TUGboat, Volume 23 (2002), No. 3/4

Font Forum

Multiple Master math extension fonts
D. Men’shikov, A. Kostin, and M. Vulis

Abstract

From its inception, TEX has relied on the concept
of extensible (composite) characters to implement
large glyphs that occur in mathematical typeset-
ting. While thousands of papers have been suc-
cessfully written using this technology, it neverthe-
less has obvious shortcomings. This article demon-
strates them, as well as an alternative solution, free
from the problems.

1 Problems with the traditional approach

The extensible glyphs in TEX are composed out of
several smaller characters, and, in some cases, rules.
The construction itself is carried either by code in-
side the TEX compiler itself, using the special infor-
mation in the .tfm files, or by macros, implemented
as part of the format. We will consider each in turn.

1.1 Extensions done by TEX

An example of extensible glyphs constructed within
TEX is the construction of large delimiters, such as
brackets. In this case, a vertical segment is inserted
to stretch the delimiters vertically:

Figure 1: Vertical delimiters

One of the shortcomings of the extensible char-
acters is that some character shapes do not lend
themselves to the insertion of extension pieces; for
example, angle brackets are not extensible. Thus,
when used to encompass a large formula, they would
not scale to the required size. For example, the in-
put:?!

1 \emptyfbox is a macro which makes a frame box of the
specified width and height, used to avoid printing large black
squares in this journal.

291

$\left< \emptyfbox{icm}{1icm} \over
\emptyfbox{icm}{icm} \right>$

results in < — >

A variant of the situation is TEX’s treatment
of the radical symbol: while the vertical extension
is driven by the .tfm information, the horizontal
bar is supplied by the TEX program itself—and in
this case, the bar is a rule, rather than an extension
character.

Figure 2: Radical delimiters

In the above picture, the rule component is
shown filled.

The problem with the use of rule components
in building a composite symbol is that rules are
subjected to different roundoff rules than charac-
ters. With DVI files and bitmap fonts, these round-
off errors could in principle be handled by careful
calculations within the TEX program and the DVI
driver; but in the modern world of scalable fonts and
PS/PDF targeting this becomes an impossibility.

For instance, the picture below shows a snap-
shot of a square root constructed by PdfTEX:

The underlying TEX code is simply
$ \sqrt{\emptyfbox{icm}{2cm}} $

Depending on factors such as the magnification
used in the PDF previewer and the resolution of the
output device, the rule may be thinner, or thicker,
or above, or below the part of the sqrt glyph it
is supposed to connect to smoothly. Sometimes it
might even fit correctly.

The root of the problem is that glyph rounding
is subject to font hinting, while the thickness and
positioning of rules is not precisely controllable by
the PS/PDF rendering.

292

Figure 3: Incorrect radical

1.2 Extensions done by macros

The second type of extension mechanism is via TEX
macros. This is typically used to construct long hor-
izontal symbols, as done by commands similar to
\underbrace:

Figure 4: Underbrace extension

Once again, we get mismatches in the width
and positioning of the connecting rules comparing
to that of the symbols used in the middle and at the
ends of the long brace. A snapshot:

]

—_

Figure 5: Incorrect extensible braces

1.3 Shading characters

A third problem with extensible characters is that
sometimes (usually, in slides) it is desirable to out-
line, or shade characters; this cannot be done cor-
rectly with composite characters. In fact, the dia-
grams above that show the structure of extensible
characters, are unintended output of an attempt to
stroke extensible symbols, making them suitable for
this article, but not for a use within a slide.

TUGboat, Volume 23 (2002), No. 3/4

Summarizing, we have identified three separate
problems with the TEX approach to the extensible
symbols:

e Some delimiters (angle brackets, for example)
cannot be correctly scaled.

e Rules and characters together cannot be cor-
rectly aligned.

e Composite symbols cannot be shaded or cor-
rectly stroked.

All these problems can be solved, however, if
we switch to a different mechanism of constructing
large symbols: Multiple Master fonts.

2 Multiple Master fonts

For those unfamiliar with MM fonts, they represent
a PostScript world answer to METAFONT. Just as
METAFONT allows creation of different designs from
the same font program, so does the MM technology.
While MM fonts are less flexible than METAFONT,
they are easy to use. The output of MM font in-
stancing is a Type 1 outline font, whereas a generic
METAFONT emits bitmapped fonts. (See [3,6] for
additional information on MM fonts.)

