BIBTEX considers it as a one-component name,
this component being a Last part. However, this
syntax poses a problem when a TEX command is
used within such a name. In the given example,
‘\TUGboard’ is viewed as an accent command: when
the bibliography is sorted, the corresponding entry
is alphabeticised as ‘2003’. MIBIBTEX’s new syn-
tax allows the specification of both an organisation
name and a key for sorting:

EDITOR = {org => \TUGboard 2003,
sortingkey => TUG Board 2003}

As in BIBTEX, co-authors are connected by the
‘and’ keyword within .bib files. After one author or
several successive co-authors, MIBIBTEX allows the
addition of collaborators, introduced by the ‘with’
keyword. Figure 1 gives an example in MIBIBTEX.?

4 Nevertheless, defining any part of a name twice causes
an error.

5 Besides, the entry given in this figure allows us to
emphasise the difference between co-authors and collabora-
tors. In fact, L. Sprague de Camp and L. Carter sorted
and arranged R. Howard’s manuscripts after his death. So
they are more ‘collaborators’ than co-authors. The entry
howard1967b, given in the introduction, might be rewritten
using this syntax, instead of using a NOTE field.

TUGboat, Volume 24 (2003), No. 2

<book id="howard1969" language="english">
<author>

251

<name><personname><first abbr="R.">Robert Ervin</first><last>Howard</last></personname></name>

<with/>
<name>
<personname>

<first abbr="L. Sprague">Lyon Sprague</first><von>de</von><last>Camp</last>

</personname>
</name>
<with/>

<name><personname><first>Lin</first><last>Carter</last></personname></name>

<title>
Conan of <asitis>Cimmeria</asitis>

<!-- asitis is for a group of words that should not be case-converted. -->

</title>
<publisher>Ace Books</publisher>
<year>1969</year>
<address>New York, New York</address>
<note>

<group language="french">

Titre de la traduction frangaise :
</group>
<group language="german">

<emph emf="yes" quotedbf="yes">Conan le Cimmérien</emph>

Titel der deutschen Ubersetzung: <emph emf="no" quotedbf='"yes">Conan von Cimmerien</emph>

</group>
</note>
</inproceedings>

Figure 2: The entry given in Figure 1 viewed as an XML tree.

As in BIBTEX, the ‘others’ keyword can be used
when additional names are left unspecified: ‘and
others’ and ‘with others’ are allowed. In the bib-
liography of this article, reference [7] shows how such
an entry using collaborators is formatted.

2.2 Syntax for multilingual features

In MIBIBTEX’s terminology, a language identifier
is a non-ambiguous prefix of:

e an option of the babel package [2],

e or a multilingual package name such as french
[5], german [17] or polski [4].6

The language of an entry is given by the LANGUAGE
field, whose value is a language identifier (see Fig-
ure 1). This field defaults to ‘english’.

Here we only show the syntax we use for mul-
tilingual features included in .bib files; a more com-
plete description can be found in [8], and more ex-

) 3)

amples in [12]. In the following, ‘s’ ‘s;’, ..., ‘s,

6 This choice of a non-ambiguous prefix allows a language
identifier to get access to several ways to process a language.
For example, a language identifier set to french works with
the frenchb option of the babel package as well as the french
package.

are strings; n is a positive natural number; and ‘1°,
‘11, ..., ‘1, are language identifiers.

A language change is denoted by ‘[s] : 1.
It is used for foreign words and in particular, it al-
lows a text processor to hyphenate them correctly.

A language switch without default lan-
guage is expressed by the following syntax:

[s11 ! I, [s,] ! 1, (1)

If there exists ¢ (0 < ¢ < n) such that the refer-
ence’s language is equal to 1;, then Expression (1)
yields s;; otherwise, this expression is replaced by
an empty string. In other words, this syntax is used
for additional information that must be typeset in a
particular language. For example, if we process the
entry howard1969 in French (resp. German), we can
add the title of the French (resp. German) transla-
tion, as shown in the NOTE field in Figure 1.

A language switch with default language
is expressed by the following syntax:

[s1] * 1, [sn] * 1, (2)

This syntax is used for information that must be in-
cluded, possibly in another language. If there exists
i (0 < i < n) such that the reference’s language is
equal to 1;, then Expression (2) yields s;; otherwise,
this expression is replaced by the string associated

252

with the language’s entry if such a string exists, or
by the string associated with the English language
if not. For example, we could allow the publisher’s
address of the howard1969 entry to use a Russian
transliteration for a reference to this entry in Rus-
sian. Of course, this address is to be put in English
otherwise. To do that, the ADDRESS field should be
given such a value:

ADDRESS =
{[New-York]
[(Russian transliteration)] * russian}

Notice that ‘[...]’, not followed with ‘*’, ‘1’ or ‘:’
means ‘[...] * 1’ where ‘1’ is the language’s en-
try.

2.3 Syntax for page numbers
In a PAGES field, MIBIBTEX recognizes:
e a single page (one token): {2003};
e the first and last pages (three tokens):
{2000--2003%} or {2000-2003}

e the first page and an unspecified number of fol-
lowing ones (two tokens): {2003+};7

e some enumerated pages (five tokens in the ex-
ample below): {2000,2003,2005}.

