METAOBJ: Very High-Level Objects in METAPOST

Denis Roegel

LORIA

Campus scientifique

BP 239

54506 Vandceuvre-les-Nancy cedex
FRANCE

roegel@loria.fr
http://www.loria.fr/"roegel/

Abstract

This paper presents the METAOBJ system and its features for the implementation
of very high-level objects within METAPQOST.

Introduction

In recent years, METAPOST has become a very in-
teresting and powerful tool for graphics, especially
in the context of TEX, for which it is tailored. With
METAPQOST, the user writes a program describing a
drawing. As a full-fledged programming language
is at hand, it is possible to automate a number
of tasks, and make use of functions for recurring
parts in drawings. Therefore, one notable strength
of METAPOST is its control of the drawings and the
ease with which it becomes possible to ensure homo-
geneity. METAPOST appears also extremely useful
in applications where drawings are generated auto-
matically.

However, most applications to date are using
only very simple METAPQOST features. The power of
METAPOST appears to have not yet been fully ex-
plored. One of the ideas which seemed worth explor-
ing was the manipulation of objects and functions on
objects within METAPOST. This was the initial aim
of METAOBJ, the system which is presented here.
METAOBJ is a very large extension of METAPOST,
and the most complete (though not complete) de-
scription can be found in “The METAOBJ tutorial
and reference manual” (Roegel, 2001)).

In this article, we will present briefly the usual
low-level way of drawing within METAPOST, as well
as its shortcomings. We will then describe a func-
tional approach to drawing, then show how objects
can be implemented. An example will follow, before
a more general overview of METAOBJ.

Low-level drawing in METAPOST

Several kinds of low-level drawings are possible in
METAPOST.

Discardable drawings First, there are drawings
which can be immediately used and which require
no memorization. We call these drawings “discard-
able”. An obvious example is drawing a square with:

draw (Ocm,Ocm)--(1cm,Ocm)--
(lcm,1cm)--(0cm, 1cm)--cycle;

Many squares can be drawn that way, but if the
user wants two squares with the same sizes, he/she
must make sure that the drawing function uses the
same values.

Hence, discardable drawings are sufficient for
simple tasks, but as soon as the application becomes
complex, they exhibit many drawbacks.

Memorizable drawings After discardable draw-
ings, we have memorizable drawings. In this case,
functions (or macros) are introduced and the use
of these functions makes it much easier to obtain
homogeneous drawings and to ensure that certain
conditions are met. Functions can be called with pa-
rameters and producing two identical drawings only
affords giving identical values to certain parameters.
For instance, a more elaborate version of the square
can be obtained with the following function:

def draw_Square(expr p,l,a)=
draw p--(pt+l*dir(a))--
(ptl*dir(a)+1l*dir(a+90))--
(ptl*dir(a+90))--cycle;
enddef;

We now have a way to reuse drawing instructions.
The draw_Square macro could even be enriched and
perform other tasks than merely drawing a square.

The draw_Square macro actually contains the
definition of the square. However, this macro does
too much in that it also draws the square. We could

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 93



Denis Roegel

define a macro only defining the square as a path,
for instance as:

def Square(expr p,l,a)=
(p—-(p+l*dir(a))
-—(p+l*dir(a)+1*dir (a+90))
-=(p+l*dir(a+90))--cycle)
enddef;

In that case, since Square returns a closed path,
we can do several things with it. We can draw it with

draw Square(origin,lcm,50);
or we can fill it:
f£ill Square(origin,lcm,50);

Other options are also available.

However, even though we have a nice encap-
sulation of a square, such a definition may not be
convenient for other “objects.” For instance, if we
want to define a function for a square with a double
frame, we would not be able to define it in the same
way, because a double frame is not a METAPQOST
path. In order to draw such an object, a special
function may need to be introduced, for instance:

def drawDoubleSquare(expr p,l,a)=

draw Square(p,l,a);

draw Square(p-.5mm*dir(a+45),1+1imm,a);
enddef;

The point is that different objects are treated
differently, which makes it cumbersome. A simple
square can be drawn with draw, but a double square
uses a special function.

