serendiPDF with Searchable Math-fields in PDF Documents

Ross Moore

Mathematics Department, Macquarie University, Sydney

ross@maths.mq.edu.au
http://www.maths.mq.edu.au/ ross/

Abstract

serendiPDF is an attempt to make it easier to find the correct way to express
complicated mathematics, especially aligned environments, using ITEX. This is
achieved by storing a copy of the IXTEX source for a mathematical environment
inside the generated PDF output, in a way that allows it to be easily accessed
and copied into the source for other documents. In this way, the full power of
“serendipity”, as a means for appreciating and learning unfamiliar techniques,
becomes available for authors of mathematical BTEX documents.

The existence of extra (initially hidden) mathematical fields within PDF
documents, allows for a solution of the perennial problem of how to search for
pieces of mathematics within typeset documents. A solution is presented whereby
symbol names, such as \alpha («), \Gamma (I') and \Sigma (X), can be located
within the extra math fields. The interface behaves just as one would expect from
a search-engine, finding fields either anywhere within the document, or limiting

the search to just the currently visible page.

Serendipity

Dictionaries define serendipity as the act of “acci-
dental discovery”, such as finding something of value
by accident, when actually looking for something
else. In the context of modern computing software,
with extensive menus and an intricate graphical
interface, serendipity clearly plays a role in learning
how to use the program. When searching through
the menus for the way to perform a particular kind of
task, one frequently tries out unfamiliar options. In
doing this one may not find what was being looked-
for, but instead discover how other tasks can be
performed. Typically ‘features’ discovered in this
way are remembered, or appreciated, much better
than if a manual had been consulted.

With what used to be called WYSIWYG word-
processing software (“What You See Is What You
Get”), serendipity can play a significant réle in con-
structing complex documents. Rather than learning
from a manual how to (for example) create a tabular
layout or complicated mathematical expression, one
just copies something that looks like it does part
of what seems to be needed, then makes alterations
until it is presenting what is desired. This may not
lead to the best possible appearance, or the most
efficient (in some sense) coding, but it can get the
job done.

To TEX purists this can be anathema—data
should be presented in a consistent logical manner,
with appropriate mark-up to indicate its meaning,
not just appearance. While this is true, it also
leads to the perception that TEX (or BTEX) is
difficult, both to use effectively, and to learn—
despite its obviously superior output quality. This
author contends that the problem is largely due
to the 3-step edit—compile-view cycle that is at
the core of document preparation using TEX. An
inexperienced user can see superb TEX-produced
output, but may not know what kind of input source
was required to produce it. For all but simple text
and paragraphing, it is generally not possible to take
the output and reuse it (with appropriate edits)
in a new document, without having access to the
author’s original source coding, or similar work. At
least with PDF as the output format, it is possible to
capture text using the ‘Text Capture’ tool. But try
to use this tool for mathematics or tables—it just
does not help at all.

Such an edit—compile-run cycle used to be the
predominant computing paradigm, so it was no sur-
prise that TEX was constructed to work in this way.
Nowadays however, many people have used comput-
ers effectively for a large number of years without
ever (knowingly) having compiled a program; the
concept is something completely foreign to them.
This can be true of students and academics in all

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 65

mailto:ross@maths.mq.edu.au
http://www.maths.mq.edu.au/~ross/

Ross Moore

Here is some inline math: I' followed

o + 3% =~

by a bit more .

2

Some text ip-between math-environments:

—(@*+5%) = -

o + 8¢

[

(1]
(2}

|
-]

-2
(%]
F

the usual text in-between math-environments:

a® +

.
)

52

» o s B [y
(a® + 37) '

Figure 1: Moving the mouse over a piece of typeset

mathematics causes the outline of an invisible button

to be displayed. Clicking on this button toggles the visibility of a field with IATEX source, see figure 2.

Here is some inline math:follcuwed by a bit more 3. %\ %<inline math num=1>

]

a? + 3% =~

Some text in-between math-environments:

\Gamma %)

o+ 32 = q

o’ +58 = 1

[Iv]

1)
(2)

[B}

the usual text in-between matbesnvironments:

| %e\begin{egnarray} %<mathsave-pdftex.tex : eqnaray num=1=>
“Talpha*2+\beta®2 &=&\gamma"2\\
ol l\alpha*2+\beta®? &=8\gamma"2
Y\end{egnarray}

Some more text in-between math-environments:

Figure 2: In response to a click over a piece of typeset mathematics the visibility of a math-field is
toggled. Here we see how the field contains the ITEX coding for the typeset mathematics, as a complete

environment.

fields, so it is not hard to see why TEX has been
described as “arcane”, and does not occupy the
prominent place in publishing that befits the quality
of its output. It is the lack of serendipity that makes
learning TEX seem to be so much harder than for
other modern software packages.

