
Literate programming meets UML

Dr. Alun Moon
School of Informatics

University of Northumbria

Newcastle upon Tyne, UK

alun.moon@unn.ac.uk

Abstract

This work is an ongoing small project to apply the benefits of literate programming

to UML. Literate programming is a powerful tool in that it places the emphasis
on the documentation of the algorithm, and allows the code to be developed
in a logical order. UML is a useful graphical notation to describe features of a
software system. However, it lacks the ability to document the code and algorithm
in detail. This gap can be filled by literate programming. Elements of UML

can usefully enhance the documentation part of a web, with “a picture worth a
thousand words”. Finally the process of tangling a web into a program is applied
to the UML to create a final diagram from fragments throughout the web. The
diagrams are ‘enhanced’ by having TEX available to typeset the text.

1 Introduction

Literate programming is a powerful tool in that it
places the emphasis on the documentation of the
algorithm, and allows the code to be developed in
a logical order. UML (Uniform Modeling Language)
is a useful graphical notation to describe features of
a software system. However, it lacks the ability to
document the code and algorithm in detail. This gap
can be filled by literate programming. Elements of
UML can usefully enhance the documentation part
of a web, with “a picture worth a thousand words”.

METAPOST has been used to develop the graph-
ical part of the system; macros for TEX are included
in the web document. METAFONT has all the geo-
metrical tools to allow a diagram to be built up, and
its equation solving mechanism allows the elements
to be defined in relation to each other. METAPOST

also has facilities for typesetting text, making it the
suitable tool to use.

1.1 No existing packages

Existing packages on CTAN such as PSTricks have
many of the layout tools and arrow decoration need-
ed for UML. This project is in part a learning exer-
cise in writing METAPOST and TEX macro packages.
The TEX components are written for plain TEX, as
this is what CWEAVE produces.

2 Conventions

These tools were developed with Java in mind as
the language. Java and UML feature heavily in the

teaching within the School at Northumbria Univer-
sity. Some form of literate programming may be
introduced to the undergraduates, if only just the
concept of writing documentation, to help empha-
sise design in software engineering.

Although Java allows multiple classes in a
source file, for the purposes of this tool only one
is allowed. Each web file generates one Java file,
which compiles to one class. Multiple classes may
be possible later. This keeps the management of the
diagram elements simple.

3 Design of the macros

The initial set of macros have a slightly object ori-

ented feel about them. Class names are used as
suffix parameters making a readable file. As the dia-
grams become more complex, additional data struc-
tures are used to ease processing by METAPOST.
The TEX macros write material to a .uml file which
is post-processed to create METAPOST input files,
much as an index is processed with makeindex.

3.1 Tangled or Weaved?

Are UML diagrams tangled or weaved? The answer
is a bit of both. They are weaved as they form part
of the documentation, and include TEX material.
They are tangled as the material is defined in the
order of the web file, but has to be rearranged into
a program or hierarchical order.

116 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting

Literate programming meets UML

\def\private{$-$} \def\public{$+$}

\def\package{$$}

\def\protected{\sim}

\def\classformatproperties#1{%

\vbox{\halign{##\hfil\cr #1 }}}

% List macros after Knuth in

% The TeXbook, page 378

\def\leftlist#1{%

\def\\##1{\relax##1\cr}%

\vbox{\halign{##\hfil\cr#1}}}

\def\classformatlist#1{\leftlist#1}

Figure 1: TEX macros for class diagram contents.

4 Class diagrams

The TEX and METAPOST macros are shown in fig-
ures 1 and 2.

The METAPOST class is built up as a picture.
The class macro takes three arguments: pictures
for the title, attributes and operations of the class.
These are given as btex. . . etex formatted pictures.
Once all the attributes and operations are known,
the class has a fixed size. The code declares three
points as suffixes to the class name. The pair reg is
a registration point, used to position the class when
finally drawing it. The two pairs top and bot are
points to connect inheritance arrows to. The picture
variable pic holds the picture of the formatted class
for drawing. The points for the inheritance arrows
are a fixed distance from the left edge of the class
only because I prefer to align the edges of the boxes.

The TEX macros are used to format the con-
tents of a class. There is a set of symbols for
the access qualifiers, to allow for easy alignment.
The attributes and operations can be formatted
using the \classformatproperties macro, where
the elements are separated by \cr tokens. The
\classformatlist macro formats a list of elements,
with the list in the form suggested by Knuth in The

TEXbook (Knuth, 2000, p. 378).

