
TUGboat, Volume 22 (2001), No. 4 265

Electronic Documents

execJS: A new technique for introducing
discardable JavaScript into a PDF file from
a LATEX source

D. P. Story

1 Introduction

This article describes a technique, referred to as
execJS1, for writing JavaScript from within a LATEX
source file that will be executed once when the doc-
ument is first opened, then discarded. The execJS
technique allows you to execute JavaScript meth-
ods, even ones that have their use restricted for se-
curity reasons. The discardable code and the ability
to execute even security-restricted methods are the
distinguishing features of execJS.

The method requires Acrobat 5.0 or later (the
full application, not the Acrobat Reader), or Acro-
bat Approval 5.0 or later. You can, though not re-
quired, use the Acrobat Distiller to create the PDF

document; or, as so many do, you can use either the
pdftex or dvipdfm applications. Once the PDF doc-

1 execute JavaScript

ument is completed, it can be viewed by the Acrobat
Reader 4.0 or higher.2

The technique is meant to be used in document
development, preparation and assembly for authors
who want to tap into the power methods of Java-
Script.

2 Summary of the technique

The execJS technique consists to two parts:
1. A new LATEX environment, the execJS environ-

ment
2. A few lines of folder-level JavaScript

The execJS environment is implemented as part of
the insdljs Package3, which was written in prepara-
tion for the TEX Users Group 2001 Conference.

Within the execJS environment the “discard-
able” JavaScript is written to an auxiliary file with
an extension of .fdf. When the newly created PDF

document is opened for the first time in the viewer
(either Acrobat or Approval) the .fdf file is im-
ported into the document, and the JavaScript con-
tained within the file is executed.

The second part of the technique, the folder-
level JavaScript, gives the “discardable” JavaScript
the right to execute security-restricted JavaScript
methods.

3 Animated motivation

In the past few years, document authors who are
producing interactive PDF documents from a LATEX
source have grown significantly in number.4 Many
authors, myself included, crave to have the ability to
use Acrobat’s powerful JavaScript interpreter to its
fullest, all from a LATEX source. The development
of the execJS technique is a significant step in that
direction. The execJS method came about by my
pursuit of a holy grail of LATEX/PDF production,
animation. One of the examples that appears in this
article is a PDF animation created entirely within a
LATEX source file!

4 The execJS technique

Acrobat Version 5.0 comes with an extended FDF

(Forms Data Format) specification. This specifica-
tion creates a new Doc key, the value of which refers
to JavaScript contained within the FDF file that is to

2 Version 5.0 or later of Reader is required if JavaScript
objects, properties or methods are used not available in ver-
sion 4.0.

3 The insdljs Package, a standalone package, is distributed
as a component package of the AcroTeX eDucation Bundle:
http://www.math.uakron.edu/~dpstory/webeq.html

4 For links to and descriptions of some of the many au-
thors doing quality work on the Web, see the AcroTEX web
site: http://www.math.uakron.edu/~dpstory/acrotex.html

http://www.math.uakron.edu/~dpstory/webeq.html
http://www.math.uakron.edu/~dpstory/acrotex.html


266 TUGboat, Volume 22 (2001), No. 4

be imported into the document as Document Level
JavaScript (DLJS). See the paper (Story, 2001) for
details of how to use this specification to insert DLJS

from a LATEX source. DLJS can be inserted from
your LATEX source file using the insdljs Package. The
specification also defines an After key, the value of
which is an indirect reference to JavaScript code also
contained in the FDF file.

The After key is the one of interest in this pa-
per. The JavaScript referenced by the After key is
executed after the FDF is imported into the docu-
ment. The JavaScript is executed but not saved, it
is “discardable”.