The tokens may or may not be separated by white-
space® characters. In all the other cases, the value
associated with this field is kept wverbatim and ap-
pears as-is for any predefined bibliography style.

3 Implementation issues

MIBIBTEXs first version [8] was written using C,
for the sake of efficiency and portability. When we
started implementation of the present version, we
realised that we needed calls to external functions
within our bibliography styles.® So we realised that
it was preferable for our program to be written in a
higher-level programming language. This way, the
interface between bibliography styles and external
functions would be designed better, so developers
of new styles could write extensions in the source
language more easily. We decided to develop a pro-
totype in Scheme, with the features related to XML
put into action by SXML!? [13], an implementation
of XML trees by means of Scheme expressions. Our
nbst language, for bibliography styles, includes a

7 Such a specification is typeset as ‘pp. 2003 ff.’ in English-
speaking bibliographies [3, §15.191].

8 The whitespace characters are space, tab, newline, car-
riage return, and form feed.

9 These external calls are used to manage information not
included in .aux files. So it has to be directly extracted from
.tex files.

10 Scheme implementation of XML.

TUGDboat, Volume 24 (2003), No. 2

<nbst:bst version="1.3" id="plain"
xmlns:nbst=
"http://lifc.univ-fcomte.fr/“hufflen/mlbibtex">

<!-- Reference-dependent approach: -->
<nbst:param name="language" select="’*selfx’"/>

<!-- Root element grouping entries: -->
<nbst:template match="mlbiblio">

</nbst:template>
</nbst:bst>

Figure 3: Layout of a bibliography style file using
nbst.

call function (see Appendix B), that gives access
to Scheme functions of MIBIBTEX's library.

Parsing an MIBIBTEX entry results in a repre-
sentation of an XML tree in SXML; for example, the
entry of Figure 1 is equivalent to the XML tree given
in Figure 2, that is, if the SSAX!! parser of SXML
is applied to this XML tree, it yields the same re-
sult. Our XML trees modelling entries are confor-
mant with a revised version of the DTD'? sketched
in [9]. They are rooted by the mlbiblio element, as
suggested by the first template given in Figure 3.

In addition, SXML relies on functions extend-
ing the basic encoding of characters used in Scheme.
These functions should allow Scheme programs to
handle Unicode, but they are platform-dependent:
some interpreters provide them, possibly partially,
some do not. In practice, MIBIBTEX can handle 8-
bit latinl encoding;'® further development will be
needed to adapt MIBIBTEX to the whole of Uni-
code,'* but the framework to do that is already
present.

4 Multilingual approaches

As mentioned in [8], multilingual bibliographies can
be organised with respect to two approaches, both
of which can be put into action by MIBIBTEX:

reference-dependent each reference of the docu-
ment’s bibliography is expressed using its own
language: for example, the month name of a
reference to a book written in English (resp.
French, German, ...) is given in English (resp.
French, German, ...);

11 Scheme implementation of SAX (‘Simple API for XML’).

12 Document Type Definition (document markup model).

13 [7, Table C.4] has more details about encodings.

14 If you would like to use characters from non-Latin alpha-
bets (e.g., Cyrillic characters), now put the INXTEX commands
to produce them, rather than these characters themselves. A
temporary situation, we hope.

TUGDboat, Volume 24 (2003), No. 2

<nbst:template match="author">
<nbst:apply-templates/>
<nbst:text>: </nbst:text>

</nbst:template>

<nbst:template match="name">
<nbst:apply-templates/>
</nbst:template>

Figure 4: Formatting names in nbst.

document-dependent all references are expressed
using the document’s language, as far as possi-
ble.

5 The nbst Language

Most elements of nbst behave like their namesakes
in XSLT. Figure 3 gives the general layout of a bibli-
ography style and a representative example is given
in Figures 4 & 5. The path expressions used in these
figures are related to the tree given in Figure 2. Let
us notice that some elements and attributes of are
recognised by the nbst processor, but do not have
any effect presently —they have been planned for
future use of MIBIBTEX, especially for generating
XML documents'® — this information is given in Ap-
pendix A. We assume that readers are quite familiar
with XPath [20] and XSLT [21]— there exist some
good introductory books about them, for example,
[19] —so in this section we only explain how the lan-
guage information is managed by the nbst processor.

Given a fragment of an entry viewed as a node
(an XML subtree), its current language is the
value of the language attribute if it exists, the value
of the current language of its parent otherwise. The
current language for an entry is the entry’s language
(see Section 2.2).

When templates are to be instantiated, the rule
added to those inherited from XSLT is that a tem-
plate with the language attribute has higher prior-
ity than the same template without it.!® This rule
overrides all the others. In particular, it applies if a
template is invoked by name,'” as well being applied
if the current node matches the pattern of its match
attribute.

15 In particular, we plan to investigate the generation of
‘References’ sections for DocBook documents [22].

16 In fact, there are two levels of priority: the first is ruled
by the language attribute, the second defined by XSLT, in-
cluding the priority attribute.

17 As a consequence, there can be several templates with
the same name—which is an error in XSLT [21, §6] — pro-
vided that the values possibly associated with the different
language attributes are pairwise-different.

