259

General Delivery 261

263

Electronic 265
Documents

269

280

Font Forum 281

Software & Tools 285

290

292

Graphics 298

Applications 314

319

330

334

Book Review 338

Hints & Tricks 339

341

349

Macros 350

IATEX 353

361

Abstracts 365

News & 368

Announcements 369

371

372

Cartoon 260

TUG Business 373

374

Advertisements 375

376

cover 3

TUGBOAT

Volume 22, Number 4 / December 2001

Addresses

From the Board of Directors / Arthur Ogawa
Editorial comments / Barbara Beeton
The status of TUGboat; Glitches in TUGboat 22:1/2;
Zapfest exhibition, honoring Hermann Zapf; Mordecai Richler font;
References for TEX and Friends; Institut d’Histoire du Livre;
More historic books online at the British Library;
Web document analysis; The little tugboat that could

execJS: A new technique for introducing discardable JavaScript into a PDF file
from a IATEX source / D.P. Story

IATEX, SVG, fonts / Michel Goossens

mimeTex announcement / John Forkosh

Making outline fonts from bitmap images / Karl Berry

Size reduction of chemical structural formulas in XXMTEX (Version 3.00) /
Shinsaku Fujita and Nobuya Tanaka

The package ps4pdf: from PostScript to PDF / Rolf Niepraschk
and Herbert Vof§

Instant Preview and the TEX daemon / Jonathan Fine

Space geometry with METAPQST / Denis Roegel

The plot functions of pst-plot / Jana Vof3 and Herbert Vof3
Three dimensional plots with pst-3dplot / Herbert Vof3
Axis alignment in Xy-pic diagrams / Alexander R. Perlis
Eukleides: A geometry drawing language / Christian Obrecht

TEX Reference Manual, by David Bausum / Stephen Moye

Glisterings / Peter Wilson
The treasure chest / William Adams
Highlighting in the I#TEX picture environment / David M. Tulett

A complement to \smash, \1lap, and \rlap / Alexander R. Perlis

Typesetting critical editions of poetry / John Burt
CV formatting with CyrVe / Didier Verna

Les Cahiers GUTenberg, Contents of double issue 39/40 (May 2001)

TUG ’2002 Announcement

Calendar

TUG 2003 Announcement

EuroTEX '2003 — The 14" European TEX Conference

Ya can’t touch us! / Roy Preston

Institutional members
TUG membership application

TEX consulting and production services
Just Published: TEX Reference Manual by David Bausum
Blue Sky Research

TEX Users Group

Memberships and Subscriptions

TUGboat (ISSN 0896-3207) is published quarterly
by the TEX Users Group, 1466 NW Naito Parkway,
Suite 3141, Portland, OR 97209-2820, U.S.A.

2001 dues for individual members are as follows:

= Ordinary members: $75.

= Students: $45.
Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site:
http://www.tug.org.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $85 a year, including air mail delivery.

Periodical-class postage paid at Portland, OR,
and additional mailing offices. Postmaster: Send
address changes to TUGboat, TEX Users Group,
1466 NW Naito Parkway, Suite 3141, Portland, OR
97209-2820, U.S.A.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org).

TEX is a trademark of the American Mathematical
Society.

TUGboat (© Copyright 2001, TEX Users Group

Copyright to individual articles within this publication
remains with their authors, and may not be reproduced,
distributed or translated without their permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice are
preserved.

Permission is also granted to make, copy and distribute
translations of such editorial material into another language,
except that the TEX Users Group must approve translations
of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana’

Mimi Jett, President*™

Kristoffer Rose*™, Vice President

Don DeLand**, Treasurer
Arthur Ogawa* T, Secretary

Barbara Beeton
Karl Berry

Kaja Christiansen
Susan DeMeritt
Stephanie Hogue
Judy Johnson™
Ross Moore
Cheryl Ponchin
Petr Sojka

Philip Taylor

Raymond Goucher, Founding Fxecutive Director?
Hermann Zapf, Wizard of Fonts!

*member of executive committee
+member of business committee

fhonorary

Addresses

General correspondence,
payments, etc.

TEX Users Group

P.O. Box 2311

Portland, OR 97208-2311

U.S.A.

Delivery services,

parcels, visitors
TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 503 223-3960

Electronic Mail
(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for

TEX users:
support@tug.org

To contact the
Board of Directors:
board@tug.org

World Wide Web
http://www.tug.org/
http://www.tug.org/TUGboat/

Problems not resolved?

The TUG Board wants to hear from you:
Please email to board@tug.org

[printing date: July 2003]

One of the great ironies of the information age is that,
while the late twentieth century will undoubtedly have
recorded more data than any other period in history, it
will also almost certainly have lost more information than
any previous era.

Alexander Stille
The Future of the Past (2002)

TUGBOAT

COMMUNICATIONS OF THE TgX USERS GROUP
EpiTor BARBARA BEETON

VoLuME 22, NUMBER 4 . DEeceEMBER 2001

PORTLAND

. ORECON . U.S.A.

TUGDboat

For the 2002 membership year, the communications
of the TEX Users Group will be published as one
double issue and two regular issues. The first issue
(Vol. 23, No. 1) contains the Proceedings of the
TUG 2002 Annual Meeting.

For 2003, three issues will be published. The
first issue (Vol. 24, No. 1) is expected to contain the
Proceedings of EuroTEX 2003, and the second issue,
the Proceedings of the 2003 TUG Annual Meeting.
The third issue will be a regular issue.

We are unfortunately not able to set a definitive
schedule for the appearance of the next few issues.

TUGDboat is distributed as a benefit of mem-
bership to all members.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

Owing to the lateness of the present issue, and
the scarcity of material submitted for future issues,
items will be processed as received.

Manuscripts may be submitted to a member
of the TUGboat Editorial Board, as listed at the
top of this page (see addresses on p. 259). Articles
of general interest or those not covered by any of
the editorial departments listed should be sent by
electronic mail to

TUGboat@tug.org

All items submitted on magnetic media or as
camera-ready copy should be addressed to the
Editor-in-Chief, Barbara Beeton, to the Managing
Editor, Robin Laakso, or to the Production Man-
ager, Mimi Burbank, with an e-mail notice to the
TUGDboat address.

The TUGboat “style files”, for use with either
plain TEX or IATEX, are available from CTAN and
are on the TEX Live CD. For authors who have no
network access (browser or FTP), they will be sent
on request; please specify which is preferred. Send
e-mail to the TUGboat address above, or write or
call the TUG office.

Reviewers

Additional reviewers are needed, to assist in check-
ing new articles for completeness, accuracy, and
presentation. Volunteers are invited to submit
their names and interests for consideration; write to
TUGboat@tug.org or to the Editor, Barbara Beeton
(see address on p. 259).

TUGDboat Editorial Board

Barbara Beeton, Editor-in-Chief
Robin Laakso, Managing Editor
Mimi Burbank, Production Manager
Victor Eijkhout, Associate Editor, Macros
Jeremy Gibbons, Associate Editor,

“Hey — it works!”
Alan Hoenig, Associate Editor, Fonts
Christina Thiele, Associate Editor,

Topics in the Humanities

Production Team:

Barbara Beeton, Mimi Burbank (Manager), Karl
Berry, Robin Fairbairns, Michael Sofka, Christina
Thiele

See page 259 for addresses.

Other TUG Publications

TUG is interested in considering additional man-
uscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the TEX community in general. Provision can be
made for including macro packages or software in
computer-readable form. If you have any such items
or know of any that you would like considered for
publication, send the information to the attention
of the Publications Committee at tug-pub@tug.org
or in care of the TUG office.

TUGDboat Advertising

For information about advertising rates or publica-
tion schedules, write or call the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.

METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.
TEX and ApS-TEX are trademarks of the American

Mathematical Society.
UNIX is a registered trademark of X/Open Co. Ltd.

TUGDboat, Volume 22 (2001), No. 4

Addresses

TEX Users Group Office

Robin Laakso
1466 NW Naito Parkway, Suite 3141
Portland, OR 97209-2820, USA
+1 503-223-9994
Fax: +1 503-223-3960
office@tug.org

William Adams
75 Utley Drive, Ste. 110
Mechanicsburg, PA 17055, USA

willadams@aol.com

Barbara Beeton

American Mathematical Society
P.O. Box 6248

Providence, RI 02940, USA

+1 401 455-4014

bnbQams.org, tugboat@tug.org

Karl Berry

685 Larry Ave. N
Keizer, OR 97303, USA
karl@tug.org

Mimi R. Burbank

CSIT, 408 Dirac Science Library
Florida State University
Tallahassee, FL 32306-4130, USA
+1 850 644-2440
mimi@csit.fsu.edu

John Burt

Department of English MS023
Brandeis University
Waltham, MA 02454, USA
burt@brandeis.edu

Kaja Christiansen

Dept. of Computer Science
Arhus Univ., Ny Munkegade
Bldg 540

DK-8000 Aarhus C, Denmark
kaja@daimi.aau.dk

Donald DeLand

Integre Technical Publishing Co.
4015 Carlisle NE, Suite A
Albuquerque, NM 87107, USA
don.deland@tug.org

Susan DeMeritt
IDA/CCR La Jolla

4320 Westerra Court

San Diego, CA 92121, USA
+1 619 622-5455
sue@ccrwest.org

Victor Eijkhout

Computer Science Department
111 Ayres Hall

University of Tennessee
Knoxville, TN 37996-1301, USA
victor@eijkhout.net

Robin Fairbairns

32 Lilac Court
Cherryhinton Rd.
Cambridge, CB1 4AY, UK

Robin.Fairbairns@cl.cam.ac.uk

Jonathan Fine

203 Coldhams Lane
Cambridge, CB1 3HY, UK
jfine@activetex.org

Peter Flynn
Computer Centre
University College
Cork, Ireland
+353 21 902609
pfQucc.ie

John Forkosh

285 Stegman Parkway #309
Jersey City, NJ 07305, USA
john@forkosh.com

Shinsaku Fujita
Department of Chemistry and
Materials Technology

Kyoto Institute of Technology
Matsugasaki, Sakyo-Ku,
Kyoto, 606-8585 Japan
fujitas@chem.kit.ac.jp

Michel Goossens

CN Division

CERN

CH-1211 Geneva 23, Switzerland
m.goossens@cern.ch

Alan Hoenig

17 Bay Avenue

Huntington, NY 11743, USA
+1 516 385-0736
ajhjj@cunyvm.cuny.edu
ahoenig@suffolk.lib.ny.us

Stephanie Hogue
AlphaSimplex Group

One Cambridge Center

9th Floor

Cambridge, MA 01242, USA
shogue@typewright.com

Mimi Jett

Institute for Advanced Learning
IBM Research

(use TUG Office address)

+1 503 578-2366
jettQus.ibm.com

Judy Johnson
jannejohnson@yahoo.com

259

Donald E. Knuth

Department of Computer Science
Stanford University

Stanford, CA 94305, USA

Wendy McKay

Control and Dynamical

Systems 107-81

California Institute of Technology
Pasadena, CA 91125, USA
wgm@cds.caltech.edu

Patricia Monohon

University of California San Francisco
Dill Research Lab

3333 California Street, #415

San Francisco, CA 94118, USA

+1 415 502-2839

pmonohon@zimm.ucsf.edu

Ross Moore
Macquarie University
NSW 2109, Australia
ross@maths.mqg.edu.au

Stephen Moye

American Mathematical Society
201 Charles Street

Providence, RI 02904, USA
sgm@ams . org

Rolf Niepraschk
Persiusstr. 12

10245 Berlin, Germany
niepraschk@ptb.de

Christian Obrecht

3, impasse Bellevue

89100 Paron, France
christian.obrecht@wanadoo.fr

Arthur Ogawa

40453 Cherokee Oaks Drive

Three Rivers, CA 93271, USA

+1 209 561-4585; Fax: +1 209 561-4584
ogawa@teleport.com

Alexander Perlis
Department of Mathematics
The University of Arizona
Tucson, AZ 85721, USA
aprl@math.arizona.edu

Cheryl Ponchin

Center for Communications Research
Institute for Defense Analyses

29 Thanet Road

Princeton NJ 08540-3699, USA
cheryl@ccr-p.ida.org

Roy Preston

4 Avon Wharf

Bridge Street

Christchurch

Dorset BH23 1DY, UK
preston@lds.co.uk
http://www.lds.co.uk/preston/

260

Denis Roegel

LORIA

Campus scientifique

BP 239

54506 Vandoeuvre-les-Nancy cedex
France

roegel@loria.fr
http://wuw.loria.fr/ roegel/

Kristoffer Hggsbro Rose
IBM

T. J. Watson Research Center
30 Saw Mill River Road
Hawthorne, NY 10532, USA
krisrose@Qus.ibm.com

Michael Sofka

C&CT, VCC 309

Rensselaer Polytechnic Institute
110 8th Street

Troy, NY 12180-3590, USA
sofkam@rpi.edu

D. P. Story

Department of Theoretical and
Applied Mathematics

The University of Akron,
Akron, OH 44278, USA
dpstoryQuakron.edu

Cartoon

by Roy Preston

Nobuya Tanaka
Department of Chemistry and
Materials Technology,

Kyoto Institute of Technology,
Matsugasaki, Sakyo-Ku,
Kyoto, 606-8585 Japan
nobuya@chem.kit.ac. jp

Philip Taylor

The Computer Centre,

Royal Holloway and Bedford
New College,

University of London,

Egham Hill

Egham, Surrey TW20 0EX, UK
P.Taylor@vax.rhbnc.ac.uk

Christina Thiele
15 Wiltshire Circle
Nepean K2J 4K9, Ontario Canada

cthiele@ccs.carleton.ca

David M. Tulett

Faculty of Business Administration
Memorial University of Newfoundland
St. John’s, NF, Canada, A1B 3X5
dtulett@mun.ca

TUGDboat, Volume 22 (2001), No. 4

Didier Verna

EPITA, Research and Development
Laboratory,

14-16 rue Voltaire

94276 Le Kremlin-Bicétre,

France

didier@lrde.epita.fr

Herbert Vof3
Wasgenstr. 21
14129 Berlin, Germany
voss@perce.de

Jana Vof

Wasgenstr. 21

14129 Berlin, Germany
jana@perce.de

Peter Wilson

18912 8th Ave. SW

Normandy Park, WA 98166, USA
peter.r.wilson@boeing.com

Hermann Zapf
Seitersweg 35
D-64287 Darmstadt, Germany

YA CAN T roucHus! IMAN'M'
& SPOTTY S A FULL STOP, AND WE BOTH
BELONG IN THE PUBLIC DOMAIN

TUGboat, Volume 22 (2001), No. 4

General Delivery

From the Board of Directors

Arthur Ogawa
TUG Vice President

Editor’s note: Although this issue of TUGboat has a
cover date of December 2001, we’re including this news
as of the printing date, June 2003, in the interest of
timely communication.

Greetings!

As of June 2003 the TEX Users Group has made
significant progress working on problems of long
standing, yet the changing times have brought us
new challenges.

Here are some of the matters that have been
effectively addressed.

e The TUG office is now competently run.

In July 1997, the TUG office was moved to
its present location in Portland, Oregon, from San
Francisco, California. Changes in location were
stressful, but far more disruptive were four complete
changes in office staff in the period March 1997—
September 1998.

A further change was made at the beginning
of 2000, when our managing consultant Richard
Detwiler hired the current office manager, Robin
Laakso. By dint of hard work, volunteer help, and
aided by part-time employee Janice Carter, our ac-
counting books are up to date, our member database
is correct, and needed reports are being provided to
the Board of Directors. In short, the office is well
run.

It has long been recognized that the office man-
ager, as the sole person paid to be concerned full
time with TUG affairs, is at the heart of TUG. The
Board is very pleased with Robin’s performance and
is committed to supporting her. It is a pleasure to
work with her.

e The TEX Live and the Dante CTAN CD-ROMs
now ship on time.

TUG’s software offerings, updated yearly, used
to be inserted into TUGboat, but are now shipped
separately as they become available. The change
reflects the fact that TUG members now perceive
the CDs as a primary benefit of membership.

e TUG is a key player in TEX’s Internet presence.

Thanks to a generous donation by Dante e.V. in
1996, TUG reinstated a North American node of the
Comprehensive TEX Archive Network (CTAN), first

261

created by TUG member George Greenwade at Sam
Houston State University, joining those in the UK
(cam.ctan.org) and Germany (dante.ctan.org).
TUG purchased new hardware for tug.ctan.org,
since 2001 run by volunteer and TUG member Jim
Hefferon (Saint Michael’s College, Colchester, Ver-
mont).

TUG also participates in the creation of
TEX Live through its host tug.org (run by volunteer
and TUG director Kaja Christiansen, University of
Arhus), as well as substantial efforts by many indi-
vidual TUG members.

TUG hosts a number of TEX-related email lists
by means of which volunteers coordinate their efforts
in projects such as TEX Live, Web2C, LaTeX2HTML,
texd, pdftex. In 2003, the original and still very much
living TEX list texhax moved to tug.org. Archives
and subscription information reside at http://tug.
org/mailman/listinfo/texhax.

Finally, TUG supports TEX user groups world-
wide by selling to them, at cost, the TEX Live CD-
ROM. TUG provides this service to anyone wishing
to purchase the CD in bulk.

In the future, your TUG membership will con-
tinue to support these activities with needed hard-
ware purchases. And TUG is pleased to note that
TUG members are among the many volunteers who
work on CTAN, TEX Live, and the many other TEX-
oriented projects and maining lists, all devoted to
helping TEX users.

e TUG membership has recovered from its de-
cline.

TUG members numbered about 1400 in 1997,
the culmination of a gradually increasing slide start-
ing about 1990. TUG membership has been stable
for the last few years at about 2000.

The cause of the decline is not well understood,
but my belief is that the cause of its reversal is the
TEX Live CD-ROM. TUG shipped TEX Live 2 to all
members in 1997 and has continued to do so each
year since. The Dante CTAN CD-ROM was added
as a benefit of membership in 1998.

e TUGboat now has a paid Managing Editor.

At its meeting in 2001, the TUG Board of Di-
rectors designated Robin Laakso as the TUGboat
Managing Editor. As such, she assists Editor Bar-
bara Beeton and the TUGboat Production Team in
producing our journal. The hope is that TUGboat
operations will benefit from the involvement of a
designated managing editor, at the same time being
more accountable and visible to the board.

This has proven to be the case, as three issues
(counting this one) have shipped since February

262

2003. Also, there has proven to be a very useful
synergy between Robin’s work as TUG’s office man-
ager, and as TUGboat’s managing editor.

e TUG’s IRS status has changed to 501(C)(3).

Up until recently, TUG’s status vis a vis the US
Internal Revenue Service had been 501(C)(6). As
such TUG was a non-profit, but not considered a
charitable organization: donations to TUG were not
tax deductible.

Several years ago, TUG President Mimi Jett ini-
tiated an attempt to change our IRS status. Work-
ing with an attorney, we successfully applied to
the IRS for the change; as of February 25, 2003,
TUG was granted 501(C)(3) status, retroactive to
September 10, 2002, to be reviewed in five years.
(Please see http://tug.org/tax-exempt.)

The expected benefits are high: as a charita-
ble organization, TUG is now much more likely to
receive donations in money or in kind, since such
donations would generally be tax-deductible (in the
USA). The new status also makes it easier for cor-
porate employees to attend our conferences.

Expect to see more about this in future TUG-
boat columns.

e TEX Users Group now supports technical devel-
opment financially.

A recent initiative by TUG’s Technical Council
was to propose the formation of a TEX Development
Fund. Now approved by the TUG Board, the Fund
will award stipends to projects that will benefit
TEX users; see http://tug.org/tc/deviund/. The
Development Fund awarded its first round of grants
in March 2003; a report will be printed in a future
TUGDboat.

New challenges face TUG

e TUGboat articles and conference papers are
increasingly difficult to get.

Reports from both TUGboat editors and con-
ference program committees agree that it is much
more difficult to find the material to publish or
present.

TUGDboat had noted the developing problem as
early as 1997. And as recently as 2000, conference
papers seemed to be in abundance, but there ap-
pears to have been a shift here as well.