The main purpose of serendiPDF is to imple-
ment an idea that may help to change this. Now
mathematics can be recovered from specially pre-
pared PDF documents, using nothing more than the
Acrobat Reader [2] provided (free of charge) on all
platforms by Adobe Systems Inc. The idea is to
include the IXTEX source for mathematics environ-

ments as hidden fields within the PDF document.
Visual clues indicate the presence of these fields,
as indicated in figure 1. In response to a single
mouse-click a field can be shown, thereby revealing
the ITEX coding which has then been ‘discovered’
serendipitously; see figure 2.

A ETEX document can be prepared such that
all mathematics coding is included also within these
hidden fields. Such a document becomes not only a
valuable source of scholarly information on the topic
being presented, but also a useful example for learn-
ing how to create the high-quality appearance for

66 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

http://www.adobe.com/

serendiPDF with Searchable Math-fields in PDF Documents

Search for math: | Jamma Find
case insensitive ¥ from start ¥ this page only Mext

Figure 3: The 'Search for math’ control box
allows TEX source to be located within math
fields. Searches normally look forward from the
current page, but check-boxes allow it to cover the
whole document or restrict to the one page.

mathematical information of a similar kind. Inex-
perienced authors can learn from the older masters,
not just the intricacies of the meaning embodied in
the mathematics, but also how best to present it.

Having the IKTEX coding for mathematics avail-
able leads to further useful possibilities. For exam-
ple, it now becomes a simple matter to search for
mathematical expressions within a PDF document
(see figures 3 and 4); something which was hitherto
quite impossible. It should even become possible to
develop plug-in software that allows mathematical
expressions to be edited in-place.

The serendip package, with insdljs.sty and
hyperref.sty

Electronic fill-in forms are have now become quite
common, in both HTML and PDF. For the most-
part, these rely upon a JavaScript interpreter be-
ing available within the web-browser or PDF reader
software. (JavaScript is a programming language
that handles the appearance of buttons and the
showing/hiding of fields and annotations, as well as
calculations, and a myriad of other kinds of comput-
ing task related to a document and its content.)

Acrobat Reader [2] has had JavaScript support
since version 4.0 [1], and is even more sophisticated
in versions 5.0 and later. Donald Story [7] has been
pioneering the use of JavaScript within PDF docu-
ments generated from TEX source, for several years.
His insdljs package (acronym for ‘Insert Document-
Level JavaScript’) provides coding that allows func-
tions and procedures to be included within PDF
documents, using any of dvips (+ Ghostscript or Dis-
tiller) or dvipdfm or pdfTEX as the engine producing
the final PDF output. In fact with pdfTEX [4] the
inclusion of JavaScript is relatively straight-forward,
using just the hyperref package to help specify fields
and buttons. With other drivers, the pdfmark [3]
technique is used extensively.

For placing mathematics code into fields, the
serendip package builds upon the support for fields,
buttons and JavaScript in both the insdljs and the
hyperref packages. The serendip package works with
IXTEX math environments, such as \ (....\) for in-

line, and \ [. .. .\] for displayed math, as well as the
equation, egqnarray and displaymath environments. It
also works with the outer-level environments and
alignments defined within the amsmath package. It
does this by redefining, in a non-destructive way, the
behaviour of some KTEX and AMS macros.

For example, with the equation environment,
as started by \begin{equation}, it is the macro
\equation which is redefined to behave as follows.

1. Open a new level of grouping and redefine the
\catcodes of non-alphabetic characters.

2. Read to the corresponding \end{equation}, to
get the complete source for this environment.

3. Store this ITEX source as a list of tokens, to
be later written as plain text into a hidden field
within the PDF document being constructed.

4. Estimate the size (both height and width) re-
quired for the text field by typesetting the to-
kens in a \hbox using a fixed-width font then
measuring the result.

5. Write the list of tokens into a file (with .mth
extension) so it can be re-read by TEX with the
usual \catcode values.

6. Construct the text-field containing the KTEX
source, named sequentially with all equation en-
vironments. and positioned using \marginpar.

