
Indic Typesetting – Challenges and Opportunities

S. Rajkumar
Linuxense Information Systems, “Lalita Mandir”, 16/1623,
Jagathy, Trivandrum 695014, India
raj@linuxense.com

Abstract

Asia boasts a wide variety of scripts, most of which are complex from the perspec-
tive of a computer scientist or engineer. This is true in the case of Indic scripts
which are classified in the realm of complex scripts. All of the Indic scripts re-
quire a special process to transform from the a Unicode text to the actual glyph
metrics for TEX to process.

In this paper I will talk about the processing of Unicode text to produce
high quality typeset material for Indic scripts using OpenType fonts. I will cover
the OpenType standards for Indic scripts and other facilities OpenType provides
for advanced typesetting.

Introduction

TEX has remained and continues to remain one of
the best typesetting systems of the world. But with
the passage of time, TEX has been used for purposes
that were not taken into account during its design
phase. One such “flaw” is that it was based on 8-
bit tables internally. This applies among others to
the number of glyph in font files and the number of
characters in a language. The original 8-bit design
is fine for Roman scripts but inadequate for complex
scripts like Indic or CJK scripts.

When TEX was designed there were very few
programs that could really do any meaningful “type-
setting”. Font standards were almost nonexistent.
As time passes the non-TEX world is also trying to
catch up with TEX. One such promising technol-
ogy is OpenType. It is an industry standard font
technology formed by the fusion of TrueType and
Type 1. OpenType has many advanced features
that were the exclusive domain of TEX so far and
adds even more.

The rest of the paper dwells more on the two
subjects covered above and takes a look at how they
can be used to advance the capabilities of TEX.

OpenType and Internationalization

One of the most exciting internationalization devel-
opment happening outside the TEX world is the de-
velopment of OpenType technology [1]. OpenType
is an amalgamation of earlier TrueType and Type 1
technologies and designed from ground up to sup-
port complex scripts like Indic and Arabic. It uses

a full 16 bits and is based on Unicode, and thus
supports 64k glyph in a single font.

OpenType also supports advanced typograph-
ical control such as ligatures, kerning, small caps
etc, which were available in TEX for a long time,
plus swash variants, contextual ligatures, old-style
figures, multi-script baselines etc, which are not part
of TEX. What sets apart OpenType from others that
offer these features, including TEX, is that the ren-
derer need not be aware of all the features available
in the fonts. OpenType fonts are capable of giving
this information to the rendering engine. This en-
ables the type designer to let her imagination run
loose without being hampered by the limits of the
rendering engine. If it is present in the font it will
be used by the renderer.

This is in contrast with the TEX, where a clear
encoding of a font is required for TEX to work. This
problem has been sorted out in Latin scripts where
the possible numbers of glyph to render a text is
finite and a robust encoding scheme is in place for
font designers to follow. But not so in Indic scripts.
In languages like Malayalam there are very many
conjuncts or ligatures possible, and not all fonts have
all of them. Unlike in Latin scripts, the ligatures are
not an advanced typographic tool but an absolute
requirement for legible reading.

The number and placement of glyphs for high
quality typography in Malayalam is still being de-
bated. Furthermore, the Malayalam script itself is
divided into an original script and a reformed script,
each with a slightly different set of glyphs and rules
for vowel consonants formation.

90 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting



Indic Typesetting – Challenges and Opportunities

Another problem with Indic computing in gen-
eral is that there are very few high quality fonts
available and thus reusing fonts is a priority. Since
the entire non-TEX world is moving towards Open-
Type as a single font standard, more and more new
fonts to appear will be based on OpenType. All this
points to the fact that a possible Omega implemen-
tation that uses OpenType will be ideal for Indic
languages implementation of TEX.

OpenType Rendering for Indic scripts

OpenType rendering is the process of converting the
plain Unicode input into a set of glyph indexes in a
font file so that the text can be rendered on a de-
vice such as a screen or printer. This is much more
complex than it sounds, since the font itself con-
tains meta-information in the form of various fea-
tures. Features are script- and language-dependent
and standard features are registered in the renderer.
This enables font designer to use the registered fea-
tures so that consistent high quality output is pro-
duced when rendered and renderers can be written
without being tied to particular fonts.

The standards for Indic scripts are designed by
Microsoft Corporation [2] and are publically avail-
able. The latest Microsoft rendering engines support
most of the Indic scripts but not all. Yudit [3] is one
free editor which also supports most Indic languages.

An Indic OpenType rendering engine processes
text in different stages. These stages include:

1. analyzing the syllables

2. reordering characters

3. shaping (substituting) glyphs according to the
instructions in the font

4. positioning glyphs

During the analysis stage the engine takes the
stream of Unicode characters and finds the syllable
boundaries. Once a syllable boundary is found it
is analyzed to find the features that can be applied
to that syllable, such as possibly combining to pro-
duce a distinct glyph. Next the base consonant is
identified. All other elements are classified accord-
ing to the base consonant like pre-base, post-base,
etc. Next the components that appear in more than
one side are split into component parts. At this
point the syllable is reordered according to the ap-
propriate rules of the language. The reordered part
is passed to the glyph substitution part of the en-
gine to obtain a reordered glyph string. The var-
ious contextual shape features are applied to this
nominal glyph string to obtain the final output for
rendering.