Notwithstanding, our efforts at soliciting ma-
terial have had some success. About half the arti-
cles in this issue come from solicitations to authors
making CTAN uploads. Volunteers to help with this
(and other TUGboat work) would be most welcome,
please email tugboat@tug.org if you’d like to help.

TUGboat, Volume 22 (2001), No. 4

e TUGboat continues to publish, but about 12
months late.

Over the past five years, TUGboat’s production
schedule has slipped to the point where it now ships
about 12 months late. Some attribute the problem
to the lack of papers submitted.

The TUG Business Committee recently ap-
proved a plan to combine TUGboat issues 1 and 2
into one printed issue; the first of these was Vol-
ume 21, Number 1/2, mailed out earlier this year.
The expected benefit of this decision was to help
bring TUGboat back on schedule. The TUG Board
has recently passed on a motion to reduce the num-
ber of TUGboat issues from four to three, formaliz-
ing this change.

We expect the second and third TUGboat is-
sues of 2002 to also be combined into a double
issue, and we are now printing conference issues as
they are produced (out of sequence). We hope that
prompt publication of conference proceedings will
be welcomed by our members.

e TUG membership has stagnated.

I noted above that TUG’s membership has re-
mained steady at about 2000 for a few years. This
is better than a decline, but by comparison to, e.g.,
the German users group (at about 2200 members),
it is certainly nothing to be complacent about.

In many respects, TUG is at an understand-
able disadvantage relative to some of the other user
groups. But I think that TUG can improve its mem-
bership numbers. The Board has discussed forming
a Membership Committee to do further work along
these lines.

Earlier in 2003, we mailed a survey to 2001
members who did not renew in 2002. The results
indicated that the biggest reason for non-renewal
was lateness of TUGboat, which we are addressing
as best we can, as indicated above.

e Relations with European TEX groups must be
reviewed.

Volker Schaa, president of our sister organiza-
tion in Germany, Dante e.V., wrote in May 2002 and
again in October 2002 to the TUG Board of Direc-
tors with concerns shared by TEX user groups in Eu-
rope. He questioned the value of joint memberships
and notified us of the European groups’ intention
to cooperate with each other on TEX conferences in
future.

Also, Volker tells us that the European user
groups have formulated a plan to hold joint confer-
ences in Europe (EuroTEX) every year for the next
five years. In the recent past, TUG has held con-
ferences in Europe at Dubna (1996), Torun (1998),

TUGboat, Volume 22 (2001), No. 4

and Oxford (2000). The arrangement in future will
probably have to change, given that the EU funding
agency will require the conference to be that of a
European group, not TUG.

Since fall 2002, we have been in communication
with the European (and other) user groups, and
have established grounds for cooperation on confer-
ence scheduling, technical development, and other
matters.

TUG 2003 elections

Spring 2003 saw the election of a new president,
longtime Director Karl Berry, and new members,
Samuel Rhoads and Gerree Pecht, to the TUG Board
of Directors. More information is at http://tug.
org/election/2003/results.html.

The TUG Board is the steward of the organi-
zation, overseeing operations, addressing problems,
implementing solutions, donating labor, expertise,
enthusiasm, and support. At all times, we bear
in mind the charter of the TEX Users Group: to
encourage the use of TEX (and related programs)
and to support TEX users.

TUG 2003 in Hawai‘i

The 25th annual TUG Conference and Annual Gen-
eral Meeting will be held July 20-24, 2003, at the
Outrigger Waikoloa Beach Resort, Hawai‘i. This
event is already shaping up to be one of the most
memorable conferences we have ever held, with spe-
cial guest Duane Bibby, other eminent speakers, and
exciting talks, all taking place at what must be the
most lovely location around, the Kohala Coast of
the Big Island of Hawai‘i.

Please refer to the conference’s web page at
http://tug.org/tug2003 for details and on-line
registration form.

Are you interested in presenting your work in
TEX at one of our conferences? Please see http:
//tug.org/tug2004.

Your help is needed

Because TUG is an organization of volunteers, all
of the benefits to our members come through the
actions of people like you. Please consider how you
can help the TEX community!

e If you use TEX in the workplace, perhaps your
employer would like to become an institutional
member or a sponsor.

e If you use TEX professionally, or know others
who do so, please remember that TUG provides
key support for the creation and manufacture of
the TEX Live CD-ROM. Encourage people who
use TEX to look into the benefits of TEX Live.

263

e If you know of or have helped develop an appli-
cation of TEX software, please consider writing
a paper for TUGboat or presenting a paper at
a TgX-related conference.

e Consider donating some of your time to helping
TUG put on conferences and training classes or
publish TUGboat.

e If you are writing or producing a book using
TEX, please mention that fact in the colophon
or acknowledgements, to help spread the word.

e For those with a technical bent, please help with
the TEX Live (texlive@tug.org) and CTAN
projects. While not TUG-specific activities,
both CTAN and TEX Live are run entirely by
volunteers, most of them members of TEX user
groups, and we support them wholeheartedly.
TEX Live in particular needs help with its in-
staller and its documentation.

e If you have any ideas for encouraging the use
of TEX or developing TUG membership, please
bring them forward.

The TUG board welcomes your input or ques-
tions at any time. Please contact us by email at
board@tug.org.

¢ Arthur Ogawa
TUG Vice President
ogawa@teleport.com

TUGboat, Volume 22 (2001), No. 4

263

Editorial Comments

Barbara Beeton

The status of TUGDboat

This is the final issue of TUGboat for 2001. Thanks
to everyone on the TUGboat production team for
their hard work to make it happen.

Beginning with 2003, TUGboat will comprise
three issues per year. This possibility was mentioned
in my comments in the first 2001 issue (22:1/2). We
hope that with fewer issues, we can attract articles
of the high quality we strive for, and get the boat
back on schedule.

The first 2002 issue has already appeared; it
contains the proceedings of the 2002 TUG meeting.
The next issue will be a combined issue (23:2/3);
for this, we are planning on publishing two manuals:
one about document creation, and the other on font
installation. The last issue will be a “regular” issue
(like this one), with articles on a variety of topics.

264

For 2003, the first issue will contain the pro-
ceedings of EuroTEX 2003. The second issue will
contain the proceedings of the 2003 TUG meeting.
And the third will again be a “regular” issue.

Glitches in TUGboat 22:1/2

Two articles in this year’s first issue had problems
that escaped the notice of your editor.

In the first case, the glitch made it into print:
a preliminary version of the translation of the “Lau-
datio for Professor Hermann Zapf” (pages 24-26)
was published instead of the final version. Apolo-
gies to Frank Mittelbach. We also failed to identify
the occasion for this presentation; it was delivered at
the March 2000 meeting of Dante e.V., when Her-
mann Zapf was made an honorary member of the
organization. The original, in German, appeared
in Die TgXnische Komédie 1/2000, pages 31-36.
The final version of the translation is posted on the
TUGboat web site; look for the March/June 2001
issue linked from http://www.tug.org/tugboat/
contents.html.

The second case is something that wasn’t
printed: the table of contents entry for “Drawing
message sequence charts with KTEX”, by Sjouke
Mauw and Victor Bos (pages 87-92) was omitted.
Please write it in on your copy of the issue.

Zapfest exhibition, honoring Hermann Zapf

The opening of an exhibition in September 2001
at the San Francisco Public Library, “Calligraphic
Type Design in the Digital Age: An Exhibition in
Honor of the Contributions of Hermann and Gudrun
Zapf”, was attended by both Hermann Zapf and his
wife, Gudrun Zapf von Hesse, as well as by various
TUG members in the area. The TgX Live CD and
drawings for the Euler fonts were among the items
exhibited.

Several photos of exhibited material, including
the CD, can be seen at http://www.cds.caltech.
edu/~wgm/zapfest/. Thanks to Cal Jackson (Cal-
tech) for the photos.

Mordecai Richler font

The late Canadian author Mordecai Richler, whose
best-known work is probably The Apprenticeship of
Duddy Kravitz, has been honored by the creation
of a typeface to be known by his name. The font
was commissioned by The Giller Prize and Random
House of Canada, in consultation with the Richler
family. The font will become the official typeface of
The Giller Prize and has been used to set Richler’s
last book, Dispatches from the Sporting Life.

TUGboat, Volume 22 (2001), No. 4

The font was created by Canadian type designer
Nick Shinn. It is a classic book typeface, but with
strong modern characteristics, including distinctive
letters “M”and “R” that will serve to identify it.
The typeface was announced both on CBC radio and
in the Toronto Globe & Mail, an unusual recognition
for a new font.

Details of the commission, Richler’s association
with The Giller Prize, and the font can be found at
http://www.randomhouse.ca/richler.

References for TEX and Friends

Peter Karp and Michael Wiedmann have announced
the initial release of their ongoing documentation
project, “References for TEX and Friends”. The pur-
pose of this project is to provide help/reference files
for WTEX (and friends like ConTEXt, METAFONT,
METAPOST, etc.) using the DocBook /XML format.

Various outputs can be generated from these
source files, including formats for use with browsers
and PDAs.

Contributions to this project in the form of ei-
ther additional formats or documentation source are
encouraged and welcome.

For information, see http://www.miwie.org/
tex-refs/.

Institut d’Histoire du Livre

In September 2001, the Institute of the History of
the Book held the inaugural session of their annual
Book History Workshop. A lecture by the North
American bookseller Bernard M. Rosenthal, entitled
“The Gentle Invasion: Continental emigré booksell-
ers of the thirties and forties and their impact on
the antiquarian book trade in the United States”
(“Quelques aspects du commerce du livre ancien en
Europe et aux Etats-Unis aux 19e et 20e siecles”),
is posted in both English and French on the IHL
web site: http://ihl.enssib.fr/. Access it via
the “archives” link.

More historic books online at the
British Library

Joining the copies of the Gutenberg Bible mentioned
previously in this column (22:1/2) are a number of
other treasures, including the Lindisfarne Gospels (a
manuscript from the early 8th century), Sultan Bay-
bars’ Qur’an (from the early 14th century), and the
Tyndale New Testament (the first printed New Tes-
tament in English). Find them at http://www.bl.
uk/collections/treasures/digitisation.html.

(An up-to-date installation of Shockwave is re-
quired in order to “turn the pages”.)

TUGboat, Volume 22 (2001), No. 4 265

Web document analysis

The first International Workshop on Document Anal-
ysis was held in Seattle on 8 September 2001. The
proceedings can be found online at http://www.
csc.liv.ac.uk/"“wda2001/.

The little tugboat that could

The photos at http://koti.mbnet.fi/ soldier/
towboat .htm tell the truly amazing saga of a “real”
tugboat that got itself into rough water. Don’t try
this at home!

¢ Barbara Beeton
American Mathematical Society
P.O. Box 6248
Providence, RI 02940 USA

bnb@ams.org

TUGboat, Volume 22 (2001), No. 4

Electronic Documents

execJS: A new technique for introducing
discardable JavaScript into a PDF file from
a BPTEX source

D. P. Story

1 Introduction

This article describes a technique, referred to as
execJS!, for writing JavaScript from within a IXTEX
source file that will be executed once when the doc-
ument is first opened, then discarded. The execJS
technique allows you to execute JavaScript meth-
ods, even ones that have their use restricted for se-
curity reasons. The discardable code and the ability
to execute even security-restricted methods are the
distinguishing features of execJS.

The method requires Acrobat 5.0 or later (the
full application, not the Acrobat Reader), or Acro-
bat Approval 5.0 or later. You can, though not re-
quired, use the Acrobat Distiller to create the PDF
document; or, as so many do, you can use either the
pdftex or dvipdfm applications. Once the PDF doc-

1 execute JavaScript

265

ument is completed, it can be viewed by the Acrobat
Reader 4.0 or higher.?

The technique is meant to be used in document
development, preparation and assembly for authors
who want to tap into the power methods of Java-
Script.

2 Summary of the technique

The execJS technique consists to two parts:

1. A new IWTEX environment, the execJS environ-
ment
2. A few lines of folder-level JavaScript

The execJS environment is implemented as part of
the insdljs Package®, which was written in prepara-
tion for the TEX Users Group 2001 Conference.

Within the execJS environment the “discard-
able” JavaScript is written to an auxiliary file with
an extension of .fdf. When the newly created PDF
document is opened for the first time in the viewer
(either Acrobat or Approval) the .fdf file is im-
ported into the document, and the JavaScript con-
tained within the file is executed.

The second part of the technique, the folder-
level JavaScript, gives the “discardable” JavaScript
the right to execute security-restricted JavaScript
methods.

3 Animated motivation

In the past few years, document authors who are
producing interactive PDF documents from a KTEX
source have grown significantly in number.? Many
authors, myself included, crave to have the ability to
use Acrobat’s powerful JavaScript interpreter to its
fullest, all from a ITEX source. The development
of the execJS technique is a significant step in that
direction. The execJS method came about by my
pursuit of a holy grail of BTEX/PDF production,
animation. One of the examples that appears in this
article is a PDF animation created entirely within a
IMTEX source file!

4 The execJS technique

Acrobat Version 5.0 comes with an extended FDF
(Forms Data Format) specification. This specifica-
tion creates a new Doc key, the value of which refers
to JavaScript contained within the FDF file that is to

2 Version 5.0 or later of Reader is required if JavaScript
objects, properties or methods are used not available in ver-
sion 4.0.

3 The insdljs Package, a standalone package, is distributed
as a component package of the Acrdl'eX eDucation Bundle:
http://www.math.uakron.edu/~dpstory/webeq.html

4 For links to and descriptions of some of the many au-
thors doing quality work on the Web, see the AcroIEX web
site: http://www.math.uakron.edu/ dpstory/acrotex.html

http://www.math.uakron.edu/~dpstory/webeq.html
http://www.math.uakron.edu/~dpstory/acrotex.html

266

be imported into the document as Document Level
JavaScript (DLJS). See the paper (Story, 2001) for
details of how to use this specification to insert DLJS
from a IBTEX source. DLJS can be inserted from
your IATEX source file using the insdljs Package. The
specification also defines an After key, the value of
which is an indirect reference to JavaScript code also
contained in the FDF file.

The After key is the one of interest in this pa-
per. The JavaScript referenced by the After key is
executed after the FDF is imported into the docu-
ment. The JavaScript is executed but not saved, it
is “discardable”.

Consider the following FDF file containing both
the Doc and After keys.

%FDF-1.2
1 0 obj
<< /FDF
<< /JavaScript
<< /Doc 2 O R /After 3 0 R
>>

>>
>>
endobj
2 0 obj
[(ExecJS execjs) (var _execjs = true;)]
endobj
3 0 obj
<<>>
stream
app.alert("\"Discardable\" code executed!");
endstream
endobj
trailer
<< /Root 1 0 R >>
yyA3

When this file is imported into Acrobat (or Ap-
proval), one line of code will be placed at the doc-

ument level, var _execjs = true, and one line of
code

app.alert("\"Discardable\" code executed!");

will be executed, but not saved.

4.1 The execJS environment

It was a simple modification of the insdljs Package
to implement an execJS environment that writes a
FDF file containing the After key. Thus,

\usepackage [execJS]{insdljs}

\begin{execJS}{execjs}
app.alert("\"Discardable\" code executed!");
\end{execJS}

writes the file seen in the FDF above. The required
argument for this environment is the base file name
of the FDF to be written.

The environment not only writes the FDF file, if
the execJS option of the insdljs Package is spec-

TUGboat, Volume 22 (2001), No. 4

ified, it also adds an open page action to the first

page of the document:

if (typeof _execjs == "undefined")
this.importAnFDF ("execjs.fdf");

This is a point in the whole technique where Acro-

bat or Approval is required. The JavaScript method

this.importAnFDF () is not available for the Acro-

bat Reader.

When the document is opened for the first time,
the file execjs.fdf gets imported into the PDF doc-
ument. The FDF also inserts the DLJS var _execjs
= true (which will be saved with the document).
This variable declaration prevents the FDF from be-
ing repeatedly imported each time the first page is
viewed.

4.2 Folder JavaScript

The execJS environment writes the FDF file which,
in turn, is imported into the newly created PDF,
the JavaScript is executed, and is “discarded” (not
saved); however, security-restricted JavaScript still
cannot be executed. An additional trick is needed.

Many of the restricted methods can be used
only during, what Acrobat calls, menu, console or
batch events. The approach taken here is to exe-
cute JavaScript through a menu event. To do this,
create a file, called myJS.js (or any name with an
extension of js). The contents of this file are the
lines:

_MenuProc = function() {;}
app.addMenuIltem({

cName: "MenuProc",

cUser: "Menu Procedure",

cParent: "Tools",

cExec: "_MenuProc()",

nPos: 0
b
The first line defines MenuProc, a JavaScript func-
tion which does nothing. The rest of the lines define
a new menu item under the “Tools” menu. Addi-
tional menu items can only be created through a
folder level JavaScript file.

Place myJS. js in the JavaScripts folder, fol-
low the path Acrobat 5.0/Acrobat/JavaScripts.
This is the folder in which aform. js, the folder level
JavaScript for the forms plugin, is kept.

The trick for executing JavaScript methods that
are restricted to a menu event is to redefine the
Folder level function MenuProc. Consider the fol-
lowing code withing the execJS environment:

\begin{execJS}{execjs}
function importMyIcons ()
{
for (var i=0; i < 36; i++)
this.importIcon("rotate"+i,"animation.pdf",i);

TUGboat, Volume 22 (2001), No. 4

}
_MenuProc = importMyIcons;
app.execMenultem("MenuProc");
_MenuProc = function() {;}
\end{execJS}
A function importMyIcons is defined that imports a
series of named icons using the this. importIcon().
The use of this method is restricted to menu, console
or batch events if a file name is given as the second
argument. The first argument is the name of the
icon newly embedded in the document.

Following the function definition, we make the
assignment

_MenuProc = importMyIcons;

then execute the menu item named "MenuProc",
which, in turn, causes MenuProc (now assigned as
importMyIcons) to be executed. (Multiple func-
tion definitions and assignments can be made in this
way.) Finally, the MenuProc function is reassigned
its default definition (optional).

Important: After the document is assembled,
save the document (as you can with Acrobat and
Approval), this will save the DLJS, but not the “dis-
cardable” code.

See the Acrobat JavaScript Object Specifica-
tion, Version 5.0 or later,’ for details of the Java-
Script methods just illustrated.

5 An animation example

In this section, an animation example is presented.
The animation is done completely within the ITEX
source file. After the PDF document is finally as-
sembled, the animation is ready to run.

The animation was done using two IXTEX files,
execjstst.tex and animation.tex. The AcroleX
eDucation Bundle® was used. The AcrdleX Bundle
includes the following packages:

e The Web Package: For creating good looking
PDF documents for the Web.

e The Exerquiz Package: For creating online exer-
cises and quizzes. (In the animation, the form
field macros only were used.) Exerquiz loads the
insdljs Package and passes the options of insdljs
to it.

e The insdljs Package: A package used to insert
Document Level JavaScripts, to create open ac-
tions, and to create immediatelly executable
and “discardable” JavaScript.

5 Available under the Help menu of Acrobat, or

at http://partners.adobe.com/asn/developer/technotes/
acrobatpdf.html

6 Available at CTAN:/tex-archive/macros/latex/
contrib/supported/webeq or at the Bundle’s homepage
http://www.math.uakron.edu/ dpstory/webeq.html

267

e The dljslib Package: A library of useful Java-
Script functions that can be “checked out” for
use.

5.1 animation.tex

The animation.tex file is the IXTEX source used
to create the series of images that will be display
in the animation. This animation is rather simple.
PSTricks was used to create a series of 36 graphics:

\documentclass{article}
\usepackage{pstricks,pst-plot}
\usepackage [dvipsone] {web}/<- or dvips

\margins{Opt}{Opt}{Opt}{Opt} % no margins
\screensize{1lin}{1in} % 1in by 1lin

\pagestyle{empty}\parindent=0pt
\SpecialCoor

\begin{document}
\psset{unit=1in,origin={-.5,-.5}}

\multido{\i=90+-10}{363}{%
\begin{pspicture}(1lin, 1in)
\psframe[fillstyle=solid,
fillcolor=lightgray,
linecolor=lightgray] (-.5,-.5)(.5,.5)
\psline[linecolor=blue] (0,0) (.5; \i)
\pscircle[linecolor=red] (0,0){.5}

\end{pspicture}
\newpage

}

\end{document}

This particular file was distilled to create the PDF
document, animation.pdf. For more sophisticated
animations, the graphic images need to be created
using some high-end application.