4.1 Alignment

The attributes and operations are aligned in a \vbox

using \halign. One of the macros above must be
used. The TEX macros writing the .uml file write
out fragments of METAPOST. If the \halign macro
was used then the # symbol in the template is ex-
panded by \write to ##.

vardef class@#(expr title)(expr attributes)

(expr operations) :=

save x,y;

scantokens("pair " & str @# & " top");

scantokens("pair " & str @# & " bot");

scantokens("pair " & str @# & " reg");

scantokens("picture " & str @# & " pic");

@#pic := nullpicture;

@#reg + right scaled 1cm = @#top;

@#top-z0 = @#bot-z6;

pen ln; ln = pensquare scaled 1pt;

z0 = origin;

x1-x0 = x3-x2 = x5-x4 = x7-x6

= max(width title, width attributes,

width operations, 2cm) + 1pc;

x0 = x2 = x4 = x6;

y0-y1 = y2-y3 = y4-y5 = y6-y7 = 0;

y0-y2 = 1.5pc + height title;

y2-y4 = 1pc + height attributes;

y4-y6 = 1pc + height operations;

addto @#pic doublepath z0--z1--z7--z6--cycle

withpen ln;

addto @#pic doublepath z2--z3 withpen ln;

addto @#pic doublepath z4--z5 withpen ln;

addto @#pic also title shifted (z2+(.5pc,.75pc));

addto @#pic also attributes shifted

(z4+(.5pc,.5pc)-llcorner attributes);

addto @#pic also operations shifted

(z6+(.5pc,.5pc)-llcorner operations);

enddef;

Figure 2: METAPOST code for a class.

4.2 Example

An example class diagram is shown in figure 3, and
the code that generated it in figure 4.

5 Sequence diagrams

The sequence diagram has been developed in a sim-
ple human-friendly form, and a complex machine
form. The simple form allows simple sequence dia-
grams to be drawn. There is a limitation: only one
method per class can be drawn.

Unlike class diagrams where classes can be laid
out on a grid, elements of sequence diagrams affect
not only the position but also the size of other ele-
ments. For this reason the points that form an ele-
ment must be declared before it can take part in the
diagram. Sequence diagrams have three main sec-
tions in the code: declaration, creation and drawing.

6 Modifying CWEB

The original plan was to modify CWEB to work with
Java and UML. This has not been pursued as the
author has learned much more about CWEB. The
modifications if any are likely to be minor, and there
may be a better route using TEX macros or other
tools, for instance:

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 117

Dr. Alun Moon

PNM

+PBM:String
+PGM:String
+PPM:String
∼width:integer
∼height:integer

+getWidth():integer
+setWidth(w:integer)
+getHeight():integer
+setHeight(h:integer)

PBM PGM

−maxgrey:integer

getMax():integer
setMax(m:integer):void

PPM

−maxrgb:integer

+getMaxRGB():integer
+setMaxRGB(max:integer):void

Figure 3: Sample class diagram.

• CWEB produces C++, which is close enough to
Java. A web file using the @s mechanism to
modify the syntax to Java is given in appen-
dix A.

• UML creation can be done largely through TEX
macros via an intermediate .uml file, just as
indexes are produced to be read as a set of
macros, after sorting and cross-referencing.

• By choosing good macro names and calling con-
ventions, a language such as Perl can be very
useful, especially if helpful data is put into com-
ments in the web source and intermediate files.

• A simple sed script (sed -e ’s/^#/\/\//’)
converts the # line pragmas into line comments.
(Can anyone come up with a version of javac
that can make use of the # line pragmas?)

7 Web UML meta-tools

The web meta-tools for UML are currently in a prim-
itive state. Most of the effort is currently on getting
a good set of TEX macros. The METAPOST data
structures are undergoing a major revision which
fundamentally changes the internals of the tools.
Two tools are needed to do the tangling:

• class builder —to collect attribute and opera-
tion lines and write the TEX/METAPOST class
macro.

• sequencer —to arrange the sequences, write
all the sections, declarations, creation, and
drawing.

8 Data structures and macros

The data structures and macro calling conventions
are undergoing a major revision. The macros pre-
sented here work well, but have a limiting simplicity,
especially the sequence diagram, which has the fol-
lowing limitations:

beginfig(0)

class.pnm(btex \bf PNM etex)

(btex \classformatlist{

\\{\public PBM:String}

\\{\public PGM:String}

\\{\public PPM:String}

\\{\protected width:integer}

\\{\protected height:integer}} etex);

(btex \classformatlist{

\\{\public getWidth():integer}

\\{\public setWidth(w:integer)}

\\{\public getHeight():integer}

\\{\public setHeight(h:integer)}} etex);

class.pbm(btex \bf PBM etex)(btex ~ etex)

(btex ~ etex);

class.pgm(btex \bf PGM etex) (btex \classformatlist{

\\{\private maxgrey:integer}} etex)

(btex \classformatlist{

\\{getMax():integer}

\\{setMax(m:integer):void}} etex);

class.ppm(btex \bf PPM etex) (btex \classformatlist{

\\{\private maxrgb:integer}} etex)

(btex \classformatlist{

\\{\public getMaxRGB():integer}

\\{\public setMaxRGB(max:integer):void}} etex);

pnm.reg = origin;

pnm.bot - pbm.top = (0,1in);

ppm.reg - pgm.reg = pgm.reg - pbm.reg = (2in,0);

forsuffixes $=pnm,pbm,pgm,ppm: drawclass$; endfor;

draw pbm.top connect pnm.bot ;

draw pgm.top connect pnm.bot;

draw ppm.top connect pnm.bot;

endfig;

Figure 4: METAPOST code for a class diagram.

• only one call per sequence element can be made;

• each sequence element can be called by only one
other.

This is due to the use of suffix names for the ele-
ments.

8.1 Revised structure

In the revised structure a sequence block would be
referred to as, for instance, l2s3, meaning the third
sequence block down in the second swim-lane. This
makes for nearly unreadable METAPOST code for a
complex diagram, but does allow complex diagrams
to be built by the meta-tools. Losing the name to re-
fer to an element allows no restrictions on the num-
ber of calls to an operation.

118 TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting

Literate programming meets UML

vardef sequ@#(text call_list) =

@#.n = .5[@#.nw,@#.ne];

@#.s = .5[@#.sw,@#.se];

@#.ne - @#.nw = @#.se - @#.sw = @#.ce - @#.cw

= @#.re - @#.rw = (seq_width,0);

@#.nw - @#.cw = @#.rw - @#.sw = @#.ne - @#.ce

= @#.re - @#.se = (0,seq_width);

@#.nw - @#.sw = (0,whatever);

if (length(str call_list) >0):

@#.ce + (seq_space,0) = call_list.nw;

@#.re + (seq_space,0) = call_list.sw;

else:

@#.ce = @#.re;

fi;

enddef;

Figure 5: Sequence diagram element.

declaresequence.main; declaresequence.bezier;

declaresequence.bernstein; declaresequence.binomial;

declaresequence.fact;

sequ.main(bezier); sequ.bezier(bernstein);

sequ.bernstein(binomial); sequ.binomial(fact);

sequ.fact();

main.nw = origin;

beginfig(0)

pickup pensquare scaled 1pt;

drawsequence.main;

drawsequence.bezier; drawsequence.bernstein;

drawsequence.binomial; drawsequence.fact;

drawarrow main.ce--bezier.nw;

drawarrow bezier.ce--bernstein.nw;

drawarrow bernstein.ce--binomial.nw;

drawarrow binomial.ce--fact.nw;

endfig;

Figure 6: Sequence diagram usage.

9 Teaching

CWEB is being introduced to colleagues in the school
and suggested for use on a Masters in embedded sys-
tems. There are issues in relation to UML as ANSI C

or MISRA C are the preferred choices of language. Is
there a neat way of generating header files without
too much repetition in the WEB source?

Literate programming has also been suggested
as a way to help undergraduate students think about
the design (engineering) of program code, by concen-
trating on the documentation rather than the cod-
ing.

References

Knuth, Donald. The TEXbook. Addison-Wesley,
2000.

A Java web file

% NULL->null

Figure 7: Sequence diagram.

@s null NULL

% Java keywords *not* in CWEB

@s abstract int @s interface int

@s boolean int @s native int

@s byte int @s package int

@s extends int @s strictfp int

@s final int @s super int

@s finally if @s synchronized int

@s implements int @s throws int

@s import include @s transient int

@s instanceof sizeof

% CWEB keywords *not* in Java

@s and variable @s namespace variable

@s and_eq variable @s not variable

@s asm variable @s not_eq variable

@s auto variable @s offsetof variable

@s bitand variable @s operator variable

@s bitor variable @s or variable

@s bool variable @s or_eq variable

@s clock_t variable @s pragma variable

@s compl variable @s ptrdiff_t variable

@s const_cast variable @s register variable

@s define variable @s reinterpret_cast variable

@s defined variable @s sig_atomic_t variable

@s delete variable @s signed variable

@s div_t variable @s size_t variable

@s dynamic_cast variable @s sizeof variable

@s elif variable @s static_cast variable

@s endif variable @s struct variable

@s enum variable @s template variable

@s error variable @s time_t variable

@s explicit variable @s typedef variable

@s export variable @s typeid variable

@s extern variable @s typename variable

@s FILE variable @s undef variable

@s fpos_t variable @s union variable

@s friend variable @s unsigned variable

@s ifdef variable @s using variable

@s ifndef variable @s va_dcl variable

@s include variable @s va_list variable

@s inline variable @s virtual variable

@s jmp_buf variable @s wchar_t variable

@s ldiv_t variable @s xor variable

@s line variable @s xor_eq variable

@s mutable variable

TUGboat, Volume 24 (2003), No. 1 — Proceedings of the 2003 Annual Meeting 119