Moreover, there are other underlying problems
in the two approaches we have described, namely
that the object itself is difficult to grasp. Even
though the content of a double square is the defini-
tion of the drawSquare macro, the automatic anal-
ysis or extraction of parts of the definition is not
easy. In the case of a simple square, the path could
be memorized easily and all its points could be ob-
tained by standard METAPOST functions, but other
objects would need other treatments. This would
result in different and non-homogeneous handling.

One might argue that it is not necessary to
go beyond drawing, but in fact, there are examples
where parts of objects need to be accessed once they
are drawn; for instance, to specify certain non-global
alignments.

We will now describe how objects can be ac-
cessed in an homogeneous way.

A functional approach to drawing

Before describing the implementation of objects, we
will give an abstract description of the main features
of an object. An object o is a structure with a name

(0), points (which have names), linear equations be-
tween points, paths, and several other features that
will be described later.

Objects will be of different types (classes), and
to each type will correspond certain functions. Not
all functions make sense with all types of objects.
However, there is a category of “standard” objects to
which the main functions apply. For instance, some
of the functions are linear transformations: scaling,
rotating, slanting or reflecting. When an object o is
given, it can be rotated 90 degrees counterclockwise
with rotate0Obj(0,90).

Some of the functions are general (static) and
not attached to an object, but others may be at-
tached to an object and can be viewed as methods
of the object. For instance, every time an object is
drawn (with draw0Obj (o)), it is in fact a method of
o, or more precisely a method defined in o’s class
which is called.

The functional approach to drawing is interest-
ing because functions can return objects. By de-
fault, rotateObj(0,90) only rotates o, but can-
not be composed. This corresponds to the imper-
ative object-oriented construction of an object. It
is object-oriented because o is an object and be-
cause a method of o is called. It is imperative be-
cause the operation is self-contained. In order to use
a functional approach, METAOBJ provides a func-
tional variant of rotateObj named rotate_Obj. It
is then possible to write

rotate_0bj(rotate_0bj(o0,60),30)

and this will return the initial object rotated 30+ 60
degrees.

New functions can be written and added to the
standard library. These functions will then take
their power from the reflexion capability of META-
OBJ, namely the possibility for the function to ex-
plore the object to which it applies, making therefore
virtually anything possible.

The structure of an object

The main novelty of METAOBJ is the fact that it
is a system which keeps track of all of an object’s
features. It is possible to reflect on an object’s struc-
ture, and it is actually also possible to have functions
creating objects, and even classes of objects, given
certain parameters. The possibilities are endless and
have hardly been explored so far.

An object has a name and all its direct compo-
nents form a tree of variables, all starting with the
object name. There is unfortunately no easy way
to traverse such a tree of variables in METAPQOST,
and there are therefore special variables which keep

94 TUGboat, Volume 23 (2002), No. 1— Proceedings of the 2002 Annual Meeting



METAOBJ: Very High-Level Objects in METAPOST

Attribute Type Default Description

pointlist_ string o list of points

pairlist_ string e list of pairs (non-movable points)

pointarraylist_ string e list of arrays of points

subarraylist_ string o list of arrays of subobjects

stringarraylist_ string " list of arrays of strings

colorarraylist_ string " list of arrays of colors

picturearraylist_ string o list of arrays of pictures

transformarraylist_ string " list of arrays of transforms

booleanarraylist._ string e list of arrays of booleans

numericarraylist_ string " list of arrays of numerics

pairarraylist._ string e list of arrays of pairs (non-movable points)

points_in_arrayslist_ | string o enumeration of all (movable) points of all ar-
rays (of movable points)

picturelist_ string e list of pictures

numericlist._ string " list of numerics

sublist_ string e list of subobjects

subobjties_ string array subobj tying equations (1 string/subobject)

nsubobjties_ numeric 0 number of subobjties

code_ string e code of an object

extra_code_ string e extra code of an object

ctransform_ transform identity | current transform of that object

Table 1: Standard attributes of an object

track of what is in an object. We call these vari-
ables the attributes of an object. The complete list
of attributes is given in table

ptre=100
ptre.numericlist_="dx,dy,nst"
ptre.nst=2
ptre.ctransform_=(0,0,1,0,0,1)