5.2 ExecJStst.tex

The file execjstst.tex is actually the animation
demo. Here is the verbatim listing of this file.

\documentclass{article}
\usepackage
[dvipsone, % <- dvips, pdftex, dvipdfm
designi,
1{web}
% exerquiz loads insdljs, and passes execJS to it
\usepackage [execJS]{exerquiz}

% Embed the animation images as named icons, the ith
% icon is named rotatei, i=0..35
\begin{execJS}{execjs}
function importMyIcons ()
{

for (var i=0; i < 36; i++)

this.importIcon("rotate"+i,"animation.pdf",i);

}
_MenuProc = importMyIcons;
app.execMenultem("MenuProc") ;
_MenuProc = function() {;}
\end{execJS}

% Define a JavaScript action that will be attached

http://partners.adobe.com/asn/developer/technotes/acrobatpdf.html
http://partners.adobe.com/asn/developer/technotes/acrobatpdf.html
/tex-archive/macros/latex/contrib/supported/webeq
/tex-archive/macros/latex/contrib/supported/webeq
http://www.math.uakron.edu/~dpstory/webeq.html

268

% to the button "aniCtrl" that starts the
% animation.
\newcommand{\aniCtrlAction}
Tk
/A << /S /JavaScript /JS
Ch
function ShowIt()\jsR
{\jsR\jsT
var oIcon;\jsR\jsT
oIcon=this.getIcon
("rotate"+run.count) ;\jsR\jsT
f.buttonSetIcon(oIcon, 0);\jsR\jsT
run.count++;\jsR\jsT
run.count \%= 36;\jsR
F\jsR
var f = this.getField("myAnimation");\jsR
var run = app.setInterval("ShowIt()",100);\jsR
run.count = 0;\jsR
var timeout = app.setTimeOut
("app.clearInterval(run);", 3*3600+200);
) >>
}

\begin{document}
\section*{An Animation}

% Center the animation "window" and the start button
\begin{center}
\eqIcon{myAnimation}{72bp}{72bp}\\
\eqGenButton [\CA{Push}\rawPDF{\aniCtrlAction}]
{aniCtrl1}{36bp}{16bp}
\end{center}
\end{document}

Many of the above commands come from the ex-
erquiz Package. The macros \jsR and \jsT expand
to \r and \t, which are escape sequences in Java-
Script for newline and tab; \eqIcon makes it easy
to create a button field set up for displaying a (PDF)
icon as its face appearance; \eqGenButton is a gen-
eral command for creating push buttons.

The JavaScript action defined by TEX com-
mand, \aniCtrlAction, first defines a JavaScript
function called ShowIt, which gets the icon object
using the getIcon method, sets the button appear-
ance of the myAnimation field using the field method
buttonSetIcon method, and increments a counter;
at the top-level, the script gets the field object for
the myAnimation field, starts a timing event which
calls the function ShowIt every 100 milliseconds, ini-
tializes the counter, and sets the timeout interval.

6 Another example

Recently, I produced a PDF version of an html online
survey for the Seybold PDF Conference 2002.
The online version was an “intelligent” survey: the
answer to one question determined what question
would next be posed to the respondent.

IMTEX and the AcroTeX Bundle were used to du-
plicate the questions and the functionality of the
html version in PDF. A short macro package was

TUGboat, Volume 22 (2001), No. 4

written, DLJS was automatically introduced into the
document using the insdljs package which supported
the “logic” of the survey.

The PDF version uses form templates. (A form
template is a special type of page that can be hid-
den or made visible, a copy of a template can be
spawned, Acrobat viewer or Acrobat Approval re-
quired.) Templates were used to reveal the next
page, based on the answers given on the current page
by the respondent.

Templates cannot be created using the pdfmark
operator (pdftex and dvipdfm do not support their
creation), but can be created using certain security-
restricted JavaScript methods. The execJS tech-
nique was used to create the templates. As a result,
a fairly complex PDF document was assembled en-
tirely from the content and commands in the KTEX
source file.

Read the article “Seybold PDF survey in PDF
also worthy of study”” by Kurt Foss, Planet PDF
Editor®, for more details of the operational capabil-
ity of the PDF version of the survey.

7 In conclusion

XTEX has become a powerful markup language for
creating interactive PDF documents; in my opinion,
the IMTEX system is the premier system for build-
ing, debugging, modifying and assembling complex
PDF documents. The hyperref and exerquiz pack-
ages can be used to create links and form fields with
JavaScript actions attached, the insdljs package al-
lows for the insertion of document level JavaScript
into the PDF document, open actions, and now ex-
ecutable, “discardable” JavaScript that can be used
in a post-creation setting.

References

Story, D. P. “Techniques of introducing document-
level JavaScript into a PDF file from a KTEX
source”. TUGboat 22(3), 161-167, 2001.

o D. P. Story

Department of Theoretical and
Applied Mathematics

The University of Akron

Akron, OH 44278

dpstoryQ@uakron.edu

http://www.math.uakron.edu/
“dpstory/

7 www.planetpdf .com/mainpage.asp?webpageid=2130

8 Planet PDF: www.planetpdf.com

www.planetpdf.com/mainpage.asp?webpageid=2130
www.planetpdf.com

TUGboat, Volume 22 (2001), No. 4

KETEX, SVG, Fonts

Michel Goossens and Vesa Sivunen

Abstract

After giving a short overview of SVG, pointing out
its advantages for describing in a portable way the
graphics content of electronic documents, we show
how we converted TEX font outlines (the Type 1
variant) into SVG outlines and explain how these
SVG font glyphs can be used in SVG instances of
documents typeset with TEX.

1 Introduction

The increasing affordability of the personal com-
puter drastically reduces the production cost of elec-
tronic documents. The World Wide Web makes dis-
tributing these documents worldwide cheap, easy,
and fast. Taken together, these two developments
have considerably changed the economic factors con-
trolling the generation, maintenance, and dissemi-
nation of electronic documents. More recently, the
development of the XML family of standards and the
ubiquity of the platform-independent Java language
make it possible to have a unified approach to han-
dle the huge amount of information stored electron-
ically and to transform it into various customizable
presentation forms.

Given the severe financial constraints in many
parts of the world, where it is often out of the
question to even consider printing multiple copies
of a (highly technical) document, electronic dissem-
ination via the Web is the only way to publish.
Thus, the Web is not only an additional medium for
the traditional publishing industry, but a necessary
complement in large parts of the world to partici-
pate in sharing scientific and technical information
and benefit from the wealth and progress it creates.

Various techniques are now available to trans-
form BWTEX documents into PDF, HTML (XHTML),
or XML so that the information can be made avail-
able on the Web. Thus, ITEX will continue to play
a major role in the integrated worldwide cyberspace,
especially in the area of scientific documents. How-
ever, it is clear that IWTEX’s greatest impact will
remain in the area of typesetting, with TEX remain-
ing an important intermediate format for generating
high-quality printable PDF output.

The present article explores ways of transform-
ing I¥TEX-encoded information globally into a Scal-
able Vector Graphics (SVG) format, in particular by
exploiting the use of the SVG font machinery. A fur-
ther step, to be described in a forthcoming article,
will be to transform the KTEX document into vari-

269

ous XML vocabularies, thus saving as much semantic
information as possible.! Such a modular approach
makes optimal document reuse possible.

2 SVG for portable graphics on the Web

As the Web has grown in popularity and complexity,
users and content providers wanted ever better and
more precise graphical rendering, as well as dynamic
Web sites. Today, only drop shadows, rudimentary
animations, and low-resolution GIF or PNG images
are commonly used in Web pages. Moreover, that
technology is not really scalable.

The publication of the SVG Recommendation
was the result of more than two years of collabo-
rative effort by major players in the computer in-
dustry? to find a workable cross-platform solution
to Web imaging. Version 1.0 of the SVG specifica-
tion was published as a W3C Recommendation on
4 September 2001 and it represents a genuine ad-
vance for portable graphics on the Web. The cur-
rent version of SVG is 1.1, and it became a W3C
Recommendation on 14 January 2003.3

Nowadays many software vendors support SVG
in their products, while more and more free viewing
and editing tools capable of handling SVG become
available.

SVG is an open-standard vector graphics lan-
guage for describing two-dimensional graphics using
XML syntax. It lets you produce Web pages con-
taining high-resolution computer graphics.

SVG has the usual vector graphics functions. Its
fundamental primitive is the graphics object, whose
model contains the following:

e graphics paths consisting of polylines, Bézier
curves, etc.:
— simple or compound, closed or open;
— (gradient) filled, (gradient) stroked,;
— can be used for clipping;
— can be used for building common geomet-
ric shapes;
e patterns and markers;

e templates and symbol libraries;

1 For instance, the hierarchical structure of the document
is encoded in XML by using one of DocBook, TEI or, to a cer-
tain extent, XHTML, while other specific XML vocabularies
are used for their given application domain, such as MathML
for mathematics, SVG for two-dimensional graphics, CML for
chemistry, BSML for bioinformatics, GeneXML or GEML for
gene expression, and many others.

2 Among the companies represented on W3C’s SVG com-
mittee were IBM, Microsoft, Apple, Xerox, Sun Microsys-
tems, Hewlett-Packard, Netscape, Corel, Adobe, Quark, and
Macromedia.

3 Scalable Vector Graphics (SVG) 1.1 Specification, avail-
able at http://www.w3.org/TR/SVG11/.

http://www.w3.org/TR/SVG11/

270

o transformations:

— default coordinate system: x is right, y is
down, one unit is one pixel;

— viewport maps an area in world coordi-
nates to an area on screen;

— transformations alter the coordinate sys-
tem (2 x 3 transformation matrix for com-
puters; translate, rotate, scale, skew for
humans);

— can be nested;

inclusion of bitmap or raster images;

clipping, filter and raster effects, alpha masks;
animations, scripts, and extensions;

groupings and styles;

SVG fonts (independent from fonts installed on
the system).

SVG consists of Unicode text in any XML name-
space.* The use of Unicode throughout enhances
searchability and accessibility of the SVG graphics.

SVG drawings can be dynamic and interactive.
The Document Object Model (DOM) for SVG allows
for efficient vector graphics animation via scripting,
which can be performed on SVG elements and other
XML elements from different namespaces simulta-
neously within the same Web page. Event handlers
can be assigned to any SVG graphical object.

A major source of information on SVG is the
W3C SVG site, which describes the latest develop-
ments in the area of SVG, the status of current im-
plementations. It also has a reference list of arti-
cles, books, software announcements, and pointers
to other interesting SVG sites.?

2.1 Inside an SVG document

As described earlier, the basis of SVG is a Uni-
code text document, usually identified with a file
extension .svg and a mime-type (for the server)
image/svg-xml. Thus it is rather straightforward
to create and edit SVG documents with your favorite
text editor.

The top part of Figure 1 shows a small SVG
file svgexa.svg, which is an example of the static

4 The target application must be able to interpret the
specific XML vocabulary to make this useful. A forthcoming
article will show how one can use XHTML, MathML and SVG
together.

5 The W3C SVG site is at http://www.w3.org/Graphics/
SVG/. An SVG Tutorial site is at http://www.svgtutorial.
com/. The Batik distribution (http://xml.apache.org/
batik) comes with many SVG examples, including quasi 3D
scenes, animations, complex languages, such as Arabic, etc.
The Adobe SVG site (http://www.adobe.com/svg) features
some interesting SVG files. Interactive geometry, statistical
charts, cartographic material and much more is at Michel
Pilat’s site (http://pilat.free.fr/english).

TUGboat, Volume 22 (2001), No. 4

graphics possibilities of SVG. After the comment on
line 1 we declare that we work in the SVG namespace
(line 2) and define the size of the display area (line
3). We write a title (lines 5 and 6), draw a row of
four rectangles (lines 7-14), followed by a row of four
rectangles with rounded corners (lines 17-23), and
finally a row of four ellipses (lines 25-29). The ori-
gin of SVG’s z-y coordinate system is the upper left
hand side of the display area. The semantics of the
various arguments of the SVG elements should be
rather easy to guess (the SVG Specification contains
detailed definitions). Notice the similarity between
the PostScript and SVG languages.

If we want to view our file svgexa.svg we must
use an application that understands the SVG lan-
guage, such as Apache’s Batik® or Adobe’s Browser
plugin svgview.” W3C’s browser Amaya,® which
provides an interesting development environment for
viewing and editing MathML and HTML code, also
supports part of SVG. The recent default distri-
butions (1.3 or later) of the Mozilla browser? have
built-in support for presentation MathML but to be
able to interpret SVG natively you need to down-
load a special SVG-enabled executable.'® The mid-
dle row of Figure 1 represents at the left our example
file as displayed by Batik, with a zoom on part of
the graphics at its right. This shows that regions of
an image can be magnified without loss of quality
(this is because of the vector nature of SVG’s graph-
ics model).!! The bottom row of Figure 1 shows
at the left the same file as displayed by Microsoft’s
Internet Explorer using Adobe’s svgview plugin in-
stalled (left) and at the right as shown by the Amaya
browser.

3 Generating SVG instances from TEX
fonts

Many scientific documents, especially in physics and
mathematics, are marked up with IATEX. On the
other hand XML has become a lingua franca of the
Internet and XML-aware tools are becoming ubiqui-
tous. Therefore, it becomes important to integrate
ITEX and XML in an optimal way.

6 See http://xml.apache.org/batik.

7 Available from http://www.adobe.com/svg.
8 See http://www.w3.org/Anaya/.

9 See http://www.mozilla.org.

10 Details at http://www.mozilla.org/projects/svg/.

1 The Batik Squiggle SVG viewer and Adobe’s Browser
plugin svgview offer convenient ways to navigate an image.
You can zoom in and out, move in the two-dimensional plane
(in svgview hold down the Alt or in Squiggle the Shift key
and move the mouse with the left button pressed) or rotate
over a given angle.

http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/
http://www.svgtutorial.com/
http://www.svgtutorial.com/
http://xml.apache.org/batik
http://xml.apache.org/batik
http://www.adobe.com/svg
http://pilat.free.fr/english
http://xml.apache.org/batik
http://www.adobe.com/svg
http://www.w3.org/Amaya/
http://www.mozilla.org
http://www.mozilla.org/projects/svg/

[B I N A

o S S I
[S R)

TUGboat, Volume 22 (2001), No. 4

<!-- svgexa.svg ++ A small SVG Example ++ —--> 16
<svg xmlns="http://www.w3.org/2000/svg" 17
width="450pt" height="350pt"> 18

<g style="stroke:black; fill:none"> 19
<text x="b" y="25" style="font-size:24"> 20
Exemple SVG : rectangles et ellipses</text> 21
<rect x="10" y="50" width="100" height="75"/> 22
<rect x="120" y="50" width="100" height="75" 23
style="fill:red"/> 24

<rect x="230" y="50" width="100" height="75" 25
style="stroke:lime; stroke-width:6"/> 26

<rect x="340" y="50" width="100" height="75" 27
style="stroke:blue; fill:none; stroke-width:3; 28
stroke-dasharray:10 5;stroke-linejoin:miter"/> 29

</g> 30

File Edit View Processing Go Tools ?

= HBos [aal@&E(&S&[» 10

271

<g style="stroke:none; fill:blue">
<rect x="10" y="150" width="100" height="75" rx="40" ry="40"/>
<rect x="120" y="150" width="100" height="75" rx="50" ry="50"/>
<rect x="230" y="150" width="100" height="75" rx="60" ry="60"
style="stroke:lime; stroke-width:6"/>
<rect x="340" y="150" width="100" height="75" rx="70" ry="70"
style="stroke:blue; fill:none; stroke-width:3;
stroke-dasharray:6 3;stroke-linejoin:miter"/>
</g>
<ellipse cx="60" cy="300" rx="50" ry="40"/>
<ellipse cx="170" cy="300" rx="50" ry="40" style="fill:red"/>
<ellipse cx="280" cy="300" rx="50" ry="40"
style="stroke:lime; stroke-width:6"/>
<ellipse cx="390" cy="300" rx="50" ry="40" angle="45"/>
</svg>

File Edit View Processing Go Tools ?

F Bos aa @&E(S[>» 10

IB Location: |fi|e:f afs/cern.chfuser/g/goossens/svgexa.svg

IB Location: |fi|e:j afs/cern.chfuser/ g/ goossens/svgexa.svg

|~

Exemple SVG : rectangles et ellipses

P

jz 482.0

[h: 360.0 [[

(a) Batik Squiggle SVG viewer

ichel\tipsitips 200 2\svgexa. svg - Microsoft Internet Explorer E@K
"

File Edit View Faworites Tools Help)

= ST " o o
G Back - ﬂ ﬁ £ g oearch ¢
Address @ Cimichel\tips\tips2002isvgexa.svg % E Go

= P . — =
Exemple SVG : rectangles et ellipses

avorices wMedla ﬁ_‘}

»

Links Forton Ankivirus g -

i =5
i

-@ Done -) My Computer

(c¢) Microsoft Explorer

J

« [EGLdllylEs €L €l

'

4
fw: 20082410 [0:15671:6 | [
(b) Zooming with Batik Squiggle

File Edit XHTML =ML Links Views 3Style Special
Attributes Annotations Help
™o s BHE N £ D0 My S E

Open II’afs!cem‘chfusenfgfgoossensfsugexa.sug
Hrmapa

Exemple SVG : rectangles et ellipses

@O
00

(d) W3C’s Amaya

Figure 1: Browsing an SVG file

272

SVG is a static declarative XML vocabulary; it
provides only a final-form two-dimensional represen-
tation of a graphics image.'?. Thus paragraphs or
pages must be formatted by upstream application
programs (e.g., TEX, drawing tools, Java) or by in-
line escaping to scripting (in Perl, Python, Ruby,
JavaScript, etc.)

Various tools exist to translate EPS files to SVG,
e.g., Adobe’s Illustrator (commercial) or Wolf-
gang Glunz’ pstoedit!® (the SVG translator option
is shareware). For direct translation from DVI there
is Adrian Frischauf’s dvi2svg.'4

The translations work quite well as long as one
uses standard fonts, such as Times, Helvetica and
Courier. However, these applications have problems
with TEX’s non-standard character font encodings.

This problem of font encoding is closely related
to the fact that SVG, being an XML language, uses
Unicode as basic character encoding. So if one wants
to go from TEX (DVI) to SVG the driver has to map
each TEX character to its Unicode code-point and
use a large corresponding SVG font that encodes all
the needed characters.!®> Such a full mapping, al-
though not impossible, is far from trivial. Hence, in
coordination with Glunz, we have opted for a tem-
porary hack, where we use a special ad-hoc option
for pstoedit, where we map for each font instance
the 256 hexadecimal codes 00 to FF in the TEX font
encoding into Unicode’s “Private Use Area” (PUA)
using (hexadecimal) code positions E000 to EOFF.

3.1 Producing SVG font instances

If we want to work with Computer Modern METR-
FONT sources we can use Szab6 Péter’s TeXtrace
program.'® It is a collection of Unix scripts that con-
vert any TEX font into a Type 1 .pfb outline font!”
that is immediately suitable for use with dvips,
pdftex, Adobe’s acroread, etc. It now also has
an option to generate SVG, but this did not directly
do what we needed. In fact, we preferred to use
TeXtrace only to generate Type 1 pfb files, and fall
back on the second approach, that we describe next.

