
TUGboat, Volume 22 (2001), No. 4 361

CV formatting with CurVe
Didier Verna

Abstract

CurVe is a LATEX2ε class package for writing curricula
vitæ. It provides a set of commands to create headers,
rubrics, entries in these rubrics and so on. CurVe will
then format your CV with a consistent layout, while
you can just concentrate on the contents. CurVe has a
very special feature known as the flavor mechanism: it
is able to manage different “flavors” (versions) of your
CV simultaneously.

CurVe is distributed under the terms of the LPPL
license. This paper gives an overview of the features
available in version 1.4.

−− ∗ −−

1 Yet another CV class?

The first draft of CurVe appeared in 2000, when I was
completing my Ph.D. and was starting to look for

a job. At that time, several options were available:
using a WYSIWYG editor, using plain (LA)TEX (that
is, with no particular class), or using an already ex-
isting CV class for LATEX. After some investigation,
none of these options turned out to be satisfactory
for me.

As the visual aspect of a CV is something very
important, one could be tempted to use a WYSI-

WYG editor, thinking that the layout conception
would be faster. For me, this was (and still is)
wrong:

• Firstly, WYSIWYG editors are usually far from
it: what you see (on screen) is most of the time
not what you get (on paper). Hence, WYSI-

WYG editors often turn out to be a handicap
rather than a help.

• Secondly, a good CV requires a very strict lay-
out, of the kind on which you spend hours, un-
less it is completely automated. Doing this with
a WYSIWYG editor would involve a deep knowl-
edge of the editor itself (for instance, knowing

362 TUGboat, Volume 22 (2001), No. 4

Didier Verna

Born April 21st 1970

French

mailto:didier@lrde.epita.fr

http://www.lrde.epita.fr/~didier

Curriculum Vitae
Sample made with CurVe

Professional Experience

Lecturing

2002-... • LATEX2ε: an overview. 3 hours conference.

2000-... • OpenGL Programming. 15 hours lecture, including work-

shops.

• Operating Systems. 30 hours lecture.

Development
LATEX2ε • Author of CurVe, FiNK and FiXme.

XEmacs • Member of the review board.

GNU • Contributor to other free software projects.

Education

1995-1999 • Ph.D. in computer Science.

1991-1994 • E.N.S.T. engineering school.

1988 • Baccalaureus.

Figure 1: CurVe sample output

how to use styles instead of manually format-
ting all paragraphs the same way). Hence, us-
ing a WYSIWYG editor properly turns out to be
very close to using LATEX itself. Since I already
knew LATEX, it would have been a waste of time
to learn yet another tool.

For an interesting discussion on WYSIWYG solu-
tions for LATEX, see Kastrup (2002).

The next solution was to use an already exist-
ing class or style with LATEX. For reasons that I
won’t mention here, but that can be found in its
documentation’s introduction, the only reasonable
option was currvita (Reichert, 1999). This solution
did not satisfy me, mainly because the layout was
too limited for me. Layout is probably something
very personal in this context, but I also believe that
there are different traditions in different countries,
and that CurVe provides a layout that pleases many
people, notably in France. The increasing number
of people using CurVe tends to show that I am not
mistaken.

So I decided to use LATEX from scratch (some
other reasons for this are explained later). Being
a lazy kind of person however, I tried not to rein-
vent the wheel, and I found that David Carlisle’s
LTXtable package would do most of the formatting
for me. Being also a free software kind of person, I
wanted other people to benefit from my work, so I
naturally made it a proper class with complete doc-
umentation.

The first release of CurVe occurred in February
2001. Today, CurVe is a simple yet powerful class,
consisting of only 350 lines of code, probably half of
which is devoted to handling user customizations.

2 Layout

The primary purpose of CurVe is to offer a set of pre-
defined commands to specify the contents of your
CV, while removing from you the burden of format-
ting it. This has two important consequences, how-
ever: CurVe requires that you conform to its docu-
ment structuring scheme, and will expect that you
like the way it formats the output.

Figure 1 shows the output of CurVe on a very
small sample CV. There is no user-level customiza-
tion in this example.

2.1 Headers

As you can see in the example, a CurVe CV begins
with two optional headers (upper left and upper
right) in which you usually put your name, address,
email, whether you’re married and so on. These
headers will respectively be left and right aligned.
CurVe also lets you insert a small identity photo in
the headers, either on the left, on the right, or be-
tween them. After these headers comes an optional
title and an optional subtitle, which will be centered
on the page.