7. Close the grouping level, reverting \catcodes
to their normal TEX values.

8. Start a new inner \vbox, to hold the typeset
mathematics.

9. Read-in the contents of the .mth file for type-
setting, using a stored pointer to the usual
expansion of \equation.

10. Measure the size of the resulting \vbox and
construct a button of this same size.

11. Place the \vbox onto the page with the correct
amounts of preceding and trailing glue.

12. Remove trailing glue, remembering how much
was used.

13. Place the button also onto the page, directly
over the typeset mathematics. This button will
be used in the final PDF to toggle visibility of
the text-field.

14. Replace the trailing glue, so that the environ-
ment interacts correctly with material following
afterwards.

The resulting page may differ slightly in the stretch-
ability of the glue around the environment. Mostly
this is not noticeable at all. Other environments
are handled similarly, except for inline mathemat-
ics, where the typesetting is done within an \hbox,
which is measured and later placed onto the page.
Thus inline-math environments must occur entirely

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 67

Ross Moore

Search for math: |-"'-Qﬂ mma®2 Fingl
case insensitive from start this page only [{ e .
1
Here is some inline math: T' followed by a bit more X.
0]
a® + 8=
Some text in-between math-environments:
— (a® + 3% -2 (1)
a® + 3 2 (2)

the usual text in-between math-environments:

n? 32

g gy
(o® + 3%)

Figure 4: When the specified math coding has been found, the environment is indicated by highlighting
the border of its overlying button, and giving focus to that button. The field itself is not shown until the
button is pressed. Repeated use of ‘Next’, instead of ‘Find’, cycles through subsequent occurrences.

within a single line; any breaks need to be forced,
resulting in two fields and a button for each.

Searchable Mathematics

One consequence of having the ITEX code for math-
ematics available in text-fields within the PDF docu-
ment, is that now it becomes possible to search these
fields using JavaScript procedures. The mathsrch
package constructs a console, as shown in figure 3.
This allows mathematical expressions to be found by
searching forward within the math-fields embedded
within the current PDF document.

By checking a box, a search can be modified
to restrict to just the current page, or to cover
the whole document, starting from the beginning.
Using the ‘Next’ button, rather than ‘Find’, allows all
occurrences of a particular expression can be located
sequentially. To indicate a found expression, the
mathematical environment is indicated by outlining
its button, as shown in figure 4. If the KTEX code
itself needs to be shown, then an extra click is
required on this outlined button.

Placing the search-console is not an automatic
consequence of loading the mathsrch package. Cer-
tainly this constructs the console as the contents of a
TEX box register, called \MathSearchBox. This box
can be placed anywhere on a KTEX page, using the
command \MathSearch, which is just a macro that

expands to \copy\MathSearchBox. (It is important
to use \copy, rather than \box, so that that console
can be used repeatedly on different pages.)

Since space characters are usually ignored in
(I4)TEX math-mode source, some flexibility is built
into the searching mechanism. A space token in the
search-string is not required to match in the math-
fields; in fact, it can match any number of spaces,
including none at all. For example, x+y matches
only x+y in a math-field; but x + y will find any of
x+y, x +y,x+ y,x + y,as well as x +y and x + vy,
and other strings having more spaces.

The mathsrch package also defines a command
\MathSearchInHeader, which can put a console on
every page, situated neatly above the header and
abutting into the left-hand margin. More precisely,
\MathSearchInHeader calls upon another macro,
\PlaceMathSearchBoxInHeader, which expands as:
\newcommand{\PlaceMathSearchBoxInHeader}{/

\pagestyle{myheadings}%
\markboth{\protect\MathSearch\hfill}},
{\protect\MathSearch\hfilll}}

From this it can be seen that the \pagestyle is set
to be myheadings, and the header contents are given
explicitly. If other page-styles are being used, then
it is appropriate to make a re-definition:
\renewcommand{\PlaceMathSearchBoxInHeader}{%

\pagestyle{..... YA
\markboth{..... H..... 3}

68 TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting

serendiPDF with Searchable Math-fields in PDF Documents

to accommodate the desired page-style and header.

Customisation of the search-panel is also pos-
sible; e.g., for a language other than English, or to
change width and colours. A file msearch.cfg is read,
if it can be found on any of the usual XTEX search-
paths. The customisable para meters are provided
with default values as follows:

\providecommand{\msearchString}{Search for math:}
\providecommand{\msearchFindString}{ Find }
\providecommand{\msearchNextString}{ Next }
\providecommand{\msearchPageString}{this page only}
\providecommand{\msearchCaseString}{case insensitive}
\providecommand{\msearchStartString}{from start}
\providecommand{\msearchText}{put TeX code here}
\providecommand{\msearchWidth}{3.25in}
\providecommand{\msearchFGcolor}{red}
\definecolor{ltgray}{gray}{.85}
\providecommand{\msearchBGcolor}{ltgray}
\providecommand{\msearchBorderColor}{blue}
\providecommand{\msearchBorderOpts}{borderstyle=B,
borderwidth=1, bordercolor= .85 .85 .85}

Any of the above macros can be given different
expansions either within mathsrch.cfg, or before the
mathsrch package is loaded, or values changed after
the package has been read, using \renewcommand.

Future Developments

The original intention for having math-fields is to
allow the less-obvious parts of a document’s TEX
source to be distributed along with the final PDF.
This is meant primarily as a teaching aid. It remains
to be seen whether it will indeed be used in this
way; or if other applications are found, once this
extra enrichment of PDF documents becomes more
widespread.

For example, the code from a math-field can
be edited in-place, and subsequently used to gener-
ate a modified form of the mathematical environ-
ment. This can be done in an external program
or utility, such as the ‘Equation Service’ by Bob
Rowlands [6] for Macintosh OS X, that works as a
process callable from other running applications. (In
effect, pdfTEX generates a new image of just the
modified mathematics.) It should be possible to
use the plug-in technology for Adobe’s Acrobat (full
version, not just the Reader), to include such an
image into the original PDF, for display in the same
location as the typeset mathematics from which it
was derived. By merging this image as an update
to the original document, we would have what is
effectively PDF editing capabilities for touching-up
TEX-typeset mathematics.

Acknowledgements The author wishes to thank
Donald Story, for many email discussions and help
with suggestions about how to implement various
technical ideas using JavaScript. Without his work
on insdljs and the exerquiz packages, and testing
of example documents, the serendip and mathsrch
packages described here would have taken much
longer to complete.

References

[1] Adobe Systems Inc.; “Acrobat Forms Java-
Script Object Specification, Version 4.0”; Tech-
nical Note #5186; Revised: January 27, 1999.

[2] Adobe Systems Inc.; Acrobat Reader, viewer
for PDF format documents, available free of
charge from http://www.adobe.com/.

[3] Adobe Systems Inc.; “pdfmark Reference Man-
ual”; Technical Note #5150; Adobe Developer
Relations; Revised: March 4, 1999.

[4] Han, Thé Thanh; pdfTEX, free software for
generating documents in PDF format, based
on the TEX typesetting system. Available for
all computing platforms; see http://www.tug.
org/applications/pdftex/.

[5] Netscape Communications Corporation;
Netcape JavaScript Reference, 1997; online
at http://developer.netscape.com/docs/
manuals/communicator/jsref/toc.htm.

[6] Rowland, Bob; ‘Equation Service’, program
for MacintoshOSX to produce small PDF
images of TEX-typeset mathematics or text;
version 0.5b, 2002. Software available on-
line from http://www.esm.psu.edu/mac-tex/
EquationService/.

[7] Story, Donald; exerquiz & AcroTEX, packages
for including special effects in PDF documents,
using TEX and ATEX. Dept. of Mathematics
and Computer Science, University of Akron.
Software available online from http://www.
math.uakron.edu/"dpstory/webeq.html.

[8] Story, Donald; “Techniques of Introducing
Document-level JavaScript into a PDF file from
a ITEX Source,” Tugboat, 22(3) pp. 161-167,
Proceedings of TUG 2001, TEX Users Group
Annual Meeting, Delaware, August 2001.

TUGboat, Volume 23 (2002), No. 1 — Proceedings of the 2002 Annual Meeting 69

http://www.adobe.com/
http://www.tug.org/applications/pdftex/
http://www.tug.org/applications/pdftex/
http://developer.netscape.com/docs/manuals/communicator/jsref/toc.htm
http://developer.netscape.com/docs/manuals/communicator/jsref/toc.htm
http://www.esm.psu.edu/mac-tex/EquationService/
http://www.esm.psu.edu/mac-tex/EquationService/
http://www.math.uakron.edu/~dpstory/webeq.html
http://www.math.uakron.edu/~dpstory/webeq.html
http://www.tug.org/TUGboat/Articles/tb22-3/tb72story.pdf

	Serendipity
	The serendip package, with insdljs.sty and hyperref.sty
	Searchable Mathematics
	Future Developments
	Acknowledgements