Working from Type 1 pfa/pfb font sources it is
rather straightforward to generate the correspond-
ing SVG font. A Perl script, tisvg.pl, was devel-
oped to achieve this translation, where the only (mi-

12 This is unlike the PostScript language, which allows for
inline computations.

13 See http://wuw.pstoedit.net/pstoedit.

14 See http://www.activemath.org/~adrianf/dvi2svg/.

15 In fact, some mathematical TEX characters are still ab-
sent from and thus not yet encodable in Unicode 3.2.

16 See http://www.inf.bme.hu/ pts/textrace/.

17 See http://partners.adobe.com/asn/developer/pdfs/
tn/T1_SPEC.PDF for a description of the Type 1 font format.

TUGboat, Volume 22 (2001), No. 4

nor) difficulty is the correct handling of the position
of the current point.'8

Table 1 shows the correspondence between the
PostScript Type 1 operators (left column) and the
SVG equivalent (middle column), with the argu-
ments for each command expressed in function of
those of the corresponding Type 1 ones (al, a2,
etc.). The right column shows the = (cx) and y
(cy) coordinates of the current point expressed in
function of the Type 1 arguments.

3.2 Disassembling Type 1 font sources

Type 1 fonts are often commercial and should not
be converted into SVG without the permission of
the rights holder. TEX fonts, however, are publicly
available. For TEX fonts that are not yet available in
Type 1 format one can use Szabd Péter’s TeXtrace
program mentioned previously. Our Perl script
needs the binary compressed pfb outline font to
be disassembled with Lee Hetherington’s and Eddie
Kohler’s tidisasm program into human-readable
form.19

3.3 The conversion script

The Perl script tisvg.pl, which converts Type 1
fonts to SVG fonts, is relatively short and simple. It
does not require any special modules and should run
with any Perl version.

t1svg.pl reads the disassembled pfb file as in-
put and translates the Type 1 operators into their
SVG equivalents according to the correspondences of
Table 1. Section A provides a detailed description
of the SVG commands used in that Table.

The example of Table 2 shows the Type 1 source
(left) and the SVG source (right) of the glyph of a
contour integral. Line 1 of the SVG instance spec-
ifies the Unicode code position of the glyph (hex-
adecimal E049, i.e, in the PUA) and its name, which
we copied from line 1 of the Type 1 source at the left
(contintegraldisplay). Line 2 of the SVG spec-
ifies the horizontal width of the glyph (555.6). It
was calculated by taking the second argument of the
hsbw operator on line 2 of the Type 1 source, i.e.,
5000 9 div, which divides 5000 by 9.2° Then, on

18 This is needed since the SVG z operator sets the current
point to the point that closes the path (after the operation),
while the Type 1 closepath operator leaves it untouched, i.e.,
the current point remains at the value it had before the call.
Therefore our Perl script has to keep track of the current
point to restore it to the correct value with respect to the
Type 1 coordinates after each z operator, at which point we
insert an absolute Moveto (M) to the required (saved) current
point coordinates before continuing.

19 See http://www.lcdf.org/ eddietwo/type/#tlutils.

20 Remember that PostScript uses reverse Polish notation,
with arguments preceding the operator to which they belong.

http://partners.adobe.com/asn/developer/pdfs/tn/T1_SPEC.PDF
http://partners.adobe.com/asn/developer/pdfs/tn/T1_SPEC.PDF

© W N U AW N

TUGboat, Volume 22 (2001), No. 4

273

Table 1: Correspondence between Type 1 and SVG commands

Type 1 SVG Current point
al a2 hsbw horiz-adv-x = a2 (argument of glyph), M al 0 cx=al
al hlineto h ail cx=cx+al
al hmoveto m al O cx=cx+al
al a2 a3 a4 hvcurveto c¢ al 0 (al+a2) a3 (al+a2) (a3+a4d) cx=cx+al+a2,
cy=cy+a3+a4d
al a2 rlineto 1 al a2 cx=cx+al,
cy=cy+a2
al a2 rmoveto m al a2 cx=cx+al,
cy=cy+a2

al a2 a3 a4 ab a6 rrcurveto c¢ al a2 (al+a3) (a2+a4) (al+a3+ab5) (a2+ad4+a6) cx=cx+al+a3+ab,

cy=cy+a2+a4d+ab

al vlineto v al cy=cy+al
a2 vmoveto m O al cy=cy+al
al a2 a3 a4 vhcurveto «c¢ 0 al a2 (al+a3) (a2+a4) (al+a3) cx=cx+a2+a4,

closepath =z

cy=cy+al+a3

Table 2: Type 1 and SVG sources compared

/contintegraldisplay {

56 5000 9 div hsbw

-2222 22 hstem -2173 94 hstem -1381 40 hstem

-881 40 hstem -143 94 hstem -22 22 hstem

0 97 vstem 195 40 vstem 694 40 vstem 790 97 vstem

48 -2177 rmoveto 32 2 17 22 0 25 rrcurveto

33 -25 16 -23 vhcurveto -24 -25 -15 -35 hvcurveto

-51 50 -42 61 vhcurveto 155 0 58 242 76 322 rrcurveto
15 61 35 154 14 62 rrcurveto 151 119 122 148 hvcurveto
0 76 -35 117 -132 57 rrcurveto 30 179 31 184 37 173 rrcurveto
22 100 44 203 49 O rrcurveto 31 0 25 -19 4 -4 rrcurveto
-33 -2 -17 -22 0 -25 rrcurveto -33 25 -16 23 vhcurveto
24 25 15 35 hvcurveto 54 -54 39 -55 vhcurveto

=79 0 -55 -117 -563 -197 rrcurveto

-22 -81 -34 -144 -6 -25 rrcurveto

-15 -61 -35 -154 -14 -62 rrcurveto

-151 -119 -122 -148 hvcurveto

0 -76 35 -117 132 -57 rrcurveto

-42 -253 -35 -196 -30 -123 rrcurveto

-18 -74 -46 -193 -82 0 rrcurveto -36 -25 23 0 hvcurveto
closepath

320 857 rmoveto -79 37 -54 80 0 92 rrcurveto

0 113 84 109 137 8 rrcurveto

closepath

104 -21 rmoveto 78 -35 56 -80 0 -94 rrcurveto

0 -113 -84 -109 -137 -8 rrcurveto

closepath

endchar

}

line 4 of the SVG we have an absolute move (M 56
0), which corresponds to the first argument of the
hsbw operator on line 2 of the Type 1 source. We
ignore all of hints in the Type 1 source (lines 3 to
5) and continue with the rmoveto operator and its
two arguments (line 6) which we find back in the
SVG instance on line 5. We leave it as an exercise
to the reader to walk through the remaining lines of
the Type 1 source and verify, referring to Table 1 as
necessary, that you indeed obtain the result shown

1 <glyph unicode="" glyph-name="contintegraldisplay"
2 horiz-adv-x="555.6">

3 <path style="fill:#000000; fill-rule=evenodd; stroke:none"
4 d="M 56 0

5 m 48 -2177

6 c 32 2 49 24 49 49

7 c 0 33 -25 49 -48 49 c -24 0 -49 -15 -49 -50

8 c 0 -51 50 -93 111 -93 c 155 0 213 242 289 564

9 c 15 61 50 215 64 277 c 151 0 270 122 270 270

10 c 0 76 -35 193 -167 250 ¢ 30 179 61 363 98 536

11 c 22 100 66 303 115 303 c 31 0 56 -19 60 -23

12 c -33 -2 -50 -24 -50 -49 c 0 -33 25 -49 48 -49

13 c 24 049 15 49 50 c 0 54 -54 93 -109 93

14 c -79 0 -134 -117 -187 -314

15 c -22 -81 -56 -225 -62 -250

16 c -15 -61 -50 -215 -64 -277

17 c -151 0 -270 -122 -270 -270

18 c 0 -76 35 -193 167 -250

19 c -42 -2563 -77 -449 -107 -572

20 c -18 -74 -64 -267 -146 -267 c -36 0 -61 23 -61 23
21 z

22 M 104 -2177 m 320 857 c -79 37 -133 117 -133 209
23 c 0 113 84 222 221 230

24 z

25 M 512 -881 m 104 -21 ¢ 78 -35 134 -115 134 -209
26 c 0 -113 -84 -222 -221 -230

27 z"

28 />

29 </glyph>

at the right. Note in particular how we have to re-
set the current point after each SVG z operator (i.e.,
the absolute move M on lines 22 and 25) to where it
was before the z operator was executed.

Figure 2 shows the contour integral as viewed
with ghostview (the PostScript Type 1 image) and
with Batik (rendering the calculated SVG instance).

Rather than use the temporary hack to map the
TEX code positions into the Unicode PUA it might

274

Fi Et Vi Proc G Tao
=5 <G 2R

llg Location: g =

l}im?.S |;7

Figure 2: PostScript Type 1 and SVG rendering

be useful to map the TEX characters to their cor-
rect position in the Unicode character space to ob-
tain a large Unicode-encoded font. This would allow
other applications to use the available glyphs, but a
straightforward translation from a DVI file would
become impossible since TEX codes are hardwired
in such a file.

4 Transforming a BTEX document into an
SVG document

Note that SVG fonts are not needed if one is content
with having the complete EPS figure, including the
text, translated into SVG as pure paths descriptors
(the text characters are treated merely as graph-
ics paths). Use pstoedit’s -dt option in that case.
This allows for fast rendering but loses the structural
information about the graphics, making it more dif-
ficult to update. Moreover, when zooming, the qual-
ity of the rendering with SVG fonts (left part of Fig-
ure 3) is much better than when the TEX characters
are simply translated into SVG paths (right part of
Figure 3, where it is seen that the letters of the text
are much coarser than at the left).

4.1 Using pstoedit

When using pstoedit to generate SVG from
a PostScript source one needs to include the
SVG font instances of the character glyphs refer-
enced. For this we developed an XSLT stylesheet
ins-saxon6.xsl.?! In the following example we

21 Versions of the stylesheet are available for Microsoft’s
msxsl (part of their MSDN XML Developer Center http://
msdn.microsoft.com/library/) and for the Saxon (http://
saxon.sourceforge.net/) and Xalan (http://xml.apache.
org/xalan-j) Java XSLT processors.

TUGboat, Volume 22 (2001), No. 4

BE
B e
Brae G I SIS AL WD || wbodh v S - &
s B c ot P¥asms] oo s | Ad¥es=[@crmitirporps2n

neration of fermions or matter fie heration of fermions or matter fiel
(7, ()
L l
| f
U U
D D

nasses, my, charges,)y, and third

x|

s Bt 3B ST OABD q
o B

v | U D) v 1 U D
s 0 -1 +2 LT 0 -1 +2 !
3 3/ - 3 3
1ds 1ds:
il C55 property o des plr deceraben [[@iy Covpatsr P [Epy Conput 4
Msiert| 170 [0 @ || o e | & B s | sedbypst. | Wl BERGADIMIOBFL o5

Figure 3: KTEX text rendered with SVG fonts or
as graphics paths

E i
File Edit View Processing Go Tools 2
| Bow aaladEale
[i3 Location: [file: afs [cern.ch/sw/XMLjcd rom/ss/figtestfonts.svg [~
L 1 1 1 —ip+my
_— - = T T
eotiiprmy (20 Pt mi e
K v
1 1 . 9 Pubv
AN —— |0 1) |,
(2m) % p? —ie { v ¥ (E) 2
>WA/\/\/V K (2m) i ieQs v, .
1 384.0 = 109.0 [[
A C:\michel\svg\fig| .svg - Mic pl =1o]x|
Fle FEdit View Favories ‘ Tods Help |
SBack v 2 v @ B & | Diseach [EFavorites BMeda B B-S = H 9
Address I@C:\m\che\\svg\ﬂgtesl‘fonm svg j ©Go ‘leks »‘
P 1 11 —ipemy
@r)*iip+ms (2m)'i PP+ mi —ie’
M v
1 1 2 PuPv
AN — |4 —1) ——
(2m)ti p? —ide {“”Jr(g) 2
4. .
>\mv M (2m)" @ ieQr Yy -
& bad CSS property or descriptor dedaration ‘ | ‘ ‘@, [My Computer 4

Figure 4: Feynman diagrams and their
propagators

transform the PostScript input file in.ps into the
corresponding SVG instance out.svg. Since the
latter file does not include the SVG source of the
fonts we need to include these by transforming it
with the help of an XSLT stylesheet to finally obtain
outl.svg, which we can view with an SVG capable
browser.

pstoedit -f svg:-texmode -nfr in.ps out.svg

saxon6.sh out.svg ~/www/svg/ins-saxon6.xsl outl.svg

Figure 4 shows a series of Feynman diagrams.
The graphics at the left are generated with the help

http://msdn.microsoft.com/library/
http://msdn.microsoft.com/library/
http://saxon.sourceforge.net/
http://saxon.sourceforge.net/
http://xml.apache.org/xalan-j
http://xml.apache.org/xalan-j

TUGboat, Volume 22 (2001), No. 4

of PostScript commands interfaced to KTEX, the
right part shows their corresponding propagators
and are prepared as IATEX math. The source is run
through BTEX, turned into PostScript with dvips,
before translating it into SVG with pstoedit. Af-
ter including the SVG fonts with the XSLT script
we display the result with Batik (top) and with Mi-
crosoft Internet Explorer and the Adobe svgview
plugin (bottom).

4.2 Using dvi2svg

We interfaced the dvi2svg Java library via a small
Unix script dvi2svg.sh, whose use is as follows:

> dvi2svg.sh

Usage: dvi2svg.sh [options] [DVIFILE]

Options:

-o [FILENAME] : Specify an output filename prefix. If not
set, dvi2svg will take the input filename.

-d : set the debug mode to on(1)/off(0 default)

An example of the use of the dvi2svg program
is the translation of the font table of the American
Mathematical Society font msbm10 from the DVTI for-
mat into SVG. In contrast to pstoedit, the dvi2svg
program includes itself the SVG font outlines for
the needed characters (font sub-setting is used). It
is however impossible to deal with non-TEX mate-
rial, such as EPS or PDF graphics, in which case
pstoedit should be used.

Below we first generate the DVI file using the
fonttable utility nfssfont.tex that comes with the
TEX distribution. Then we run dvi2svg.sh on
the generated nfssfont.dvi DVI file and obtain the
SVG file msbml.svg.

> latex nfssfont

This is TeX, Version 3.14159 (Web2C 7.3.7x)
(/TeXlive/t1l7/texmf/tex/latex/base/nfssfont.tex
LaTeX2e <2001/06/01>

sokkok ok ok ok ook ok sk ook ok sk ook ok sk ook ok sk koo ok

* NFSS font test program version <v2.0e>

*

* Follow the instructions

Aokkok ookt ok ok ook ok sk ook ko sk ook ok sk ok ok sk ok sk ok

Name of the font to test = msbmi10

Now type a test command (\help for help):)

*\table

*\bye

[1]

Output written on nfssfont.dvi (1 page, 5940 bytes).

> dvi2svg.sh nfssfont.dvi -o msbm

DEBUG from converter.DviToSvg => Converting file: nfssfont.dvi
DEBUG from converter.DviToSvg => Writing result to: msbm

DEBUG from converter.DviToSvg => Reader has been created

DEBUG from converter.DviToSvg => Writer has been created
Converting FINISHED

> 1s -1 msbm*.svg
-rw-rw-r-- 1 goossens

161252 Jan 2 10:08 msbml.svg

Figure 5 shows in its bottom part the font table
of the font msbm10 as viewed with xdvi, while its
top part shows the SVG rendering with Batik of the
SVG file msbm1 . svg prepared with dvi2svg from the
original DVI file, as shown above.

= |Sauigaieshint vy - | EEE
File Edit View Processing Go Tools 2
= BoslaaladE gl rne
i Location: [ftex/ars cer.ch/ swXML/XMLDOC/ goassens/ ps 2002 tugboay/ mshmi.svg |~
0 1 2 k3 4 ‘5 (] 7
w | £ | 3 | £ 7 7 7 7 1
7 7 X
Vix s z £ # s z 2 ¥’
02 3 z % Z £ b4 2 = -
0) = 3 % “ 2 / %
O | ¢ | 2 | £ | 2 s 2 5 2 | o
05 = 2 Z 2 1 t ’ “
Vo ¥ ¥ F I ¥ F # B "
2.4
iz - d & # * i * 2]
Il # A B C D E F G 4
- T Y ~ X
1x H I J K L M N (4]
122 P Q R 8 T U v W 5
= e — x
19 X Y Z - - T
‘14z 4 o U a 6
%
gl ~ | 1 i < » »
162 | i ~ ~ = = = = o
x
‘17x 2 ~ I s k h h 3
"8 "9 A B c D E "F
[EETE
0 4 k3 4 5 6 [[owir]
ix z z £ Z kS # [l “0x Open
0z g = # # pS z #
Rercad
B A B A B .
[3 3 = E - Z 7 | [Chete]
[¢ 2 Z Z g 2 [5
x
[[= 2 [3 2 ¥ ¥ . [Full size]
:;;J G ¥ B ¥ 2 @ # Sz =
. - - & - * - *
w | 4 | A | B c D E ¥ -
1t I 1] K L v N T]
12 P Q R E T U v "
i = = = — —— = — 5x
— G 3
15 = 3 3 5 = - ~ % Page5
16z]] ~ = = 3 2 e Prev
"1 ~ I > 3 7 h B
8 9 1 B G D E F

Figure 5: TEX’s msbm10 font table

4.3 More complex examples

Figure 6 displays the result of translating M TEX
text and a complex use of its picture environment
into SVG in various ways. At the left we show the
file as viewed with dvips (PostScript version), in
the middle the SVG file created with the pstoedit
program from the PostScript output, at the right the
SVG file as generated directly from the DVI file with
dvi2svg. Both SVG files were displayed with the
help of Microsoft’s Internet Explorer (with Adobe’s
svgview plugin). Figure 7 shows part of the SVG
source file that was generated by dvi2svg. We shall
study its basic structure later (see Section B.2).

We also looked at IATEX sources that use non-
standard fonts, such as the MusiXTEX and Xy-pic
packages. We first generated the SVG instances for
the Type 1 versions of the needed fonts and then
selected a few examples?? that are typical for these
packages. For completeness we also include exam-
ples of chemistry and algebra. We generated the

22 We took our inspiration from chapters 5 “The Xy-pic
package” and 7 “Preparing music scores” of The IATEX
Graphics Companion, Illustrating Documents with TEX and
PostScript, by Michel Goossens, Sebastian Rahtz, and Frank
Mittelbach, Addison-Wesley, 1997, ISBN 0201854694.

1
2

276

Edit

fddrass | GO

Ou-O RE

tinks ' norton Antvias g -

TUGboat, Volume 22 (2001), No. 4

File Edt View Favorites Tools Help

Q- O RNAG
Address EJ Go

Links | Morbon dntivings 51 =

Drawing Feynman diagrams with BETEX

p+a

&
-
Page:

|~

File: &

Drawing Feynman diagrams with BTEX

Drawing Feynman disgrams with BTEX

pta

Figure 6: ITEX and its picture environment: PostScript and SVG renderings

<?xml version="1.0" encoding="iso-8859-1"7>
<!--This file was automatically generated by dvi2svg-->

3 <svg width="504" height="800" viewBox="0 0 504 800">
4 <defs>

5

6 <font-face font-family="CMR"/>

7 <glyph unicode="" glyph-name="D"

8 horiz-adv-x="763.9">
9 <path style="fill:#000000; fill-rule=evenodd; stroke:none"
10 ="/

11 </glyph>

12 <glyph unicode="" glyph-name="r"

13 horiz-adv-x="391.7">
14 <path style="..." d="..."/>

15 </glyph>

16 .

17

18

19 <font-face font-family="LCIRCLEW"/>

20 <glyph unicode="" glyph-name="a8"

21 horiz-adv-x="1200">

30

<path style="..." d="...’’/>
</glyph>

<font-face font-family="LCIRCLE"/>...
<font-face font-family="LINEW"/>...
<font-face font-family="LINE"/>...
<font-face font—family="CMBX“/>...
<font-face font-family="CMSY"/>...
<font-face font-family="CMMI"/>...
</defs>
<g>
<text fill="black" font-family="CMR" font-size="11.7871">
<tspan y="101.88267" x="...">...</tspan>
</text>

<rect x="322.78577" y="145.65428" width="0.872714"
height="0.26910424" fill="black" stroke="black"
stroke-width="0.1"/>
</g>
</svg>

Figure 7: IMTEX and its picture environment: Generated SVG instance

TUGboat, Volume 22 (2001), No. 4

e 1

ile Edit View Processing Go Tools ?