The headers and titles in this example are spec-
ified in the document’s preamble as follows:

\leftheader{%

\textbf{Didier Verna}\\

Born April 21st 1970\\

French}

\rightheader{%

\url{mailto:didier@lrde.epita.fr}

\url{http://www.lrde.epita.fr/~didier}}

\title{Curriculum Vit\ae}

\subtitle{Sample made with CurVe}

Later on, after the call to \begin{document},
these headers are formatted like this:

\makeheaders[t]

\maketitle

This scheme is very traditional in LATEX classes
and should not surprise anybody. The optional ar-
gument to \makeheaders specifies the vertical align-
ment. Here, top is used. Many more commands are
available to customize the appearance of the headers
(positioning, size, fonts, etc.).

TUGboat, Volume 22 (2001), No. 4 363

2.1.1 Rubrics

The remainder of the document is composed of sec-
tions called “rubrics” in the CurVe terminology. A
rubric represents a major topic that you want to de-
tail in your CV. Typical rubrics, as demonstrated in
the example, are “Education”, “Professional Expe-
rience” and the like. Rubrics have a title (which will
be centered) and appear under the form of properly
aligned “entries” (see below). If a rubric has to be
split across different pages, its title will be repeated
automatically.

Here is the code used to generate the “Profes-
sional Education” rubric:

\begin{rubric}{Professional Experience}

\subrubric{Lecturing}

\entry*[2002-...] \textbf{\LaTeXe: an

overview}. 3 hours conference.

\entry*[2000-...] \textbf{OpenGL Programming}.

15 hours lecture, including workshops.

\entry* \textbf{Operating Systems}.

30 hours lecture.

\subrubric{Development}

\entry*[\LaTeXe] Author of CurVe, FiNK and

FiXme.

\entry*[XEmacs] Member of the review board.

\entry*[GNU] Contributor to other free

software projects.

\end{rubric}

As you can see, each rubric is made within a
rubric environment, which takes the rubric’s title
as a mandatory argument. The other commands will
be explained below. Please note that for technical
reasons due to the use of the LTXtable package, each
rubric must be written in a separate file. This is not
a heavy burden however, and it even made things
easier when I implemented the “flavor” mechanism
described in the next section.

2.1.2 Subrubrics

You might want to further split your rubrics into
different “subrubrics”. For instance, figure 1 shows
two subrubrics named “Lecturing” and “Develop-
ment” under the “Professional Experience” rubric.
Subrubrics’ names are displayed in alignment with
the entries’ contents (see below), but are formatted
differently so that they remain distinguishable. Sub-
rubrics are created with the \subrubric command.
For instance:

\subrubric{Development}

2.1.3 Entries

An entry is a final item of information related to the
(sub)rubric under which it appears. An entry has a
“contents”, and an optional “key” under which it
is classified. For instance, consider the “XEmacs”
entry in the example:

\entry*[XEmacs] Member of the review board.

The key is “XEmacs” and the entry’s contents
is “Member of the review board.”. Keys are usually
used to indicate dates. CurVe aligns both keys and
contents together. Keys are optional (hence, they
should be input within brackets) in order for you to
classify several entries together (without repeating
the same key over and over again). For instance:

\entry*[2000-...] \textbf{OpenGL Programming}.

15 hours lecture, including workshops.

\entry* \textbf{Operating Systems}.

30 hours lecture.

Here, the second key is not repeated because
the “Operating Systems” course began in the same
year as the OpenGL one.

You probably have noticed already that a “star-
ified” version of the \entry command is used. Ac-
tually, \entry* commands in rubric environments
are very similar to \item commands in list en-
vironments. The reason for this “star-ification” is
that the first version of CurVe had a somewhat ill-
designed, unstarred \entry command that took the
whole entry’s contents as a second argument. The
new scheme is much more elegant, but backward
compatibility has been preserved.

3 The “flavor” mechanism

This is a very nice feature of CurVe, and one of the
reasons that made me write it in the first place.

