
A multidimensional approach to typesetting

John Plaice, Paul Swoboda
School of Computer Science and Engineering
The University of New South Wales
UNSW Sydney NSW 2052, Australia
plaice@cse.unsw.edu.au, pswoboda@cse.unsw.edu.au

http://www.cse.unsw.edu.au/~plaice

Yannis Haralambous
Département Informatique
École Nationale Supérieure des Télécommunications de Bretagne
BP832, F-29285 Brest Cédex, France
Yannis.Haralambous@enst-bretagne.fr

http://omega.enstb.org/yannis

Chris Rowley
Faculty of Mathematics and Computing
The Open University, UK

Milton Keynes MK7 6AA, United Kingdom
C.A.Rowley@open.ac.uk

Abstract

We propose to create a new model for multilingual computerized typesetting, in
which each of language, script, font and character is treated as a multidimen-
sional entity, and all combine to form a multidimensional context. Typesetting
is undertaken in a typographical space, and becomes a multiple-stage process of
preparing the input stream for typesetting, segmenting the stream into clusters
or words, typesetting these clusters, and then recombining them.

Each of the stages, including their respective algorithms, is dependent on the
multidimensional context. This approach will support quality typesetting for a
number of modern and ancient scripts. The paper and talk will show how these
are to be implemented in Ω.

Introduction

We propose to create a radically new and practi-
cal model for character-level typesetting of all the
world’s languages and scripts, old and new. This
goal is currently unattainable by any existing sys-
tem, because of the underlying assumption that en-
tities such as script, language, font, character and
glyph are discrete, eternal and unchanging, as is
supposed, for example, in the standards for Uni-
code [20], XML [21] and XSL [22].

The key innovations in this proposal are (a) the
assumption that these entities, their relationships
and the processes (programs) applied to them are all
arbitrarily parametrizable by a tree-structured con-
text, and (b) the explicit manipulation of the com-
plex and dynamic relationships between a (logical)

character stream input and its visual representation
on a particular medium as positioned glyphs.

These innovations lead directly to the concept
of a typographical space that constrains the variance
in the context and effectively embodies a certain set
of processes and customs —as once might have been
practiced in a typesetting workshop— while still al-
lowing parametrization by the context.

Quality multilingual typesetting, as opposed to
quality typesetting of unilingual documents for a
number of different languages, requires the juxta-
position of separate typographical spaces. The sep-
arate spaces encourage the development of special-
ized algorithms to properly support widely different
languages, scripts, and output substrates. The fact
that the same tree-structured context permeates all
of these different spaces ensures that key parameters

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 105



John Plaice, Paul Swoboda, Yannis Haralambous and Chris Rowley

can be shared across — or at least have correspon-
dences in— different spaces, thereby ensuring con-
sistency from one typographical space to another.

This approach greatly simplifies a number of
tricky problems when one refers to language and
script. Consider, for example, the English language:
it is a multidimensional complex, varying through
time (Old, Middle and Modern English), space (na-
tional and regional Englishes), and culture (science,
arts, business, diplomacy, etc.). Understanding this
variance is important: just as a simple example,
US English and UK English have different spellings
and hyphenations, and require different rules.

Scripts and their use have evolved similarly. In
the past century, German and Turkish have both
adopted the Latin script (from the Gothic and Ara-
bic scripts, respectively). Chinese is printed, de-
pending on the country, using ‘traditional’ or ‘sim-
plified’ characters; transliteration for Chinese into
the Latin script uses either the Wade-Giles or the
pinyin method. This evolution and diversity means
that documents encoded using one script should,
possibly with the aid of linguistic tools, be print-
able using other scripts. For example, Ω, using a
German morphological analyzer, has been used to
automatically print historical German texts in the
Gothic script [4].

The relationship between character and glyph
has also evolved, in inconsistent ways. A charac-
ter is a unit of information exchange, while a glyph
is a unit of visual information. If we consider, for
example, the glyph æ, used in mediæval, it is consid-
ered to be a ligature — a variant glyph— in English,
while in Danish it is considered to be a character in
its own right. In fact, one of the authors (Haralam-
bous) [3] has shown that glyphs and characters are
not absolutes, but, rather, are fluid concepts depen-
dent on the context.

These relationships become more complex when
we are faced with paleo-scripts from the mediæval
and ancient worlds. For example, there are some-
thing like 200 recognized Indic scripts, all derived
from the Brahmi script. They all have similar—
but clearly not identical— structure and there are
situations in which it is natural to consider them as
separate scripts while in other situations it is easier
to consider them as variants of a single script.

