8
10

Talks 13
17
21
27
41

46

Keynote 49
50

o7
65
70

74
80
86
90
93
101

106
107
108

News & 109
Announcements

TUG Business 110

Advertisements 111
112
cover3

TUGBOAT

Volume 23, Number 1 / 2002
2002 Annual Meeting Proceedings

Kaja Christiansen / Editorial Comments

TUG 2002, Thiruvananthapuram — Report and travelogue
TUG 2002 Program

Participants at the 23" Annual TUG Meeting

K. Anil Kumar / TgX and databases— TEXDBI

Satish Babu / New horizons of free software: An Indian perspective

Gyongyi Bujdosé and Ferenc Wettl / On the localization of TEX in Hungary

Wrtodzimierz Bzyl / The Tao of fonts

Behdad Esfahbod and Roozbeh Pournader / FarsiTEX and the Iranian TEX
community

Hong Feng / The marriage of TEX and Lojban

Hans Hagen / ConTEXt, XML and TEX: State of the art?

Yannis Haralambous and John Plaice / Low-level Devanagart support for
Omega— Adapting devnag

David Kastrup / Revisiting WYSIWYG paradigms for authoring IATEX

Ross Moore / serendiPDF with searchable math-fields in PDF documents

Karel Pigka / A conversion of public Indic fonts from METAFONT into Type 1
format with TEXTRACE

Fabrice Popineau / TgXLive under Windows: What’s new with the 7" edition?

Roozbeh Pournader / Catching up to Unicode

Sebastian Rahtz / PassiveTEX: An update

S. Rajkumar / Indic typesetting— Challenges and opportunities

Denis Roegel / METAORJ: Very high-level objects in METAPOST

Wagish Shukla and Amitabh Trehan / Typesetting in Hindi, Sanskrit and
Persian: A beginner’s perspective

Karel Skoupy / New typesetting language and system architecture

Karel Skoupy / TgX file server

Stephen M. Watt / Conserving implicit mathematical semantics in conversion
between TEX and MathML

Calendar

Institutional members

TEX consulting and production services
Just Published: TEX Reference Manual by David Bausum
Blue Sky Research

TEX Users Group

Memberships and Subscriptions

TUGboat (ISSN 0896-3207) is published quarterly
by the TEX Users Group, 1466 NW Naito Parkway,
Suite 3141, Portland, OR 97209-2820, U.S.A.

2002 dues for individual members are as follows:

= Ordinary members: $75.

= Students: $45.
Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site:
http://www.tug.org.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $85 a year, including air mail delivery.

Periodical-class postage paid at Portland, OR,
and additional mailing offices. Postmaster: Send
address changes to TUGboat, TEX Users Group,
1466 NW Naito Parkway, Suite 3141, Portland, OR
97209-2820, U.S.A.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org).

TEX is a trademark of the American Mathematical
Society.

TUGboat (© Copyright 2002, TEX Users Group

Permission is granted to make and distribute verbatim
copies of this publication or of individual items from this
publication provided the copyright notice and this permission
notice are preserved on all copies.

Permission is granted to copy and distribute modified
versions of this publication or of individual items from
this publication under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute transla-
tions of this publication or of individual items from this
publication into another language, under the above condi-
tions for modified versions, except that this permission notice
may be included in translations approved by the TEX Users
Group instead of in the original English.

Copyright to individual articles is retained by the
authors.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana®

Mimi Jett, President*t

Arthur Ogawa**, Vice President

Don DeLand**, Treasurer

Susan DeMeritt**, Secretary

Barbara Beeton
Karl Berry

Kaja Christiansen
Stephanie Hogue
Judy Johnson™
Wendy McKay
Ross Moore
Patricia Monohon
Cheryl Ponchin
Kristoffer Rose
Michael Sofka
Philip Taylor

Raymond Goucher, Founding Ezecutive Director?
Hermann Zapf, Wizard of Fonts'

*member of executive committee
+member of business committee

fhonorary

Addresses

General correspondence,
payments, etc.

TEX Users Group

P.O. Box 2311

Portland, OR 97208-2311

U.S.A.

Delivery services,

parcels, visitors
TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 503 223-3960

Electronic Mail
(Internet)
General correspondence,

membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for

TEX users:
support@tug.org

To contact the
Board of Directors:
board@tug.org

World Wide Web
http://www.tug.org/
http://wuw.tug.org/TUGboat/

Problems not resolved?

The TUG Board wants to hear from you:
Please email to board@tug.org

[printing date: March 2003]

2002 Annual Meeting Proceedings

TEX Users Group
Twenty-third Annual Meeting
Trivandrum, Kerala, India
September 4-7, 2002

TUGBOAT

COMMUNICATIONS OF THE TgX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

ProceepiNngs EpiTors KaJja CHRISTIANSEN
KARL BERRY

VoruMmE 23, NUMBER 1 . 2002
PORTLAND . OREGON . U.S.A.

Welcome to the TUG 2002 Proceedings!

In early September 2002, at the southwest tip of the
Indian subcontinent overlooking the Arabian Sea,
a multinational gathering of delegates' met at the
23 annual conference of the TEX Users Group. We
were in Thiruvananthapuram (or Trivandrum), the
capital of the stunning state of Kerala. Many had
arrived already on September 1%, to participate in
excellent tutorials and workshops by C.V. Radhakr-
ishnan (India), Hans Hagen (Netherlands) and Lou
Burnard and Sebastian Rahtz (Oxford).

On the official opening day of September 4"
the delegates were greeted by a small, but very real,
elephant, and traditional music. The conference was
launched and the work could begin. A great success!
Inspiring presentations and flawless organisation,
combined with the kindness of our Indian friends
and the beauty of the surroundings made it an
unforgettable experience.

For an overview of the meeting and the presen-
tations in particular, see:

e Report of the 257 Annual Meeting and Confer-
ence at http://www.tug.org.in/tug2002

e Report and Travelogue by Ross Moore (in this
issue).
Those who could not attend TUG 2002 will, T hope,
find this issue interesting and very much worth
reading. Those of you who were there will enjoy
the walk through the proceedings and look back at
TUG 2002 as an inspiring and rewarding conference.

Producing the proceedings

In the midsummer of 2002, Sebastian Rahtz asked
whether I would like to work on the conference pro-
ceedings; I gladly accepted, seeing it as a privilege
and a challenge. The actual work started shortly
after that: many evenings of this Danish summer
were spent typing away. ..

We received 25 submissions. One in plain TEX,
one to be run with Omega and the rest in KTEX.
The articles were processed with the post-TEX Live 7
setup. In August 2002, and with the printing house
deadline over my head, I transferred the camera-
ready PDF files for preprints to C.V. Radhakrishnan
at Focal Image (India).

The work on conference proceedings started in
the late fall of 2002 and continued during the winter
holidays. A few of the papers were resubmitted
(the last one as late as November); all needed
to be edited/reviewed and there was an ongoing

1 Attendees came from Australia, Canada, Czech Re-
public, China, Denmark, France, Germany, India, Iran,
Netherlands, Poland, Switzerland, UK and USA.

correspondence between the authors and Karl Berry
and me on the suggested changes.

In January 2003, the TEX Live 7 setup, tailored
for the 2002 proceedings, was made at CSIT at
Florida State University where all papers were
uploaded for the final production of this issue.

TUG 2002 on the Web

After the printed copy of TUGboat is distributed,
the conference proceedings will be available online
in the TUGboat area of the TUG web site:

http://tug.org/tugboat
Also, make sure to visit the TUGIndia site at:
http://www.tug.in.org/tug2002

for the post-conference bulletin with report, slides,
newspaper clippings and photo gallery.

Acknowledgments

Many thanks to Sebastian Rahtz for tirelessly an-
swering my questions; to Barbara Beeton, Mimi
Burbank, Robin Fairbairns, Christina Thiele and
Dominik Wujastyk for reviewing the papers; and to
Karl Berry, for his support and encouragement.

Finally, I give my thanks to the Computer Sci-
ence Department and the BRICS Research Centre,
University of Aarhus, for making my attendance at
TUG 2002 possible. This was a unique experience,
both professionally and personally.

o Kaja Christiansen

— — % — —

Note from the Editor

This issue of TUGboat, containing the proceedings
of TUG 2002, will reach you before the last issue of
the 2001 volume. There are a couple of reasons for
this: TUGboat in general has suffered delays, as
mentioned in the “Editorial Comments” column of
Vol. 22, Nos. 1/2, and the editorial group working
on the TUG 2002 proceedings has been particularly
effective in carrying out the tasks associated with
the issue’s production.

For these reasons, we are releasing the com-
pleted proceedings issue as soon as it is ready, rather
than delaying it artificially to follow the nominal
sequence.

The next issue to appear will be Vol. 22, No. 4
(December 2001); production is underway in parallel
with this issue. We ask for your understanding in
this matter.

¢ Barbara Beeton

TUG 2002, Thiruvananthapuram
Report and Travelogue

Ross Moore

While wandering among the shops at Singapore’s
extensive Changi airport, after an 8-hour flight from
Sydney, it was not such a surprise to hear my name
being called to come to the Info desk. That would be
Wendy McKay, whom I'd agreed to meet there. We
were both taking the same flight directly to Thiru-
vananthapuram, abode of the sacred snake Anantha.
This city, also known as Trivandrum, is the capital
of Kerala State in South India, where TUG 2002,
the 23rd annual TEX Users Group conference, was
to be held. Wendy had come further than I, from
Los Angeles via Taiwan. Having more hours to kill,
she had taken a couple of sight-seeing tours around
Singapore. With just three flights per week, Silk Air
provides a convenient way to get to Trivandrum,
when coming from further East, without the need
to pass through other cities or rely on transport
connections within India itself. Other conference
attendees would be traveling even further to get
to Kerala. In all there were 30 ‘foreigners’ coming
from 14 different countries. For most it would be
their first trip to India. With 20-30 from elsewhere
in India, local attendees at the workshops and the
organisers themselves, the total number of partici-
pants would be close to 80.

Upon exiting the airport at Thiruvanantha-
puram it was a pleasure to be greeted by Kaveh
Bazargan and C. V. Radhakrishnan. They run Focal
Image India and provided the inspiration for holding
TUG 2002 in Trivandrum, and the driving force be-
hind its organisation. Hotel Samudra, where most of
the foreign delegates would be staying, is a half-hour
drive away at Kovalam. It was Radhakrishnan’s car,
but Kavah was to drive. This may not seem remark-
able unless you have already experienced driving in
India. Roads are generally quite narrow, with barely
enough room to pass another vehicle. Traffic drives
on the left but the central line, if marked at all,
serves only as an indicator. During the day roads
are very busy, being used by people and bicycles
— sometimes laden high with boxes, milk crates or
caged chickens — as well as motorised vehicles. The
latter includes motor scooters, motor bikes — lady
passengers sit side-saddle, perhaps carrying a baby;

whole families of 4 or 5 somehow find a place to sit
— and the small 3-wheeled auto-rickshaws, as well
as cars, buses and trucks. Occasionally there is a
cart: two wheelers pulled by a person, or the larger
4-wheeled variety powered by a pair of bullocks.
Elephants using the road are rare within towns and
cities, but can be encountered working along the
highways between towns.

Vehicles pass with only inches to spare; external
rear-vision mirrors are not used, as they would
quickly be smashed against another vehicle. When
desiring to pass, the rule is to honk the horn to let
the driver in front know of your presence. Smaller
vehicles give way to larger vehicles, more as a matter
of self-preservation than as a rule. A common way
to turn right is to cross and drive the last 50 metres
or so down the opposite side of the road, before
making the turn. There can be vehicles traveling
in the opposite direction on both sides of your car,
so it’s no wonder that mirrors are of little use—
there’s no time to look into them. The traffic signs
say ‘Live and let live’ and list five different speed
limits for the different types of motorized vehicle.
Normally foreigners do not drive, but instead hire a
taxi with a local driver. A whole afternoon of sight-
seeing can cost less than $10. The driver will wait
while you visit museums, temple, art galleries, the
700, do some shopping or stop at a roadside coconut
stand. Kaveh has spent so much time in India now
that he now dares to sit behind the wheel; when I
visited him last year he would always use a driver.

Hotel Samudra, at Kovalam, is run by the
Kerala Tourist Development Commission (KTDC),
a branch of the State Government. It sits atop a
small hill with spectacular views across the ocean
on one side. Apartments run down the hill at the
back, with a short path leading down among the
coconut palms to a small sandy beach. Paths lead
to other beaches where every morning the fishermen
come in with their small wooden boats, laden with
fresh fish, after spending the night on the sea with
their nets. There are plenty of hotels, but June to
September is off-season for the tourist trade. During
the week of TUG 2002, conference delegates were

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 3

Ross Moore

practically the only occupants, apart from the teams
of workers that ran the hotel and restaurant, the
Ayurvedic massage center, and taxi drivers waiting
to offer their service. A special rate of roughly $20
per night had been negotiated for the duration of
the conference.

‘Stand up and be Proud of TEX’ was the motto
for the TUG 2002 conference, organised by the In-
dian TEX Users Group, Free Software Foundation —
Indian Chapter and the Department of Information
Technology, Government of Kerala. They have ev-
ery reason to be proud of their efforts. This was cer-
tainly the best run TEX Users Group meeting that
I have attended. Many other delegates agree. Site
for the talks was the Technopark in Koryavattom,
a little to the north of the city of Trivandrum. As
Kovalam being 17kms to the south, this meant a
40 minute bus trip each morning, so that each day
started with the excitement of road traffic in In-
dia. Delegates from elsewhere on the sub-continent
mostly were staying at a hotel in Trivandrum itself;
they arrived on a separate bus or by car. The main
building, with auditorium and conference rooms,
has a red-tiled roof and is part of a cluster on top
of a large hill with views to the north across a sea
of coconut palms and cashew-nut trees. Huts and
houses are invisible beneath the green canopy.

On the first day delegates were delighted to be
greeted by a traditional band of blaring horns and
beating drums and an elephant decked in ceremonial
dress with a silk banner printed with the conference
logo. Similar banners hung from light poles at the
entrance to Technopark, and along the driveways.
Fresh coconuts were available inside. Kaveh was
dressed in a dhoti. Igor Rodionov was first to ride
the elephant, followed by Gyongyi Bujdoso, before
it was time for the opening session. Satish Babu
(of Internet Applications Technologies Pvt. Ltd.,
Technopark), as head of the Organising Committee,
chaired the opening session. Short addresses were
given by Ajay Shah (Ministry of Finance, Govern-
ment of India, New Delhi) and Dr K. R. Srivathsan
(International Institute for Information Technology
and Management, IIIT), Technopark, Trivandrum),
representing the major sponspors for TUG 2002.
These were followed by the keynote address by
Ajit Ranade (Chief Economist, ABN AMRO Bank,
Mumbai) giving an overview of the ‘Status of TEX
in India’. Ajit first used TEX as a graduate stu-
dent and presented names of many publishers which
use TEX within their production processes in India,
mostly without explicit recognition of this aspect of
their work. S.Rajkumar (Lanscape Technologies,
Trivandrum) followed by giving a description of the

challenges and opportunities for TEX with regard
to Indic typesetting, with its many languages and
scripts. There are over 5000 commercial fonts in
daily use, but only 20 or so with support currently
available in TEX. Next Amitabh Trehan described
his experiences with TEX, typesetting in Hindi, San-
skrit and Persian. This included a project preparing
a book of Indian verse, with commentary, prepared
entirely in IXTEX. This session finished with Gyongi
describing special aspects of typesetting in Hungar-
ian, and the difficulties faced in trying to adapt
IATEX to account for these.

The auditorium at Technopark is shaped like
an amphi-theatre with a large stage occupying one
corner. Delegates are seated at long desks arranged
as quarter-circles facing the stage, rising and of
increasing length towards the back of the room. En-
trance is from one side, at the top. Microphones on
the desks are available for each pair of seats. A data-
projector was mounted in the central aisle, project-
ing onto a large screen on-stage. Most speakers used
this, and all talks were recorded for both audio and
video. On either side of the screen hung silk banners
proclaiming the conference, organisers and sponsors.
Another smaller banner, with the conference logo,
hung from the podium. Internet access was available
to delegates via the IIIT, located downstairs in the
same building but requiring a short walk out the
front, and down a driveway to the separate entrance.

Over the three days prior to the conference
proper there had been four workshops. The first of
these was given by C. V. Radhakrishnan on Sunday,
at the offices of Focal Image India. This was a
hands-on introduction to TEX and KTEX, in training
sessions over the entire day, with participants from
around India. FEach received a copy of the book
‘ATEX Tutorials: A Primer to BTEX 2:2’, prepared
by the Tutorial Team of the Indian TEX Users
Group, and printed locally. These tutorials can
also be found on the weHl A revised version
(with corrections and extra chapters) will shortly
be published by the Free Software Foundation?} to
become their official manual for TEX.

On Monday morning, C. V. Radhakrishnan held
a workshop on ‘TEX to SGML/XML conversion’;
describing the theory behind techniques that are
put into practice in the day-to-day work at Focal
Image India. This and subsequent workshops were
held in a meeting room adjacent to the audito-
rium at Technopark. Lunch was provided, buffet-
style, with several mildly spicy local dishes of fish,

Lhttp://www.tug.org.in/tutorials.html
2 http:/ /www.fsf.org/

4 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

http://www.tug.org.in/tutorials.html
http://www.fsf.org/

TUG 2002, Thiruvananthapuram Report and Travelogue

chicken and exotic vegetables and breads. Delicious
desserts with ice-cream cooled the palate. Soups
and some Western dishes were also available each
day. That afternoon Hans Hagen (Pragma ADE,
The Netherlands) demonstrated METAPOST and
pdfTEX, showing how easy it is to create graphics,
both easy and some quite complicated ones. for use
within documents prepared using ConTEXt.

Tuesday morning’s newspaper contained a re-
port of the Press Conference held the night before.
TUG 2002 was in the news: ‘Free Software typeset-
ting comes to Kerala’, it proclaimed. Just a single
tutorial occupied the whole day. Sebastian Rahtz
and Lou Bernard (Oxford University Computing
Services) took it in turns to explain the ins-and-
outs of the Text Encoding Initiative (TEI). This is
a method to generate DTDs for XML documents in
any particular field. It can help enormously in the
need to be able to archive, and subsequently access
to recover in printed or on-screen form, academic
documents and technical manuals. Indeed, any type
of ‘document’ should be able to be handled using
these methods.

In the evenings, dinner at Hotel Samudra was
served buffet-style, outside on a lawn seated under
coconut trees with a view westwards, across the
ocean and the setting sun. Different dishes were
prepared each night, so that after a week all the
dishes available from the restaurant must have been
sampled. When ordering a beer, asked for ‘chilled’
beer, else it will not be cold. Tuesday night was
registration; each participant received a coir satchel
and folder, manufactured from the hard stringy fi-
bres of coconut shells. On these was printed the
conference logo, and they came stuffed with pro-
motional materials about Kerala, a nicely bound
preprint book, and two CDs of TgX-related and
other Free Software, including the very latest version
of TEXLive 7, and tools for using the TEI and XML.
Traditional Indian entertainment was provided on
two nights. This included spectacular fire-throwing,
Indian martial arts, dancing girls in bright costumes,
and flute Ragas. Dominic Wujastyk (Wellcome Cen-
tre, University College London) used his extensive
knowledge of Indian customs and culture to provide
information on what we were about to see, explain-
ing the traditional stories being depicted. The large
swimming pool behind the main hotel buildings re-
ceived much use, both at night and during the day.

Throughout the conference, morning and after-
noon teas and lunches were provided at Technopark.
One could stand, chat and eat in the large room
used as the serving area, or go outside onto the
large balcony where chairs were placed under huge

marquées. This balcony afforded also a spectacular
view across the coconut and cashew trees; frequently
hawks could be seen hovering, sometimes coming
close to the balcony. In the afternoon of the first day
of the conference, Satish Babu (Computer Society of
India) gave an Indian perspective of ‘New Horizons
of Free Software’. This is very important to the
State of Kerala, where the literacy rate is very high
but incomes are low. India as a whole is rich in pro-
grammer resources, but is otherwise poor; the Free
Software model is appropriate for the needs of gov-
ernments, institutions and industry. Wlodzimierz
Bzyl (University of Gdansk, Poland), speaking on
‘The Tao of Fonts’, showed some beautiful pictures
of letter-like shapes used in different cultures. The
talks for the day finished with Roozbeh Pournader
(Sharif University of Technology, Tehran, Iran) pre-
senting a general outline of The Unicode Standard,
emphasizing recently introduced features. The im-
portant message here is to be Compliant; an aspect
that the Linux and gnu communities embrace, and
now backed also by corporations such as SUN and
IBM, but where Microsoft has got some of the ideas
wrong in existing software.

The burning issue in the newspapers that week,
and the previous week-end, had been a hike in
the cost of power, electricity and gas. The rea-
son given was reduced availability of water for
hydro-electricity as monsoonal rains had been weak
this season. These price-hikes had caused massive
protests throughout the state, including the ransack-
ing of government offices and damage to more than
100 buses. We had seen none of this, but the issue
was to affect the conference, as a general strike had
been called for the Friday. It would be unsafe to
be on the roads, particularly as the bus trip from
Kovalam to Technopark passed through at least two
major rallying points. Besides, the drivers would
not be working. A revised conference schedule was
prepared, in which Friday would now be a free day.
Some talks were withdrawn or moved to Saturday,
and there would be an effort made to organise extra
workshops and discussion groups at Hotel Samudra
for Friday.

Thursday morning was ‘Mathematics Morning’.
This started with a keynote talk by Hans Hagen,
titled ‘ConTEXt, XML and TEX: State of the Art?’.
What has this to do with mathematics? He dis-
cussed the publication process, and one of his main
examples was a journal for the Dutch Mathematical
Society, having a rather flexible format allowing fig-
ures and equations to be displayed spanning either
one, two or all three of the columns in a wide page
layout. Next David Kastrup (Bochum, Germany)

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 5

Ross Moore

compared five different TEX editing systems which
have varying degrees of WYSYWG-like features for
displaying typeset mathematics within the editor
window. In my own talk I showed a way to embed
the source code for KTEX mathematics within a
PDF document, using text-fields that can be shown
and hidden using roll-over actions in the Acrobat
Reader window. A search-engine was implemented,
also in JavaScript, to allow short strings of math-
ematics source to be located within the text-fields.
How far to expand user-defined macros emerges as
a conceptual issue with this approach. The morning
finished with Stephen Watt (University of Western
Ontario, London, Canada) talking about issues in
the conversion between TEX and MathML, and the
need to conserve implicit mathematical semantics.
Again the issue of not expanding macros is a key
aspect.

After lunch Karel Piska displayed the Type 1
versions of Indic fonts that he had created using
TgXtrace, applied to fonts available on CTAN as
METAFONT versions only. With some extra editing
to simplify the outline paths and remove unwanted
artifacts, he has produced 55 scalable fonts suitable
for inclusion in PDF documents. Next Behdad
Esfahbod (Sharif University of Technology, Tehran,
Iran) spoke about FarsiTEX and the Iranian TEX
community. A new release will include Type 1 fonts
for Persian and Arabic scripts, though proper sup-
port in editors for bi-directional typesetting remains
the biggest problem. Denis Roegel (LORIA, Nancy,
France) showed how to use METAOBJ, a high-level
object-oriented graphics language implemented with
METAPOST. He discussed the advantages of an
object-oriented approach to graphics, as well as
describing the new primitives defined in METAOBJ.
The day finished with Karel Skoupy (ETH, Zurich,
Switzerland) outlining his vision of what would be
required in a new typesetting system, using com-
puting techniques developed and recognised as be-
ing valuable, since the advent of TEX. This talk
generated much lively discussion.

During the day it was learnt that the general
strike for the next day had been called off. This
was due to the government capitulating by removing
the hike in energy prices, due to the unified oppo-
sition from across all the political parties. Whether
the reported failure of the energy board to collect
substantial amounts of revenue, from corporations
and other government agencies, had any bearing on
this reversed decision was not at all clear. In any
case, the TUG 2002 organisers decided to stick with
the revised schedule for Friday and Saturday. David
Kastrup gave the tutorial that he had been unable

to give earlier in the week. There were lively dis-
cussions about matters concerning TEX user-groups
around the world, and many delegates took advan-
tage of the Internet connection at Hotel Samudra,
or spent much of the day shopping or enjoying the
beach or swimming pool. Wendy and I visited Focal
Image India to consult with C.V.Radhakrishnan,
receiving a detailed demonstration of the methods
he developed to convert IATEX source to XML, and
back again to recover consistent high-quality print-
able output.

The TUG Business meeting, chaired by yours
truly, was first on the agenda for Saturday morn-
ing. Here we skimmed through the draft minutes of
the Board of Directors meeting, held in Portland,
Oregon on 20th July. Some factual errors were
noted and concern was expressed at the lateness
of TUGboat issues, and the declining number of
members of TEX Users Group, over the last couple
of years. TEX Users Group board member Kaja
Christiansen (University of Arhus, Denmark) de-
scribed the new TEX Development Fund. Mem-
bers were advised of the forthcoming elections in
2003 and invited to consider making nominations
for President and Board members. Following the
break for morning tea were two talks coming from
the IIIT group at Technopark; namely G Nagarjuna
spoke on ‘Symantic Web, GNOWSYS and Online Pub-
lishing’ followed by Dr K.R. Srivathsan describing
the ‘Education Grid’. Then Hong Feng (President
of CTUG, People’s Republic of China) described
efforts by CTUG to implement the Chinese artificial
logical language Lojban, using TEX. A long morning
finished with K. Anilkumar (Linuxense Information
Systems, Trivandrum, India) describing how to use
shell-escapes to make TEX read a database, and
generate reports.

After lunch John Plaice (School of Computer
Science and Engineering, UNSW, Sydney, Aus-
tralia) departed from his advertised talk on Devana-
gari support in Omega, to speak on some completely
different aspects of Omega development. Fabrice
Popineau (SUPELEC, Metz, France) described the
new aspects of TEXLive 7 for Windows’ users, then
Karel Skoupy demonstrated TEX running as a web
service. After a break for afternoon tea, the strains
of Hawaiian music wafted through the auditorium,
before Wendy and I gave a presentation about next
year’s meeting, TUG 2003, to be held in Hawaii
towards the end of July. This was a walk through the
web pages, now on www.tug.org, and the screening
of a tourist video of the sight and delights to be
found on the large island. Dominic Wujastyk (Well-
come Centre, University College London) closed the

6 TUGboat, Volume 23 (2002), No. 1— Proceedings of the 2002 Annual Meeting

http://www.tug.org/

TUG 2002, Thiruvananthapuram Report and Travelogue

meeting with heartfelt thanks to the organisers for a
most enjoyable and stimulating conference, well-run
by the organisers and successful in every way. No
major problems had been encountered; the potential
for disruption due to the strike threat had been
effectively accommodated with a minimum of fuss.

Throughout the conference there was a line of
desks outside the auditorium, where tour-operators
provided information and touted their business.
Kerala is famous for its ‘backwater cruises’, on the
large lake and waterways near Alappuzha (Alleppey)
and Kochi (Cochin). This is the rice-growing area,
roughly 100 miles north of Trivandrum. Tourists
hire a boat — converted rice transports, with elabo-
rate superstructure constructed from bamboo poles
and weaving, propelled by a single out-board mo-
tor. There can be one, two or three bedrooms,
for sleeping on-board over one or two nights, and
a comfortable sitting-room/living area. The crew
consists of 3 or 4, including a cook, with all meals
provided. Some of the more modern boats have
solar panels for the electric lighting. Several groups
of TEX Users Group delegates took cruises starting
Sunday afternoon, taking cruises that did a large
loop across the lake and around paddy fields.

We met up on the water, and at landing points.
Sights along the cruise included churches, temples,
villages and small farming plots, as well as exotic
flowers, plants and bird-life.

5

|

A

i ; L"

&

We were treated to a spectacular sunset. A
crew of 65 were practising for the famous ‘snake-
boat’ races; their boat was not a full-sized snake-
boat, which has a crew of more than 100 oarsmen.

Included in some of the tours is a visit to a
high-quality hotel, either for lunch or an overnight
stay, or to other popular tourist destinations. In our
case it was the Raja Garden Retreat at the beach
resort town of Varkala. Along the way we stopped
to photograph an elephant feeding on coconut palm
fronds, while taking a break from moving huge logs
just off to the side of the highway. Seeing us tourists,
the workers asked for 100 Rupees (=$2) to bring the
elephant closer.

Back at Hotel Samudra, for one last night,
there were still a few TgXies. Some others re-
turned the next day from their tours. After a
last visit to Focal Image India, and a bit more
shopping, there was enough time for a rejuvenating
Ayurvedic massage — very oily. There’s always
more to pack for the return journey; dinner of Kerala
cuisine in the restaurant, then a taxi took us to
the airport for the 11.00pm flight. TUGIndia had
done a great job; thanks especially to Kaveh and
C.V.Radhakrishnan. Hopefully the opportunity
will arise to return to “God’s Own Country”, in the
not too distant future.

F &
el

Feeding the elephant

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 7

TUG 2002 Programme
Stand up and be proud of TEX!

Wednesday, September 4, 2002

Opening Ceremony

Ajit Ranade
Status of TEX in India — An Overview
S. Rajkumar
Indic Typesetting — Challenges and Opportunities

Wagish Shukla and Amitabh Trehan
Typesetting in Hindi, Sanskrit and Persian: A Beginner’s Perspective

Gyongyi Bujdosé and Ferenc Wettl
On the Localization of TEX in Hungary

Satish Babu
New Horizons of Free Software: An Indian Perspective

Wtodzimierz Bzyl
The Tao of Fonts

Roozbeh Pournarder
Catching up to Unicode

Thursday, September 5, 2002

Hans Hagen
ConTEXt, XML and TEX: State of the Art?
David Kastrup
Revisiting WYSIWYG Paradigms for Authoring BTEX
Ross Moore
serendiPDF with Searchable Math-fields in PDF Documents
Stephen M. Watt
Conserving Implicit Mathematical Semantics in Conversion between TEX and MathML
Karel Piska
A Conversion of Public Indic Fonts from METAFONT into Type 1 Format
with TEXTRACE
Behdad Esfahbod and Roozbeh Pournader
FarsiTEX and the Iranian TEX Community
Denis Roegel
METAOBJ: Very High-Level Objects in METAPOST
Karel Skoupy
New Typesetting Language and System Architecture

8 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

Friday, September 6, 2002

Workshop: Tutorial by David Kastrup

Saturday, September 7, 2002

TUG Business Meeting

G. Nagarjuna
Semantic Web, GNOWSYS and Online Publishing
K. R. Srivatsan
Education Grid
Hong Feng
The Marriage of TEX and Lojban
K. Anil Kumar
TEX and Databases — TEXDBI
Yannis Haralambous and John Plaice
Low-level Devanagart Support for Omega— Adapting devnag
Fabrice Popineau
TEX Live under Windows: what’s new with the 7th edition?

Karel Skoupy
TEX File Server

Closing Ceremony

Conference Auditorium

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

Participants at the 23" Annual TUG Meeting
September 4-7, 2002, Trivandrum, Kerala, India

Anil Kumar, K
Linuxense Information Systems
Trivandrum, India
Anil@linuxense.com

Bazargan, Kaveh
Focal Image Ltd.
Exeter, UK
kaveh@focalimage.com

Brahmanayagam, K
Linuxense Information Systems
Trivandrum, India
Kb@linuxense.com

Bujdosé, Gyongyi
Institute of Mathematics
and Informatics

University of Debrecen, Hungary

ludens@math.klte.hu

Burnard, Lou
Oxford University, UK

lou.burnard@computing-services.

oxford.ac.uk

10 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

Bzyl, Wilodzimierz
University of Gdarisk
Gdarisk, Poland
matwb@julia.univ.gda.pl

Chandy, Yakov
Chennai, India
yakov@tng.co.in

Christiansen, Kaja
Computer Science Department
University of Aarhus
Arhus, Denmark
kaja@daimi.au.dk

Esfahbod, Behdad
Computing Center
Sharif University of Technology
Tehran, Iran
behdad@bamdad. org

Feng, Hong
Wuhan, Hubei Province
430040 China P.R.
hongfeng@gnu.org

Gaudeul, Alexandre
Toulouse, France
Alexandre.Gaudeul@
univ-tlsel.fr

Ghosh Dastidar, Prabir
ICMAM, NIOT Campus
Chennai
Tamil Nadu, India
prabirgd@rediffmail.com

Grathwohl, Steve
Duke University Press
Durham, NC, USA
grath@duke.edu

Guravage, Michael A
National Aerospace Laboratory
Amsterdam, Netherlands
guravage@nlr.nl

Housley, Brian
GCCS GmbH
Basel, Switzerland
brian.housley@gccs.ch

Jadhav, Narendra
Belapur, New Bombay, India
nagesh@dncdata.com

Jaiswal, Deo Kishor
Bangalore, Karnataka, India
kishor@srnova.com

Joshi, Manjusha
Pune, India
manjushasjoshi@hotmail.com

Kalidoss, Murugesh
St. Joseph’s College
Trichy, India

Kastrup, David
Kriemhildstr. 15
44793 Bochum
Germany
David.Kastrup@t-online.de

Krishnan, E
University College
Trivandrum, India
Ekmath@md5.vsnl.net.in

Kuester, Johannes
Typoma
Holzkirchen, Germany
jk@typoma.com

Kumar, KG
Pattom
Trivandrum, India
Kglmyiris.com

Kumar, Suresh
New Delhi, India
skumar@techbooks.com

Kurup, VU
Media Mates
Trivandrum, India
Kurupvu@hotmail.com

Levine, Jenny
Duke University Press
Durham, NC, USA
jenny.levine@duke.edu

Mathurbutham, Sankaran
Bangalore, Karnataka, India
sankaran@srnova.com

McKay, Wendy
California Institute of Technology
Pasadena, CA, USA
wgm@cds.caltech.edu

Moore, Ross
Macquarie University
Sydney, Australia
ross@maths.mqg.edu.au

Nagarjuna, G
Free Software Foundation of India
India
Nagarjuna@gnu.org.in

Nambooripad, KSS
Center for Math Sciences
Trivandrum, India
Kssn@md2.vsnl.net.in

Pai, Nagesh
New Bombay, India
nagesh@dncdata.com

Pal, Palash P
Saha Institute of Nuclear Physics
Calcutta, India
pbpal@theory.saha.ernet.in

Paul, Stephen
New Bombay, India
nagesh@dncdata.com

Phadke, SB
Institute of Armament Technology,
Girinagar
Pune, India
sbphadke@hotmail.com

Piska, Karel
Institute of Physics
Academy of Sciences
Prague, Czech Republic
piska@fzu.cz

Plaice, John
School of Computer Science and
Engineering
The University of New South
Wales
UNSW Sydney NSW 2052,
Australia
plaice@cse.unsw.edu.au

Popineau, Fabrice
SUPELEC
57070 Metz, France
Fabrice.Popineau@supelec.fr

Pournader, Roozbeh
Computing Center
Sharif University of Technology
Tehran, Iran
roozbeh@sharif.edu

Prakash, NA
Indian Academy of Sciences
India
prakash@ias.ernet.in

Radhakrishnan, CV
Focal Image (India)
Trivandrum, India
Cvr@river-valley.org

Rahtz, Sebastian
Oxford University Computing
Services
Oxford, UK
sebastian.rahtz@oucs.ox.ac.uk

Rajagopal, CV
Focal Image (India)
Trivandrum, India
Cvr3Q@river-valley.org

Rajkumar, Ebenezer J
Bangalore, India
rajkumar@srnova.com

Rajkumar, S
Linuxense Information Systems
Trivandrum, India
Raj@linuxense.com

Ranade, Ajit
Bombay, India
ajit.ranade@in.abnamro.com

Ravoor, Nijalingappa
Bangalore, Karnataka, India
ravoor@macindia.soft.net

Rodionov, Igor
Department of Computer Science
University of Western Ontario
London, Canada
igor@csd.uwo.ca

Roegel, Denis B
LORIA
Campus scientifique
54506 Vandceuvre-les-Nancy cedex
France
Denis.Roegel@loria.fr

Rowley, Chris
Faculty of Mathematics and
Computing
Open University
London, UK
c.a.rowley@open.ac.uk

TUGboat, Volume 23 (2002), No. 1— Proceedings of the 2002 Annual Meeting 11

Sangeetha, G.S.
Bangalore, Karnataka, India
sam@macindia.soft.net

Sasirekha, T
Bangalore, Karnataka, India
sasirekha@macindia.soft.net

Satish, Babu
InApp Pvt Ltd.
Trivandrum, India
Sb@inapp.com

Schaa, Volker RW
DANTE e.V.
Germany
president@dante.de

Sebastian, Johny
New Delhi, India
jsebasti@techbooks.com

Shukla, Wagish
Indian Institute of Technology
New Delhi, India
wagishs@maths.iitd.ernet.in

Skoupy, Karel
Zirich, Switzerland
skoupy@inf.ethz.ch

Smirnova, Elena
Department of Computer Science
University of Western Ontario
London, Canada

Smith, Alistair
Sunrise Setting
Torquay, UK
alistair.smith@btconnect.com

Swaminathan, Swarnalatha
Chennai, India
latha_goutham@vsnl.com

Talole, SE
Institute of Armament Technology,
Girinagar
Pune, India
setalole@hotmail.com

Thakur, Samanta
Belapur, New Bombay, India
nagesh@dncdata.com

Trehan, Amitabh
Mahatma Gandhi Antarrashtriya
Hindi Vishwavidyalaya (MGAHV)
New Delhi, India
amitabhtrehan@yahoo.co.in

Tripathi, Sanjay
Bangalore, Karnataka, India
hrd@srnova.com

Venkatesan, SK
Chennai, India
skvenkat@tng.co.in

Watt, Stephen
Ontario Research Center for
Computer Algebra
University of Western Ontario
London, Canada
Stephen.Watt@uwo.ca

Wujastyk, Dominik
University College London
London, UK
ucgadkw@ucl.ac.uk

Kaveh and Sebastian taking the group photo

12 TUGDboat, Volume 23 (2002), No. 1— Proceedings of the 2002 Annual Meeting

TEX and Databases — TEXDBI

K. Anil Kumar

Linuxense Information Systems Pvt. Ltd.
Trivandrum, India
http://www.linuxense.com
anil@linuxense.com

Abstract

Report generation is one of the demanding areas of enterprise computing. It
involves complex database queries, drawing conclusions, making projections and
presenting them in an easy-to-comprehend manner. This paper describes how to
use TEX to deal with the presentation aspects in a productive way.

Introduction

TEX is highly programmable and has a high degree
of consistency in maintaining the structure and lay-
out of the documents generated. Moreover, no other
typesetting system can claim the precision control of
typesetting parameters that TEX does. This makes
TEX a good tool to prepare reports both for print-
ing and for Web publishing. However, TEX lacks one
capability as a report generation tool: it cannot di-
rectly communicate with external systems like data-
base engines. Mostly data for reports reside in data-
base systems and must be retrieved based on rules.
So we are compelled to depend on other technologies
and systems to achieve this. This may also mean
bringing in additional people to get things done.

First, let us have a look at various techniques
for generating reports using TEX which are in use
today.

Ways to Generate Reports Using TEX

We have been using TEX to generate reports using
a variety of techniques. And these techniques can
be classified into two categories: 1) generate TEX
documents using other languages; 2) embed other
languages in TEX documents and use a preprocessor.
Both of these techniques are explained below.

Use Database-enabled Languages to Gener-
ate TEX Documents A Java (for example)! pro-
gram can create a TEX file with the data retrieved
from a database. We then compile this TEX code to
get a presentable report. The process contains the
following steps:

I The language could be Perl, C4+ or any other with the
capability to interact with a database engine.

1. A TgX programmer prepares a TEX document
that we will call a template. This template con-
tains no useful information itself, though it is a
complete TEX document as far as TEX is con-
cerned. We add the specific data to it, e.g., it
may be a table construct defined with all the re-
quired parameters, but no actual rows of data.
The template only becomes a useful document
when the data is added.

2. This TEX template is handed over to the Java
programmer to write a program, with this tem-
plate hard-coded within it, which will in turn
write a TEX document with the data retrieved
from a database engine.

3. The generated TEX document is compiled to get
the report.

There is one disadvantage with this approach.
It is difficult for a TEX programmer to intervene
to make a change in the report format (i.e., in the
template) after step 2 given above. This is because
the TEX code has already been embedded into the
Java program in a very different form, which doesn’t
make any sense to a TEX programmer at all. There
are only a couple of solutions to tackle the situation:

1. Repeat step 1 and 2 with the modified format
specification; or

2. Have the TEX programmer and the Java pro-
grammer work together on making the required
changes.

In a production environment, where work must
be done very quickly, neither of these approaches are
feasible. To repeat the process all over again is defi-
nitely a bad idea and bringing two groups of people,
as suggested in the second solution, to work on a
problem is difficult to manage and time-consuming.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 13

K. Anil Kumar

Embed Other Languages in TEX There is a
better approach than this first one. We can em-
bed statements in a database-capable language in
the TEX template. Then through a pre-compilation
process we can execute those embedded code snip-
pets and replace them with the data retrieved from
the database to make a “data-filled” TEX document.

Let us analyze the steps involved in generating
a report this way.

1. As before, a TEX programmer prepares a tem-
plate.

2. This template is handed over to the program-
mer who will embed code snippets required to
retrieve data from the database and fill-in the
template.

3. The template undergoes pre-compilation and
the resulting TEX document is compiled. The
report is ready.

In this approach, even after embedding the code
snippets the TEX template will look like a regu-
lar TEX document and a TEX programmer can still
modify it if there is a specification change. So there
is no need to bring in the other programmer to make
a modification in the report presentation.

Pre-compilation is the major disadvantage of
this approach. Every time to generate a report one
has to pre-compile the document and then run the
TEX compiler to get the report. Moreover, the TEX
coder either has to learn a database capable lan-
guage or he/she has to depend on someone who
knows it.

Enable TEX to Communicate with External
Systems This approach will enable TEX to commu-
nicate with external systems like database engines
to retrieve information to typeset reports directly.
There is no need to depend on other languages and
there is no pre-processing involved. This approach
has two advantages:

1. A TEX programmer can prepare reports by him-
self /herself without depending on another lan-
guage programmer.

2. Development cycle is faster. Changes can be
incorporated in the TEX document directly and
run the TEX compiler; and it is done!

How to Enable TEX to Talk to Database
Engines?

A running TEX compiler is a process2. For a pro-
cess, communicating with the external world means
communicating with other processes, either running

2 That is, an operating system process which can be iden-
tified by a process ID.

on the same computer or on a different computer in
the network. TEX has no built-in interprocess com-
munication facility but they are commonly provided
via the following mechanisms:

1. Writing to a file using \write16.

2. Executing a shell command using \writel8.
3. Reading in a file using \input.

4. Writing to terminal using \write1b.

We are limited to these mechanisms for I/O ca-
pabilities with TEX.

Any modern operating system supports named
pipes® and sockets for communication between two
arbitrary processes. Files are also a way of passing
data to the external world. However, considering the
I/0 capabilities of TEX, communication with sockets
does not seem feasible and so the option is either files
or named pipes.

Files or Named Pipes? We can make TEX to
write to a normal disk file and instruct an external
system to read from it. This is a simple way of ex-
changing data between two arbitrary processes. It
is quite simple to understand, and very easy to im-
plement. But the downside is that it is very difficult
to synchronize communication and it can become
out of control in certain situations. Named pipes or
FIFOs are better in this area.

Named pipes, also known as FIFO structure,
can be effectively used with TEX for interprocess
communication. For TEX, a named pipe will appear
as a regular file. When TEX writes to this file, the
operating system stores the data in a buffer and then
it can be read by the other program. For the read-
ing program, data will appear in the order it was
written. Also the reading process will be blocked
till the other party writes to it. Similarly, the writ-
ing process will be blocked until the other process
starts reading it 4. This will provide the required
synchronization for the “conversation.”

Hence TEX can write and read from a named
pipe to talk to another process and that process can
do the same. Thus, it becomes possible for TEX to
communicate with another process and the architec-
ture discussed in this paper for database communi-
cation is built upon this idea.

3 A named pipe, also known as FIFO (first-in-first-out), is
similar to device files in Unix/Linux. They have a disk inode
(and a file name) and hence can be accessed by any process.
As the name implies, with FIFO the first byte written into it
will be the first byte read from it.

4 Here we assume that the named pipe is opened in block-
ing mode. If the named pipe is opened in nonblocking mode
the read will return whatever bytes are available (perhaps
none).

14 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

A TEX Abstraction for Database
Communication: A Middle Layer

Interprocess communication and named pipes are
far beyond the interest of a TEX programmer and it
is definitely a bad idea to suggest a TEX programmer
to use all these things while doing TEX coding! So
a good implementation of this idea should provide
a TeX-like abstraction of the mechanisms discussed
above. This abstraction should have the least pos-
sible learning curve and should adhere to standard
TEX coding conventions.

An n-Tier Architecture Here we are going to
make TEX to talk to a database engine. At the
top there is the TEX compiler and at the bottom
there runs a database engine. And in between we
introduce two components: one component gives a
TEX abstraction of the systems beneath and the sec-
ond component bridges the TEX abstraction and the
database engine. These two components together
are called TEX-DBI.

TEX Abstraction of a Database Operation

Querying a database involves opening a connection
to the database, passing an SQL query, retrieving
the result and finally closing the result object and
then the database connection. A IATEX package can
be used to define a set of macros to do all these jobs
on behalf of the TEX programmer.