253

When we begin to apply a bibliography style,
the language attribute is associated with the doc-
ument’s language'® (resp. the ‘*selfx’ value) ac-
cording to the document-dependent (resp. reference-
dependent) approach. When a template is to be in-
voked by name by means of such a statement:

<nbst:call-template name="..."/>

then we look for the current language. If this value
is different from ‘*self*’, we look for the named
template with the language attribute set to this
value if it exists. If not, the default named template,
that is, without the language attribute, is invoked.
The use-language attribute allows the redefinition
of the current language; for example:

<nbst:call-template
name="..." use-language="portuguese"/>

invokes a named template with the language at-
tribute set to ‘portuguese’ if such a template ex-
ists, its namesake without this attribute if not. The
same rules applies for the nbst:apply-templates
element:

<nbst:apply-templates
select="S5" use-language="finnish"/>

tries to find, for each node selected by the expression
S, a template with the language attribute set to the
right value (here, finnish) before instantiating the
template without the language attribute. The same
rule holds for templates with a mode attribute: given
a set of templates with the same value associated
with the mode attribute, we apply first the template
with the right value for the language attribute, sec-
ond the template without this attribute. Asin XSLT
[21, § 5.7], an nbst:apply-templates element with
a mode attribute can only apply templates with the
same value for this mode.

Using the ‘“*self#’ value is of little interest with
an nbst:call-template element since the current
node does not change when a template is invoked by
its name. So the statement:

<nbst:call-template name="..."
use-language="x*self*"/>

is equivalent to:
<nbst:call-template name="..."/>

unless the language of the template instantiated is
not the current node’s language. The statement:

<nbst:apply-templates
select="S5" use-language="*selfx"/>

dispatches all the selected nodes w.r.t. their associ-
ated languages. It is equivalent to:

18 MIBIBTEX tries to determine it as far as possible. Most
often, it is the last option given to the babel package.

254 TUGboat, Volume 24 (2003), No. 2

<nbst:template match="personname">
<nbst:if test="first"><nbst:value-of select="first"/><nbst:text> </nbst:text></nbst:if>
<nbst:if test="von"><nbst:value-of select="von"/><nbst:text> </nbst:text></nbst:if>
<nbst:text>\textsc{</nbst:text><nbst:value-of select="last"/><nbst:text>}</nbst:text>
<nbst:if test="junior">, Junior</mbst:if>

</nbst:template>

<nbst:template match="and">
<nbst:choose>
<nbst:when test="following-sibling::and or following-sibling::and-others">
<nbst:text>, </nbst:text>
</nbst :when>
<nbst:otherwise>
<nbst:text> </nbst:text><nbst:value-of select="$bbl.and"/><nbst:text> </nbst:text>
</nbst:otherwise>
</nbst:choose>
</nbst:template>

<nbst:template match="and-others">
<nbst:text> </nbst:text><nbst:value-of select="$bbl.etal"/>
</nbst:template>

Figure 5: Formatting names with the nbst language (continued).

<nbst:for-each select="S">
<nbst:apply-templates select="."
use-language="L"/>

conference. Thanks to Karl Berry and Barbara Bee-
ton who proofread this revised and updated version.

References

</nbst:for-each>

where L is the current language of the current node.
This expression is used for the mlbiblio element
to build references in the reference-dependent ap-
proach.

As an example, the template given in Figure 6
is instantiated for this name:

AUTHOR = {[Zoltan Kodaly] : hungarian}

6 Conclusion

Roughly speaking, we can consider that getting a
bibliographical reference from an entry is a particu-
lar case of transformation — the same information,
arranged differently. Thus, an XSLT-like language
should be suitable for the task. In addition, our
management of the information related to particular
languages should ease the making of mutilingual bib-
liographies. At the time of writing, our program is
in beta test and we have successfully rewritten a rep-
resentative range of bibliography styles of BIBTEX.
So we think we are ready for public use and larger
experiment.

7 Acknowledgements

Special thanks to Hans Hagen and Volker R. W.
Schaa, who agreed to give the show associated with
a preliminary version of this paper at the TUG 2003

[1] James C. ALEXANDER: Tib: A TgX Biblio-
graphic Preprocessor. Version 2.2, see CTAN:
biblios/tib/tibdoc.tex. 1989.

[2] Johannes BRAAMS: Babel, a Multilingual Pack-
age for Use with ETEX’s Standard Document
Classes. Version 3.7. May 2002. CTAN:macros/
latex/required/babel/babel.dvi.

[3] The Chicago Manual of Style. The University
of Chicago Press. The 14th edition of a manual
of style revised and expanded. 1993.

[4] Antoni DILLER: ETEX wiersz po wierszu.
Wydawnictwo Helio, Gliwice. Polish translation
of LMEX Line by Line with an additional annex
by Jan Jelowicki. 2001.

[6] Bernard GAULLE : Notice d’utilisation du style
french multilingue pour ETEX. Version pro
V5.01. Janvier 2001. CTAN:loria/language/
french/pro/french/ALIRE.pdf.

[6] Michel GOOSSENS, Frank MITTELBACH and
Alexander SAMARIN: The KTEX Companion.
Addison-Wesley Publishing Company, Read-
ing, Massachusetts. 1994.

[7] Michel GoOOsSENs and Sebastian RAHTZ,
with Eitan M. GURARI, Ross MOORE and
Robert S. SUTOR: The BATEX Web Compan-
ion. Addison-Wesley Longman, Inc., Reading,
Massachusetts. May 1999.