Figure 1: Object structure: general data

As shown in figure [I] an object has a unique
identifying number. Here, it is 100. Different num-
bers correspond to different objects. In particular,
subobjects will also have their own identifying num-
ber.

Each object can store numerical values in the
string numericlist_. There are three here, dx, dy,
and nst (figure[l), but only nst is defined. This is
the number of subtrees (2 in this example).

ctransform_ records the current transform of
the object, and it is initially the identity.

An object also has points (figure [2), the list
of which is given in the string pointlist_ which
is a standard attribute of the object. It has a list
of subobject references (figure , the list of which
is given as a string sublist_. Each subobject is

actually only given as a string. The subobject is
not literally part of the object (an object can be
part of several other objects).

The ptre object belongs to the PTree class (this
information is not part of the object, but can be ob-
tained by an external table) and it contains four sub-
objects. Each subobject has a corresponding string:
conc (conclusion), subt (subtrees), 1r (left rule), rr
(right rule). The value of the string (figure [3) was
generated automatically by newobjstring.. The
fancy names avoid name clashes with user-defined
objects.

The structure of ptre was obtained with

showObj ptre;

but this does not show the structure of all subob-
jects. We could define a function showing recur-
sively the whole structure of an object, but cur-
rently the user must call showObj on each subobject

It is possible to go to great depth in an object.
Even when there are pictures, we can find what is
inside using the for ... within construct.

Each subobject has an associated tying func-
tion. This function attaches a subobject to the main
object and is used when linear transformations are

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 95



Denis Roegel

ptre.pointlist_="ne,nw,sw,se,n,s,e,w,cC,
ine,inw,isw,ise,in,is,ie,iw,ic,ledge,redge,lstart,lend"
ptre.c=(0,287.17845)
ptre.n=(0,312.73784)
ptre.s=(0,261.61906)
ptre.e=(95.02467,287.17845)
ptre.w=(-95.02467,287.17845)
ptre.ne=(95.02467,312.73784)
ptre.se=(95.02467,261.61906)
ptre.nw=(-95.02467,312.73784)
ptre.sw=(-95.02467,261.61906)

ptre.ic=(0,283.46451)
ptre.in=(0,308.30998)
ptre.is=(0,258.61905)
ptre.ie=(98.02467,283.46451)
ptre.iw=(-98.02469,283.46451)
ptre.ine=(98.02467,308.30998)
ptre.ise=(98.02467,258.61905)
ptre.inw=(-98.02469,308.30998)
ptre.isw=(-98.02469,258.61905)

ptre.ledge=(-72.57094,258.61905)
ptre.redge=(92.90178,258.61905)
ptre.lstart=(-51.91089,292.35118)
ptre.lend=(65.57219,292.35118)

Figure 2: Object structure (cont’d): points

ptre.sublist_="subt,lr,rr,conc"

ptre.conc="_______ zu"
ptre.subt="_______ zh"
ptre.lr="_______ zs"
ptre.rr="_______ zt"