Following are the macros that we defined in the
implementation of this idea.

\begin{tex-dbi}[host=xx.yy.zz,%
dbname=sampledb,uname=anil, passwd=mypw]
This will initialize a database transaction for the
session®. There can be more than one transaction
per session but they are not supposed to overlap.

Here is a description of the parameters:

Parameter | Meaning

host Name of the computer running
the database engine

dbname Database name

uname Database username

passwd Database password for the speci-
fied username

\texdbiexec{"select * from employee"}

This macro passes the SQL statement to the un-
derlying database engine. The TEX macro is not
responsible for checking the accuracy of the SQL

5 Or current pass of compilation.

TEX and Databases — TEXDBI

given; it just passes the statement to the underlying
system.

\texdbicount{}

This macro returns the number of rows (possibly
zero) resulting from the query. This value may be
used as the limiting value for a loop or just to check
whether the query returned successfully.

\texdbinext{}

The result object exposes only one row at a time
of the possibly several rows returned by the query.
This macro moves an imaginary pointer through the
result set, making each row current in turn. When
a new result is obtained the imaginary row pointer
doesn’t point to any row; a call to this macro then
sets the pointer to the first row returned.

\texdbivalue{field_name}

This macro returns the specified field of the current
row. field name should match the name of the field
specified in the SQL statement®.

\end{texdbi}

This macro ends a database session. The connection
will be closed and the underlying component will be
ready to start a new transaction.

Normally, these macros are called in the se-
quence given above. \texdbinext{} can be called
as many times as the number returned by the macro
\texdbicount{}. \texdbivalue{} can be called
with appropriate parameters as many times as re-
quired after each call to \texdbinext{}.

The Bridging Component The TEX macros
described in the above section communicate with
this component through a named pipe as described
earlier. It is called a bridging component because it
connects TEX and the database engine. The commu-
nication between the bridging component and the
database engine itself happens through a TCP/IP
or Unix domain socket.

The request in the TEX code will be passed to
the bridge by the macros through the FIFO and
these requests are translated to equivalent JDBC or
ODBC commands (or in some other format required
by the mechanism being used by the bridging com-
ponent) as the case may be. The results from the
database engine obtained by the bridge is written
back to the FIFO for the TEX macros to read.

6 This rule is enforced by the underlying bridging compo-
nent which makes use of JDBC, ODBC or similar mechanisms
to transact with a database engine, as described next.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 15

K. Anil Kumar

Adding Session Capability to Make the
Middle Layer a True Multi-user System

It is also possible for this system to support sessions,
thus making it a true multi-user system. A Web
server session-ID-like mechanism can be employed to
identify each request and thus to communicate with
multiple TEX compilation sessions simultaneously.

An alternative to this session-ID approach is to
use session-specific FIFOs: TEX macros can create a
FIFO through a shell command and the name of the
FIFO can be passed to the bridging component as
part of the transaction initiation request. The rest
of the transaction can happen though that FIFO.

If multiple concurrent sessions are supported,
only one middle layer is enough to support multi-
user enterprise needs.

Conclusion

Enabling TEX to communicate with a database en-
gine will eliminate the need to involve other lan-
guages to generate quality reports. A TEX program-
mer can easily learn and use the TEX macros defined
by the TEX-DBI system. Development life-cycle will
be shorter and the process will be completely in the
hands of a TEX programmer.

An implementation of this concept can be found
at: http://www.linuxense.com/oss/texdbi/.

References

[1] Knuth, Donald E., 1986, The TpXbook, Addison-
Wesley.

[2] Bovet, Daniel P. & Cesati, Marco, 2001, Under-
standing the Linuz Kernel, O’Reilly.

16 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

New Horizons of Free Software:
An Indian Perspective

Satish Babu

Vice President (Southern Region)
Computer Society of India
sb@inapp.com

Abstract

Free Software has been quietly but steadily making inroads into the world of soft-
ware. While this process is important, nowhere are the ramifications potentially
so productive as in a country like India. India is rich in programmer resources,
but is otherwise poor. India’s governments, institutions and the industry require
a huge quantity of software, but due to a variety of reasons—including intellectual
property rights and costs—it had been hitherto not possible to produce software
for these requirements. These limitations are adequately addressed in the Free
Software model, making it a key enabler in the development process for India.

Introduction

Information and Communication Technologies (ICTs)
have been a mixed blessing for many Third World
countries. On the one hand, 1CTs bring a number
of immediate and perceivable benefits to most soci-
eties. On the other hand, they result in dependen-
cies on external entities over which these countries
have little or no control. While it is clear that 1CTs
are necessary for a country to step into the third
millennium, it is less clear what the specific prob-
lems are—for the day and for tomorrow—that these
technologies bring in.

One of the most enduring artifacts of 1CT is
software. Endowed with several unique characteris-
tics, software epitomizes the unique combination of
power, efficiency, and opportunities of ICT. Some
developing countries such as India have been able
to make a global impact by its software strengths—
essentially its large pool of trained human resources.
Others—African countries, for instance—have been
marginalized on account of a dearth of trained man-
power.

The last two decades have seen the emergence of
a few software superpowers—giant global corpora-
tions—that have cornered a significant proportion
of the world’s software market. These corporations
have effectively utilized the proprietary model of
software development—where the software is owned
by the corporation—while the user only purchases
the right to use the software (that too for a limited
period in some models).

Even while many nations have anti-monopolist
measures for tangible goods, the intangible nature of

software has meant the absence of such safeguards
of the rights of citizens. As information monopo-
lies continue the consolidation of their market seg-
ments, many societies, people, and countries find
themselves at a loss how to defend the interests of
their own constituencies.

Software Alternatives

The proprietary model of software development, al-
though the dominant model today, is by no means
the only successful paradigm. The Free Software
mode of software development provides a counter-
vailing paradigm that is both increasingly visible
and extremely successful. The chief differentiating
factor of the Free Software mode of software devel-
opment is that Free Software is always accompanied
by its source code and has a licensing scheme that
is usually a variant of the GNU General Public Li-
cence (GPL), which together confer a set of powerful
benefits to the user.

Much confusion has arisen from the use of the
word ‘free’, and much has been made of the distinc-
tion between free beer and free speech. Thankfully,
this confusion doesn’t exist in most non-English lan-
guages, where ‘software libre’ has now become both
visible and easier understood.

Free Software (used here in the broadest sense,
and inclusive of the ‘Open Source’ label as well) em-
powers the user, providing her with a variety of ‘free-
doms’, including the freedom to use the software,
study it, modify it, and redistribute it, as well as
guaranteeing that the product can never lose these
freedoms.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 17

Satish Babu

While these freedoms are themselves extremely

important, their collective import, especially for larger

organizations, including governments, is far reach-
ing. This paper examines these vis-a-vis developing
countries in general, and India, in particular.

Developing countries share several attributes:
poverty; lack of education; opaque governments; mal-
nutrition and epidemics; and poor respect for human
rights, to list some. While the well-known apho-
rism, “you can’t eat software”, is indeed true, it is
increasingly being recognized that 1CTs can play an
important role in addressing development priorities
and can improve the quality of life of some of the
poorest sections of human society. This paper ar-
gues that software libre is in a position to make this
happen, and is perhaps the only way to protect the
rights of peoples and communities, for today and
tomorrow.

The Ethical Dimension

Humankind has, in the centuries of its evolution,
come up with several universal ethical values: truth,
beauty, freedom, courage, justice, peace and har-
mony. Of these, the one that has most influenced
the destinies of nations is freedom. Freedom has
been described variously as “the power to act, speak
or think without externally imposed restraints” or
as “the right to choose”.

It is interesting to note that while countries, in
general, are enhancing freedoms available to its cit-
izens (improving human rights; supporting democ-
racy as the nearest-to-ideal for governance), one glar-
ing exception, where freedom is actually being cur-
tailed, relates to software. The emergence of infor-
mation monopolies not just limit choice, but also
tend to stifle the emergence of alternate paradigms.
In software, where the marginal cost of reproduction
approaches zero, there is a clear risk of larger compa-
nies imposing ‘invisible’ barriers against alternatives
(for example, by using private application program-
ming interfaces (APIs) not known to competitors, or
evolving custom ‘extensions’ to commodified stan-
dards, thereby limiting the users’ freedom of choice).

Software libre provides a truly ‘free’, morally
desirable alternative, by making it possible for alter-
native products and services to emerge, even where
they would be infeasible from purely profit oriented
market dynamics. This is, of course, not acciden-
tal: Free Software has evolved to be a framework of
complementary set of software building blocks that
are available at low- or zero-cost, thereby making
it possible for the further development in the same
manner. In short, the freedoms enshrined in Free
Software, together with its much lower costs, allows

it to break the profitability barrier, thereby allowing
alternative products to emerge even where market
dynamics dictate otherwise.

The Legal Political Dimension

From a pragmatic sense, the most important point
of distinction between proprietary and software li-
bre has to do with its politico-legal aspects. First,
Free Software removes much of the licensing night-
mare associated with proprietary software (for ex-
ample: per copy, per seat, per CPU, timebased ac-
tivation), and actually ‘liberates’ software as also
the users. Second, the freedoms associated with
Free Software becomes tremendously important in
some contexts—e.g., for a government, on account
of factors such as sovereignty, autonomy and infor-
mation security. Third, it allows for modification
and maintenance by any qualified entity, thereby
avoiding the vendor ‘lock-in’ associated with most
proprietary software. Finally, Free Software allows
new software to be evolved or modified from ear-
lier software, reusing code where required with the
guarantee of inalienable rights to the fully developed
artifact.

For India, this dimension perhaps overshadows
most other advantages of Free Software. Govern-
ments are taking steps to implement 1T enabled ser-
vices in India’s provinces. These efforts do not,
in most cases, fully take into account the ramifica-
tions of such government decisions. At least in some
cases, intellectual property related disputes with lo-
cal companies have already come to light. One won-
ders how these governments—which are presently
finding it difficult to deal with small local compa-
nies vis-a-vis licensing issues—will be able to deal
with the giant software global corporations and yet
ensure that the interests of its own people are pro-
tected.

As software entrenches itself as a prime enabler
of governance, it is extremely important for govern-
ments to understand this dimension. The software
libre model is the only solution that will protect the
rights of governments and its people. The following
quote, reproduced from A Rebuttal to Meyer’s ”The
Ethics of Free Software”, available at http://www.
advogato.org/article/94.html, makes this point
amply clear:

Having the source is about people, the every-
man and everywoman, keeping a stake in the
software technology that’s fusing with, running
and controlling their everyday lives. It’s not
about exercising power, it’s about the freedom
and ability to exercise that power when needed.

18 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

The Technology Dimension

The foregoing discussion on ethics or legal aspects
of software libre would have been only of academic
interest if the products of the model were merely
as good as those of the proprietary model. How-
ever, it can safely be said now that the genre of
software produced by software libre is thought (by
programmers, and, lately, by the industry as well)
to be technologically superior.

User perception of software quality is depen-
dent on a number of parameters: performance; fea-
tures; the presence and number of bugs; presence
of security holes; ability to incorporate users’ own
requirements; availability of patches and fixes; and
the availability of a community of users who can
help novices.

Software libre scores high on almost all of these
metrics. It is interesting to note that the proprietary
stream highlights the ‘fact’ that “Free Software is
unsupported”. Even when legally and technically
correct, the statement is especially ironic in the con-
text of Southern countries, including India. While
users pay the same price (in most cases) for products
in the South and the North (although, by Human
Development Index standards, the relative price is
many times more in the South than in the North),
the ‘support’—which has already been factored into
the price—is virtually nonexistent in Southern coun-
tries (where telephone infrastructure itself is nonex-
istent in many situations). Most people who buy
shrink wrapped software in India mnever use tele-
phonic support.

Other observers have pointed out how the su-
perior quality of software libre is not an accident.
On the contrary, this superiority has to do with its
development methodology, which features the fol-
lowing practices:

e Large numbers of programmers involved

e One or more maintainers, who alone can change
code in the repository

e Peer review of code

e Parallel testing/debugging by numerous users
e Bug reporting by hundreds of users

e A sense of ownership of the code

e Recognition to chief contributors in documen-
tation

Security by obscurity, long promoted by propri-
etary companies, is clearly a very poor substitute to
parallel testing and peer reviews, all by a commu-
nity of programmers who feel a sense of ownership
in what they do.

New Horizons of Free Software: An Indian Perspective

The Economic Dimension

If the fruits of 1CT should benefit a significantly large
section of humankind, some kind of a democratiza-
tion of computing (‘computing for the masses’) is
required in Southern countries. There are several
obstacles to such an initiative, the most important
of which are the lack of funds for hardware and soft-
ware, and the lack of basic infrastructure. While the
latter is outside the scope of this paper (although
this is being addressed by development programmes
based on both internal resources and external aid),
the former is something that can be addressed by
software libre.

While free as in free speech is very important,
almost equally important for the South is free as
in free beer. The relatively low cost of software
libre products—for now and for the future—is an
important consideration that can influence the deci-
sion to adopt it. While exact figures for the savings
by using Free Software vary, what is clear is that
there are substantial savings, even when the rela-
tively large costs of creating trained manpower for
free platforms (which may not exist in most places)
are factored into the analysis.

It is important to realize that the ‘price’ of soft-
ware is different from its cost. Several proprietary
companies are known to offer substantial discounts
on the list price of their software, especially to in-
stitutional buyers such as governments or schools.
While this results in a temporary reduction in the
funds outflow, there is no guarantee that—once the
lockin has happened—the vendor will not increase
prices. The cost of proprietary software is high, no
matter what its price: freedom has been lost.

Other Dimensions

Software libre is socially desirable from several other
aspects as well. Some of these are examined below:

Education India has an edge over most other coun-
tries in IT, since it has a large pool of trained human
resources in the area. In order for India to continue
to maintain this edge, it is important to ensure that
its students have access to the latest technologies
and practices in IT. Free Software is perhaps the
only example of live code that is available for stu-
dents to examine. No surprise that many premier
institutions in India already use such source code
for teaching their students.

Globalization and Market Penetration While
some communities are able to utilize globalization to
further their own interests, most communities in the
South are vulnerable—through loss of livelihoods,

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 19

Satish Babu

and markets—to the relentless process of globaliza-
tion.

Globalization brings with it the tendency for
businesses to shift to globally competitive locations.
It is difficult to resist this process, as the rubber and
coconut farmers in the Kerala province of India have
realized to their dismay.

It is important to empower smaller formations
(microcompanies, programmer cooperatives) that can
provide localized solutions to local problems of com-
munities where possible. While globalized solution
development (for both free and proprietary models)
will continue to exist, micro-initiatives will surely
have a role in contributing to self-sufficiency and
autonomy of smaller communities scattered over the
globe. Software libre can be an important enabler
of this process.

Cultural Diversity That the world faces the risk
of a ‘global monoculture’—where a specific culture
emerges as globally dominant—and that 1T in its
present form would contribute towards this process,
has been pointed out by several researchers. The
absence of localization of software has been raised
as one factor that contributes to this process, as has
been reported from Iceland.

In India, where over 500 languages are spoken,
and where there are over a dozen distinct scripts,
the problem of preservation of cultural diversity as-
sumes importance. From direct experience, propri-
etary software vendors will develop localized ver-
sions if—and only if—this move makes commercial
sense. If not, the community is doomed never to use
computers in their own language. This is the rea-
son why in Kerala one of the most eagerly awaited
developments is that of a Malayalam font on soft-
ware libre platforms (work for which is under way
at present).

Gender Women form one of the most vulnerable
sections of most Southern communities, having to
bear, as they do, the additional burdens of cultural
taboos, childbearing and weaning, and minding the
household. All this has meant that, by and large,
the average Southern woman is far removed from
computers and the Internet.

There are, however, many initiatives that are
trying to bring women into the technological main-
stream, generally in the form of 1T enabled services.
The Kudumbasri experiment in Kerala, for example,

organizes women to carry out data entry operations.
While there is an element of subsidy to these orga-
nizations at this time, they will definitely need to
become financially viable within a short time.

For organizations of women, as well as for indi-
vidual women, software libre could prove to be a true
liberator—it doesn’t carry any licensing penalty, is
extremely cost effective, is lightweight, is easy to
locate and download (as opposed to purchasing a
product, and getting it installed by an external tech-
nician), and is free of unnecessary features that make
some proprietary software overly complex. It would
not be an exaggeration to say that software libre,
in general, is more woman friendly than proprietary
software.

In Conclusion: From Subaltern to
Mainstream

Software libre has moved from the fringes of com-
puting to its mainstream. The values underpinning
it have provided it with a vision that is only now—
nearly 25 years after its founding—being realized in
its entirety.

This paper has argued that for national gov-
ernments and concerned individuals alike, software
libre is a better option on account of its inherent eth-
ical vision. For national governments, software libre
protects their autonomy and sovereignty, whereas
for the individual, it provides the freedom to choose.
For enterprises and organizations, software libre pro-
vides a pragmatic balance between economics and
functionality.

References

[1] Goerzen, John, The Ethics of Free Software,
http://www.complete.org/papers/
fsethics/

[2] Perens, Bruce, Why security through obscurity
doesn’t work, Slashdot, July 20, 1998
http://slashdot.org/features/980720/
0819202.shtml

[3] Stallman, M. Richard, Why software should be
free, November 1, 1998, http://www.fsf.org/
philosophy/shouldbefree.html

[4] Xiphmont, A rebuttal to Meyer’s “The FEthics
of Free Software”, May 21, 2000, http://wuw.
advogato.org/article/94.html

20 TUGboat, Volume 23 (2002), No. 1— Proceedings of the 2002 Annual Meeting

On the Localization of TEX in Hungary

Gyongyi Bujdoso

Department of Computer Graphics and Library and Information Science

Institute of Mathematics and Informatics
University of Debrecen

H-4010 Debrecen, P.O.B. 12

Hungary

ludens@math.klte.hu

Ferenc Wettl

Department of Algebra

Institute of Mathematics

Budapest University of Technology and Economics
Budapest, Miegyetem rakpart 1-3, H. ép. V. 5.
Hungary

wettlOmath.bme.hu

Abstract

This paper deals with the present and future of the localization of TEX in Hun-
gary. The authors review some of the necessary tools for preparation Hungarian
documents, and especially the improvements needed to make TEX more usable
in Hungary. Some of the work has been done, and a short “to do” list will be
presented for work to be done in the near future. The problems stemming from
the specialities of Hungarian grammar (e.g., hyphenation, handling definite arti-
cles and suffixes) will be considered as well as the tasks implied by the heritage
of the Hungarian typography (e.g., page layout).

Introduction

The Hungarian Users Group (called MATEX) exists
formally since the end of 2001. As the very first ac-
tivity, we have resumed the localization of (I4)TEX
for the Hungarian language. We have started get-
ting together all the developments in the domain of
localization, we are looking for the problems which
have not been solved, and trying to organize teams
for finding out the answers.

This paper deals with the developments which
have been achieved and with our aims for the near
and distant future.

Grammar

There are some specialties in the Hungarian lan-
guage which might be interesting in connection with
TEX or generally with document preparation. We
concentrate on the problems of generated texts.

Definite articles In Hungarian there are two def-
inite articles, ‘a’ and ‘az’. ‘a’ is used before words
beginning with a consonant, and ‘az’ is used before
words beginning with a vowel, just like ‘a/an’ in En-
glish. If any generated text needs an article, it must

also be generated. This is the situation with \ref,
\pageref, and \cite in IXTEX. The babel pack-
age nicely solves this problem with a more generally
usable command \az. This generates the definite
article along its argument and the argument itself;
that is, the command \az{(arg)} is equivalent either
to az™(arg) or to a~(arg) depending on the first let-
ter of (arg). Beside \ref, \pageref, and \cite one
may use \aref, \apageref, and \acite with ba-
bel/magyar which also generate the appropriate def-
inite articles. These macros use the command \az.
The rule mentioned above has some consequences,
which are satisfied by \az:

e a number beginning with 5 or a number begin-
ning with 1 and having 3k + 1 digits (k is a
nonnegative integer) is preceded by ‘az’, all the
other numbers are preceded by ‘a’. For exam-
ple ‘az’ is before 1, 5, 51, 524, 1020, 1000000,
and ‘a’ is before 2, 3, 4, 6-49, 60-499, 10000,
100000, etc.

e the same rule is applied to roman numerals;
that is, ‘az’ is before I, V, LI, DXXIV, MXX,
and ‘a’ is before II, III, IV, VI, etc.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 21

Gyo6ngyi Bujdos6 and Ferenc Wettl

e if a notation has one letter only, or begins with a
letter and is followed by a number or any special
character, then the pronunciation of the letter
must be considered. The pronunciation of ‘f’,
T)m’) ‘n’) ‘r’) ‘s’ ‘X, 'y’ begins with a vowel.

For example ‘az F. fejezet’ (chapter F), ‘az x1

valtozé’ (variable x1) is the correct form.

There were several contributors to the Hungarian
part of babel. We would especially like to highlight
the work of Jozsef Bérces and of course that of Jo-
hannes Braams [1].

Alphabetical order The special rules of alphabet-
ical ordering are as follows:

e A one character consonant is handled sepa-
rately from a two character consonant begin-
ning with the same sign. For example, ‘¢’ and
‘cs’ are two different consonants, so ‘cukor’,
‘cuppant’, ‘csalit’, ‘csata’ is the correct order.
This rule is not applied for the ancient type
of two character letters, which are frequently
used in family names, and for the two or more
character letters of other languages, like ‘sch’.
This rule can be well handled by the xindy pack-
age [4]. This and some of the following prob-
lems can be solved with the makeindex pack-
age [6] supplemented with the application of an
extra script/preprocessor which applies the ‘@’
metacharacter in the index entry.

e The short and long vowels are equivalent (a=4,
e=é, i=i, 0=06, 6=06, u=1, i=1), although the
long ones are after the short ones in the Hun-
garian alphabet (a, &, b, ¢, ...). For exam-
ple ‘alma’; ‘4lom’, ‘alorvos’ is the correct order.
The only exception is the case when two words
differ only in the length of the same vowels.
In this case the short vowel comes first (e.g.,
‘kerek’; ‘kerék’, ‘kérek’).

e The long digraphs are considered as two short
digraphs, so the next substitutions must be ap-
plied before the ordering: ‘ccs’ — ‘cs + cs’, ‘ggy’
— ‘gy + gy, ‘ssz’ — ‘sz + sz’, ‘zzs’ — ‘zs +
zs’, etc. This is also true for the only trigraph
‘dzs’, where the substitution is ‘ddzs’ — ‘dzs +
dzs’.

Inflexional suffixes There are several things to
do in connection with TEXing in Hungarian. The
topic of this section is not the most urgent or im-
portant, but it is interesting in general as a question
of the generated texts in Hungarian documents. The
essence of the problem is that there are several suf-
fixes, and most of them have more then one form.
Let us suppose that some equations are num-
bered from (1) to (7) in a math text. The transla-

tion of the English text “adding (1) to (3) and sub-
tracting it from (4) gives (5)” is “(1)-et hozzdadva
(3)-hoz, majd azt kivonva (4)-bdl az (5)-6t kapjuk.”
If we change the numbers only, we may get dif-
ferent suffixes as the next example shows: “(3)-at
hozzdadva (4)-hez, majd azt kivonva (6)-bdl a (7)-
et kapjuk.” The problem with such a sentence from
TEX’s point of view is that generating the equation
numbers also demands generating the suffixes. The
suffixes follow the vowel harmony. This means that
suffixes, which may assume two or three different
forms, usually agree with the last vowel of the stem.
In other words, front vs. back alternatives of suffixes
are selected according to the vowel(s)! the stem con-
tains [8]. Examples: ‘t{izb6l’ (from fire), ‘hazbdl’
(from house), where ‘tliz’ and ‘hdz’ are the base
words and the front and back forms of the suffix
are ‘-bol’ and ‘-bdl’.

If the suffix has three forms, one of them has
a back vowel (0), the other has a labial front vowel
(6), and the third has an illabial front vowel (e).
If the last vowel of the stem is labial (illabial), the
labial (illabial) suffix is used. Harmony causes the
following alternations among suffix combinations:

e a/e (-ban/-ben ‘in’, -nak/-nek ‘to’),

e 4/é (-nal/-nél ‘at’),

e 6/6 (-b6l/-bél ‘from’, -rél/-rél ‘about’),
e u/ii (-ul/-il “for, by’),
e 0/e/6 (-hoz/-hez/-hoz ‘t0).

There are several uncertainties. For example
the vowels may show paradigmatic alternations as
long and short vowels alternate in some stems (veréb
— verebet ‘sparrow’, fa — fdt ‘tree’). Another
problem is that ‘i’ and ‘I’ can be both front and back
harmonic (hid — hidat ‘bridge’ + acc., but szlv —
szivet ‘heart’ 4+ acc.). The suffix may have different
forms if the word is a compound word. So a good
suffix-generator needs a dictionary.

As the first example shows, it can be advan-
tageous to solve the problem for numbers. Fortu-
nately, the suffix depends on the last nonzero digit
and on the number of closing zeros only:

e back harmonic numbers: 0, 3, 6, 8, 100;

1 The vowels created in the front of the oral cavity are
called front vowels, and those formed in the back of the oral
cavity are called back vowels. The front/back vowels cause
the feeling of high/low sound. In Hungarian the front vowels
are e, é, 6, 6, 1, {1, the back vowels are a, &, o, 6, u, i. The
vowels i and { are neutral as they can be either front or back
vowels depending on the word. For example i is a front vowel
in the word ‘viz’ (water), but a back vowel in the word ‘zsir’
(grease). Four of the front vowels are labial (6, &, i, (i), others
are illabial (e, é, i, {). A suffix is called front (back) suffix if
the vowel it contains is a front (back) vowel.

22 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

e labial front harmonic numbers: 2, 5;

e illabial front harmonic numbers: 1, 4, 7, 9, 10,
1000.

These grammatical problems also come up in
relation to spell-checking. Until recently, only com-
mercial programs were available; happily, the first
Hungarian GNU ispell program [10] and a free Linux
and FreeBSD version of a commercial program were
released recently [9)].

Hyphenation The limitations of TEX in hyphen-
ation of non-English text are well known. Unfortu-
nately some of the problems are still not solved, or
in some cases the known solutions cause other prob-
lems. The phonetic rules of Hungarian hyphenation
are simple and easily programmable (unfortunately
in TEX the third doesn’t):

e Every syllable has exactly one vowel, so a Hun-
garian word has as many syllables as vowels (fi-
a-1, me-ta-fo-ra, pa-ra-di-csom).

e A chain of consonants between two vowels is
cut before the last consonant, so the last one
starts the next syllable (csu-por, kap-tdr, Ham-
burg-ban). In Hungarian ‘cs’, ‘dz’, ‘gy’, ‘ly’,
‘ny’, ‘sz’, ‘ty’, ‘zs’ are digraphs, and ‘dzs’ is a
trigraph, that is, two or three letters form one
consonant (ki-csi, gi-nya).

e Although only the first letter is doubled in a
long digraph (or trigraph), when hyphenated
both syllables contain the full digraph (or tri-
graph) (mennyi — meny-nyi, hosszi — hosz-szu,
gallyak — galy-lyak, briddzsel — bridzs-dzsel)

There is a grammatic rule of hyphenation, which
overrides the previous phonetic ones and causes real
difficulties:

e Compound words or words beginning with ver-
bal or superlative prefixes have to be hyphen-
ated at the morpheme boundaries (6-reg-asz-
szony — Oreg+asszony, meg-e-szi — meg—+eszi).

To handle this, either a (never complete) exception
list or a morphological analysis is needed. At the
moment TEX uses the first method (the wordlist is
implicitly given in huhyph.tex), but only the second
can produce a perfect solution. We list some cases
when the fourth rule conflicts with the first three
ones:

e Two words, a simple and a compound or pre-
fixed, have the same form but different hyphen-
ation (fe-lil — over, fel-iil — sit up, me-gint —
again, meg-int warn, gép-e-lem — machine part,
gé-pe-lem — I type it).

e Morpheme boundary seems to be a long digraph
(villamos-szék — electric chair).

On the Localization of TEX in Hungary

e Either of two hyphenations is acceptable if there
is a Latin or Greek morpheme boundary, but it
is not clear for the average reader (depresszié
dep-resz-szi6 or de-presz-szié — depression).

Words containing a hyphen may be hyphenated at
other points according to the rules. The hyphen
may be repeated at the beginning of the next line
if it is necessary to show the hyphen, for example
in a specialized book: néatrium-<newline>-klorid.
More difficulties are implied by the typographic rule
that no hyphenation can be applied after the first
or before the last letter of a word when applied to
compound words (in this case, \1lefthyphenmin and
\righthyphenmin can not be used).

The present official version of the hyphenation
file huhyph. tex is made by hand, and not by patgen.
It fulfills the first two phonetic rules by a simple list
of the possible syllable boundaries, and the gram-
matical rule by an exception list. Recently Gyula
Mayer made a big hyphenation dictionary for pat-
gen [7], and generated new hyphenation patterns.

In summary, all of these problems show that
joining a morphologic analyser to TEX would pro-
duce better results.

Typography of text

We would like to match the layout of texts with the
Hungarian typographic traditions (see e.g. [3], [14],
[15]) as much as we can. This section deals with the
modifications we have to do in this field.

Baseline grid In each type of texts written in Hun-
garian, a baseline grid has to be applied. It is easy
to typeset plain texts following this rule, but for
texts containing mathematical formulae, the task is
particularly difficult.

Titles It is not allowed to put a period after title
names. A small typographic character on a raised
position should separate the paragraph title and the
text of the paragraph with a non-stretchable normal
spacing around it.

CIMEK ° Magyar nyelvli szovegekben a cimek utdn
sohasem tesziink pontot.

Jelek * A cim betiiképéhez illeszked$ barmilyen
jel alkalmazhaté elvalasztéként.

In general, the medium series of fonts is used
as standard for typesetting titles within documents.
The fonts can be upright, italic, in small caps or
capitalized.

Application of bold upright and bold italic fonts
is also allowed.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 23

Gyo6ngyi Bujdos6 and Ferenc Wettl

Fonts Hungarian typography generally uses bold
extended fonts only for typesetting title pages, not
for titles within documents (chapter, section, etc.).
For these titles within documents, regular bold fonts
are used.

Applying slanted fonts is absolutely contraindi-
cated.

Short page Blank pages should not contain page
numbers.

Vertical space between paragraphs The stan-
dard for every document is setting \parskip to 0 pt.
Additional vertical space may be applied in short
documents only, such as prospectus, if the para-
graphs have no first line indentation.

Indentation First line indentation is the standard
for typesetting paragraphs in almost every type of
documents.

The indentation should be equal to 1 quad if the
line length is less than or equal to 24 ciceros ([12],
[13], [15]) or 20 ciceros (see e.g., [2]), otherwise the
indentation should equal 2 quads. Within a given
document, the measurement of the first line inden-
tation of every paragraph (including, e.g., footnotes,
references) is fixed. Every left or right indentation
is equal to this size or to the multiple of it.

The first paragraph following a chapter or a sec-
tion title may be typeset with or without first line
indentation, but the method is fixed in a given doc-
ument.

Document design without first line indentation
may be applied for typesetting short documents (see

e.g., [2]).

Break-line There are some rules for the length of
the last line of paragraphs.

In the case of \parindent > 0 pt, the length of
the break-line has to be longer than the first line in-
dentation, and it has to be shorter than (line length)
minus (first line indentation) or to be equal to the
line length exactly.

In a document design with \parindent = 0 pt,
in the case of \parskip = 0 pt, the break-line has
to be longer than 1 or 2 quad and to be shorter than
(line length) minus 2 quad (see [12], [13]) or more
(see e.g., [15]). If the paragraphs are ragged right,
the upper bound of the break-line length is 3/4 line
length [15]. If the \parskip > 0 pt, the length of the
break-line is allowed to be equal to the line length.

French spacing In any document, French spacing
is used for spacing, i.e., the \frenchspacing com-
mand should be included in every Hungarian style
file.

Before : ; 7 ! Before some punctuation marks,
such as colon, semicolon, question mark and excla-
mation mark, one third normal spacing should be
applied.

— Megfeledkeztél a viragrél ?
— Nem, nem! Hoztam: ibolyédt és gyongyvirdgot;
kaktuszt és fikuszt; no és persze tulipant is!

As a result, we have to modify the kerning ta-
bles of the fonts, so the standard font names used
by TEX have to be changed to new ones.

Setting the spaces around exclamation marks
is problematic because of its special mathematical
meaning (see later).

Unnumbered lists Marks of items in unnumbered
lists have to be set to a layout more closely following
our traditions. The mostly used character for item
labels is the en-dash. We can also use the -7, ‘°’
‘=’ characters, and also the ‘*’. These latter marks
should be small and on a raised position:

)

— Tudomaényteriiletek
* Informatika
° Mesterséges intelligencia
* Agensek
* Mobil agensek

In the typography of lists there is no vertical space
between an item and the preceding or the following
text (or item), nor between the paragraphs of an
item. Labels are separated by two thirds normal
spacing from the text.

If there is just one line per item in a list, the
distance of the labels and the left margin of the main
text is ¢ X \parindent (i =0,1,...,5).

If the items contain more than one line the dis-
tance of the left margin of the item paragraph(s) and
the main text can be

e cqual to ¢ X \parindent (as it is in standard
TEX list formats) (i =0,1,...,5), or

e set to zero (i.e., just the first line of the para-
graph is indented by 7 X \parindent).

Enumerated lists The numbers of items in enu-
merated lists have the following order and appear-
ance:

I. Informatika
1. Mesterséges intelligencia
a) Agensek
) Mobil dgensek

24 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

Numbers are followed by period, letters are followed
by parenthesis. In the labels, letters and parentheses
are emphasized.

For the rules of indentation see the preceding
section.

Footnotes If a document contains relatively few
footnotes (i.e., the average is less than 1.5 footnotes
per page) we use asterisks (*) for marking them be-
gining with one star on every page. Otherwise we
can use numbers (as superscripts) ordinarily.

If the first line of a footnote text is indented,
the footnote marks are set flush right in the space
of first line indentation or in the labels of the list.
The indentation in both cases has the same size as
in the main text.

A l14dbjegyzet® jeleként a legtobb esetben™™ csil-
lagot alkalmazunk.

* Megjegyzés a széhoz.
** Szdmokat alkalmazzunk, ha a széveg valamely més részén
hivatkozunk bizonyos ldbjegyzetekre.

En-dash The normal usage of en-dash is the same
as in English, for example, in the ‘1d. 12-24. oldal’
(see pages 12-24), or in the ‘Budapest—Debrecen’
expressions. Sometimes we are obliged to put one
third (non-stretchable) normal space around the en-
dash, for example, using it between names with first
names: ‘Kiss Elod-Nagy Pal-Taéth Eva’. The space
is unbreakable before and breakable after the en-
dash.

Typography of math

The Hungarian typographic traditions need some
modification in the layout of mathematical formu-
lae, too. TEXers perform some of these corrections
on their own, because they see that the standard of
(IM)TEX does not fit the Hungarian conventions (see
g, [12], [13], [14]).
In this section, we show the modifications we
have to introduce in order to make the new style
files more complete.

Spacing around binary operators and rela-
tions Spacing is very important in mathematical
expressions. (I#)TEX typeset mathematical formu-
lae in a nice form, however, our standards slightly
differ from those used in Hungarian typesetting.

In mathematical typesetting, one third normal
spacing is used around binary operators and two
thirds normal spacing around relations. (I)TEX
uses three mglue parameters called \thinmuskip,
\medmuskip and \thickmuskip, for adjusting the
spaces around elements of mathematical formulae.

On the Localization of TEX in Hungary

For setting these parameters to the required mea-

sures, we have given new values to these parameters:
\thickmuskip=4mu plus 2mu minus 4mu
\medmuskip=2mu plus 1.5mu minus 2mu
\thinmuskip=3mu

where 2mu equals one third normal spacing. (The
strange thing is that after the modification the thin
space becomes wider than the medium space.) With
the default values, the layout is

a+b—c/dxyox =z, (1)
and after the modifications
a+b—c/dxyox = z. (2)

Line break If TEX breaks a line after a binary op-

erator or a relation in an inline mathematical for-

mula, the sign has to be repeated on the next line.
Formulae cannot be broken at \cdot or slash.

Exclamation mark This sign has a special math-
ematical meaning, which forces us to handle it dif-
ferently than the others.

For the most part, exclamation mark means the
factorial sign in math mode. In this usage, it has to
be followed by a small space without glue. Changing
the class of this character from closing (number 5)
to punctuation (number 6) (see e.g., [5], [11]), the
problem has been solved in most cases. From the
source code {{k!n!(b-1)'} \choose {h!m!}} =1

we have
El'n!(b—1)! _q
h!'m! o

which is an acceptable solution of our problem in
most cases.

However, when a punctuation mark is followed
by a binary operator, the spacing needs correction:

n!+k!+5a+ 60,

its source code: n!+k{!}+5a+6b.

Space after commas In the Hungarian language,
the decimal character is the comma, so we changed
the default class of comma in math mode to 0, i.e.,
\mathcode ‘\,="013B results in a decimal “point”
in math mode, too:

Fi(z,y)=9"+13z 2z, ycA i=1, 2 3,...
This modification reduces the number of mistakes in

the layout, although, we have to type approximately
the same number of characters.

What next?

At the moment there is no standard way of writing
text easily in Hungarian using plain TEX. The au-
thors generally make and use their own macros. It
is necessary to write style files, whose layout keeps

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 25

Gyo6ngyi Bujdos6 and Ferenc Wettl

our typographic traditions and uses the modifica-
tions mentioned above.

The situation is better with IATEX as babel of-
fers an acceptable output and even some nice fea-
tures. With some minor changes it can be improved
enough to be closer to the needs of professional pub-
lishers: for example, changing the measure of white
space produced by \chapter, \section, etc. com-
mands, changing the dot or the spacing written after
paragraph titles to a small typographic character,
changing the appearance of footnotes to our tradi-
tions, and that of captions of tables and figures ac-
cording to font sizes and types.

For (I8)TEX, we would like to propose some ad-
ditional modifications in math typesetting. We also
plan to design Hungarian special ligatures (for the
pairs gy, gj, 9z), and even perhaps new fonts.

Last but not least we mention the different TEX-
variants, like e-TEX or €2, the usage of which can
help our work.

There is a lot to do in the future.

References

[1] Braams, Johannes. “Babel, a multilingual
package for use with KTEX’s standard docu-
ment classes.” available from CTAN, /macros/
latex/required/babel, 2001.

[2] Bardéezy, Irén. Magasnyomé formakészités.
(Making frames for letter-press printing),
3rd edn, Textbook, Budapest, Miiszaki
Konyvkiado, 1979.

[3] Gyurgydk, Janos. Szerkesztlk és szerzék kézi-
kényve. (Manual for Editors and Authors) Bu-
dapest, Osiris, 1998.

[4] Kehr, Roger. “xindy, A Flexible Indexing Sys-
tem.” available from CTAN, /indexing/xindy,
1998.

[5] Knuth, Donald E. The TEXbook. Reading, MA,
Addison-Wesley, 1988.

[6] Lamport, Leslie. “Makelndex, An Index Pro-
cessor For KTEX.” available from CTAN,
/indexing/makeindex, 1987.

[7] Mayer, Gyula. “A TEX és IMTEX elvdlasztasi
modulja, 2002.” (Hyphenation module for
TEX and KTEX) http://www.typotex.hu/
huhydok . pdf

[8] Megyesi, Bedta. “The Hungarian Language,
A Short Descriptive Grammar.” http://www.
speech.kth.se/ bea/hungarian.pdf

[9] Morphologic. “MSPELL.” http://wuw.
morphologic.hu/en/en_mspell.htm

[10] Németh, Laszlé. “Magyar ISPELL.” http://
www.szofi.hu/gnu/magyarispell/

[11] Salomon, David. NTG’s Advanced TEX Course:
Insights & Hindsight. Groningen: NTG, 1992.

[12] Szdntd, Tibor. Kényvnyomtatds — tipogréfia.
(Printing — Typography), 2nd edn, Budapest,
Miiszaki Konyvkiado, 1964.

[13] Szanté, Tibor. Konyvtervezés. (Designing
books) Budapest, Kossuth Nyomda, 1988.

[14] Timké, Gyorgy (ed.). Helyesirdsi és tipografiai
tandcsado. (Orthographic and Typographic
Guide) Budapest, Nyomdaipari Egyesiilés,
1971.

[15] Virdgvolgyi, Péter. A tipogréfia mestersége —
szamitégéppel. (Craft of Typography — by com-
puter) Budapest, Tolgyfa, 1998.

26 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

The Tao of Fonts {

Wilodzimierz Bzyl .
matwbQuniv.gda.pl

Abstract

Fonts are collections of symbols which allow people to express what they want
to say, what they think or feel. Writing is a technique and as each technique
has something to offer and has limitations. For example, the shapes of symbols
depend on the tools and materials used for writing.

In the first part, I illustrate some writing techniques with examples. In
the second part, I present a new technique for creating fonts and illustrate it
with several examples. It is based on the METAPOST language [1] and could be
viewed as Knuth’s method [2-5] adapted to METAPOST. Knuth uses METAFONT
to program fonts and an mf compiler to translate programs into bitmap fonts.
Unfortunately, today’s standards are based on PostScript fonts [6-9]. So, to keep
the Knuth’s idea of programmable shapes alive, fonts should be programmed in
PostScript. This is difficult, because PostScript is a low level language.

The approach presented here is to program fonts in METAPOST. Although
the mpost compiler is not able to output a font directly, its output can be
assembled into a PostScript font [10-13]. A font programming environment
is based on a revised version of the mft pretty-printer. The original mft
understands only METAFONT, but changed mft understands METAPOST too.

In the third part, I present a simple font programmed as a Type 3 and as a
Type 1 font. These examples will give an idea of font programming.
In the Appendix, I present a detailed description of Type 3 fonts [6, 9].

Typographical journey

Exploring type [with computer] is fun,
and ultimately, it changes the way you
think about type and work with it.

— ROB CARTER, Experimental Typography

Throughout history people used have symbols
to visually encode thoughts and feelings. The oldest
example I was able to find in the literature is an
inscription from La Pasiega cave.

VAY

Y YA

Fig. 1. Inscription from La Pasiega cave
(Spain, ca. 10000 B.C.)

Unfortunately, the meaning of the symbols was
lost in the past, so that we don’t know how to
decode this inscription. As a result, we don’t know
exactly what it means—we can only guess. Other

Fig. 2. ‘Magical’ stamps

ancient symbols are found on pikes and bows. It
is assumed that they are some kind of owner’s
signature or that they have a magical value, so that
they bring luck to the owner, etc. Nowadays, we
still use symbols in similar way. Probably everyone
has at least once received a mail overprinted with
“CONFIDENTIAL — you have been chosen to be
rich. You can take part in our lottery draw. All
you have to do is to subscribe our magazine.”
Pictographs, ideograms, and alphabets have
been written and reproduced on papyrus, stones,
wood, clay tablets, paper, and computer displays;

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 27

Wilodzimierz Bzyl

and different techniques have been used to write,
carve, cut, and print symbols.

Handwriting used to be the most common
technique. The Phoenicians invented an alphabetic
font which is a precursor of the Greek, Latin,
and Cyrillic fonts. The inscription of Fig. 3 was
originally written on papyrus.

a5 FIVE)
{ 4 zjtég’) I2{0145 H
OHOF+Hr15T149 I
KXo+ HE &wilg

Fig. 3. Phoenician inscription
(Byblos, 1100 B.C.)

Handwriting can reveal the author’s personality,
which makes this technique interesting. Wouldn’t
it be nice to have a psychological portrait of this
author?

Fig. 4 shows a fragment of a poem written by
probably the greatest Polish poet Cyprian Kamil
Norwid. This poem seems to move every Pole
who reads it. I think that the same poem printed
along with several others in Computer Modern,
Garamond, Times, or Palatino would not have the

Fig. 4. Cyprian K. Norwid, Vade-mecum
(manuscript in Polish, 1865-1866)

.
0uma b wenhs oefeprta mncat senfis.,
jmnmmiuu‘:mmg.wua.m:
forinmmasdicsoony.

L danuans, €omando Dt digplun. s,

Ici - 5?_‘ <rrt, 7 v .o, SaRomnunu e, i @z
. SY o, e o fanm i,
bon Y ewaiamianm.s e,

W ¢ fonag JY Spmibms mnflongiiglanpna. niomgiha.
oy }:{ Cpphmadaucdpl: |

1:{; 'Zf ot plcoeontfah inaam nbantwmaian

. j;l;rr Smllmnipioenfiony, i
S ;

e spphitic e Poplam gy, i
Hfg?uawm&m ﬁhﬁﬁm&aﬂ‘mhﬁ&i

K Aunmalie. wlcConan ol eonfons. o

M mamdlyFemk: * fudn onflan.

u E‘u:lplﬂiﬂ)lﬂml!f:'ll‘-lrﬁfmi’lmﬂdﬁyiﬂ'iﬁm’!yl -
(R gl wguus eonik: Lmadno.umnn £, g
Bl udimamuat almas, w.fr =)

Kl Sapmmelinhanms. el
i dguosmgmusmmi.
Rl somomamamns. dan e,

K
BE b

o
gﬁh‘;qn,q"n
=gEFEd g

=2
&

|
b

£

csgeeggannzgaEEEEs

Fig. 5. Calendarium Parisiense
(manuscript Latin, ca. 1425)

same impact on readers. Maybe this is why I don’t
like reading poems which all look the same.f}

But the main problem caused by handwriting
(and computer typesetting too) is the appearance
of overfull and underfull lines. These, in some cases,
can not be eliminated. Fig. 5 shows the earliest
example I was able to find.

Another technique is cutting in stone. The
shapes in Fig. 6 are more regular, partly because
bigger letters were sketched beforehand.

