
The METAFONT approach: Implicit, relative,

and analytical font design

Timothy Hall

Introduction

A past article in Time R© magazine’s On-Line
monthly “submagazine” explored the world of do-
it-yourself font creation and manipulation. The
orientation of the article was to help a relative
novice choose the right tools and techniques for
whatever kind of font work was desired. The article
was heavy on facts concerning a four-step process
that might be familiar to readers of TUGboat:

1. Scan in a hand-drawn or copied glyph to form
the basis for a character in your font.

2. Import the scanned image into a graphics
software package, such as Illustrator,
Fontographer, or CorelDraw.

3. Use the functionality of the package to trace
the outline of the glyph.

4. Export the captured outline to an ASCII

file that contains coded concatenated path
segments.

In METAFONT syntax, the coded path segments will
usually look something like this for a curved path:

z0 .. controls u1 and v1 .. z1

or like this for straight lines:

z0 -- z1 -- · · · -- z8

or perhaps combinations of these two forms. If each
of these segments is named in a path array (path

pth[];), e.g., the third segment would be

pth[3]=z2 .. controls u3 and v3 .. z3

then these path segments may be concatenated
by the METAFONT operator “&” to form a cycle
returning to the first point, such as this:

pth[0]=pth[1] & pth[2] & cycle

Finally, this path is typically filled to form the
definition of the glyph:

fill pth[0];

As an example of this methodology, consider
the following code for an arbitrary “mystery”
character:∗

R© Time is a registered trademark of AOL Time

Warner, Inc.
∗ The material found herein does not depend on the

particulars of any glyph definition.

200 TUGboat, Volume 24 (2003), No. 2

1. numeric u; u = 1pt;

2. designsize := 10;

3. beginchar(99, 4.092pt#,

4. 5.80801pt#,

5. 0.264pt#); "myst";

6. fill (0.594u,-0.264u)

7. -- (0.594u,0.957u)

8. & (0.594u,0.957u)

9. .. controls (1.716u,2.046u)

10. and (2.211u,2.805u)

11. .. (2.31u,3.366u)

12. & (2.31u,3.366u)

13. .. controls (2.508u,3.927u)

14. and (2.409u,4.686u)

15. .. (2.013u,4.851u)

16. -- (1.617u,4.917u)

17. -- (0.693u,4.917u)

18. -- (0.693u,5.808u)

19. -- (1.881u,5.808u)

20. .. controls (2.805u,5.808u)

21. and (3.564u,5.412u)

22. .. (3.399u,2.508u)

23. & (3.399u,2.508u)

24. .. controls (3.531u,1.32u)

25. and (3.564u,0.693u)

26. .. (3.696u,0u)

27. -- (2.673u,0u)

28. & (2.673u,0u)

29. .. controls (2.574u,0.726u)

30. and (2.475u,1.353u)

31. .. (2.442u,1.782u)

32. & (2.442u,1.782u)

33. .. controls (1.881u,0.957u)

34. and (1.221u,0.198u)

35. .. (0.594u,-0.264u)

36. -- cycle ;

37. cull currentpicture dropping (0,0);

38. endchar;

This form of code is perfectly acceptable to META-
FONT, and this character definition (utilizing several
unlisted parameter defaults) produces the glyph in
Figure 1 (under \mag=8).

����������	
�	����
��
������������������	����� ����	

!"""""""""""""######$$$$%%&&&''(()**+,-!."""""""""""""""""""#$%'(*+-/////////////////////////////////////0000001111122!"""""""""#%(+34567/1!""""""""%)361!""""""""(.""""""""#

*$
!.""""""""#

-*
&!."""""""""

-+)'
$.""""""""""