Consider the following FDF file containing both
the Doc and After keys.
%FDF-1.2

1 0 obj

<< /FDF

<< /JavaScript

<< /Doc 2 0 R /After 3 0 R

>>

>>

>>

endobj

2 0 obj

[ (ExecJS execjs) (var _execjs = true;) ]

endobj

3 0 obj

<<>>

stream

app.alert("\"Discardable\" code executed!");

endstream

endobj

trailer

<< /Root 1 0 R >>

%%EOF

When this file is imported into Acrobat (or Ap-
proval), one line of code will be placed at the doc-
ument level, var execjs = true, and one line of
code
app.alert("\"Discardable\" code executed!");

will be executed, but not saved.

4.1 The execJS environment

It was a simple modification of the insdljs Package
to implement an execJS environment that writes a
FDF file containing the After key. Thus,
\usepackage[execJS]{insdljs}

...

\begin{execJS}{execjs}

app.alert("\"Discardable\" code executed!");

\end{execJS}

writes the file seen in the FDF above. The required
argument for this environment is the base file name
of the FDF to be written.

The environment not only writes the FDF file, if
the execJS option of the insdljs Package is spec-

ified, it also adds an open page action to the first
page of the document:
if (typeof _execjs == "undefined")

this.importAnFDF("execjs.fdf");

This is a point in the whole technique where Acro-
bat or Approval is required. The JavaScript method
this.importAnFDF() is not available for the Acro-
bat Reader.

When the document is opened for the first time,
the file execjs.fdf gets imported into the PDF doc-
ument. The FDF also inserts the DLJS var execjs
= true (which will be saved with the document).
This variable declaration prevents the FDF from be-
ing repeatedly imported each time the first page is
viewed.

4.2 Folder JavaScript

The execJS environment writes the FDF file which,
in turn, is imported into the newly created PDF,
the JavaScript is executed, and is “discarded” (not
saved); however, security-restricted JavaScript still
cannot be executed. An additional trick is needed.

Many of the restricted methods can be used
only during, what Acrobat calls, menu, console or
batch events. The approach taken here is to exe-
cute JavaScript through a menu event. To do this,
create a file, called myJS.js (or any name with an
extension of js). The contents of this file are the
lines:
_MenuProc = function() {;}

app.addMenuItem({

cName: "MenuProc",

cUser: "Menu Procedure",

cParent: "Tools",

cExec: "_MenuProc()",

nPos: 0

});

The first line defines MenuProc, a JavaScript func-
tion which does nothing. The rest of the lines define
a new menu item under the “Tools” menu. Addi-
tional menu items can only be created through a
folder level JavaScript file.

Place myJS.js in the JavaScripts folder, fol-
low the path Acrobat 5.0/Acrobat/JavaScripts.
This is the folder in which aform.js, the folder level
JavaScript for the forms plugin, is kept.

The trick for executing JavaScript methods that
are restricted to a menu event is to redefine the
Folder level function MenuProc. Consider the fol-
lowing code withing the execJS environment:
\begin{execJS}{execjs}

function importMyIcons ()

{

for ( var i=0; i < 36; i++)

this.importIcon("rotate"+i,"animation.pdf",i);



TUGboat, Volume 22 (2001), No. 4 267

}

_MenuProc = importMyIcons;

app.execMenuItem("MenuProc");

_MenuProc = function() {;}

\end{execJS}

A function importMyIcons is defined that imports a
series of named icons using the this.importIcon().
The use of this method is restricted to menu, console
or batch events if a file name is given as the second
argument. The first argument is the name of the
icon newly embedded in the document.

Following the function definition, we make the
assignment
_MenuProc = importMyIcons;

then execute the menu item named "MenuProc",
which, in turn, causes MenuProc (now assigned as
importMyIcons) to be executed. (Multiple func-
tion definitions and assignments can be made in this
way.) Finally, the MenuProc function is reassigned
its default definition (optional).

Important: After the document is assembled,
save the document (as you can with Acrobat and
Approval), this will save the DLJS, but not the “dis-
cardable” code.