This picture shows the earliest example of serifs
ever found. The serifs are functioning here as a
way of finishing letters, which otherwise would be
irregular and wiggly ended. Nowadays, we think
that serif fonts are easier and quicker to read. This
is generally true, because letters without serifs in

some cases looks similar to each other, for example:
| —1-1.%*

1 But I would be very grateful if my doctor chose
to use Computer Modern on my prescriptions.

* T cannot imagine books or newspapers carved
in stone. Nevertheless, there was once an exception:
I have seen Fred Flintstone reading newspapers.
But this was a long time ago down in the Bed Rock.

28 TUGDboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting

ABCCD
FFGH

LAMNO

'PQRS
TVX

Fig. 6. Rome, (ca. 200 B.C.)

Fig. 7 shows the 32nd page of one of the
first printed books in Poland. This book is very
important, because it contains designs for Polish
diacritics: aogonek, eogonek etc. The borders were
cut in wood and letters in metal. The printed letters
are much smaller than carved ones, so cutting them
was a real challenge, yet even tiny serifs are present.
This technique was perfected over the years. The
results are seen on Fig. 8. Here borders were cut in
wood and the type was cut in metal.

Finally we get to Fig. 9 showing what com-
puters are good at. The ‘shapes’, drawn by a
computer, are almost ideal. Typographical embel-
lishments are not present —instead the letters are
colored and a background photo is used to improve
the typography of the page.

S0
Each new technique starts from the point where the
old one ends.

When we make a letter with a computer, the
mouse is used to put points on an ‘imaginary
sheet’. As the points are laid down, the computer
joins them with curves. Next, the inflexion points
(red) and the endings of tangents (green lines) are
adjusted by hand. At the same time, the computer

ERERE :

TAO

stych drosnieyfSeé byfo. A sdlym té3 iu3 drugim,
dheali, wolno bedsie prayigd,dhwalid, gdniédboy [wo-
ie wyddc. Pliilmom kilkd Stowiefkich, Orthogni-
phig Ie M. Pand Gérnickiégo pifiinych , ktore mi
potympoffal, nd koricu pray Ortogriphiicy iego polo-
Foneé kosdy snaydsie.

ORTHOGRAPHIA tedy

Polfka rzgdem obiecadla prowadzi
fie tym {pofobem, karakterem vko-

snym y proftym.
A

I<o cuawowskl. A troidkié Poldcy mdig : Pier
wié sowg Ldcirifkie / ktorémd (jvdy snak ndd [obg /
kréfke 5géry nd dol wieBjiong od praréy reki ku lenvéy/
idko zd {/ to ie[ll(/ miecudny. %rugié zowg [voim /
to ieft, Polfkim/ ktdrégo ndk ieftkrefkd takze nid
nim, dle od lerwéy ku prawey rece/ 1dko zadny, toieft/
mke. Treciegomviemy cigzkim/ ktoré ma kré(ke pres
sig s idko pogadnl;v : Mo oftdtnie zdzdy fivym Znd.
kiem Zndcgy¢ tyebd : dwote piér/[é ieno 1w ten czds ,
kiedy slorvo iedndko (ie pifie d za roznym téy iftey li-
tery wymdwidnim, rogny ma y myldﬁdr 2 idko fietdm

Fig. 7. New Polish Character
(Jan Januszowski, 1594 Cracow)

A4l The sTORY OF TP 0.0 B
44 PLHIN OR ThHE LAND Of LIVING MEN & 17

TR AT Y

il young man of frec kindred and whose JiB
namewas Dallblithe:be was fair, strong, f

;‘A and not untried in battle ; he was of the
Gll Pouse of the Raven

(Kelmscott Press, 1891)

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

Wilodzimierz Bzyl

Fig. 9. “Playboy” (Polish edition, 2001)

newpath
\\\. 487 499 moveto
451 499 lineto
423 616 363 661 299 661 curveto
239 661 195 621 195 559 curveto
195 483 278 447 344 420 curveto
435 382 533 331 533 199 curveto
533 95 473 -13 273 -15 curveto
207 -15 108 0 57 47 curveto
42 226 lineto
79 226 lineto
117 101 193 31 269 31 curveto
334 31 382 66 383 140 curveto
383 204 341 249 250 287 curveto
162 324 51 378 51 502 curveto
51 620 132 707 300 707 curveto
361 707 435 695 487 663 curveto
487 499 lineto

\ — closepath
e £i11
Fig. 10

redraws the shape (see Fig. 10). We have replaced a
chisel by a mouse and wood/metal by the computer
screen. With these tools, we can polish the shape
as long as we wish, and we can not ruin the shape
with the one wrong decision as can happen with
traditional tools and materials.

One of the limitations of this technique is shown
in Fig. 11. Printing a symbol by computer means
putting the imaginary sheet on the screen. This
sheet can be expanded, contracted, or skewed —
we can apply any geometrical transformation to it.
Unfortunately, the results may not be satisfactory;

@A A M
$0444

8424

0444
Fig. 11

for example, the stop sign in the third row has
lost its white border and the inscription is hardly
readable. We could repair this if it would be
possible to drop the border and scale the inscription
less, but the operation is unfeasible, because the
computer does not know which numbers in the
character design are responsible for the border and
which for the inscription.

So the only way to produce a better font at
small sizes is to make it from scratch. Since some
will inevitably use an enlarged version of this font
instead of the original one, and chaos will ensue.
Imagine a country where each town has slightly
different traffic signs!

Programming fonts

Typographic standards make type more readable,
but readability has become a relative concept. The
immediacy of personal computers and the World
Wide Web has raised the level of ‘typographic
literacy’: computers are used to stretch typographic
boundaries [14].

Before we start to explore type with computers,
we should ask: What is the right way to create
digitized patterns for printing or displaying? In this
section, I will try to convey some of my excitement
about experiments with the tools I have created,
since I think that I am going in the right direction
[see also 3].

To play with and to explore fonts I use a set
of UNIX tools. To this set I added the DOS batch
files forming the METATYPE]L package by the JNS
team [11], which I converted to UNIX scripts.

The language for font programming is METRA-
POST. To make a METAPOST font usable we must
convert it into something that printing and type-
setting systems can understand. I chose PostScript
Type 1 or Type 3 font programs, mainly be-
cause Ghostscript —a free PostScript interpreter —
is available on almost every computer platform.

The Linux version of the tools consists of
METAPOST font libraries and four scripts:

30 TUGDboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting

METAPOST FONT SOURCES

METAPOST FONT LIBRARIES
FONT FILES AND HARDCOPY PROOFS

Fig. 12. Fonts programming

mkfontl — converts METAPOST font sources
to Type 1 font: a shell script that uses programs
mpost, tlasm from the tlutils package and awk.

mkfont3 — converts METAPOST font sources to
Type 3 font; a perl script that calls mpost

mkproof1 and mkproof3 — scripts that produce
hardcopy proofs and are used as debugging tools:
they call mpost and the mft pretty-printer.

SIGN-000.MP

beginpic(127, 250, 125, 0); "Dangerous bend";
draw post; draw info_signboard;
clearxy;
% the dangerous bend
numeric heavyline; heavyline := 27;
Ts5 = w — Tp; Ts—xo = 80; T = To = T5; To = Tz = T4;
Yo=—Ys = 'ohy y1=—ya=13h; yo=—ys =Y by
pickup pencircle scaled heavyline;
interim linecap := butt;
draw 2z -- z1{z1 — 20} .. 22 --- 23 .. za{25 — 24} -- 25
withcolor c.Dangerous Bend;
labelcolor := white; dotcolor := white;
labels Ift(1, 2, 3, 4, 5); labels r£(0);
endpic;

11:57 11 VII 2001 7

Fig. 13. Hardcopy proof of the dangerous bend

TAO

In font programming two type of errors appear:
bugs in font program and design errors. Bugs are
treated in an ordinary way. To catch design errors
I use hardcopy produced by the mft program.

We have the tools, so it’s high time to start
programming. Let’s start from the beginning.

The Phoenician font lacks vowels. There are
three ways of writing with this font. Lines may be
written from left to right, right to left, or left to
right, right to left, etc., with letters on every other
line reflected vertically. It could be a real challenge
to typeset a Phoenician script with TEX.

I+> +1VI> [T»T BF
PP FYTIETIR

To [our] Lady Ishtar
This is the holy place

Fig. 14. Phoenician font [26]

TEX could be used to communicate with the
STAR TREK crew: we only need their font. No
problem: there is nothing special about this font,
except the extraordinary shapes of the symbols and
the use of few ligatures.

F AT ALRL D AILTD
LD AN TH A

Listen sons of Kahless!
Listen his daughters!

Fig. 15. Klingon font [23]

We can also send our classic love poems to
elves. The elves write vowels over the preceding
letter, unless it is also a vowel. This case, and the
case when a vowel starts a word, are handled by
other rules [18].

prgea i prigr>
pedys GOk gdrrdik
)?3 g PR
3 i péleg Eorgdik
— JAN KOCHANOWSKI, About love

Fig. 16. Tengwar font [24]

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 31

Wilodzimierz Bzyl

It appears that that all these rules can be imple-
mented with an appropriate ligature and kerning
table.

What was considered unreadable yesterday is
readable today. People are more visually sophisti-
cated and typographically savvy than ever before,
so my next font contains ideograms for love and for
some other emotions, as well as letters.

OO oOoTTTOTTE
(g§<&é%(&é%%%%ﬁé{é%%%‘\é@é%%@é%‘
s
e

Special math fonts can be useful, too. We
could use them on title pages or on slides. In
the example below, math characters are colored
according to their math class as defined in plain

format. Below, binary operators are painted in
green, large operators in magenta, etc. (In the pdf

version, not on paper.)
c | c'
C (1 0 0
M=1 1|8 1-8 0
c'ho & 1-¢
[0e] 9 2 o0 o0 9 9
(& e * dx) =& & e XD gy dy
— 00 —00 Y —00
m ~00
=% e "rdrdb
o 0
?n’ r? r=00
e
e
0 P:O
=T (78)

Fig. 18. New Punk Math font (see also [19])

Fig. 19 shows a piece of text typeset with a
computer replica of the font used in the Polish
Alphabet Primer by Falski. I learned to write
letters with the help of Falski’s primer, as did my
wife and my daughter. In fact, all children in
Poland learn Falski’s letters.

DIALOGS ARE REWRITTEN AGAIN
JO SPARE THE AUTHOR AND THE
OTHER CHARACTERS THE SHAME OF
SOUNDING AS [INARTICULATE AS
THEY INVARIABLY DO OR WOULD IF
TJHEIR SENTENCES ALMOST INVARIABLY
BEGUN WITH THE WORD DUDE
AS IN FOR EXAMPLE DUDE SHE
DIED WERE MERELY TRANSCRIBED
Fig. 19. Ala font [27]

The characteristic features of this font are listed
below:

= size of characters: BIG,

= width: PROPORTIONAL,

= slanting: UPRIGHT,

= interletter spacing: BIG,

= uniformity of pressure: CONSTANT,
= strength of pressure: AVERAGE,

= interword spacing: BIG,

= overall appearance: OVAL,

= readability: CLEAR.

Handwriting can reveal the personality of the writer.
The writer in this case is my computer so we can get
‘his’ psychological portrait easily: A person which
writes this way is well-wishing, Easy to cooperate
with and friendly. Usage of uppercase letters and big
interletter spacing indicates this. Constant pressure
means emotional maturity. Oval appearance might
mean uncertainty and submissiveness. Finally,
constant and average pressure and wide characters
indicate an uneasy and over excitable person.

The most important thing about this example
is how easy it is to make this font to look differently,
for example more ‘technical’. It suffices to change
few numbers which define this font. But it would
be difficult to simulate other important features
of handwritten scripts, such as variable baseline,
variable letters shape, pressure of script.

The next example shows the I-Ching font (see
also [29]). The I Ching or “The Book of Changes”
is an old Chinese oracle. This font could be used to
do divinations. With computers it is easy. Ask a
question, press Enter key and your computer will do
the rest. On the next page I put results obtained

32 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting

LI
To Shine Brightly, to Part

tEREESS
SQURENAESs
(% LS
o S
“0y.%) * &
g &
Yy -
4:":' ‘\\\‘“
L/
.'II/I" \‘\‘:‘\‘
ol Vs
.
Ly peeeet
L/
Ml T
ulll: HAH
111 LLL
1/
w sl
\“ “: I ':II
‘::‘\‘ I,:'"
o) ,""

A\ “‘\\ /4, " /4
W DA
RS ,;./’l'/

> /e,
NS .55
S L322t
NS85 =222 2
SSS=E===
THERERES®
INTERPRETATION

To Part. It is useful to stand firm and behave well. This will bring
success. Take care of the cows. There will be good fortune.

Interpretation of the 4th change line

It comes unexpectedly. It is like a fire which dies down and is discarded.

during my presentation at the TUG 2002 meeting
in Trivandrum.

Nowadays, children in Poland have more and
more problems with orthography. There are many
pairs of letters which cause them problems. For
example the letters ‘oacute’ and ‘u’ are pronounced
the same way, ‘b’ and ‘p’ are pronounced almost
the same way, etc. The following trick is used to
teach orthography to children with dyslexia [22].
Each problematic letter is mapped to a crayon with
different colors corresponding to different letters.
Instead of writing a problematic letter, the child
uses the appropriate crayon to draw a rectangle.
After a while the crayons are removed. This
method is supplemented by appropriate books and
dictionaries.

The following ‘text’ demonstrates the extreme
case in which every letter is problematic.

TAO

I like this kind of writing, so why take off crayons?

YPE DESICN MAN BE HABMARDOWH
O YOBR OTHER INTERES 'E
ONBE YOE CE HOOKED, YOu
WI. | DE E OP IN'ENEE FEE INCH
ABOWT 'HTTERFOR K. THE
EDI@ WI | INTRUDE ON "HE
ESACEH 'HAT YOW READ
AND YOW WI ' PERPE WA 'Y BE
HINKING OF | PRO E ENTH
O THE FONTH THAT ¥OuW
FEE B ERYWHERE, ESPEMIA 'Y
HOSE OF YOBR OWN DESIGN

— DONALD E. KNUTH, The METAFONTDbook

Type 3 font example

Fonts are collections of programmed shapes. There
are several kinds of fonts. Each type of font has
its own convention for organizing and representing
the information within it. The PostScript language
defines the following types of fonts [8, p. 322]: 0,
1, 2, 3, 9, 10, 11, 14, 32, 42. Text fonts are
mostly of Type 1, which are programmed with
special procedures. To execute efficiently and to
produce more legible output, these procedures use
features common to collections of black & white
letter-like shapes. The procedures may not be used
outside a Type 1 font. While any graphics symbol
may be programmed as a character in a Type 1
font, non-letter shaped symbols are better served
by the Type 3 font program which defines shapes
with ordinary PostScript procedures including those
which produce color. Other font types are used
infrequently.

TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting 33

Wilodzimierz Bzyl

Although Type 3 fonts are PostScript pro-
grams, | prefer to program shapes in the META-
POST language and convert the mpost output into
a Type 3 font, because METAPQOST simplifies the
programming due to its declarative nature. In
PostScript each curve is built from lines, arcs of
circle and Beziér curves [p. 393, 9]. For complicated
shapes this requires a lot of nontrivial program-
ming. METAPOST implements a ‘magic recipe’ [10]
for joining points in a pleasing way, which helps a
lot. Even if you are not satisfied with the shape,
you can give the program various hints about what
you have in mind, therefore improving upon the
automatically generated curve. To use a font with
TEX the font metric file is required. It contains
data about width, height and depth of each shape
from the font. Because mpost could generate metric
file on demand, fonts prepared with METAPQOST are
immediately usable with TEX.

e =24
Creation of a Type 3 font is a multi-step process.

1. A font must be imagined and designed.

2. The design must be programmed. This step is
supported by a specially created library.

3. The METAPOST font program must be com-
piled.

4. The files thus created must be assembled into
a font. This task is done by the mkfont3 Perl
script.

Additionally, the font must be made available to
TEX and instructions must be given to tell TEX how
to switch to this font.
e =2
Let’s create a font which contain one character
named plus. Use an ascii text editor —it does not
have to be your favorite, any such editor works —to
create a file called plus-000.mp that contains the
following lines of text.

Each font program should name the font it creates.
font_name "Plus-000";

These names are merely comments which help to
understand large collections of PostScript fonts.
family_name "Plus";
font_version "0.0final";
is_fixed_pitch true;
and following names play similar role in the TEX
world.

font_identifier:="PLUS 000";

font_coding_scheme:="FONT SPECIFIC";

The mpost program does all its drawing on its
internal ‘graph paper’. We establish a 100 x 100
coordinate space on it.

grid_size:=100;

The font matrix array is used to map all
glyphs to PostScript’s 1 x 1 coordinate space. This
convention allows consistent scaling of characters
which come from different fonts.

font_matrix
(1/grid_size,0,0,1/grid_size,0,0);

This particular font matrix will scale a plus shape
by the factor 1/100 in the = dimensions and by the
same factor in the y dimension. If we had choosen
scaling by the factor 1/50 then the plus shape
would have appeared twice as large as characters
from other fonts.

The data below provides information about
how to typeset with this font. A font quad is the
unit of measure that a TEX user calls one ‘em’ when
this font is selected. The normal space, stretch,
and shrink parameters define the interword spacing
when text is being typeset in this font. A font
like this is hardly ever used to typeset anything
apart from the plus, but the spacing parameters
have been included just in case somebody wants to
typeset several pluses separated by quads or spaces.

font_quad:=100;

font_normal_space:=33;

font_normal_stretch:=17;

font_normal_shrink:=11;

Another, more or less ad hoc, unit of measure
is x_height. In TEX this unit is available under the
name ‘ex’. It it used for vertical measurements that
depend on the current font, for example for accent
positioning.

font_x_height:=100;

The plus font is an example of a parameterized
font. A single program like this could be used
to produce infinite variations of one design. For
example, by changing the parameters below we
could make the plus character paint in a different
color, or make it thicker.

color plus_color;
plus_color:=red;
u:=1; % unit width
pen_width:=10;

The mode_setup macro could be used to over-
ride all the settings done above. Typically, it is used
to tell the mpost program to generate a font metric
file or proofsheets. Additionally, mode_setup could
execute any piece of valid METAPOST code at this
point. For example, we could change the color of
plus to yellow and the pen width to 5 units. The
code to be executed could be read from a separate
file (see below on how to prepare and use such a

34 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting

file). Thus we can make a variation of this design
or re-parameterize the font without changing the
master plus-000.mp file. Such a mechanism is
required, to avoid populating our hard disks with
similar files.

mode_setup;

The Type3 library makes it convenient to define
glyphs by starting each one with:

beginpic ((code), (width), (height), (depth})
where (code) is either a quoted single character like
"+" or a number that represents the glyph position
in the font. The other three numbers say how
the big the glyph bounding box is. The command
endpic finishes the plus glyph.

Each beginpic operation assigns values to
special variables called w, h, and d, which represent
respective width, height, and depth of the current
glyph bounding box. Other pseudo-words are part
of METAPOST language and are explained in [6].

beginpic("+",100u,100,0); "+ plus";

interim linecap:=butt;
drawoptions(withcolor stem_color);
pickup pencircle scaled stem_width;
draw (w/2,-d)--(w/2,h);

draw (0, (h-d)/2)--(w, (h-d)/2);

endpic;

Finally, each font program should end with the
endfont command.

endfont

Now, we are ready to compile the font with
mpost and assemble generated glyphs into Type 3
font with one command:

mkfont3 plus-000

To use Plus-000 font in a TEX document it
suffices to insert these lines:*

\font\X=plus-000 at 10pt

\centerline{\X +\quad+ +++ +\quad+}
This code produces the seven red pluses below.

R

A font cannot be proved faultless. If some
glyphs are defective, the best way to correct them
is to look at a big hardcopy proof that shows
what went wrong. The hardcopy for the P1us-000
font could be generated with the following shell
command:

mkproof3 -u plus-000.map plus-000.mp

* To see characters from a PostScript P1us-000
font, the DVI file must be processed by DVIPS (see
the explanations at the end of this section).

TAO

S0

As mentioned above, it is not wise to make
one-time-only variation of a font by changing the
font source. To change font parameters mode_setup
is used in conjuction with the change_mode macro.
used. I will explain this last sentence with an
example.

Assume that fictitious document doc.tex uses
Plus-000 font and the font program reside in the
file p1us-000.mp.

The default color of the plus symbol is red. To
create a variation of the font with the plus symbol
painted in yellow we re-parameterize it using a file
named doc.mp, with the following content:

mode_def plus_yellow = message "yellow +";

final_; % create metric file

font_name "Plus-b00";

plus_color:=(1,1,0);
enddef;

Now, we can create a TFM file, Type 3 font, and
dvips fontmap file with the command:

mkfont3 --change-mode=doc,plus_yellow \
--change-name=plus-b00 plus-000.mp

To test the font, create a file named doc.tex with
the following content:

\font\Y=plus-b00 at 10pt
\centerline{\Y +\quad+ +++ +\quad+}

typeset it and convert to PostScript:

tex doc.tex
dvips -u plus-b00.map doc.dvi -o doc.ps

This should generate file named doc.ps which
may be viewed and printed, for example with the
Ghostscript program. The programmed yellow plus
is printed below.

Generating hardcopy proofs, compiling fonts,
typesetting documents requires remembering and
executing a lot of shell commands. Here, the make
utility helps a lot [20].

Type 1 font example

Type 1 font programming differs from Type 3 font
programming. Type 3 glyphs can use any Post-
Script command, but Type 1 glyphs use a subset of
PostScript. Moreover, we must construct an outline
of glyph instead of drawing it. The outline is filled
when the glyph is printed.

Each METAPOST font should input the META-
POST Typel library. The library contains macros
which help to compute outlines, and to output

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 35

Wilodzimierz Bzyl

various font data to several files. These data are
used by the mkfont1 script which assembles Type 1
font and mkproof1 script which typesets hardcopy

proofs. oo
The Type 1 font programmed below contains noth-
ing but a plus symbol. Let’s start with reading
basic macros.
input typel;
Next follows the usual font administration stuff.
Each font should define several variables [9, Tables
5.1-4].
pf_info_familyname "Plus";
pf_info_fontname "Plus-Regular";
pf_info_weight "Normal";
pf_info_version "1.0";
pf_info_fixedpitch true;
pf_info_author "Anonymous 2002";
pf_info_creationdate;

The mpost program does all its drawing on its
internal ‘graph paper’ with 1000 x 1000 coordinate
space on it. The data below provides information
about how to typeset with this font.

pf_info_quad 760;

pf_info_capheight 760;

pf_info_xheight 760;

pf_info_space 333;
The adl suffix here is a mnemonic for Ascender,
Descender, and Lineskip.

pf_info_adl 750, 250, O;

The PostScript fill operator is used to paint the
entire region closed by the current path. For each
path, the non-zero winding number rule [9, p. 161]
determines whether a given point is inside a path.
This behaviour is simulated by the Fill and unFill
macros. The £ill_outline macro, for each closed
path stored in the array s[1..s.num], fills or unfills
it based on its turning number [4, p. 111].

def fill_outline suffix s =
for i:=1 upto s.num:
if turningnumber s[i] > 0: Fill
else: unFill fi s[il;
endfor
enddef;

The plus sign has squared-off ends. Macro butt_end
simplifies the task of cutting of ends of paths.

def butt_end(text nodes) =
cut (rel 90) (nodes)
enddef;

A horizontal line of the same width as a vertical
line seems thicker. To avoid this optical illusion we
use an elliptical pen.

numeric px; px:=100;
numeric py; py:=90;
default_nib:=fix_nib(px,py,0);
These names are intended to make the code more
readable.

path vertical_stem, horizontal_stem;
path glyph;
Each glyph should be defined within a block defined
by beginfont and endfont commands.

beginfont

Programmed symbols must be given names as well
as positions in the font.

encode("plus",43);

Each glyph starts with beginglyph and ends with
endglyph macro. The following macros initialize
several variables, used for the glyph data bookkeep-
ing.
standard_introduce("plus");
beginglyph("plus");
For convenience, the width, height and depth of the
character are assigned to variables w, h, and d.

w:=760; h:=760; d:=0;

The horizontal and vertical bars of the plus glyph
are centered with respect its bounding box.

z0=(w/2,d); zl=(w/2,h);
z2=(0, (h-d)/2); 2z3=(w, (h-d)/2);

To draw paths z0--z1 and z2--z3 the pen with
a default_nib-shaped nib is used. The macro
pen_stroke finds the outline of each path. Out-
lines are assigned to the paths vertical_stem and
horizontal_stem. The macro butt_end cuts off
the ends of these paths at times 0 (beginning) and
1 (end).
pen_stroke (butt_end(0,1)) (z0--z1)
(vertical_stem);
pen_stroke (butt_end(0,1)) (z2--z3)
(horizontal_stem);

Programming a Type 1 glyph means constructing
its outline (which could be made up of several cyclic
paths). The macro below finds the outline of the
paths constructed above and stores it in the array
named in the second argument.

find_outlines
(vertical_stem,horizontal_stem) (glyph)

Now, we are ready to draw the plus symbol.
fill_outline glyph;

Finally, we fix the width of the glyph to w and its
left and right sidebearings to 0.

fix_hsbw(w,0,0);

36 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting

Each symbol should include so-called hints [8, p. 56—
57] that make it render better on a wide variety of
devices.

fix_hstem(py) (horizontal_stem);
fix_vstem(px) (vertical_stem) ;

To make our hardcopy proofs more readable we
define some construction points (see the figure
below).

dotlabels(0,1,2,3);

The last two macros end the subprogram for plus
symbol and the whole font program.

endglyph;
endfont;

Now, we can create a TFM file, Type 1 font,
and dvips fontmap file with the command:

mkfontl plus.mp

The plus character just constructed is used to print
the divider line below.

+ ++++ +
The hardcopy proof below was typeset with the
command:

mkproofl -u plus.map plus.mp

def fill_outline suffix s =
for i := 1 upto syum

if turningnumber s[i] > 0: Fill else: unFill i si] ;
endfor
enddef ;
def buit_end(text nodes) = cut(rel 90)(nodes) enddef ;
numeric pz ; pz == 100 ;
numeric py ; py = 90;
default_nib = fix_nib(pz, py, 0) 5

path vertical_stem, horizontal_stem, glyph ;

beginfont

encode("plus", 43) ;

standard_introduce("plus") ;

beginglyph("plus") ;
wi="T603h:=760;d:=0;
20 = (w/2,d) 5 21 = (w/2, h) 5
29 = (0, (h—d)/2) 5 23 = (w, (h—d)/2) 3
pen_stroke (butt_end(0, 1))(zo -- 21)(vertical_stem) 3
pen_stroke (butt_end(0, 1))(z -~ z3)(horizontal_stem) ;
find_outlines (vertical_stem, h tal_stem)(glyph) 3

filloutline glyph ;
fix_hsbw (w0, 0, 0) 5

fix_hstem (py) (horizontal_stem) ;
fix_vstem (pz)(vertical_stem) 3

dotlabels(0, 1, 2, 3) ;
endglyph ;

endfont ;

21:05 17 X 2002 PLUS 3

TAO

Appendix

This description is somewhat simplified in respect
to the examples to be found in [6, 9].

Each Type 3 font should begin with two lines
of comments.

%!PS-AdobeFont-1.0: Square 1.00
%%4CreationDate: 1 May 2001

A Type 3 font consists of a single dictionary,
possibly containing other dictionaries, with certain
required entries. The dictionary of size 99 should
suffice for fonts which consists of several characters.

99 dict begin
This dictionary should include following entries:

» Variable FontType indicates how the character
information is organized; for Type 3 fonts it
has to be set 3.

= Variable LanguageLevel is set to the minimum
PostScript language level required for correct
behavior of the font.

= Array FontMatrix transforms the character
coordinate system into the user coordinate
system. This matrix maps font characters to
one-unit coordinate space, which enables the
PostScript interpreter to scale font characters
properly. This font uses a 1000-unit grid.

= Array (of four numbers) FontBBox gives lower-
left (I,1,) and upper-right (u;,u,) coordinates
of the smallest rectangle enclosing the shape
that would result if all characters of the font
were placed with their origins coincident, and
then painted. This information is used in
making decisions about character caching and
clipping. If all four values are zero, no as-
sumptions about character bounding box are
made.

/FontType 3 def

/LanguageLevel 2 def

/FontMatrix [0.001 0 0 0.001 0 O] def
/FontBBox [0 0 1000 1000] def

The FontInfo dictionary is optional. All infor-
mation stored there is entirely for the benefit of
PostScript language programs using the font, or for
documentation.

= FamilyName —a human readable name for a
group of fonts. All fonts that are members
of such a group should have exactly the same
FamilyName.

= FullName —unique, human readable name for
an individual font. Should be the same name
as one used when registering the font with the
definefont operator below.

= Notice — copyright, if applicable.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 37

Wilodzimierz Bzyl

= Weight —name for the “boldness” attribute of
a font.

= version— version number of the font program.

= TtalicAngle —angle in degrees counterclock-
wise from the vertical of the dominant vertical
strokes of the font.

= isFixedPitch—if true, indicates that the font
is a monospaced font; otherwise set false.

= UnderlinePosition —recommended distance
from the baseline for positioning underlining
strokes (y coordinate).

= UnderlineThickness —recommended stroke
width for underlining, in units of the char-
acter coordinate system.

/FontInfo <<
/FamilyName (Geometric)
/FullName (Square)
/Notice (Type 3 Repository.
Copyright \(C\) 2001 Anonymous.
A1l Rights Reserved.)
/Weight (Medium)
/version (1.0)
/ItalicAngle O
/isFixedPitch true
/UnderlinePosition 0.0
/UnderlineThickness 1.0
>> def

The Encoding array maps character codes (integers)
to character names. All unused positions in the
encoding vector must be filled with the name
.notdef. It is special in only one regard: if some
encoding maps to a character name that does not
exist in the font, .notdef is substituted. The effect
produced by executing .notdef character is at the
discretion of the font designer, but most often it is
the same as space.

/Encoding 256 array def
0 1 255

{Encoding exch /.notdef put}
for

The CharacterProcedures dictionary contains in-
dividual character definitions. The name is not
special —any name could be used — but this name
is assumed by the BuildGlyph procedure below.

/CharacterProcedures 256 dict def

Each character must invoke one of the setcachede-
vice and setcharwidth operators before executing
graphics operators to define and paint the char-
acter. The setcachedevice operator stores the
bitmapped image of the character in the font cache.
However, caching will not work if color or gray is
used. In such cases the setcharwidth operator

should be used, which is similar to setcachede-
vice, but declares that the character being defined
is not to be placed in the font cache.

Wy Wy Iz ly Uy uy setcachedevice —
Wy, Wy — comprise the basic width vector, i.e.,
the normal position of the origin of the next
character relative to origin of this one
lg, ly, ug, uy — are the coordinates of this
character bounding box

W, Wy setcharwidth —
w, wy — comprise the basic width vector of
this character

CharacterProcedures /.notdef {

1000 0 0 0 1000 1000 setcachedevice
1000 O moveto

} put

Encoding 32 /space put

CharacterProcedures /space {

1000 0 0 O 1000 1000 setcachedevice
1000 O moveto

} put

Encoding 83 /square put % ASCII ‘S’

CharacterProcedures /square {

1000 O setcharwidth
0 1 1 0 setcmykcolor % red
0 0 1000 1000 rectfill

} put

The BuildGlyph procedure is called within the
confines of a gsave and a grestore, so any changes
BuildGlyph makes to the graphics state do not
persist after it finishes.

BuildGlyph should describe the character in
terms of absolute coordinates in the character
coordinate system, placing the character origin at
(0,0) in this space.

The Current Transformation Matrix (CTM)
and the graphics state are inherited from the envi-
ronment. To ensure predictable results despite font
caching, BuildGlyph must initialize any graphics
state parameter on which it depends. In particular,
if BuildGlyph executes the stroke operator, it
should explicitly set: dash parameters, line cap, line
join, line width. These initializations are unneces-
sary if characters are not cached, for example if the
setcachedevice operator is not used.

When a PostScript language interpreter tries
to show a character from a font, and the character
is not already present in the font cache it pushes
current font dictionary and character name onto
the operand stack. The BuildGlyph procedure
must remove these two objects from the operand

38 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting

stack and use this information to render the re-
quested character. This typically involves finding
the character procedure and executing it.

/BuildGlyph { % stack: font charname
exch
begin
% initialize graphics state parameters
% turn dashing off: solid lines
[] O setdash
% projecting square cap
2 setlinecap
% miter join
0 setlinejoin
% thickness of lines rendered by
% execution of the stroke operator
50 setlinewidth
% the miter limit controls the stroke
% operator’s treatment of corners;
% this is the default value and it
% causes cuts off mitters at
% angles less than 11 degrees
10 setmiterlimit
CharacterProcedures exch get exec
end
} bind def
currentdict
end % of font dictionary

Finally, we register the font name as a font dic-
tionary defined above and associate it with the
key Square. Additionally the definefont operator
checks if the font dictionary is a well-formed.

/Square exch definefont pop

If the following lines are not commented out the
Ghostscript program (a public domain PostScript
interpreter) will show the text below online. Obvi-
ously, these lines should be commented out in the
final version of the font program.

/Square findfont

72 scalefont setfont
0 72 moveto (S) show
showpage

References

[1] John D. Hobby. 1992. A User’s Manual for Meta-
Post. Technical Report 162. AT&T Bell Labora-
tories, Murray Hill / New Jersey. Available online
as a part of METAPOST distribution.

[2] Donald E. Knuth. 1982. “The Concept of a
Meta-Font.” Visible Language 16, 3-27.

[3] Donald E. Knuth. 1985. “Lessons Learned from
METAFONT.” Visible Language 19, 35-53.

TAO

[4] Donald E. Knuth. 1986. The METAFONTDbook.
American Mathematical Society and Addison
Wesley.

[5] Donald E. Knuth. 1992. Computer Modern
Typefaces. Addison Wesley.

[6] Adobe Systems Incorporated. 1985. Tutorial and
Cookbook. Addison Wesley.

[7] Adobe Systems Incorporated. 1992. The Post-
Script Font Handbook. Addison Wesley.

[8] Adobe Systems Incorporated. 1993 (3rd print-
ing), Version 1.1. Adobe Type 1 Font Format.
Addison Wesley.

[9] Adobe Systems Incorporated. 1999 (3rd print-
ing). PostScript Language Reference Manual. Ad-
dison Wesley.

[10] Bogustaw Jackowski et al. 1999. “Antykwa
Péttawskiego: a parameterized outline font.” Eu-
roTEX 99 Proceedings. Ruprecht-Karls-Univeritat
Heidelberg, 117-141.

[11] Bogustaw Jackowski, Janusz M. Nowacki, and
Piotr Strzelczyk. 2001. “METATYPE1: A Meta-
Post-based engine for generating Type 1 fonts.”
EuroTEX 2001 Proceedings. Kerkrade, the Nether-
lands, 111-119.

[12] Wlodzimierz Bzyl. 2001. “Re-introducing Type 3
fonts to the world of TEX.” EuroTEX 2001 Pro-
ceedings. Kerkrade, the Netherlands, 219-243.

[13] Apostolos Syropoulos. 2000. “The MF2PT3
tool.” Available online from
www.obelix.ee.duth.gr/~apostolo.

[14] Rob Carter. 1997. Experimental Typography.
A RotoVision Book. Watson Guptill Publications.

[15] Frantisek Muzika. 1965. Die Schéne Schrift.
Verlag Werner Dausien, Hanau/Main. Vol I & II.

[16] Halina Thérzewska Ed. 2000. More Precious
Than Gold. Treasures of the Polish National Li-
brary. Biblioteka Narodowa. Warszawa.

[17] Charlotte & Peter Fiell. 1999. William Morris
(1834-1896). Benedikt Taschen Verlag GmbH.
[18] J.R.R. Tolkien. 1981. The Fellowship of the
Ring. Sp-ldzielnia Wydawnicza “Czytelnik”.

Warszawa.

[19] Donald E. Knuth. 1988. “A Punk Meta-Font”.
TUGboat 9, 152-168.

[20] Richard M. Stallman and Roland McGrath.
GNU Make. Available online as a part of GNU
MAKE package.

[21] Per Cederqvist et al. Version Management with
CVS. Available online with the CVS package.
Signum Support AB.

[22] Mark Shoulson, 1994. Okuda Font. METAFONT
source available online from CTAN/fonts/okuda.
[23] Karol Jarmakiewicz. 2002. Czcionka Klingoriska.

Instytut Matematyki, Uniwersytet Gdanski.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 39

Wilodzimierz Bzyl

[24] Mieszko Zieliniski. 2002. Kto i dlaczego wymyslit
Tengwar. Instytut Matematyki, Uniwersytet Gda-
nski.

[26] Wojciech Goérski. 2002. Font Fenicki. Instytut
Matematyki, Uniwersytet Gdanski.

[27] Stawomir Lis. 2002. Pismo Reczne. Instytut
Matematyki, Uniwersytet Gdanski.

[28] Jacek Neuman. 2002. Just Smiley!. Instytut
Matematyki, Uniwersytet Gdanski.

[29] Alan M. Stanier. 1994. METAFONT source
available online from CTAN/fonts/iching.

[30] Lestaw Furmaga. 1999. Ortofrajda. Pamieciowo-
wzrokowy stownik ortograficzny dla dzieci. INTE-
GRAF, Sopot.

[31] Jan Jelinek. 1977. Wielki Atlas Prahistorii
Czlowieka. Panstwowe Wydawnictwo Rolnicze
i Ledne. Warszawa.

40 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting

FarsiTEX and the Iranian TEX Community

Behdad Esfahbod

Computing Center

Sharif University of Technology
Azadi Avenue

Tehran, Iran
farsitex@behdad.org
http://behdad.org/

Roozbeh Pournader
Computing Center

Sharif University of Technology
Azadi Avenue

Tehran, Iran

roozbeh@sharif.edu
http://sina.sharif.edu/"roozbeh/

Abstract

FarsiTEX, a localized version of BTEX, is a bilingual Persian/English typesetting
package, meeting the minimum requirements of Persian mathematical and tech-
nical typography. This paper will describe FarsiTEX, together with its history,
future and technicalities, its user community, and the reasons behind its success
in Iran, amid its various usage and interoperability problems. It will also draw
a general picture of the TEX community in Iran, and tries to describe why the
community is still far from achieving its basic typographical needs.

Introduction

The Persian language, in its contemporary form, is
a language spoken natively in Iran, Afghanistan,
and Tajikistan. The local forms are known as
Farsi, Dari, and Tajiki respectively. They all use
the same basic vocabulary and grammar, but there
are differences in both pronunciations and modern
vocabulary. In this paper, we will focus on the form
used in Iran, which is the official language of the
country.

The modern Persian script, as written in Iran,
is a right-to-left script with contextually changing
shapes of letters, and a derivative of the Arabic
script extended by addition of some letters (Peh,
Tcheh, Jeh, and Gaf), and modification of a few
others (Kaf and Yeh). The script, with roots in
the Arab invasion of Persia in the 7" century and
later becoming known as the Perso-Arabic script,
had then propagated to the areas currently known as
Afghanistan, Pakistan, India, Western China, and
then even South East Asia and Java, where many
languages are written in it with further extensions to
the alphabet, including Urdu, the official language
of Pakistan. The Unicode Standard, in its latest

version 3.2 (Unicode Editorial Committee, 2002),
lists a total of 139 letters in the script, which are
derivatives of about 28 basic Arabic letters.

The Persian typography, influenced by major
calligraphic practices of the pre-printing era, is ac-
tually based on the famous Naskh style, which more
than 99% of contemporary texts published in it. The
alternate style, Nastaliq, a little harder to read but
considered very beautiful by the general public, and
widely known as the hardest commonly used script
style in the world to implement in computers, has
had a recent popularity after its many computer
implementations appearing in the 1990s. But after
a few years, because of readability problems, the
usage of Nastaliq has been trimmed down to mainly
school books on Persian literature.

Persian scientific typography, blossoming in the
1950s by publications of Gholamhossein Mosahab
(who invented the Iranic font style, a back-slanted
italic form to go with the right-to-left direction of
the script), and Tehran University Press, that de-
veloped the means to publish the texts with the
maximum achievable quality of the days. The hu-
man typesetters used many locally developed meth-
ods to extend the imported typesetting machines,

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 41

Behdad Esfahbod and Roozbeh Pournader

nowadays called “match stick methods”, many of
which used match stick parts to provide the proper
spacings needed for mathematical formulas.

This was changed in late 1970s by the new
typesetting machines made by Linotype which pro-
vided easier mechanisms for typesetting mathemat-
ics containing Persian text. The machines helped
new publishers like Iran University Press and Fatemi
Publishing Institute publish technical books in a
much shorter typesetting period, making a large
volume of mathematical books appear in the 1980s
and early 1990s.

A leap happened in 1992, by appearance of
two TEX-based typesetting packages called TEX-e-
Parsi and I TEX-e-Farsi. The latter disappeared in
a short while mainly because of incompetence, but
the former, developed by Dadehkavi Iran with some
investment from the two above-mentioned publish-
ing houses, remained in use. TeX-e-Parsi design
was highly influenced by the way Knuth had cre-
ated TEX, doing thorough research on the existing
typography of Iran at the time. The company,
going bankrupt in 1997 because of high expendi-
ture and limited market, has released the latest
version of the package in 1996, based on pre-3.0
TEX and BTEX 2.09 with NFSS, but with various
modifications both in the TEX engine and KTEX
macros (SCO Unix and MS-DOS were supported
as platforms). The package, still being used in a
highly-tailored form by the mentioned publishing
houses and a few mathematical departments, was
unfortunately not affordable by individual authors
and students. Thus, it could not help authors doing
the document preparation themselves, and needed
a special section in each department for typesetting
manuscripts.

But the bigger leap was another package called
Zarnegar, appearing in early 1990s for high quality
typesetting using personal computers, which tar-
geted the main stream of typesetting with various
fonts and a visual markup language. Because of
the good quality of the output and the reasonable
price, the package got highly popular, and is still in
wide use, estimated to be the second most popular
document preparation software in Iran, after Mi-
crosoft Word. Unfortunately, Zarnegar’s typesetting
quality of mathematics is very poor, which has been
a source of many badly-typeset technical books.

FarsiTEX

FarsiTEX started as an academic project by Moham-
mad Ghodsi in Computer Engineering Department
of Sharif University of Technology. The project,
known as FaTgX in the first year, started in 1991

as three BSc projects supervised by Ghodsi to pro-
vide the foundation (Haghghollahi, 1992; Asghari,
1993; Tajrobekar, 1993). After many experiments,
FarsiTEX finally settled on the TEX--XET engine
and the MS-DOS platform. The main work was
done by Hassan Abolhassani and Mehran Sharghi
in two MSc theses, the former working on a macro
set with some ideas borrowed from the localized
Hebrew version of KTEX 2.09 (Abolhassani, 1994),
and latter on a METAFONT family of Persian fonts
based on Linotron Badr, which he called Scientific
Farsi (Sharghi, 1994). The contextual shaping of
the letters was done by a pre-processor, which took
input documents in the then widely used Iran Sys-
tem character set, and converted them to an internal
code page which used four characters for each letter,
each for one of the forms used in the Naskh style.

The system was in limited use by authors for
about two years, until early 1996 when Ghodsi gath-
ered a new team to concentrate on a public release
of the software under GNU General Public License
(Free Software Foundation, Inc., 1991). The team
created a new syntax and character set for FarsiTEX
input files, and consisted of Kiarash Bazargan, who
created ftexed, an MS-DOS text editor based on
Borland Turbo Vision, Mohammad Mahdian who
wrote ftx2tex to handle the new file format, Roozbeh
Pournader who revised the macro set, and Sharghi
who revised his own fonts. The first public version
appeared in October 1996, as an extension to emTEX
distribution which was very popular at the time.
Explicitly marked as beta-quality software, Farsi-
TEX was the first Iranian software released under
GPL. A manual (Ghodsi and Pournader, 1997) was
distributed with the package as a DVI file, and was
also made available on paper for a very small fee.

FarsiTEX, imagined by its authors to have a
very limited audience because of its scalability prob-
lems and various known bugs, grew rapidly among
students and professors of mathematics, computer
engineering, and physics all over the country, simply
because it was the only affordable option available
which was good enough for their basic typesetting
tasks. The students, many of them now able to
afford a PC at home, needed some software to run
themselves. FarsiTEX was also evangelized by the
new professors who had just returned to Iran after
their studies in an American or European university
and knew the value of document preparation by the
author. Authors of FarsiTEX, betting on about a
hundred users, were amused to find a base sized ten
times that number.

The FarsiTEX Project Team, born in 1996 and
still breathing amid various inactivity periods, has

42 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

released many small improvements since that time.
Also, it has recently done a few alpha releases of a
new system based on MikTEX, which includes a Mi-
crosoft Windows editor written almost from scratch
(written by Mehrdad Sabetzadeh, Shiva Nejati, and
Okhtay Ilghami), a localized version of Makelndex
supporting Persian ordering (by Nejati), and a Farsi-
TEX to HTML conversion program (by Mohammad
Bakuii). It is unfortunate that the team has not
released a single stable version yet, and the MS-DOS
release is now frozen forever.

It may be worth noting that code contributions
to the project from outside the project team has
been very small, although there has been many
serious users. The team members are still wondering
about the possible reasons, but mostly blame it on
the uncooperative nature of the Iranian people!

During these six years, the project has been
financially supported by Sharif University of Tech-
nology, Ministry of Science, Research, and Technol-
ogy, High Council of Informatics of Iran, Statistical
Center of Iran, and Science and Arts Foundation.