-,*('
%#."""""""""""/

,+*('
&$#."""""""""""""+

-,*)('
%$#"""""""""""""""")

-,+*)'
&%$#."""""""21/876530"""""""""'

-,+*)('
&%$#""""""""210879543 9"""""""""%

('&%$#.""""""""210/89654 3/!.""""""""#
,."""""""2108796543 51!.""""""""(

.""""210/8796543 9!.""""""""#
*"2100/87965543 3999999999999999999999999999999999999:

433

Figure 1: The original

However, there are several things “wrong” with the
code in lines 6–36. METAFONT approaches font
development from an implicit, relative, and ana-
lytical point of view, as compared to the explicit,
absolute, and algorithmic calculations in Illustra-
tor, Fontographer, and CorelDraw (among many
others). In these other packages, Bézier curves are
described in terms of control points, which are ex-
plicitly calculated within the software based on the
absolute positions of critical points as parsed by the
software. Illustrator, for one, when automatically
tracing the outline of a glyph, decides where these
critical points are, based on criteria and principles
hidden from the user.

METAFONT, on the contrary, demands that the
user decide where the critical points are located
based on criteria and principles left to the designer,
and expects the user to supply relative positions
based on implicit relationships between the critical
points. Only then will METAFONT calculate the
control points for the glyph subpaths, and proceed
to generate bitmaps for the image based on those
calculations and numerous user-supplied parameter
values.

In essence, simply stating a set of control points
that blindly point to the outline of a glyph is not
font design, and approaching font development this
way is certainly not worthy of the amazing power
and flexibility of METAFONT.

There is another thing “wrong” with the code
in lines 3–5. The width, height, and depth of the
character are stated as floating point numbers, one
of which is given to five decimal places! This is
definitely the work of a machine, and not a font
designer. The control points listed in lines 6–36 also
suffer from this feature. If the image had been held
in a slightly different position when it was scanned
using Illustrator, or a user had twitched slightly
differently in positioning a serif in Fontographer,
or a different version of the graphics software had
been used with CorelDraw, or different hardware

TUGboat, Volume 24 (2003), No. 2 201

had been used in generating the numbers in lines 3–
5, then slightly different numbers would be found
there (certainly in the fifth decimal place).

This would not happen if the code develop-
ment was under the control of a font designer who
applied “the METAFONT approach.” No amount of
alignment issues, mouse sentitivity settings, version
control aspects, or platform dependencies will ever
affect the implicit, relative, and analytical relation-
ships between critical points in the description of a
font glyph, so none of these should be present in a
METAFONT description of the glyph.

The METAFONT approach

Suppose you were interested in designing a font with
hundreds of characters that followed the look and
feel of the mystery character given in lines 1–38.
You could scan and trace all of your images, and
hope that the variations introduced by this process
do not get in the way of your font’s consistent
look— or you might approach this task in the
METAFONT way.

There are three straightforward transforma-
tions we may apply to lines 1–38 (and any others
like them) to help reveal the underlying design
structure of the mystery character, and help us
apply it to all other characters in our desired font.
This will go a long way towards ensuring a consis-
tent look and feel to the entire font, and not simply
be something applied to characters one by one.
It is also possible that these transformations will
reveal the absence of a consistent look and feel in
the entire character set, thereby helping us modify
lines 1–38 into a better glyph.

Implicit. The first transformation applies to all
lines that contain explicit point definitions. If we
label the first subpath as follows:

z1=(0.594u,-0.264u)

z2=(0.594u,0.957u)

z3=(2.31u,3.366u)

then we have:

x1=x2=0.594u; x3=2.31u;

y1+0.264u=y2-0.957u=0; y3=3.366u;

The resulting subpath would be:

z1--z2..tension α2 and β2..z3

The control points will be implicitly supplied by the
tension statements during a later transformation.

The next subpath would be transformed as
follows:

z4=(2.013u,4.851u)

z5=(1.617u,4.917u)

z6=(0.693u,4.917u)

z7=(0.693u,5.808u)

z8=(1.881u,5.808u)

. . . which produces:

x3=x4+0.297u=2.31u;

y3=y4-1.485u=3.366u;

z5=(1.617u,4.917u);

z6-z5=(-0.924u,0);

z7-z6=(0,0.891u);

z8-z7=(1.188u,0);

The resulting subpath would be:

z3..tension α3 and β3..z4

--z5--z6--z7--z8
Continuing this process, we arrive at the im-

plicit description of the glyph, excerpted here.