= PDosaala&E (& rne

[Ig Location: |waMLfXMLDOCfguussensftipsQl]l]thugh[

‘f_ s '_:' LT T AL

oo EPfmlomy |

f—-’*“?.j""—‘—i ' = rtr—>
===

Figure 8: SVG instance of a MusiXTEX example
viewed with Batik Squiggle

SVG from the DVI files as follows (we show only one
run, the others are similar).
dvi2svg.sh xytest.dvi

DEBUG from converter.DviToSvg => Converting file: xytest.dvi
DEBUG from converter.DviToSvg => Writing result to: xytest
DEBUG from converter.DviToSvg => Reader has been created
DEBUG from converter.DviToSvg => Writer has been created

Converting

We display the resulting SVG files with Batik’s
Squiggle SVG viewer. Figure 8 corresponds to exam-
ple 7-2-5 of The ETEX Graphics Companion. It rep-
resents a moderately complex part of a music piece
typeset with MusiXTEX. Figure 9 is the structural
formula of adonitoxin as typeset with the XIMTEX
package (see page 221 of the same book). XIMTEX is
an advanced application based on I¥TEX’s picture
environment. Figure 10 which combines complex
mathematical formulae with a graphical representa-
tion of a Dynkin diagram generated with the help of
the picture environment, is based on an entry in a
dictionary of Lie superalgebras.??

Figure 11 shows complex examples from the
“Links and knots” Section 5.5.8 of The IATEX Graph-
ics Companion. In particular the display is an en-
larged view of the bottom parts of examples 5-5-28
and 5-5-29, as well as of examples 5-5—34 and 5-5—
35. The display shows that SVG can be nicely scaled
for better viewing and is thus a perfect complement
for PDF output.

5 Conclusion

We have explained how SVG is a truly scalable two-
dimensional XML-based graphics language for the
Web. Since graphics representations are at the heart
of many scientific, technical and other documents,

23 The example is taken from the tables in the Appendix of
Dictionary On Lie Algebras And Superalgebras by Luc Frap-
pat, Antonino Sciarrino, and Paul Sorba, Harcourt Publishers
2000, ISBN 0122653408.

277

Figure 9: SVG instance of a XIMTEX example
viewed with Batik Squiggle

Structure: Gy = sl(m) & sl(n) & U(1) and Gr = (7, n) & (m,), type L.
Root svatem;
A ={g—s b —&, 5— 8 & —g}
Ap={ei—gp =&} Ap={g—& & —g}
Ap=Ag Ar= A
where 1 <4 ,.I"L_ moand 1 < E#1<n _
dim &g = dim Ay = m* + 0" —m —n+ 1 and dim A7 = dim A7 = 2.
Distinguished Cartan matrix:
2 1 b .- 0 U
-1 T
0 e
e 1
0 0 =1 2|1
Coo=1f 0 1 .
1 2 10 0
-1
[i
.o = =1
0 e SRRl IEERN B U1 1 2
Distinguished extended Dvnkin diagram:

Figure 10: SVG instance of math and a graph
viewed with Batik Squiggle

we are convinced that most applications will be able
to generate in the foreseeable future SVG output
from input data marked up in their specific vocab-
ularies. Similarly, with the help of the Computer
Modern family (and other) SVG font sets, which we
have explained how to generate, it is now possible to

278

File: Edit View Processing Go Tools ?

TUGboat, Volume 22 (2001), No. 4

Z Bae Qa8 (S rne

B Location: ‘file:fafsfcern.chfuserfgfguussens;wwwf svg/musiaex/xytest21.svg -

|w.242.35526 h: 165.08255 | |

Figure 11: Xy-pic example viewed with Batik Squiggle

transform complete KTEX documents into SVG. Al-
though this may prove useful in itself, the existence
of PDF and its use inside browsers on the Web makes
SVG somewhat redundant in this respect.

However, the more important use of SVG with
IATEX will be to translate the graphics images con-
tained in a IMTEX document or parts of single pages
of ITEX documents from EPS, etc. into SVG so that
they can be included in XML instances generated
from KTEX sources with the help of BTEX to XML
converters, such as tex4ht.?* This will become ex-
tremely useful once the major browsers are able to
handle XML namespaces, making it possible to com-
bine different XML vocabularies. We look forward
to the not too distant future when we will be able
to generate and edit XHTML (DocBook), MathML

24 See http://www.cis.ohio-state.edu/ gurari/TeX4ht
and references therein.

and SVG directly and have the result displayed cor-
rectly.?’

6 Acknowledgments and distribution

One of us (VS) would like to acknowledge the fund-
ing of a fellowship to work at CERN that he received
from the “Tools for Innovative Publishing in Sci-
ence” (TIPS) Project, part of the Information Soci-
ety Technologies Programme of the 5th Framework
of the European Union.?¢

The latest version of the utilities developed for
this project is available as a ZIP file on the Web.2”
The fonts also come with the dvi2svg distribution.

25 See http://www.w3.org/TR/XHTMLplusMathMLplusSVG/
for some work that is been done in this area.

26 See http://www.cordis.lu/ist/ist-fp5.html.

27 See http://home.cern.ch/goossens/svgfonts.html.

http://www.cordis.lu/ist/ist-fp5.html
http://home.cern.ch/goossens/svgfonts.html

TUGboat, Volume 22 (2001), No. 4

A SVG graphics path commands

Paths (defined in SVG using the path element)
specify the geometry of the outline of an ob-
ject. Path operators can set the current point
(moveto), draw a straight line (1ineto), draw a cu-
bic Bézier curve (curveto), and close the current
shape (closepath). Details on a subset of the SVG
path commands that are used in SVG fonts follow.
Command names in lowercase are for relative coor-
dinates, uppercase names for absolute coordinates.

[mIM] (x y)+
Start a new sub-path at the given (x,y) co-
ordinate. A relative moveto (m) appearing as
the first element of a path is treated as a pair
of absolute coordinates. If a moveto is followed
by multiple pairs of coordinates, the subsequent
pairs are treated as implicit lineto commands.
[z1Z]
Closes the current subpath by drawing a straight
line from the current point to the current sub-
path’s initial point.28

The various lineto commands draw straight
lines from the current point to a new point:

[(1IL] (x y)+
Draws a line from the current point to the given
(x,y) coordinate which becomes the new cur-
rent point. A number of coordinate pairs may
be specified to draw a polyline. At the end of
the command, the new current point is set to
the final coordinate provided.

[h1H] x+
Draws a horizontal line from the current point
(cpx, cpy) to (x,cpy), which becomes the new
current point.

[vIVv] y+
Draws a vertical line from the current point
(cpx, cpy) to (cpx,y), which becomes the new
current point.

There are three groups of commands to draw
curves. Here we only look at one of the cubic Bézier
commands, since it is used in the translation of the
Type 1 fonts. Further information on the other com-
mands are in the SVG Specification.

[cIC] (x1 y1 x2 y2 x y)+

Draws a cubic Bézier curve from the current

point to (x,y) using (x1,y1) as the control

point at the beginning of the curve and (x2,y2)

28 At the end of the command, the new current point is
set to the initial point of the current subpath, so that if a
closepath is followed immediately by any other command,
then the next subpath and the current subpath share their
same initial point.

279

as the control point at the end of the curve.
Multiple sets of coordinates may be specified to
draw a polybézier. The new current point is set
to the final (x,y) coordinate pair used in the
polybézier.

B SVG Fonts

Graphics designers creating SVG content using arbi-
trary fonts need to be sure that the same graphical
result will be displayed when the content is viewed
by all end users, even those who do not have the nec-
essary fonts installed on their computers. Therefore,
to guarantee reliable font delivery the SVG Specifi-
cation defines a common “SVG font” format that all
conforming SVG viewers must support.

B.1 Overview

SVG fonts contain unhinted font outlines. Because
of this, on many implementations there will be lim-
itations regarding the quality and legibility of text
in small font sizes. For increased quality and legibil-
ity in small font sizes, or for faster delivery of Web
pages (SVG fonts are expressed using SVG elements
and attributes, so that they can be quite verbose
compared to other formats) alternate font technol-
ogy might be considered on some systems.?"

SVG fonts and their associated glyphs do not
specify bounding box information, so that it is up
to the applications to calculate bounding box and
overhang based on an analysis of the graphics ele-
ments contained within the glyph outlines.

B.2 The font element

An SVG font is defined using a font element.?? The
characteristics and attributes of SVG fonts follow
closely the font model of the Cascading Style Sheets
(CSS) level 2 Specification.3!

29 The authors of the SVG Specification have realized that
the absence of a hinting mechanism in the font format of
current SVG 1.1 is a drawback. Indeed, Web developers em-
bed fonts in other formats in their SVG documents in situ-
ations where the available resolution is insufficient for ade-
quate rendering in native SVG. Therefore, SVG 1.2 (http:
//www.w3.org/TR/SVG12) plans to add hinting as an optional
feature for SVG fonts, thus offering Web authors the choice
of a pure SVG solution. The adopted approach is likely to be
based on a free variant of PostScript Type 1 hinting.

30 See http://wuw.w3.org/TR/SVG/fonts.html.

31 See nttp://www.w3.org/TR/REC-CSS2/fonts.html. In
that document font metrics are expressed in units that are
relative to an abstract square whose height is the intended dis-
tance between lines of type in the same type size. This square
is called the em square and it is the design grid on which the
glyph outlines are defined. The value of the units-per-em
attribute on the font element specifies how many units the
em square is divided into. Common values are 1000 (Type 1)
and 2048 (TrueType or OpenType).

http://www.w3.org/TR/SVG12
http://www.w3.org/TR/SVG12
http://www.w3.org/TR/SVG/fonts.html

280

An font element can contain the following el-
ements: font-face®? (provides further typographic
information about the font, including the name of
the font), hkern and vkern (kerning information be-
tween Unicode characters), missing-glyph (defines
the representation to be used for all Unicode char-
acters that have no explicit glyph element defining
their outline in the present font), and finally glyph.

The glyph element defines the graphics for a
given glyph. The coordinate system for the glyph
is defined by the various attributes in the font el-
ement. The graphics that make up the glyph can
be either a single path data specification within the
d attribute (see below) or arbitrary SVG as content
within the glyph element.

Important attributes of the glyph element are
described below.

unicode = "<string>"

If a single character is provided, then this glyph
corresponds to the given Unicode character. If
multiple characters are provided (e.g., for liga-
tures) then this glyph corresponds to the given
sequence of Unicode characters. For example
see line 1 of Table 2 and lines 7, 12, and 20 of
Figure 7.

glyph-name = <name> [,<name>]*

A glyph name should be unique within a font.
Glyph names are used when Unicode character
numbers do not provide sufficient information
to access the correct glyph (e.g., when there are
multiple glyphs per Unicode character). Glyph
names are referenced in kerning definitions. For
example see line 1 of Table 2 and lines 7, 12, and
20 of Figure 7.

d = "path data"
Definition of the outline of a glyph. Uses the
same syntax as the d attribute on a path ele-
ment, which is often used instead. For example
see lines 4-27 of Table 2 or lines 10, 14, 22 of
Figure 7.

horiz-adv-x = "<number>"

The default horizontal advance after rendering
a glyph in horizontal orientation. Glyph widths
must be non-negative, even if the glyph is ren-
dered right-to-left, as in Hebrew and Arabic
scripts. An attribute horiz-adv-y exists for
specifying the vertical advance for glyphs ren-
dered in vertical orientation. For example see
line 2 of Table 2 and lines 8, 13, and 21 of Fig-
ure 7.

32 Similar to CSS2’s @font-face font descriptor, see
http://www.w3.org/TR/REC-CSS2/fonts.html.

TUGboat, Volume 22 (2001), No. 4

For increasing portability it is advisable to em-
bed all SVG fonts that are referenced inside an SVG
document. As an example, Figure 7 shows how all
the fonts needed to render the given SVG graphics
image are first included (inside a defs element, lines
4 to 32) and later referenced (e.g., line 34 calls for
a character of font CMR whose definition is on lines
5-17).

On the other hand, it is also possible, e.g., for
convenience, to save SVG font sources in external
files and reference characters in these fonts via CSS
style directives from inside SVG images. In this case
one must, however, make sure that the needed fonts
are installed on the client’s system or are shipped
together with the referencing SVG file to the client
site.

o Michel Goossens
IT Division, CERN
CH1211 Geneva 23, Switzerland
michel.goossens@cern.ch

o Vesa Sivunen
ETT Division, CERN
CH1211 Geneva 23, Switzerland
vesa.sivunen@cern.ch

280

TUGboat, Volume 22 (2001), No. 4

mimeTeX announcement
John Forkosh

Introduction

This short note announces the availabilty of mime-
TeX, a small GPL’ed program that facilitates the
preparation of HTML documents containing math.
mimeTeX parses BTEX-like math expressions, emit-
ting either MIME xbitmaps or GIF images of them,
which can be used in HTML documents e.g.,
<img src="../cgi-bin/mimetex.cgi?f(x)=x2"
border=0 align=absmiddle>
This allows you to embed math directly in HTML,
reducing the need for external GIF images, and
making your HTML documents more readable and
easily maintained.

You can see detailed documentation and exam-
ples online at http://www.forkosh.com/mimetex.
html, and the entire package can be downloaded
from /tex-archive/support/mimetex/mimetex.
zip at any CTAN mirror.

TUGboat, Volume 22 (2001), No. 4

mimeTeX isn’t primarily meant for latex2html-
like tasks where you’re maintaining native IXTEX
documents that are later redistributed in several
formats, including HTML. Rather, mimeTeX is pri-
marily meant to help maintain native HTML docu-
ments containing math. In this sense, it’s a kind of
“lightweight” alternative to MathML, with the ad-
vantage that mimeTeX preserves easy-to-use INITEX
syntax. And mimeTeX works with any graphical
browser.

mimeTeX’s objectives

Widespread use of MathML by HTML/XML authors
will eventually begin to dilute the population of
ITgX-aware users, muddying ETEX’s future. ITEX
is more than “TEX The Program”; IXTEX is its syn-
tax. Knuth produced a test suite that validates any
program claiming to be TEX, so no one version of the
code is crucial. It’s the syntax that’s crucial. ITEX
will survive so long as a significant user population
continues to use this syntax.

MathML poses a threat to the future of ITEX’s
syntax in the large and growing HTML/XML mar-
ket, so it’s useful and important to provide some
IXTEX-compliant alternative. mimeTeX is meant to
be a prototype alternative. It’s probably too small
and kludgey for a final solution. But it demonstrates
feasibility, and is full-featured enough to measure
potential interest in IATEX-compliant alternatives to
MathML.

Such alternatives provide a choice to new users,
who will hopefully conclude that ITEX is the eas-
ier and more intuitive syntax. And old users can
continue using IXTEX syntax when they have to
prepare native HTML/XML documents, i.e., when
it’s not adequate to run latex2html against native
TEX documents.

Similar tools

Other non-MathML solutions besides mimeTeX that
embed HTEX-like math into HTML are discussed
in the TEX FAQ. Two that you might want to
look at are textogif at http://www.fourmilab.ch/
webtools/textogif/textogif.html and gladTeX
at http://www.math.uio.no/ “martingu/gladtex.
Both require separate setup procedures that use TEX
to help generate external GIF (or PNG) images of
your equations, which are later included in your
HTML document as it’s being rendered.

mimeTeX, as far as I know, is the only such non-
MathML package that has its own built-in parser and
rendering engine, entirely independent of TEX, and
therefore requires no setup procedure or external
images whatsoever. It renders realtime, on-the-fly

281

images directly from your I2TEX math embedded in
HTML documents. This makes your HTML source
documents more readable and easily maintained.
textogif, gladTeX, or similar tools may be modifiable
to work as easily, or mimeTeX’s ease-of-use features
may not prove compelling. In any case, mimeTeX
becomes one more available tool in your toolbox.

¢ John Forkosh
285 Stegman Parkway #309
Jersey City, NJ 07305
USA
john@forkosh.com
http://www.forkosh.com

TUGboat, Volume 22 (2001), No. 4

281

Fonts

Making outline fonts from bitmap images

Karl Berry
Abstract

Tools for creating outline fonts from bitmaps have
matured significantly in past years. Our purpose
here is to describe those tools and how they fit
together in a TEX context, in a practical way.

1 Introduction

I recently had occasion to create outline fonts (Post-
Script Type 1 or TrueType; see [24]) from a scanned
bitmap image of a type specimen. I was pleasantly
surprised to find that the tools for doing this con-
version produce considerably better results than the
last time I worked in this area. This note describes
one procedure for putting the programs together,
culminating in using the result from TEX.

Happily, all of the programs mentioned here can
be compiled and installed with only minor variations
on the standard procedure [18] first specified for the
GNU project:

configure && make && make install

Web addresses for the programs are given in the
references.

We should at least touch on legal questions
[4], although a thorough discussion is far beyond
the scope of this paper—or my knowledge, for that

282

matter. My understanding is that font designs, as
opposed to font programs, are still not copyrightable
in the United States (a few have been patented,
notably Lucida), but that designs are protected in
most European countries. As a result, in today’s
world of widespread file sharing, especially in the
TEX community, it would be unwise to attempt to
create or distribute fonts for any design created af-
ter approximately the early 1900’s, without specific
knowledge for a specific design.

On the other hand, I did receive legal advice
(from the Free Software Foundation’s lawyer) that
scanning old type specimen images, even when they
are embedded in a book still under copyright, is
defensible. Not any of the text or illustrations
prepared specifically for the book, of course, but
actual old specimens may be copied.

2 Scanned image to bitmap font: imageto

For our purposes, we will start with a single black
and white image of a font specimen of a Baskerville
type at a fairly large size (24 pt), scanned at a fairly
high resolution (1200dpi). The image includes the
upper and lowercase alphabets, digits, and other
principal characters. The first task is to extract
these characters from the image into a bitmap font.

Not coincidentally, one of the programs in the
GNU font utilities [3], written a decade or so ago
by Kathryn Hargreaves and myself, does precisely
this. This program is called imageto. There may
be other programs to accomplish the same task, but
since I knew about this one (for obvious reasons), I
just used it.

The output from the scanner (a Xerox 9700)
is in an unusual image format that can’t be read
directly by any modern program. (The scanning
was also done a decade ago.) So, to see the image
I was working with, I converted it to Encapsulated
PostScript (EPSF [24]) and viewed it with gv [13],
at its smallest scale factor (0.1):

imageto —-epsf gbvr

gv gbvr.eps
Here’s the resulting picture of the starting image
(clipped to approximately the left half due to the
small TUGboat column width), so we can see what
we’re dealing with:

abcdefghyklmnopq
ABCDEFGHIJKI
1234567890 &.,;1P*

TUGboat, Volume 22 (2001), No. 4

The font name gbvr, by the way, stands for
GNU Baskerville roman, according to the Fontname
scheme [2]. (This whole project started under the
aegis of GNU [19].)

imageto considers the input image as a series
of ‘image rows’. Each image row consists of all
the scanlines between a nonblank scanline and the
next entirely blank scanline. (A ‘scanline’ is a single
horizontal row of pixels in the image.) Within each
image row, imageto looks top-to-bottom, left-to-
right, for ‘bounding boxes’: closed contours, i.e., an
area whose edge you can trace with a pencil without
lifting it. For example, an ‘i’ has two bounding
boxes, while an ‘a’ has one.

In practice, scanned images have plenty of im-
perfections; for instance, a small printing blotch is
seen as a bounding box which we have to ignore.
Baselines jump up and down due to the printing pro-
cess, as well as the natural baseline adjustments for
characters with descenders or o-corrections (curved
characters such as ‘o’ whose bottom point is slightly
below the baseline). So we have to describe all of
these special cases.

To extract characters from the bitmap, it’s nec-
essary to supply all of this descriptive information
to imageto in a simple line-oriented text file, called
an ifi file (image font information). The details
of this file’s syntax aren’t important here — the full
manual (and source code) for Fontutils are available
at the url given in the references.