TEXnical Details and Examples

Just like any other non-Unicode Persian software,
FarsiTEX has its own character set, as unfortunately
no 8-bit Persian character set has ever been both
complete and popular. This character set and its
inherent semantics make a special text editor an
essential part of the FarsiTEX system, and the same
time the major barrier for porting the system to
other platforms, like Linux.

The Bidirectional Algorithm Bidirectionality, is
the main issue to tackle in any Persian TEX system.
The TEX--XET engine is of course capable of type-
setting bidirectional text, but only if the directions
are known explicitly. In other words, TEX--XET
has nothing to do with the implicit directionalities
of Unicode Bidirectional Algorithm (Davis, 2002)
which, given some text in a logical order (a run
of text as typed through a keyboard, for example)
outputs the text in a visual order (the sequence of
characters as should appear on a computer screen
or a piece of paper). This mapping is far from triv-
ial in cases that characters of both directionalities
mix with neutral characters (like punctuations and
spaces), or weakly directioned ones (like digits).

In FarsiTEX, the text editor is responsible for
converting the logical order to the visual one. The
editor manipulates files with the ftx extension, which
are in a special semi-logical semi-visual bidirectional
format designed to be as near as possible to the in-
ternal representation of the editor (which is in visual

FarsiTEX and the Iranian TEX Community

order). This format has simplified the bidirectional
algorithm by using two different codes for many
neutral characters like space and parentheses, one
for each of the left-to-right and right-to-left modes.
The idea of having different characters for different
directions has been borrowed from the ISIRI 3342
(Institute of Standards and Industrial Research of
Iran, 1993), a national Iranian character set stan-
dard.

The ftx format, while easy to process for the
editor, is not suitable for a TEX-like engine, which
raises the need for the ftx2tex converter, that re-
orders the visual text in the ftx file to the logical
order, explicitly marking the directionality using
\InE (Insert English), \EnE (End English), \InF
(Insert Farsi), and \EnF (End Farsi) macros. These
macros enable the engine to typeset a text in both
directions.

A screenshot of the Microsoft Windows editor,
is shown in Figure 1 (FarsiTEX’s output can be seen
in Figure 2). Two different background colors are
used to specify the characters’ direction, needed
for neutral characters like space, full stop, and
parentheses. So, unlike the common bidirectional
algorithms, and thanks to the background color,
there are no ambiguities in the direction of neutral
characters. But the problem of nesting different
directionalities still remains.

Joining, Shaping, and Line Justification The
Persian script, being a derivative of Arabic, is a
cursive script, which means that two adjacent letters
may join to each other, forming up to four different
glyphs for each letter. The ftx2tex converter is re-
sponsible for detecting the pairs that join (the join-
ing algorithm) and selecting the proper glyphs based
on joining information (the shaping algorithm).

When a typesetter is justifying the lines in a
Persian paragraph, it is common to stretch the join-
ing line that appears between two adjacent glyphs.
There is no inter-letter spacing in FarsiTEX, and
only the joining stem will be stretched. To imple-
ment this behavior, the ftx2tex converter inserts a
stretchable kashide character (also known as tatweel)
character between the two connected letters. This
inserted character is defined as an active character
expanding to a horizontal glue filled by horizontal
rules. A sample of the behavior can be seen in
Figure 3.

FarsiTEX Forever

The FarsiTEX Project Team is currently working
on a new release with PostScript Type 1 fonts,
moved by the serious need of the user community

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 43

Behdad Esfahbod and Roozbeh Pournader

I8 FarsiTeX Editor Alpha 9.1 - [formula.ftx] =10 x|
] Ble Edit Wiew Run Window Help 2] x|
D|=|@| s]=(e] 2| 4fr ¢ [=]%|®

{article}[farsi]ducumentstgle\ii
>snewcomnnand tsnhad F{smathoptsmbox{>—=% 3}
spnewcomnand {NtfracHZ1{{\Ntextstylenfrac{#l1 - {H23 17

i |_-t.l_ —
Ay
> Shad_{x sto S\pisstiB) Szin x = Stfrac{13i{4} (\=qri{5} - 1]
1
>»englizh
>The ahove text iz a very simple demonstration of FarsisnTeXM abhility
»>to typeset Perszian mathematical formulas.

{documnent rends

Ready Ln 3, Col 2 English Texk MLIM
d | | English UM | 4

Figure 1: The FarsiTEX editor running under Microsoft Windows. Notice the background color of
backslashes and curly braces in the right-to-left lines.

~~«\=:T@ ‘g‘wb LSL“’;;!L"‘}‘ p‘““l‘“))b‘“ 4 g;@l-u LS°->L“’JL.:M.’ J}‘J’ sseﬁ)ﬁ

> sinz = (VO - V)

z—m/Ve

The above text is a very simple demonstration of FarsiTEX ability to typeset

Persian mathematical formulas.

Figure 2: FarsiTEX’s output, with the input given in Figure 1. Notice the automatic replacement of
European digits (also known as Arabic digits) by Persian ones. The operator appearing before the sine is
an alternate form of \1im, used in high school mathematics textbooks in Iran.

44 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

Lo JSCice slisl (Sl 29as oLl e aS
Las o olisl (93 ax iiaSiies dax b
Lo o dts a5 5 b 0 0l 8 o
Lo sy 5 0Ly 5 2500 i (2 Sl a8
Lader b b LS Lo JUs aisls LS
s Jms w55l 5158 (5L o e (S ol

Ll 5 LS 5 s 32 G5 L s

FarsiTEX and the Iranian TEX Community

Ledys 3 Ll ol sla i LT L i
L ob ol Lo 58 lasls o5 4
P O9x Uhee ol ax ol e s L
2258 gl y 08 S K, el (o0 4
o iz 205 oo s SLb b
AT 0 b 4 (8055 S e

Bilo sie ol 5151 (bl an S (g 52

Figure 3: A sonnet by Hafez, typeset in two columns with text stretched for equal width. This style
is necessary for typesetting traditional poems, where justification in shape was a visual reference to the

poem’s rhyme.

to publish their documents in PDF, and also a
Linux text editor, which will make the first teTEX-
based Linux release possible. Other plans include
Unicode support and integration with Omega, which
will need a complete review of the system. The
project is being continued in Computing Center,
Sharif University of Technology, and can be reached
at

http://www.farsitex.org/
(which is hosted at SourceForge.net).

References

Abolhassani, Hassan. Typesetting Persian Docu-
ments using TEX. Master’s thesis, Computer En-
gineering Department, Sharif University of Tech-
nology, 1994.

Asghari, Parvaneh. “Scientific design of Traffic fonts
using METAFONT”. BSc project report, Com-
puter Engineering Department, Sharif Univer-
sity of Technology, 1993.

Davis, Mark. “The Bidirectional Algorithm”. Uni-
code Standard Annex #9, The Unicode Con-
sortium, 2002. Available from http://www.
unicode.org/unicode/reports/tr9/.

Free Software Foundation, Inc. “GNU General Pub-
lic License (GPL)”. 1991. Available from http:
//www.gnu.org/licenses/gpl.html.

Ghodsi, Mohammad and R. Pournader. The Farsi-
TEX Manual. Computer Engineering Depart-
ment, Sharif University of Technology, 1997.

Haghghollahi, Jafar. “Designing Persian fonts using
METAFONT”. BSc project report, Computer En-
gineering Department, Sharif University of Tech-
nology, 1992.

Institute of Standards and Industrial Research of
Iran. “ISIRI 3342, Farsi 8-bit Coded Character
Set for Information Interchange”. 1993.

Sharghi, Mehran. Scientific Design of Persian
Fonts. Master’s thesis, Computer Engineering
Department, Sharif University of Technology,
1994.

Tajrobekar, Laleh. “Designing with PostScript
in Persian environments”. BSc project report,
Computer Engineering Department, Sharif Uni-
versity of Technology, 1993.

Unicode Editorial Committee. “Unicode 3.2”. Uni-
code Standard Annex #28, The Unicode Con-
sortium, 2002. Available from http://www.
unicode.org/unicode/reports/tr28/.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 45

The Marriage of TEX and Lojban

Hong Feng

Suite 3-3, 200 WuZhong Str.
Wuhan, Hubei Province
430040 China P.R.
hongfeng@gnu.org

Abstract

Lojban is an old artificial language which is ambiguity free, it can also be used as
a tool to express Chinese text encoding in readable ASCII characters, and thus
be applied in TEX typesetting system. Keywords: TEX, Lojban, Chinese.

When Prof. Donald Knuth invented the TEX system,
Chinese was not considered as the default language
to support, as TEX only accepts the readable 7-bit
ASCII characters. Chinese, either the simplified,
or the traditional encoding set, has many thou-
sands of characters. For example, the GB2312-80
contains 6,763 simplified Chinese characters, which
requires at least double-byte (16-bit) to represent
one Chinese character (the encodings in the double-
byte format are unreadable for people unless one
checks the encoding table one by one!), and makes
it difficult for TEX to typeset Chinese documents.

Various scenarios were presented to support
Chinese and many relevant macros were developed
in the past, such as those in BTEX and ConTgXt
and the CJK package developed by Werner Lem-
berg, which is distributed with the TEX Live CD.
The new Omega system tries to work directly with
Unicode, which is a popular standard using 16-bit
encoding. Despite the differences in the technical
implementation details, all of them have assumed
that Chinese characters are implicitly expressed in
the fixed-length double-byte encoding which are not
readable by people.

CTUG (Chinese TEX User Group) is trying
another completely different approach to work out
this problem. By discarding the man-made implicit
assumption of the fixed character length in double-
byte, CTUG imported Lojban to represent Chinese
encoding in variable length but still in the readable
ASCII set. This paper documents the idea in some
detail, and points out the future tasks to do under
the scenario.

Background Information about Lojban

Lojban (pronounced as LOZH-bahn), which stands
for “Logic Language” in Lojban, is nothing new;
actually it was presented as a constructed language
in 1955 with the name “Loglan” by the project

founder Dr. James Cooke Brown. It is based on
the “Sapir-Whorf” hypothesis, which states that the
structure of a language constrains thought in that
language, and constrains and influences the culture
that uses it. Over more than the past four decades,
Lojban has become a mature artificial language.
Here we highlight the main features of Lojban:

e Lojban is designed to be used by people in
communication with each other, and now also
possibly with computers.

e Lojban is designed to be culturally neutral. It
is based on fully phonetic spelling, so people
can learn to read Lojban on the fly.

e The regular grammar of Lojban is based on
the principles of logic, which has an unambigu-
ous grammar, and has successfully passed the
YACC testing. This removes restrictions on
creative and clear thought and communication.

e Lojban is designed as a simple language, with
just 1,300 root words. Using these root words,
it is possible to combine and form millions of
words in a vocabulary with ease.

In essence, Lojban is quite close to Chinese
grammar, thus a Chinese can quickly become a Lo-
jban user. In the training seminar given by CTUG,
practice has shown that some CTUG members could
learn and grasp it within a week.

Chinese as Expressed in Lojban

Now, let’s check how Chinese words are constructed.
Overall, most Chinese linguists have agreed that
Chinese has only four methods to construct a char-
acter: XiangXing, ZhiShi, HuiYi and XingSheng.
Although it is hard to describe them in formal
language, any Chinese character is constructed by
one of these four methods, and the first method
“XiangXing” is fundamental to the construction.

46 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

XiangXing means drawing a sign for a given mean-
ing; thus Chinese is classified as an ideograph system
in the language taxonomy.

According to researches into the signs recorded
in ancient tortoise bones, the most original and
frequently used signs are fewer than 500. Tortoise
bones are the back shell of tortoises. Chinese people
recorded the oracle on them. The signs of the
oracle are the oldest Chinese characters we have
discovered so far, and they are the origin of mod-
ern Chinese characters. And statistically, Chinese
characters constructed by XingSheng (mostly based
on XiangXing ideographs) occupy more than 90%
of the modern Chinese character repertoire.

A character of XingSheng consists of two parts:
one part indicates the pronouncation of the charac-
ter, and the other part indicates the meaning of the
character.

For example, my name in Chinese, Hong Feng,
is expressed in two characters; each of them is
constructed as a XingSheng character. Hong has
two parts: the three points at the left side is the
Xing part, and indicates the character is related to
water; the right part is the Sheng part, pronounced
as “gong”, meaning the character has “ong” in the
pronounciation. The character means large-scale,
macro, magnificent, giant.

Feng has two parts too. The left part is also the
Xing part, a XiangXing ideograph for mountains,
and the right part specifies the pronouncation to
be “feng”. The character means the top of the
mountain.

Thanks to the more than five thousand years
of the simplification movement in the history, the
grammar rules of the language are truly simple to-
day. Chinese texts are very similar to an assembly
line which we have seen in an automobile production
workshop — Chinese characters are placed one by
one without stop (i.e. without blank space left be-
tween them), quite like the TEX places characters in
a box one after another to form a word, and words
are placed one after another to form a sentence or a
line, and lines are placed one after another to form a
paragraph, and paragraphs are placed to be a page
to the end.

In the TEX system, if you have a new sign which
is not defined yet, then you could design the glyph of
the new sign in METAFONT (or in the PostScript
language) in a box, and give the box a name (as
a new control sequence) to the METAFONT (or to
the PostScript) program; after doing that, you could
use the new sign with TEX, as if it were one of the
built-in readable ASCII characters.

The Marriage of TEX and Lojban

Such cases have happened many times in TEX
history. For example, the Euro currency was put
into use on January 01, 2002, but the currency
symbol was made available much earlier for TEX
by two NTG members, who designed the symbol in
METAFONT (see MAPS Number 27), so now you
could express the Euro in a TEX document directly
by \symbol [euro].

Likewise, Chinese characters can be handled in
the same way, and once we give each sign in a box a
name in Lojban (which also means we discarded the
fixed double-byte Chinese encoding, instead, we use
variable length of the readable ASCII characters to
represent the Chinese, then TEX can be regarded as
a native formatter for Chinese immediately!

If we design carefully, we can build a one-to-
one mapping table between the existing Chinese
encoding set (GB, Bigh, Unicode or whatever) and
Lojban the expression set, which makes the conver-
sion easy to handle by scripts in Perl or whatever.
As Lojban expressions are in readable ASCII, they
can be edited using any editor (such as GNU Emacs)
even on a simple text-only terminal.

Marriage of TEX and Lojban

As we have seen above, it is possible to encode
Chinese by using Lojban as the meta-language. This
is the key step to get marriage of TEX and Lojban
to happen.

It is necessary to review how TEX defines a
control sequence. In TEX, 7 is defined as \pi,
likewise, supposing we defined the glyphs of Chinese
figures (from zero up to nine) in control sequences
in Lojban respectively like this:

Chinese Lojban
zero \no
one \pa
two \re
three \ci
four \vo
five \mu
six \xa
seven \ze
eight \bi
nine \so

Now, we can typeset the Chinese number “two
zero zero two” this way in TEX: \re\no\no\re; the
backslash characters won’t add too much burden for

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 47

Hong Feng

people to read, and by designing a new macro, it is
possible to remove them like this:

\chinese{re no no re}.
TUG* “two zero zero two’’ (English and Chinese
combined together for TUG2002) can be represented
in TUG\chinese{re no no re}.

TEX and Lojban have agreed to marry.

Tradeoffs and Benefits

The tradeoff of the marriage is obviousl: it adds
one step to convert the current Chinese double-byte
encodings into Lojban expressions, though we can
let a computer do the job automatically, which can
be counted as a trivial matter.

Perhaps the true tradeoff would be the require-
ment for the TEX user to understand more or less
about Lojban, thus enlarging the learning curve.
Though it is not indispensable, the more one knows
Lojban, the higher efficiency would be obtained
during the typesetting. If one can read and write
in Lojban, then it is possible to typeset Chinese
directly in TEX (without the conversion mentioned
as above).

Now let’s check the benefits. We can just use
the word “tremendous” to describe so many benefits
we will have under this scenario. Chinese expressed
in Lojban is in human readable ASCII characters,
which are supported in almost any computer nowa-
days. This means, all existing programming lan-
guages can be used to support Chinese directly
too. There are also other benefits to describe the
XML’s meta data for Chinese in Lojban (again, it is
unambiguous in grammar), which goes beyond the
scope of this paper.

To-do tasks

To make this scenario become reality, we have sev-
eral major tasks to do:

e Define a Chinese-Lojban dictionary. As men-
tioned above in section 2, there are approx.
500 ideographs to define, and it also requires
definition of three other methods in Lojban.

Lojban is suitable to describe the logic relations
because it is designed as a logic language.

e Lojban specification comes with a dictionary
which contains ca. 1,300 root words, so it just
requires some time and care to build the map-
ping relation to finish the task.

e Define free, high quality fonts of Chinese. In
practice, at least four fonts are required. Now
this is a part of the MNM Project (MNM’s Not
Millions). There are many non-free Chinese
fonts available, so commercial publishers can
purchase the non-free fonts, and we can add
the fonts by applying this scenario.

e Mapping the Chinese fonts adds value to the
control sequences in Lojban as key in a hash
table. Once the hash table is ready, we could
build it into the TEX source tree. The system
will be ready to use.

Conclusion

This paper only explained a very small part of
the power of Lojban — how to typeset Chinese
in TEX using another approach. By importing
the idea of re-encoding Chinese in variable length
strings of human readable ASCII codes, instead of
fixed length in double-byte, the TEX system without
any modification can support Chinese typesetting
directly.

About the Author: Hong Feng is the founder
and the Chairman of the Chinese TEX User Group.
He is also the co-founder of the FSF-CHINA
Academy. He can be reached by hongfeng@gnu.org

References

[1] Donald E. Knuth. The TgXbook. Addison-
Wesley, Reading,Massachusetts, 1984.

[2] Hans Hagen. The euro symbol. MAPS, Number
927, 2002.

[3] http://www.lojban.org. Lojban Reference
Grammar.

48 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

INVITED KEYNOTE TALK
ConTgXt, XML and TEX: State of the Art?

Hans Hagen
Pragma, Netherlands
pragma@wxs.nl

Abstract

The ConTEXt macro package was originally written to ease the development of
complex and educational documents. Over time, more and more features were
added and a tight integration with METAPOST has been achieved. A few years
ago, ConTEXt became XML-aware, so that users can now comfortably mix XML
and TEX techniques.

In spite of what the XML community preaches and DTP applications
promise, typesetting complicated documents is still far from trivial. To some
extent this has become easier, but the basic problems stay the same. ConTEXt
tries to bridge those worlds by supporting modern (XML driven) workflows, by
providing a programmable (TEX based) typesetting environment, and by offering
high quality (DTP competitive) output.

Currently, its authors use ConTEXt in a wide range of applications:

e automatic typesetting of highly structured input into relatively complex
layouts, either under the authors control or not;

e implementing publishing on demand workflows where ConTEXt acts in the
background;

e dynamic generation of documents based on user input or data bases (internet
applications);

e special applications where PDF is used as user interface (workflow optimiza-
tion).

Although TEX is over twenty years old, it is still a strong player in the field
of document processing. In this presentation we hope to illustrate that TEX can
meet many of the demands of today’s publishing.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

49

Low-level Devanagari Support for Omega— Adapting devnag

Yannis Haralambous
Département Informatique

Ecole Nationale Supérieure des Télécommunications de Bretagne

BP. 832, 29285 Brest, France
yannis.haralambous@enst-bretagne.fr
http://omega.enstb.org/yannis

John Plaice

School of Computer Science and Engineering
The University of New South Wales

UNSW Sydney NSW 2052, Australia

plaice@cse.unsw.edu.au

http://www.cse.unsw.edu.au/school/people/info/plaice.html

Abstract

This paper presents tools (OTPs and macros) for typesetting languages using
the DevanagarT script (Hindi, Sanskrit, Marathi). These tools are based on the
Omega typesetting system and are using fonts from devnag, a package developed
by Frans Velthuis in 1991. We are describing these new OTPs in detail, to provide
the reader with insight into Omega techniques and allow him /her to further adapt
these tools to his/her own environment (input method, font), and even to other
Indic languages.
TS

g A AN (AT &7 TN ST T WTITAT HF STETETET IT A==
AT J=mT fAT ST aTer g &7 T g &7ar & | T g AT eETateTr 97
AT & 3T G907 & A@TEIT & TANT &IAT & Al K Jorgsd g7
1991 & FTAT 4T Yol & | 7 7 AT 27 97 &r faeqa &7 7 § difd THa-T
ATAT &I AT Th-TF &I JTARMT &N FATT AT AT AIT AT & 5F goF
H SAYT JATEIO AT AT LA HTNTAT & AET 98 da IT g1 9 |

Introduction

One of the first Indic language support packages
for TEX was devnag, developed by Frans Velthuis
in 1991.1 At that time it was necessary to use a
preprocessor for converting Hindi or Sanskrit text
written in a way legible to humans into data legible
by TEX. This preprocessor allowed the use of an
ASCII transcription, and performed the contextual
analysis inherent to Devanagari script, as well as
pre-hyphenation (by explicitly inserting hyphen-
ation points). The preprocessor was necessary for
two main reasons:

1 A second system for processing Devanagarl was cre-
ated by Charles Wikner. It has important features lacking
in Velthuis’s devnag system, but unlike the latter it did not
address the setting of Hindi text. The general design of the
system — Metafont plus pre-processor — was identical to that
of Velthuis.

1. A Sanskrit font contains over 300 glyphs, when
ligatures are taken into account.

2. The TFM and VF languages are not powerful
enough to make all the necessary glyphs out of
a font of 256 characters.

Using a preprocessor has many disadvantages,
due mainly to the fact that it has to read not plain
text, but rather KTEX code. It also has to avoid
treating commands and environment names as De-
vanagarl text. So the preprocessor should be clever
enough to distinguish text from commands, i.e., con-
tent from markup.

It is well known that, in the case of TEX, this
is practically impossible, unless the preprocessor is
TEX itself (there is a notorious saying: “only TEX
can read TEX”).

So much for computing in the 20" century.
Nowadays we have other means of processing infor-
mation, and the concept of (external) preprocessor

50 TUGboat, Volume 23 (2002), No. 1— Proceedings of the 2002 Annual Meeting

Low-level Devanagart Support for Omega— Adapting devnag

is obsolete. In fact, the same operations are done
inside Omega, a successor of TEX. Processing text
internally has the crucial advantage of allowing the
processor to distinguish precisely what is content
and what markup (at least as precisely as TEX itself
does it).

This makes it much easier to treat properties
inherent to writing systems: one only needs to con-
centrate on the linguistic and typographical prop-
erties of the script, and one doesn’t need to think
of what to “do with K'TEX commands” in the data
stream.

Furthermore, there is an efficiency issue: using
Omega there is only one source file, namely the TEX
file (and not a pre-TEX file and a TEX file); one
doesn’t need to care about preprocessor directives;
the system will not fail because of a new TEX envi-
ronment which is not known to devnag; mathemat-
ics and other similar constructions do not interfere
with Devanagarl preprocessing.

Contextual analysis of Devanagart script has, at
last, become a fundamental property of the system,
independent of macros and packages.

Unicode and Devanagari

The 20-bit information interchange encoding Uni-
code (www.unicode.org) has tables for all Indic
writing systems, based on a common scheme (so
that phonetically equivalent letters are placed on the
same relative positions in each table). The first of
these tables (positions 0900-097F, see Table 1) cov-
ers Devanagar’.

For historical reasons (compatibility with lega-
cy encodings) the Unicode approach to Devanagari
is quite awkward: it is partly logical and partly
graphical. For example, there are separate posi-
tions for independent and dependent versions of vo-
wels: when encoding text one has to choose if a
given vowel is dependent or independent, although
this clearly derives from contextual analysis, as in
Velthuis’ transcription where both versions of vo-
wels have the same excellent input transcription.

On the other hand, this method is not applied
to consonant ra; indeed, placing a ra before a clus-
ter of consonants is graphically represented by a
mark on the last of the consonants (compare -
kta and & rkta) — this mark is not provided in the
Unicode table, and hence application of this feature
is left to the rendering engine.

Nevertheless, despite its weaknesses, Unicode is
very important because it ensures compatibility be-
tween devices all around the world: a text written
in Devanagarl and encoded in Unicode can be pro-

cessed (read, printed, analyzed) on every machine
or software that is Unicode compliant.

Omega fullfils Unicode compliance, and the sys-
tem we are describing in this paper is designed in
such a way that Unicode-encoded texts can be pro-
cessed equally well as texts encoded in Velthuis’
transcription.

Installation and Usage

The Omega low-level support? of Devanagari con-
sists of eight OTPs (Omega Translation Processes)
and a small file with macros:
velthuis2unicode.otp
hindi-uni2cuni.otp
hindi-uni2cuni2.otp
hindi-cuni2font.otp
hindi-cuni2font2.otp
hindi-cuni2font3.otp
sanskrit-uni2cuni.otp
sanskrit-cuni2font.otp
odev.sty

OTP files have to be converted to binary form
(*.ocp) and placed in a directory where Omega ex-
pects to find them.

To typeset text in Devanagari, use the com-
mands \hindi or \sanskrit (depending on the lan-
guage of your choice) inside a group, and keyboard
the text in Velthuis’ transcription (see Table 1,
taken from Velthuis’ devnag documentation®). For
example, {\hindi kulluu, acaanak, \sanskrit
kulluu, acaanak} will produce Feel, THTHH,

Description of the OTPs

This description is a bit technical and demands both
some knowledge of Omega and of DevanagarT script.
The reader can find more information on the former,
on the Omega Web site* and on the latter in books
about Devanagari script. In particular, there is a
very nice introduction to the contextual features of
the script in the Unicode book® (Section 9.1).

2 We call it “low-level,” because there is no standard
IATEX3-compliant high-level language support interface yet.
We don’t know yet how languages and their properties will
be managed in IATEX3 and therefore do not attempt to in-
troduce yet another syntax for switching to Hindi or Sanskrit
or Marathi. Instead, we—temporarily —use a devnag-like
syntax: simple commands \hindi and \sanskrit which have
to be placed inside groups, as in the good old days of plain

TEX

3 To be found on CTAN, language/devanagari/distrib/

manual.tex.

4 http://omega.enstb.org

5 The Unicode Standard, Version 3.0, Addison Wesley,
Reading Massachusetts, 2000.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 51

Yannis Haralambous and John Plaice

velthuis2unicode.otp In this OTP we convert
Velthuis’ input transcription into Unicode. It is a
quite short OTP (about 80 lines), with lines of the
type

“z' =>Q"095B @"094D ;

“a'Ta' =>0"0906 ;

On the second line, the pair of letters aa of
Velthuis’ transcription is sent to Unicode character
@"0906 (independent vowel “aa”). On the first line,
letter z is sent to Unicode characters @"095B (letter
“za”) and @"094D (virama).

This may seem strange, but indeed the plan is
to convert in a later step independent vowels into
dependent ones, and to use the virama as a way to
find out if a given consonant is part of a consonantic

cluster or not. This will be done in the forthcoming
OTPs.

(sanskrit|/hindi)-uni2cuni.otp In this OTP we
deal with virama and dependent vowels. First of
all, in the case of Hindi, we remove the (possible)
final virama of the word:

{CONSONANT} {VIRAMA} end: => \1 ;
{CONSONANT} {VIRAMA} {NONHINDI} =>
\1<=1\3;

In these two lines, we remove virama which may
be either at the end of the input buffer, or before a
non-Hindi character. In the latter case, the non-
Hindi character is put back in the stream. The code
above is for Hindi. In the case of Sanskrit, we add
a (fake) Unicode character which will represent in-
ternally the final virama:

{CONSONANT} {VIRAMA} end: => \1 @"097F ;
{CONSONANT} {VIRAMA} {NONHINDI} =>
\1 @"097F <=\3 ;

Follow lines of the type:

{CONSONANT?} {VIRAMA} {INITA} => \1 @"097D ;
{CONSONANT} {VIRAMA} {INITAA} =>
\1 @"093E @"097D ;

Indeed, by placing a virama systematically af-
ter each consonant, we have also added viramas be-
tween consonants and vowels, which makes no sense.
On the first line, the ‘short a’ vowel is removed to-
gether with the (spurious) virama. On the second
line, the ‘long a’ vowel is replaced by Unicode char-
acter "@"093E, which is the dependent version of
vowel ‘long a’, and the virama is removed. There
are such lines for each vowel.

Notice the presence of “fake” Unicode character
@"097D. This character will be replaced by a soft
hyphen at the very last step of our OTP chain.

A special case is the vowel ‘short i’, where the
glyph representing it has to be placed in front of

the consonantic cluster. This is done by lines of the
type:
{CONSONANT?} {VIRAMA} {INITI} =>

@"093F \1 \2 @"097D ;
where we have a consonant and virama followed by
a ‘short i’ vowel. In this case we place Unicode char-
acter @"093F followed by the consonant. On similar
lines, we have n-uplets (n < 7) of consonants and vi-
ramas followed by a ‘short i’ vowel; we replace them
by @"093F followed by the group of consonants and
viramas, except for the last virama.

hindi-uni2cuni2.otp One thing that has not been
covered by the previous OTPs is the case of con-
sonantic clusters starting with an ‘r’ consonant: in
this case, a mark is placed on the last consonant
ofthe cluster. This mark is not part of the Unicode
encoding, and hence we have to use a fake Unicode
character. This file contains lines of the type:

{RA} {VIRAMA} {CONSONANT} => \3 @"097E @"097D ;

On this line we replace a consonant preceded by
a ‘ra’ and a virama, by the same consonant but fol-
lowed by the fake Unicode character @"097E which
will be replaced in the next OTP by the TEX code
producing the mark we need.

(sanskrit|/hindi)-cuni2font.otp In this OTP,
which is quite long (328 lines), we start switch-
ing from Unicode to font encoding: this spe-
cific file—as well as files cuni2font2.otp and
cuni2font3.otp—deals with devnag font encod-
ing, but the user can write his/her own files for a
different font encoding®.

First of all we define aliases for all consonants,
to make the writing of ligature expressions easier:

aliases:

BA = (@"092C) ;
BHA = (@"092D) ;

VIRAMA = (@"094D) ;

Then we write the ligature expressions, using
expressions like the following:
{ssA} {VIRAMA} {TTA} {VIRAMA} {YA} => @"OOF7 ;
{SSA} {VIRAMA} {TTA} {VIRAMA} {VA} => @"00AB ;
{SsSA} {VIRAMA} {TTA} {VIRAMA} {RA}

{VIRAMA} {YA} => @"00AA ;

{SSA} {VIRAMA} {TTA} {VIRAMA} {RA} => @"0104 ;

As the reader can see, the virama is used to
ensure that these consonants are indeed part of the

6 For example for the prestigious Monotype Devanagari
(http://www.agfamonotype.com) which is, IOHO, one of the
most beautiful existing fonts, and has even pre-designed
glyphs for consonants with dependent short and long ‘u’ vo-
wels.

52 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

Low-level Devanagart Support for Omega— Adapting devnag

same consonantic cluster. Since in OTP files order
of precedence is based on order of expressions in the
expression list, the fact that line 3 is before line 4 en-
sures that the consonantic cluster .s.try is indeed
detected instead of .s.tr, which will be matched
only if the last letter is not a y.

Notice that our right-hand expressions are al-
ready in the devnag font positions, except for the
one of the last line (@"0104), which is a ‘fake’
glyph position —like we had previously ‘fake’ Uni-
code characters—i.e., a byte which will be detected
by a forthcoming OTP and converted into something
that makes sense.

The devnag system allows preprocessor direc-
tives activating and de-activating individual liga-
tures; we do not have an equivalent feature in our
system because we do not consider it to be crucial.
Instead, the user has the possibility to add or re-
move lines as the ones above in the OTP file, save
the OTP under a different name and use it as a re-
placement of the standard one, or in a new OCP list.
In the latter case, one can switch on-the-fly from one
ligature setup to another.

After the ligature expressions, follow the conso-
nants followed by virama:

{BA} {VIRAMA} => @"004E ;

{BHA} {VIRAMA} => @"003C ;

{CA} {VIRAMA} => @"0051 ;

{CHA} {VIRAMA} => "\qq{" ©"0043 "}" ;
{DA} {VIRAMA} => "\qq{" @"0064 "}" ;

If one of these patterns is matched, this means
that (a) we are inside a consonantic cluster and
(b) all ligatures have been matched. Two options re-
main: either there is a special half-form of the glyph
of the consonant, or an explicit virama is placed un-
der the normal version of the consonant glyph.

Using “halfed” glyphs is, in a sense, interme-
diate between predefined ligature glyphs and the
placement of individual “independent” glyphs next
to each other. It is a method to construct arbi-
trary ligatures using the basic letter part: compare,
for example, for the same consonantic cluster “vva,”
g (Sanskrit ligature), & (Hindi ligature, where the
first ¥ is half-form) and 9 (two individual conso-
nants, the first having a virama).

In the code above, macro \qq inserts the vi-
rama. In version 2 of Omega this macro will be
made obsolete, since placement of diacritics will be
handled by p-engines; until then, we use macros, like
\qq, taken from the devnag package.

Follow two special lines:

{RA} {DEPU} => @"007A ;
{RA} {DEPUU} => @"0021 ;

where DEPU and DEPUU stand for “dependent short
u” and “dependent long u.” These cover the special
glyphs for consonant ‘ra’ with these vowels: T + I
- ®F, T4+ F - T,

Finally, follow lines of the type:
{BA} => @"0062 ;
{BHA} => @"0042 ;
{CA} => @"0063 ;

which simply match consonants (with inherent
“short a” vowel) and glyph positions, as well as lines
like
{CANDRABINDU} =>
"\1lap{{\clearocplists\char32}}" ;
{ANUSVARA} =>
"\1lap{{\clearocplists\char92}}" ;
{DEPAI} =>
"\1lap{{\clearocplists\char123}}" ;

which map characters candrabindu, anusvara, de-
pendent “ai” vowel and similar signs with the nec-
essary TEX code to obtain their glyphs. Once again
this code will be obsolete in Omega v.2.

hindi-cuni2font2.otp This OTP, as well as the
next one, are provided to deal with cases which could
not be handled simultaneously with the previous
one. The present file deals with dependent vowels
“short u,” “long u,” “short r,” “short 1,” “English
0,” which have the common property of being cen-
tered under the letter. Until Omega 2 arrives, we
need to use macros to place them, and these macros
have to be placed before the consonant which car-
ries the vowel, so that this consonant can be their
argument:

(@"0000-@"00FF) {DEPU} => "\qqqa{" \1 "}" ;
(@"0000-@"00FF) {DEPUU} => "\qqgb{" \1 "}" ;
(@"0000-@"00FF) {DEPR} => "\qqqc{" \1 "}" ;
(@"0000-@"00FF) {DEPRR} => "\gx{" \1 "}" ;
(@"0000-@"00FF) {DEPL} => "\qy{" \1 "}" ;
(@"0000-@"00FF) {DEPLL} => "\qz{" \1 "}" ;
(@"0000-@"00FF) {DEPO0} => "\gzz{" \1 "}" ;

We could not obtain them in the previous OTP,
since that file matched the Unicode characters of
consonants and replaced them with font positions.
Of course we could include in that file combinations
of consonants and vowels, but this would make the
file unnecessary long: it is easier to match first the
consonants and, at a second stage, the vowels.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 53

Yannis Haralambous and John Plaice

Since we are now matching font positions, the
left-hand expressions use (@"0000-@"OOFF). This
works only because dependent vowels always follow
consonants. Nevertheless it is not very elegant, and
this code will return to non-existence as soon as pu-
engines are available.

hindi-cuni2font3.otp This very short file (25
lines), deals with the final virama and with some
special cases of clusters: combinations of various
consonants and consonant “ra.” The final virama
is used in Sanskrit only (according to Velthuis’ con-
vention) and has to be dealt with separately because
in our OTP system we have used the (regular) vi-
rama as a marker of consonants inside consonantic
clusters. If we had used a “regular” virama also at
the end of the word, then we would obtain conso-
nantic clusters with only half-forms of consonants
and no full-form at the end. Instead, we have used
a fake Unicode character (@"097F) for the final vi-
rama and are replacing it by its TEX code only at
the very last step, as follows:

(@"0000-@"00FF) @"097F => "\qq{" \1 "}";

It can happen that the last consonant, although
it has no vowel, carries a special sign because the
consonantic cluster starts with consonant “ra;” to
handle that case we have two extra lines:
(@"0000-@"00FF) @"097E @"097F => "\qg{"

\1 "M 1llap{\clearocplists\char13}" ;
(@"0000-@"00FF) @"097F @"097E => "\qq{"

\1 "F1llap{\clearocplists\chari3}" ;
which send the two combinations of fake Unicode
characters to the same TEX code producing both
the “ra” mark and the virama.

Finally there is a line replacing the fake Unicode
character @"097D used to temporarily stand for the
soft hyphen, with the adequate \discretionary:

@"097D => "\discretionary{\hyph}{}{}" ;

If the user does not wish hyphenation, he/she
can replace this line by a simpler one, which will
“absorb” all @"097D characters:

@"097D => "" ;

Conclusion

The purpose of the previous sections was to illus-
trate the processing of a given script (DevanagarT)
by Omega Translation Processes. Omega 2 will
make these even more efficient since code used to
center diacritics under consonants will be replaced
by p-engines. We believe that these methods can be
applied to other Indic scripts. Furthermore the fact
of having three kinds of files:

1. OTPs for converting input transcription into
Unicode;

2. OTPs for handling contextual analysis of Indic
scripts;

3. OTPs for converting real or fake Unicode char-
acters into glyphs for a given font,

make this system easily adaptable to any combina-
tion of input method and font.

We invite Omega users around the world to
write the necessary code and make it available to
other through CTAN servers. We hope that these
tools will make processing of Indic languages easier
and more efficient and will allow production of high
quality documents.

Availability and Thanks

All resources described in this document are free
software and are available on CTAN. The OTP and
macro files described in this paper can be found on
CTAN in language/devanagari/omega

We invite users writing software for Omega
typesetting of Indic languages into similar omega di-
rectories inside the corresponding Indic language di-
rectories.

The authors would like to thank Anish Mehta
and Gagan Sharma, stagiaires at ENST Bretagne at
the time this paper was written, for their valuable
help.

Figure 1 on page 55 reproduced by kind per-
mission of the Unicode Consortium.

54 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

Low-level Devanagart Support for Omega— Adapting devnag

0900 Devanagari 097F

090 091

o
()
N

093 094 095 096 097|

V=4

0910 0930 0940 0950 0960
AqMT|T Sk
1 \ &
0901 0911 0931 0941 0951 0961

&

SiHlEB e r gy g s e g e B Eel Eal EoO
v

[N
0932 0942 0952 0962

o
=3
8
5

0912

-l

0913 0933 0943 0953 0963

%

1=}
0934 0944 0954 0964

T s

0935 0945 0965

0914

0936 0946 0966

0937 0947

0938 0948 0958

—c
@
X Bw F g0

.

0949 0959

-

094A 095A 096A

Jod [T G T I T [

=
6| E-a 7 4
AN g _C

0948

=)
3
S
3

093C 094C 096C

~
2 < = 2 < < < 2 ——

c B g g g g g g g g

g g H g g & g & g L

G

< g4 4

0300 093D 034D 095D 096D
e| T | <
0908 091E 095E 096E
3 LU 2 EEAS
030F 091F 092F 095F 096F
The Unicode Standard 3.0, Copyright © 1991-2000, Unicode, Inc. All rights reserved 401

Figure 1: Unicode Table for Devanagar1 Script

Reproduced by permission of the Unicode Consortium

TUGboat, Volume 23 (2002), No. 1— Proceedings of the 2002 Annual Meeting 55

Yannis Haralambous and John Plaice

Vowels
a ¥ — |aa, A AT T|i ¥ flii,1 & 7
u 3 e |un, U & | .r & _ | .R OO
1 & L. |.L § .le wW " |a T °
o AT T | au it Tt aMm = aH T
Consonants

ka & |kha ¥ |ga I |gha ¥ | '"'na ¥

ca Y |cha ¥ |ja 9 |jha & | "na A

.ta €| .tha @ | .da ¥ | .dha @ | .na T

ta d | tha g | da % | dha 9 | na T

pa 9 |pha W |ba & |bha ¥ |ma H
Semi- Vowels Sibilants Aspirate

ya Q"ra T‘la Fl"vaa' "sa S'I".sa W‘saﬁ' ha &

Supplementary Consonants

qa $‘.kh,.K @“.ga Tl"za _:I“Ra S“Rha F.!“fa ‘?h“La &

Numerals

0 o|1 9|2 2|3 3|4 ¥
5 4|6 &7 w|8 ©

Special Characters
.0 ¥ AUM m, M anusvara / ° candrabindu | .h,H : wisarga
.a S avagraha | @ € continuation | * - elliptical dot | "r = Marathi ra
“a English a | o T English o | 1 danda .. . period

Table 1: The Velthuis Transliteration Scheme

56 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

Revisiting WYSIWYG Paradigms for Authoring ETEX

David Kastrup
Kriemhildstr. 15

44793 Bochum

Germany
David.Kastrup@t-online.de

Abstract

While the command-driven approach of TEX/ITEX has shown its power and
flexibility for a variety of purposes, the lack of immediate visual feedback often
renders the authoring and reviewing process itself somewhat inconvenient for
both beginners and experienced users. The idiosyncratic TEX syntax does not
lend itself readily to proofreading and sustained composition where the input
syntax differs considerably from the produced results.

A number of approaches trying to deal with this frequently perceived short-
coming will be illustrated. On the input manipulation side there are tools ranging
from a token-based approach (Syntax Highlighting, X-Symbol) to complete ed-
itors using IXTEX mostly as a means of exporting documents (TEXyiacss LyX).
A different range of tools does not aim to provide differences in editing, but
fast and convenient access to the output results, mostly in the form of a separate
page-oriented preview (Whizzy-TEX, Instant Preview). While the performance of
those implementations by now leaves little to be desired, a demand for a tighter
coupling of source and preview for editing purposes remains. ‘Source specials’
provide one way for facilitating cross-navigation between source and previews.
The preview-latex package (by the author) provides a much closer coupling by

directly placing previews of small elements into the source buffer.

The Moving Finger writes; and, having writ,
Mowes on: nor all thy Piety nor Wit

Shall lure it back to cancel half a Line,

Nor all thy Tears wash out a Word of it.

OMAR KHAYYAM

The BTEX/WYSIWYG clash

What is WYSIWYG? WYSIWYG, an acronym
for “what you see is what you get”, is really a mar-
keting term applied to several different degrees of
similarity between the input window and the type-
set output from running a system.

In its strictest sense, it means that the typeset
output will be identical to the screen display. Of
course, this goal is ultimately impossible: print de-
vices have different characteristics than the screens
we are working on: different pixel resolutions, dif-
ferent gradation of colors and gray levels. A screen
dump from a WYSIWYG type word processor will
typically look awful compared to a regular printout.

So what are the things people have come to
expect from the WYSIWYG moniker?

Similarity to print: The editing window is sup-
posed to resemble the printed output.

Letter shapes: While pixel accuracy is not to be
expected, one might at least be able to see the
general shape of the letter. Display devices
often offer considerably finer amounts of con-
trol for pixel intensity than printing devices do;
this makes antialiasing feasible. Antialiasing
tries to compensate for a lower spatial resolu-
tion by varying the brightness of pixels accord-
ing to the amount of ink that would cover the
pixel given higher resolutions. Antialiased let-
ters tend to be more readable than their non-
antialiased variants, but look rather blurry as
the lack of spatial resolution itself is not over-
come, only its impact on the local grayness level
reduced.

Extended character sets: TEX and KTEX itself
typically use an input representation based on
ASCII. While there are extensions in order to be
able to access 8-bit character sets, most mathe-
matical special characters and operators such as
>~ and [are entered as control sequences such
as \sum and \int. WYSIWYG systems usually

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 57

David Kastrup

that that

Figure 1: Antialiased
TEX font.

Figure 2: Typical
screen font.

offer a more readable rendition of such charac-
ters, as well as convenient ways to enter them
without knowing their names.

Non-text elements: The most important items to
mention here would be mathematical formulas
and tables. Those are distinguished by convey-
ing information more directly than possible tex-
tual counterparts.

Line breaks: WYSIWYG word processors typically
have the same line breaks in the printed output
as they have on the screen.

Pagination: Page breaks and figure positioning are
also common elements that WYSIWYG proces-
sors will apply to the edited source in the same
manner as the resulting output.

So where’s the clash? It turns out that some of

those targets are not the best idea for screen-based

editing and document creation in general, and some

are at particular odds with the way TEX works:

Similarity to print: TEX is basically a program-
ming language. Quite often complicated in-
structions lead to the final typesetting results.
Editing those in a WYSIWYG manner is hardly
possible. WYSIWYG tends to hide abomina-
tions in the input: while text processors such
as Word offer various possibilities to structure
your input (format templates, text styles and so
on), this is not immediately apparent in the out-
put. As a result, average users of such systems
sometimes employ rather abominable means for
the formatting of their texts. Not uncommon
is the use of excessive amounts of single spaces
for indentation and spacings, and hand adjust-
ments that are not robust against changes of
fonts and/or printer. TEX provides an easy way
of introducing comments into the typesetting
source (% introduces comment lines). Such com-
ments have no good place in a true WYSIWYG
display.

Letter Shapes: In connection with TEX, the most
commonly employed fonts are the Computer
Modern family by Knuth. Characteristic for
these fonts is a delicate balance between vari-
ous stem widths and hairlines that produces a

‘closed’ look of the letter shapes itself while still
preserving the ‘leading’ characteristic of serifed
letters in the overall grayness level. A typical
example is lower-case “t” which has a closed
bowl when viewed closely, but a distribution of
stem widths that effectively makes the visual
impact of the closing hairline diminish (com-
pare figure [I| to the letters in the text of this
document).