We propose to use a tree-structured context to
describe, to the desired level of precision, the enti-
ties that are being manipulated. This context will
be used to describe (a) how exactly to interpret
the input; (b) the exact format of the output; and
(c) the required processing. The latter should de-
fine how many passes over the input are required,

what linguistic, layout or other plug-in tools should
be used, along with the parametrization for each of
these tools. An example context would be:

<characterset:<Unicode +
encoding:<UTF8>> +

input:<XML + DTD:<TEI>> +
language:<English +

spelling:<Australian> +
script:<Latin>> +

output:<PDF +
viewer:<AcrobatReader +

version<5.0 +
OS:<MacOSX>>>>>

where input and output are called dimensions, and
language:script a compound dimension. The con-
text will be inferred from environment variables, sys-
tem locale, user profiles, command-line arguments,
menu selections, and document markup.

This approach was first outlined in a position
paper written by three of the authors [14], but at
the time we had not understood the importance of
the typographical space. It is the typographical space
that allows us to fix exactly the meanings of char-
acter, glyph, language, script and font. In so do-
ing, we facilitate the construction of modular and
flexible typesetters that allow automatic linguistic
tools to add arbitrary markup to a text before it
is printed, much as a traditional typographer might
have used dictionaries and grammar books before
pouring lead.

To transform the above basic ideas into real,
functional software usable for typesetting real, mul-
tilingual documents is not a trivial task. In this pa-
per, we outline the steps that have led to the current
ideas, and elaborate on problems still to be resolved.

We begin with a quick summary of the TEX
character-level typesetter. Then we explain how the
introduction of ΩTPs and ΩTP-lists in Ω provides a
sophisticated means for adapting TEX’s typesetter
to multilingual typesetting. What Ω offers to the
specialist user is great flexibility in manipulating the
many different parameters needed for high-quality
typesetting of different scripts.

However, this programming flexibility, with its
large numbers of parameters, greatly complicates
the user interface. The answer lies in being able
to explicitly manipulate an active run-time context
that permeates the entire typesetting process. We
describe below how versioned macros, ΩTPs, and
ΩTP-lists have been added to Ω to offer a high-level
interface that a non-specialist user can manipulate
with success.

106 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting



A multidimensional approach to typesetting

Once such an active context is added to the in-
terface, it becomes natural to incorporate the con-
text into the entire process, and to completely re-
design TEX’s character-level typesetter. We exam-
ine below the initial proposal for such a typeset-
ter, using the typographical space. We conclude by
proposing a number of natural typographical spaces,
along with their relevant parameters.

Computer typesetting, TEX and Ω

For this paper, we define computer typesetting to
be “The production of printed matter by computer,
ultimately to be viewed on some output medium”.
The origins of computer typesetting go back to the
1950s, but it was not until 1982, with TEX [7], that it
became possible to use computer software for high-
quality typesetting of English and mathematics, as
in The Art of Computer Programming [6].

At the character level, TEX can work in text-
mode or in math-mode. In text-mode, characters in
the input file are transformed almost directly into
glyphs (‘pictures’ of characters) in the current font,
and these glyphs are positioned side-by-side ‘on the
baseline’. A font-specific finite-state automaton can
be used to change the glyphs used (by using liga-
tures) and their horizontal placement (by kerning).
The ‘words’ thus typeset are then separated by a
font-specific amount of stretchable inter-word space
(glue) to form the stream of typeset glyphs that is
passed to TEX’s paragrapher. In math-mode, TEX
uses a hand-crafted algorithm to lay out glyphs in
1.5 dimensions (this notation comes from frieze pat-
terns).

The resulting stream of typeset glyphs is fed to
TEX’s paragraphing algorithm [8], which breaks the
typeset stream for a paragraph at optimal— accord-
ing to some acceptability criterion— places to pro-
duce lines of text placed in horizontal boxes. A much
simpler algorithm is used for cutting pages from a
continuous galley of such boxes. All computations
in TEX are based on the width, height and depth
of boxes, and these are derived ultimately from the
same metrics for glyphs in the fonts.

The Ω system [11], developed by Plaice and
Haralambous, is a series of extensions to the TEX
system that facilitate multilingual typesetting. In Ω,
the input character stream is processed by a series
of filters, ultimately generating another character
stream. Once all of the filters are applied, the result-
ing stream is passed to the TEX text-mode typeset-
ter. We have written filters for character set conver-
sion, transliteration, morphological analysis, spell-
checking, contextual analysis, and 1.5-dimensional
layout. The Ω system has been used to typeset al-

phabetic scripts from Europe and the Caucasus, cur-
sive scripts from the Middle East, South Asia and
South-East Asia, and East-Asian ideograms.