ptre.nsubobjties_=4

ptre.subobjties_1="vardef tie_function_@#(expr $)=q_1=obj(@#subt) .ne;
transformObj (obj (@#subt)) ($) ;
@#ne-obj (@#subt) .ne=(p_1-q_1) transformed $;enddef;"
ptre.subobjties_2="vardef tie_function_0#(expr $)=q_2=obj(@#lr) .ne;
transformObj (obj (@#1r)) ($);
Q#ne-obj (@#lr) .ne=(p_1-q_2) transformed $;enddef;"
ptre.subobjties_3="vardef tie_function_@#(expr $)=q_3=obj(@#rr).ne;
transformObj (obj (@#rr)) ($) ;
@#tne-obj (@#rr) .ne=(p_1-q_3) transformed $;enddef;"
ptre.subobjties_4="vardef tie_function_@#(expr $)=q_4=obj(Q@#conc) .ne;
transformObj (obj(@#conc)) ($) ;
@#ne-obj (@#conc) .ne=(p_1-q_4) transformed $;enddef;"

Figure 3: Object structure (cont’d): subobjects

96 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting



METAOBJ: Very High-Level Objects in METAPOST

Q#ic=0#c;

ptre.code_="@#se-0#sw=0#ne-0#nw;xpart (0#se-0#ne)=0;ypart (Q#se-0#sw)=0;
@#n=.5[0#ne,O#nw] ; O#s=.5[Q#se,O#sw] ; O#e=.5[0#ne,Q#se] ;
Q#w=.5[Q#nw,O#sw] ; O#c=.5[0#n,0#s] ; O#ine=0#ne ; O#inw=0#nw;
Q#isw=0#sw;Q#ise=0#se;Q#in=0#n; O#is=0#s; O0#ie=0#e ; O#iw=0%#w;

xpart (.5[obj(@#conc) .1ledge,obj(@#conc) .redge] )=

.5[xpart (obj (@#subt) .s)-62.07625,xpart (obj (@#subt) .s)+55.40683] ;
ypart (obj (@#subt) .s-obj (@#conc) .n)=5.66928;
ypart (@#n-obj (@#subt) .n)=0;ypart (obj (@#conc) .s-0#s)=0;
Q#ledge=obj (@#conc) . sw; @#redge=obj (@#conc) . se;
ypart (@#lstart)=ypart (@#lend)=ypart (obj(@#conc) .n)+2.83464;
xpart (@#lstart)=xpart (obj (@#subt) .c)-62.07625+0;
xpart (@#lend)=xpart (obj (@#subt) .c)+55.40683+0;
xpart (@#e) -xpart (obj (@#subt) .e)=+0;
xpart (obj (@#subt) .w) -xpart (Q#w)=+20.33072;
@#lstart-(rdistl,0)=obj (Q#lr).e;"

Figure 4: Object structure (cont’d): equations

applied to an object. Having four subobjects, we
have therefore four such functions, subobjties_1,
..., subobjties_4. These functions are stored as
strings.

And finally, all the equations defining the initial
state of the object are stored in the code_ string
(figure . These equations are used whenever an
object is reset.

An object can contain more information, but
every time there is some variable, the name of this
variable must also appear in some list, because this
is the only way to achieve duplication (cloning). We
can only know what is inside an object if we con-
stantly keep track of it. This also explains why
special functions should be used to define variables.
“pair” would not be enough to record the name of
a pair. Instead, “ObjPoint” should be used.

An object definition example

The simplest of all classes is the EmptyBox. An
EmptyBox is an empty rectangle, normally with no
frame. Its only purpose is to take some space. For
instance, it is useful in order to change the spacing
between leaves of a tree, when the spacings are not
all identical. The constructor looks like:

vardef newEmptyBox@# (expr dx,dy)
text options=

ExecuteOptions(options);

assign0bj (@#, "EmptyBox") ;

StandardInterface;

ObjCode StandardEquations,
"Q#ise-Q@#isw=(" & decimal dx & ",0)",
"Q#ine-Q#ise=(0," & decimal dy & ")";

enddef;

It is called with two dimensions, which are the
sides of the rectangle. It should be noticed that the

values of dx and dy can be negative and this can
produce some special effects.

The name of the object created is the suffix rep-
resented here as @#. The creation of box b would be
done with:

newEmptyBox.b(2cm, 1cm) ;

The syntax is therefore similar to the one found in
the boxes.mp package.