55. numeric u; u = 1pt;

56. path pth[];

57. designsize := 10;

58. beginchar(99,4.092pt#,

59. 5.80801pt#,

60. 0.264pt#);"myst";

61. x1=x2=0.594u;

62. x3=x4+0.297u=2.31u;

63. x9+0.297u=x10=x11+1.023u=3.696u;

64. x12+0.231u=x11; x12-x13=1.848u;

65.

66. y1+0.264u=y2-0.957u=0;

67. y3=y4-1.485u=3.366u;

68. y10=y11=y9-2.508u=y12-1.782u=0;

69. y12-y13=2.046u;

70.

71. [...]

72.

73. pth[1]=z1--z2;

74. pth[2]=z2..

75. controls(1.716u,2.046u)

76. and(2.211u,2.805u)

77. ..z3;

78. pth[3]=z3..

79. controls(2.508u,3.927u)

80. and(2.409u,4.686u)

81. ..z4--z5--z6--z7--

82. z8..

83. controls(2.805u,5.808u)

84. and(3.564u,5.412u)

85. ..z9;

86.

87. [...]

88.

89. fill pth[1]

202 TUGboat, Volume 24 (2003), No. 2

90. for i=2upto6: & pth[i] endfor

91. --cycle;

92. cull currentpicture dropping(0,0);

93. endchar;

The choice of points assigned to a given subpath
is arbitrary, as long as the order of progression is
retained. Indeed, the glyph produced by lines 55–93
looks exactly like that produced by lines 1–38 (see
Figure 1 again), and would remain so should, for
example, pth[3] be split into two subpaths each
associated with a set of control points.

Relative. The next transformation enables the
relative advantages of METAFONT design: Stating
all points in terms of positions that are relative to
the height, width, and depth of the character. In
this way, you don’t have to recalculate the points
z1, z2, etc., every time you rescale the character
to a different design size. Indeed, enabling the
incredible variety of font characteristics found in
the Computer Modern family is only possible when
relative design policies are utilized.

The first question to answer in relative font
design is, “on which dimension should the font be
based?” If the font is to be monospaced, then
standardization on the width would be appropri-
ate. This would mean replacing the dimensions in
lines 58–60 with

ds*pt#,

ds*(0.580801/0.4092)*pt#,

(0.264/0.4092)*pt#

in their respective positions, where ds is the design
size. If the font is to have a uniform height, then
the replacement dimensions would be

ds*(0.4092/0.580801)*pt#,

ds*pt#,

(0.264/0.580801)*pt#

Although it would be an odd design aspect, it is
possible to standardize on a uniform depth, with
the corresponding dimension adjustments as before.
Finally, other standardizations are possible, with
different corresponding numerical calculations on
the dimensions, which would not change the overall
look and feel of the font, as long as the aspect ratio
(height + depth/width) remains the same.

For our purposes here, let’s use a constant
width equal to the design size, and make all other
dimensions proportional to the width. Even though
the width is the same for each character in the
font design, each glyph need not occupy the same

horizontal space available to a character.1 The
implicit and now relative form of lines 1–38 can now
be seen.

100. path pth[];

101. designsize := 10;

102. ds := designsize;

103. beginchar(99,ds*pt#,

104. ds*(0.580801/0.4092)*pt#,

105. (0.264/0.4092)*pt#);"myst";

106. x1=x2=0.594/(0.4092*ds)*w;

107. x3=x4+0.297/(0.4092*ds)*w

108. =2.31/(0.4092*ds)*w;

109. x9+0.297/(0.4092*ds)*w

110. =x10=x11+1.023/(0.4092*ds)*w

111. =3.696/(0.4092*ds)*w;

112. x12+0.231/(0.4092*ds)*w=x11;

113. x12-x13=1.848/(0.4092*ds)*w;

114.