With the ΩTP mechanism, one can call many
different filters for many different tasks. It often
happens that some of these filters are only to be used
in a selective manner, which very quickly creates a
combinatorial explosion of new ΩTP-lists, hardly a
favorable situation. This is resolved by introducing
the run-time context of intensional programming,
explained in the following sections.

Intensional programming

Intensional programming [15] is a form of computing
that supposes that there is a multidimensional con-
text, and that all programs are capable of adapting
themselves to this context. The context is perva-
sive, and can simultaneously affect the behavior of
a program at the lowest, highest and middle layers.

When an intensional program is running, there
is a current context. This context is initialized upon
launching the program from the values of environ-
ment variables, from explicit parameters, and pos-
sibly from active context servers. The current con-
text can be modified during execution, either ex-
plicitly through the program’s actions, or implicitly,
through changes at an active context server.

A context is a specific point in a multidimen-
sional space, i.e., given a dimension, the context will
return a value for that dimension. The simplest con-
texts are dictionaries (lists of attribute-value pairs).
A natural generalization is what will be used in this
paper: the values themselves can be contexts, result-
ing in a tree-structured context. The set of contexts
is furnished with a partial order v called a refine-
ment relation.

During execution, the current context can be
queried, dimension by dimension, and the program
can adapt its behavior accordingly. In addition, if
the programming language supports it, then contex-
tual conditional expressions and blocks can be de-
fined, in which the most relevant case, with respect
to the current context and according to the partial
order, is chosen among the different possibilities.

In addition, any entity can be defined in mul-
tiple versions, (context, object) pairs. Whenever an
identifier designating an entity appears in an expres-
sion or a statement, then the most relevant version
of that entity, with respect to the current context,
is chosen. This is called the variant substructure
principle. The general approach is called intensional
versioning [17].

The ISE programming language [16, 19] was the
first language combining both intensional program-

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 107



John Plaice, Paul Swoboda, Yannis Haralambous and Chris Rowley

ming and versioning. It is based on the procedural
scripting language Perl, and it has greatly facilitated
the creation of multidimensional Web pages. Simi-
lar experimental work has been undertaken, under
the supervision of the author Plaice, with C, C++,
Java, and Eiffel. And, when combined with a con-
text server (see Swoboda’s PhD thesis [18]), it be-
comes possible for several documents or programs
to be immersed in the same context.

Structuring the context

We use the same notation to designate contexts and
versions of entities. This section has three subsec-
tions. First, we define contexts and the refinement
relation. Then, we define version domains, which
hold versioned entities. Finally, we define context
operators, which are used to change from context to
context. In the following section, we will show how
all of these are to be used.

Contexts and refinement Let
{
(Si,vi)

}
i

be a
collection of disjoint sets of ground values, each with
its own partial order. Let S = ∪iSi. Then the set
of contexts C (3 C) over S is given by the following
syntax:

C ::= ⊥ | A | Ω | 〈B;L〉 (1)
B ::= ε | α | ω | v (2)
L ::= ∅ | d :C + L (3)

where d, v ∈ S.
There are three special contexts:

• ⊥ is the empty context (also called vanilla);
• A is the minimally defined context, only just

more defined than the empty one;
• Ω is the maximally defined context, more de-

fined than all other contexts.

The normal case is that there is a base value B,
along with a context list (L for short), which is a set
of dimension-context pairs. We write δL for the set
of dimensions of L.

A sequence of dimensions is called a compound
dimension. It can be used as a path into a context.
Formally:

D = · | d :D (4)
If C is a context, C(D) is the subtree of C whose
root is reached by following the path D from the
root of C:

C(·) = C (5)
〈B; d :C ′ + L〉 (d :D) = C ′(D) (6)

As with contexts, there are three special base
values:

• ε is the empty base value;

• α is the minimally defined base value, just more
defined than the empty base value;

• ω is the maximally defined base value, more de-
fined than all others.

The normal case is that a base value is simply a
scalar.

To the set C, we add an equivalence relation ≡,
and a refinement relation v. We begin with the
equivalence relation:

⊥ ≡ 〈ε; ∅〉 (7)
A ≡ 〈α; ∅〉 (8)

Ω ≡

〈
ω;

∑
d ∈ S

d :Ω

〉
(9)

L0 ≡L L1

〈B;L0〉 v 〈B;L1〉
(10)

Thus, ⊥ and A are notational conveniences, while Ω
cannot be reduced. The normal case supposes an
equivalence relation ≡L over context lists:

∅ ≡L d :⊥ (11)
d :〈B;L + L′〉 ≡L d :

(
〈B;L〉+ 〈B;L′〉

)
(12)

L ≡L ∅+ L (13)
L ≡L L + L (14)

L + L′ ≡L L′ + L (15)
L + (L′ + L′′) ≡L (L + L′) + L′′ (16)