It is often desirable to maintain several slightly
divergent versions of one’s CV at the same time. For
instance, when I was looking for a job back in 2001,
I had a version of my CV emphasizing Artificial
Intelligence, and another emphasizing Distributed
Virtual Reality. Only the title and some entries in
the “Professional Experience” rubric were a bit dif-
ferent; all other parts basically remained the same.
CurVe provides an easy-to-use mechanism for main-
taining different “flavors” of your CV at the same
time. You basically write different versions of (some
of) your rubrics in different files (this is needed for
technical reasons anyway, as mentioned previously),
tell CurVe which flavor you want to format (CurVe can
even ask you which one to use directly). CurVe will
then use the global skeleton, and whenever it finds
a rubric file specialized for that particular flavor, it

364 TUGboat, Volume 22 (2001), No. 4

will use it. Otherwise, it will simply fall back to the
default one (no particular flavor).

With a clever use of Makefiles, you can even
manage to compile different flavors at the same time.
Suppose you have a mainstream CV (let’s call it
cv.tex), with an “education” rubric in a file named
education.tex and a “skills” one in skills.tex.
Suppose further that you want a slightly divergent
version of your CV with an alternate skills rubric.

The normal way to compile the alternate ver-
sion is to save a new rubric file called, for instance,
skills.alt.tex, and tell CurVe to use it by calling
\flavor{alt} in your document’s preamble. The
only problem is that this alternate version will also
compile to cv.dvi because both versions share the
same skeleton and other rubric files.

To remedy this problem, you can make CurVe
ask you at run-time which flavor to compile (this
is done with the ask class option) and use special
Makefile rules to answer the question for you, build
the different flavors and move the different output
files to flavor-specific names. Here is a Makefile ex-
ample that would allow you to do this for as many
different versions of skills.tex as you wish:

FLAVORS = alt # make other flavors if you want

all: all_flavors cv.dvi

all_flavors:

for i in $(FLAVORS) ; do \

$(MAKE) cv.$$i.dvi FLAVOR=$$i ; \

done

cv.$(FLAVOR).dvi: cv.tex education.tex \

skills.$(FLAVOR).tex

echo $(FLAVOR) | latex cv.tex

mv cv.dvi $@

cv.dvi: cv.tex education.tex skills.tex

echo | latex cv.dvi

As you can see, the trick is to fork a new make
subprocess for each flavor you want to build, and ob-
viously finish with the mainstream version. An echo
shell command is used in conjunction with the ask
class option to indicate the current flavor to build.
For each make subprocess, this flavor is stored in
the dynamic variable FLAVOR, and the correspond-
ing cv.$(FLAVOR).dvi rule is used, with the proper
dependencies.

An implementation sidenote. In order to im-
plement the flavor mechanism, the LATEX macro
\input has been redefined to look for flavored files
first. This is actually very nice because you can use

it to make different flavors of text that do not be-
long in rubrics. For instance, suppose you want a
special version of the subtitle of your CV for the
flavor alt. Put your alternate subtitle in a file
called subtitle.alt.tex; do something similar for
the default subtitle. Now go to the skeleton of your
CV, and write \input{subtitle} in the preamble.
That’s it. You’ll have different subtitles in your dif-
ferent CV flavors.

4 Conclusion

In this paper, I preferred to concentrate on special
aspects of CurVe’s history or peculiarities rather than
on its user interface, because the latter is relatively
straightforward and fully described in the package
documentation. Although the layout of CurVe is
strict, it remains deeply customizable. CurVe also
has other features that are worth mentioning, like
support for all standard class options, support for
the .ltx file extension if, like me, you prefer it over
.tex for LATEX files, support for standard LATEX bib-
liographic commands (although I don’t recommend
using them), and support for AUC-TEX. Addition-
ally, CurVe has been translated into six different lan-
guages (English, French, Spanish, German, Italian
and Danish).

For an example of what you can do with CurVe,
get my own CV at http://www.lrde.epita.fr/
~didier/perso/cv.php. You will also find a page
describing some formatting tricks I’ve used to make
it more eye-catching.

Thanks to different contributors of code or sug-
gestions, CurVe has evolved since its first release, and
I hope it will continue to evolve and reach more and
more users in the future.

References

Kastrup, David. “Revisiting WYSIWYG
paradigms for authoring LATEX”. 2002.
http://preview-latex.sourceforge.net/
wysiwyg-draft.pdf.

Reichert, Axel. “currvita.sty”. 1999. A cur-
riculum vitae style for LATEX, available in
macros/latex/contrib on CTAN.

¦ Didier Verna
EPITA, Research and Development

Laboratory,
14-16 rue Voltaire
94276 Le Kremlin-Bicêtre,
France
didier@lrde.epita.fr

http://www.lrde.epita.fr/

~didier