TUGDboat, Volume 24 (2003), No. 2

<nbst:template match="personname" language="hungarian">

<nbst:text>\textsc{</nbst:text>

255

<!-- Here, the family name comes first. -->

<nbst:if test="von"><nbst:value-of select="von"/><nbst:text> </nbst:text></nbst:if>
<nbst:value-of select="last"/><nbst:text>}</nbst:text>
<nbst:if test="first"><nbst:text> </nbst:text><nbst:value-of select="first"></nbst:if>

<nbst:if test="junior">, Junior</mbst:if>
</nbst:template>

Figure 6: Formatting Hungarian names with the nbst language.

[8] Jean-Michel HUFFLEN: “MIBIBTEX: a New
Implementation of BIBTEX”. In: FuroTgX
2001 (pp. 74-94). Kerkrade, The Netherlands.
September 2001.

[9] Jean-Michel HUFFLEN: “Multilingual Features
for Bibliography Programs: from XML to MI-
BIBTEX”. In: FuroTgX 2002 (pp. 46-59). Ba-
chotek, Poland. April 2002.

[10] Jean-Michel HUFFLEN: “Towards MIBIBTEX’s
Versions 1.2 & 1.3”. MaTgX Conference. Bu-
dapest, Hungary. November 2002.

[11] Jean-Michel HUFFLEN: “Mixing Two Bibliogra-
phy Style Languages”. In: LDTA 2003, Vol. 82.3
of ENTCS. Elsevier, Warsaw, Poland. April
2003.

[12] Jean-Michel HUFFLEN: “European Bibliogra-
phy Styles and MIBIBTEX”. T'UGboat, Vol. 24,
no. 3 (in process). EuroTEX 2003, Brest,
France. June 2003.

[13] Oleg KisELYOV: “A Better XML Parser through
Functional Programming”. In: 4th Inter-
national Symposium on Practical Aspects of
Declarative Languages, Vol. 2257 of LNCS.
Springer-Verlag. 2002.

[14] Leslie LAMPORT: KTEX: A Document Prepa-
ration System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[15] Oren PATASHNIK: “Designing BIBTEX styles”.
February 1988. Part of BIBTEX distributions.

[16] Oren PATASHNIK: “BIBTEXing’.
1988. Part of BIBTEX distributions.

[17] Bernd RAICHLE: Die Makropakete ,german®
und ,ngerman® flir BTEX 2:, BTEX 2.09, Plain-
TEX and andere darauf Basierende Formate.
Version 2.5. Juli 1998. Im Software KTEX.

[18] S. Tucker TAFT and Robert A. DUFF, eds.: Ada
95 Reference Manual. Language and Standard
Libraries. No. 1246 in LNCS. Springer-Verlag.
International Standard ISO/IEC 8652:1995(E).
1995.

[19] Doug TIDWELL: XSLT. O'Reilly & Associates,
Inc. August 2001.

February

[20] W3C: XML Path Language (XPath). Ver-
sion 1.0. W3C Recommendation. Edited
by James Clark and Steve DeRose. Novem-
ber 1999. http://www.w3.org/TR/1999/
REC-xpath-19991116.

[21] W3C: XSL Transformations (XSLT). Ver-
sion 1.0 W3C Recommendation. Writ-
ten by Sharon Adler, Anders Berglund, Jeff
Caruso, Stephen Deach, Tony Graham, Paul
Grosso, Eduardo Gutentag, Alex Milowski,
Scott Parnell, Jeremy Richman and Steve
Zilles. November 1999. http://www.w3.org/
TR/1999/REC-xs1t-19991116.

[22] Norman WALSH and Leonard MUELLNER: Doc-
Book: The Definitive Guide. O’Reilly & Asso-
ciates, Inc. October 1999.

Appendix A Elements of nbst

Hereafter, we describe each element of nbst. For
each of them, we give its syntaz: the attributes as-
sociated with it, and its content. For each attribute,
we underline its name if it is required, and give the
type of its possible values. When these values are
enumerated, the default value is underlined.

The syntax is defined using regular expressions:
the ‘|’ sign means an alternative, ‘?’ is used for an
optional element, ‘*’ (resp. ‘+’) means zero (resp.
one) or more occurrences of an element.

Here are the type identifiers used throughout
this section:

CDATA for ‘Character DATA’, that is, literal data
characters without ‘<, >’, ‘&’;'°

char literal character;

ezpr analogous to an XPath expression;

1d unique identifier for a resource;

lg-expr expression that results in either a non-
ambiguous prefix of available languages or the
‘*self*’ keyword,;

name simple identifier;2°

19 As in XML, use the entities ‘@1t;’, ‘ggt;’, ‘&’ for
these characters.

20 ‘name’ is used instead of ‘qualified name’ within XSLT
since Version 1.3 does not allow namespaces, except for nbst.

256

nmtoken whitespace-free sequence of characters;
number constant number;

pattern expression allowed within the match at-
tribute of the nbst:template element;

template any (possibly empty) sequence of nbst el-
ements, except for top-level ones;

top-level-elt element allowed at the top level;
uri-ref now a simple identifier.?!