The + operator is idempotent, commutative, and
associative. Now we can define the partial order
over entire contexts:

⊥ v C (17)

C v Ω (18)
C 6= ⊥
A v C

(19)

C0 ≡ C1

C0 v C1
(20)

B0 vB B1 L0 vL L1

〈B0;L0〉 v 〈B1;L1〉
(21)

which supposes a partial order vB over base values:

ε vB B (22)

B vB B (23)

B vB ω (24)
B 6= ε

α vB B
(25)

v0, v1 ∈ Si v0 vi v1

v0 vB v1
(26)

The last rule states that if v0 and v1 belong to the
same set Si and are comparable according to the

108 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting



A multidimensional approach to typesetting

partial order vi, then that order is subsumed for
refinement purposes.

The partial order over contexts also supposes a
partial order vL over context lists:

∅ vL L (27)

L0 ≡L L1

L0 vL L1
(28)

C0 v C1

d :C0 vL d :C1
(29)

L0 vL L1 L′
0 vL L′

1

L0 + L′
0 vL L1 + L′

1

(30)

Rule 30 ensures that the + operator defines the least
upper bound of two context lists.

Context and version domains When doing in-
tensional programming, we work with sets of con-
texts, called context domains, written C. There is
one operation on a context domain, namely the best-
fit. Given a context domain C of existing contexts
and a requested context Creq, the best-fit context is
defined by:

best(C, Creq) = max{C ∈ C | C v Creq} (31)

If the maximum does not exist, there is no best-fit
context.

Typically, we will be versioning something, an
object of some type. This is done using versions,
simply (C, object) pairs. Version domains V then
become functions mapping contexts to objects. The
best-fit object in a version domain is given by:

bestO(V, Creq) = V(best(dom V, Creq)) (32)

Context operators Context operators allow one
to selectively modify contexts. Their syntax is sim-
ilar to that of contexts.

Cop ::= C | [Pop;Bop;Lop] (33)
Pop ::= −− | E (34)
Bop ::= − | ε | B (35)
Lop ::= ∅Lop | d :Cop + Lop (36)

A context operator is applied to a context to trans-
form it into another context. (It can also be used
to transform a context operator into another; see
below.) The − operator removes the current base
value, while the −− operator in Pop is used to clear
all dimensions not explicitly listed at that level.

Now we give the semantics for C Cop, the ap-
plication of context operator Cop to context C:

C0 C1 = C1 (37)
Ω Cop = error (38)

〈B;L〉 [−−;Bop;Lop] = (39)〈
B;L\(δL− δLop)

〉
[E;Bop;Lop]

〈B;L〉 [E;Bop;Lop] = (40)〈
(B Bop); (L Lop)

〉
The general case consists of replacing the base value
and replacing the context list. First, the base value:

B − = ε (41)
B ε = B (42)

B0 B1 = B1 (43)
Now, the context list:

L ∅Lop = L (44)
(d :C + L) (d :Cop + Lop) = (45)

d : (C Cop) + (L Lop)
L (d :Cop + Lop) = (46)

d : (⊥ Cop) + (L Lop), d 6∈ δL

Context operators can also be applied to con-
text operators. There are two cases:

[Pop;Bop0;Lop0] [E;Bop1;Lop1] = (47)[
Pop; (Bop0 Bop1); (Lop0 Lop1)

]
[Pop;Bop0;Lop0] [−−;Bop1;Lop1] = (48)[
−−; (Bop0 Bop1);

(
(Lop0\(δLop0 − δLop1)) Lop1

)]
Now that we have given the formal syntax and

semantics of contexts, version domains, and context
operations, we can move on to typesetting.

The running context in Ω

As is usual, the abstract syntax is simpler than the
concrete syntax, which offers richer possibilities to
facilitate input. Here is the concrete syntax for con-
texts in Ω:

C ::= <> Empty context
| ~~ Minimum context
| ^^ Maximum context
| <val> Base value
| <L> Subversions
| <val+L> Base & subversions

val ::= ~ Minimum value
| ^ Maximum value
| string Normal value

L ::= dim:C [+ dim:C]∗

dim ::= string

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 109



John Plaice, Paul Swoboda, Yannis Haralambous and Chris Rowley

Here is the concrete syntax for context operations:
Cop ::= C Replace the context

| [] No change
| [valop] Change base
| [Lop] Change subversions
| [valop+Lop] Change base & subs

valop ::= - Clear base
| val New value
| -- Clear subversions
| val+-- New base, clear subs
| --- Clear base & subs

Lop ::= dim:Cop [+ dim:Cop]∗

In Ω, the current context is given by:
\contextshow{}

If D is a compound dimension, then the subversion
at dimension D is given by:

\contextshow{D}

while the base value at dimension D is given by:
\contextbase{D}

This context is initialized at the beginning of
an Ω run with the values of environment variables
and command-line parameters. Once it is set, it can
be changed as follows:

\contextset{Cop}

Adapting to the context

During execution, there are three mechanisms for Ω
to modify its behavior with respect to the current
context: (1) versioned execution flow, (2) versioned
macros, and (3) versioned ΩTPs.