The constructor also exhibits some features re-
lated to the options mechanism. Every constructor
can have options modifying its behavior. The op-
tions are given as the last parameters of the con-
structor and are used in a call to ExecuteOptions.
Each object decides which option it honors and how.
The EmptyBox doesn’t have many options, but it is
still possible to draw its frame with a different thick-
ness or to fill the box. Therefore, the drawEmptyBox
function is (with slight simplifications):

def drawEmptyBox(suffix n)=
if show_empty_boxes:
drawFramedOrFilledObject_(n);
fi;
drawMemorizedPaths_(n) ;
enddef;

This macro is simple: depending on the global
variable show_empty_boxes (often used for debug-
ging), the empty boxes are shown or not. If they
are shown, they are either filled or merely drawn.
The drawFramedOrFilledObject_ takes care of the
various cases. If they are filled, they are filled with
a color that can be given as an option.

If the object is filled, the “bounding path” of
the object is used, and it is given by the function
BpathEmptyBox. Like the function drawObj which
calls drawEmptyBox, the BpathObj function actually

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 97



Denis Roegel

calls BpathEmptyBox. Each object must declare its
“bounding path” function. For EmptyBox, we have

def BpathEmptyBox(suffix n)=
StandardBpath(n)
enddef;

The standard bounding path provided by the
StandardBpath function is merely the path n.inw
--n.isw -- n.ise -- n.ine --cycle. This path
uses the “inner interface” so that the drawing of the
object does not depend on artificial changes to its
bounding box.

Overview of METAOBJ classes

METAOBJ defines standard object classes, which can
then be instantiated. The standard library includes:

e basic objects: these objects are not containers
and appear therefore at the leaves of a structure
hierarchy:

— EmptyBox: a rectangle with a given size;

— HRazor and VRazor: this is a degenerated
EmptyBox;

— RandomBox;

e basic containers: such objects can contain any
other object, and have varying shapes for the
frame:

— Box: a (usually) rectangular frame;

— Polygon: a polygonal frame, whose num-
ber of sides can be parameterized;

— Ellipse: an elliptic frame, whose shape
can be parameterized;

— Circle: a special case of Ellipse;
— DBox: a box, with a doubled frame;

— DEllipse: an ellipse, but with a doubled
frame;

e box alignment constructors:
— HBox
— VBox

e recursive objects and fractals:

— RecursiveBox: a box, containing a box,
containing a box, ...

— VonKochFlake: a well-known fractal;
e trees:

— Tree: general trees;

— PTree: proof trees;

e matrices: Matrix

A complex example

Figure |5/ shows a much more elaborate example cre-
ated with METAOBJ. The code provided should
be easy to follow. First, a box named a is cre-
ated, with the text “a”. This is the square box
“a” within the big circle, but at that point it is lo-
cated nowhere. The box is actually “floating”. Sim-
ilarly, two ellipses are created, named b and c¢. The
latter appears differently because the constructor
(newEllipse) was called with several options which
change the ellipse. From a, b, and ¢ we create a
tree, specifying the color of the arcs (which are ar-
rows by default). The name of the tree is ¢ and it
is then put inside a box named aa. The new box
is given round corners. This boxed tree is floating,
until aa.c=origin; is executed. This is similar to
how boxes are positioned with John Hobby’s boxes
package.

Later, another tree is built, and the whole tree
is put inside a circle. This circle then becomes the
root of a new tree and this tree is drawn with the call
to drawObj (nt). This automatically draws all com-
ponents recursively. A spring then connects an el-
lipse (xc) to a double box (db). The spring (nccoil)
has various options which were taken from PSTricks.
It connects two named components without refer-
ring to the whole tree. However, it would have been
possible to extract these two objects from the whole
tree.