Screen resolution is inadequate to properly
reflect those visual characteristics. For best leg-
ibility, fonts designed for computer screen usage
are to be preferred.

Extended character sets: These can lead to an
easily implementable improvement in legibility.
While the application is straightforward, the
benefits are limited.

Non-text elements: These benefit the most from
WYSIWYG representations. TEX offers consid-
erable power for mathematics, and many exten-
sion packages make use of its macro program-
ming features in order to gain additional func-
tionality. For that reason, adequate rendering
of compositions like math formulas and tables
necessitate considerable programming efforts in
the editor in order to support them well. An
appropriate display of those elements is a sig-
nificant aid for developing a stream of thought,
and for copy editing.

Line breaks and Pagination: TEX finds its line
breaks by paragraph-global optimization, and
employs a process of somewhat localized opti-
mization for finding its page breaks. An in-
sertion mechanism caters for determining the
proper amounts of additional material (such as
footnotes and figures) to attach to a page. All
decisions are governed by the evaluation of vari-
ous kinds of penalties, and several criteria span-
ning more than one line are employed (visual
compatibility of spacing in subsequent lines, ex-
tra penalties for adjacent lines ending with hy-
phenated words and so on).

The non-local layout optimization of TEX is
important to achieve the best typeset results.
Maintaining this during text entry itself ini-
tially appeared infeasible primarily because of
performance considerations (see later for exam-
ples where this has been mostly overcome). It
also can be distracting: the resulting repeated
extensive on-screen text rearrangements result-
ing from small changes in the source make it
hard to keep focus on the actual editing loca-
tion.

58 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

==
Buffer File Edit Insert Text Paragraph Document Options Help
COHEeHX A EELARED @ L04s 9
=== IS |SEVSNAFE
in—4 1 A

cosT = 17é;52+...+

T T

[l
{dn—4 T {dn-—2

Proposition 2. The real numbers R form a real trigonometric fie

Proof. The functional equations are classical. The inequality for
in [7]. As to the inequality for cos z, we have

2n—1 2

COST — E —(_1)k$2k =3 z ot (1 x
08 - = (1= e
= (2 k) s (4K)! (4k+1)(4k
if |z| <4n. Otherwise,

21 ot
(71).& _ .1:2 1:4!(1:2
@k ”“*(lfi)ﬂg art (1* [@E+1)(dk+2

k=0

\d

since n = 1.

7

| [
make-title before expand address

-]
article vdh text roman 11

Figure 3: Screenshot from TEX\iacg window.

Various systems bridging the gap

TEX macs The word processor TEX\acg is about
the clearest demonstration about what a full imple-

mentation of the WYSIWYG paradigm could look
like for TEX. While TEXpacs does not make use
of TEX itself nor offers convenient access to TEX
packages and programming, it employs TEX typeset-
ting algorithms and fonts (antialiased on screen) for
its operation. The printed rendition of the pages is
quite the same as the screen representation (though
having your editing window paginated is optional).
It does not support ITEX as a native format, but
exports to it (needing a special style file) and, con-
siderably less reliably, also imports from it. Its key-
bindings are reminiscent of Emacs’ keybindings, and
it will interpret quite a few macro sequences intro-
duced with backslash. The editor can be extended
and customized in Guile, the GNU project’s version
of the Lisp-like Scheme language.

For document versions exported to IXTEX, it
is possible to include direct code passages that are
passed on verbatim, and that may differ from code
that is used when the document is printed natively.

On a 200 Mhz system, TEXyiacg appeared to
respond somewhat sluggishly. While most people
used to KTEX may get reasonably well along with
TEXyacs, accessing the power of I TEX and docu-
ment exchange with other KTEX users will be some-
what problematic.

Personally, I have found the ‘concertina effect’
distracting: constant reformatting during text en-
try causes the line spacing to shrink until the line
gets wrapped differently again. While the immedi-
ate feedback from keystroke to final output is ben-
eficial for administrating the final touches to a doc-

Revisiting WYSIWYG Paradigms for Authoring IXTEX

ument, the constant fervor with which paragraphs
get adjusted and shifted while single letters are be-
ing typed is about as useful and convenient as con-
stantly busy window cleaners on a construction site.

LyX Similar to TEXyacs, LyX is a complete word
processor. In contrast to TEXyacg, however, LyX
promotes the WYSIWYM (What You See is What
You Mean) buzzphrase instead of WYSIWYG. In
earlier versions of LyX, this was mostly a enuphemism
for ‘what you see is somewhat reminiscent of what
you will get’, but in more recent versions a lot of
work has been invested to make the display indeed
show additional information about the underlying
structure of the document. Since LyX is not bound
to have the input’s appearance match the output, it
can generously apply colors for outlining structural
details, and use push buttons and similar graphic
elements impacting the editing window layout for
indicating footnotes and cross references.

=EIE)
File Edit Inset Layout View Navigate Documents Help
v Vplale] [mla])] e =] -0
2 =7-5 @ A
2mi
1=2¢
16 = 2.(mod.7) (mathed:fifth-eqn)
Note that the first equation in this set { Ref: mathed:fourth-eqn|) is labelled, the next

is numbered but unlabelled, the third is unnumbered, and the last (
Ref: mathed: fifth-eqn|) is again labelled.

5.5 User defined macros in math mode

LyX allows the user to define macros. A user defined macro in math mode is not
a red colored name that LyX didn't know how to draw (formerly known as
macro mode, now simply TeX mode). A macro definition box appears on screen
as purple box with the name of the macro in blue (math color). It contains two
cells initially marked empty by blue rectangles that can be edited as if it were |=f
ordinary math. Just try it: The contents of the first cell

will be used when the macro definition is written during export as LaTeX. The
contents of the second cell, however, will be used for drawing the macro's

=

Figure 4: Typical LyX display.

While font changes and the like are reflected in
the screen font selection of LyX, screen and print
fonts are not the same. The screen fonts are config-
urable as part of the user interface, the print fonts
are part of the document. It must be noted that
LyX’s screen display, particularly with regard to
mathematics, does not seem to be optimized for
readability. LyX uses IATEX for its print typesetting,
employing ordinarily available class and style files.
Naturally, BTEX export is unproblematic; importing
it, however, is not without its difficulties. LyX uses
its own formats for saving files; as with TEXy1acs,
sustained document interchange with other authors
using pure IXTEX is infeasible.

It is possible to embed ITEX code into docu-
ments even where LyX does not cater for it specifi-
cally: when LyX is unable to convert XTEX phrases

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 59

David Kastrup

into its own format, it retains them as “Evil Red
Text” (ERT) which is passed without modification
into the exported IXTEX code. It is a declared goal
of the LyX developers to eventually obliterate most
of ERT by letting LyX natively support more and
more KTEX constructs. Considering the extent cov-
ered by BTEX (a lot of which does not seriously gain
usability by a separate screen representation), this
means a continuing drain of resources. In particular,
things like IMTEX3 will need much work to accom-
modate.

One of the strengths of LyX is its math edi-
tor, quite similar to that of TEXyacg- LyX has the
same update-per-keystroke policy that, in connec-
tion with justification, leads to the concertina effect
of shrinking and expanding lines during normal text
insertion.

File Motion Edit Apps Options Functions Buffers

\usepackage[l 2t irfll{inputenc}
“hegin{document}

\section{Emacs package X-Symbol;

“includepraphics{xsymb, eps}: :;Jl | | g

a2

“Czytasz whasnie krdtki podrecznik...” (Latin—-2)
[by ~bzlg2cong(lbyle [bz 1g)s % b_1

----- uvewiew.té;: {LaTex BCite XStexdisi Rel Fot|
button? runs: "xfig xsuymb.fig &", but?

Figure 5: X-Symbol at large.

X-Symbol X-Symbol is the first system presented
here falling short of providing a complete text pro-
cessing system ‘merely’ for the sake of introducing
WYSIWYG into TEX authoring. It is not an accident
that, like all solutions presented here not coming
with their own editor, it runs under the extensible
editor Emacs (or its variant XEmacs). Emacs is
e intended for editing source texts
e free software
e a powerful editing environment
e casily extensible with a highly interactive ex-
tension language (Emacs Lisp)
e available for a large number of different operat-
ing systems
Since TEX is a multi-platform free software system
with an editable plain text source language, Emacs
and TEX are matched rather well. The most com-
monly employed package for Emacs providing an ex-
tensive editing and runtime environment for TEX

and KWTEX is called AUC TgX.

So what does X-Symbol do? It pretty much
exclusively deals with the ‘extended character set’
angle of WYSIWYG. It will display the likes of \sum
and \leq as “>” and “<” and will also cater for
accented letters in text, such as \"a being displayed
as “4”. Its operation is limited to unique short con-
trol sequences. Some of the employed fonts come
with X-Symbol and fit in with the normal mono-
spaced screen fonts of Emacs. This means, for ex-
ample, that operators like | will look rather small
on-screen. As an added convenience, it has special
fonts that it can use in connection with syntax high-
lighting to make super- and subscripts appear with
smaller letters and appropriately displaced. While
it will automatically convert control sequences into
its special characters as soon as they are typed, it
also offers a few other methods of directly accessing
those characters.

X-Symbol actually replaces the characters in
question in the source text buffer, and just converts
them back into their TEX equivalents when writing
out files. There are several potential problems which
can lead to files being permanently changed:

e If for some bug the text does not get converted
to TEX readable form when written out, you’ll
end up with basically illegible garbage. Some
effort is needed to get control sequences back.

e The combination of reading file in under con-
trol of X-Symbol and writing it out again is
not guaranteed to be unique. This is particu-
larly a problem in verbatim-like settings. Re-
cent versions of X-Symbol behave much more
predictably and cautiously than previous ones,
however.

Since the internal presentation of the text is changed
to extended characters, this means that searching
for those control sequences with the usual search
functions of Emacs becomes awkward to infeasible.

One part of the value that X-Symbol provides
to the user is an editor-level replacement for XTEX’s
inputenc package (for plain TEX, this could be even
more important). Using X-Symbol is a particularly
convenient option when your text would otherwise
mandate switching between input encodings in a sin-
gle document. In that case, a coherent editor display
would be hard to achieve. With X-Symbol, the char-
acters from the ‘foreign’ encoding are expressed in
appropriate control sequences when saving, obliter-
ating this particular problem.

But the most important addition of X-Symbol
is probably the support for numerous ways of in-
putting the characters it caters for, ranging from
keyboard shortcuts to the ‘grid’ (a large menu with

60 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

all of the available characters displayed in an edit-
ing buffer) and entry via the menubar. Apart from
the grid, those techniques are not really WYSIWYG-
related.

X-Symbol is mainly an input prettifier, con-
verter and accelerator: it does not provide for any
previewing facilities. It also does not cater for any
more complicated compositions, like formulas. In
that respect it does a lot less than systems like Ly X.
On the other hand, it provides no obstacles or incon-
veniences with regard to accessing the full power of
ITEX, and it will work also with SGML or HTML
as well as plain TEX.

See the illustration in figure for a more
typical illustration of the visual buffer effect, this
time in connection with preview-latex.

preview-latex preview-latex also is an Emacs add-
on package. In contrast to X-Symbol, it is concerned
exclusively with the display aspect of WYSIWYG.
It does not change the text of the edited buffers at
all, and has no impact on the format of external
files. While the aim of X-Symbol is to replace single
control sequences with letters and symbols matched
to the screen fonts, preview-latex interchanges the
source text display of whole compositions (formu-
las, section headers, figures, included graphics) with
a proper antialiased preview obtained by running
the KTEX passage in question through KTEX, Dvips
and Ghostscript. A single call of XTEX (potentially
with a pre-dumped format) can provide previews
for the entire document, and Ghostscript will be
used as a rendering daemon working from a sin-
gle PostScript file, processing those images currently
on-screen with priority. Future versions will mostly
bypass Dvips and Ghostscript, but update speed is
already quite workable even on modest hardware.
Another future option will be to replace KTEX and
Dvips with PDFEATEX.

The previews are made to match the default
screen font in background and foreground color, as
well as in scale. Other than that, they are identical
to actual print previews. Since preview-latex does
not know about compositions’ inner structure, it will
just provide mundane source text display while you
are editing them, switching back into graphical pre-
view mode when you indicate you are finished.

What elements in a text are actually consid-
ered previewable compositions is determined by an
external KTEX style. Its operation can easily be
customized by placing declarative commands in the
document preamble or a separate configuration file.

The underpinnings of preview-latex are not par-
ticular to the Emacs editor: similar functionality is

Revisiting WYSIWYG Paradigms for Authoring IXTEX

being implemented for LyX, currently restricted to
its math mode.

Whizzy-TEX Whizzy-TEX is one of a number of
systems that focus on automatic fast updating of a
print preview in a separate window. It is (surprise,
surprise) an Emacs package and best complemented
with the previewer Active-DVI (written in Objective
CAML) from the same author, since that previewer
can switch to the correct page and location without
flashing when the DVI file changes. While you can
use Whizzy-TEX also with XDvi, the update action
is less smooth.

Whizzy-TEX is a preview system that continu-
ally tracks cursor movements and text changes, and
in case of a change, reruns INTEX from a recent point
where it has made ITEX dump its state into a for-
mat file. That way, the DVI updates occur quite
fast, and it becomes feasible to play around with
stuff influencing typesetting decisions.

Take a look at subfigure for an illustration
of Whizzy-TEX in connection with Active-DVI.

ActiveTEX /Instant Preview ActiveTEX’s core
is a constantly running TEX process called the TEX
daemon, which typesets pages on demand. A sepa-
rate program then processes individual pages from
the resulting DVI file as they get produced.

The Instant Preview package for Emacs will
use this for keystroke level updates of a TEX buffer.
Since TEX does not get restarted, the material pro-
cessed in this manner should mostly be stateless so
that repetitive runs work well. For that reason, the
system is mostly unsuitable for IXTEX. The principal
author of the system uses XDvi for the display; it
might well be that Whizzy-TEX’s Active-DVI could
provide a smoother update action and avoid flicker.

The main aspect of ActiveTEX is raw speed on
low hardware. Apart from that, it offers little if
any advantage over Whizzy-TEX and serves similar
goals, while being less well-suited for KTEX.

Source Specials Source specials are an editor/pre-
viewer coupling tool that works by placing special
marks into the produced dvi file that indicate the
source location where the dvi file results originated
from. These can be either inserted with a special
IMTEX style, or automatically by most newer TEX
implementations. In combination with support in
both editor and previewer, one can implement for-
ward search (the position in the editor gets auto-
matically tracked in the preview window) and re-
verse search (clicking into the preview window will
relocate the cursor in the editor window to the cor-
responding source line). This is exclusively a cross-
navigational tool. It serves no actual WYSIWYG

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 61

David Kastrup

Normalverteilung sich unabhingi
wir deswegen das Resultat

\begin{equation}
vlabel{eq:4}
flx,.t)=\int_{-\infty} {iinfty
Mrac{f(x' .0 HAsqre{2\piisig

\exp\biggl (-
Arac{ibigl Ge—\mu_f (\mu_0=x",
\biggr)h. dx’

‘end{equation}

Mit der Definition des ‘alg Sch

(a) Opened equation

Normalverteilung sich unabhingi,
wir deswegen das Resultat

\beginfequation}
A\label{eq:4}
fix.t) :I{,x}{“}
AMracf (x!' .0 H sqri{2n0g:(0y
\expibiggl (-
AMrac{ibigl (x—pilpg=x' .t \bigr
Abiggr)\.dx’
‘end{equation}
Mit der Definition des “eglg Sch

(b) The same, with X-Symbol

Normalverteilung sich unabhéngi
wir deswegen das Resultat

fix, 1) = Jm f(x,0)

—oo /2m02 (03 =0,t
Mit der Definition des “gla Sch

(c) The same, closed

Figure 6: Using preview-latex with and without X-Symbol.

1 x) = o

mex}j (biggl)(—

J2wic’(

MUVL U ILLLODDLLEP L, TR Sl JLdl Liu s

(a) TEXMACS

(b) LyX

A\begin{document?}
1
dit,z) = ——— e}(p(—
Nz
\end{document?}
ororor 1 - __1 [N IR E

(c) preview-latex

File Eit Options Bufers Tools Whizzy LaTeX Cammand Ref Help

s[12pt.adpaperdfarticle’

beéin{equation}
d(t,x):\frac{l}{\sqrt{E\piEZd(t)}}\.
\expibiggl(-\rac{ibigl(x—py(tI\bi
end{equationl}

(d) X-Symbol

fspri€2\pi[\sigfa~2_dC AL
Frhctibigl G-\nd_d(0) \bigrIRQH{2\signa

rt{2\pi[\sig |
c{\bigl (x—\m

(e) Whizzy-TEX

Figure 7: Detail views.

functionality. We mention it here because it illus-
trates the perceived need for a closer coupling be-
tween editing window and preview.

Summary

Figure [7] shows screen shots of how the various sys-
tems treat a formula in display, and an overall sum-
mary can be found in table [II Those WYSIWYG
systems that try to provide a more customary input
experience suffer from the handicaps of

e having to implement a complete editing envi-
ronment on their own.

e needing to be able to interpret all of the sup-
ported constructs by themselves instead of let-
ting BTEX do the work. In that way, only a
selected subset of M TEX can be supported prop-
erly and efficiently, and the developers of both
TEXyvacs and LyX have chosen to employ a
native format different from KTEX for working
purposes, which makes accessing IXTEX as an

external interchange format largely unfeasible.
Take a look at figure [7] for how the unknown de-
limiter size specifiers are treated by those first
two systems.

e Needing to always show a coherent editing dis-
play during operation. This makes it infeasible
to actually generate the display with XTEX.

Systems with keystroke level reformatting and
justification in the input window some users find
distracting for continuous text entry. This sort of
operation costs considerable performance on slower
systems, and it renders the canvas unquiet. Reper-
cussions to larger areas are counterproductive in cre-
ation mode, while desirable for admistering final
touches to a document. While Whizzy-TEX also
does keystroke update, it does so in a separate area
which is less of a distraction but has the disadvan-
tage of requiring a different focus of attention in
case you actually need to look at the typeset con-
texts. preview-latex economizes updates (only done

62 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

Revisiting WYSIWYG Paradigms for Authoring IXTEX

Table 1: Ratings of available tools.

TEXmacs LyX X-Symbol preview-latex Whizzy-TEX
Portability — — — 0 +
Source preservation - - + ++ ++
Keystroke updates yes yes yes no yes
Uses editing window yes yes yes yes no
Edit responsiveness — — 0 + N/A N/A
Edit accuracy ++ 0 - + N/A
Preview speed ++ 0 N/A + +
Edit screen estate + + + + —
Preview estate + - N/A + —
Cross-navigation ++ - - + 0

Portability

Source preservation
Keystroke updates
Uses editing window
Edit reponsiveness

Edit accuracy
Preview speed
Edit screen estate
Preview estate

Cross-Navigation

Description of categories:

How easy will it be to transfer this system’s mode of operation to other editors
and editing platforms?

How faithfully will existing ITEX document source be preserved when editing?
Does the system perform its updates on a per keystroke level?

Does the system work within the editing window?

How fast does the system process keystrokes while editing? N/A if the system has
no influence on keystroke processing time.

How close to the typeset result is the representation in the editing window?

How fast will a true preview be available?

During normal operation of the system, how much screen real estate is needed?
If in need of a true preview, how much screen estate will be needed? N/A for
packages which don’t have a default way of previewing.

How easily can we establish the correlation between a true preview and the cor-
responding source position?

Description of ratings:

++ very good

+ good

0 fair

- unfavorable
N/A not applicable

on request, which is very easy), screen real estate
and focus, at the cost of not providing any preview
of the current object you are editing. This can be
improved somewhat by employing X-Symbol which
offers additional input convenience.

The upcoming combination of LyX’s math edi-
tor with preview-latex-like functionality is an inter-
esting development. While experienced KTEX users
might prefer linear text entry, the combination of
easy access to both readably composed input as well
as perfectly typeset HTEX code will be a great help
for advanced users exploring beyond the KTEX con-
structs still fully featured by the LyX editor.

On the input side of WYSIWYG, a reasonable
compromise under Emacs is provided by X-Symbol.

On the preview side, once you leave the special-
ized editor area (where TEXpacg offers the most
integrated approach), the preview-latex paradigm
appears most useful for general implementation in
editing systems: use of IATEX for the typesetting en-
sures high accuracy while yielding full and unencum-
bered access to the full power available from KTEX.
For the kind of syntactical units that preview-latex
processes, the lack of a per-keystroke update policy
(unique among the presented tools) is in practice an
advantage since it allows the user to compose the
unit without distraction and commit it only when it
is actually ready to be run through IXTEX. For in-
teractive changes in connection with adjusting page
layout material, Whizzy-TEX provides the user with

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 63

David Kastrup

fast updates. The added screen estate, and the sep-
arate preview area render it less optimal for other
tasks in copy editing and document creation. That
Whizzy-TEX has two competing screen locations of
interest becomes apparent in figure no other
screen shot required the use of magnification glasses.

An advantage of Whizzy-TEX is that it provides
a preview framework which can easily be embedded
into different editors: it should be conceivable to
adapt it to provide an alternative previewer for LyX,
for example.

Future developments

The complete text editing environments will con-
tinue to support more KTEX constructs. Perfor-
mance increases will not have much of a further
impact on the usability of currently available ap-
proaches. The most interesting approaches to watch
may be hybrid ones which may make their way into
non-Emacs based editing solutions eventually. As an
example, LyX will come with functionality similar
to preview-latex in its next major version (presum-
ably 1.3.0), at first just for previewing math (due to
technical reasons).

Prospective embeddable TEX components (Qli-
braries, DVI-rendering daemons) might make im-
pact on the operation of display engines. The liga-
turing and compositing mechanisms that constitute
TEX’s backend might make a good object for inte-
gration into existing word processors in a manner
similar to TEX1acs- Perhaps drop-in equation cre-

ation components based on TEX code might become
more prevalent in free software systems eventually.

Availability

Here is where the packages can be found on the In-
ternet (the leading http:// has been omitted):

TEXMACS WWW.texmacs.org

LyX www.lyx.org

X-Symbol x-symbol.sourceforge.net
preview-latex preview-latex.sourceforge.net
Whizzy-TEX pauillac.inria.fr/whizzytex
Active-DVI pauillac.inria.fr/advi
ActiveTEX www.activetex.org

Emacs www.gnu.org/software/emacs
XEmacs WWW.Xemacs . org

Src Specials xdvi.sourceforge.net/inverse-search.html
Q omega.cse.unsw.edu.au

All of the described packages are released under
the GNU General Public License and are thus free

software (LyX is released under a modified version
in order to allow linking with the XForms library).

64 TUGboat, Volume 23 (2002), No. 1— Proceedings of the 2002 Annual Meeting

http://www.texmacs.org
http://www.lyx.org
http://x-symbol.sourceforge.net
http://preview-latex.sourceforge.net
http://pauillac.inria.fr/whizzytex
http://pauillac.inria.fr/advi
http://www.activetex.org
http://www.gnu.org/software/emacs
http://www.xemacs.org
http://xdvi.sourceforge.net/inverse-search.html
http://omega.cse.unsw.edu.au

serendiPDF with Searchable Math-fields in PDF Documents

Ross Moore

Mathematics Department, Macquarie University, Sydney

ross@maths.mg.edu.au
http://www.maths.mq.edu.au/"ross/

Abstract

serendiPDF is an attempt to make it easier to find the correct way to express
complicated mathematics, especially aligned environments, using ITEX. This is
achieved by storing a copy of the XTEX source for a mathematical environment
inside the generated PDF output, in a way that allows it to be easily accessed
and copied into the source for other documents. In this way, the full power of
“serendipity”, as a means for appreciating and learning unfamiliar techniques,
becomes available for authors of mathematical BTEX documents.

The existence of extra (initially hidden) mathematical fields within PDF
documents, allows for a solution of the perennial problem of how to search for
pieces of mathematics within typeset documents. A solution is presented whereby
symbol names, such as \alpha («), \Gamma (I') and \Sigma (X), can be located
within the extra math fields. The interface behaves just as one would expect from
a search-engine, finding fields either anywhere within the document, or limiting

the search to just the currently visible page.

Serendipity

Dictionaries define serendipity as the act of “acci-
dental discovery”, such as finding something of value
by accident, when actually looking for something
else. In the context of modern computing software,
with extensive menus and an intricate graphical
interface, serendipity clearly plays a role in learning
how to use the program. When searching through
the menus for the way to perform a particular kind of
task, one frequently tries out unfamiliar options. In
doing this one may not find what was being looked-
for, but instead discover how other tasks can be
performed. Typically ‘features’ discovered in this
way are remembered, or appreciated, much better
than if a manual had been consulted.

With what used to be called WYSIWYG word-
processing software (“What You See Is What You
Get”), serendipity can play a significant réle in con-
structing complex documents. Rather than learning
from a manual how to (for example) create a tabular
layout or complicated mathematical expression, one
just copies something that looks like it does part
of what seems to be needed, then makes alterations
until it is presenting what is desired. This may not
lead to the best possible appearance, or the most
efficient (in some sense) coding, but it can get the
job done.

To TEX purists this can be anathema—data
should be presented in a consistent logical manner,
with appropriate mark-up to indicate its meaning,
not just appearance. While this is true, it also
leads to the perception that TEX (or ETEX) is
difficult, both to use effectively, and to learn—
despite its obviously superior output quality. This
author contends that the problem is largely due
to the 3-step edit—compile-view cycle that is at
the core of document preparation using TEX. An
inexperienced user can see superb TEX-produced
output, but may not know what kind of input source
was required to produce it. For all but simple text
and paragraphing, it is generally not possible to take
the output and reuse it (with appropriate edits)
in a new document, without having access to the
author’s original source coding, or similar work. At
least with PDF as the output format, it is possible to
capture text using the ‘Text Capture' tool. But try
to use this tool for mathematics or tables—it just
does not help at all.

Such an edit—-compile-run cycle used to be the
predominant computing paradigm, so it was no sur-
prise that TEX was constructed to work in this way.
Nowadays however, many people have used comput-
ers effectively for a large number of years without
ever (knowingly) having compiled a program; the
concept is something completely foreign to them.
This can be true of students and academics in all

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 65

Ross Moore

Here is some inline math: I' followed

o + 3% =~

by a bit more .

2

Some text ip-between math-environments:

—(@*+5%) = -

o + 8¢

[

(1]
(2}

|
-]

-2
(%]
F

the usual text in-between math-environments:

a® +

.
)

52

» o s B [y
(a® + 37) '

Figure 1: Moving the mouse over a piece of typeset

mathematics causes the outline of an invisible button

to be displayed. Clicking on this button toggles the visibility of a field with IATEX source, see figure 2.

Here is some inline math:follcuwed by a bit more 3. %\ %<inline math num=1>

=

a? + 3% =~

Some text in-between math-environments:

\Gamma %\)

o+ 32 = q

o’ +58 = 1

[Iv]

1)
(2)

[B}

the usual text in-between matbesnvironments:

| %e\begin{egnarray} %<mathsave-pdftex.tex : eqnaray num=1=>
“Talpha*2+\beta®2 &=&\gamma"2\\
ol l\alpha*2+\beta®? &=8\gamma"2
Y\end{egnarray}

Some more text in-between math-environments:

Figure 2: In response to a click over a piece of typeset mathematics the visibility of a math-field is
toggled. Here we see how the field contains the ITEX coding for the typeset mathematics, as a complete

environment.

fields, so it is not hard to see why TEX has been
described as “arcane”, and does not occupy the
prominent place in publishing that befits the quality
of its output. It is the lack of serendipity that makes
learning TEX seem to be so much harder than for
other modern software packages.

The main purpose of serendiPDF is to imple-
ment an idea that may help to change this. Now
mathematics can be recovered from specially pre-
pared PDF documents, using nothing more than the
Acrobat Reader [2] provided (free of charge) on all
platforms by Adobe Systems Inc. The idea is to
include the ITEX source for mathematics environ-

ments as hidden fields within the PDF document.
Visual clues indicate the presence of these fields,
as indicated in figure 1. In response to a single
mouse-click a field can be shown, thereby revealing
the ITEX coding which has then been ‘discovered’
serendipitously; see figure 2.

A ETEX document can be prepared such that
all mathematics coding is included also within these
hidden fields. Such a document becomes not only a
valuable source of scholarly information on the topic
being presented, but also a useful example for learn-
ing how to create the high-quality appearance for

66 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

http://www.adobe.com/

serendiPDF with Searchable Math-fields in PDF Documents

Search for math: | Jamma Find
case insensitive ¥ from start ¥ this page only Mext

Figure 3: The 'Search for math’ control box
allows TEX source to be located within math
fields. Searches normally look forward from the
current page, but check-boxes allow it to cover the
whole document or restrict to the one page.

mathematical information of a similar kind. Inex-
perienced authors can learn from the older masters,
not just the intricacies of the meaning embodied in
the mathematics, but also how best to present it.

Having the IKTEX coding for mathematics avail-
able leads to further useful possibilities. For exam-
ple, it now becomes a simple matter to search for
mathematical expressions within a PDF document
(see figures 3 and 4); something which was hitherto
quite impossible. It should even become possible to
develop plug-in software that allows mathematical
expressions to be edited in-place.

The serendip package, with insdljs.sty and
hyperref.sty

Electronic fill-in forms are have now become quite
common, in both HTML and PDF. For the most-
part, these rely upon a JavaScript interpreter be-
ing available within the web-browser or PDF reader
software. (JavaScript is a programming language
that handles the appearance of buttons and the
showing/hiding of fields and annotations, as well as
calculations, and a myriad of other kinds of comput-
ing task related to a document and its content.)

Acrobat Reader [2] has had JavaScript support
since version 4.0 [1], and is even more sophisticated
in versions 5.0 and later. Donald Story [7] has been
pioneering the use of JavaScript within PDF docu-
ments generated from TEX source, for several years.
His insdljs package (acronym for ‘Insert Document-
Level JavaScript’) provides coding that allows func-
tions and procedures to be included within PDF
documents, using any of dvips (+ Ghostscript or Dis-
tiller) or dvipdfm or pdfTEX as the engine producing
the final PDF output. In fact with pdfTEX [4] the
inclusion of JavaScript is relatively straight-forward,
using just the hyperref package to help specify fields
and buttons. With other drivers, the pdfmark [3]
technique is used extensively.

For placing mathematics code into fields, the
serendip package builds upon the support for fields,
buttons and JavaScript in both the insdljs and the
hyperref packages. The serendip package works with
IXTEX math environments, such as \ (. ...\) for in-

line, and \ [. .. .\] for displayed math, as well as the
equation, eqnarray and displaymath environments. It
also works with the outer-level environments and
alignments defined within the amsmath package. It
does this by redefining, in a non-destructive way, the
behaviour of some KTEX and AMS macros.

For example, with the equation environment,
as started by \begin{equation}, it is the macro
\equation which is redefined to behave as follows.

1. Open a new level of grouping and redefine the
\catcodes of non-alphabetic characters.

2. Read to the corresponding \end{equation}, to
get the complete source for this environment.

3. Store this ITEX source as a list of tokens, to
be later written as plain text into a hidden field
within the PDF document being constructed.

4. Estimate the size (both height and width) re-
quired for the text field by typesetting the to-
kens in a \hbox using a fixed-width font then
measuring the result.

5. Write the list of tokens into a file (with .mth
extension) so it can be re-read by TEX with the
usual \catcode values.

6. Construct the text-field containing the KTEX
source, named sequentially with all equation en-
vironments. and positioned using \marginpar.

7. Close the grouping level, reverting \catcodes
to their normal TEX values.

8. Start a new inner \vbox, to hold the typeset
mathematics.

9. Read-in the contents of the .mth file for type-
setting, using a stored pointer to the usual
expansion of \equation.

10. Measure the size of the resulting \vbox and
construct a button of this same size.

11. Place the \vbox onto the page with the correct
amounts of preceding and trailing glue.

12. Remove trailing glue, remembering how much
was used.

13. Place the button also onto the page, directly
over the typeset mathematics. This button will
be used in the final PDF to toggle visibility of
the text-field.

14. Replace the trailing glue, so that the environ-
ment interacts correctly with material following
afterwards.

The resulting page may differ slightly in the stretch-
ability of the glue around the environment. Mostly
this is not noticeable at all. Other environments
are handled similarly, except for inline mathemat-
ics, where the typesetting is done within an \hbox,
which is measured and later placed onto the page.
Thus inline-math environments must occur entirely

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 67

Ross Moore

Search for math: |-"'-Qﬂ mma®2 Fingl
case insensitive from start this page only [{ e .
1
Here is some inline math: T' followed by a bit more X.
0]
a® + 8=
Some text in-between math-environments:
— (a® + 3% -2 (1)
a® + 3 2 (2)

the usual text in-between math-environments:

n? 32

g gy
(o® + 3%)

Figure 4: When the specified math coding has been found, the environment is indicated by highlighting
the border of its overlying button, and giving focus to that button. The field itself is not shown until the
button is pressed. Repeated use of ‘Next', instead of ‘Find’, cycles through subsequent occurrences.

within a single line; any breaks need to be forced,
resulting in two fields and a button for each.

Searchable Mathematics

One consequence of having the ITEX code for math-
ematics available in text-fields within the PDF docu-
ment, is that now it becomes possible to search these
fields using JavaScript procedures. The mathsrch
package constructs a console, as shown in figure 3.
This allows mathematical expressions to be found by
searching forward within the math-fields embedded
within the current PDF document.

By checking a box, a search can be modified
to restrict to just the current page, or to cover
the whole document, starting from the beginning.
Using the ‘Next’ button, rather than ‘Find’, allows all
occurrences of a particular expression can be located
sequentially. To indicate a found expression, the
mathematical environment is indicated by outlining
its button, as shown in figure 4. If the BTEX code
itself needs to be shown, then an extra click is
required on this outlined button.

Placing the search-console is not an automatic
consequence of loading the mathsrch package. Cer-
tainly this constructs the console as the contents of a
TEX box register, called \MathSearchBox. This box
can be placed anywhere on a KTEX page, using the
command \MathSearch, which is just a macro that

expands to \copy\MathSearchBox. (It is important
to use \copy, rather than \box, so that that console
can be used repeatedly on different pages.)

Since space characters are usually ignored in
(I8)TEX math-mode source, some flexibility is built
into the searching mechanism. A space token in the
search-string is not required to match in the math-
fields; in fact, it can match any number of spaces,
including none at all. For example, x+y matches
only x+y in a math-field; but x + y will find any of
x+y, x +y,x+ y,x + y,as well as x +y and x + vy,
and other strings having more spaces.

The mathsrch package also defines a command
\MathSearchInHeader, which can put a console on
every page, situated neatly above the header and
abutting into the left-hand margin. More precisely,
\MathSearchInHeader calls upon another macro,
\PlaceMathSearchBoxInHeader, which expands as:
\newcommand{\PlaceMathSearchBoxInHeader}{%

\pagestyle{myheadings}%
\markboth{\protect\MathSearch\hfill}},
{\protect\MathSearch\hfilll}}

From this it can be seen that the \pagestyle is set
to be myheadings, and the header contents are given
explicitly. If other page-styles are being used, then
it is appropriate to make a re-definition:
\renewcommand{\PlaceMathSearchBoxInHeader}{%

\pagestyle{..... ¥
\markboth{..... H..... I}

68 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

serendiPDF with Searchable Math-fields in PDF Documents

to accommodate the desired page-style and header.

Customisation of the search-panel is also pos-
sible; e.g., for a language other than English, or to
change width and colours. A file msearch.cfg is read,
if it can be found on any of the usual ETEX search-
paths. The customisable para meters are provided
with default values as follows:

\providecommand{\msearchString}{Search for math:}
\providecommand{\msearchFindString}{ Find }
\providecommand{\msearchNextString}{ Next }
\providecommand{\msearchPageString}{this page only}
\providecommand{\msearchCaseString}{case insensitive}
\providecommand{\msearchStartString}{from start}
\providecommand{\msearchText}{put TeX code here}
\providecommand{\msearchWidth}{3.25in}
\providecommand{\msearchFGcolor}{red}
\definecolor{ltgray}{gray}{.85}
\providecommand{\msearchBGcolor}{ltgray}
\providecommand{\msearchBorderColor}{blue}
\providecommand{\msearchBorderOpts}{borderstyle=B,
borderwidth=1, bordercolor= .85 .85 .85}

Any of the above macros can be given different
expansions either within mathsrch.cfg, or before the
mathsrch package is loaded, or values changed after
the package has been read, using \renewcommand.

Future Developments

The original intention for having math-fields is to
allow the less-obvious parts of a document’s TEX
source to be distributed along with the final PDF.
This is meant primarily as a teaching aid. It remains
to be seen whether it will indeed be used in this
way; or if other applications are found, once this
extra enrichment of PDF documents becomes more
widespread.

For example, the code from a math-field can
be edited in-place, and subsequently used to gener-
ate a modified form of the mathematical environ-
ment. This can be done in an external program
or utility, such as the ‘Equation Service’ by Bob
Rowlands [6] for Macintosh OS X, that works as a
process callable from other running applications. (In
effect, pdfTEX generates a new image of just the
modified mathematics.) It should be possible to
use the plug-in technology for Adobe’s Acrobat (full
version, not just the Reader), to include such an
image into the original PDF, for display in the same
location as the typeset mathematics from which it
was derived. By merging this image as an update
to the original document, we would have what is
effectively PDF editing capabilities for touching-up
TEX-typeset mathematics.

Acknowledgements The author wishes to thank
Donald Story, for many email discussions and help
with suggestions about how to implement various
technical ideas using JavaScript. Without his work
on insdljs and the exerquiz packages, and testing
of example documents, the serendip and mathsrch
packages described here would have taken much
longer to complete.

References

[1] Adobe Systems Inc.; “Acrobat Forms Java-
Script Object Specification, Version 4.0”; Tech-
nical Note #5186; Revised: January 27, 1999.

[2] Adobe Systems Inc.; Acrobat Reader, viewer
for PDF format documents, available free of
charge from http://www.adobe.com/.

[3] Adobe Systems Inc.; “pdfmark Reference Man-
ual”; Technical Note #5150; Adobe Developer
Relations; Revised: March 4, 1999.

[4] Han, Thé Thanh; pdfTEX, free software for
generating documents in PDF format, based
on the TEX typesetting system. Available for
all computing platforms; see http://www.tug.
org/applications/pdftex/.

[5] Netscape Communications Corporation;
Netcape JavaScript Reference, 1997; online
at http://developer.netscape.com/docs/
manuals/communicator/jsref/toc.htm.

[6] Rowland, Bob; ‘Equation Service’, program
for MacintoshOSX to produce small PDF
images of TEX-typeset mathematics or text;
version 0.5b, 2002. Software available on-
line from http://www.esm.psu.edu/mac-tex/
EquationService/.

[7] Story, Donald; exerquiz & AcroTEX, packages
for including special effects in PDF documents,
using TEX and KTEX. Dept. of Mathematics
and Computer Science, University of Akron.
Software available online from http://www.
math.uakron.edu/"dpstory/webeq.html.

[8] Story, Donald; “Techniques of Introducing
Document-level JavaScript into a PDF file from
a ITEX Source”. TUG 2001, TEX Users Group
Annual Meeting, Delaware, August 2001.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 69

http://www.adobe.com/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://developer.netscape.com/docs/manuals/communicator/jsref/toc.htm
http://developer.netscape.com/docs/manuals/communicator/jsref/toc.htm
http://www.esm.psu.edu/mac-tex/EquationService/
http://www.esm.psu.edu/mac-tex/EquationService/
http://www.math.uakron.edu/~dpstory/webeq.html
http://www.math.uakron.edu/~dpstory/webeq.html

A Conversion of Public Indic Fonts from METAFONT

into Type 1 Format with TEXTRACE

Karel Piska

Institute of Physics, Academy of Sciences
182 21 Prague, Czech Republic
piska@fzu.cz
http://hpl8.fzu.cz/ piska/

Abstract

The paper presents fonts for Indic languages in the Type 1 format converted from
METAFONT sources with the TEXTRACE program, developed and presented by
Péter Szabé in 2001. TEX supports major Indic scripts and the TEX/KETEX
packages together with public font METAFONT sources are available in the TEX
archives (CTAN) in the tex-archive/language/<lang>. The fonts in the pfb
format, despite their limited quality of approximation and relatively large font file
size, may be used as an alternative to corresponding bitmap fonts (represented by
pk files), permitting creation of documents in PDF containing only vector outline
fonts, and eliminating the use of bitmap fonts.

Introduction

Outline fonts are preferable and more suitable for
use in PDF or other final electronic documents than
bitmap fonts. Among the outline fonts, the most
popular in the TEX world are Adobe Type 1 Post-
Script fonts [2]. A single definition of a Type 1 font
embedded in a document may cover all the magnifi-
cations of the script, is common for all resolutions,
and the result can be zoomed in a previewer (like
Acrobat Reader), scaled in PostScript printers and
devices, etc. It is not necessary again and again
to generate bitmap font representations for various
sizes and different resolutions of output devices from
METAFONT sources. Moreover, the bitmap images
look ugly and are displayed slowly.

Today most of the major Indic scripts are avail-
able for use with TEX. Numerous fonts in the META-
FONT format together with TEX support are avail-
able from the Comprehensive TEX Archive Network
(CTAN). “An Overview of Indic Fonts for TEX” was
published by Anshuman Pandey in TUGboat in 1998
[1]. Following the example of this article we will use
the adjective “Indic” (not “Indian”) for languages and
scripts of India. Several public Indic fonts in the
PostScript Type 1 form exist in CTAN but the ex-
act Type 1 equivalents of the METAFONT originals
usually are not freely available. For TUG 2002 in
India I decided to prepare a collection of Type 1 In-
dic fonts corresponding to their METAFONT sources
from CTAN.

The TEXTRACE program developed by Péter
Szabo [3] was used for conversion into the Type 1
format from the original METAFONT sources. The
font families, converted and used in the contribu-
tion, are listed in Table 1 with their versions and
author names.

Several public Indic fonts in the Type 1 format
(listed in Table 2) can be found in CTAN. Other
Type 1 fonts for the Indic languages exist but they
are not free or are not available from CTAN. Ta-
ble 3 presents an overview of the Unicode “common”
part of consonants for Indic languages — now in the
Type 1 representation.

Conversion with TEXTRACE and the
first stage postprocessing

I intended to test possibilities of the TEXTRACE pro-
gram providing a conversion of bitmap images into
outlines and I did not want to “reinvent” the meth-
ods of analytic conversion developed by Basil K.
Malyshev [4] or Richard J. Kinch [5] despite the loss
of important information from METAFONT.

The conversion from METAFONT sources into
a primary Type 1 format was executed on a SUN
workstation with the Solaris 2.6 operating system
without problems; no assistance was needed and it
took about 10 minutes for a single font.

Unfortunately, after the TEXTRACE transfor-
mation, the Type 1 fonts, without optimization and
without hinting, are not perfect; the outline curve
approximation contains many nodes, the font files

70 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

A Conversion of Public Indic Fonts from METAFONT into Type 1 Format with TEXTRACE

are relatively large, and postprocessing is necessary.
The results of the outlines approximated by TEX-
TRACE are worse than I had expected.

The converted font accurately reflects the origi-
nal as a whole and successfully solves a minimaliza-
tion problem. The primary Type 1 fonts, however,
have a number of inconvenient features in the de-
tails: absence of extrema points and, on the other
hand, unexpected bumps may occur; improper start-
ing points; straight lines divided into multiple seg-
ments; identical glyph elements may be approxi-
mated differently by segments; corners with small
angles are not detected and are approximated by
arcs or sequences of short segments; node clustering
in regions where the curvature is changing; irregular-
ities due to “simplification” of some “details” in the
METAFONT sources; (most notably) short segments
have bad tangential angles; slanted straight lines are
approximated by curves —and — curves are approx-
imated by straight lines (contrary to other known
font families of our experience); single curve seg-
ments in the “S” form (tangential vectors from nodes
point in contrary directions).

The subsequent multistep postprocessing is and
will continue to be executed using T1UTILS [6] for
the conversion of pfb files into a readable “raw” text
form and back. The AWK programs [7] are used for
operations with quasi-automatic or manual marking
of the “raw” form by marks—commands, e.g., for
inserting extrema points (i.e., a segment is divided
into two segments in a point with partial derivation
equal 0); merging two curve segments (the previous
subpath is changed into a more smooth segment);
joining more segments into one straight line (after
TEXTRACE it may be split) or by moving the starting
point of a path to the next or the previous node.
Hinting information (in the TEXTRACE output it is
missing) may be added by a font editor using an
autohinting tool, e.g., using PFAEDIT [8].

Unfortunately attempts to develop automatic
postprocessing algorithms have been unsuccessful.
Different fonts have different designs and “produce”
different problems. Many irregularities are “local”
and a more general approach is impossible to find.

Availability

The Type 1 fonts (pfb files) in a-version in vari-
ous stages of postprocessing are or will be available
from my web site (http://hp18.fzu.cz/ piska/)
together with the corresponding tfm files (copied

from CTAN) and proofsheets in PDF. The proof-
sheets are created using my method of generating
associated Type 1 fonts that visualizes nodes, con-
trol points and hints. This method was used for a
comparison of CM/EC fonts and was presented at
the EuroBachoTEX2002 meeting (April 29-May 3)
in Poland [9].

Acknowledgements

I would like to thank all the authors of public METAR-
FONT fonts for Indic languages.

Conclusion — Future work

The outline Type 1 fonts can be relatively simply
generated by TEXTRACE from METAFONT sources
and then can successfully be substituted for their
bitmap versions. But large sizes of font files and
many “tiny” details on glyph outline level need com-
plicated postprocessing.