115. y1+(0.264/0.264)*d=0;

116. y2-0.957/(0.580801*ds)*h=0;

117. y3=y4-1.485/(0.580801*ds)*h

118. =3.366/(0.580801*ds)*h;

119. y10=y11=y9-2.508/(0.580801*ds)*h

120. =y12-1.782/(0.580801*ds)*h=0;

121. y12-y13=2.046/(0.580801*ds)*h;

122.

123. [...]

124.

125. pth[1]=z1--z2;

126. pth[2]=z2..

127. controls(1.716/(0.4092*ds)*w,

128. 2.046/(0.580801*ds)*h)

129. and(2.211/(0.4092*ds)*w,

130. 2.805/(0.580801*ds)*h)

131. ..z3;

132.

133. [...]

134.

135. fill pth[1]

136. for i=2upto6: & pth[i] endfor

137. --cycle;

138. cull currentpicture dropping(0,0);

139. endchar;

Note that the u unit is no longer needed, as it
is now a constant function of the chosen design
size, and all dimensions are expressed in terms of
the width, height, and depth, which are in turn
multiples of the design size. Once again, the
glyph produced by lines 100–139 looks exactly like

1 This consideration is the basis for the adjust_fit

function in plain METAFONT.

TUGboat, Volume 24 (2003), No. 2 203

that produced by lines 1–38 (so once again, see
Figure 1). The fractions in the critical and control
points need not be left as explicit reminders whence
they came; simplified values, such as those found in
the following excerpt, are often more convenient.

140. path pth[];

141. designsize := 10;

142. ds := designsize;

143. beginchar(248,ds*pt#,

144. ds*(1.419357)*pt#,

145. 0.645*pt#);"myst";

146. x1=x2=0.145161w;

147. x3=x4+0.07258w=0.564516w;

148. x9+0.07258w=x10=x11+0.25w

149. =0.903226w;

150. x12+0.056452w=x11;

151. x12-x13=0.451613w;

152.

153. [...]

154.

155. pth[6]=z12..

156. controls(0.459677w,0.164772h)

157. and(0.298387w,0.034091h)

158. ..z13;

159.

160. fill pth[1]

161. for i=2upto6: & pth[i] endfor

162. --cycle;

163. cull currentpicture dropping(0,0);

164. endchar;

Analytical. The final transformation finishes the
numerical calculations begun in earlier work. In par-
ticular, the explicit control points must be changed
to implicit tension statements. This ensures that
the glyph shape is defined by analytical considera-
tions between critical points, and not by arbitrarily
chosen “magic” control points.

The transformation from control points to
tension statements is accomplished by the Matlab-
based cp2ab utility.2 Documentation for using this
utility is included with its distribution. For example,
for pth[6] (lines 155–158), using

z12,

(0.459677,0.164772*1.419357),

(0.298387,0.034091*1.419357), and

2 If a user does not have access to Matlab, the
freely available source code for cp2ab may be easily
ported to many analytical calculation applications,
such as MAPLE and S. A user may even use the code
to make manual calculations.

z13

as input (so that all calculations take place in units
of ds*pt), the corresponding tension statement
would be

z12{dir-124.2156}

..tension0.9276and1.1893

..{dir-143.6158}z13

The cp2ab utility has the feature that all results
are invariant under scaling. The cp2ab utility also
accepts vector input (with corresponding vector
output) so that all sequential post- and pre-tension
values may be calculated simultaneously, as shown
in this partial Matlab session.

z1 =

0.1452 + 0.2339i

0.5645 + 0.8226i

u1 =

0.4194 + 0.5000i

0.6129 + 0.9597i

[...]