Execution flow The new \contextchoice primi-
tive is used to change the execution flow:

\contextchoice{{Cop1}=>{exp1},
. . .
{Copn}=>{expn}
}

Depending on the current context C, one of the ex-
pressions expi will be selected and expanded. The
one chosen will correspond to the best-fit context
among {C Cop1, . . . , C Copn} (see the discussion
above of Context and Version Domains).

Macros The Ω macro expansion process has been
extended so that any control sequence can have mul-
tiple, simultaneous versions, at the same scoping
level. Whenever \controlsequence is expanded, the
most relevant, i.e. the best-fit, definition, with re-
spect to the current context, is expanded.

A version of a control sequence is defined as
follows:

\vdef{Cop}\controlsequence args{definition}

If the current context is C, then this definition de-
fines the C Cop version of \controlsequence. The
scoping of definitions is the same as for TEX.

This approach is upwardly compatible with the
TEX macro expansion process. The standard TEX
definition:

\def\controlsequence args{definition}

is simply equivalent to

\vdef{<>}\controlsequence args{definition}

i.e., it defines the empty version of a control se-
quence.

As stated above, during expansion the best-fit
definition, with respect to the current context, of
\controlsequence will be expanded whenever it is en-
countered. It is also possible to expand a particular
version of a control sequence, by using:

\vexp{Cop}\controlsequence

ΩTPs and ΩTP-lists Beyond the ability to ma-
nipulate larger data structures than does TEX, Ω al-
lows the user to apply a series of filters to the in-
put, each reading from standard input and writing
to standard output. Each of the filters is called an
ΩTP (Ω Translation Process), and a series of filters
is called an ΩTP-list.

There are two kinds of ΩTP: internal and ex-
ternal. Internal ΩTPs are finite state machines writ-
ten in an Ω-specific language, and they are compiled
before being interpreted by the Ω engine. Exter-
nal ΩTPs are stand-alone programs, reading from
standard input and writing to standard output, like
Unix filters.

Internal and external ΩTPs handle context dif-
ferently. For external ΩTPs, the context information
can be passed on through an additional parameter
to the system call invoking the external ΩTP:

program -context=context

Internal ΩTPs have been modified so that every
instruction can be preceded by a context tag. Using
the simplest syntax, this becomes:

<<context>> pattern => expression

When an internal ΩTP is being interpreted, an in-
struction is only examined if its context tag (default-
ing to the empty context) is less than the current
running context.

When ΩTPs and ΩTP-lists are being declared
in Ω, the \contextchoice operator can be used
to build versioned ΩTP-lists. With versioned ΩTP-
lists, it becomes possible to define a single ΩTP-list
with n ΩTPs, and each of the n ΩTPs can be acti-
vated with a separate parameter.

110 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting



A multidimensional approach to typesetting

The versioned interface finally provides a user-
level means for manipulating the large sets of pa-
rameters that must be handled when doing complex
multilingual typesetting. When a transliterator is
needed, the appropriate parameter is set. When a
more complex layout mechanism is chosen, then an-
other parameter is set. When spell-checking is de-
sired, then another parameter is set. And so on.
And the macros and ΩTP-lists adapt accordingly.

Because of the flexibility of the new interface,
it is simpler to suppose that Ω always has an ac-
tive ΩTP-list, and that it changes its behavior as
the text changes its parameters. According to this
vision, then, multilingual typesetting simply means
changing parameters as needed.

The versioned approach also resolves an issue
that has been vexing the authors ever since the Ω
and LATEX projects have been trying to design a
high-level interface for Ω usable by LATEX. The prob-
lem is that a language is not a monolithic, isolated,
eternal and unchanging entity. Versioning of the
macros and ΩTPs allows one to deal with the vari-
ance in language and script, as well as encouraging
the sharing of resources across multiple languages.

Context-dependent typesetting

The existing Ω framework is very powerful, in the
sense that the ΩTPs can make the TEX character-
level typesetter stand on its head to produce amaz-
ing results, without the end-user having to know
what is going on. However, it is hardly a natural
process to take a character-level typesetter designed
for English with its isolated glyphs and occasional
ligatures and then to use it to undertake complex
Arabic typesetting with its numerous ligatures and
floating diacritics.