References

[1] Anshuman Pandey. “An Overview of Indic
Fonts for TEX”?, TUGboat 19 (2), pp. 115-120,
1998.

[2] Adobe Systems Inc. Adobe Type 1 Font Format.
Addison-Wesley Publishing Company, 1990.

[3] Péter Szabd. “Conversion of TEX fonts into
Type 1 format”, Proceedings of the EuroTpX
2001 conference, pp. 192-206, Kerkrade, the
Netherlands, 23-27 September 2001.

[4] Basil K. Malyshev, “Problems of the conver-
sion of METAFONT fonts to PostScript Type 17,
TUGboat, 16 (1), pp. 60-68, 1995.

[5] Richard J. Kinch, “MetaFog: Converting
METAFONT Shapes to Contours”, TUGboat, 16
(3), pp. 233-243, 1995.

[6] T1uTiLs package. (Type 1 tools). http://www.
lcdf.org/~eddietwo/type/#tlutils

[7] Alfred V. Aho, Brian W. Kernighan, and Pe-
ter J. Weinberger, The AWK Programming Lan-
guage, Addison-Wesley, 1988.

[8] George Williams. PFAedit — A PostScript
Font Editor, http://pfaedit.sourceforge.
net/overview.html.

[9] Karel Piska. “A comparison of public CM/EC
fonts in Type 1 format”, Proceedings of the
XIII European TEX Conference, April 29-May
3, 2002; Bachotek, Poland.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 71

Karel Piska

Table 1: Indic METAFONT fonts converted into Type 1

Script Font Name Author(s) of METAFONT Version
(Package) CTAN/language subdirectory
Dvg | Devanagari | dvngl0 Frans J. Velthuis 1.7 (1998)
(devnag) indian/itrans
San | Sanskrit skt10 Charles Wikner 2.0 (1996)
sanskrit
Ben | Bengali bnri0 Abhijit Das 1997
bengali/pandey
Gujarati No METAFONT font in CTAN
Gmu | Gurmukhi | grmk10 Amarjit Singh 1.0 (1995)
(Gurmukhi) gurmukhi/singh
Pun | Punjabi punlO Hardip Singh Pannu 1999
gurmukhi/pandey
Ory | Oriya ori10 Jeroen Hellingman 0.93 (1998)
(Oriya-TEX) oriya
Sin Sinhalese sinhal0 Yannis Haralambous,
Vasantha Saparamadu 2.1.1 (1996)
(sinhala_ TEX) sinhala
Kan | Kannada kan10 G.S. Jagadeesh 1991
(KannadaTgX) indian/itrans
Tel Telugu tell0 Lakshmankumar Mukkavilli 1.0 (1991)
(TeluguTEX) telugu
MIm | Malayalam | mm10 Jeroen Hellingman 1.6 (1998)
(Malayalam-TEX) | malayalam
Tam | Tamil wntml10 Thomas Ridgeway 1988-91
tamil/wntamil
Tib | Tibetan ctib Sam Sirlin, Oliver Corff 0.1 (1999)
(cTibTEX) tibetan/ctib

Table 2: Indic Type 1 fonts from CTAN

| Script | Font Name | Directory | Author of Type 1 font |
Devanagari xdvng indian/itrans | Sandeep Sibal
Bengali ItxBengali | indian/itrans | Shrikrishna Patil
Gujarati ItxGujarati | indian/itrans | Shrikrishna Patil
Punjabi Punjabi indian/itrans | Hardip Singh Pannu
Perso-Arabic | xnsh14 arabtex Taco Hoekwater

72 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

A Conversion of Public Indic Fonts from METAFONT into Type 1 Format with TEXTRACE

Table 3: Consonants

UNI TRA[Dvg/San|Ben|Gmu/Pun|Ory|Sin?|Kan®|Tel®|MIm|Tam| Tib4
KA k FFR|NFTIX I | 9| DS |S|H| S| M
KHA |kh |9 ®© (2| ¥ 49 |[d || 2 |2 |6 R
GA g T T 9|77 d | 6] ® | 0 0| w q
GHA |gh |9 & |9 | W |[@|e | » ||l p
NGA | n T F |8 | T B Q|| ||| |
CA C T 2 || T 9 |Q|D| & ||l |3
CHA |ch |&§ 8 | 2| &8 8 |Q|¥| & | »|an

JA j T T g T A Q|| |2 2| 9|E
JHA |jh | & [| T 8 [¢ |=| w |w|ow

NYA |fi [T 5 |@®| 35 5 8| o |2 0| | 3
TTA |t T T|0|T 2 |¢|0|u|lv|s|L|a
TTHA|th |& & |2 |3 3 |0|&| o |o] o R
DDA | d g 8§ |6 | 3T 3 || ® | & | W 7
DDHA|dh | & |[U | T B |@|&Q | @ |6 | 2
NNA | n w T a9l |8 || 0 |0 6em | p
TA t T c |93 3 ||| |2 0|55
THA |th |9 * |2 | F ®§ [0 | ® |0 | LW q
DA |d |T @ |7 | ¥ B |@|l¢e| 0|08 g
DHA |dh |9 ® | 4| T U (3| Q| @ |e|w 3
NA n T = ||/ & Q|| 3|3 M| B |5
NNNA| n T 6ot

PA p T C 99 U | d]s| o |d|ul|y
PHA |ph |& & (| @ @ || D| 2 | o |ad]
BA b g & || ¥ ||| o |6 q
BHA |bh |¥ ¥ |© | T 3 | |®»| 2 |2 6 g
MA m | F | Y| H | galo9|l || a]|w| &
YA y T 2 | ¥ | W{ W | Jd|] 8| | W ®| w|w
RA r T T |3|3F J|Q|6|o|o]lo|rg|=x
RRA |r T Sl e || o m

LA 1 T AT & F || o|olad|lo|a
LLA |1 & 3 = e 8 | 2| & |6
LLLA |1 |&& ¢ | 1

VA \% T 3 T 2@l 2> | e

SHA | § T T T H OH || &R 2 | 9| 0 4
SSA |s Y & | ¥ Qle| a |a|ad|ad|p
SA S g T || " H | G|e& | a |2 |nW|leav| &
HA h g & |2 T T |Q|v| @ |5 a0 |an| 5

UNI — Unicode character names.

TRA — for Romanized transliteration (produced by Dominik Wujastyk)

the Type 1 font CS Bitstream Charter is used.

¢ The composite glyphs are not completed here.

4 Sinhalese and Tibetan character sets are significantly different from the Indic repertoire.

TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting 73

TEX Live under Windows: what’s new with the 7th edition?

Fabrice Popineau
SUPELEC

2, rue E. Belin

57070 Metz

FRANCE
fabrice.popineau@supelec.fr

Abstract

The 7th edition of TEX Live under Windows has some new features that are ex-
plained in this paper. Especially notable are two experiments to extend Kpathsea

beyond its original abilities:

e sharing Kpathsea data-structures between several processes for faster pro-

cessing,

e allow url’s in client programs as well as filenames whenever they ask Kpath-

sea to open a file.

Additional points about the TeXSetup.exe program and the evolution of
other parts of the distribution will also be discussed.

Extensions to Kpathsea

Rationale Kpathsea is at the heart of any Web2C
based TEX distribution. The idea of gathering all
the services needed by the TEX family programs
around a common API was a great step forward,
compared to the previous TEX distributions. Kpath-
sea features have been quite stable since version 3:
there have been only minor changes. The syntax
of the texmf . cnf file is the same, the file searching
algorithm has converged to the current one, which
may not be entirely satisfactory, but which is at least
stable.

One of the Web2C features — the \writel8
command — triggered new uses of the whole TEX
system. Specifically, it became possible to make tex
call metapost, which will on its turn call tex again
to typeset labels. As one document can hold many
hundreds of metapost figures, we may wonder about
the overhead when starting Kpathsea. In fact, we al-
ready noticed that the Kpathsea initialization time
is far from insignificant. If we take the full TEX Live
installation as a reference, then we have quite a long
texmf . cnf file to parse and a huge 1s-R hash-table
to build, which are responsible for most of this ini-
tialization time. So for a given job, which needs to
run tex and metapost in sequence for hundreds of
figures, we can wonder if we could cut down the pro-
cessing time by avoiding to repeat this initialization
sequence: most of the data structures that Kpath-
sea will build across a single job will be the same for
each instance of the programs.

A second extant issue with Kpathsea is how
far the path notion extends. From the beginning,
Kpathsea was written to handle any kind of paths
for any kind of operating systems: IBM MVS, DEC
VMS, Unix, Amiga, DOS, OS/2, Win32. Not all of
them are still actively supported, but they could be
so in principle. Among them, Unix has probably the
simplest, most regular path syntax.

But supporting Win32 means that UNC share
names like //Server/SharedDirectory/ have to be
supported, as well as c:/Program Files/TeXLive/
texmf/tex/latex/base/article.cls. Looking at
these pathname examples, we can see that each of
them can be divided into 3 parts: a source (server,
shared name, drive), a path relative to the source
and the file name. So given that the URL syntax
also follows the same pattern, we can wonder why it
could not be supported by Kpathsea.

A bare implementation of both features is ac-
tive in the Win32 version of Kpathsea which is avail-
able on TEX Live 7. The description of their imple-
mentation and related problems follows. It is im-
portant to keep in mind that all the changes with
report to the standard TEX Live sources have been
made with simplicity in mind. Sometimes better so-
lutions could have been found but at the price of
more extensive changes or code rewriting. All of the
TEX Live specific Win32 changes are provided by
the /source/source-win32-patch.tar.bz?2 file on
the cdrom.

74 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

TEX Live under Windows: what’s new with the 7th edition?

Extending the “path” notion What do we want
to achieve in extending Kpathsea towards the Inter-
net? The basic usage could be something like this:

\includegraphics{http://server.net/image. jpg}

It could also be interesting for files included in
a document to be taken from the Internet. We can
wonder how long such a url might last (the Inter-
net is moving so fast), but in the meantime more
and more people are processing XML documents us-
ing TEX and so it can be useful to retrieve XML
fragments off the Internet. Given this, we need to
cope with only 3 kinds of url’s: file://, ftp://,
http://. The others are not useful. The first one is
not a problem because it is only syntactic sugar for
local files.

So we want at least that any file opened for
reading by TEX can be replaced by an ftp:// or
http:// url. What does this imply from the file
point of view? Playing with remote files introduces
unknown behaviour because the files may not be
available. Moreover, both ftp and http protocols
have different features. The http protocol allows for
retrieving file information (availability, size) without
transferring the actual file, whereas the ftp protocol
cannot feasibly do thisE|

The simplest solution for implementing remote
file access is to use a third party library that down-
loads the file locally. Downloading the file at open-
ing time will ensure future availability. All the re-
mote files are given temporary names and the asso-
ciation between url’s and temporary names is stored
in a hash-table. When Kpathsea exits, all such tem-
porary files are removed. This is far from optimal,
but safe enough for testing the feature. We could
enhance the process by managing a cache of down-
loaded files, avoiding download of files that are al-
ready present unless they are too old and so on, but
this is probably not a job for Kpathsea: if such a
feature has to be used intensively, then it would be
better to have a high-performance cache system for
your whole Internet connection.

The question is now the following one: where to
hook in the function that will retrieve remote files?
Given that we essentially expect TEX and friends to
be the programs using remote files, we could hook
into the web2c/lib/openclose.c file which holds
the input/output functions for TEX programs. How-
ever there are also reasons to hook inside Kpathsea:

e we need to extend path parsing and this is
Kpathsea job;

1 Retrieving the file size requires parsing a directory list-
ing, but there is no standard for this listing.

e we can wonder about the opportunity of making
Kpathsea Internet aware and be able to set up
a remote texmf tree for example;

e other programs than TEX engines could benefit
from this feature;

e under Win32, it is easier to replace kpathsea.
d11 if we want to enhance it or fix it.

So we chose to make the changes inside Kpath-
sea rather than inside the TEX engines. The inter-
nals of Kpathsea have already a few macros and
functions used to parse various kinds of paths, so
adding a couple of macros and a few cases inside
these functions was easy. Given the fact we want to
download remote files as soon as they are accessed,
we trap the fopen() call and hook file downloading
there. This way, any Kpathsea file can be replaced
by a url. This is enough to provide absolute remote
file retrieval. However it is not enough yet to provide
remote file searching. This would require to trap
also the opendir() and readdir() calls. Although
internet aware versions of these calls are provided by
the Win32 Winlnet API, this change has not been
implemented yetﬂ

The only remaining problem was to find a re-
liable library to download files. There are several
choices:

libwww the W3 Internet protocol library, which
is Unix and Win32 compatible. After quick
testing under Win32, file downloading was un-
reliable and blocked sometimes. Moreover,
even after careful documentation reading, we
have never found out how to display download
progress, although it is said to be possible;

libcurl this library is provided together with a com-
mand line tool and seemed to be very handy. It
has been confirmed at least under Win32 where
it worked like a charm at first try;

wininet the Microsoft Internet library provided
with Internet Explorer 5 and later. This is solid
and has a high-level API, but Win32 only;

sockets raw protocol handling is possible too but
if we want reliability, better to rely on some
higher level library.

Ideally, it should be possible to plug any new
library into the system and choose the one used from
texmf . cnf. We need only one function to ensure the
compatibility layer:
int get_url_to_file (

/* the url of the file to download */

2 In fact, because of the overhead introduced by initializ-
ing 1s-R hash-tables for a remote texmf tree, this could be
interesting in the larger framework of a Kpathsea server. See
Karel Skoupy’s talk on this topic in this same proceedings.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 75

Fabrice Popineau

char *_url,
/* the temporary filename */
char *_filename,
/* if we know the file size */
int expected_size,
/* the function to log the download */
pfnlLog log,
/* the function

to report download progress */
pinProgress progress,
/* the download method to use */
int method

);

According to the method selected one or an-
other library will be used to download the file. Cur-
rently, wininet is hardwired as the selected method
but work is under progress to provide the same fea-
ture with libcurl under Unix and as an alternative
to wininet under Win32.

The feature works quite well and is easy to use.
Enhancing it will require a careful analysis of its
uses. For example, it is common usage to open a
file to test its availability. In this context, the file
will be downloaded unconditionally, which we might
want to avoid.

Kpathsea and reentrance The initialization time
problem would have been easily solved if Kpathsea
had been reentrant, but this is far from being the
case. Kpathsea has been designed for quite a few
years now and that feature was certainly not given
a high priority if envisaged at all. Making Kpathsea
fully reentrant is certainly not an easy task with-
out major rewriting: that would mean for example
that different programs — say latex and context
— could call it simultaneously to look for files and
it would be able to answer both of them. For the
moment, unfortunately, the calling program, upon
which search paths depend, is defined at initializa-
tion time, and the current data structures make it
difficult to redefine it afterwards[]

Another point with initialization time is that
it is even longer under Win32 because the file sys-
tems (FAT32, NTFS) are case-insensitive (though
they preserve case). Hence, filenames read from the
1s-R files are stored in the hash-table after conver-
sion to uppercase. But since Win32 is able to handle
Unicode and MBCS, the conversion realized by the
function toupper() is as slow as you might expect
(it has been measured several times slower than the
same function provided by the GNU C library which
did not handle MBCS or Unicode).

3 Actually, it can be done and the C version of the
fmtutil.exe program does it, but it can work only in lim-
ited cases.

Solving our startup time problem is, however,
quite simple. All we need is to prevent Kpathsea
from rebuilding all of its hash-tables across a single
run of several Kpathsea-linked programs. Here is
the list of these hash-tables:

1. configuration parameters, essentially every vari-
able/value pair read from the texmf .cnf file;

2. 1s-R database, the huge (around 40000 for
TEX Live) list of filenames and paths;

3. alias database, this is a list of alias names for a
few files;

4. fontmap database;

5. links database, this is internal data used to ac-
celerate the recursive search on paths;

6. symbols database, this is the list of pairs of vari-
ables and values used to emulate the various
mktex. .. shell scripts in C (Win32 specific);

7. remote files database, the remote files that have
been downloaded from the Internet and stored
locally under a temporary name (see previous
section).

Storing all these hash-tables into a shared mem-
ory block allows us to avoid rebuilding them. If the
block does not exist yet, it is then initialized. If it
is there, then we can bypass Kpathsea initialization
and use the already built hash-tables. Managing a
shared memory block has some drawbacks however:

e the shared memory block is allocated once and
for all, all you can do after it is built is release it;
it is not extensible. This is because it needs to
be allocated at the maximum size that will be
needed, or else it is quite inefficient to resume
from the situation (see below);

e all pointers must reference data relative to the
beginning of the shared memory block: there
is no way to know the address of this block for
each of the processes using it;

e none of the standard malloc facilities (malloc,
free, realloc) are provided to play with mem-
ory inside this shared memory block. Fortu-
nately, managing the hash-tables only requires
that we allocate memory. Although occasion-
ally we might need to remove an item from
a hash-table, we can safely ignore freeing this
memory because the situation does not occur
frequently.

Managing data inside the memory block re-
quired a few changes to Kpathsea functions. All
data are reallocated inside the shared memory block,
so there is no point in storing a pointer to pre-
allocated memory as was the case in a few places.
When using the hash-tables, all values returned are

76 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

TEX Live under Windows: what’s new with the 7th edition?

const char *: it is the user’s responsibility to du-
plicate them to become writable. All of this has
been done by introducing a new module replac-
ing the kpathsea/hash.c one, with a slightly dif-
ferent, more regular API for the hash-tables func-
tions. Then, all the calling functions were adapted
to this new API. Managing relative pointers inside
the shared memory block has been done by macros,
but all pointers returned by the hash-tables func-
tion are absolute addresses inside the virtual process
space.

Shared memory blocks are not easily extend-
able. Given that our block is identified by its name,
extending it requires allocating a second one with
a new name, copying data from the old one to the
second one, releasing the old one, creating a third
one with the old name but larger than the first one,
and finally copying the data from the second one
to the third for the second time! Moreover, allo-
cating a new block supposes we can propagate the
new base address which can become tricky. In fact,
we are only able to extend the shared memory block
at initialization time (so no propagation needed) us-
ing the previous mechanism. Shared memory block
extension will occur only if the block is filled when
reading the hash-tables, or if there is not enough
free space after initialization is done.

The mktexupd program has been enhanced to
add directly the new file inside the already loaded
hash-tables because it is merely an addition to the
existing list of files. But to cleanly allow to rebuild
all data structures for mktexlsr while the shared
block is loaded would require careful redesign of
Kpathsea (especially to be able to reinitialize it at
any point).

One side effect of using this feature has both a
positive and a negative aspect. If you have some pro-
gram like the windvi viewer which is using Kpath-
sea, then the Kpathsea dll will not be unloaded until
the viewer is closed. As long as an instance of the
dll is running, the shared memory block will remain.
So the shared memory block will be available for
all TEX (and other Kpathsea-linked programs) runs
that will occur and you will gain initialization time
at every run. This is the positive aspect. The neg-
ative aspect is that you need to close all programs
linked to Kpathsea whenever you want to change
your configuration in the texmf.cnf file or when-
ever you need to run mktexlsr. Again, the hash-
tables are built once and for all, and given the lack of
real memory allocation operations inside this shared

block, we cannot rebuild them easily unless we shut
down all the programs using KpathseaEI

The fact that 1s-R files are not read again when
the Kpathsea dll is loaded is minor inconvenience.
It could be part of the managing environment to en-
sure that all processes are shutdown when mktexlsr
is run. The kpsecheck tool is provided and reports
about the shared memory block usage (see the sec-

tion [Other programs| below).
Windows-specific TEX Live features

Small enhancements to Web2C MiKTEX has
had for some time options to the TEX family of pro-
grams that have not been available under Web2C.
In order to enhance compatibility between both dis-
tributions, we added these options to the Win32
Web2C programs too.

The most noticeable one is the - job-name op-
tion. Using the standard Web2C TEX program (ver-
sion 7.3.7), there is some inconsistency with the
-fmt option:

e in virtex (or normal) mode, this option tells
TEX to load the format specified,

e in initex mode, it requires TEX to dump the
format under the specified name.

But we could also require to load some format and
specify the dump name. In fact, the - job-name op-
tion solves this problem, because it allows to change
the internal \jobname value, which is used both in
ini and vir modes. So under Win32, the -fmt option
has only one meaning: preload the specified format
and the -job-name option can be used to change
the base name of the files output by TEX. All of
this is whether you are in ini mode or not.

The other options introduced under Win32 are:

-halt-on-error stop at the first error;

-job-time=FILENAME set the job time by taking
FILENAME’S timestamp as the reference;

-output-directory=DIR use DIR as the directory
to write files to;

-time-statistics print processing time statistics
about the current job.

The TeXSetup.exe program TeXSetup.exe has
been made more reliable, especially for installation
under Win2K/XP. Installation can be done for all
users, but then you need to be a Power User or an
Administrator, or install it for single users. The
default location is c:\Program Files\TeXLive to

4 Apart from windvi, there is another resident program
which is linked to Kpathsea: it is ispell, the spell checker.
If you run it from Emacs, you are bound to forget that ispell
is running in the background.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 7

Fabrice Popineau

be Windows compliant, but installing there can be
done only by Power Users or better. If you have
only standard rights, you can’t install under the
c:\Program Files default location but you can in-
stall in c:\TeXLive for example.

Win2K/XP rights behaviour may not be very
intuitive, especially if you come from the Unix world.
Any object rights are inherited from its container
object at creation time, except if specified otherwise.
The problem with TEX and especially when mktexpk
build font files, is that when an object is moved, this
object keeps its original rights. So if we apply this
rule to mktexpk, the .pk is built by user A in the
user temporary directory, so inherits user A’s rights,
then it is moved in the $VARTEXMF directory, hoping
it will be available for everybody. But the file has
kept user A’s rights, so another user has no rights to
access it. Worse, another user can’t even overwrite
it: the file is there and is neither accessible neither
removable. To overcome this problem, we came up
with this solution:

e at setup time, TeXSetup.exe creates the tem-
porary directory c:\Program Files\TeXLive\
temp directory and assigns it full access rights
for everybody;

e the TEXMFTEMP variable is assigned the value of
the temporary directory;

e at initialization time, Kpathsea substitutes the
value of TEXMFTEMP for the standard TEMP value.

This way, all temporary files are created in the
TEXMFTEMP directory, so they are given full access
rights to everybody. Font files will keep these full
access rights when moved to the VARTEXMF direc-
tory. That means everybody can remove them too,
but this is not a problem since these files will be
rebuilt at runtime when they are not available.

TEX Live 7 introduces so-called schemes of in-
stallation. Previously, we had collections and pack-
ages. In order to make things easier, we can
now require that some predefined set of collections
and packages be installed. Such a set is called a
scheme. We have defined a couple of them: texlive-
basic, texlive-recommended, texlive-full for stan-
dard texlive distributions of different sizes, but there
are also the GUST scheme, the GUTenberg scheme
and the XML scheme. What is interesting is that
you can run batch installation using this kind of
command:

c:\>TeXSetup --scheme=texlive-full --quick

It is easy to add new schemes by creating a
new TPM file in the texmf/tpm/schemes directory.
Complete documentation for the TeXSetup. exe pro-
gram is provided with the TEX Live manual.

Other programs TEX Live holds quite many Perl
scripts which are widely used: texexec, texutil,
the new updmap (rewritten in Perl for Win32 from
the original shell script version), etc. Up to now, you
had to have Perl installled to be able to use them.
Unfortunately, this is not an ideal solution, since:

e Perl is not a standard part of Windows;

e Perl is not available on the TEX Live CD-ROM
because of disk space, although it is available
for installation from the Internet as part of the
Win32 support packages;

e if Perl is not installed, the scripts are not usable
off the CD-ROM.

So with TEX Live 7, we decided to compile all the
Perl scripts into . exe files using the ActiveState Perl
compiler. There are drawbacks in doing this:

e the size of .exe files is quite large, even if the
perl56.d1l1 needed to run them is provided in
a common bin/win32 TEX Live directory and
not included in the .exe compiled file,

e users cannot easily upgrade the Perl scripts, be-
cause they would need to be recompiled.

However, this is currently the only way to run
those scripts off the CD-ROM on a machine where
Perl is not installed.

Another new point with TEX Live 7 is the abil-
ity to build format files at run time. This was quite
easy to setup inside Kpathsea because the mecha-
nism is the same as the one used for fonts: when the
requested file is missing, the specified command is
run to try to build it. So in this case, we only needed
to add the new mktexfmt command which actually
behaves like the fmtutil one. The only difference
is in the calling sequence:
c:\>fmtutil --byfmt=latex
versus
c:\>mktexfmt latex

and also the |mktexfmt| needs to write the path
of the generated file to stdout. This mktexfmt
command was easy to build out of the fmtutil
shell script (Unix) and the fmtutil.exe C program
(Win32). There are several benefits in doing this:

e 1o need to run fmtutil -all at the end of in-
stallation anymore (even if it is still done), since
format files will be built on demand;

e fewer .bat files for all kinds of formats (those
.bat files used to build the format file when
it was not found),; for example, you only need
to copy tex.exe to mllatex.exe and the com-
mand mktexfmt mllatex will be run if the
mllatex.fmt format file is not found, provided
your fmtutil.cnf file mentions it. Then, the

78 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

TEX Live under Windows: what’s new with the 7th edition?

execution will continue. It even works for
nested dependencies between format files.

Lastly, there is a new tool call kpsecheck which
can report on a few aspects of TEX Live setup:

e the state of the Kpathsea shared memory block
(in a future version this should include the pro-
cesses using it);

e the Ghostscript location: Ghostscript is used
in many places and it is handy to make those
programs find it automatically;

e duplicates among the files stored in the hash-
tables. Called with no argument it will report
all the duplicates, but many files have the same
name (README, etc.). So you have the option to
include or exclude files based on globbing:
c:\>kpsecheck -multiple-occurences \

-include=*.sty

to find all duplicates among .sty files.
What is coming for the 8th edition?

It took a few years to stabilize the whole Win32
TEX Live. A few points are still missing, the most
obvious involving the TPM files and the windvi pre-
viewer.

Talking about the previewer, the main missing
features are:

e source specials support,

e Typel and TTF font files support,

e safe printing and dvips printing.
Source specials support and Typel font support are
available from XDvi now. So importing this into
Windvi will be quite easyEI TTF font files support
will require a bit more work but it should follow
the same global scheme as for Typel fonts. Print-
ing is an area that will require careful testing. The
most annoying point is the huge spool files poten-
tially created. This has been partially avoided by
doing banding, at the cost of slowness.

5 A first version of windvi supporting these features will
be demonstrated at the conference.

The setup scheme could be enhanced in various
ways. The granularity of TPM files is not optimal:
binaries should be split into smaller packages. There
are annoying dependencies between some packages
(for instance, aeguill relies on files provided by
other unrelated packages, like the Polish fonts). It is
difficult to automate the construction of these pack-
ages from what is available on CTAN, even if Se-
bastian Rahtz has done a great work in this area.
Probably we need a whole new infrastucture to sub-
mit packages to CTAN but that is another story.

Finally, starting next October, we will work on
a project of tight integration between XEmacs and
TEX in order to provide an easy-to-use out-of-the-
box word processing tool. The goal of this project
funded by the French Ministry for Education is to
draw certain kind of people (mainly mathematics
and physics teachers) towards TEX, on the premise
that what refrains people to use TEX is not the TEX
input syntax, but the complexity of installing and
maintaining a TEX distribution. So we will do our
best to provide a well documented, regular TEX sys-
tem with integrated viewer. More to come about
this project next year!

References

Popineau, F. “fpTEX: a win32 port of teTEX”. In
TUGboat, volume 20. TEX Users Group, 1999.
Proceedings of the 20th Annual Meeting of the
TEX Users Group, Vancouver.

Popineau, F. “Directions for the TEXLive Software”.
In Proceedings of the EuroTEX 2001 Conference,
Kerkrade, the Netherlands, pages 151 — 161.
2001.

Rahtz, Sebastian. “The TEX Live Guide, 7th edi-
tion”. Available on the TEX Live 7 ¢D-ROM, 2002.

Skoupy, Karel. “TEX file server”. In Proceedings of
the 23rd Annual Meeting and Conference of the
TEX Users Group. 2002.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 79

*

Catching up to Unicode

Roozbeh Pournader
Computing Center

Sharif University of Technology
Azadi Avenue

Tehran, Iran

roozbeh@sharif.edu
http://sina.sharif.edu/"roozbeh/

Abstract

Unicode, the universal character set standard first published in 1991, has changed
dramatically in its more than ten years of development, trying to achieve max-
imum interoperability of internationalized text between different platforms. In
the meanwhile, TEX, and its companion production tools, have stuck loyally to
their roots of special formats and traditions known only to the TEX community,

rather ignoring this moving target.

This paper will try to draw a general outline of the Unicode standard in its
present situation, emphasizing on its recently introduced features. It will also
try to specify new requirements for Omega, in order to make it usable in the

developing realm of standard renderings.

Introduction

The Unicode Standard (The Unicode Consortium,
2000, as amended by Unicode Editorial Commit-
tee, 2001, and Unicode Editorial Committee, 2002),
and the big family gathered around it, ranging from
MathML (Carlisle et al., 2001) to OpenType (Adobe
Systems Incorporated and Microsoft Corporation,
2001), have been successful in making document in-
terchange truly global. Now, you don’t need to
worry about the very basics of how to encode your
text if you want to develop an application handling
Lao, or send an email containing APL symbols; you
won’t need to educate the user base about seman-
tic markup, as even Microsoft is now recommending
XML; and you don’t even need to develop new tools
for your basic Syriac text processing needs, IBM has
already developed many general purpose ones if you
can’t find some suitable ones in your Linux machine,
which you only need to configure.

The Unicode standard, while keeping the same
encoding model of the beginning days, has become
very complicated recently, because of the advanced
requirements of text processing applications and the
natural languages and scripts themselves. Also, be-
cause of the wide deployment of Unicode by Mi-
crosoft, a Unicode contributor, starting with Win-

* Preparation of this paper, its prerequisite research,
and its presentation at TUG 2002 have been supported
by the FarsiWeb Project, Science and Arts Foundation
(http://www.farsiweb.info/).

dows 2000 and Office 2000 series of products, many
loopholes and implementation difficulties have been
discovered, and fixed in the standard.

Unfortunately, Microsoft has got some of the
ideas wrong, but fortunately, many of us don’t live
in a Microsoft world. Linux and GNU communities,
with their affinity for standards, and now backed by
corporations like IBM and Sun, have helped imple-
ment Unicode in a compliant way. With an out of
the box installation of Red Hat Linux 7.3, you can
now edit a Unicode text document in Ethiopic con-
taining some Hebrew, some Braille, and a few chess
symbols using vim under xterm?. But sadly, very
few tools exist to help you make a typographically
beautiful printout of the file.

The current Unicode

Putting history aside, Unicode, in its latest 3.2 ver-
sion, is a character set assigning a number from 0
to 10FFFF1g = 17 x 216 — 1 = 1,114,111 to each
character®. (We will be using the notation U420A8
to refer to the character coded as 204814, which (as
it happens) is a RUPEE SIGN). The characters are
distributed in blocks of related functionality, such as

2 The same is of course possible under Microsoft Win-
dows XP if you have the appropriate fonts and keyboard
mapping programs.

3 At present, the standard intends never to change this
upper limit, barring extraterrestial scripts!

80 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

a script like Cyrillic or a common usage like Math-
ematical Operators.

Unicode does (and will) not encode any pre-
sentation forms (also known as glyphs) unless for
backward compatibility with legacy character sets.
So, you will not see four different characters for the
Syriac letter Beth, but only one.

On the other hand, there are many kinds of spe-
cial characters encoded, from control characters for
specifying the shape of newly-invented CJK ideo-
graphs to weather forecast symbols. There are also
more than 70,000 characters reserved for private use,
which lets two parties interchange text without re-
quiring the encoding of their limited-use characters
by the standard.

Unicode also assigns many normative and infor-
mative properties to each character, together with
descriptions of characters and blocks. For exam-
ple, the Arabic block contains a very exact descrip-
tion of a minimum Arabic contextual shaping algo-
rithm, and the General Punctuations block contains
explanatory text for each punctuation mark to make
sure that not a single character is misunderstood. A
list of some character properties together with their
description can be found in Table 1.

The Unicode Consortium is quite proactive, as
well as responsive to requests, in encoding new char-
acters and redefining character properties. Its Uni-
code Technical Committee meets quarterly, and tries
its best in both keeping stability and backward com-
patibility, and fixing any existing mistakes. The au-
thor has had a pleasing experience with his propos-
als to the committee.

Character Properties Some normative proper-
ties worth special note are canonical decompositions,
compatibility decompositions, and combining classes.
For instance, Unicode has two ways to encode ‘a’,
one being the character U+00E4, UNICODE SMALL
LETTER A WITH DIAERESIS, and the other the se-
quence of characters (U+0061, U+0308), which is ac-
tually a LATIN SMALL LETTER A, followed by a
COMBINING DIAERESIS. To help applications, Uni-
code specifies a mechanism for decomposing the for-
mer character to the latter sequence, to check equiv-
alence. The situation will get more complicated
when you consider the case of double or multiple
accents: a COMBINING CEDILLA can be equally fol-
lowed or preceded by a COMBINING TILDE, but you
can’t say that about a COMBINING TILDE and a
COMBINING ACUTE ACCENT, where an interchange
will result in different renderings. So, there will be
a need for combining classes, which are numbers as-
signed to each combining character (equal numbers

Catching up to Unicode

specify non-interchangeable order). The other prop-
erties, compatibility decompositions, are decompo-
sitions specifying approximate equivalence, like the
character U+210E, PLANCK CONSTANT (h) which
is specified to be compatibly equivalent to U-+0068,
LATIN SMALL LETTER H, with only a font differ-
ence.

Based on these two ideas, come Unicode nor-
malization forms (see Davis and Diirst, 2002). The
normalization forms are there to help one do binary
checking instead of heavy table lookups. Once the
text is in a normalization form such as NFD, in which
all precomposed characters are decomposed based
on their canonical decompositions, and combining
characters sorted based on their combining classes?,
equivalent strings will become equal and it will be
good old days again, where you could check string
equivalence using the C function strcmp or search
your files with the UNIX tool grep.

In practice, it is Normalization Form C (NFC),
a form that re-composes the characters after decom-
position, which is the most important form. Having
maximum compatibility with legacy character sets,
and requiring a simpler rendering logic which eases
implementation in portable devices, NFC is refer-
enced frequently in the Character Model for World
Wide Web (Diirst etal., 2002) as the normaliza-
tion form required for all web content. It is also
the preferred way for encoding text files and file
names in UNIX (except in Mac OS X, where NFD
is used). Another form, NFKC, which additionally
uses compatibility decompositions, is a requirement
of IETF’s International Domain Names in Applica-
tions (Féltstrom et al., 2002).

Another important character property, which is
absolutely required in the area the author lives, is
the bidirectional category. These are categories as-
signed to each character specifying its behavior in
mixed right-to-left and left-to-right text, which is
common in scripts like Arabic and Hebrew. Char-
acters are divided to classes like left-to-right, right-
to-left, European number, Arabic number, common
separator, white space, ... which are used in a care-
fully specified Bidirectional Algorithm (Davis, 2002)
to reorder a logically-ordered stream of characters to
a visually-ordered one.

There are also many other character properties,
but worth special notice is that breaking almost any
of them will make your application non-compliant.
You cannot have your ARABIC COMMA behave as
a strictly right-to-left character, render two canon-
ically equivalent strings in two different ways, or

4 The compatibility decompositions will be ignored.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 81

Roozbeh Pournader

82

Code Point

The numeric code assigned to the character: ‘2057 for the
QUADRUPLE PRIME. This can never be changed.

Character Name

A name only using uppercase Latin letters, digits, hyphen and
space. This can never be changed.

General Category

A category describing the general behavior of the character:
‘Sc’ (Symbol, Currency) for the EURO SIGN.

A class used for ordering combining marks and accents after

ginmotillfiil a base letter: ‘230’ (Above) for COMBINING TILDE and
& COMBINING GRAVE ACCENT and ‘202’ (Below Attached) for
Classes
COMBINING CEDILLA.
Bidirectional Categories specifying the behavior of the character in a
bidirectional context: ‘AL’ (Right-to-Left Arabic) for ARABIC
Category
LETTER BEH.
A decomposition of the character to a sequence of others:
‘0075 0302’ ({LATIN SMALL LETTER U, COMBINING
Character
Decomposition CIRCUMFLEX ACCENT)) for LATIN SMALL LETTER U
P WiITH CIRCUMFLEX, and ‘(super) 0054 004D’ for TRADE
Mapping

MARK SIGN (TM). There are many stability requirements for
the character decompositions (Davis and Diirst, 2002).

Decimal Digit Value

A numeric value for digits: ‘3’ for ARABIC-INDIC DIGIT
THREE.

Numeric Value

A numeric value for characters that specify numbers: ‘1/5" for
VULGAR FRACTION ONE FIFTH.

Mirrored

Specifies if the character image should be mirrored in text laid
out from right to left: Y’ (Yes) for ELEMENT OF.

Uppercase Mapping

A one-to-one mapping for converting letters to uppercase:
‘053F” (ARMENIAN CAPITAL LETTER KEN) for ARMENIAN
SMALL LETTER KEN (for full case mappings, see Davis, 2001).

Lowercase Mapping

Similar to uppercase mapping, providing lowercase forms:
‘1043E’ (DESERET SMALL LETTER JEE) for DESERET CAPITAL
LETTER JEE.

Titlecase Mapping

Similar to uppercase mapping, providing titlecase forms: ‘01C8’
(LATIN CAPITAL LETTER L. WITH SMALL LETTER J for LATIN
SMALL LETTER LJ).

Arabic Joining Type

Specifies the shaping behavior of an Arabic or Syriac letter: ‘D’
(dual-joining) for ARABIC LETTER SHEEN.

Arabic Joining
Group

Specifies a group for each Arabic and Syriac letter, specifying
the letter it will be shaped like: ‘SEEN’ for ARABIC LETTER
SHEEN.

Line Breaking
Property

Specifies how the character behaves relative to line breaking:
‘BA’ (Break Opportunity After) for EN DASH (see Freytag,
2002 for more details).

Special Casing
Properties

Uppercase, lowercase, and titlecase mapping for languages that
handle the case differently: ‘0130’ (LATIN CAPITAL LETTER

I WiTH DOoT ABOVE) for LATIN SMALL LETTER I in Turkish
and Azeri contexts.

Table 1: Some of the various standard properties of Unicode characters.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

use some unassigned code points for document in-
terchange, and claim compliance at the same time.
The user undoubtedly doesn’t like her text to have
different meanings in different applications.

Interesting Features These features are some of
the interesting ones for typographically and seman-
tically oriented mind sets. Some appear only in later
versions of the standard.

e Having different characters for letters that look
the same in uppercase but have different lower-
case forms. Also, providing different characters
for mathematically different forms of letters like
the Greek small Phi.

e The ability to recommend for or against auto-
matic ligation in special circumstances, using
the characters ZERO WIDTH JOINER and ZERO
WIDTH NON-JOINER.

e Specifying line breaking properties for charac-
ters, to help recommending for or against a line
break.

e Specifying a mirroring behavior for some char-
acters like the opening parenthesis, whose im-
age should be mirrored in a right-to-left con-
text.

e The ability to encode implicit mathematical se-
mantics, like an invisible times operator or an
invisible comma separator, and even a smart
DIVISION SLASH for in-line fractions like 22/;.

e Having characters for almost every symbol re-
quired in mathematics typesetting from four
combining characters for different forms of \not
to a character for rare symbols like MATHEMAT-
ICAL SANS-SERIF BOLD SMALL XI, and even
bracket, brace, and parenthesis fragments, like
those available in TEX’s cmex font.

OpenType

Because Unicode does not provide standard codes
for glyphs, but rather is interested only in charac-
ters, there is a need for a standard to fill the gap,
that is, provide a mechanism to map characters to
glyphs in a font. There are three available: Mi-
crosoft and Adobe OpenType, Apple AAT, and SIL
Graphite (Correll, 2000). Of these, OpenType, a
superset of TrueType, has become much more suc-
cessful, with many outside implementations includ-
ing some from IBM and the FreeType and GNOME
projects. It is becoming the de facto standard not
because the specification is very clear or technically
supreme, but since many high quality fonts exist in

Catching up to Unicode

the format®. Actually, when you get to scripts a lit-
tle more complex than European ones, say Devana-
gari or Khmer, OpenType is the only font format
in which you will be able to find a couple of usable
fonts.

Unlike the AAT and Graphite formats men-
tioned above, OpenType fonts do not encode the
basic visual behavior of the characters in the scripts
they support. It’s the text layout engine that should
know about the script, and the font will only provide
the minimum needed information for locating vari-
ous presentation forms, kerning, positioning accents
and marks, and ligating (among others). For exam-
ple, a font will not include any information about
the contextual shaping behavior of U+0649, ARABIC
LETTER ALEF MAKSURA, like if it is a right-joining
letter or a dual-joining one®. It will only specify that
a final presentation form of the letter can be found
at a certain glyph position.

OpenType introduces new font tables once in
a while (even allowing font developers to register
some with the specification owners), specifying fea-
tures like Hebrew mark positioning or Arabic swash
forms. This means that the font format is both back-
ward compatible (old engines won’t know about ad-
vanced features, but can still render the text using
the older features available in the font), and exten-
sible (an overlooked feature in a minority script can
be requested by anyone and included in the next ver-
sion of the specification, and everyone will be free to
implement or ignore it).

Other Friends

Unicode and OpenType are joined by standards like
Adobe PDF (Adobe Systems Incorporated, 2001)
which in the latest version provides some mecha-
nisms for having a glyph stream and a Unicode char-
acter stream specify a document’s visual layout and
semantic content in collaboration, W3C Cascading
Style Sheets (Bos etal., 1998; Suignard and Lil-
ley, 2001) that includes mechanisms to guide auto-
matic selection of fonts for Unicode characters from
various scripts that appear in a single text docu-
ment, and MathML, with almost all of its symbols
now in Unicode, which will happily let you cut and
paste mathematical formulas between different ap-
plications.

5 For example, Adobe recently re-released all of their pro-
fessional fonts in the OpenType format, abandoning both
PostScript Type 1 and Multiple Master for new fonts.

6 Actually, the joining class of this letter was changed
between Unicode versions 3.0 and 3.0.1.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 83

Roozbeh Pournader

Many other standards have also emerged, both
using Unicode’s power in supporting technical sym-
bols and minority scripts, and learning from its suc-
cessful unifying experience. Fortunately, these stan-
dards are not only on paper, but they are followed
and being implemented carefully by both major soft-
ware houses and Open Source and Free Software
communities. The author is specially interested in
the linux-utf8 mailing list, where discussions about
implementing Unicode-related technologies in GNU,
Linux and UNIX platforms happen (subscription in-
formation is available at http://www.cl.cam.ac.
uk/"“mgk25/unicode.html#lists).

Where We Stand

In this picture, TEX and friends are left far be-
hind the majority of the world. We still mostly use
our own font formats, METAFONT, PostScript Type
1, TFM, and PK instead of OpenType (for outline
fonts) or pcf and bdf (for bitmap fonts)”; the TEX
output format DVI is still in very wide use, whereas
the rest of the world primarily uses PDF; and almost
all TEX friends have their own traditional command
sequences with a very loose syntax, in contrast with
a world community united on XML. In short, they
just don’t fit!

This should not be compared to the beginning
years, when the TEX community needed to invent
formats for technologies that were becoming pub-
lic for the first time, and had the chance of mak-
ing them de facto standards. Many components
can (and should) now be replaced with their widely
recognized and recommended equivalents like XSL
Formatting Objects (Adler et al., 2001), to have the
luxury of high quality typography once again. Con-
trary to many who insist that they are dead horses
not worth more beatings, the author believes that
TEX and friends have the ability of reaching many
new users if they get modified to support current
technologies.

New Requirements for Omega

The author considers Omega as a possible candi-
date to advance in the field and fill the existing
gap. Actually, it is the only candidate among friends
like e-TEX and pdfTEX, which are more typograph-
ically oriented. Omega has already passed the has-
sle of implementing sixteen-bit fonts, pre- and post-
processing text filters needed for rendering the so-
called complex scripts, and even some MathML. But

7 Even tools like ttf2pk, which let TEX use TrueType fonts,
are not in active development and are based on a frozen
branch of the FreeType font engine

unfortunately it’s not stable, lacks an active devel-
opment team, and has a rather more academic orien-
tation than desirable for such a project. The worst
point of all is that it is being developed in a cathe-
dral model (see Raymond, 2001), which makes it
very hard to reach the above goals.

To make Omega usable in the current work-
ing environment, the following requirements come
to mind:

e Opening the development of Omega, not only
accepting contributions from the public, but
also making them active in the development
process. This will need a few central people at
the beginning, with enough time at their hand
to sketch and implement a working mechanism
for future development.

e Accepting the international standards as they
are, and trying to be compliant as much as
possible: any problem in standards like Uni-
code should be taken to the Unicode authors
themselves, instead of trying to fix them lo-
cally®. This will help reach consistency with
many other existing tools, or those who may be
developed in the future.

e Implementing PDF output (not necessarily a
merge with pdfTEX), including Unicode char-
acter streams.

e Implementing native OpenType support. Some
first milestone for achieving the goal may be
providing a tool to convert OpenType tables to
QTP processes. Also, the current Omega fonts
should be converted to the OpenType format®.
Apart from making Omega able to use almost
all of the fonts in the wild, this will be a contri-
bution to the Open Source community who lack
good printing engines for texts in non-European
scripts.

e Supporting XML and MathML as both input
and output formats. Fortunately, some of this
has already been implemented.

e Closely tracking new features of Unicode, so
as to stay current with the rest of the world.
Omega may even be able to act faster than its
competitors in this field, especially if it starts
to follow the bazaar model of development.