The rounded box (aa) is then duplicated and
a new floating object dt is created. This copy is
reflected, slanted and rotated. All these operations
are applied recursively to all components of dt. The
new object is drawn after having been put in place
with dt.c=nt.c-(6cm,-1cm). Finally, a zigzag con-
nection is added between the former a object and its
copy. The copy of a has an internal name, but we do
not know it, and therefore we access the copy with
the treepos function specifying the first child of dt.

Conclusion and related work

METAOBJ makes it possible to define and manipu-
late objects. The standard functions consider that
the objects are rigid and can be combined in various
ways. No matter how an object has been built, its
structure is still easily accessible and open to intro-
spection.

It is of course easy to add new objects and we
have only provided a few. It is also easy for the
programmer to write special packages manipulating
special graphical formalisms, such as UML, etc.

98 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting



METAOBJ: Very High-Level Objects in METAPOST

Double box with green shadow
input metaobj

beginfig(1);

newBox.a("a");

newEllipse.b("b");

newEllipse.c("c") "filled(true)", "fillcolor(red)","picturecolor(green)",

"framecolor (blue)","framewidth(2pt)";

newTree.t(c) (a,b) "linecolor((1,1,0))";

newBox.aa(t) "filled(true)", "fillcolor((0,1,1))","rbox_radius(2mm)";

aa.c=origin;

newHexagon.xa("hexagon") "fit(false)","filled(true)","fillcolor((1,0,1))";

newEllipse.xc("c") "filled(true)", "fillcolor(red)","picturecolor(green)",

"framecolor(blue)","framewidth(2pt)";

newTree.xt (xc) (xa,aa) "linecolor((1,1,0))";

newCircle.xaa(xt) "filled(true)", "fillcolor((.6,.8,.5))";

newDBox.db(btex Double box with green shadow etex)

"shadow(true)", "shadowcolor(green)",
"filled(true)","fillcolor(blue)","picturecolor((1,1,0))";

newTree.nt (xaa) (db) ;

drawObj (nt) ;

nccoil(xc) (db) "angleA(0)","angleB(180)",
"coilwidth(5mm)","linetension(0.8)","linecolor(red)",
"doubleline(true)","posB(e)";

duplicateObj(dt,aa);

reflectObj(dt,origin,up);

slantObj(dt,.5);

rotateObj(dt,30);

dt.c=nt.c-(6cm,-1cm);

drawObj (dt) ;

nczigzag(a) (treepos (obj(dt.sub)) (1))
"angleA(-120)","coilwidth(7mm)","linecolor(.5green)","linearc(imm)",
"border (2pt)";

endfig;

Figure 5: A complex example and its source code.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 99



Denis Roegel

It should also be possible to extend the concept
of interface to other kinds of interfaces and to in-
troduce objects that are not completely rigid. It is
possible to use the complete object structure to im-
plement tree layout algorithms. We could also have
objects whose shape depends on parameters and on
their location in a drawing. More elaborate opera-
tions could also be implemented if the history of an
object was known. This is currently not the case,
and causes limitations in certain experimental fea-
tures such as the reset feature.

Other refinements include support for layers.
This feature is currently not included in METAOBJ,
but could be added in the future.

METAOBJ can be used as a replacement to the
boxes.mp, rboxes.mp, and fancybox.sty packages
and to many features found in PSTricks. Several
features of METAOBJ, for instance connections, can
be used without a reference to objects.

METAOBJ was especially influenced by my ear-
lier work on animations (Roegel, 1997) where an
object notion was introduced. The 3D objects were
very primitive, but they provided many useful ideas.
Several objects have been influenced from counter-
parts in various packages. This is especially true for
rectangular and elliptic boxes. PSTricks provided
many ideas and the connection functions are en-
tirely borrowed from that package. Only PSTricks’s
user documentation was used, not the implementa-
tion details (van Zandt and Girou, 1994), though
similarities can be observed. There has also been
some work by Denis Girou on high-level objects in
PSTricks (Girou, 1995), but this work is not really
relevant to what we have done. Another work we
didn’t use was Kristoffer Rose’s work on high level
2-dimensional graphics (Rose, 1997)). The proof tree
class was influenced by a KTEX package I wrote in
1993 and which was never released.