For the sake of example, the final command line
to process this image ended up being:

imageto --designsize=24 \
--encoding=8r \
--baselines=72,59,58 \
—--print-guidelines \
—--print-clean-info \

gbvr

mv gbvr24.1200gf gbvr.1200gf

The result is a bitmap font in GF format [9]
(same as METAFONT). So, from gbvr.img, we now
have gbvr.1200gf. We explicitly remove the 24 in
the filename because we want to make an outline
font, named without a design size.

3 Bitmap font to outlines: autotrace

The best program I know of to fit outlines (i.e.,
Bézier curves) to bitmaps is autotrace [23]. (I
found an alternative program ttf2pt1 [1], but it did
not seem as well developed). Some fairly intense
mathematics is involved in doing the fitting [17];
fortunately, we don’t need to go into that in order
to use the program effectively.

TUGboat, Volume 22 (2001), No. 4

The main barrier to using autotrace to convert
fonts is that it reads images (such as PBM files [14]),
and writes EPSF (among other formats); it has no
knowledge of font formats. So our basic strategy is:

1. Convert each character in the bitmap font to an
image in PBM format.

2. Run autotrace on that image.

3. Convert the PostScript output, which uses stan-
dard graphics operators such as rmoveto and
rrcurveto, to Type 1 opcodes.

4. Reassemble the characters into a font.

This procedure is implemented by mftrace [11],
a Python [22] program which pulls the pieces to-
gether: it uses gf2pbm [12] to convert individual
characters from the GF font to bitmap images; calls
autotrace with assorted options to do the fitting;
and finally uses t1lasm from tlutils [7] to assemble
the output into a font again.

mftrace requires an encoding file to run, and
since it does not do path searching, the encoding
file must be present in the current directory. The
default encoding is tex256.enc, and can be changed
with the -e option. (If you don’t happen to have
tex256.enc on your system, it’s available at http:
//tug.org/fontname/tex256.enc. It is another
name for the T1 (Cork) encoding.)

Type 1 fonts have two equivalent formats: pfa
(printer font ASCII), which uses only normal plain
text characters; and pfb (printer font binary), which
is partly binary. As you might expect, pfb files
are noticeably smaller, since the font shapes can be
compressed more when all eight bits can be used.
TEX and friends are happy with either one, so we
might as well use pfb.!

Here is a first approximation to our command
line:

mftrace --pfb \
--gffile=gbvr.1200gf gbvr

The result is gbvr.pfb. Here are two of the resulting
outline characters showing the main control points:

1 Warning: I found out to my sorrow that it does not work
to directly edit the contents of a pfb file in any way, including
the header comments; it becomes internally inconsistent and
dvips will complain about a a ‘non-MSDOS header’.

283

There is an alternative program textrace [20],
which seems equally worthy. I worked with mftrace
only because it was easier for me to install and
understand. Each program has its own drawbacks
and benefits.

Historical aside: 1 was happy to see that auto-
trace is partially based on limn, another of the
old Fontutils programs; so that work wasn’t entirely
wasted. It does a vastly better job than limn ever
did, which I am even happier to see!

4 Testing the new font from TEX

The above does the real work of converting bitmaps
to outlines. Now, to use the result in TEX, we have
many configuration details to work out.

4.1 Scaling: mftrace

First, we need metrics to go along with the outlines,
which mftrace will generate as an afm file (Adobe
Font Metrics [24]), if we specify the —-afm option.

We also have to convert between different coor-
dinate systems. When we create a Type 1 font, the
so-called ‘character coordinate space’ uses a 1000 to
1 scaling matrix. That is, 1000 character space units
transform into one user space unit (one PostScript
point, usually). Put another way, Type 1 expects a
resolution of 1000 pixels in the design size, and the
PostScript design size is simply 1. This is a much
higher resolution than our scanned images have.

It’s easiest to explain the scaling factor by
looking at a concrete example. Our example image
was scanned at a resolution of 1200 dpi, which comes
to about 16.6 pixels per point (1200/72.27). Our
design size is 24 pt. Therefore, we have about 399
pixels per design size (16.6 * 24). We give this value
to the mftrace as the magnification (same concept
of magnification as in TEX).

mftrace will then scale all the numbers in the
outlines by 1000/399 = 2.506. For example, the
image of our capital ‘A’ is 275 pixels wide. This
becomes about 690 in character space coordinates.
As a check, the device-independent width in TEX
terms turns out to be 6.9 on a 10 pt designsize; yay.

http://tug.org/fontname/tex256.enc
http://tug.org/fontname/tex256.enc

284

Bottom line, the magic number is the image de-
sign size multiplied by the image resolution in pixels
per point. Here’s the resulting mftrace command
line (this is the real one, no approximation):

mftrace --pfb \
--afm --magnification=399 \
--gffile=gbvr.1200gf gbvr

We now have two files: gbvr.pfb and gbvr.afm.

4.2 Metrics: afm2tfm

Our next job is to convert gbvr.afm into TEX font
metric files. The easiest way I know of to do this is
to use afm2tfm’s -T option, which lets us get away
without using virtual fonts [26]:

afm2tfm gbvr.afm -v gbvr.vpl \

-T tex2b66.enc >gbvr.xmap

pltotf gbvr.vpl gbvr.tfm
pltotf will issue warnings about unknown VTITLE
and MAPFONT properties, but no harm is done. We
don’t need all the TEX virtual font machinery [5],
since we're not actually combining multiple fonts,
just reencoding a single font.

4.3 Running TEX and dvips

Ok, let’s run TEX (testfont.tex is a standard file
from Knuth):

tex testfont

Name of the font to test = gbvr at 24pt
Now type a test command...
*x\text\bye

OQutput written on testfont.dvi...
Transcript written on testfont.log.

We're almost ready to look at some output. Our last
preliminary step is to specify downloading gbvr.pfb
when the font is used. For dvips [15], this is done
in a one-line .map file. afm2tfm gave us the initial
line, we just append the download instruction:

sed -e ’s/$/ <gbvr.pfb/’ gbvr.xmap \
>gbvr.map

Finally, we tell dvips [15] to use that map file and
process the document:

dvips -u +gbvr.map testfont.dvi -o

The output is testfont.ps:

OnNovemberl4,1885,Senator& Mrs.LelandStanford
called together at their San Francisco mansion the

There are some artifacts in that image due to
the conversion process from the screen capture. My

TUGboat, Volume 22 (2001), No. 4

apologies, but the main point is the process, after all,
not the particular image we used for an example.

The most obvious other problem is that there
is no letter spacing. Some methods for addressing
that are mentioned in the next section.

5 Final outline output: frontline, pfaedit

We’ve gone through the process of making a new
outline font and typesetting with it in TEX. Now
comes the truly hard part: actually making the font
as good as it can be. Although autotrace does a
very respectable job with its default settings, it’s
inevitable that hand editing of the outlines will be
required for best results.

One method for doing this is to change the
(numerous) parameters to autotrace itself. This
can be done from the command line (use --help to
get a list of options). In addition, a graphical front-
end to autotrace named frontline exists to make
experimenting with the option setting easier; it is
available from the autotrace home page [23].

The other method is to use an outline font
editor; the best one I know of is pfaedit [25]. As
well as straightforward outline editing, pfaedit has
numerous other significant features:

e Bitmap editing (supports GF and PK [16] for-
mats).

e TrueType output. The option --truetype to
mftrace will call pfaedit to get TrueType
output, if that’s desired.

e Metrics editing: getting the character spacing
is as important to the final outcome as the char-
acter shapes [8, 21]. pfaedit can supply initial
side bearings and kerns via the Auto Width
and Auto Kern options on the Metrics menu.
This is nice, since scanned images generally lack
any useful side bearing specifications. (Alter-
natively, the Fontutils program charspace is
a non-interactive way of preparing initial side
bearings.)

e Autohinting.

As it turns out, the mftrace --afm option that
we used above also implies --simplify, which runs
the font through pfaedit in order to simplify and
autohint the outlines. Thus, no additional options
are needed to take advantage of those features.

Additional files and procedures are needed to
use new fonts with IWTEX [6, 10]. Those articles
also describe creating oblique, small caps, and other
variants.

Happy fontmaking!

TUGboat, Volume 22 (2001), No. 4

References

[1]
2]

[3]

Sergey Babkin. ttf2ptl.
http://ttf2ptl.sourceforge.net.

Karl Berry. Fontname: Filenames for TEX
fonts. http://tug.org/fontname.

Karl Berry and Kathryn Hargreaves. GNU
fontutils. http://www.gnu.org/software/
fontutils.

Charles Bigelow. Notes on typeface protection.
TUGboat, 7(3):146-151, October 1986.

Robin Fairbairns. Virtual fonts.
http://www.tex.ac.uk/cgi-bin/
texfaqg2html?label=virtualfonts.

Peter Flynn. Installing PostScript fonts.
http://www.silmaril.ie/downloads/
documents/installpsfonts.pdf.

I. Lee Hetherington and Eddie Kohler. Type 1
utilities (tlutils).

http://www.lcdf.org/ eddietwo/type.
David Kindersley. Optical Letter Spacing for
New Printing Systems. Wynkyn de Worde Soci-
ety, distributed by Lund Humphries Publishers
Ltd., 26 Litchfield St. London WC2, 1976.
Donald E. Knuth. GF (generic font) format.
http://www.ctan.org/tex-archive/
systems/knuth/mfware/gftype.web
other programs).

(among

Philipp Lehman. The font installation guide.
http://www.ctan.org/tex-archive/info/
Typelfonts/fontinstallationguide.pdf.
Han-Wen Nienhuys. mftrace.
http://www.cs.uu.nl/ hanwen/mftrace.

Han-Wen Nienhuys and Paul Vojta. gf2pbm.
http://www.cs.uu.nl/ hanwen/mftrace.

Johannes Plass. GV: a PostScript and PDF pre-
viewer. http://wwwthep.physik.uni-mainz.
de/"plass/gv.

Jef Poskanzer and Bryan Henderson et al.
Netpbm. http://netpbm.sourceforge.net.

Tomas Rokicki. Dvips. http://www.ctan.
org/tex-archive/dviware/dvips.

Tomas Rokicki. PK (packed font) format.
http://www.ctan.org/tex-archive/
systems/knuth/mfware/pktype.web
other programs).

Philip J. Schneider. Phoenix: An interactive
curve design system based on the automatic
fitting of hand-sketched curves. Master’s
thesis, University of Washington, 1988.
http://autotrace.sourceforge.net/
Interactive_Curve_Design.ps.gz.

(among

[18]

[19]
[20]
[21]
[22]
[23]

[24]

[25]

[26]

285

Richard M. Stallman. GNU coding standards.
http://www.gnu.org/prep/standards_48.
html. Node: Managing Releases.

Richard M. Stallman. Project GNU (GNU’s
Not Unix). http://www.gnu.org.

Péter Szabé. textrace.
http://textrace.sourceforge.net.

Walter Tracy. Letters of Credit. David R.
Godine, Publisher, Boston, MA, USA, 1986.

Guido van Rossum. Python.
http://python.org.

Martin Weber. Autotrace.
http://autotrace.sourceforge.net.

George Williams. Font file formats.
http://pfaedit.sourceforge.net/index.
html#Formats. This has contains links to
PostScript Type 1 and AFM documents, and
both the Apple and Microsoft TrueType and
OpenType standards documents, among many
others.

George Williams. Pfaedit.
http://pfaedit.sourceforge.net.

Y&Y. Single TFM file for Type 1 Fonts.
http://www.yandy.com/maketfm.htm.

¢ Karl Berry
685 Larry Ave. N
Keizer, OR 97303
USA
karl@freefriends.org
http://freefriends.org/ karl/

http://ttf2pt1.sourceforge.net
http://tug.org/fontname
http://www.gnu.org/software/fontutils
http://www.gnu.org/software/fontutils
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=virtualfonts
http://www.tex.ac.uk/cgi-bin/texfaq2html?label=virtualfonts
http://www.silmaril.ie/downloads/documents/installpsfonts.pdf
http://www.silmaril.ie/downloads/documents/installpsfonts.pdf
http://www.lcdf.org/~eddietwo/type
http://www.ctan.org/tex-archive/systems/knuth/mfware/gftype.web
http://www.ctan.org/tex-archive/systems/knuth/mfware/gftype.web
http://www.ctan.org/tex-archive/info/Type1fonts/fontinstallationguide.pdf
http://www.ctan.org/tex-archive/info/Type1fonts/fontinstallationguide.pdf
http://www.cs.uu.nl/~hanwen/mftrace
http://www.cs.uu.nl/~hanwen/mftrace
http://wwwthep.physik.uni-mainz.de/~plass/gv
http://wwwthep.physik.uni-mainz.de/~plass/gv
http://netpbm.sourceforge.net
http://www.ctan.org/tex-archive/dviware/dvips
http://www.ctan.org/tex-archive/dviware/dvips
http://www.ctan.org/tex-archive/systems/knuth/mfware/pktype.web
http://www.ctan.org/tex-archive/systems/knuth/mfware/pktype.web
http://autotrace.sourceforge.net/Interactive_Curve_Design.ps.gz
http://autotrace.sourceforge.net/Interactive_Curve_Design.ps.gz
http://www.gnu.org/prep/standards_48.html
http://www.gnu.org/prep/standards_48.html
http://www.gnu.org
http://textrace.sourceforge.net
http://python.org
http://autotrace.sourceforge.net
http://pfaedit.sourceforge.net/index.html#Formats
http://pfaedit.sourceforge.net/index.html#Formats
http://pfaedit.sourceforge.net
http://www.yandy.com/maketfm.htm
karl@freefriends.org
http://freefriends.org/~karl/

TUGboat, Volume 22 (2001), No. 4

285

Software & Tools

Size reduction of chemical structural
formulas in XYMTEX (Version 3.00)

Shinsaku Fujita* and Nobuya Tanaka

1 Introduction

The XIMTEX system (Version 2.00) [1], which we
released as an implementation of the XIM Notation
2] and the XYM Markup Language [3], has pro-
vided a convenient method for drawing complicated
structural formulas. The XIMTEX system has been
designed to assure maximal portability within the
scope of TEX/ITEX 2¢ [4, 5]. The version 2.00

* To whom correspondence should be addressed.

286

has, however, suffered from a drawback that the
size reduction of structural formulas has not been
permitted. This has come from the fact that the
XIMTEX system has depended on the KTEX picture
environment that has been incapable of drawing
short bonds (lines). Although the epic system [6]
has been used to draw short lines so as to maintain
such portability, it has occasionally given a split line.
For example, the commands of the epic system,

\drawline(0,0) (171,103) and
\drawline(0,0) (171,-103),

are necessary to draw a benzene ring but give the
following split lines:
yd

N

when we encounter the worst-case situation (e.g.,
under \unitlength=0.08pt). If we lay stress on
the portability of a drawing system [7], one of the
most promising ways is to rely on the epic system
after we analyze and revise the mechanism of giving
split lines. Hence, the aim of this paper is to
show how the XIMTEX system (Version 3.00) [§]
provides a method for permitting the size reduction
of structural formulas within the scope of the KTEX
picture environment and the epic system.

2 Basic functions for size reduction
2.1 sizeredc package

The command \lineslope of epic has been used
to convert the command \drawline of epic into the
command \line of the IATEX picture environment.
In the process of obtaining the slope of a line, the
command \lineslope has occasionally provided a
rounding error, which has been found to cause such
split lines as described above. A simple remedy
for this phenomenon has been given in the sizeredc
package (file name: sizeredc.sty) distributed as a
part of the present version of XX\MTEX. According to
this remedy, the drawing mechanism of the XMMTEX
system can be safely switched into the mechanism of
epic, if \unitlength is set to be smaller than 0.1pt.
Note that the unit length of the XIMTEX system is
stored by the command \unitlength, the standard
value of which is 0.1pt.

2.2 Changing unit lengths

The unit length of XIMTEX can be changed by the
command \changeunitlength, which is defined in
the sizeredc package. As shown in the following code,
the setting by \changeunitlength can be done in
the preamble of a document if the value is used in
the whole document.

TUGboat, Volume 22 (2001), No. 4

\documentclass{article}
\usepackage{carom}
\usepackage{sizeredc}
\changeunitlength{0.08pt}

\begin{document}
\footnotesize
\bzdrv{1==0H;4==0H}
\end{document}
OH
OH

The font size of substituents can be changed by
such a command as \footnotesize, as shown in
the above formula. This should be compared with
the counterpart drawn with the standard unit length
(0.1pt) and the font size of \normalsize.

OH

OH

The command \changeunitlength can be de-
clared at anywhere in a document; the setting of the
command is effective after the declaration, until an
alternative declaration is carried out. The grouping
technique can be used to limit the effect of the
setting within a pair of braces. For example, the
codes represented by
{Jigrouping by braces
\changeunitlength{0.06pt}

\footnotesize
\bzdrv{1==0H;4==0H}}
\qquad \bzdrh{1==0H;4==0H}

produce the following size-reduced formula and the
corresponding formula of the standard dimension:

OH
OH OH

H

The command \changeunitlength sets a unit
length given as an argument and declares a flag rep-
resented by \sizereductiontrue if the argument is
less than 0.1pt. The flag is used to substitute the
\drawline command of epic for the \1ine command

TUGboat, Volume 22 (2001), No. 4

of TEX 2¢. Hence, the following setting is equiv-
alent to the setting derived from the declaration
command \changeunitlength{0.05pt}.

{h

\scriptsize OH
\unitlength=0.05pt
\sizereductiontrue
\bzdrv{1==0H;4==0H} H
}

3 Examples of size reduction
3.1 Size reduction of carbocycles

When \sizereductiontrue is not specified (i.e.,
\sizereductionfalse), the original picture envi-
ronment of INTEX 2¢ works. Table 1 shows the com-
parison between cases with and without the use of
sizeredc.sty, which simulates the difference between
XIMTEX Version 3.00 and Version 2.00.

Without using the sizeredc package, XIMTEX
commonds such as

{\unitlength=0.07pt \bzdrv{}} and
{\unitlength=0.06pt \bzdrv{}}

give incomplete formulas of benzene that have no
inner double bonds (slanted lines), as found in the
left column of Table 1. The disappearance of the
inner bonds are in agreement with the original spec-
ification of the IWTEX picture environment. In fact,
the \line command with slopes (5,3) and (5, —3)
cannot draw extremely short lines, although it is
promised to draw longer lines under usual conditions
(e.g., \unitlength=0.1pt or 0.08pt without using
the sizeredc package). By using the commands of
sizeredc such as

{\changeunitlength{0.07pt}\bzdrv{}},

the slanted lines are revived to give complete for-

mulas of benzene, as shown in the right column of
Table 1.

3.2 Size Reduction of heterocycles

Table 2 shows the effect of size reduction to the
drawing of 4-chloropyridine, where \unitlength is
changed from 0.1pt (default value) to 0.04pt by
using \changeunitlength.

3.3 Nested substitution

Formulas with nested substitution can be com-
pletely reduced in size by the following code:

\changeunitlength{0.07pt}\scriptsize
\decaheterov []{4a==N}{4D==0;7B==H0;%
{{103A}==H;%

287

Table 1: With and without sizeredc.sty

without sizeredc.sty with sizeredc.sty
(Version 2.00) (Version 3.00)

0.08pt 0.08pt
0.07pt® 0.07pt
0.06pt® 0.06pt

(J

@Slanted inner bonds disappear.

Table 2: Size reduction of 4-Chloropyridine

0.1pt® 0.08pt? 0.07pte¢
Cl
Cl
Cl
= _ |
N NS S
0.06pt® 0.05pt? 0.04pt?
Cl
C1
=z C1
| Z | Z
X X |

?A standard size.