Registered Features for Indic Scripts

Registered features can be divided into language fea-
tures which encode the linguistic rules; conjuncts
and typographic forms, which are used for typo-
graphical substitution; and conjunct creation and
positioning features which are used to position the
various markings for vowel modifiers along the final
glyph. The language features listed in their order of
applications are:

Linguistic Rules

nukt This feature takes nominal (full) forms of con-
sonants and produces nukta forms. All nukta
forms must be based on an input context con-
sisting of the full form of consonants. All con-
sonants in a font must have an associated nukta
form, and nukta forms must exist in the font for
all glyphs with akhand forms as well.

akhn This feature creates an akhand ligature glyph
from two consonants in nominal forms sepa-
rated by a halant. The input context for the
akhand feature always consists of the full form
of the consonant.

rphf Applying this feature produces the reph glyph.
If the first consonant of the cluster consists of
the full form (Ra + Halant), this feature substi-
tutes the combining-mark form of Reph. In ad-
dition, the glyph that represents the combining-
mark form of Reph is repositioned in the glyph
string: it is attached to the final base glyph
of the consonant cluster. The input context for
the Reph feature always consists of the full form
of Ra + Halant.

blwf Applying this feature creates below-base
forms of consonants. The input context for the
‘below-base form’ feature must always consist of
the full form of the consonant + Halant. The
feature ‘below-base form’ is applied to conso-
nants having below-base forms and following
the base consonant. The exception is vattu,
which may appear below half forms as well as
below the base glyph. The feature ‘below-base
form’ will be applied to all such occurrences of
Ra as well.

half Applying this feature produces so-called half
forms: forms of consonants used in pre-base po-
sition. Half forms must exist for all consonants
in the font, and half forms of nukta consonants
and Akhand consonants also must exist. Use
the halant form for consonants that do not have
distinct shapes for half forms. This feature is
not applied to the base glyph even if the syllable
ends with a halant.

TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting 91



S. Rajkumar

pstf Applying this feature creates post-base forms.
Examples include Bengali and Oriya ‘Ya’ and
Malayalam ‘Ya’ and ‘Va’.

vatu Vattu variants are formed by combining con-
sonants with the vattu mark. Vattu ligatures
can be either half or full form, and fonts must
contain both. The input context for the ‘vattu
variants’ feature must always consist of a con-
sonant (in full or half form) + vattu glyph.

Conjuncts and Typographic Forms The con-
juncts and typographical features are not strictly
required, but almost all fonts will have to use some
of these to produce readable text.
pres Pre-base substitutions: this feature produces

conjuncts with half forms, the type most com-
mon in Devanagari. This feature also produces
the correct shape of I-Matra (in Devanagari and
similar scripts) and also may take care of pre-
base matra ligatures like Tamil ‘elephant trunk’
shape of AI-Matra.

blws Below-base substitutions: This feature pro-
duces conjuncts of the base glyph with below-
base consonants. Any specific context-depen-
dent forms of below-base consonants are han-
dled here as well. Finally, this feature produces
matra ligatures with the base consonants and
below-base stress and tone marks.

abvs Above-base substitutions: This feature pro-
duces the correct typographic shape when an
above-base matra forms a ligature with the base
glyph. This feature also produces conjuncts of
the base glyph or matra with Reph, ligatures
and forms involving above-base vowel modifiers
and above-base stress and tone marks.

psts Post-base substitutions: This feature produces
ligatures of the base glyph with post-base forms
of consonants. It also produces the correct ty-
pographic shape when a post-base matra forms
a ligature with the base glyph and different
forms of post-base vowel modifiers like visarga.

haln Halant form of consonants: This feature pro-
duces the halant form of the base glyph in syl-
lables ending with a halant. This features also
takes care of chillaksharams in Malayalam.

Positioning Features

blwm Below-base marks: This feature positions all
below-base marks on the base glyph.

abvm Above-base marks: This feature positions all
above-base marks on the base glyph or the post-
base matra.

dist This feature covers all other positioning look-
ups defining various distances between glyphs,
such as kerning between pre and post-base ele-
ments (like Visarga) and the base glyph.

Moving Ahead

Currently the Omega typesetting system does not
support OpenType technology. But this is one of
the planned features for Omega in future.

References

[1] Adobe Corporation. http://www.adobe.com/
type/opentype/main.html

[2] Microsoft Corporation. http://www.
microsoft.com/typography/otfntdev/
indicot/features.htm

[3] Sinai, Gasper. http://www.yudit.org/

92 TUGboat, Volume 23 (2002), No. 1 —Proceedings of the 2002 Annual Meeting