8 The author believes that incorporating a fix which will
definitely happen in a yet unpublished version of a standard
should be allowed.

9 Some ‘Free UCS Outline Fonts’, UCS standing for Uni-
versal Character Set which is the alternate name of Unicode,
are under development based on existing free outlines includ-
ing those from Omega. Latest information is available at
http://savannah.gnu.org/projects/freefont.

84 TUGboat, Volume 23 (2002), No. 1— Proceedings of the 2002 Annual Meeting

Acknowledgments

The author wishes to thank Markus Kuhn and Se-
bastian Rahtz for initially raising some of the is-
sues discussed in this paper, Martin Ditrst, Mark
Dayvis, and many other internationalization evange-
lists who have helped him understand the devel-
opment mechanisms of many internationalization-
related standards, and participate in their develop-
ment, and also Karl Berry, for editorial assistance.
Final thanks should be given to John Plaice and
Yannis Haralambous who created Omega in the first
place.

References

Adler, Sharon, A. Berglund, J. Caruso, S. Deach,
T. Graham, P. Grosso, E. Gutentag,
A. Milowski, S. Parnell, J. Richman, and
S. Zilles. “Extensible Stylesheet Language
(XSL), Version 1.0”. W3C Recommendation,
World Wide Web Consortium, 2001. Available
from http://www.w3.org/TR/xsl/.

Adobe Systems Incorporated. PDF Reference,
Adobe Portable Document Format Ver-
sion 1.4. Addison-Wesley, third edition,
2001. Also available in electronic format from
http://partners.adobe.com/asn/developer/
acrosdk/docs/filefmtspecs/PDFRe/ference.
pdf.

Adobe Systems Incorporated and Microsoft Corpo-
ration. “OpenType Specification Version 1.3”.
2001. Available from http://partners.adobe.
com/asn/developer/opentype/main.html
and http://www.microsoft.com/typography/
otspec/default.htm.

Bos, Bert, H. W. Lie, C. Lilley, and I. Jacobs. “Cas-
cading Style Sheets, level 2”. W3C Recommenda-
tion, World Wide Web Consortium, 1998. Avail-
able from http://www.w3.org/TR/REC-CSS2.

Carlisle, David, P. Ion, R. Miner, and N. Poppelier.
“Mathematical Markup Language (MathML)
Version 2.0”. W3C Recommendation, World
Wide Web Consortium, 2001. Available from
http://www.w3.org/TR/MathML2.

Correll, Sharon. “Graphite: An Extensible Ren-
dering Engine for Complex Writing Sys-
tems”. Technical report, SIL International,
2000. Available from http://graphite.sil.
org/pdf/IUC17_paper.pdf.

Catching up to Unicode

Davis, Mark. “Case Mappings”. Unicode Stan-
dard Annex #21, The Unicode Consortium,
2001. Available from http://www.unicode.
org/unicode/reports/tr21.

Davis, Mark. “The Bidirectional Algorithm”. Uni-
code Standard Annex #9, The Unicode Con-
sortium, 2002. Available from http://www.
unicode.org/unicode/reports/tr9/.

Davis, Mark and M. Diirst. “Unicode Normalization
Forms”. Unicode Standard Annex #15, The Uni-
code Consortium, 2002. Available from http:
//www.unicode.org/unicode/reports/trib/.

Diirst, Martin J., F. Yergeau, R. Ishida, M. Wolf,
A. Freytag, and T. Texin. “Character Model for
the World Wide Web 1.0”. W3C Working Draft,
World Wide Web Consortium, 2002. Available
from http://www.w3.org/TR/charmod.

Faltstrom, Patrick, P. Hoffman, and A. M. Costello.
“Internationalizing Domain Names in Appli-
cations (IDNA)”. Internet Draft, Internet
Engineering Task Force, 2002. Available from
http://www.ietf.org/internet-drafts/
draft-ietf-idn-idna-10.txt.

Freytag, Asmus. “Line Breaking Properties”. Uni-
code Standard Annex #14, The Unicode Con-
sortium, 2002. Available from http://www.
unicode.org/unicode/reports/tri4.

Raymond, Eric S. The Cathedral and the Bazaar,
Musings on Linux and Open Source by an Ac-
cidental Revolutionary. O’Reilly, revised edi-
tion, 2001. Also available in electronic for-
mat at http://tuxedo.org/~esr/writings/
cathedral-bazaar/.

Suignard, Michel and C. Lilley. “CSS3 module:
Fonts”. W3C Working Draft, World Wide Web
Consortium, 2001. Available from http://www.
w3.org/TR/css3-fonts.

The Unicode Consortium. The Unicode Stan-
dard, Version 3.0. Addison-Wesley, 2000.
Also available in electronic format from

http://partners.adobe.com/asn/developer/
acrosdk/docs/filefmtspecs/PDFReference.
pdf.

Unicode Editorial Committee. “Unicode 3.1”. Uni-
code Standard Annex #27, The Unicode Con-
sortium, 2001. Available from http://www.
unicode.org/unicode/reports/tr27/.

Unicode Editorial Committee. “Unicode 3.2”. Uni-
code Standard Annex #28, The Unicode Con-
sortium, 2002. Available from http://www.
unicode.org/unicode/reports/tr28/.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 85

PassiveTEX: an update

Sebastian Rahtz

Oxford University Computing Services
13 Banbury Road

Oxford OX2 6NN
sebastian.rahtz@oucs.ox.ac.uk

Abstract

This paper presents an overview of the development and status of ‘PassiveTEX'.
PassiveTEX is a library of TEX macros which can be used to process the XML
which results from transformation of an XML document to the XSL Formatting

Objects vocabulary.

PassiveTEX is a library of TEX macros which
can be used to process an XML document which
results from a transformation of an XML file to
the W3C Formatting Objects (FO) XML vocabulary
(seehttp://www.w3.org/TR/xs1l/)). The advantage
of this is that it provides a rapid development
environment for experimenting with XSL FO,
using a reliable pre-existing formatter. Since
we can now run with the pdfTEX variant of
TEX, generating high-quality PDF files in a single
operation, PassiveTEX shows how TEX can remain
the formatter of choice for XML, while hiding the
details of its operation from the user.

How does it work?

PassiveTEX builds on David Carlisle’s XML parser
written in TEX (XMLTEX), and was developed
from my JadeTEX macros for processing DSSSL
via Jade. XMLTEX is a highly complex set of
TEX macros which parse XML files directly and
apply TEX macros to the elements as defined
in a configuration file. Since it is namespace-
aware, it can have different configuration files
for different XML applications. PassiveTEX is a
large configuration file which maps XSL Formatting
Objects onto a I¥TEX-based processing model in
TEX, although very few of IMTEX’s front-end macros
are visible. Another configuration file supplied
with XMLTEX maps MathML onto TEX, allowing
PassiveTEX to support XSL FO documents with
embedded MathML.

How does XSL FO work? The language defines
two primary objects: page masters, which define
named styles of page layout; and page sequences,
which reference a named page layout and contain
a flow of text. Within that flow, text is assigned

to one of five (rectangular) regions: the page body,
areas at the top, bottom, left and right. We
also have allowance for floating objects (at the
top of the page), and footnotes (at the bottom),
and the model covers writing in left/right and/or
top/bottom modes. Within a region of text, we
find one or more blocks, tables, lists and floats,
while within a block (the equivalent to a TEX
vertical box), we find inline sequences, characters,
links, footnotes, and graphics. Associated with all
these objects is an immense range of properties,
divided into aural properties, borders, spacing and
padding, breaking, colors, font properties (family,
size, shape, weight, etc.), hyphenation, positioning,
special table properties, and special list properties,
although supporting absolutely all of them is not
mandatory for a conforming processor.

It should be clear that the FO language should
be able to describe the layout of most documents,
by judicious combination of general purpose objects
and their properties. The TEX user should note,
however, that a FO document does not go as far as
TEX in specifying exactly how pages will come out.
It provides a set of constraints, but the exact line-
breaking and page-breaking, for instance, can vary
between implementations.

For an example of XSL FO, let us consider this
piece of input XML written using the TEI (TEI
Consortium, 2002) markup:

<p>The <gi>corr</gi> element marks
<corr sic="a mistake">correction</corr></p>

The <gi> markup says that the word ‘corr’
should be printed inside angle brackets, and the
<corr> element should produce a footnote with the
value of the ‘sic’ attribute. This text might be
transformed into the following fragment of XSL FO:

86 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

http://www.w3.org/TR/xsl/
http://www.tug.org/applications/jadetex/

<fo:block font-size="12pt"
text-align="justify"
text-indent="1em"
space-before="0pt">
The <fo:inline

color="green"
font-family="Courier">corr
</fo:inline>

element marks [correction]
<fo:footnote>

<fo:inline font-size="8pt"
vertical-align="super">a</fo:inline>
<fo:footnote-body>

<fo:block>

<fo:inline font-size="8pt"
vertical-align="super">a</fo:inline>
<fo:inline

font-family="Helvetica"
font-size="10pt">a mistake</fo:inline>
</fo:block>

</fo:footnote-body>
</fo:footnote></fo:block>

and the result will look like this:

The element marks [correction] ®

a .
a mistake

The PassiveTEX control file for XMLTEX which
processes this XSL FO markup consists of a series of
rules, one per element in the language. Each rule has
three parts: a) any handling of attributes, b) what
happens at the start of the element, and c) what
happens at the end. This is demonstrated in the
rule for floats:

\XMLelement{fo:float}
{\XMLattributeX{float}{\FOfloat}{float}}
{\ifx\FO0float\att@none

\begin{figure}[!htp]
\else
\begin{figure}
\fi
\FOlabel}
{\end{figurel}}

which does a fairly straightforward mapping of
<fo:float> to INTEX’s figure environment. A
slightly more complex example is this rule for
<fo:inline>:

\XMLelement{fo:inline}

{3+

{\xmlgrab}

{
\ifx\FOverticalalign\att@auto

PassiveTEX: an update

\let\FOverticalalign\FObaselineshift
\fi
\FOlabel
\ifx\FOborderstyle\att@solid
\ifx\FOborderwidth\att@thin
\def\FOborderwidth{0.4pt}
\fi
\ifx\FOborderwidth\att@medium
\def\FOborderwidth{0.8pt}
\fi
\ifx\FOborderwidth\att@thick
\def\FOborderwidth{1.2pt}
\fi
\FOboxedsequence{#1}%
\else
\F0@inlinesequence{#1}}
\fi}
which shows some of the problems in mapping from
word values for properties like ‘medium’. The
macros like FO@inlinesequence are defined in a
large auxiliary file of helper macros for PassiveTEX.

Running PassiveTEX

Assuming you have created a file of XML using XSL
FO vocabulary, you can use XMLTEX on a file called
(say) article.fo in one of two ways:
1. Build an xmltex format file for pdfTEX with
pdftex -ini "&pdflatex" pdfxmltex.ini
and process your file with
pdflatex "&pdfxmltex" article.fo
Obviously you can create a command
pdfxmltex to do this, which is just a script
containing
tex -fmt=pdfxmltex -progname=pdfxmltex
Or,
2. Make a wrapper file called (say) article.tex
along these lines:
\def\xmlfile{article.fo}
\input xmltex
and run pdfTEX on it as normal with
pdflatex article.tex
Do not worry, XMLTEX knows how to find the
PassiveTEX macros as it needs them.
For reference, the PassiveTEX package consists
of the following files:
e The core XMLTEX configuration files for XSL
FO XML:

fotex.xmt
fotex.sty

e Support for direct formatting of TEI XML with
XMLTEX

tei.xmt
teixml.sty

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 87

Sebastian Rahtz

e Some support files, shared with JadeTEX:

unicode.sty

ucharacters.sty

mlnames.sty

dummyels.sty

Note that TEX has a limit on the length of line

it can read, and some .fo files you generate may
cause TEX to die with an message about increasing
buf'size. If you get that, edit your texmf.cnf file,
increase the size of buf_size (mine is 200000), and
remake any format files.

IETEX package dependencies This setup as-
sumes you have a decent modern TEX setup. The
TEX Live 7 CD-ROM is up to date (see http://
www . tug.org/texlive/). Table 1 lists the packages
loaded in a typical run of PassiveTEX, with their
version numbers where known.

Extensions As explained above PassiveTEX effec-
tively interprets MathML natively (elements must
use the MathML namespace), and also supports a
bookmark element in the fotex namespace, used to
make PDF bookmarks. Usage is like this:
<fotex:bookmark
xmlns:fotex="http://www.tug.org/fotex"
fotex-bookmark-level="2"
fotex-bookmark-label="ID">
text of bookmark
</fotex:bookmark>

Notes on conformance to the XSL
specification

The following general limitations apply to most of
the PassiveTEX implementation of XSL FO:
1. The ‘px’ unit is not recognised.

2. Absolute dimensions always work, but propor-
tional ones are often not recognized.

3. The functions allowed in attribute values are
usually not recognized.

4. There is no error checking at all, and although
all properties are recognized, do not assume
that they do anything!

Most of the formatting objects are implemented
more or less, except for the following:
1. fo:bidi-override
fo:color-profile
fo:declarations
fo:initial-property-set
fo:instream-foreign-object

fo:multi-case

N otk

fo:multi-properties

8. fo:multi-property-set
9. fo:multi-switch

10. fo:multi-toggle

11. fo:region-end

12. fo:region-start

13. fo:table-footer

The coverage of the myriad properties and valid
values listed in the XSL FO specification is variable.
All those that are straightforward to implement have
been done; some are simply not relevant in TEX
(e.g., the aural properties); some are just plain hard
(repeatable column and rows in tables); others need
help from (for example) Omega (bi-directional text).
In some cases the TEX model just does not seem to
fit—FO tables, for instance, work on the basis of cell
properties, rather than TEX’s idea of thinking about
columns.

Tables are (unsurprisingly) the weakest area of
PassiveTEX. Where column widths are specified, it
does a reasonable job, but it has as yet no system
for deriving column widths from data, as required by
XSL FO. This is because TEX’s table model has been
abandoned in favour of the simple hbox and vbox
constructs which can handle the endless variations
on padding, borders and spacing.

Lastly, it should be noted the XSL FO inherits
properties from Cascading Style Sheeets. CSS has a
system of short-hands and composite values (“Times
12pt bold”) which is painful to parse in TEX, and
thus are largely not supported in PassiveTEX.

Things for I TEX users to remember

e No use is made of IMTEX high-level constructs.
No sections, no lists, no cross-references,
no bibliographies; on the other hand, some
extensions in the fotex: namespace have been
implemented (for example, to get Acrobat
bookmarks).

e XSL FO’s underlying character set is Unicode;
by default, entities are mapped to their Unicode
position.

e All vertical and horizontal space is explicit in
the specification.

e Page and line breaking is left to TEX: the rest
is up to you.

References

[1] TEI Consortium, Guidelines for Electronic Text
Encoding and Interchange (TEI P4). Ed. C. M.
Sperberg-McQueen and Lou Burnard. Chicago,
Oxford: Text Encoding Initiative, 2002.

88 TUGboat, Volume 23 (2002), No. 1— Proceedings of the 2002 Annual Meeting

http://www.tug.org/texlive/
http://www.tug.org/texlive/

PassiveTEX: an update

Table 1: KTEX packages needed by PassiveTEX

amsbsy.sty
amsfonts.sty
amsgen.sty
amsmath.sty
amsopn.sty
amssymb.sty
amstext.sty
array.sty
article.cls
bm.sty
color.sty
fontenc.sty
graphics.sty
graphicx.sty
hpdftex.def
hyperref.sty
ifthen.sty
keyval.sty
longtable.sty
multicol.sty
nameref.sty
otlphv.fd
pdlenc.def
pifont.sty
rotating.sty
size10.clo
stmaryrd.sty
tlenc.def
t1phv.fd
t1ptm.fd
t2acmr.fd
t2aenc.def
t3enc.def
textcomp.sty
times.sty
tipa.sty
trig.sty
tslemr.fd
tslenc.def
tslptm.fd
ulem.sty
umsa.fd
umsb.fd
upsy.fd
upzd.fd
url.sty
Ustmry.fd
uwasy.fd
wasysym.sty

1999/11/29 v1.2d

1997/09/17 v2.2e

1999/11/30 v2.0

2000/03/29 v2.08 AMS math features

1999/12/14 v2.01 operator names

1996/11,/03 v2.2b

1999/11/15 v2.0

1998/05/13 v2.3m Tabular extension package (FMi)
1999/09/10 v1.4a Standard LaTeX document class
1999/07/05 v1.0g Bold Symbol Support (DPC/FMi)
1999/02/16 v1.0i Standard LaTeX Color (DPC)

(version not available)

1999/02/16 v1.01 Standard LaTeX Graphics (DPC,SPQR)
1999/02/16 v1.0f Enhanced LaTeX Graphics (DPC,SPQR)
2000/05/08 v6.70f Hyperref driver for pdfTeX
2000/05/08 v6.70f Hypertext links for LaTeX
1999/09/10 v1.1b Standard LaTeX ifthen package (DPC)
1999/03/16 v1.13 key=value parser (DPC)

1998/05/13 v4.09 Multi-page Table package (DPC)
1999/10/21 v1.5w multicolumn formatting (FMi)
2000/05/08 v2.18 Cross-referencing by name of section

2000/01/12 PSNFSS-v8.1 scalable font definitions for OT1/phv.

2000/05/08 v6.70f Hyperref: PDFDocEncoding definition (HO)
2000/01/12 PSNFSS-v8.1 Pi font support (SPQR)
1997/09/26, v2.13 Rotation package

1999/09/10 v1.4a Standard LaTeX file (size option)
1994/03/03 St Mary’s Road symbol package

1999/12/08 v1.9x Standard LaTeX file

2000/01/12 PSNFSS-v8.1 scalable font definitions for T1/phv.
2000/01/12 PSNFSS-v8.1 font definitions for T1/ptm.
1999/01/07 v1.0 Computer Modern Cyrillic font definitions
1999/11/29 v1.0c Cyrillic encoding definition file

(version not available)

1999/12/08 v1.9x Standard LaTeX package

2000/01/12 PSNFSS-v8.1 Times font as default roman (SPQR)
1996/06/10 TIPA version 1.0

1999/03/16 v1.09 sin cos tan (DPC)

1999/05/25 v2.5h Standard LaTeX font definitions
1998/06,/12 v3.0d (jk/car/fm) Standard LaTeX file
2000/01/12 PSNFSS-v8.1 font definitions for TS1/ptm.
1997/04/21

1995/01/05 v2.2e AMS font definitions

1995/01/05 v2.2e AMS font definitions

2000/01/12 PSNFSS-v8.1 font definitions for U/psy.
2000/01/12 PSNFSS-v8.1 font definitions for U/pzd.
1999/03/28 ver 1.5x Verb mode for urls, etc.

(version not available)

1999/05/13 v1.0iWasy-2 symbol font definitions

1999/05/13 v1.0i Wasy-2 symbol support package

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

89

Indic Typesetting — Challenges and Opportunities

S. Rajkumar

Linuxense Information Systems, “Lalita Mandir”, 16/1623,

Jagathy, Trivandrum 695014, India
raj@linuxense.com

Abstract

Asia boasts a wide variety of scripts, most of which are complex from the perspec-
tive of a computer scientist or engineer. This is true in the case of Indic scripts
which are classified in the realm of complex scripts. All of the Indic scripts re-
quire a special process to transform from the a Unicode text to the actual glyph

metrics for TEX to process.

In this paper I will talk about the processing of Unicode text to produce
high quality typeset material for Indic scripts using OpenType fonts. I will cover
the OpenType standards for Indic scripts and other facilities OpenType provides

for advanced typesetting.

Introduction

TEX has remained and continues to remain one of
the best typesetting systems of the world. But with
the passage of time, TEX has been used for purposes
that were not taken into account during its design
phase. One such “flaw” is that it was based on 8-
bit tables internally. This applies among others to
the number of glyph in font files and the number of
characters in a language. The original 8-bit design
is fine for Roman scripts but inadequate for complex
scripts like Indic or CJK scripts.

When TEX was designed there were very few
programs that could really do any meaningful “type-
setting”. Font standards were almost nonexistent.
As time passes the non-TEX world is also trying to
catch up with TEX. One such promising technol-
ogy is OpenType. It is an industry standard font
technology formed by the fusion of TrueType and
Type 1. OpenType has many advanced features
that were the exclusive domain of TEX so far and
adds even more.

The rest of the paper dwells more on the two
subjects covered above and takes a look at how they
can be used to advance the capabilities of TEX.

OpenType and Internationalization

One of the most exciting internationalization devel-
opment happening outside the TEX world is the de-
velopment of OpenType technology [1]. OpenType
is an amalgamation of earlier TrueType and Type 1
technologies and designed from ground up to sup-
port complex scripts like Indic and Arabic. It uses

a full 16 bits and is based on Unicode, and thus
supports 64k glyph in a single font.

OpenType also supports advanced typograph-
ical control such as ligatures, kerning, small caps
etc, which were available in TEX for a long time,
plus swash variants, contextual ligatures, old-style
figures, multi-script baselines etc, which are not part
of TEX. What sets apart OpenType from others that
offer these features, including TEX, is that the ren-
derer need not be aware of all the features available
in the fonts. OpenType fonts are capable of giving
this information to the rendering engine. This en-
ables the type designer to let her imagination run
loose without being hampered by the limits of the
rendering engine. If it is present in the font it will
be used by the renderer.

This is in contrast with the TEX, where a clear
encoding of a font is required for TEX to work. This
problem has been sorted out in Latin scripts where
the possible numbers of glyph to render a text is
finite and a robust encoding scheme is in place for
font designers to follow. But not so in Indic scripts.
In languages like Malayalam there are very many
conjuncts or ligatures possible, and not all fonts have
all of them. Unlike in Latin scripts, the ligatures are
not an advanced typographic tool but an absolute
requirement for legible reading.

The number and placement of glyphs for high
quality typography in Malayalam is still being de-
bated. Furthermore, the Malayalam script itself is
divided into an original script and a reformed script,
each with a slightly different set of glyphs and rules
for vowel consonants formation.

90 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

Another problem with Indic computing in gen-
eral is that there are very few high quality fonts
available and thus reusing fonts is a priority. Since
the entire non-TEX world is moving towards Open-
Type as a single font standard, more and more new
fonts to appear will be based on OpenType. All this
points to the fact that a possible Omega implemen-
tation that uses OpenType will be ideal for Indic
languages implementation of TEX.

OpenType Rendering for Indic scripts

OpenType rendering is the process of converting the
plain Unicode input into a set of glyph indexes in a
font file so that the text can be rendered on a de-
vice such as a screen or printer. This is much more
complex than it sounds, since the font itself con-
tains meta-information in the form of various fea-
tures. Features are script- and language-dependent
and standard features are registered in the renderer.
This enables font designer to use the registered fea-
tures so that consistent high quality output is pro-
duced when rendered and renderers can be written
without being tied to particular fonts.

The standards for Indic scripts are designed by
Microsoft Corporation [2] and are publically avail-
able. The latest Microsoft rendering engines support
most of the Indic scripts but not all. Yudit [3] is one
free editor which also supports most Indic languages.

An Indic OpenType rendering engine processes
text in different stages. These stages include:

1. analyzing the syllables
2. reordering characters

3. shaping (substituting) glyphs according to the
instructions in the font

4. positioning glyphs

During the analysis stage the engine takes the
stream of Unicode characters and finds the syllable
boundaries. Once a syllable boundary is found it
is analyzed to find the features that can be applied
to that syllable, such as possibly combining to pro-
duce a distinct glyph. Next the base consonant is
identified. All other elements are classified accord-
ing to the base consonant like pre-base, post-base,
etc. Next the components that appear in more than
one side are split into component parts. At this
point the syllable is reordered according to the ap-
propriate rules of the language. The reordered part
is passed to the glyph substitution part of the en-
gine to obtain a reordered glyph string. The var-
ious contextual shape features are applied to this
nominal glyph string to obtain the final output for
rendering.

Indic Typesetting — Challenges and Opportunities

Registered Features for Indic Scripts

Registered features can be divided into language fea-
tures which encode the linguistic rules; conjuncts
and typographic forms, which are used for typo-
graphical substitution; and conjunct creation and
positioning features which are used to position the
various markings for vowel modifiers along the final
glyph. The language features listed in their order of
applications are:

Linguistic Rules

nukt This feature takes nominal (full) forms of con-
sonants and produces nukta forms. All nukta
forms must be based on an input context con-
sisting of the full form of consonants. All con-
sonants in a font must have an associated nukta
form, and nukta forms must exist in the font for
all glyphs with akhand forms as well.

akhn This feature creates an akhand ligature glyph
from two consonants in nominal forms sepa-
rated by a halant. The input context for the
akhand feature always consists of the full form
of the consonant.

rphf Applying this feature produces the reph glyph.
If the first consonant of the cluster consists of
the full form (Ra + Halant), this feature substi-
tutes the combining-mark form of Reph. In ad-
dition, the glyph that represents the combining-
mark form of Reph is repositioned in the glyph
string: it is attached to the final base glyph
of the consonant cluster. The input context for
the Reph feature always consists of the full form
of Ra + Halant.

blwf Applying this feature creates below-base
forms of consonants. The input context for the
‘below-base form’ feature must always consist of
the full form of the consonant + Halant. The
feature ‘below-base form’ is applied to conso-
nants having below-base forms and following
the base consonant. The exception is vattu,
which may appear below half forms as well as
below the base glyph. The feature ‘below-base
form’ will be applied to all such occurrences of
Ra as well.

half Applying this feature produces so-called half
forms: forms of consonants used in pre-base po-
sition. Half forms must exist for all consonants
in the font, and half forms of nukta consonants
and Akhand consonants also must exist. Use
the halant form for consonants that do not have
distinct shapes for half forms. This feature is
not applied to the base glyph even if the syllable
ends with a halant.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 91

S. Rajkumar

pstf Applying this feature creates post-base forms.
Examples include Bengali and Oriya ‘Ya’ and
Malayalam ‘Ya’ and ‘Va’'.

vatu Vattu variants are formed by combining con-
sonants with the vattu mark. Vattu ligatures
can be either half or full form, and fonts must
contain both. The input context for the ‘vattu
variants’ feature must always consist of a con-
sonant (in full or half form) + vattu glyph.

Conjuncts and Typographic Forms The con-
juncts and typographical features are not strictly
required, but almost all fonts will have to use some
of these to produce readable text.

pres Pre-base substitutions: this feature produces
conjuncts with half forms, the type most com-
mon in Devanagari. This feature also produces
the correct shape of I-Matra (in Devanagari and
similar scripts) and also may take care of pre-
base matra ligatures like Tamil ‘elephant trunk’
shape of AI-Matra.

blws Below-base substitutions: This feature pro-
duces conjuncts of the base glyph with below-
base consonants. Any specific context-depen-
dent forms of below-base consonants are han-
dled here as well. Finally, this feature produces
matra ligatures with the base consonants and
below-base stress and tone marks.

abvs Above-base substitutions: This feature pro-
duces the correct typographic shape when an
above-base matra forms a ligature with the base
glyph. This feature also produces conjuncts of
the base glyph or matra with Reph, ligatures
and forms involving above-base vowel modifiers
and above-base stress and tone marks.

psts Post-base substitutions: This feature produces
ligatures of the base glyph with post-base forms
of consonants. It also produces the correct ty-
pographic shape when a post-base matra forms
a ligature with the base glyph and different
forms of post-base vowel modifiers like visarga.

haln Halant form of consonants: This feature pro-
duces the halant form of the base glyph in syl-
lables ending with a halant. This features also
takes care of chillaksharams in Malayalam.

Positioning Features

blwm Below-base marks: This feature positions all
below-base marks on the base glyph.

abvm Above-base marks: This feature positions all
above-base marks on the base glyph or the post-
base matra.

dist This feature covers all other positioning look-
ups defining various distances between glyphs,
such as kerning between pre and post-base ele-
ments (like Visarga) and the base glyph.

Moving Ahead

Currently the Omega typesetting system does not
support OpenType technology. But this is one of
the planned features for Omega in future.

References

[1] Adobe Corporation. http://www.adobe.com/
type/opentype/main.html

[2] Microsoft Corporation. http://wuw.
microsoft.com/typography/otfntdev/
indicot/features.htm

[3] Sinai, Gasper. http://wuw.yudit.org/

92 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

METAOBJ: Very High-Level Objects in METAPOST

Denis Roegel

LORIA

Campus scientifique

BP 239

54506 Vandceuvre-les-Nancy cedex
FRANCE

roegel@loria.fr
http://www.loria.fr/"roegel/

Abstract

This paper presents the METAOBJ system and its features for the implementation
of very high-level objects within METAPQOST.

Introduction

In recent years, METAPOST has become a very in-
teresting and powerful tool for graphics, especially
in the context of TEX, for which it is tailored. With
METAPQOST, the user writes a program describing a
drawing. As a full-fledged programming language
is at hand, it is possible to automate a number
of tasks, and make use of functions for recurring
parts in drawings. Therefore, one notable strength
of METAPOST is its control of the drawings and the
ease with which it becomes possible to ensure homo-
geneity. METAPOST appears also extremely useful
in applications where drawings are generated auto-
matically.

However, most applications to date are using
only very simple METAPQOGST features. The power of
METAPOST appears to have not yet been fully ex-
plored. One of the ideas which seemed worth explor-
ing was the manipulation of objects and functions on
objects within METAPQOST. This was the initial aim
of METAOBJ, the system which is presented here.
METAOBJ is a very large extension of METAPOST,
and the most complete (though not complete) de-
scription can be found in “The METAOBJ tutorial
and reference manual” (Roegel, 2001)).

In this article, we will present briefly the usual
low-level way of drawing within METAPOST, as well
as its shortcomings. We will then describe a func-
tional approach to drawing, then show how objects
can be implemented. An example will follow, before
a more general overview of METAOBJ.

Low-level drawing in METAPOST

Several kinds of low-level drawings are possible in
METAPOST.

Discardable drawings First, there are drawings
which can be immediately used and which require
no memorization. We call these drawings “discard-
able”. An obvious example is drawing a square with:

draw (Ocm,Ocm)--(1cm,Ocm)--
(lcm,1cm)--(0cm, 1cm)--cycle;

Many squares can be drawn that way, but if the
user wants two squares with the same sizes, he/she
must make sure that the drawing function uses the
same values.

Hence, discardable drawings are sufficient for
simple tasks, but as soon as the application becomes
complex, they exhibit many drawbacks.

Memorizable drawings After discardable draw-
ings, we have memorizable drawings. In this case,
functions (or macros) are introduced and the use
of these functions makes it much easier to obtain
homogeneous drawings and to ensure that certain
conditions are met. Functions can be called with pa-
rameters and producing two identical drawings only
affords giving identical values to certain parameters.
For instance, a more elaborate version of the square
can be obtained with the following function:

def draw_Square(expr p,l,a)=
draw p--(pt+l*dir(a))--
(ptl*dir(a)+1l*dir(a+90))--
(p+1lxdir(a+90))--cycle;
enddef;

We now have a way to reuse drawing instructions.
The draw_Square macro could even be enriched and
perform other tasks than merely drawing a square.

The draw_Square macro actually contains the
definition of the square. However, this macro does
too much in that it also draws the square. We could

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 93

Denis Roegel

define a macro only defining the square as a path,
for instance as:

def Square(expr p,l,a)=
(p—-(p+l*dir(a))
-—(p+l*dir(a)+1*dir(a+90))
-=(p+l*dir(a+90))--cycle)
enddef;

In that case, since Square returns a closed path,
we can do several things with it. We can draw it with

draw Square(origin,lcm,50);
or we can fill it:
f£ill Square(origin,icm,50);

Other options are also available.

However, even though we have a nice encap-
sulation of a square, such a definition may not be
convenient for other “objects.” For instance, if we
want to define a function for a square with a double
frame, we would not be able to define it in the same
way, because a double frame is not a METAPOST
path. In order to draw such an object, a special
function may need to be introduced, for instance:

def drawDoubleSquare(expr p,l,a)=

draw Square(p,l,a);

draw Square(p-.5mm*dir(a+45),1+1imm,a);
enddef;

The point is that different objects are treated
differently, which makes it cumbersome. A simple
square can be drawn with draw, but a double square
uses a special function.

Moreover, there are other underlying problems
in the two approaches we have described, namely
that the object itself is difficult to grasp. Even
though the content of a double square is the defini-
tion of the drawSquare macro, the automatic anal-
ysis or extraction of parts of the definition is not
easy. In the case of a simple square, the path could
be memorized easily and all its points could be ob-
tained by standard METAPOST functions, but other
objects would need other treatments. This would
result in different and non-homogeneous handling.

One might argue that it is not necessary to
go beyond drawing, but in fact, there are examples
where parts of objects need to be accessed once they
are drawn; for instance, to specify certain non-global
alignments.

We will now describe how objects can be ac-
cessed in an homogeneous way.

A functional approach to drawing

Before describing the implementation of objects, we
will give an abstract description of the main features
of an object. An object o is a structure with a name

(0), points (which have names), linear equations be-
tween points, paths, and several other features that
will be described later.

Objects will be of different types (classes), and
to each type will correspond certain functions. Not
all functions make sense with all types of objects.
However, there is a category of “standard” objects to
which the main functions apply. For instance, some
of the functions are linear transformations: scaling,
rotating, slanting or reflecting. When an object o is
given, it can be rotated 90 degrees counterclockwise
with rotateObj(0,90).

Some of the functions are general (static) and
not attached to an object, but others may be at-
tached to an object and can be viewed as methods
of the object. For instance, every time an object is
drawn (with draw0Obj (o)), it is in fact a method of
o, or more precisely a method defined in o’s class
which is called.

The functional approach to drawing is interest-
ing because functions can return objects. By de-
fault, rotateObj(0,90) only rotates o, but can-
not be composed. This corresponds to the imper-
ative object-oriented construction of an object. It
is object-oriented because o is an object and be-
cause a method of o is called. It is imperative be-
cause the operation is self-contained. In order to use
a functional approach, METAOBJ provides a func-
tional variant of rotateObj named rotate_Obj. It
is then possible to write

rotate_0bj(rotate_0bj(o0,60),30)

and this will return the initial object rotated 30+ 60
degrees.

New functions can be written and added to the
standard library. These functions will then take
their power from the reflexion capability of META-
OBJ, namely the possibility for the function to ex-
plore the object to which it applies, making therefore
virtually anything possible.

The structure of an object

The main novelty of METAOBJ is the fact that it
is a system which keeps track of all of an object’s
features. It is possible to reflect on an object’s struc-
ture, and it is actually also possible to have functions
creating objects, and even classes of objects, given
certain parameters. The possibilities are endless and
have hardly been explored so far.

An object has a name and all its direct compo-
nents form a tree of variables, all starting with the
object name. There is unfortunately no easy way
to traverse such a tree of variables in METAPQOST,
and there are therefore special variables which keep

94 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

METRAOBJ: Very High-Level Objects in METAPOST

Attribute Type Default Description

pointlist_ string o list of points

pairlist_ string e list of pairs (non-movable points)

pointarraylist_ string e list of arrays of points

subarraylist. string e list of arrays of subobjects

stringarraylist_ string " list of arrays of strings

colorarraylist_ string " list of arrays of colors

picturearraylist_ string o list of arrays of pictures

transformarraylist_ string " list of arrays of transforms

booleanarraylist._ string e list of arrays of booleans

numericarraylist_ string " list of arrays of numerics

pairarraylist._ string o list of arrays of pairs (non-movable points)

points_in_arrayslist_ | string o enumeration of all (movable) points of all ar-
rays (of movable points)

picturelist_ string e list of pictures

numericlist._ string " list of numerics

sublist_ string e list of subobjects

subobjties_ string array subobj tying equations (1 string/subobject)

nsubobjties_ numeric 0 number of subobjties

code_ string e code of an object

extra_code_ string e extra code of an object

ctransform_ transform identity | current transform of that object

Table 1: Standard attributes of an object

track of what is in an object. We call these vari-
ables the attributes of an object. The complete list
of attributes is given in table

ptre=100
ptre.numericlist_="dx,dy,nst"
ptre.nst=2
ptre.ctransform_=(0,0,1,0,0,1)

Figure 1: Object structure: general data

As shown in figure [I] an object has a unique
identifying number. Here, it is 100. Different num-
bers correspond to different objects. In particular,
subobjects will also have their own identifying num-
ber.

Each object can store numerical values in the
string numericlist_. There are three here, dx, dy,
and nst (figure[l)), but only nst is defined. This is
the number of subtrees (2 in this example).

ctransform_ records the current transform of
the object, and it is initially the identity.

An object also has points (figure [2), the list
of which is given in the string pointlist_ which
is a standard attribute of the object. It has a list
of subobject references (figure , the list of which
is given as a string sublist_. Each subobject is

actually only given as a string. The subobject is
not literally part of the object (an object can be
part of several other objects).

The ptre object belongs to the PTree class (this
information is not part of the object, but can be ob-
tained by an external table) and it contains four sub-
objects. Each subobject has a corresponding string:
conc (conclusion), subt (subtrees), 1r (left rule), rr
(right rule). The value of the string (figure [3) was
generated automatically by newobjstring.. The
fancy names avoid name clashes with user-defined
objects.

The structure of ptre was obtained with

showObj ptre;

but this does not show the structure of all subob-
jects. We could define a function showing recur-
sively the whole structure of an object, but cur-
rently the user must call showObj on each subobject

It is possible to go to great depth in an object.
Even when there are pictures, we can find what is
inside using the for ... within construct.

Each subobject has an associated tying func-
tion. This function attaches a subobject to the main
object and is used when linear transformations are

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 95

Denis Roegel

96

ptre.

ptre

ptre.
ptre.
ptre.
ptre.
ptre.
ptre.
ptre.
ptre.

ptre.
.in=(0,308.30998)

ptre

ptre.
.1e=(98.02467,283.46451)

ptre

ptre.
ptre.
ptre.
ptre.
ptre.

ptre.
ptre.
.1lstart=(-51.91089,292.35118)

ptre

ptre.

.c=(0,287.17845)

pointlist_="ne,nw,sw,se,n,s,e,w,cC,
ine,inw,isw,ise,in,is,ie,iw,ic,ledge,redge,lstart,lend"

n=(0,312.73784)
s=(0,261.61906)
e=(95.02467,287.17845)
w=(-95.02467,287.17845)
ne=(95.02467,312.73784)
se=(95.02467,261.61906)
nw=(-95.02467,312.73784)
sw=(-95.02467,261.61906)

ic=(0,283.46451)
is=(0,258.61905)
iw=(-98.02469,283.46451)
ine=(98.02467,308.30998)
ise=(98.02467,258.61905)
inw=(-98.02469,308.30998)
isw=(-98.02469,258.61905)

ledge=(-72.57094,258.61905)
redge=(92.90178,258.61905)

lend=(65.57219,292.35118)

Figure 2: Object structure (cont’d): points

ptre

ptre.

ptre
ptre

ptre.

ptre

ptre

ptre

ptre

ptre

.sublist_="subt,lr,rr,conc"

.nsubobjties_=4

.subobjties_1="vardef tie_function_@#(expr $)=q_l=obj(@#subt) .ne;
transformObj (obj (@#subt)) ($);
@#ne-obj (@#subt) .ne=(p_1-q_1) transformed $;enddef;"
.subobjties_2="vardef tie_function_@#(expr $)=q_2=obj(@#lr) .ne;
transformObj (obj (Q#1r)) ($);
@#ne-obj (Q#lr) .ne=(p_1-q_2) transformed $;enddef;"
.subobjties_3="vardef tie_function_@#(expr $)=q_3=obj(@#rr) .ne;
transformObj (obj (@#rr)) ($);
@#tne-obj (@#rr) .ne=(p_1-q_3) transformed $;enddef;"
.subobjties_4="vardef tie_function_@#(expr $)=q_4=obj(@#conc) .ne;
transformObj (obj(@#conc)) ($);
@#ne-obj (@#conc) .ne=(p_1-q_4) transformed $;enddef;"

Figure 3: Object structure (cont’d): subobjects

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

METRAOBJ: Very High-Level Objects in METAPOST

Q#ic=0#c;

ptre.code_="@#se-0#sw=0#ne-0#nw; xpart (0#se-0#ne)=0; ypart (Q#se-0#sw)=0;
Q@#n=.5[0#ne,0#nw] ; O#s=.5[0#se,O#sw] ; O#e=.5[0@#ne,O#tse] ;
Q#w=.5[Q#nw,0#sw] ; O#c=.5[0#n,0#s] ; O#ine=0#ne ; O#inw=0#nw;
Q#isw=0#sw;Q#ise=0#se; Q#in=0#n; O#is=0#s; 0#ie=0#e ; O#iw=0%#w;

xpart (.5[obj(@#conc) .ledge,obj(@#conc) .redgel)=

.5[xpart (obj (@#subt) .s)-62.07625,xpart (obj (@#subt) .s)+55.40683] ;
ypart (obj (@#subt) .s-obj (@#conc) .n)=5.66928;
ypart (@#n-obj (@#subt) .n)=0;ypart (obj (@#conc) .s-0#s)=0;
Q#ledge=obj (@#conc) . sw; @#redge=obj (Q#conc) . se;
ypart (@#lstart)=ypart (@#lend)=ypart (obj(@#conc) .n)+2.83464;
xpart (@#lstart)=xpart (obj (@#subt) .c)-62.07625+0;
xpart (@#lend)=xpart (obj (C#subt) .c)+55.40683+0;
xpart (@#e) -xpart (obj (Q#subt) .e)=+0;
xpart (obj (@#subt) .w) -xpart (Q#w)=+20.33072;
O#lstart-(rdistl,0)=obj(@#lr).e;"

Figure 4: Object structure (cont’d): equations

applied to an object. Having four subobjects, we
have therefore four such functions, subobjties_1,
..., subobjties_4. These functions are stored as
strings.

And finally, all the equations defining the initial
state of the object are stored in the code_ string
(figure . These equations are used whenever an
object is reset.

An object can contain more information, but
every time there is some variable, the name of this
variable must also appear in some list, because this
is the only way to achieve duplication (cloning). We
can only know what is inside an object if we con-
stantly keep track of it. This also explains why
special functions should be used to define variables.
“pair” would not be enough to record the name of
a pair. Instead, “ObjPoint” should be used.

An object definition example

The simplest of all classes is the EmptyBox. An
EmptyBox is an empty rectangle, normally with no
frame. Its only purpose is to take some space. For
instance, it is useful in order to change the spacing
between leaves of a tree, when the spacings are not
all identical. The constructor looks like:

vardef newEmptyBox@# (expr dx,dy)
text options=

ExecuteOptions(options);

assign0bj (@#, "EmptyBox") ;

StandardInterface;

ObjCode StandardEquations,
"Q#ise-Q@#isw=(" & decimal dx & ",0)",
"Q#ine-Q#ise=(0," & decimal dy & ")";

enddef;

It is called with two dimensions, which are the
sides of the rectangle. It should be noticed that the

values of dx and dy can be negative and this can
produce some special effects.

The name of the object created is the suffix rep-
resented here as @#. The creation of box b would be
done with:

newEmptyBox.b(2cm, 1cm) ;

The syntax is therefore similar to the one found in
the boxes.mp package.

The constructor also exhibits some features re-
lated to the options mechanism. Every constructor
can have options modifying its behavior. The op-
tions are given as the last parameters of the con-
structor and are used in a call to ExecuteOptions.
Each object decides which option it honors and how.
The EmptyBox doesn’t have many options, but it is
still possible to draw its frame with a different thick-
ness or to fill the box. Therefore, the drawEmptyBox
function is (with slight simplifications):

def drawEmptyBox(suffix n)=
if show_empty_boxes:
drawFramedOrFilledObject_(n);
fi;
drawMemorizedPaths_(n) ;
enddef;

This macro is simple: depending on the global
variable show_empty_boxes (often used for debug-
ging), the empty boxes are shown or not. If they
are shown, they are either filled or merely drawn.
The drawFramedOrFilledObject_ takes care of the
various cases. If they are filled, they are filled with
a color that can be given as an option.

If the object is filled, the “bounding path” of
the object is used, and it is given by the function
BpathEmptyBox. Like the function drawObj which
calls drawEmptyBox, the BpathObj function actually

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 97

Denis Roegel

calls BpathEmptyBox. Each object must declare its
“bounding path” function. For EmptyBox, we have

def BpathEmptyBox(suffix n)=
StandardBpath(n)
enddef;

The standard bounding path provided by the
StandardBpath function is merely the path n.inw
--n.isw -- n.ise -- n.ine --cycle. This path
uses the “inner interface” so that the drawing of the
object does not depend on artificial changes to its
bounding box.

Overview of METAOBJ classes

METAOBJ defines standard object classes, which can
then be instantiated. The standard library includes:

e basic objects: these objects are not containers
and appear therefore at the leaves of a structure
hierarchy:

— EmptyBox: a rectangle with a given size;

— HRazor and VRazor: this is a degenerated
EmptyBox;

— RandomBox;

e basic containers: such objects can contain any
other object, and have varying shapes for the
frame:

— Box: a (usually) rectangular frame;

— Polygon: a polygonal frame, whose num-
ber of sides can be parameterized;

— Ellipse: an elliptic frame, whose shape
can be parameterized;

Circle: a special case of Ellipse;
— DBox: a box, with a doubled frame;

DEllipse: an ellipse, but with a doubled
frame;

e box alignment constructors:
— HBox
— VBox

e recursive objects and fractals:

— RecursiveBox: a box, containing a box,
containing a box, ...