The font size is set by \small

¢The font size is set by \scriptsize
IThe font size is set by \tiny

288

TUGboat, Volume 22 (2001), No. 4

\changeunitlength{0.07pt}

\scriptsize

\bzdrv{1==0H; 5==CH$_{3}$;4==0C$_{16}$H$_{33}$; 2==\ryl (4==NH--S0$_{2}$)%

{4==\bzdrh{1==(y1) ; 2==0CH$_{2}$CH$_{2}$0CH$_{3}$; %

5==\ryl(2==NH--S0$_{2}$) {4==\bzdrh{1==(y1) ; 5==\ryl(2==S0$_{2}$--NH) %

{4==\naphdrh{1==(y1) ;5==0H; 8==\1y1 (4==N=N) {4==\bzdrh{4==(y1) ;%
==N0$_{2}$;5==S0$_{2}$CHS$_{3}$}}}}}}}1}}

(\changeunitlength{0.07pt})

OCH;CH2OCHg3
OH
NH-SO-
CH, NHSOzQ
OC16Hzs SO NH O
.
NOZQN—N O OH
SO,CHg

(\changeunitlength{0.1pt})

OCH;CH;OCHj3

OH
NH-S0,
CH3 NH*SOQ

OC16Hss SO, NH O
.
NO, N=N ' OH

SO2CHs

Figure 1: A cyan dye releaser drawn at unit lengths 0.07pt and 0.1pt

TUGboat, Volume 22 (2001), No. 4

5==\bzdrv{3==0Me;4==0Me; 6==Br;1==(y1)}}
This code produces the formula shown below:

H

HO.

Br

OMe

The formula of the standard dimension is drawn by
the same code after returning to the default con-
dition or by declaring \changeunitlength{0.1pt}
explicitly.

OMe

A cyan dye releaser [9] has been drawn by using
two or more \ryl and \1yl commands, as shown in
the on-line manual of XXIMTEX Version 2.00 and has
also been depicted in different ways (see Chapters
14 and 15 of the XIMTEXbook [10]). By virtue
of the present version of XIMTEX, the size of the
formula can be reduced with the code shown in
Fig. 1. It should be emphasized that the portability
of the XyMTeX system is still maintained in Version
3.00, where it is assured by the reliance on the
IMTEX picture enviroment and the sizeredc package
(a revision of epic).

References

[1] Fujita S. & Tanaka N., “XIMTEX (Version 2.00)
as Implementation of the XXM Notation and the
XM Markup Language”, TUGboat, 21 (1), -
14 (2000).

[2] Fujita S. & Tanaka N., “XXM Notation for
electronic communication of organic chemical
structures”, J. Chem. Inf. Comput. Sci., 39,
903-914 (1999).

289

[3] Fujita S., “XXM Markup Language (XXMML)
for electronic communication of chemical docu-
ments containing structual formulas and reac-
tion schemes”, J. Chem. Inf. Comput. Sci., 39,
915-927 (1999).

[4] Lamport L., FTEX. A document Preparation
System, 2nd ed. for WTEX 2¢, Addison-Wesley,
Reading (1994).

[5] Goossens M., Mittelbach F., & Samarin A., The
ETEX Companion, Addison-Wesley, Reading
(1994).

[6] For epic macros, see Podar S., “Enhancements

to the picture environment of IATEX”, Manual
for Version 1.2 dated July 14, 1986.

[7] For the portability of graphic applications of
TEX, KTEX and relevant systems, see Goossens,
M., Rahtz, S., & Mittelbach, F., I TEX Graph-
ics Companion, Addison Wesley Longman,
Reading (1997).

[8] The system is now available from Fujita’s home-
page via the Internet:
http://imt.chem kit.ac.jp/fujita/
fujitas/fujita.html
A detailed manual is also available from this
homepage.

[9] Fujita S., Koyama K., & Ono S., “Dye Re-
leasers for Instant Color Photography”, Rewv.
Heteroatom Chem., 7, 229-267 (1992).

[10] Fujita S., XIMTEX— Typesetting Chemical
Structural Formulas, Addison-Wesley, Tokyo
(1997). The book title is abbreviated as
“XIMTEXbook” in the present article.

¢ Shinsaku Fujita
Department of Chemistry and
Materials Technology,
Kyoto Institute of Technology,
Matsugasaki, Sakyo-Ku, Kyoto,
606-8585 Japan
fujitas@chem.kit.ac.jp

¢ Nobuya Tanaka
Department of Chemistry and
Materials Technology,
Kyoto Institute of Technology,
Matsugasaki, Sakyo-Ku, Kyoto,
606-8585 Japan
nobuya@chem.kit.ac. jp

290

The package ps4pdf: from PostScript to
PDF

Rolf Niepraschk and Herbert Vof

Abstract

The only graphic object which TEX can handle in-
ternally is the picture environment, which is on the
one hand very easy to use, but on the other hand
very restrictive. All other graphical material must
be encapsulated in \special commands and later
extracted by the DVI processor, for example, dvips
into PostScript code. Packages like pstricks (and
its extensions pst-xxxx) and psfrag can create such
\special commands. Unfortunately, pdflatex
cannot work when one of these packages is part of
the document file. The new package ps4pdf makes
it possible to collect all PostScript-related parts and
convert them to PDF in a single run.

1 Introduction
PDF output can be created in several different ways:

e traditional: dvi—ps—pdf using the commands
latex to create the DVI file, dvips for the ps
file and ps2pdf for the PDF file.

e using dvipdfm to skip the ps step—but have a
look at the manual page of dvipdfm for some
restrictions.

e using pdfIATEX to skip the dvi step and gen-
erate PDF directly—but this has the problem
stated in the abstract.

e using VTEX as an alternative to pdfIATEX—but
this is available without charge only for Linux
and 0S/2 [2].

e using the package pdftricks [5, 6]—but in
some PostScript environments, a bounding box
is difficult to determine.

e using the package introduced here, psdpdf [4].

This new package ps4pdf works very differently
from pdftricks. It uses the package preview,
which is part of the latex-preview [1, 3] bundle,
available at any CTAN server. preview extracts all
‘marked’ parts of a complete KTEX document to
a DVI file, in which each such part is saved on a
separate page. This makes it easy to convert this
DVI file into PDF format and then include these
parts in a last pdfIATEX run.

2 Package options

Table 1 shows the available package options. Spec-
ifying inactive causes all the ps4pdf macros dis-
ables everything except the trimming functionality,
so that latex runs in the usual way. This makes

TUGDboat, Volume 22 (2001), No. 4

direct PostScript output possible, so that the other
methods listed above can be used.

Table 1: ps4pdf package options

name meaning

active enables the ps4pdf macros (default)

inactive disables the ps4pdf macros, making
direct PostScript output possible; this is
the default if VIEX is detected

trim modify the internal bounding box
(similar to the trim option from
\includegraphics)

draft suppresses the content of the \PSforPDF
macros (do not influence the content of
the graphics container)

final shows the content of the \PSforPDF
macros (default)

3 Usage

3.1 Usage in preamble

Assume that we have the small ITEX file shown in
listing 1; the output is shown in figure 1. To use the
ps4pdf package, we must pass all PostScript-related
parts through the \PSforPDF macro, beginning with
the preamble. And of course we must use the psdpdf
package itself.

Figure 1: Output of listing 1

ps4pdf must know every package that the Post-
Script images depend upon, otherwise it cannot
create the images and convert them to PDF. For
our example here, listing 2 shows how this is done.

Listing 1: Demonstration of a pstricks object

TUGDboat, Volume 22 (2001), No. 4

291

Table 2: The command sequence from PostScript to PDF

> graphics container creation:
latex file.tex

dvips -Ppdf -o file-pics.ps file.dvi
ps2pdf file-pics.ps file-pics.pdf

> document creation:
pdflatex file.tex
bibtex file

[]

pdflatex file.tex

ETEX run

dvips run to convert the DVI file to PostScript
ps2pdf run to convert the PostScript file to
PDF

first pdfIATEX run

BI1BTEX run

any other additional runs (for example: glos-
sary)

second (and last) pdfIATEX run

1 \documentclass{article}

2 \usepackage{pst-plot}

3 \usepackage{pst-text}

4 \begin{document}

5 \psset{unit=1lcm}

6 \begin{pspicture}(-0.25,-2.25) (6.25,2.25)
7 \pstextpath[linestyle=none] /

8 {\psplot[linewidth=1pt,/

9 linestyle=dotted, /

10 plotpoints=300, 7

11 xunit=0.015,/

12 yunit=2]{0}{400}{x sin}}
13 {\LARGE TUGboat, the journal
14 of the \TeX{} Users Group}
15 \end{pspicturel}/

16 \end{document}

Listing 2: Using \PSforPDF in the preamble

\documentclass{article}
\usepackage{ps4pdf}
\PSforPDF{/--- BEGIN PSforPDF
\usepackage{pst-plot}/
\usepackage{pst-text}/
}/--- END PSforPDF

[I N A

3.2 Usage in document body

For the user, there is no difference between using
ps4pdf in the preamble or in the text part of the
document: any PostScript-related material must be
Only internally
are these separate parts of the document handled in
different ways. Thus, listing 1 is changed to what

passed to the \PSforPDF macro.

we have in listing 3.

Listing 3: Using \PSforPDF in the body

1
2
3
4
5
6

7
8

4

\begin{document}

\PSforPDF{/--- BEGIN PSforPDF
\psset{unit=1cm}
\begin{pspicture}(-0.25,-2.25) (6.25,2.25)

[...1]
\end{pspicturel}/
}Y/--- END PSforPDF
\end{document}

Implementation

psépdf is part of the process shown in table 2, which
can also be encapsulated as a shell script (listing 4).

© 0 N O U W N =

=
[}

Listing 4: Shell script implementing table 2

#!/bin/sh

butld a pdf file with PostScript code

Herbert Voss 2003-03-10

usage: psipdf.sh file (without suffiz tez)
latex $1.tex

dvips -Ppdf -o $1-pics.ps $1.dvi

ps2pdf $1-pics.ps $1-pics.pdf

pdflatex $1.tex

bibtex $1

pdflatex $1.tex

e In the first WTEX run, preview-latex extracts
all objects which are included as a argument to
\PSforPDF, and saves them into <file>.dvi.
Each object is on its own page.

e This object file is then converted into a Post-
Script file with dvips. The -Ppdf option
tells dvips to load the config file for PDF-
related output. dvips creates the new file
<file>-pics.ps.

e This PostScript file <file>-pics.ps is then
converted into the corresponding PDF file with
ps2pdf (a front end to Ghostscript).

292

e At this point the important work of psdpdf is
done, and the usual pdflatex runs can be done,
as well as additional runs for BiBTEX or other
post-processors.

o If all worked well, then the final PDF file in-
cludes all PostScript-related code as PDF im-
ages!

The meaning of the macro \PSforPDF changes for
the pdfIATEX runs. It now becomes:
\includegraphics[page=<n>]7
{<file>-pics.pdf}

which inserts the nth page of the object file. An
internal counter is used to get the right object at the
right place. This implies that the whole command
sequence in table 2 has to be repeated if the sequence
of the objects changes.

5 Saving the images

Saving all graphical objects from the PDF graphic
container as single files is very easy and can be
done with the small script shown in listing 5. After
running this script with <file>-pics.pdf as pa-
rameter, the images are saved as picture<n>.eps.
This may be useful for other purposes.

Listing 5: Script to convert PDF images to
PostScript

1 #!/bin/sh

2 File=$1

3 n=‘pdfinfo $File | awk ’($1 ~ /Pages:/) {

print $23}°°¢

4 for i in ‘seq $n‘ ; do

5 pdftops -f $i -1 $i -eps $File picture$i.
eps

6 done

References

[1] David Kastrup. preview-latexz.
CTAN:/support/preview-latex/, 2003.

[2] Micropress. VTEX/Lnz. http:
//www.micropress-inc.com/linux/,
2003.

[3] Rolf Niepraschk. Anwendungen des
KETEX-pakets preview. Die TEXnische
Komédie, 1/2003:60-65, February 2003.

[4] Rolf Niepraschk. ps4pdf. CTAN:
/macros/latex/contrib/ps4pdf/, 2003.

[5] Chambert-Loir Radhakrishnan, Rajagopal.
pdftricks. CTAN:/macros/latex/contrib/
supported/pdftricks/pdftricks.sty, 2002.

TUGDboat, Volume 22 (2001), No. 4

[6] Herbert Vok. PSTricks Support for pdf. http:

//www.pstricks.de/pdf/pdftricks.phtml,
2002.

¢ Rolf Niepraschk
Persiusstr. 12
10245 Berlin GERMANY
niepraschk@ptb.de

¢ Herbert Vofs
Wasgenstr. 21
14129 Berlin GERMANY
voss@perce.de
http://www.perce.de

CTAN:/support/preview-latex/
http://www.micropress-inc.com/linux/
http://www.micropress-inc.com/linux/
CTAN:/macros/latex/contrib/ps4pdf/
CTAN:/macros/latex/contrib/ps4pdf/
CTAN:/macros/latex/contrib/supported/pdftricks/pdftricks.sty
CTAN:/macros/latex/contrib/supported/pdftricks/pdftricks.sty
http://www.pstricks.de/pdf/pdftricks.phtml
http://www.pstricks.de/pdf/pdftricks.phtml

292

TUGboat, Volume 22 (2001), No. 4

Instant Preview and the TEX daemon

Jonathan Fine

Abstract

Instant Preview is a new package, for use with
Emacs and xdvi, that allows the user to preview
instantly the file being edited. At normal typing
speed, and on a 225MHz machine, it refreshes the
preview screen with every keystroke.

Instant Preview uses a new program, dvichop,
that allows TEX to process small files over 20 times
quicker than usual. It avoids the overhead of start-
ing TEX. This combination of TEX and dvichop is
the TEX daemon.

One instance of the TEX daemon can serve
many programs. It can make TEX available as a
callable function. It can be used as the formatting
engine of a WYSIWYG editor.

This paper will demonstrate Instant Preview,
describe its implementation, discuss its use with
ITEX, sketch the architecture of a WYSIWYG TgX,
and call for volunteers to take the project forward.

Instant Preview at present is known to run only
under GNU/Linux, and is released under the GPL.
It is available at: http://www.activetex.org.

Instant Preview

TEX is traditionally thought of as a batch program
that converts text files into typeset pages. This arti-
cle describes an add-on for TEX, that in favourable
circumstances can compile a file in a twentieth of

TUGboat, Volume 22 (2001), No. 4

ule Help

—— k% screenshot.tex

{Fundamental Preview RCS:1.1)

293

Instant Preview is an add-on for TpX. It works with
pack He it

(Token mathematics: /2 1.14

almost all mac ing used

Components
-ft, Emacs. On the right, xdvi. Behind the
nes, TpX the program, some macros, and dvichop

rogram J/Linux.

Using it

into the Emacs win ou type, so the

display in the xdvi window is refreshed, in real time.

1.3 How it works (pageno = 155)

Speed is of the essen and its
output goes to a pipe.
Fach ki

output up into small pieces, which it sends to xdvi.

dvichor

1.4 Error rec ry

TEX from stallin
scrollmede. % <-- spot the other error

OIl €ITOIS,

Figure 1: Screen shot of Instant Preview.

the normal time. This allows TEX to be used in in-
teractive programs. This section describes Instant
Preview. See figure 1 for a screen-shot.

Types of users Almost all users of TEX are famil-
iar with the edit-compile-preview cycle that is part
of the customary way of using TEX. Previewing is
very useful. It helps avoid wasting paper, and it
saves time. In the early days, it could take several
seconds to compile and preview a file, and perhaps
minutes to print it. Today it takes perhaps about a
quarter of a second to compile and preview a file.

Many of today’s newcomers to computing, and
most users of WYSIWYG word processors, expect
to have instant feedback, when they are editing a
document. Users of TEX expect the same instant
feedback, when they are editing a source file in a text
editor. Because they have absorbed the meaning of
the markup codes, they can usually imagine without
difficulty the printed form of the document. They
know when the markup is right.

Beginners tend to compile the document fre-
quently, because they are uncertain, and wish to
have the positive reinforcement of success. Instant
Preview, again under favourable circumstances, can
reduce to a twentieth the time take to compile and
preview a file. This makes it practical to offer pre-

view after every keystroke. Beginners will be able
to see their failures and successes as they happen.

Experienced users do not need such a high level
of feedback, and prefer to devote the whole screen to
the document being edited. However, even experts
have the same need for positive reinforcement, when
they use a package that is new to them.

Modus operandi Here we describe three possible
ways of using Instant Preview. At the time of
writing, only the last has been implemented. We
assume that the document is in the editing stage of
its life cycle, or in other words the location of page
breaks and the like is not of interest.

The expert needs only occasionally to preview
the source document. She will select the region of
interest, and ask for it to be previewed. Instant
Preview here may provide a quick and convenient
interface, but the operation is uncommon and so
the functionality should be unobtrusive.

When doing something tricky, the user might
wish to focus on a part of the document, and for
this part have Instant Preview after every keystroke.
The tuning of math spacing in a formula is an ex-
ample. Few if any users invariably know, without
looking, what tuning should be applied to a mod-
erately complicated formula. This applies particu-
larly to displayed equations wider than the measure,

294

multi-line equations, and commutative diagrams. It
also applies to the picture environment (for which
the special tool TEXcad was written).

For the beginner, everything is tricky, even
straight text. The beginner hardly knows that
\{}#"_%$ are all special characters, and that *°
and ’’ are the way to get open and close double
quotes. Even experts, who know full well the rules
for spaces after control sequences, sometimes make
a mistake!. The absolute beginner is likely to want
Instant Preview of everything, absolutely all the
time. Later, with experience, the training wheels
can be removed.

Implementation Instant Preview has been imple-
mented using Emacs and xdvi. There seems to be
no reason why another editor and previewer should
not be used, provided the editor is sufficiently pro-
grammable, and the previewer can be told to refresh
the file it is previewing.

Instant Preview works by writing the region to
be previewed, together with suitable preamble and
postamble, to a special place. From there, the TEX
daemon picks it up, typesets it, and writes it out as
a dvi file. Once written, the previewer is told to
refresh its view of the dvi file.

The main difference between the three modes
is what is written out, and when. Absolute begin-
ner mode writes out the whole buffer, after every
keystroke. Confident expert mode writes out a se-
lected region, but only on demand.

At the time of writing (mid-June 2001), only
absolute beginner mode has been implemented. Fur-
ther progress requires above all clear goals and
Emacs programming skills.

The dvichop program

For interactive programs, speed is of the essence.
Therefore, we will look at TEX’s performance. The
author’s computer has a 225MHz Cyrix CPU. So
that we have a definite figure, we will say that on
this machine a response time of 1/10 seconds is
acceptable.

Typesetting story.tex There is a file,
story.tex, that is part of every TEX distribu-
tion. It is described in The TgXbook. On the
author’s computer, the command

time tex ./story \\end

1 In the first draft, the allegedly expert author forgot that
& is also special, and also that \verb cannot be used in a A TEX
footnote.

TUGboat, Volume 22 (2001), No. 4

Mode seconds
Console, output to /dev/null .492
Console, output to screen .507
X-windows, output to /dev/null 497
X-windows, output to screen .837

Table 1: Time taken to typeset story.tex 100
times

takes .245 seconds to execute?. This seems to make
Instant Preview impossible.
However, the command

time tex \\end

takes only .240 seconds to execute. Therefore, it
takes TEX almost 1/4 of a second to load and
exit, while typesetting the two short paragraphs in
story.tex can be done about 20 times in the target
time of a tenth of a second.

Thus, provided the overhead of loading (and
exiting) TEX can be avoided, Instant Preview is
possible.

Remarks on performance The simple tests ear-

lier in this article show that it takes TEX about 0.005

seconds to typeset the file story.tex. This subsec-

tion gives a more precise result. It also show some of

the factors that can influence apparent performance.
The file 100story.tex is as below.

\def\0{\input ./story }
\def\1{\0\0\0\0\0\O\O\O\O\O}
\def \2{\ININININININININ AN T
\2 \end

Table 1 gives the time taken to process this file,
in the various modes. It shows that on the author’s
machine and in the best conditions, it takes about
0.0025 ~ (0.492 — 0.240)/100 seconds to process
story.tex once.

Note that the time taken can be quite sensitive
to the mode, particularly X-windows. We also note
that using \input story (so that kpathsea looks for
the file) adds about 0.025 seconds to the total time
taken.