Plurals denote non-empty sequences whose elements
are separated by whitespace characters: for exam-
ple, ‘names’ is for a non-empty sequence of objects
each of type ‘name’.

<nbst:accumulate>
Synt.: <nbst:accumulate>
template

</nbst:accumulate>

Pushes the result of template onto the stack
used when we process a bst function (see [11]
for more details). Several nbst:accumulate el-
ements can be given sequentially, but they can-
not be nested.

<nbst:apply-templates>
Synt.: <nbst:apply-templates
select=exzpr mode=name
use-language=1lg-expr>
(nbst:with-param |
nbst:sort)*
</nbst:apply-templates>
Processes the node set selected by the value of
the select attribute, or all the children of the
current node by default. The selected node set
is processed in document order, unless a sorting
specification is present. About the attributes
mode and use-language, see Section 5.

<nbst:attribute>
Synt.: <nbst:attribute name=name>
template
</nbst:attribute>
Recognised, but does not have any effect, like
nbst:attribute-set and nbst:element. See
Section 5.

<nbst:attribute-set>
Synt.: <nbst:attribute-set
name=name
use-attribute-sets=names>
nbst:attributex*
</nbst:attribute-set>
See nbst:attribute.

21 True Uniform Resource Identifiers, in the sense of
XML, will be allowed in a future version.

TUGDboat, Volume 24 (2003), No. 2

<nbst:bst>
Synt.: <nbst:bst id=t¢d version=number>
top-level-elt*
</nbst:bst>
Root element of a bibliography style. The only

version number presently recognised is 1.3.

<nbst:call-template>
Synt.: <nbst:call-template
name=name
use-language=1lg-expr>
nbst:with-param*
</nbst:call-template>
Invokes a template by name by means of the
required name attribute. See Section 5 about
the use-language attribute.

<nbst:choose>
Synt.: <nbst:choose>
nbst:when+ nbst:otherwise?

</nbst:choose>

Each of the nbst:when elements is tested in
turn, until reaching an element whose test is
true, in which case the content is instantiated.
If no such element exists, then the content of
the nbst:otherwise element is instantiated if
it exists, otherwise nothing is created.

<nbst:comment>
Synt.: <nbst:comment>
template
</nbst:comment>
Puts the result of template as a comment. In
practice, now used to write lines beginning with

‘%" in BTEX mode.
<nbst:copy>
Synt.: <nbst:copy
use-attribute-sets=names>
template
</nbst: copy>
Copies the current node at the first level onto
the result. The use-attribut-sets attribute
does not have any effect presently.

<nbst:copy-of>
Synt.:
Copies the whole of the node set selected by the
required select attribute.

<nbst:copy-of select=expr/>

<nbst:decimal-format>
Synt.: <nbst:decimal-format
name=name
decimal-separator=char
grouping-separator=char
infinity=cdata
minus-sign=char NaN=cdata

TUGboat, Volume 24 (2003), No. 2

percent=char per-mille=char

zero-digit=char digit=char

pattern-separator=char/>
Declares a decimal format, which rules the in-
terpretation of a format pattern used by the
format-number function. If there is a name at-
tribute, then this element declares a named dec-
imal format; otherwise, it declares the default
decimal format. Here are the other attributes:

e decimal-separator specifies the charac-
ter used for the decimal sign, defaults to
the period character (‘.’);

e grouping-separator: the character used
as a grouping (e.g., thousands) separator,
defaults to ¢,’;

e infinity: the identifier used to represent
infinity, defaults to ‘Infinity’;

e minus-sign: the character used as the de-
fault minus sign, defaults to ‘-’;

e NaN: the identifier used to represent a value
that should be a number but is not, de-
faults to ‘NaN’ (‘Not a Number’);

e percent and per-mille: the two charac-
ters used as percent and per-mille signs
(‘% and ‘%0¢’); in ITEX mode, default to
the command producing them (‘\%’ and
‘\textperthousand’??);

e zero-digit: a character always replaced
by a digit, defaults to ‘0’;

e digit: a character used for a digit, left
blank for a missing digit, defaults to ‘#’;

e pattern-separator: the character used
to separate sub-patterns for positive and
negative patterns, defaults to ‘5.

<nbst:element>
Synt.: <nbst:element
name=name
use-attribute-sets=names>
template
</nbst:element>

See nbst:attribute.

<nbst:for-each>
Synt.: <nbst:for-each select=expr>
nbst:sort* template

</nbst:for-each>

template is instantiated for each node selected
by the required select expression, which must
evaluate to a node set. The selected nodes are
processed in document order, unless a sorting

specification is present.

22 Notice that this command can be used with the Cork
encoding, that is, the T1 option of the fontenc package.

257
<nbst:if>
Synt.: <nbst:if test=ezpr>
template
</nbst:if>

If the evaluation of the test attribute results in
true, then template is instantiated; otherwise,
nothing is created.

<nbst:include>
Synt.: <nbst:include href=uri-ref/>
Includes elements belonging to another nbst or
bst file, identified by the href attribute. Al-
lowed as a top-level element only.

<nbst :key>
Synt.: <nbst:key name=name
match=pattern
use=expr/>

Recognised but does not have any effect.

<nbst :message>
Synt.: <nbst:message
terminate=("yes" | "no")>
template
</nbst:template>
Displays the result of template as a message.
If the terminate attribute has the value ‘yes’,
then the program terminates after displaying
the message.