Several systems explore similar ideas, though
they did not influence METAOBJ. One is “Func-
tional METAPQOST,” a system providing a Haskell
layer to specify drawings abstractly (Korittky, 1998;
Kuhlmann, 2001)). The drawback of that approach
is that one needs a Haskell compiler and of course
one needs to learn some of this language. Never-
theless, this work shares many ideas with METAOBJ
in that objects are built by applying functions to
already existing structures. Another functional ap-
proach to picture drawing is FPIC which uses the
ML language (Kamin and Hyatt, 1997). A very pop-
ular system with many similar ideas is the 2D Java
API (Knudsen, 1999). It provides graphical objects
which can be manipulated by various transforma-
tions and modified in various ways.

The syntax of METAOBJ is admittedly verbose,
but it is hoped that a TEX interface will be provided
and that it will alleviate a lot of the user’s burden.

References

Girou, Denis. “Building high level objects in
PSTricks”. 1995. Slides presented at TUG’95, St.
Petersburg (Florida).

Goossens, Michel, S. Rahtz, and F. Mittelbach. The
ETEX Graphics Companion: Illustrating docu-
ments with TEX and PostScript. Reading, MA:
Addison-Wesley, 1997.

Hagen, Hans. ConTgXt: the manual, 2001a.

Hagen, Hans. MetaFun, 2001b.

Hobby, John D. “A User’s Manual for MetaPost”.
Technical report, AT&T Bell Laboratories, Mur-
ray Hill, New Jersey, 1992. Computing Science
Technical Report 162.

Hoenig, Alan. TgX Unbound: ETEX € TpX Strate-
gies for Fonts, Graphics, €& More. New York:
Oxford University Press, 1998.

Kamin, Samuel N. and D. Hyatt. “A Special-
Purpose Language for Picture-Drawing”. In
USENIX Conf. on Domain-specific Languages,
Santa Barbara, pages 297-310. 1997.

Knudsen, Jonathan. Java 2D Graphics. O’Reilly &
Associates, 1999.

Knuth, Donald E. The METAFONTbook. Reading,
MA: Addison-Wesley, 1986.

Knuth, Donald E. Digital Typography, volume 78 of
CSLI Lecture Notes. CSLI, 1999.

Korittky, Joachim. “Functional METAPOST. Ei-
ne Beschreibungssprache fiir Grafiken”. 1998.
Diplomarbeit an der Rheinischen Friedrich-
WilhelmsUniversitdt Bonn.

Kuhlmann, Marco. “Functional METAPOST for
IATEX”. 2001.

Ohl, Thorsten. “EMP: Encapsulated METAPOST
for ITEX”. 1997. Technische Hochschule Darm-
stadt.

Roegel, Denis. “Creating 3D animations with
METAPQOST”. TUGboat 18(4), 274-283, 1997.
Roegel, Denis. The METAOBJ tutorial and reference

manual, 2001.

Rose, Kristoffer Hggsbro. ““Very High Level 2-
dimensional Graphics” with TEX and Xy-pic”.
TUGboat 18(3), 151-158, 1997.

van Zandt, Timothy. PSTree user’s guide, 1993a.

van Zandt, Timothy. PSTricks: PostScript macros
for Generic TEX; User’s Guide, 1993b.

van Zandt, Timothy and D. Girou. “Inside
PSTricks”. TUGboat 15(3), 239-248, 1994.

100 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting



	Introduction
	Low-level drawing in Metapost
	Discardable drawings
	Memorizable drawings

	A functional approach to drawing
	The structure of an object
	An object definition example
	Overview of METAOBJ classes
	A complex example
	Conclusion and related work