MM technology was introduced by Adobe in
1991; the first description appeared in PC Week [4].
The first MM font was Myriad (1992), with two axes:
weight and width.

Since 1992 Adobe has designed at least 36 MM
font families with about 100 fonts. Perhaps the most
successful is the Minion family.

While Adobe originally intended to include MM
in the OpenType specifications, this effort has been
abandoned, and Adobe has stopped making new
MM fonts. The last Adobe MM font, VerveMM,
was designed in 1998; Adobe had announced that it
was giving up on MM technology at the 1999 ATypl
Congress.

Following the Adobe announcement, an article
in MacObserver lamented [5]:

Was it necessary for Multiple Masters

to die? Probably not. Several factors

contributed: inexpert and uninteresting

designs; a purportedly “open” technology

that was in fact proprietary; and inadequate

interface support early on to Aldus, Quark

and Macromedia. None of this had to be.

Pity, pity, pity!

Despite its abandonment by Adobe, MM fonts
still represent a very convenient technology for use in
typesetting applications like TEX. While MM func-
tionality is not supported within PDF documents,
instances of MM fonts are, and the entire MM font
can be made available to the TEX document.

TUGboat, Volume 23 (2002), No. 3/4

VTEX has supported MM fonts since 2001, and
the use of MM fonts in math extension fonts builds
on the existing MM support; we will start by outlin-
ing the current support.

VTEX recognizes MM fonts by the name of the
font; a font name that includes the bracket char-
acter is taken as an instance of a Multiple Master
font. This does not represent much of a restriction
on the font name selection, since use of brackets in
file names is not common and is in fact invalid on
some operating systems.

The left bracket in the font name is followed by
the instancing parameters. For example:

\font\sm=xo0
\font\mm=xo0

[300,10]

The \sm font declaration defines the default shape
of the Multiple Master CrononMM font; this is the
“normal” way to use the typeface. The second dec-
laration, however, defines an instance of this MM
font to be constructed dynamically.

In the above example, the first definition makes
VTEX to load the usual TFM metrics file, namely
X0 .tfm; the second declaration causes VIEX

to load the multiple font metrics file xo______ .mfm
and generate the instance metrics on the fly. Be-
cause of the use of .mfm files, providing metrics for
each instance becomes unnecessary.

In some MM fonts, all the instances of the font
have the same metrics; if so, it is possible to use
the ordinary .tfm file. In most MM fonts, however,
the metrics of each instance are different, and this
made the development of the new metrics format
necessary.

Upon seeing a MM font used in the document,
VTEX automatically uses its built-in PostScript in-
terpreter GEX [1] to instance it. Since the instanc-
ing is done within PostScript, the instance font is
always built correctly. The TEX compiler then au-
tomatically packs it into the output PDF file.

Additional details on the MM support can be
found in the mmsupp.pdf document in VIEX distri-
butions.

3 Math extension Multiple Master fonts

Supporting math extension MM fonts requires sev-
eral additional steps.

First, of course such fonts need to be developed.
At this writing, two such fonts exist: cmex10mm and
paex10mm. The first is intended for use with Com-
puter Modern, the second for use with the alterna-
tive PaMATH fonts, available from MicroPress.

Math extension MM fonts include symbols for
vertical delimiters, long horizontal symbols (like the

293

ones constructed by the \underbrace macro), and
the radical symbol. Since the radical requires two
MM axes, the entire font is a two-axes MM font,
even though the majority of symbols are actually
“one-dimensional” .

Specific sizes of delimiters can be constructed
by loading the font with different instancing param-
eters. For example, for the \overbrace symbol, we
can use font commands such as

\font\f=cmex10mm[30,100] \f \char"7A
\font\f=cmex10mm[30,300] \f \char"7A
\font\f=cmex10mm[30,500] \f \char"7A
\font\f=cmex10mm[30,700] \f \char"7A
\font\f=cmex10mm[30,900] \f \char"7A

obtaining the shapes

100: —~—
300: A

500:
700:

900: PN

Vs N

(Only the second instancing parameter is used in
long horizontal symbols.)