<nbst :number>
Synt.: <nbst:number
level=("single" |
"multiple" | "any")
count=pattern from=pattern
value=ezpr format=cdata
language=1lg-ezxpr
letter-value=
("alphabetic" |
"traditional")
grouping-separator=char
grouping-size=number />
Puts a formatted number. The number may
be specified by means of the value attribute,
in which case the expression is evaluated and
the number and round functions are applied to
the resulting object. If no value attribute is
specified, then the inserted number is based on
the position of the current node, controlled by
the following attributes:

e level specifies which levels of the source
tree should be considered;

e count attribute is a pattern that specifies
what nodes should be counted at those lev-
els: if it is unspecified, it defaults to the

258

pattern matching any node with the same
node type as the current node;

e from: a pattern that specifies where count-
ing starts.

The format attribute is split into alphanumeric
and non-alphanumeric characters. The former
are formats for numbers:

e ‘1'for 1,2 ...

e ‘i’ (resp. ‘T’) for i, ii, ... (resp. I,II,...)

e ‘a’ (resp. ‘A’) for a, b, ... (resp. A, B, ...),
the language attribute being used to de-
termine the alphabetical order.

The latter are copied wverbatim onto the for-
matted string. Consult nbst:decimal-format
about the grouping-separator attribute. The
grouping-size attribute specifies the size of
the grouping, defaulting to 3. If only one of
these two attributes is specified, then it is ig-
nored. The letter-value attribute does not
have any effect.

<nbst:otherwise>

<nbst:otherwise>

template
</nbst:otherwise>
See nbst:choose.

Synt.:

<nbst:output>

Synt.: <nbst:output
method=("LaTeX" | "xml" |
"html" | "text")
version=nmtoken
encoding=cdata
omit-xml-declaration=
("yes" | "no")
standalone=("yes" | "no")
doctype-public=cdata
doctype-system=uri-ref
cdata-section-elements=

names
indent=("yes" | "no")
media-type=cdata />

Only allowed as a top-level element. Allows bib-

liography style writers to specify how they wish

the result to be output. Presently, the values

allowed for the method attribute are:

e ‘LaTeX’, for KTEX output;

e ‘xml’ (resp. ‘html’), for XML (resp. HTML)
output; however, do not forget that, as
with XSLT, the output for an HTML file
must be written according to XHTML?3
conventions;

23 EXtensible HyperText Markup Language.

TUGDboat, Volume 24 (2003), No. 2

e ‘text’, for verbatim text output.
Other attributes:
e version specifies the version of the output
method,
e encoding: the character encoding to be
used;

e omit-xml-declaration: whether or not
the XML declaration should be output;

e the other attributes do not have any effect.

<nbst:param>

Synt.: <nbst:param name=name
select=ezpr>
template
</nbst:param>
Used at the top level to define an external pa-
rameter or within a template rule to specify a
local parameter. The select attribute gives
a default value. When this attribute is ab-
sent, the default value is given by instantiating
template if it is not empty. If this parame-
ter is not given a default value, nbst pops the
stack used when we process a bst function; if
this stack is empty, the value given to the pa-
rameter is the empty string.

<nbst:sort>

Synt.: <nbst:sort
select=ezpr
language=1lg-expr
data-type=
("text" | "number")
order=("ascending" |
"descending")
case-order=("upper-first" |
"lower-first")/>
Used as a child of an nbst :apply-templates or
nbst:for-each element. The first occurrence
specifies the primary sort key, the second occur-
rence the secondary sort key used for elements
left unsorted, and so on. The key is given by
the select attribute, which defaults to ‘.”. This
expression is applied to each node of the current
set, and the result is converted into a string or
a number, w.r.t. the value of the data-type at-
tribute. In addition:
e order can be ascending or descending;
e language: the sort keys’ language;
e data-type: the sort keys’ data type:

— ‘text’ means that they should be lex-
icographically sorted in the culturally
correct way for the current language,

— ‘number’ specifies a numerical sort, in
which case language is ignored;

TUGboat, Volume 24 (2003), No. 2

e the possible values for case-order apply
when data-type is ‘text’, and specifies
that upper-case letters should sort before
lower-case letters or wvice-versa. The de-
fault value is language-dependent.

<nbst:template>
Synt.: <nbst:template
match=pattern name=name
language=1lg-expr
priority=number mode=name>
nbst:param* template
</nbst:template>
Defines a template rule. The match attribute
is a pattern that identifies the source node to
which the rules apply. The match attribute is
required unless a name attribute is given, but
both attributes can be specified. It is an error
for the value of the match attribute to contain
a reference to a variable. When such a rule is
applied, template is instantiated.

Templates can be invoked by name, in which
case the match attribute has no effect; likewise
with the name attribute if the template is in-
voked by an nbst:apply-templates element.
The role of the attributes language, mode and
priority is explained in Section 5.

<nbst:text>

Synt.: <nbst:text
disable-output-escaping=
("yes" | "no")>
cdata

</nbst:text>
Copies its content wverbatim onto the output.
The disable-output-escaping attribute does
not have any effect.