See the Acrobat JavaScript Object Specifica-
tion, Version 5.0 or later,5 for details of the Java-
Script methods just illustrated.

5 An animation example

In this section, an animation example is presented.
The animation is done completely within the LATEX
source file. After the PDF document is finally as-
sembled, the animation is ready to run.

The animation was done using two LATEX files,
execjstst.tex and animation.tex. The AcroTeX
eDucation Bundle6 was used. The AcroTeX Bundle
includes the following packages:
• The Web Package: For creating good looking

PDF documents for the Web.
• The Exerquiz Package: For creating online exer-

cises and quizzes. (In the animation, the form
field macros only were used.) Exerquiz loads the
insdljs Package and passes the options of insdljs
to it.

• The insdljs Package: A package used to insert
Document Level JavaScripts, to create open ac-
tions, and to create immediatelly executable
and “discardable” JavaScript.

5 Available under the Help menu of Acrobat, or
at http://partners.adobe.com/asn/developer/technotes/

acrobatpdf.html
6 Available at CTAN:/tex-archive/macros/latex/

contrib/supported/webeq or at the Bundle’s homepage
http://www.math.uakron.edu/~dpstory/webeq.html

• The dljslib Package: A library of useful Java-
Script functions that can be “checked out” for
use.

5.1 animation.tex

The animation.tex file is the LATEX source used
to create the series of images that will be display
in the animation. This animation is rather simple.
PSTricks was used to create a series of 36 graphics:
\documentclass{article}

\usepackage{pstricks,pst-plot}

\usepackage[dvipsone]{web}%<- or dvips

\margins{0pt}{0pt}{0pt}{0pt} % no margins

\screensize{1in}{1in} % 1in by 1in

\pagestyle{empty}\parindent=0pt

\SpecialCoor

\begin{document}

\psset{unit=1in,origin={-.5,-.5}}

\multido{\i=90+-10}{36}{%

\begin{pspicture}(1in, 1in)

\psframe[fillstyle=solid,

fillcolor=lightgray,

linecolor=lightgray](-.5,-.5)(.5,.5)

\psline[linecolor=blue](0,0)(.5; \i)

\pscircle[linecolor=red](0,0){.5}

\end{pspicture}

\newpage

}

\end{document}

This particular file was distilled to create the PDF

document, animation.pdf. For more sophisticated
animations, the graphic images need to be created
using some high-end application.

5.2 ExecJStst.tex

The file execjstst.tex is actually the animation
demo. Here is the verbatim listing of this file.
\documentclass{article}

\usepackage

[dvipsone, % <- dvips, pdftex, dvipdfm

designi,

]{web}

% exerquiz loads insdljs, and passes execJS to it

\usepackage[execJS]{exerquiz}

% Embed the animation images as named icons, the ith

% icon is named rotatei, i=0..35

\begin{execJS}{execjs}

function importMyIcons ()

{

for ( var i=0; i < 36; i++)

this.importIcon("rotate"+i,"animation.pdf",i);

}

_MenuProc = importMyIcons;

app.execMenuItem("MenuProc");

_MenuProc = function() {;}

\end{execJS}

% Define a JavaScript action that will be attached

http://partners.adobe.com/asn/developer/technotes/acrobatpdf.html
http://partners.adobe.com/asn/developer/technotes/acrobatpdf.html
/tex-archive/macros/latex/contrib/supported/webeq
/tex-archive/macros/latex/contrib/supported/webeq
http://www.math.uakron.edu/~dpstory/webeq.html


268 TUGboat, Volume 22 (2001), No. 4

% to the button "aniCtrl" that starts the

% animation.