Far more appropriate is to break up the type-
setting process into separate modules, and to pa-
rameterize each of these with the current context.

In the most general sense, a typesetter is a pro-
gram that transforms a stream of characters into a
stream of positioned glyphs. We can separate out
three themes:
• Atomic typesetting is the transformation of a

(small) fully marked-up stream of characters
into a stream of positioned glyphs. An atomic
typesetter might be used directly by an appli-
cation that prints one or two words at different
points on a computer screen, e.g. by mapping
software to print out a city or river name, or by
a more complex continuous typesetter.

• Continuous typesetting is the transformation of
a (larger) stream of characters into a stream of
positioned glyphs that can be segmented at dif-

ferent points to produce several lines (or other
structures) of typeset text.

• Preparing the input is the process of applying
several programs to a stream of characters to
add additional markup so that the typesetter
can fully do its work.

A continuous typesetter would typically use one or
more atomic typesetters, and might also require in-
put to be prepared.

Below, we give a simple model of a continous
typesetter. It is split into four separate phases:
preparation, segmentation, micro-typesetting and re-
combination. Each of these phases is dependent on
the context, and we write the process, using C++

syntax, as:

stream<Glyph>
typeset(stream<Char> input,

Context context) {
stream<Char> prepared =
input.apply(otp_list.best(context));

stream<Cluster> segmented =
segmenter.best(context)(prepared);

stream<TypesetCluster> typeset =
clusterset.best(context)(segmented);

stream<Glyph> recombined =
recombine.best(context)(typeset);

return recombined;
}

where function.best(context) means that the most
relevant version of function, with respect to context,
is selected. We examine each of the phases in detail.

Preparation

stream<Char> prepared =
input.apply(otp_list.best(context));

The preparation phase in this new approach is sim-
ilar to the current situation in the Ω system. At all
times, there is an active ΩTP-list. This list consists
of individual ΩTP’s, each of which is a filter read-
ing from standard input to standard output. What
is new is that the whole process becomes context-
dependent. First, the most relevant ΩTP-list, with
respect to the context and using the refinement re-
lation over contexts, is the one that is active. Sec-
ond, once chosen, it can test the current context and
adapt its behavior, by selectively turning on or off,
or even replacing, individual ΩTP’s.

The preparation phase works entirely on char-
acters, i.e. at the information exchange level, but
it allows additional typographic information to be
added to the character stream, so that the follow-
ing phases can use the extra information to produce
better typography.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 111



John Plaice, Paul Swoboda, Yannis Haralambous and Chris Rowley

Segmentation

stream<Cluster> segmented =
segmenter.best(context)(prepared);

The segmentation phase splits the stream of char-
acters into clusters of characters; typically, segmen-
tation is used for word detection. In English, word
detection is a trivial problem, and segmentation just
means recognizing ‘white space’ such as the blank
character, Unicode U+020. By contrast, in Thai,
where there is normally no word-delimiter in the
character stream (blanks are traditionally used only
as sentence-delimiters), it is impossible to do any
form of automatic processing unless a sophisticated
morphological analyzer is being used to calculate
word and syllable boundaries. In many Germanic
and Slavic languages, it is also necessary to find
the division of compound words into their building
blocks. These processes are closely related to finding
word-division points, so this should be incorporated
into this part of the process (a very different ap-
proach to that of TEX). The choice of segmenter is
thus clearly seen to be context-dependent.

Cluster typesetting

stream<TypesetCluster> typeset =
clusterset.best(context)(segmented);

During the typesetting phase, a cluster engine pro-
cesses a character cluster, taking into account the
current context including language and font infor-
mation, and produces the typeset output —a se-
quence of positioned glyphs. In many cases, such
as when hyphenation or some other form of cluster-
breaking is allowed, there are multiple possible type-
set results, and all of these possibilities must be out-
put. When dealing with complex scripts or fonts
allowing great versatility (as with Adobe Type 3
fonts), many different cluster engines are needed:
these are selected and their behaviour is fine-tuned
according to the context.

Recombination

stream<Glyph> recombined =
recombine.best(context)(typeset);

The final phase, before calling a higher-level format-
ting process such as a paragrapher, is the recombi-
nation phase. Here, the typeset clusters are placed
next to each other. For simple text, such as the
English in this proposal, this simply means plac-
ing a fixed stretchable space between typeset words.
In situations such as Thai and some styles of Ara-
bic typesetting, kerning would take place between
words. Once again, the recombiner’s behavior is
context-dependent.