<nbst:variable>
Synt.: <nbst:variable name=name
select=ezpr>
template
</nbst:variable>
Analogous to nbst:param, but the value asso-
ciated with a variable cannot be redefined by

an element such as nbst:with-param.

<nbst:value-of>
Synt.: <nbst:value-of
select=expr
disable-output-escaping=
("yes" | "no")/>
The value of the required select attribute is
evaluated and the resulting object is converted
to astring. The disable-output-escaping at-
tribute does not have any effect.

259

<nbst:warning>
Synt.: <nbst:warning>
template
</nbst:warning>
Equivalent to nbst:message with terminate
set to ‘no’.

<nbst:when>
Synt.: <nbst:when test=ezpr>
template
</nbst:when>

See nbst:choose.

<nbst:with-param>
Synt.: <nbst:with-param
name=name select=ezpr>
template
</nbst:with-param>
Passes values to parameters before instantiating
templates. The required name attribute speci-
fies the name of the parameter, its value is spec-
ified in the same way as for nbst:param. The
current node and node list used for computing
the value are the same as for the element within
which it can occur (nbst:apply-templates or
nbst:call-template).

Appendix B Functions associated with our
paths

We begin this section by describing the types used
within the functions associated with our paths. As
in XPath, we allow some type conversions. So, for
each type, we mention which other types can be con-
verted into it.

boolean is for the truth values: true and false. A
node set is viewed as false if it is empty, as
true otherwise. Likewise a string. A number is
viewed as false if it is equal to zero, true other-
wise.

node-set A node set belonging to the tree of bib-
liographical entries. A string can be converted
into a one-element node set if it is a well-formed
XML text, otherwise the result is an empty node
set. A boolean or numerical value can be con-
verted into a text node.

number When applied to integers, functions using
numbers return integer results as far as possible,
real numbers otherwise. A string can be con-
verted into a number, provided the characters
it contains form a number, possibly surrounded
by whitespace characters:

",-273.15" is a number,
"-,273.15" is not.

260

If such a conversion fails, the result is NaN. If
NaN is used instead of a number as an argument
of a numeric function, the result is NaN.

string Boolean and numbers can be converted into
strings. So can the values for numeric errors,
Infinity and NaN. Node sets too, in which case
an attribute node is converted into its associ-
ated value, whereas an element node is con-
verted into the concatenated values of all the
text nodes inside it.

Throughout this section, ‘n’, ‘ns’, ‘s’ denote
variables of type number, node-set, string respec-
tively, whereas ‘z’ is for an expression of any type. If
several variables of the same type are needed, we use
indices. Some functions can be applied to any num-
ber of arguments, in which case the additional op-
tional arguments are denoted by ‘. ..". Asin XPath,
some arguments can be omitted, in which case the
current node set is passed: we denote this behaviour
by a question mark (‘?’). For each function, we give
the type of its result, a template of its use and a
short description of its behaviour.
1=

Use: boolean z; != x»

Returns true if z; and 5 are distinct objects,

false otherwise.2
x4 -

Use: number ny * ng (resp.my + ng, my - 7o)

Returns n1 * ny (resp. n1 + na, n1 — na).
<, <=

Use: boolean n; < ny (resp. ny <= no)

Returns true if ny < no (resp. n1 < ns), false

otherwise.?4

Use: boolean z; = x
Returns true if:

e z; and z are the same object,

e or have a common element if ; or =5 is a
node set;

returns false otherwise.?*

>, >=
Use: boolean n; > ny (resp. ny >= no)
Returns true if nq > no (resp. n1 > ns), false
otherwise.?4

abbreviate
Use: string abbreviate(s)
Assuming that s is a first name, returns its ab-
breviation. If an ad hoc abbreviation has been
specified by means of the abbr keyword, returns

24 Notice that NaN != NaN yields true, whereas NaN op NaN
yields false if op € {<,<=,=,>>=}.

TUGDboat, Volume 24 (2003), No. 2

it. Otherwise, s is abbreviated in a standard
way, that is, the initials and the hyphen char-
acter are retained:

abbreviate("John Fitzgerald)"

yields "J. F."
abbreviate("Paul-Loup") "P.-L."
abs
Use: number abs(n)
Returns the absolute value of n.
and
Use: boolean b; and by
Returns true if b; and by are both true, false
otherwise.
boolean

Use: boolean boolean(z)
Converts z to a boolean true or false value.
call
Use: string call(s;,sz,...)
Calls si, a function included in MIBIBTEX’s li-
brary, with the arguments ss, ... The s; func-
tion must return a string which is the result of
the call function. In practice, this function is
used by the multilingual interface.
ceiling
Use: number ceiling(n)
Returns the smallest integer that is greater than
or equal to n.
concat
Use: string concat(s;,ss,...)
Returns the concatenation of the values of the
passed arguments.
contains
Use: string contains(sp, s2)
Returns true if sy contains ss, false otherwise.
count
Use: number count(ns)
Returns the number of nodes in ns.
current
Use: node-set current()
Returns the current node as a node set.
div
Use: number n; div no
Divides n1 by no. If ny is equal to zero, this op-
eration results in Infinity — this value is not
a string.
false
Use: boolean false()
Returns the false value.
firstcapitalize
Use: string firstcapitalize(s)
Converts s to all lowercase except for the first
word, which is capitalised.

TUGDboat, Volume 24 (2003), No. 2

floor
Use: number floor(n)
Returns the largest integer that is less than or
equal to n.
format-number
Use: number format-number(n,s;,ss?)
Formats n according to the specifications of s;
(see nbst:decimal-format) and the name ss.
generate-newly
Use: string generate-newly(s;,sy,ns?)
Returns a unique string associated with the first
node of ns. If s; is not empty, it is used as
result’s prefix. If sy is not empty, it must be
a format used for numbers (see the description
of the format attribute of nbst :number) and is
used to generate result’s suffixes.
id
Use: node-set id(z)
Returns the element node with an ID-type equal
to the value of z. This function is useful when
we are looking for an entry.
is-boolean
Use: boolean is-boolean(z)
Returns true if z is a boolean value, false oth-
erwise.
is-defined
Use: boolean is-defined(s)
Returns true if s is the name of a parameter or
variable bound to a value, false otherwise.
is-node-set
Use: boolean is-node-set(z)
Returns true if z is a (possibly empty) node
set, false otherwise.
is-number
Use: boolean is-number(z)
Returns true if z is a number, false otherwise.
is-string
Use: boolean is-string(z)
Returns true if = is a string, false otherwise.
key
Use: node-set key(s,z)
Not implemented presently, so always returns
an empty node set.
last
Use: integer last()
Returns the number of nodes in the current
node set.
local-name
Use: string local-name(ns?)
Returns the name of the first node of ns?.

261

lowercase
Use: string lowercase(s)
Converts s completely to lowercase.
mod
Use: number n; mod no
Returns the remainder after dividing ny by na.
The result always has the sign of ny. If ngy is
equal to zero, the result is NaN.
name
Use: string name(ns?)
Returns the name of the first node of ns.2?
node-set
Use: node-set node-set(z)
Converts z to a node set.

normalize-space
Use: string normalize-space(s)
Returns the whitespace-normalised value of s,
that is, s is stripped of leading and trailing
whitespace characters, and multiple consecu-
tive occurrences of whitespace characters are
replaced by a single space.
not
Use: boolean not(b)
Returns true (resp. false) if b is false (resp.
true).
number
Use: number number (z)
Converts z to a numerical value.
or
Use: boolean by or bo
Returns true if by or by is true, false otherwise.
position
Use: integer position()
Returns the ordinal position of the context node
within the context node set. These positions are
counted starting from one, as in XPath.
round
Use: number round(n)
Returns the integer nearest in value to n. If n
has a decimal portion of exactly .5, rounds up.
starts-with
Use: boolean starts-with(si,ss)
Returns true if s; begins with ss, false other-
wise.
string
Use: string string(z)
Converts z to a string.

25 Presently, the name and local-name functions return the
same result since Version 1.3 does not allow namespaces.

262

string-length
Use: number string-length(s)
Returns the number of characters in s.
substring
Use: string substring(s,n;,ns)
Returns the portion of s starting at character
ny, for a length of ny characters.
substring-after
Use: string substring-after(sp, ss)
Returns the portion of s; following ss.
substring-before
Use: string substring-before(s;,sy)
Returns the portion of s; preceding ss.
sum
Use: number sum(ns)
Returns the sum of all nodes in ns after con-
verting each to a number.
translate
Use: string translate(sy, sa,s3)
Replaces any individual characters appearing in
both s; and sy with corresponding characters
in S3.
true
Use: boolean true()
Returns the true value.
uppercase
Use: string uppercase(s)
Converts s completely to uppercase.

Appendix C Comparison with XPath and
XSLT

Here we sum up the differences between XPath and
XSLT on the one hand, and nbst on the other. These
languages are close to each other, so learning nbst is
eagy if you know XPath and XSLT.

C.1 nbst vs XSLT

The corresponding element of the xsl:stylesheet
element in XSLT is nbst:bst in nbst. For the sake
of compatibility with the bst language of BIBTEX,
we added the nbst:warning element, but it can be
viewed as a particular case of nbst:message, close
to xsl:message.

e XSLT elements without equivalent in nbst:
xsl:apply-imports
xsl:fallback
xsl:import
xsl:processing-instruction

xsl:strip-space

xsl:namespace-alias
xsl:preserve-space

e nbst element without equivalent in XSLT:

nbst:accumulate

TUGDboat, Volume 24 (2003), No. 2

C.2 XPath vs nbst paths

e XPath functions not included in nbst:
document
element-available
function-available

namespace-uri
system-property
unparsed-entity-uri

lang

e Additional functions in nbst:
abbreviate is-defined lowercase
call is-node-set node-set?®
firstcapitalize is-number uppercase

is-boolean is-string

e Close, but not identical functions:

(XSLT) generate-id ~ generate-newly (nbst)

¢ Jean-Michel Hufflen
LIFC (FRE CNRS 2661)
University of Franche-Comté
16, route de Gray
25030 Besangon Cedex
France
hufflen@lifc.univ-fcomte.fr

http://lifc.univ-fcomte.fr/ hufflen

26 This function is provided by some XSLT processors, but
has not been included in the ‘official’ specification of XSLT
[21]. It belongs to the additional functions of the EXSLT
(‘Extensions to XSLT’) project (for more details, see the Web
page http://www.exslt.org).