— VonKochFlake: a well-known fractal;
e trees:

— Tree: general trees;

— PTree: proof trees;

e matrices: Matrix

A complex example

Figure [5[shows a much more elaborate example cre-
ated with METAOBJ. The code provided should
be easy to follow. First, a box named a is cre-
ated, with the text “a”. This is the square box
“a” within the big circle, but at that point it is lo-
cated nowhere. The box is actually “floating”. Sim-
ilarly, two ellipses are created, named b and c¢. The
latter appears differently because the constructor
(newEllipse) was called with several options which
change the ellipse. From a, b, and ¢ we create a
tree, specifying the color of the arcs (which are ar-
rows by default). The name of the tree is ¢ and it
is then put inside a box named aa. The new box
is given round corners. This boxed tree is floating,
until aa.c=origin; is executed. This is similar to
how boxes are positioned with John Hobby’s boxes
package.

Later, another tree is built, and the whole tree
is put inside a circle. This circle then becomes the
root of a new tree and this tree is drawn with the call
to drawObj (nt). This automatically draws all com-
ponents recursively. A spring then connects an el-
lipse (xc) to a double box (db). The spring (nccoil)
has various options which were taken from PSTricks.
It connects two named components without refer-
ring to the whole tree. However, it would have been
possible to extract these two objects from the whole
tree.

The rounded box (aa) is then duplicated and
a new floating object dt is created. This copy is
reflected, slanted and rotated. All these operations
are applied recursively to all components of dt. The
new object is drawn after having been put in place
with dt.c=nt.c-(6cm,-1cm). Finally, a zigzag con-
nection is added between the former a object and its
copy. The copy of a has an internal name, but we do
not know it, and therefore we access the copy with
the treepos function specifying the first child of dt.

Conclusion and related work

METAOBJ makes it possible to define and manipu-
late objects. The standard functions consider that
the objects are rigid and can be combined in various
ways. No matter how an object has been built, its
structure is still easily accessible and open to intro-
spection.

It is of course easy to add new objects and we
have only provided a few. It is also easy for the
programmer to write special packages manipulating
special graphical formalisms, such as UML, etc.

98 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

METRAOBJ: Very High-Level Objects in METAPOST

Double box with green shadow
input metaobj

beginfig(1);

newBox.a("a");

newEllipse.b("b");

newEllipse.c("c") "filled(true)", "fillcolor(red)","picturecolor(green)",

"framecolor (blue)","framewidth(2pt)";

newTree.t(c)(a,b) "linecolor((1,1,0))";

newBox.aa(t) "filled(true)", "fillcolor((0,1,1))","rbox_radius(2mm)";

aa.c=origin;

newHexagon.xa("hexagon") "fit(false)","filled(true)","fillcolor((1,0,1))";

newEllipse.xc("c") "filled(true)", "fillcolor(red)","picturecolor(green)",

"framecolor (blue)","framewidth(2pt)";

newTree.xt(xc) (xa,aa) "linecolor((1,1,0))";

newCircle.xaa(xt) "filled(true)", "fillcolor((.6,.8,.5))";

newDBox.db(btex Double box with green shadow etex)

"shadow(true)", "shadowcolor(green)",
"filled(true)","fillcolor(blue)","picturecolor((1,1,0))";

newTree.nt (xaa) (db) ;

drawObj (nt) ;

nccoil(xc) (db) "angleA(0)","angleB(180)",
"coilwidth(5mm)","linetension(0.8)","linecolor(red)",
"doubleline(true)","posB(e)";

duplicateObj(dt,aa);

reflectObj(dt,origin,up);

slantObj(dt,.5);

rotateObj(dt,30);

dt.c=nt.c-(6cm,-1cm);

drawObj (dt) ;

nczigzag(a) (treepos (obj(dt.sub)) (1))
"angleA(-120)","coilwidth(7mm)","linecolor(.5green)","linearc(imm)",
"border (2pt)";

endfig;

Figure 5: A complex example and its source code.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 99

Denis Roegel

It should also be possible to extend the concept
of interface to other kinds of interfaces and to in-
troduce objects that are not completely rigid. It is
possible to use the complete object structure to im-
plement tree layout algorithms. We could also have
objects whose shape depends on parameters and on
their location in a drawing. More elaborate opera-
tions could also be implemented if the history of an
object was known. This is currently not the case,
and causes limitations in certain experimental fea-
tures such as the reset feature.

Other refinements include support for layers.
This feature is currently not included in METAOBJ,
but could be added in the future.

METAOBJ can be used as a replacement to the
boxes.mp, rboxes.mp, and fancybox.sty packages
and to many features found in PSTricks. Several
features of METAOBJ, for instance connections, can
be used without a reference to objects.

METRAOBJ was especially influenced by my ear-
lier work on animations (Roegel, 1997) where an
object notion was introduced. The 3D objects were
very primitive, but they provided many useful ideas.
Several objects have been influenced from counter-
parts in various packages. This is especially true for
rectangular and elliptic boxes. PSTricks provided
many ideas and the connection functions are en-
tirely borrowed from that package. Only PSTricks’s
user documentation was used, not the implementa-
tion details (van Zandt and Girou, 1994), though
similarities can be observed. There has also been
some work by Denis Girou on high-level objects in
PSTricks (Girou, 1995), but this work is not really
relevant to what we have done. Another work we
didn’t use was Kristoffer Rose’s work on high level
2-dimensional graphics (Rose, 1997)). The proof tree
class was influenced by a ITEX package I wrote in
1993 and which was never released.

Several systems explore similar ideas, though
they did not influence METAOBJ. One is “Func-
tional METAPQOST,” a system providing a Haskell
layer to specify drawings abstractly (Korittky, 1998;
Kuhlmann, 2001)). The drawback of that approach
is that one needs a Haskell compiler and of course
one needs to learn some of this language. Never-
theless, this work shares many ideas with METAOBJ
in that objects are built by applying functions to
already existing structures. Another functional ap-
proach to picture drawing is FPIC which uses the
ML language (Kamin and Hyatt, 1997). A very pop-
ular system with many similar ideas is the 2D Java
API (Knudsen, 1999). It provides graphical objects
which can be manipulated by various transforma-
tions and modified in various ways.

The syntax of METAOBJ is admittedly verbose,
but it is hoped that a TEX interface will be provided
and that it will alleviate a lot of the user’s burden.

References

Girou, Denis. “Building high level objects in
PSTricks”. 1995. Slides presented at TUG’95, St.
Petersburg (Florida).

Goossens, Michel, S. Rahtz, and F. Mittelbach. The
ETEX Graphics Companion: Illustrating docu-
ments with TEX and PostScript. Reading, MA:
Addison-Wesley, 1997.

Hagen, Hans. ConTgXt: the manual, 2001a.

Hagen, Hans. MetaFun, 2001b.

Hobby, John D. “A User’s Manual for MetaPost”.
Technical report, AT&T Bell Laboratories, Mur-
ray Hill, New Jersey, 1992. Computing Science
Technical Report 162.

Hoenig, Alan. TgX Unbound: ETEX € TpX Strate-
gies for Fonts, Graphics, €& More. New York:
Oxford University Press, 1998.

Kamin, Samuel N. and D. Hyatt. “A Special-
Purpose Language for Picture-Drawing”. In
USENIX Conf. on Domain-specific Languages,
Santa Barbara, pages 297-310. 1997.

Knudsen, Jonathan. Java 2D Graphics. O’Reilly &
Associates, 1999.

Knuth, Donald E. The METAFONTbook. Reading,
MA: Addison-Wesley, 1986.

Knuth, Donald E. Digital Typography, volume 78 of
CSLI Lecture Notes. CSLI, 1999.

Korittky, Joachim. “Functional METAPQOST. Ei-
ne Beschreibungssprache fiir Grafiken”. 1998.
Diplomarbeit an der Rheinischen Friedrich-
WilhelmsUniversitdt Bonn.

Kuhlmann, Marco. “Functional METAPOST for
ATEX”. 2001.

Ohl, Thorsten. “EMP: Encapsulated METAPOST
for ITEX”. 1997. Technische Hochschule Darm-
stadt.

Roegel, Denis. “Creating 3D animations with
METAPQOST”. TUGboat 18(4), 274-283, 1997.
Roegel, Denis. The METAOBJ tutorial and reference

manual, 2001.

Rose, Kristoffer Hggsbro. ““Very High Level 2-
dimensional Graphics” with TEX and Xy-pic”.
TUGboat 18(3), 151-158, 1997.

van Zandt, Timothy. PSTree user’s guide, 1993a.

van Zandt, Timothy. PSTricks: PostScript macros
for Generic TEX; User’s Guide, 1993b.

van Zandt, Timothy and D. Girou. “Inside
PSTricks”. TUGboat 15(3), 239-248, 1994.

100 TUGboat, Volume 23 (2002), No. 1— Proceedings of the 2002 Annual Meeting

Typesetting in Hindi, Sanskrit and Persian: A Beginner’s Perspective

Wagish Shukla
Maths Department

Indian Institute of Technology
New Delhi, India

wagishs@maths.iitd.ernet.in

Amitabh Trehan

Mahatma Gandhi Antarrashtriya Hindi Vishwavidyalaya (MGAHV)
16, 2nd floor, Siri Fort Road

New Delhi, India

amitabhtrehan@yahoo.co.in

Abstract

This paper describes our efforts to produce what is, to our knowledge, the first
book typeset totally in an Indian language using KTEX: Chhand Chhand par
Kumkum, published by Prabhat Prakashan for Mahatma Gandhi Antarrashtriya
Hindi Vishwavidyalaya (MGAHV).

We used the devnag package, which made it possible to encode each chapter,
including verses, within a single set of \dn commands (much like an environment).
Since then, we have also tried the sanskrit and ArabTgX packages and describe
some of our experiences. Using devnag alone, typesetting a large file (a full-
sized book) was a stable procedure. On the other hand, when using devnag and
sanskrit together, even a small file can present problems. Using devnag/sanskrit
in conjunction with ArabTgX is also problematic.

Additionally, one large part of the text was used to test conversion to HTML
via latex2html (12h) which has led to substantial upgrades of 12h by Ross Moore,
its maintainer. This exemplifies the advantages of the free software community
we have begun to live in. Ultimately, 12h was used to typeset MGAHV’s website
(http://www.hindivishwa.nic.in).

The Beginning him as a student and welcomed the connectivity,
came in handy. We picked up a lot of new ideas
from the net, the airwaves and the brain waves and
went about trying a few of them. Ultimately, we
would have to say the most attractive ideas for us
have been TEX, GNU/Linux and the free software
philosophy.

Our first experiments using MikTEX, Ghost-
view, etc. to view mathematics papers were with
Windows98 on a Pentium-II IBM machine (4GB
HDD). Later, another computer (Pentium-III
500MHZ, 27GB HDD) and a laser printer were in-
stalled at the residence of Wagish Shukla and much
of our work shifted there. We put up Redhat
GNU/Linux and later Debian GNU/Linux on that
machine. Meanwhile, TEXLive4.0, tuglndia, the
tugIndia mailing list, CVR (C.V. Radhakrishnan)
and like friends came along and we could do some-
thing useful.

Our tryst with TEX began around the beginning of
the year 2000 A.D. Since TEX/HTEX is the best
software for writing mathematical reports and we
were in the mathematics department, we had come
across mention of it here and there. Later we found
that there were a few serious users, but most used
GUI variants such as PCTEX (and not quite the
latest ones!). The previous year the department and
the institute had made rapid progress in comput-
erisation and Internet connectivity, so every mem-
ber of the faculty had a computer in his/her office
and everybody (faculty and students) had round-
the-clock Internet access. This prompted Wagish
to think of what to do with the box in his office.
He had previously stayed away from it religiously,
but now he didn’t want a relic in his room. So
he decided to get ‘computerised’ and that’s where
Amitabh, who had recently started working with

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 101

Wagish Shukla and Amitabh Trehan

The devnag Experience

Wagish writes in Hindi and needs to quote exten-
sively from Sanskrit, Farsi and English, so it was
natural that we should seek suitable solutions using
ITEX. Scanning the TEXLive4.0 package list, we
came across the sanskrit, devnag and Indica packages.
We couldn’t find sanskrit and found no documenta-
tion for Indica. Fortunately, devnag was available,
well documented and seemed friendly (important
points for beginners). However, devnag on TEXLive4
was outdated (and still is, as of TEXLive6), making
us suspect that we were in a less visited part of
the forest. So, we downloaded devnag (v2.0, which
had been upgraded to I¥TEX2¢) from CTAN and
set about experimenting with it. From the outset,
the idea was to be able to produce large texts in
Devanagari from it. As we progressed, it seemed
that the developers’ idea must have been to use it for
short passages of Devanagari texts within English
text but we are happy to state that we have been
able to use it to typeset a whole book.

[tuglist] devnag + Windvi = Crash While using
devnag with the TEXLive system with the Windows
0.S., we came across a very strange problem. The
devnag example and the test files compiled fine, so
we made a small file with just some Devanagari text.
This compiled and previewed well. Then we added
some size-changing commands to it. It compiled.
But as soon as we tried to preview it using Windvi
(v. 0.66-pre6), Windows either went into a spate
of blue-screen exception fault errors and rebooted
or just rebooted without any warning. We copied
the same file onto GNU/Linux and after removing
the Microsoft newlines, we had no problem with the
file. This was very intriguing. This happened to
any devnag file which used size-changing commands
(\small, \large, etc.)! So we posted the message on
the list with the subject that takes the name of this
subsection. Judging from the responses, hardly any-
body on the list was using Windows (or if they did,
they didn’t respond). The problem indeed sounded
strange to whoever heard it. Nobody could suggest
what was wrong. Later, we also had some problems
printing English files with Windvi. In a bit of hurry,
we turned our attention to GNU/Linux and moved
on.

In one of the discussions on the mailing list,
C.V. Radhakrishnan had written: “Franz Velthius’
simple preprocessor can seldom blow up a Win32
system”. This leads us to suspect that the problems
may have been caused by a virus or an anti-virus
(we had Norton AntiVirus 2000 by then). Recently,
when we tried to repeat the experiment with the

same O.S. on the same machine, with TEXLiveb,
Windvi 0.67 and Norton Antivirus 2002, we had no
such problems.

The Book Various experiments and Devanagari
articles later, we came to do something really ex-
citing. Wagish is a creator of many unfinished sym-
phonies. Regarding TEX, Donald Knuth has written
that it inspired him to write more and even rewrite
his previous works because he could see his work
beautifully written. Similarly, the transformation of
his ideas typeset into a beautiful form have spurred
Wagish to write more. The story of the book Ch-
hand Chhand par KumKum had begun long ago,
but somehow the book never materialised. Enthused
by the idea of writing in Devanagari in a beautiful
manner using the ethically beautiful idea of free
software, Wagish thought that if it could be demon-
strated that the author’s creativity could be simply
and beautifully expressed using the TEX system, it
would inspire many people in many ways.

Chhand Chhand par KumKum is actually a
commentary by Wagish of the famous poem “Ram
Ki Shakti Puja” by Suryakant Tripathi Nirala, a very
important poem in Hindi literature and considered
rather difficult to discuss. Wagish wrote the criti-
cism for one part of it (around a third), which was
published in an issue of MGAHV’s Hindi language
literary magazine Bahuvachan. Though the rest of
the issue was in a separate font using a different
system, this article was printed using KTEX. Thus,
this issue has two distinct parts derived from two
distinct systems. The look of the devnag font met
with general appreciation and we ourselves were im-
pressed with the intuitive commands and immense
power that I¥TEX and devnag offered. After this, the
next logical step was to write the entire book using
ITEX and devnag.

Once this idea was concretised with support
from MGAHV and its Vice Chancellor Ashok Va-
jpeyi and the arrangements worked out, we set to
work. The whole contents of the book were then
recreated and typed online by Wagish in almost
exactly a month. The section previously published
was also totally revised. For the general layout of
the book, we used fancyheadings for the headers and
footers and layout for testing the layout. Of course,
our constant companions were the IXTEX book [1]
and the ZMTEX Companion book [2]. Our book was
then put into final shape with help from other mem-
bers of MGAHV and LILA (MGAHVS Laboratory
for Informatics in the Liberal Arts), along with the
publishers. Actually, in this area, publishers here

102 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

Typesetting in Hindi, Sanskrit and Persian: A Beginner’s Perspective

still look at our BTEX experiment more as an idle
curiosity than anything really useful.

While working with devnag we came across
some interesting situations, described in the next
section.

Critique Working with the devnag package on
GNU/ Linux has been a pleasant experience. Bedore
are some of our observations:

e In one of our first long articles, we just input
the source file as a single paragraph without
any line breaks. This is, of course, not a good
practice, as it takes away from the readability
of the text. When we used the devnag pre-
processor, we were greeted by a segmentation
fault. This was undoubtedly due to the limit
of the text read into the character array in the
preprocessor.

e The most useful feature is the transliteration
scheme used by Frans Velthius. The whole
text is typed in English and then converted by
the preprocessor to a form suitable for IHTEX
to generate the final output. Since this is a
phonetic-based scheme, it is easy to remember.
Moreover, the ligature construction is very close
to the actual phonetic construction.

e The most attractive feature in devnag, which
also highlights the advantage of a Character
User Interface (CUI) approach versus a Graph-
ical User Interface (GUI) approach, is the liga-
ture construction. devnag has a wide range of
ligatures. There is also the choice of switching
individual ligatures on and off, as well as a
broad subdivision of Hindi and Sanskrit liga-
tures.

e Just after a new line (\\), if a word begins with
“qa”, the “qa” is not processed. Thus

{\dn

namaskaara\\ qaafa

}
yields
THERTT
™

e The preprocessor does not always handle the
verbatim environment properly (although it is
supposed to). Thus, the segment in the item
above with verbatim would be written as:

{\dn
nm-kAr\\ *A’
¥

since it has preprocessed the contents.

e We wanted to write the word @'353‘ ‘jurat’,
which reads normally as SJ¥d. By trial and
error we discovered the way to input this was
jua\Ota.

e For underlining a Devanagari passage, it is bet-
ter to use the ulem package rather than the
usual \underline command.

e Additional symbols were generated by using
diacritics, as in a forthcoming book on Ghalib
being written by Wagish; characters have been
generated by using TIPA, which works well with
devnag. For example, there are five letters in
the Persian/Urdu alphabet which are, in India,
homophonically pronounced as ‘za’ /ST, but al-
though devnag supplies ‘za’ /ST, the five different
versions were reproduced as follows:

1. za/ST for Arabic ZE.

2. \textsubbar{zal}/S for Persian/
Urdu ZAAL.

3. \textsubdot{za}/S for Persian/
Urdu ZVAD.

4. \textsubumlaut{za}/& for Persian/
Urdu ZOE.

5. \sout{za}/S for Persian ZE.

The first four are from TIPA, the fifth from
ulem. Similarly, in Persian/Urdu %79, the T
is not pronounced but written; thus, the pro-
nounciation is ®WTd but one must write BITqd —
the devnag input for ®Tq is .khaaba and that
for ¥aT¥ is .khvaaba but it was impossible
to indicate the same pronounciation with two
differently spelled words. Instead, this was
achieved by 1T (\textsubw{.khvaa}ba), us-
ing a command from TIPA.

e The compability of many KTEX packages such
as TIPA with devnag is heartening. However,
ArabTEX does not mix well and loading sanskrit
with either ArabTEX or devnag creates prob-
lems. Ideally, one would like to load all three
(ArabTEX, sanskrit, devnag) at the same time.

LaTeX2HTML and devnag

MGAHV, a new university dedicated to Indian lan-
guages, literature, etc. needed to establish a web-
site. Due to the profile of the university, it was
necessary to have a bilingual website. We analysed
the available options and found that there really
wasn’t any standard solution for setting up a website
in Devanagari. One important criteria for us was
that our site should be accessible uniformly across
platforms and browsers: that is, setting up the site
with some specific font made available for download

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 103

Wagish Shukla and Amitabh Trehan

was not an attractive option. Most sites that use
this solution can only be accessed on the Windows
platform after installing the proper font. Needless
to say, in this age of viruses and worms, one is rather
hesitant to install something to view a site. There
is the option of using dynamic fonts but we were
not sure about reliability, the degree of complexity
of such a solution and whether there was anything
in the free software domain for this. So, it seemed
that we needed some image-based solution for our
limited needs, but one which would not bloat up the
size of the files, so that access remained reasonably
fast. Given our devnag experience, we hoped to
find something similar in nature. And we did—
LaTeX2HTML (I12h), which also provided support for
devnag.

Development via the net It was a bit of a bumpy
ride getting 12h working for devnag: it turned out
that nobody, to our knowledge, had used it before.
Thus, like Wagish’s book, MGAHV’s site is also the
first one created via this route. We attempted to
run |12h on our devnag files and constantly mailed
queries to the current maintainer, Ross Moore, who
kept on advising and correcting bugs till, at last,
[2h ran pretty well with devnag. This was, for us, a
unique experience of software development via the
Internet in the free software domain and highlighted
the advantages and the cooperative spirit that this
approach can generate.

I2h generates PNG/GIF images for things not
directly available via HTML, such as mathemat-
ics and Indian language characters. This is where
things get complicated, as I2h depends on the sup-
port of a number of other applications for image
generation, including the netpbm suite of files. We
installed I12h from source and then tried the package
made by Manoj Srivastava for Debian on our Debian
system, but the images wouldn’t generate. So we
joined the mailing list and realised that we needed to
update netpbm. Once upgraded, the "make test"
with 12h worked and everything seemed to be ready.
But when we tested it with a small sample file it
wouldn’t work: it couldn’t locate the devnag style
files and generate images, even though it would
work on Ross’s system. We had also copied the
I2h Indic-TEX devnagri.sty and devnagri.perl files to
particular locations, as indicated in the 12h docu-
mentation. That’s when Ross realised that the files
for the upgraded devnag had not been uploaded for
distribution. So he took care of that. By default the
system had been set to use the DN2 preprocessor
with devnag (DN2 is used with texts in German).
Ross changed the default and left DN2 as an option.

Since we had now made some progress, we
decided to give it a more thorough test. We fed
[2h Wagish’s article, “Ram Ki Shakti Puja”’, men-
tioned in the previous section—a file of 89Kb. 12h
invokes TEX to generate images, but it complained
of memory shortage and halted. Moreover, the log
indicated that 12h was trying to create just three
images from the whole document. The cause of this
problem turned out to be very interesting.

The article actually had a very typical structure
which may not, however, have been envisioned by
the developers. There were many verse environ-
ments within a single set of \dn braces whereas
the developers had probably expected a set of \dn
braces for each verse, so 12h was trying to generate
huge images and collapsed. Ross improved the para-
graph breaking, also adding an option for newlines
within the title command and ultimately put up the
converted document on his site. And so Lord Rama
now adorns the net as a test case.

Satisfied with the results, we carried the ex-
periment forward and created the LILA website
(www.hindivishwa.nic.in). The images are set
against a white background and the web document
looks good. Overall, feedback about the quality
and speed of access has been positive from people
who have visited the site. The ultimate solution is
probably going to come with the use of Unicode and
like encodings, but we think that, with some more
facilities, 12h would make a good substitute in the
meanwhile.

Critique

e [2h has proven to be a good solution for sites
with static Devanagari content. PNG images
are of a reasonable size and don’t slow down
the site too much.

e At times, there are problems with clipping of
the boxes around images.

e We need to have an easier update system (a
sort of version control and patch system) for
updating image-based sites. This is because it
takes longer to process the whole text, even
if one just wants to add, say, a page to the
original. It would also be much easier to just
upload /delete a few images instead of the whole
site, which may be required for changes at the
present. Thus, such a package could provide
content additions, deletions and updating facil-
ities.

e There is probably a need for closer collaboration
between the developers of 12h and say, netpbm,
to maintain compatibility.

104 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

Typesetting in Hindi, Sanskrit and Persian: A Beginner’s Perspective

devnag, sanskrit and ArabTgX

In the book on Ghalib (in Hindi) that Wagish is
presently working on, we needed to use Arabic. So,
we tried to use ArabTEX with sanskrit and devnag,
in various permutations. The results were not very
good:
e sanskrit(skt) and devnag, when taken together,
make the typeset words look weird.

e ArabTEX and sanskrit or devnag output certain
Greek letters at the beginning of a document
and don’t process the text properly.

While devnag has been useful to us, there are fa-
cilities in other packages which could be useful if
incorporated into devnag:
e ArabTEX doesn’t use a preprocessor
e sanskrit has support for vedic Sanskrit (but not
Hindi)
e both ArabTEX and sanskrit incorporate standard
transliteration facilities
e sanskrit has both bold and italic fonts

Conclusions

There is a need for more language-specific devel-
opment on TEX systems, if publishers in Indian
languages are to be convinced to start using TEX.
Some improvements which could be made do not
seem extremely difficult for the developers. There is
also a need for greater variety in the form of fonts,
etc. Native speakers of the language should get
involved in at least the testing of suitable packages,
as they could provide some unique insights.

References

[1] Leslie Lamport. FTEX: A Document Prepara-
tion System. Addison-Wesley, Reading, Mas-
sachusetts, second edition, 1994.

[2] Michel Goosens, Frank Mittelbach and Alexan-
der Samari. The ETEX Companion. Addison-
Wesley, Reading, Massachusetts,1994.

[3] Wagish Shukla. Chhand Chhand par Kumkum.
Prabhat Prakashan, New Delhi, 2001.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 105

New Typesetting Language and System Architecture

Karel Skoupy

Switzerland

skoupy@inf.ethz.ch

106

Abstract

The TEX input language is quite flexible for manipulation of the document’s
contents, but it is too limited for efficient work with its actual typesetting (layout).
Use of a more general programming language was already proposed by Frank
Mittelbach in 1990. Significant inconveniences of the existing TEX programming
capabilities are also experienced in development of ConTEXt by Hans Hagen.

There are two kinds of problems. One is the oversimplified type system of
TEX, which doesn’t support structured and user defined types; also, the control
structures might be richer, although this is probably not critical. The second
problem is that the set of TEX primitives is not complete: for example, there
is no \lastrule or \lastspecial. These problems usually lead to unreliable
workarounds for complex programming tasks like multicolumn typesetting.

In my new project I plan to provide an alternative and more viable language
for typographic programming. It will also support a unified model of text and
graphics, an another part of the project.

The project also aims to provide a modular system architecture which sep-
arates the language and the typesetting engine. The architecture is intended
to support multiple languages: TEX compatibility mode, Scheme with typo-
graphic primitives, ... This future typesetting system will be composed of flexible
components which can support multiple input (TEX, XML) and output (DVI,
PostScript, PDF) formats and different font types.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

TEX File Server

Karel Skoupy
Switzerland
skoupy@inf.ethz.ch

Abstract

Repeated re-processing of TEX documents is a widely used technique for resolving
references and generating properly placed graphics. In this process the data
structures for efficient finding of files built by kpathsea are lost after each run.
We will discuss how this problem can be eliminated by developing a TEX file
server. The added value will be cross-network transparency and resource sharing.
In the paper we discuss the possible approaches, propose the server protocol and
integration with kpathsea. The prototype of the server will be demonstrated.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 107

Conserving Implicit Mathematical Semantics in

Conversion between TEX and MathML

Stephen M. Watt
Ontario Research Center for Computer Algebra

University of Western Ontario, London, Canada
Stephen.WattQuwo.ca
http://www.csd.uwo.ca/ watt

Abstract

MathML[1] is an XML representation for mathematical
objects, allowing expressions to be stored in databases,
transmitted between applications and operated upon by
programs. MathML can be used to express mathemati-
cal content in web pages and digital libraries, and has be-
come an accepted form for input and output of computer
algebra systems. There have been several efforts to de-
sign software for conversion of mathematical expressions
from TEX to MathML and vice versa. We consider the
problem of how conversion between formats can conserve
any mathematical semantics implied by the markup of
the original document.

Both TEX and MathML admit macro mechanisms,
natively so in TEX and via XSLT[2] with MathML. Au-
thors may use pre-defined style-sheets or define their
own abbreviations, effectively extending the vocabulary
of the environment. Macros are typically used as short-
hands for lengthy expressions or to maintain notational
independence. A simple example of notational indepen-
dence would be, e.g., to define \Vector to expand either
to \mathbf{v} or \vec{v} or something else, depending
on the style sheet used.

Any serious converter between TEX and MathML
must support macros. The standard approach has been
to expand macros, and then perform the translation
from low-level TEX to MathML (or vice versa). We see
this approach as undesirable, as the use of macros in
practice captures mathematical semantics within expres-
sions. For example, if the form \BesselJ{\alpha}{z}
expands to Ju(z), and translates to

<mrow>
<msub><mi>J</mi><mi>α</mi></msub>
<mfenced><mi>z</mi></mfenced>

</mrow>

then we have lost the fact that J is a Bessel function.
The MathML-processing application will have no way to
determine that this is a Bessel function, and not some-
thing else, e.g., an angular momentum or a jet bundle.
Our approach has been quite different: We assume
that in many interesting cases it shall be possible to
map macros in one setting to corresponding macros in
another, thus conserving implied semantics. We have
adopted the hypothesis that certain TEX style or class
files will naturally have counterpart XSLT style-sheets.

N6A 5B7

Particular TEX macros then correspond to specific XSLT
template definitions. The conversion process in either
direction must be able to recognize and use these corre-
spondences. Additionally, we provide fine control over
which macros are to be carried over to the target markup
and which are uninteresting shorthands to be expanded.

This paper presents the overall architecture of a
pair of programs — one converting mathematical TEX
to MathML[3] and one converting MathML to TEX[4].
Both of these programs permit macros to be translated
at a high semantic level. These may be specified indi-
vidually, or as sets corresponding to style files. Other
macros are expanded to primitive forms for translation.

Declarative mapping files are used to specify the
correspondence between TEX and XML forms, typically
for TEX macros and XSLT templates, and the same file
may be used for conversion in either direction. Multi-
ple mapping files may be used, if desired, corresponding
to multiple macro definition files. We discuss how this
architecture can be used with content, presentation or
combined MathML markup, and how the programs can
be used in conjunction with other tools for conversion
between TEX and other XML formats.

— — % — —

References

[1] Mathematical Markup Language (MathML) Ver-
sion 2.0, D. Carlisle, P. Ion, N. Poppelier
and R. Miner (eds), R. Ausbrooks, S. Buswell,
S. Dalmas, S. Devitt, A. Diaz, R. Hunter,
B. Smith, N. Soiffer, R. Sutor and S. Watt,
World Wide Web Consortium Recommendation, 21
February 2001, http://www.w3.org/TR/2001/REC-
MathML2-20010221.

[2] XML Transformations (XSLT) Version 1.0, J. Clark
(ed), World Wide Web Consortium Recommenda-
tion, 16 November 1999, http://www.w3.org/TR/
1999/REC-xs1t-19991116.

3] A TEX to MathML Converter, I. Rodionov and
S. Watt, http://www.orcca.on.ca/MathML/texmml/
textomml.html.

[4] A MathML to TEX Converter, E. Smirnova and
S. Watt, http://www.orcca.on.ca/MathML/texmml/
mmltotex.html.

108 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

TUGboat, Volume 23 (2002), No. 1

109

Calendar
2002 Apr 2-4 DANTE 2003, 28" meeting, Universitit
Bremen, Germany. For information, visit

Feb 20-23 DANTE 2002, 26'" meeting, http://www.dante.de/dante2003/.
Universitat Erlangen-Nirnberg, May 1-3 BachoTEX 2003, 11*" annual meeting of
Germany. For information, visit the Polish TEX Users’ Group (GUST),
http://www.dante.de/dante2002/. Bachotek, Brodnica Lake District,

Apr 29— EuroBachoTEX 2002, 13th meeting Poland. For information, visit http://
May 3 of European TEX Users and 10th www.gust.org.pl/BachoTeX/2003/.
annua’bl meeting of the P‘?liSh TEX May 15-17 Typo Berlin 2003, the 8"

Users” Group (GUST), TEX and International Design Conference,
beyond”, Bachotek, Brodnica Lake Berlin, Germany. For information, visit
District, Poland. For information, visit http://www.typo-berlin.de.
http: . t. .pl/BachoTeX/2002/.

P {/www gus org“ p' / ’ac ? © ”/ / May 28 -30 Society for Scholarly Publishing,

May 29 Jou'rnee G}UTenberg7 Dlstr%butlo'r@ , 25th 4 nnual meeting, “Navigating
Paris, France. For information, visit Change”, Baltimore, Maryland.
http://wuw.gutenberg.eu.org/. For information, visit

http://www.sspnet.org.

TUG 2002 May 29 - ACH/ALLC 2003: Joint International

International Convention Centre, Jun 2 Conference of the Association for

Trivandrum, India. For information, visit Computers and the Humanities, and

http://www.tug.org.in/tug2002/. Association for Literary and Linguistic

Sep 1-3 Tutorials: TATEX; IATEX to XML; Computing, “Web X: A Decade of the
METAPOST; the Text Encoding World Wide Web”, University of Georgia,
Initiative; TEX macro expansion. Athens, Georgia. For information, visit

http: . lish. .ed b.

Sep 4-7 The 23" annual meeting of the TEX p://ww Sng-1Sn.uga. 8 u/webx/

« or the organization web site at
Users Group, “Stand up and be proud of
" . . . http://www.ach.org.
TEX!”. For information, visit))
http://www.tug.org. in/tug2002/. Jun 11-13 Seybold Seminars PDF Summit,
Amsterdam, Netherlands.

Oct 12 UK TUG Autumn meeting, Iljor 1?§°/rmatl°n’bwls;t . y
Nottingham University. ttp: WXTJW. seyboldseminars.com
For information, contact Dick Nickalls, pdf_summit/.
dicknickalls@compuserve.com. Jun 12 NTG 31% meeting; no details yet.

Jun 24-27 EuroTgX 2003, “Back to Typography”,

2003 Bres.t (Bntta.ny), F.‘r.ance.

For information, visit
Mar 2428 TUC23, The 23" Internationalization http://omega.enstb.org/eurotex2003/.

and Unicode Conference, “Unicode,
Internationalization, the Web:

The Global Connection”, Prague,
Czech Republic. For information, visit
http://www.unicode.org/iuc/iuc23/.

(The EuroTEX 2003 proceedings will be
published in TUGboat.)

Status as of 1 February 2003

For additional information on TUG-sponsored events listed here, contact the TUG office

(4+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored

by other organizations, please use the contact address provided.

Additional type-related events are listed in the Typophile calendar, at
http://www.icalx.com/html/typophile/month.php?cal=Typophile.

Owing to the lateness of this issue, please consider that all events shown for 2002 are

included only “for the record”.

110

Jul 7-
Aug 8

Rare Book School Summer Session,
University of Virginia, Charlottesville,
Virginia. A series of one-week
courses on topics concerning rare
books, manuscripts, the history of
books and printing, and special
collections. For information, visit
http://www.virginia.edu/oldbooks.

TUG 2003

Outrigger Waikoloa Beach Resort,
Big Island, Hawai‘i.

Jul 15-18

Beginning/Intermediate INTEX,

at the University of Hawaii at Hilo.
For information, visit
http://wuw.tug.org/tug2003/

Aug 3

Aug 3-6

Sep 8-9

Sep 22-25

Sep 1922

latexclass.html.
Jul 2024

The 24*" annual meeting of the TEX

Users Group, “Silver Anniversary — 25
years! —of TEX”. For information, visit

http://www.tug.org/tug2003/.

Oct 20-21

Jul 17-20

TypeCon2003, “Counter Culture”,
Minneapolis, Minnesota. For information,

Dec 7-12

visit http://www.typecon2003. com/.

Jul 27—
Aug 1

SIGGRAPH 2003, San Diego,
California. For information, visit

http://www.siggraph.org/calendar/.

Institutional
Members

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia,
Roma, Italy

Center for Computing Science,
Bowie, Maryland

Cessna Aircraft Company,
Wichita, Kansas

The Clarinda Company,
Clarinda, Towa

CNRS - IDRIS,
Orsay, France

CSTUG, Praha, Czech Republic

Florida State University,

School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Center for Communications

Research, Princeton, New Jersey

Kluwer Academic Publishers,
Dordrecht, The Netherlands

KTH Royal Institute of
Technology, Stockholm, Sweden

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

Max Planck Institut
fir Mathematik,
Bonn, Germany

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

TUGboat, Volume 23 (2002), No. 1

Web Document Analysis workshop,
Edinburgh, Scotland, UK.

For information, visit
http://www.csc.liv.ac.uk/"wda2003.

ICDAR 2003, International Conference on
Document Analysis and Recognition,
Edinburgh, Scotland, UK.

For information, visit
http://www.essex.ac.uk/ese/icdar2003/.

DANTE 29*P meeting, Universitat
Giessen, Germany. For information, visit
http://www.dante.de/events/mv29/.
Seybold San Francisco, San Francisco,
California. For information, visit

http://www.seyboldseminars.com/sf2003/.

Association Typographique Internationale
(ATypl) annual conference, “Between
Text and Reader”, Vancouver, Canada.
For information, visit
http://www.atypi.org/40_conferences.

Second Annual St. Bride Conference,
London, England. For information, visit
http://www.stbride.org/calendar.htm.

XML 2003, Philadelphia, Pennsylvania.
For information, visit
http://www.idealliance.org/
events_upcoming. asp.

Siemens Corporate Research,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Ste-Foy, Québec, Canada;j

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Vanderbilt University,
Nashville, Tennessee

TUGboat, Volume 23 (2002), No. 1

111

TEX Consulting & Production Services

Information about these services can be obtained
from:
TEX Users Group
1466 N'W Naito Parkway, Suite 3141
Portland, OR 97209-2820, U.S.A.
Phone: +1 503 223-9994

Fax: +1 503 223-3960
Email: office@tug.org
URL: http://wuw.tug.org/

consultants.html

North America

Loew, Elizabeth

President, TEXniques, Inc.,

675 Massachusetts Avenue, 6th Floor,

Cambridge, MA 02139;

(617) 876-2333; Fax: (781) 344-8158

Email: loew@texniques.com
Complete book and journal production in the areas of
mathematics, physics, engineering, and biology. Services
include copyediting, layout, art sizing, preparation of
electronic figures; we keyboard from raw manuscript or
tweak TEX files.

Ogawa, Arthur

40453 Cherokee Oaks Drive,

Three Rivers, CA 93271-9743;

(209) 561-4585

Email: Ogawa@teleport.com
Bookbuilding services, including design, copyedit, art,
and composition; color is my speciality. Custom TEX
macros and IATEX2e document classes and packages.
Instruction, support, and consultation for workgroups and
authors. Application development in IATEX, TEX, SGML,
PostScript, Java, and 8C++. Database and corporate
publishing. Extensive references.

Veytsman, Boris

2239 Double Eagle Ct.

Reston, VA 20191;

(703) 860-0013

Email: boris@lk.net
I provide training, consulting, software design and
implementation for Unix, Perl, SQL, TEX, and IATEX. I
have authored several popular packages for INTEX and
latelx2html. I have contributed to several web-based
projects for generating and typesetting reports.
For more information please visit my web page:
http://users.lk.net/ borisv.

The Unicorn Collaborative, Inc, Ted Zajdel

115 Aspen Drive, Suite K

Pacheco, CA 94553

(925) 689-7442

Email: contact@unicorn-collab.com
‘We are a technical documentation company, initiated
in 1990, which time, strives for error free, seamless
documentation, delivered on time, and within budget. We
provide high quality documentation services such as
document design, graphic design and copy editing. We have
extensive experience using tools such as FrameMaker, TEX,
IATEX, Word, Acrobat, and many graphics programs. One
of our specialties is producing technical manuals and
books using IATEX and TEX. Our experienced staff
can be trained to use any tool required to meet your
needs. We can help you develop, rewrite, or simply
copy-edit your documentation. Our broad experience with
different industries allows us to handle many types of
documentation including, but not limited to, software
and hardware systems, communications, scientific
instrumentation, engineering, physics, astronomy, chemistry,
pharmaceuticals, biotechnology, semiconductor technology,
manufacturing and control systems. For more information
see our web page http://www.unicorn-collab.com.

Outside North America

DocuTgXing: TEX Typesetting Facility

43 Ibn Kotaiba Street,

Nasr City, Cairo 11471, Egypt

+20 2 4034178; Fax: +20 2 4034178

Email: main-office@DocuTeXing.com
DocuTgXing provides high-quality TEX and IATEX
typesetting services to authors, editors, and publishers.
Our services extend from simple typesetting and technical
illustrations to full production of electronic journals. For
more information, samples, and references, please visit our
web site: http://www.DocuTeXing.com or contact us by
e-mail.

I AT 58 uwer
the language of science

T Reference
Manual

by David Bausum, Lighthouse & Associates, Beloit, WI, USA

div knf7 f % beg The TeX Reference Manual is the first comprehensive reference manual
calculatic Re eremnce written by a programmer for programmers. It contains reference pages for
dimen i each of TeX’s 325 primitive control sequences. Over 80% of its reference

pages contain examples that range from simple to challenging. Each example
is is typeset verbatim in a style which is easy to read and experiment with.
TeX Reference Manual also just typesets the example, so you can see what
it makes, and explains how the example works. The description on each
primitive’s reference page is an annotated discussion of The TeXbook's
treatment of the primitive. That means a TeX user will find it natural to move
back and forth between the two books. One of TeX Reference Manual’s
innovative features is families. They simplify the search for the primitive which
performs a particular task.

\advance\dimen(by

Primitive Control Sequences TeX Reference Manual has appendices which
Family Name Type| Description provide a comprehensi\{e discussion of:
verbatim material, PostScript fonts, and two-
Box (29) Logic (20) C Command (163) column material. In particular, one word
Character (16) Macro (20) D Derived Command (17) describes its font .macr.os, elegant- T?e Teﬁ(
Debugging (25) | Marks (4) 1Q Internal Quantity (42) '[hafi;i)neileeﬁiag (;l Zlnlg ra]re]\;vn \nglgfsb(l)ef :[I_C;(;(or bot
File I/O (13) Math (69) PI Parameter (integer) (55)
Fonts (5) Page (13) PD | Parameter (dimen) (21)
Glue (12) Paragraph (30) PG Parameter (glue) (15)
Hyphenation (11) | Penalties (12) PM Parameter (muglue) (3)
Inserts (8) Registers (11) PT Parameter (token) (9)
Job (D | Tables © ORDER TODAY!
Kern (7)
TENT., .
CONTENTS 7" ONLINE: WWW.WKAPNL
1. Families and Primitive Control Sequences. Fax your order:
2. Reference Pages for the Primitives. USA: 781-681-9045
Appendix A. Typesetting Verbatim Material. Rest of World: +31 78 6546 474
Appendix B. Working with PostScript Fonts. Phone:

Appendix C. Typesetting Material in Two Columns.

Bibliography. Index. USA: +781-871-6600

Rest of World: +31 78 6392 392
February 2002 Hardbound, ISBN 0-7923-7673-0 390 pp. Email:
Special Price offered to TUGBOAT subscribers:
EUR 97.00 / USD 90.00 / GBP 61.00

Rest of World: services @wkap.nl

introducing

TEXTURES 2.0

W I T H

S Y NCHIRONIUCTITY

AGAIN THE MACINTOSH DELIVERS A NEW TEX WITH A REVOLUTION IN HUMAN INTERFACE.

As computer power has advanced, the
Macintosh has consistently been the leader
in the human and humane connection to
technology, and Textures has consistently
led in bringing ease of use to TEX users.

First with Textures 1.0, the first truly

With Synchronicity, your TEX input documents
are reliably and automatically cross-linked,
correlated, or “synchronized” with the finished
TEX typeset pages. Every piece of the finished
product is tied directly to the source code from
which it was generated, and vice-versa. To go
from TEX input directly and exactly to the

corresponding typeset characters, just click.

integrated TEX system. Then with Lightning
Textures, the first truly interactive TEX
system. Now, with Textures 2.0 and
Synchronicity, Blue Sky Research again
delivers a striking advance in TEX

interactivity and productivity.

It’s that simple: just click, and Textures will take
you instantly and precisely to the corresponding
location. And it goes both ways: just click on
any typeset character, and Textures will take you
directly to the TEX code that produced it. No
matter how many input files you have, no
matter what macros you use, Synchronicity will

take you there, instantly and dependably.

Improve YOUR performance:

G E T

BLUE SKY RESEARCH
317 SW ALDER STREET

PORTLAND, OR 97204 USA

%l?—;%%

S Y NCHIRONTIUCTITY

800 622 8398

503 222 9571

WWW.BLUESKY.COM

	The LaTeX/WYSIWYG clash
	What is WYSIWYG?
	So where's the clash?

	Various systems bridging the gap
	TeXmacs
	LyX
	X-Symbol
	preview-latex
	Whizzy-TeX
	ActiveTeX/Instant Preview
	Source Specials

	Summary
	Future developments
	Availability
	Serendipity
	The serendip package, with insdljs.sty and hyperref.sty
	Searchable Mathematics
	Future Developments
	Acknowledgements

	Extensions to Kpathsea
	Rationale
	Extending the ``path'' notion
	Kpathsea and reentrance

	Windows-specific TeX Live features
	Small enhancements to Web2C
	The TeXSetup.exe program
	Other programs

	What is coming for the 8th edition?
	How does it work?
	Running PassiveTeX
	LaTeX package dependencies
	Extensions

	Notes on conformance to the XSL specification
	Things for LaTeX users to remember
	Introduction
	Low-level drawing in Metapost
	Discardable drawings
	Memorizable drawings

	A functional approach to drawing
	The structure of an object
	An object definition example
	Overview of METAOBJ classes
	A complex example
	Conclusion and related work