Typographical spaces

Given the sophistication of the multiple-phase pro-
cess, and that the choice of segmenter, cluster en-
gine and recombiner are all context-dependent, and
that the actions of each of these, once they are cho-
sen, also depends on the context, this new model
of typesetting engine is potentially much more pow-
erful than anything previously proposed or imple-
mented. However, there remains a key problem in
the type of the function:

stream<Glyph>
typeset(stream<Char> input,

Context context);

In this type declaration, the types Glyph and Char
appear to be normal datatypes, i.e., fixed, unchang-
ing sets, which is not at all consistent with our view
that character and glyph should be perceived as mul-
tidimensional entities.

Really, the sets for character and glyph should
be context-dependent. However, if these basic types
were to continually change, then it would be very
difficult to write any of the algorithms, because one
could never be sure of the ultimate particles, the
atoms, with which one was working.

To resolve this problem, we introduce the typo-
graphical space. This space is designed to constrain
the variance in the context. Within a specific typo-
graphical space, the types for character and glyph
remain fixed. Hence the above type becomes some-
thing like:

stream< Glyph<TS> >
typeset(stream< Char<TS> > input,

Context context);

In a typographical space, certain parameters
are kept fixed, or at least their values are kept within
a certain range. Other parameters may vary at will,
and their values may be manipulated as appropriate
by the algorithms within that space.

Suppose there was a typographical space for
Greek typesetting, including modern and ancient
Greek, literary Greek and colloquial Greek, as well
as other languages that have been typeset using the
Greek alphabet. Then the character datatype would
most likely correspond to a subset of Unicode, aug-
mented by additional characters that were not in-
cluded in the standard. The glyph datatype would
consist of many glyphs, and could contain a number
of precomposed multi-accented glyphs or a smaller
set of isolated glyphs, including accents, that are to
be placed at appropriate places.

The typographical space is a necessary solution
to the problem raised by the existence of multi-script

112 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting



A multidimensional approach to typesetting

character sets such as Unicode. It is simply infea-
sible to write a single typesetter that will do qual-
ity typesetting of Egyptian hieroglyphics, Japanese
kanji with furigana, Persian in Nastaliq style, and
German using Fraktur fonts.

By creating separate typographical spaces for
these different kinds of situation, we can allow spe-
cialists to build typesetters for the scripts and lan-
guagest that they know best. What is still needed
for quality multilingual typesetting is to define some
basic parameters, or dimensions, that apply across
different typographical spaces, so that it becomes
possible to move smoothly from one typographical
space to another.

Example spaces

We intend to test and validate the model described
above by creating typographical spaces for at least
the following scripts:
• Latin, Greek, Cyrillic, IPA: left-to-right, dis-

crete glyphs, numerous diacritics, stacked ver-
tically, above or below the base letters, liberal
use of hyphenation;

• Hebrew : right-to-left, discrete glyphs, optional
use of diacritics (vowels and breathing marks),
which are stacked horizontally below the base
letter;

• Arabic: right-to-left, contiguous glyphs, contex-
tually shaped, many ligatures, optional use of
diacritics (vowels and breathing marks), placed
in 1.5-dimensions, above and below;

• Indic scripts: left-to-right, 1.5-dimensional lay-
out of clusters, numerous ligatures, applied se-
lectively according to linguistic and stylistic cri-
teria;

• Chinese, Japanese: vertical or left-to-right, of-
ten on fixed grid, with annotations to the right
or above the main sequence of text, automatic
word recognition— in Chinese and Japanese,
“words” use one or more characters, but these
are not visually apparent —needed for any form
of analysis;

• Egyptian hieroglyphics: mixed left-to-right and
right-to-left, 1.5-dimensional layout.
Once these basic spaces are validated, then fur-

ther experiments, viewing language as a multidi-
mensional entity, can be undertaken. Already with
Ω, we have typeset Spanish with both the Hebrew
and Latin scripts; Berber with the Tifinagh, Ara-
bic and Latin scripts; Arabic with Arabic, Hebrew,
Syriac, Latin and even Arabized Latin (Latin script
with a few additional glyphs reminiscent of the Ara-
bic script). The Arabic script can be rendered in

Naskh or Nastaliq or many other styles. Japanese
can be typeset with or without furigana, little anno-
tations above the kanji (the Chinese characters) to
facilitate pronunciation. Some of the corresponding
typographical spaces will be quite interesting.

The objective is to incorporate solutions to all
such problems, currently solved in an ad hoc man-
ner, into our framework; each time, the key is to
correctly summarize the typographical space. With
this key, then the choice of segmenters, clusters en-
gines and recombiners to build, and of how they are
built, is clarified; nevertheless, these algorithms may
remain complex, because of the inherent complexity
of the problems they are solving.

Conclusions

When we have fully developed this model, we will
be able to produce, with relative ease, high-quality
documents in many different languages and scripts.