[a1,b1,ppath1,diru1,dirv1]

=cp2ab(z1,u1,v1,w1)

a1 =

0.8004 0.7771

1.0488 -1.0000

b1 =

1.2963 1.3193

1.2967 -1.0000

ppath1 =

0.1452 + 0.2339i

0.4486 + 0.5766i

0.5645 + 0.8226i

0.5645 + 0.8226i

0.4919 + 1.1855i

-1.0000

diru1 =

44.1449 55.0882

70.5599 -1.0000

[...]

The following excerpt shows the results of the ana-
lytical transformation, which still has not changed
the appearance of the glyph from Figure 1.

202. pth[1]=z1--z2;

203. pth[2]=z2{dir44.1449}

204. ..tension0.8004and1.2963

205. ..{dir55.0882}

206. (0.4486*ds*pt,0.5766*ds*pt)

204 TUGboat, Volume 24 (2003), No. 2

207. ..tension0.7771and1.3193

208. ..{dir79.9923}z3;

209.

210. [...]

Final product. To complete the METAFONT ap-
proach to font design, an effort should be made
to minimize the number of tension values used in
a glyph definition. This ensures a consistent look
and feel from one character to another, especially
along edges. For example, the use of 1.2963 and
1.2967 may be replaced by a single 1.3 value, such
as in pth[2] and pth[3]. The final form of the
mystery glyph, completely utilizing the METAFONT

approach, may be found in Figure 5, and is listed
in lines 211–258.

211. path pth[];

212. designsize := 10;

213. ds := designsize;

214. beginchar(248,ds*pt#,

215. ds*(1.419357)*pt#,

216. 0.645*pt#);"myst";

217. x1=x2=0.145161w;

218. x3=x4+0.07258w=0.564516w;

219. x9+0.07258w=x10=x11+0.25w

220. =0.903226w;

221. x12+0.056452w=x11;

222. x12-x13=0.451613w;

223.

224. y1+d=0;

225. y2-0.164772h=0;

226. y3=y4-0.255681h=0.579545h;

227. y10=y11=y9-0.431817h

228. =y12-0.306818h=0;

229. y12-y13=0.352272h;

230.

231. z5=(0.3951613w,0.846589h);

232. z6-z5=(-0.225806w,0);

233. z7-z6=(0,0.153409h);

234. z8-z7=(0.290323w,0);

235.

236. pth[1]=z1--z2;

237. pth[2]=z2{dir44}..tension0.8and1.3

238. ..{dir55}(0.4486*ds*pt,0.5766*ds*pt)

239. ..tension0.75and1.3..{dir80}z3;

240. pth[3]=z3{dir70}..tension1and1.3

241. ..{dir157}z4--z5--z6--z7--

242. z8{right}..tension1and1

243. ..{dir-34}(0.6652*ds*pt,1.3680*ds*pt)

244. ..tension1.3and0.75

245. ..{dir-76}(0.8026*ds*pt,1.1374*ds*pt)

246. ..tension1.3and0.75..{dir-93}z9;

247. pth[4]=z9{dir-84}..tension0.75and1.3

248. ..{dir-79}z10--z11;

249. pth[5]=z11{dir98}..tension0.8and1.3

250. ..{dir94}z12;

251. pth[6]=z12{dir-124}..tension1and1.3

252. ..{dir-144}z13;

253.

254. fill pth[1]

255. for i=2upto6: & pth[i] endfor

256. --cycle;

257. cull currentpicture dropping(0,0);

258. endchar;

����������	
�	����
��
������������������	���������	

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!""""""""""#######$$$$$%%%%&&&&'''((()))***++,,!!""##$$%%&''())*+,-.!!"#$%&'()*+.!!!"#$&'(*+-.!!!#$&(*+.!!!$&(*//0000001111112222223333333444444!!!!!!!!!!!!!!!!!!!!!!!!!!#&),55677899/01234-.!!!!!!!!!!!!!!!!!!!!!!#&)678/024-.!!!!!!!!!!!!!!!!!!!!!%)57914-!!!!!!!!!!!!!!!!!!!!!%*692!!!!!!!!!!!!!!!!!!!!!$
*61!!!!!!!!!!!!!!!!!!!!!$
+9-!!!!!!!!!!!!!!!!!!!!!'

.!!!!!!!!!!!!!!!!!!!!!%
'-.!!!!!!!!!!!!!!!!!!!!!&

*
$-!!!!!!!!!!!!!!!!!!!!!!

,(
#-.!!!!!!!!!!!!!!!!!!!!!!"

)&#
-.!!!!!!!!!!!!!!!!!!!!!!!

*&
-.!!!!!!!!!!!!!!!!!!!!!!!!

+(
%"-!!!!!!!!!!!!!!!!!!!!!!!!!

,)'
%"-!!!!!!!!!!!!!!!!!!!!!!!!!!

,*(
&$"-!!!!!!!!!!!!!!!!!!!!!!!!!!!6

+*(&
$"-.!!!!!!!!!!!!!!!!!!!!!!!!!!!!

+)(&
%#-!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!9

+*('
%$"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(

,+)(
&%$"-!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!%

,+)('
%$#-.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!#

,*)(
&%$#.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!+

,*)('
&$#"!!)

,+*)('
&$#"-!!!!!!!!!!!!!!!!!!!!!4210.!!!!!!!!!!!!!!!!!!!!!!'

,+)('
&%$#"-.!!!!!!!!!!!!!!!!!!!!!321/976 8.!!!!!!!!!!!!!!!!!!!!!!%

,+)('
&%$#"-!!!!!!!!!!!!!!!!!!!!!!42109875 64-!!!!!!!!!!!!!!!!!!!!!!#

,+*)('
&%$#"-.!!!!!!!!!!!!!!!!!!!!!!42109875 1.!!!!!!!!!!!!!!!!!!!!!!

+
,+*)('
&%$#".!!!!!!!!!!!!!!!!!!!!!!!32109875 8.!!!!!!!!!!!!!!!!!!!!!!

(

,+*)('
&%$#"!!!!!!!!!!!!!!!!!!!!!!!!4310/9765 1-!!!!!!!!!!!!!!!!!!!!!!&

'&%$#".!!!!!!!!!!!!!!!!!!!!!!!!4320/9875 73!!!!!!!!!!!!!!!!!!!!!!#
,.!!!!!!!!!!!!!!!!!!!!!!!4310/9875 9-!!!!!!!!!!!!!!!!!!!!!!
)-.!!!!!!!!!!!!!!!!!!!!43210/8765 0!!!!!!!!!!!!!!!!!!!!!!%

!!!!!!!!!!!!!!!!!!43210/9875 62!!!!!!!!!!!!!!!!!!!!!!
(-!!!!!!!!!!!!!!!43210/9865 84-.!!!!!!!!!!!!!!!!!!!!!$
+-!!!!!!!!!!!!43210/98765 /!!!!!!!!!!!!!!!!!!!!!!%
+!!!!!!!!!443210/98765 51!!!!!!!!!!!!!!!!!!!!!!%
+-.!!!!!432210/98765 7000:

-!!432210/988765
/9887655

Figure 5: Final form

Summary. The METAFONT approach combines
the irreplaceable advantages of implicit definitions
(making the position of critical points refer to each
other), relative policies (stating dimensions relative
to the width and height of the bounding box), and
analytical considerations (using tension statements
rather than control points) to ensure the consistency
and style of the resulting glyphs across all characters
in a font.

With practice, practice, practice, and the right
analytical tools, such font design far outshines,
in flexibility and functionality, the let-us-do-it-
for-you approach imposed by popular fontmaking
applications.

� Timothy Hall

PQI Consulting

P.O. Box 425616

Cambridge, MA 02142-0012

info@pqic.com

http://www.pqic.com/TUG

TUGboat, Volume 24 (2003), No. 2 205