\newcommand{\aniCtrlAction}

{%

/A << /S /JavaScript /JS

(%

function ShowIt()\jsR

{\jsR\jsT

var oIcon;\jsR\jsT

oIcon=this.getIcon

("rotate"+run.count);\jsR\jsT

f.buttonSetIcon( oIcon, 0);\jsR\jsT

run.count++;\jsR\jsT

run.count \%= 36;\jsR

}\jsR

var f = this.getField("myAnimation");\jsR

var run = app.setInterval("ShowIt()",100);\jsR

run.count = 0;\jsR

var timeout = app.setTimeOut

("app.clearInterval(run);", 3*3600+200);

) >>

}

\begin{document}

\section*{An Animation}

% Center the animation "window" and the start button

\begin{center}

\eqIcon{myAnimation}{72bp}{72bp}\\

\eqGenButton[\CA{Push}\rawPDF{\aniCtrlAction}]

{aniCtrl}{36bp}{16bp}

\end{center}

\end{document}

Many of the above commands come from the ex-
erquiz Package. The macros \jsR and \jsT expand
to \r and \t, which are escape sequences in Java-
Script for newline and tab; \eqIcon makes it easy
to create a button field set up for displaying a (PDF)
icon as its face appearance; \eqGenButton is a gen-
eral command for creating push buttons.

The JavaScript action defined by LATEX com-
mand, \aniCtrlAction, first defines a JavaScript
function called ShowIt, which gets the icon object
using the getIcon method, sets the button appear-
ance of the myAnimation field using the field method
buttonSetIcon method, and increments a counter;
at the top-level, the script gets the field object for
the myAnimation field, starts a timing event which
calls the function ShowIt every 100 milliseconds, ini-
tializes the counter, and sets the timeout interval.

6 Another example

Recently, I produced a PDF version of an html online
survey for the Seybold PDF Conference 2002.
The online version was an “intelligent” survey: the
answer to one question determined what question
would next be posed to the respondent.

LATEX and the AcroTeX Bundle were used to du-
plicate the questions and the functionality of the
html version in PDF. A short macro package was

written, DLJS was automatically introduced into the
document using the insdljs package which supported
the “logic” of the survey.

The PDF version uses form templates. (A form
template is a special type of page that can be hid-
den or made visible, a copy of a template can be
spawned, Acrobat viewer or Acrobat Approval re-
quired.) Templates were used to reveal the next
page, based on the answers given on the current page
by the respondent.

Templates cannot be created using the pdfmark
operator (pdftex and dvipdfm do not support their
creation), but can be created using certain security-
restricted JavaScript methods. The execJS tech-
nique was used to create the templates. As a result,
a fairly complex PDF document was assembled en-
tirely from the content and commands in the LATEX
source file.

Read the article “Seybold PDF survey in PDF

also worthy of study”7 by Kurt Foss, Planet PDF

Editor8, for more details of the operational capabil-
ity of the PDF version of the survey.

7 In conclusion

LATEX has become a powerful markup language for
creating interactive PDF documents; in my opinion,
the LATEX system is the premier system for build-
ing, debugging, modifying and assembling complex
PDF documents. The hyperref and exerquiz pack-
ages can be used to create links and form fields with
JavaScript actions attached, the insdljs package al-
lows for the insertion of document level JavaScript
into the PDF document, open actions, and now ex-
ecutable, “discardable” JavaScript that can be used
in a post-creation setting.

References

Story, D. P. “Techniques of introducing document-
level JavaScript into a PDF file from a LATEX
source”. TUGboat 22(3), 161–167, 2001.

� D. P. Story
Department of Theoretical and

Applied Mathematics
The University of Akron
Akron, OH 44278
dpstory@uakron.edu

http://www.math.uakron.edu/

~dpstory/

7 www.planetpdf.com/mainpage.asp?webpageid=2130
8 Planet PDF: www.planetpdf.com

www.planetpdf.com/mainpage.asp?webpageid=2130
www.planetpdf.com

	Introduction
	Summary of the technique
	Animated motivation
	The execJS technique
	The execJS environment
	Folder JavaScript

	An animation example
	animation.tex
	ExecJStst.tex

	Another example
	In conclusion