Since the symbols are built from single glyphs,
they do not suffer from the problems listed at the
beginning of this paper.

Since TEX supports \overbrace and other long
horizontal symbols entirely through macros, switch-
ing TEX to supporting MM instances requires only
changes to the macros. One of the tasks of the
mathexmm style is to therefore redefine these macros.

Supporting vertical delimiters and radicals re-
quires more, well, radical changes: the .tfm mecha-
nism of extensible characters needs to be replaced by
an MM alternative. We accomplish this as follows:

First, we prepare an alternative metrics file,
cmex10m, which is mostly the same as cmex10, ex-
cept that

e The TFM CODINGSCHEME is MMEXTENSION; this is
the signal to the TEX compiler that what nor-
mally would be interpreted as exten instruc-
tions in the .tfm instead should be seen as
pointers to MM glyphs. (It is unfortunate that
the .tfm syntax does not allow for new flags;
this is what forces us to use the CODINGSCHEME
field.) In a .PL file, this appears as:

(CODINGSCHEME MMEXTENSION)

e Each exten specification in the . tfm is replaced
by the glyph number of the character to use
in the cmex10mm MM font. For example, the
original cmex10.pl listing contains

294

(CHARACTER C 0O
(CHARWD R 0.875003)
0.039999)
1.7

60019)

(CHARHT R
(CHARDP R
(VARCHAR
(TOP C 0)
(BOT 0 100)
(REP C B)
)
)

specifying that the character 0 is to be built
from glyphs 0, €100 and B. In cmex10m.pl, how-
ever, we have

(CHARACTER C 0
(CHARWD R 0.875003)
(CHARHT R 0.039999)
(CHARDP R 1.760019)

(VARCHAR
(REP 0 303)
)

)

which means that the character 0 is to be built
as an instance of the glyph ¢0303 in the corre-
sponding MM font (cmex10mm).

e cmex10 and cmex10m are otherwise identical.

The mathexmm XTEX style, when used, loads the
font cmex10m instead of cmex10. Unless extensible
characters are involved, it functions in exactly the
same way as cmex10; but when TEX is about to build
an extensible character, it instead builds an appro-
priately-sized instance from the cmex10mm MM font.

From the user’s point of view, this is all in-
visible, and no action is required except for adding
\usepackage{mathexmm} in the document preamble
for IMTEX 2¢, or \input mathexmm for plain TEX and
AMS-TEX.

4 Acknowledgement

Related ideas previously appeared in [2]; however,
they did not add up a practically usable implemen-
tation, which has been our contribution.

5 Bibliography

[1] A. Kostin & M. Vulis, “Mixing TEX and Post-
Script: The GEX Model”, in TUGboat, Vol.
23(3), 251-264 (Sep 2000, proceedings of the
TUG 2000 conference).

[2] J. André & 1. Vatton, “Dynamic optical scal-
ing and variable-sized characters”, in Electronic
Publishing, Vol. 7(4), 231-250 (Dec 1994).

[3] Adobe Systems Inc., “Type 1 Font Format Sup-
plement”. Adobe Technical Specification 5015.

TUGboat, Volume 23 (2002), No. 3/4

[4] PC Week, Vol. 8(10), pg. 1 (11 Mar 1991).

[5] Bill Troop, “A giant step backwards for
Adobe?”, in MacObserver, Oct 6, 1999.
http://www.macobserver.com/columns/
troop/99/october/991006. shtml

[6] John D. Berry, “dot-font: Avant Garde, Then
and Now”. http://www.creativepro.com/
story/feature/19432.html

o D. Men’shikov, A. Kostin, and
M. Vulis

MicroPress, Inc.
68-30 Harrow Street
Forest Hills, New York 11375
USA
phone: +1 (718) 575 1818
fax: +1 (718) 575 8038
support@micropress-inc.com
http://www.micropress-inc.com

http://www.macobserver.com/columns/troop/99/october/991006.shtml
http://www.macobserver.com/columns/troop/99/october/991006.shtml
http://www.creativepro.com/story/feature/19432.html
http://www.creativepro.com/story/feature/19432.html

	Problems with the traditional approach
	Extensions done by TeX
	Extensions done by macros
	Shading characters

	Multiple Master fonts
	Math extension Multiple Master fonts
	Acknowledgement
	Bibliography