Furthermore, this new approach of using con-
texts can be used to improve not just micro- but also
macro-typesetting. Rowley, as one of the leaders of
the LATEX3 Project, has worked with closely related
ideas in the context of Mittelbach’s templates for
higher-level formatting processes [2]. Here the par-
ticular instance of a template object that is used to
format a document element will depend on a context
that is derived from both the logical position of that
element in the structured document and from the
formatting of the physically surrounding objects in
the formatted document. Collaboration between the
current authors and other members of the LATEX3
team will lead to many new interfaces that give ac-
cess to the new functionality.

Other examples of the importance of such a
structured context in document processing can be
found in work by Rowley with Frank Mittelbach [10].

Another example of dependence on this visual
context occurs in the use of Adobe Type 3 fonts,
which are designed so that glyphs can be generated
differently upon each rendering (see [1] for a discus-
sion of a number of effects). On another level, the
OpenType standard for font resources [12] allows for
many different kinds of parameters beyond the basic
three of width, height, and depth, such as multiple
baselines, and a much richer notion of ligature. Our
new engine for micro-typography will provide new
capabilities, adaptable to new kinds of parameters,
and increased control. Thus we shall be able to pro-
vide a simple high-level interface that takes advan-
tage of new developments in font technologies.

Finally, this proposed model should be under-
stood as the preparation for a much more ambitious
project, that will deal not just with low-level type-

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 113



John Plaice, Paul Swoboda, Yannis Haralambous and Chris Rowley

setting but also with general problems of document
structuring and layout for demanding typographic
designs in a highly automated environment. De-
tailed discussion along these lines has already been
initiated between the Ω and LATEX3 projects, which
look forward to these wider horizons.

References

[1] Jacques André. Création de fontes en typogra-
phie numérique. Documents d’habilitation,
IRISA+IFSIC, Rennes, 1993.

[2] David Carlisle, Frank Mittelbach and Chris
Rowley. New interfaces for LATEX class de-
sign, 1999. http://www.latex-project.org/
papers/tug99.pdf

[3] Yannis Haralambous. Unicode et typographie :
un amour impossible. Document numérique
6(3–4):105–137, 2002.

[4] Yannis Haralambous and John Plaice. Traite-
ment automatique des langues et composition
sous Omega. Cahiers GUTenberg 39–40:1–28,
2001.

[5] P. Karow. hz-Programm, Mikrotypographie
für den anspruchsvollen Satz. Gutenberg-
Jahrbuch, Mainz, 1993.

[6] D. E. Knuth. The Art of Computer Program-
ming. 3 vol., third ed., Addison-Wesley, 1997.

[7] D. E. Knuth. Computers and Typesetting. 5
vol., Addison-Wesley, 1986.

[8] D. E. Knuth and M. F. Plass. Breaking para-
graphs into lines. Software—Practice and Ex-
perience 11(11):1119–1184, 1981.

[9] Frank Mittelbach and Chris Rowley, 1996.
Application-independent representation of text
for document processing.
http://www.latex-project.org/papers/
unicode5.pdf

[10] Frank Mittelbach and Chris Rowley. Language
information in structured documents, 1997.
http://www.latex-project.org/papers/
language-tug97-paper-revised.pdf

[11] Omega Typesetting and Document Processing
System. http://omega.cse.unsw.edu.au

[12] OpenType. http://www.opentype.org

[13] John Plaice and Yannis Haralambous. Gener-
ating multiple outputs from Omega. EuroTEX
2003 proceedings, TUGboat, 2003. To appear.

[14] John Plaice, Yannis Haralambous and Chris
Rowley. An extensible approach to high-quality
multilingual typesetting. In RIDE-MLIM 2003,
IEEE Computer Society Press, 2003.

[15] John Plaice and Joey Paquet. Introduction to
intensional programming. In Intensional Pro-
gramming I, World-Scientific, Singapore, 1996.

[16] John Plaice, Paul Swoboda and Ammar Alam-
mar. Building intensional communities using
shared contexts. In Distributed Communities
on the Web, LNCS 1830:55–64, Springer-
Verlag, 2000.

[17] John Plaice and William W. Wadge. A new ap-
proach to version control. IEEE-TSE 19(3):268–
276, 1993.

[18] Paul Swoboda. A Formalization and Implemen-
tation of Distributed Intensional Programming.
PhD Thesis, The University of New South
Wales, Sydney, Australia, 2003.

[19] Paul Swoboda. Practical Languages for Inten-
sional Programming. MSc Thesis, University of
Victoria, Canada, 1999.

[20] Unicode Home Page.
http://www.unicode.org

[21] Extensible Markup Language (XML).
http://www.w3c.org/XML

[22] The Extensible Stylesheet Language (XSL).
http://www.w3c.org/Style/XSL

114 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting


