
208 TUGboat, Volume 24 (2003), No. 2

LATEX

Some notes on templates

Lars Hellström

Over the last few years, the LATEX3 project team has
been making and releasing some packages belonging
to what they call LATEX2ε∗, which is a sort of inter-
mediate step before LATEX3. Unlike the previously
released l3 suite of packages [2], which deals mainly
with very basic programming structures such as lists
and stacks, the LATEX2ε∗ suite of packages is more
about producing better results in more concrete ar-
eas of LATEX. Examples include the xor package,
which is a new and much more versatile output rou-
tine, and the xparse package, with which one can
easily define commands with complicated mixtures
of mandatory, optional, and *-type arguments. The
elegant interfaces and functionality of these pack-
ages promise well for the future.

Yet, most of them are still in a rather experi-
mental state and they are currently only available
from the experimental code directory on the LATEX
project web site [4]. Some of the packages are how-
ever not too far away from a more general release —
in the event of which they will probably become part
of the Required suite of LATEX packages — and the
first of these will most likely be the template pack-
age [1]. This is a very interesting package, because
it provides the means for a whole new (and very
promising) style of LATEX programming, which I had
the opportunity to try out during my work on the
docindex package [3]. This note is an attempt to
summarize the observations I’ve made about this
programming style, in the hope that it may guide
others in their first experiences of it. I am quite con-
vinced it will become an important part of LATEX3
and also of the further development of LATEX2ε.

Even though the name of it all is template, one
shouldn’t overrate the importance of the templates.
Most of the things you actually keep around are not
templates, but instances, and an instance is basi-
cally a very familiar object: a macro which performs
some action. Of course, in TEX programming almost
everything is a macro in one way or another, but
some things are macros only because TEX doesn’t
provide any better way of storing some kinds of data,
and some macros only exist to help other macros
parse their arguments. Instances are rather the kind
of macro you write because you want to modularize
your code; typical actions are to typeset a float cap-
tion and to set the paragraph justification.

TUGboat, Volume 24 (2003), No. 2 209

An instance is not just any nice collection of
simpler commands, though. To begin with, every
instance has a type, which specifies the syntax and
most of the semantics of the instance. All instances
with the same type do roughly the same thing, but
they usually differ in the details. If one instance of
a certain type, say, takes some text and typesets it
as a section heading, then another instance of the
same type could typeset the same text as a subsec-
tion heading or a part heading. If one instance of a
certain type causes the index to be typeset (in the
same sense that \printindex does) then another in-
stance of that type might cause the glossary to be
typeset. The simpler an instance is the more de-
tailed the type specification usually gets, but it is
generally about what the instance does, not about
how it does it. Two instances of the same type are
exchangeable in the sense that replacing one with
the other doesn’t cause any errors, although it will
almost certainly change the typeset appearance of
something.

That the instances are typed is incredibly use-
ful, because it means you can redefine any instance
without having to worry about breaking anything
(as long as your redefinition conforms to the type
specification)! An average LATEX package usually
comprises a couple of user level commands, a couple
of parameters, and a number of private macros. The
user level commands and parameters tend to have
well-defined syntax and semantics, even though the
choice of parameters is often less than satisfactory,
but the syntax and semantics of the private macros
are generally something about which everyone but
the package author knows very little. There is often
no other way to achieve a certain layout modifica-
tion than to redefine a private macro, but that is
always a risky operation because inferring the se-
mantics of something from its implementation is no
exact science.

In an implementation employing template tech-
niques, many of the private macros would instead be
instances, and thus this wouldn’t be a problem; the
type specification would say everything one needs to
know. In the case of new types there is of course a
bit of extra work needed for writing down the specifi-
cation, but that work is usually well spent as it helps
pointing out weaknesses in the implementation. An
interesting side-effect of using instances is that there
is much less need for package parameters, as many
of these can instead be embedded into the instances
which are easily redefined. Thus the net effect of
using template techniques in a package can actually

be that the interface to the package becomes simpler
as well as more powerful and versatile.

The other thing about instances is how they
are defined; this is where the templates get into the
picture. A template is also basically a macro, and
like an instance it has a type, but a template ad-
ditionally has an associated set of parameters. In-
stances are defined by specifying a template (of the
correct type) and the values that the parameters of
the template should have. A typical instance defini-
tion looks something like
\DeclareInstance{justification}

{flushleft}{std}{

rightskip =0pt plus 1fill,

leftskip =0pt,

startskip =0pt,

parfillskip=0pt plus 1fill

}

Here justification is the type, flushleft is the
name of the instance being defined, and std is the
name of the template it is based on. The last argu-
ment is a keyval list of parameter names and values.
What happens internally is that a couple of con-
trol sequences (the respective storage bins for the
parameters of the template) are set to these values
whenever the instance is used and the code in the
template accesses the values by using the storage
bins in very much the same way as we currently use
a package parameter.

A parameter value need not be a length or some
other numeric quantity, however; it can just as well
be a function (which in this case is a fancy name for
a command), a name, a boolean, or another instance
(usually, but not necessarily, of a different type). A
very common use for function valued parameters is
to handle formatting of short pieces of text; for ex-
ample, the heading of the theorem environment. A
template which handles this might for example have
a function valued parameter heading-format which
receives the theorem number as its only argument.
Then to get headings in the default “Theorem 6.2”
style one could say

heading-format = \textbf{Theorem~#1}

whereas the reverse “6.2 Theorem” style would be
the result of

heading-format =

\textbf{#1\hspace*{0.5em}Theorem}

Generalizing slightly, one could also imagine there
being a function parameter named-heading-format
with two arguments which is used instead of the
heading-format parameter when the theorem has
a name (e.g., “Inverse Function Theorem”). Passing

210 TUGboat, Volume 24 (2003), No. 2

this name as the second argument, a suitable value
for named-heading-format in the first case might
be

named-heading-format =

\textbf{Theorem~#1 (#2)}

or even
named-heading-format =

\textbf{Theorem~#1 (\textit{#2})}

whereas the second value for heading-format might
go better with

named-heading-format =

\textbf{#1\hspace*{0.5em}#2}

e.g., “6.3 Inverse Function Theorem”.
I personally find the separation of code into on

one hand a template and on the other hand values
of the parameters of that template quite a relief,
because it physically separates two different levels
of programming. The actual template usually only
contains the “hard”, programming-like parts of the
code —arithmetic, decision-making, interpretation
of arguments, and so on— whereas “soft” parts like
the layout specification are put in the parameters.
This means whenever the code actually does some-
thing that is directly visible in the layout —such as
insert a skip or format a heading — it simply uses
the value in a parameter or passes the relevant data
on to a parameter for further processing. The re-
sulting code in the template looks very much like a
skeleton of only the hard parts with some sprinkled
markers saying “insert soft thing doing . . . here”,
but it is actually complete and working. It cannot
be used until the parameter values have been spec-
ified as well, though, and the normal way of doing
this is to define an instance of the template.

Since the soft programming of selecting values
for parameters is much more like writing a LATEX
document than the hard programming, it is not sur-
prising that the many LATEX users who have not
mastered the hard programming will find that their
ability to modify the behaviour of a package is much
higher for templated packages than for traditional
ones. For those who have mastered hard program-
ming the advantages may seem less clear, but my
personal experience was that programming became
simpler. How can this be if I am actually restricting
the ways in which I may write the code? I think it
has to do with how one thinks about the problem

at hand. When one is doing hard programming one
also gets into a “hard” mode of thinking, whereas
when one is doing soft programming one gets into
a “soft” mode of thinking. In the traditional style
the hard and soft parts are often heavily mixed and
consequently one is forced to constantly switch be-
tween two modes of thinking. In the templated style
the mixing is much less pronounced due to the afore-
mentioned separation and consequently one does not
have to switch mode that often. As it does require
some effort for the mind to switch mode, the less
one has to switch the better!

There are many other things which could be
said about the template package — how one can use
calc type expressions as parameter values, how one
can use collections to effectively have several def-
initions of an instance in memory simultaneously
and quickly switch between them, what one actu-
ally does to declare a new template — but these are
things one can easily find in the template package
manual. I certainly hope that you will give it a try,
because this is one of these things after which LATEX
programming will never again be quite the same.

References

[1] David Carlisle and Frank Mittelbach.
The template package. Available from
http://www.latex-project.org/code/
experimental/template.tgz, 1999.

[2] David Carlisle, Chris Rowley, and Frank
Mittelbach. The LATEX3 programming
language —a proposed system for TEX
macro programming. Available from CTAN,
macros/latex/exptl/project/expl3/, 1998.

[3] Lars Hellström. The docindex package.
Available from CTAN, macros/latex/
contrib/xdoc/docindex.dtx, 2001.

[4] Various authors. LATEX project web site
directory for experimental code. Located
at http://www.latex-project.org/code/
experimental/, 1999–present.

� Lars Hellström
Sand 216
S-881 91 Sollefte̊a
SWEDEN

Lars.Hellstrom@math.umu.se