Starting TEX once The solution is to start TEX
once, and use it to typeset multiple documents.
Once TEX has typeset a page, it uses the \shipout
command to write it to the dvi file. The new page
now exists on the file system, and can be used by
other programs. Actually, this is not always true.

2 To avoid the overhead of X-windows, this command was
executed in a virtual console. The same goes for the other
timing data. The input file is placed in the current directory
to reduce kpathsea overheads.

TUGboat, Volume 22 (2001), No. 4

To improve performance, the system dependent part
of TEX usually buffers the output dvi stream. How-
ever, this can be turned off. We assume that dvi
output is unbuffered.

Most dvi-reading applications are unable to
process such an ill-formed dvi file. For example,
most immediately seek to the end of the file, to
obtain a list of fonts used. To bridge this gap, and
thereby enable Instant Preview, the author wrote a
utility program called dvichop.

This program takes as input a dvi file, perhaps
of thousands of pages, and produces from it perhaps
thousands of tiny dvi files. The little files are the
ones that the previewer is asked to reload.

More exactly, dvichop looks for special marker
pages in the output dvi-stream produced by TEX
the program. The marker pages delimit the ma-
terial that is to be written to the small dvi files.
The marker pages also control where the output of
dvichop is to be written, and which process is to be
informed once the output page is ready.

Implementation The program dvichop is written
in the C' programming language. It occupies about
800 lines of code, and calls in a header file dviop.h
to define the opcodes. A shell program texd starts
TEX and sends its dvi output to dvichop. More
exactly, TEX writes to a named pipe (a FIFO), which
is then read by dvichop.

More on performance In the abstract it is
claimed that TEX together with dvichop is over 20
times quicker that ordinary TEX, when applied to
small files. Here is some test data to support this
bold claim.

Normally, dvichop is run using a pipe. To
simplify matters, we will create the input stream as
a ordinary file. The plain input file listed below does
this. It also illustrates the interface to dvichop.

% 100chop.tex

\newcount\dvicount

\def\0{

\begingroup % begin chop marker page
\global\advance\dvicount 1
\countO\maxdimen \countl 3
\count2 \dvicount \shipout\hbox{}

\endgroup

\input ./story % typeset the story

\begingroup % end chop marker page
\countO\maxdimen \countl 4
\count2 0 \shipout\hbox{}

\endgroup

}

\def\1{\0\0\0\0\0\O\O\O\O\O}

295

\def \2{\ININININININININ TN}

\begingroup % say hello to dvichop
\countO\maxdimen \countl 1
\count2 1 \shipout\hbox{}

\endgroup

\2 % ask dvichop to produce 100 files

\begingroup % say goodbye to dvichop
\countO\maxdimen \countl 2
\count2 O \shipout\hbox{}

\endgroup

\end

Typesetting story.tex 100 times in the con-
ventional way takes approximately 24.5 seconds.
Running TEX on 100chop.tex takes about 0.510
seconds. This typesets the story for us 100 times.
Running dvichop on the output file 100chop.dvi
takes 0.135 seconds. Its execution creates files 1.dvi
through to 100.dvi that are for practical purposes
identical to those obtained in the conventional way.
The conventional route takes 24.5 seconds. The
dvichop route took 0.510 4 0.135 = 0.645 seconds.

This indicates that on story.tex using
dvichop is 24.5/0.635 ~ 38 times quicker. Some
qualifying remarks are in order. In practice, using
the pipeline will add overhead, but this seems to
be less than 0.01 seconds. On the other hand, the
present version of dvichop is not optimised.

The TEX daemon

A this point we assume the reader has some basic
familiarity with client-server architecture. A server
is a program that is running more or less continually,
waiting for requests from clients. Clients can come
and go, but servers are expected to persist. An
operating system is a classic example of a server,
while an application is a client.

Thanks for the memory Normally, TEX is run
as an application or client program. It is loaded
into memory to do its job, it does its job, and
then it exits. In the mid-1980s, when the author
started using a personal computer, having more
than a megabyte of memory was uncommon. TEX is
uncomfortable on less than 512Kb of memory. Thus
running TEX as a server would consume perhaps half
of the available memory. For all but the most rabid
TEX-ophile, this is clearly not an option.

Today TEX requires perhaps 2Mb of memory,
and personal computers typically have at least 32Mb
of memory. Letting TEX remain in memory on a
more or less permanent basis, much as Emacs and
other programs remain loaded even when not used,
is clearly practical. However, even today, for most

296

users there is probably not room to have more than
a handful of instances of TEX resident in memory.

Sockets The present implementation of Instant
Preview uses a named pipe. Sockets provide a more
reliable and flexible interface. In particular, sockets
can handle contention (requests to the same server
from several clients). Applications communicate to
the X-server provided by X-windows by means of a
socket.

Providing a socket interface to the TEX daemon
will greatly increase its usefulness. The author
hopes that by the end of the year he or someone
else will have done this.

TEX as a callable function Over the years,
many people have complained that the batch
nature of TEX makes it unsuitable for today’s new
computing world. They have wanted TEX to be a
callable function. However, to make TEX a callable
function, all that is required is a suitable wrapper,
that communicates with the TEX daemon.

At present the TEX daemon is capable of re-
turning only a dvi file. To do this, it must parse
the output dvi stream. Suppose, for example, that
the caller wants to convert the output dvi into a
bitmap, say for inclusion in an HTML page. The
present set-up would result in the dvi pages being
parsed twice. Although this is not expensive, com-
pared to starting up a whole new TEX process, it is
still far from optimal.

If the TEX daemon could be made to load page-
handling modules, then the calling function could
then ask for the bitmap conversion module to handle
the pages produced by the function call. This would
be more efficient. However, as we shall soon see,
premature optimisation can be a source of problems.

TEX forever An errant application does not bring
down the operating system. Strange keystrokes and
mouse movements do not freeze X-windows. In the
same way, applications should never be able to kill
the TEX daemon. To achieve this level of reliability
is something of a programming problem.

One thing is clear: The application cannot
be allowed to send arbitrary raw TEX to the TEX
daemon. TEX is much too sensitive. All it takes is
something like

\global\let\def\undefined

and the TEX daemon will be rendered useless.

A more subtle form of this problem is when a
client’s call to the daemon results in an unintended,
unwelcome, and not readily reversible change of

TUGboat, Volume 22 (2001), No. 4

state. For example, the ATEX macro \maketitle
executes

\global\let\maketitle\relax

which is an example of such a command. (Doing this
frees tokens from TEX’s main memory. When TEX,
macros and all, is shoe-horned into 512Kb, this may
be a good idea.)

Protecting TEX TEX can be made a callable func-
tion by providing an interface to the TEX daemon.
Most applications will want an interface that is safe
to use. In other words, input syntax errors are re-
ported before they get to TEX, and it is not possible
to accidentally kill the TEX daemon. To provide
this, the interface must be well defined. For exam-
ple, the input might be an XML-document (say as
a string) together with style parameters, and the
output would be say a dvi file. Alternatively, the
input might be a pointer to an already parsed data
structure.

In the long run, this interface is probably best
implemented using compiled code, rather than TEX
macros. Once a function is used to translate source
document into TEX input, there is far less need for
developers to write complicated macros whose main
purpose is to provide users with a comfortable input
syntax. Instead, the interface function can do this.

When carried out in a systematic manner, this
will remove the problem that in general INTEX is the
only program that can understand a IATEX input
file. The same holds for other TEX macros formats,
of course. Note that Don Knuth’s WEAVE (part of his
literate programming system) is similarly compiled
code that avoids the need to write complicated TEX
macros.

Visual TEX

This article uses the term visual TEX to mean pro-
grams and other resources that allow the user to
interact with a document through a formatted rep-
resentation, typically a previewed dvi file. We use
it in preference to WYSIWYG (what you see is what
you get) for two reasons. The first is today many
documents are formatted only for screen, and never
get printed. Help files and web pages are examples
of this. The second is that even when editing a docu-
ment for print, the user may prefer a representation
that is not WYSIWYG.

In most cases the author will benefit from in-
teracting with a suitably formatted view of the un-
derlying document. The benefits of readability and
use of space that typesetting provides in print also
manifest on the screen. But to insist on WYSIWYG

TUGboat, Volume 22 (2001), No. 4

is to ignore the differences between the two media.
Hence our use of the term Visual TEX.

Whatever term is used, the technical problems
are much the same, which is how to enable user
interaction with the dvi file.

Richer dvi files In Visual TEX, the resulting dvi
file is a view on the underlying document. For it to
be possible to edit the document through the view,
the view must allow the access to the underlying
document. Editing changes applied to the view,
such as insertion and deletion, can then be applied
to the document.

Placing large numbers of \special commands
in the dvi file is probably the best (and perhaps
the only) way to make this work. Doing this is the
responsibility of the macro package (here taken to
include the input filter function described in the pre-
vious section). It is unlikely that any existing macro
package, used in its intended manner, will support
the generation of such enriched dvi files. The au-
thor’s Active TEX macro package[2] is designed to
allow this.

Better dvi previewers Most dvi previewers con-
vert the dvi into a graphics file, such as a bitmap.
Some retain information about the font and position
of each glyph. A text editor or word processor has
a cursor (called point in Emacs), and by moving the
cursor text can be marked. This is a basic property
of such programs. So far as the author knows, no
dvi previewer allows such marking of text.

Further reading This section is based on the au-
thor’s article [1].

The Lyx editor for ITEX adopts a visual ap-
proach to the generation of files that can be typeset
using TEX. It does not support WYSIWYG inter-
action. Understanding the capabilities and limita-
tions of Lyx is probably a good way to learn more
about this area.

The next steps

This section discusses some of the opportunities
and problems in this general area, likely to present
themselves over the next year or two.

Applications Two areas are likely to be the focus
of development in the next year or so. The first is the
refinement of Instant Preview, as a tool for use with
existing TEX formats. Part of this is the creation of
material for interactive (La)TEX training. Instant
Preview provides an attractive showcase for the
abilities of TEX and its various macro packages.

297

The second is TEX as a callable function. This
is required for Visual TEX. One of the important
missing components are libraries that allow rich in-
teraction with dvi files. This will lay the foundation
for TEX being embedded in desktop applications.

Licence The work described this article is at
present released under the General Public Licence of
the Free Software Foundation (the GPL). Roughly
speaking, this means that any derived work that
contains say the author’s implementation of the TEX
daemon must also be released under the GPL.

However, the TEX daemon is the basis for TEX
as a callable function, and for good reason library
functions are usually released under the Lesser (or
Library) General Public Licence (the LGPL), or
something similar. This means that the library as
is can be linked into proprietary programs, but that
any enhancement to the library must be released
under the LGPL.

Porting TgEX runs on almost all computers, and
where it runs, it gives essentially identical results.
The same applies, of course, to TEX macros. By
and large, it is desirable that the tools used with
TEX run can be made to run identically on all plat-
forms. This is not to say that the special features
of any particular platform should be ignored. Nor
is it to say that advances (such as Instant Preview
itself) should not first manifest on a more suitable
platform.

Cross-platform portability is one of the great
strengths of TEX. What is desirable is that pro-
grams that run with TEX have a similar portability.
Many people cannot freely choose their computing
platform. If TEX and friends are available every-
where, this make TEX a more attractive choice.

In the 1980s, in the early days of TEX, many
pioneers ported TEX to diverse platforms. This work
established deep roots that even today continue to
nourish the community. Although Instant Preview,
even when fully developed, is not on the same scale
as TEX, it being ported will similarly nourish the
community.

TEX macros Visual TEX requires a stable TEX
daemon, which in turn will require a macro package
(or a pre-loaded format). This new use of TEX places
new demands on the macros. Here, we include in
macros any input filter functions used to protect the
TEX daemon from errant applications.

These new demands include protection against
change of state, reporting and recovery from errors,
ability to typeset document fragments, support for
rich dvi file, and the ability for a single daemon

298

to support round-robin processing of multiple doc-
uments. Once tools are in place, much of the input
is likely to be XML, and much of the output will be
for screen rather than paper.

The existing macros packages (such as plain,
BTEX and ConTEXT) were not written with these
new requirements in mind. Although they are useful
now, in the longer term it may be better to write a
new macro package from scratch, for use in conjunc-
tion with suitable input filters.

Summary

By running TEX within a client-server architecture,
many of the problems traditionally associated with
it are removed. At the same time, new demands are
placed on macro packages, device drivers (such as
dvichop and xdvi) and a new category of software,
input filters (such as WEAVE).

This new architecture allows Instant Preview,
and opens the door to Visual TEX. All this is
possible without making any changes to TEX the
program, other than in the system dependent part.

Don Knuth In 1990, when he told us [4] that his
work on developing TEX had come to an end, Don
Knuth went on to say:

Of course I do not claim to have found the
best solution to every problem. I simply
claim that it is a great advantage to have
a fixed point as a building block. Improved
macro packages can be added on the input
side; improved device drivers can be added
on the output side.

The work described in this article has taken its
direction from this statement. One of the most ob-
vious characteristics of today’s computer monitors
(not to be confused with the chalk monitor in class-
rooms of old) is their widespread use of colour. TEX
is clumsy with colour. TEX was not designed with
Visual TEX in mind. However, we still have our
hands full making the best of what we have with
TEX. If our labours bear fruit, then in time a place
and a need for a successor will arise.

Again, this possibility was foretold by Don
Knuth [3]:

Of course I don’t mean to imply that all prob-
lems of computational typography have been
solved. Far from it! There are still countless
important issues to be studied, relating espe-
cially to the many classes of documents that
go far beyond what I ever intended TEX to
handle.

TUGboat, Volume 22 (2001), No. 4

References

[1] Jonathan Fine, Editing .dvi files, or Visual
TEX, TUGboat, 17 (3) (1996), 255-259.

, Active TEX and the DOT input syntax,
TUGboat, 20 (3) (1999), 248-261

[3] Donald E. Knuth, The Errors of TgX,
Software—Practice € Experience, 19 (1989)
607—685 (reprinted in Literate Programming)

, The future of TEX and METAFONT, TUG-

boat, 11 (4) (1990), 489 (reprinted in Digital Ty-

pography)

2]

[4]

¢ Jonathan Fine
203 Coldhams Lane, Cambridge,
CB1 3HY, UK

jfineQ@activetex.org

298

TUGboat, Volume 22 (2001), No. 4

Graphics

Space geometry with METAPOST*
Denis Roegel

Abstract

METAPOST is a tool especially well-suited for the
inclusion of technical drawings in a document. In
this article, we show how METAPOST can be used
to represent objects in space and especially how it
can be used for drawing geometric constructions in-
volving lines, planes, as well as their intersections,
orthogonal planes, etc. All the features belong to
a new METAPOST package aimed at all those who
teach and study geometry.

This article is dedicated to Donald Knuth whose
PhD dissertation was on projective geometry.

1 Introduction

METAPOST (Hobby, 1992; Goossens, Rahtz, and
Mittelbach, 1997; Hoenig, 1998; Hagen, 2002) is
a graphical description language created by John
Hobby from the METAFONT system (Knuth, 1986).

* Translated from “La géométrie dans l’espace avec
METAPOST,” Cahiers GUTenberg 39—40, May 2001, pages
107-138, with permission.

TUGboat, Volume 22 (2001), No. 4

A two-dimensional drawing is represented as a pro-
gram which is compiled into a PostScript file. A
drawing can be described in a very precise and com-
pact fashion by taking advantage of the declarative
nature of the language. For instance, linear con-
straints between the coordinates of several points,
such as those of a central symmetry, are expressed
very naturally by equations. Furthermore, it is pos-
sible to manipulate equations involving values that
are not completely known. For instance, in order to
express that p3 is the middle of [p1, po], it suffices to
write: p3-pl=p2-p3, or p3=.5[p1,p2].

When this equation is given, some and possibly
all of the coordinates of the three points may be un-
known. Taking the equation into account represents
the addition of a constraint. Constraints are added
until the values involved are precisely known. In
the previous example, the three points can be com-
pletely determined by positioning p; and ps. A value
can remain indetermined as long as it is not involved
in a drawing. Finally, METAPOST alerts the user if
there are redundant or inconsistent equations.

2 A first example in plane geometry

In order to get a good understanding of how META
POST can naturally express a geometric problem,
let us study the representation of a triangle prop-
erty, such as the existence of the nine points circle
(first stated by Poncelet and Brianchon in 1821).
Figure 1 shows the result produced by METAPOST.
This example will also serve as an introduction to
METRAPOST for the reader discovering the language
here.

C

A 1 D B

Figure 1: The nine points circle.

In this figure, we have first defined the points,
then we set the three vertices of the triangle as func-
tions of the origin (origin) and an arbitrary unit

299

enabling us to easily change the size of the graphics
later on:!

numeric u; u=lcm;

pair A,B,C,D,E,F,G,H,I,J,K,L,N,X;

A=origin; B-A=(7u,0); C-A=(u,5u);

Then, the middles D, E and F of the triangle’s

sides are determined by equations:

D=.5[A,B]; E=.5[B,C]; F=.5[A,C];

G, H and I are the feet of the triangle’s heights.
They can be obtained easily by computing the in-
tersection of a side with a segment starting at the
opposite vertex and directed toward a direction at
right angle with the opposite side. The whatever
definition is especially useful in this case, since it
represents an anonymous unknown (so that several
occurrences of whatever do not represent the same
unknown!). We have thus:

G=whatever[B,C]
=whatever [A,A+((C-B) rotated 90)];

This means that G is somewhere on (BC') and
also somewhere on (AP), where P is a point on the
height. METAPOST gives a value to both unknowns
in order to fulfill this equation. Similarly,

H=whatever[A,C]
=whatever [B,B+((C-A) rotated 90)];
I=whatever[A,B]
=whatever [C,C+((B-A) rotated 90)];

The orthocenter (intersection of the heights) is
obtained with intersectionpoint. The A--G con-
struction represents the [AG| segment:

X=(A--G) intersectionpoint (C--I);

The middles J, K and L of [AX], [BX] and
[CX] are obtained as were D, E and F previously:
J=.5[A,X]; K=.5[B,X]; L=.5[C,X];

Finally, in order to find the center NV of the nine
points circle (assuming its existence), it is sufficient
to compute the intersection of two perpendicular bi-
sectors, for instance those of [ID] and [DH]:

N=whatever[.5[D,I],

(.5[D,I1+((D-I) rotated 90))]
=whatever[.5[D,H],

(.5[D,H]+((D-H) rotated 90))];

The circle’s radius is found with:

r=arclength(I--N);

The triangle as well as the heights and the circle
(centered on N and of diameter 2r) are drawn with:
draw A--B--C--cycle;
draw A--G; draw B--H; draw C--I;
draw fullcircle scaled 2r shifted N;
The points are marked with drawdot after the
line width has been increased. Finally, the annota-
tions are all obtained on the model of:

1 For the points, we could also have used z0, z1, etc.,
which are predefined variables.

300

label.top(btex C etex,C);

The label instruction allows for the inclusion
of TEX labels.

This example reveals the natural expression of
geometric constraints for problems in plane geom-
etry. All the constructions we have used are abso-
lutely standard in METAPOST. Of course, if we had
many such figures, we would introduce functions for
the computation of the heights, the perpendicular
bisectors, etc.

3 METAPOST extensions

METAPOST is an extensible system. At the basis,
it is a program which loads an initial set of macros.
It is then possible to add new domain-specific defi-
nitions. For instance, when we worked on the plane
representation of objects in space, we developed a
3d package, initially in order to manipulate poly-
hedra (Roegel, 1997). We have recently developed
other extensions resting on the 3d package. We view
these extensions as “modules” of the 3d package. In
particular, we wanted to manipulate objects other
than polyhedra, such as curves defined by equations,
or given by a sequence of points. Among the exten-
sions created, we have created a module providing
various functionalities adapted to space geometry.
This module, introduced here, is the 3dgeom mod-
ule? (see figure 2).

polyhedra curves geometry

3d

Figure 2: Structure of the 3d package and of
modules.

Some of the modules automatically load other
modules. The 3dgeom module loads for instance 3d.
A module is loaded only once.

A program using 3dgeom will therefore start
with input 3dgeom.

4 Space geometry
4.1 A simple example

We will start by representing an elementary object,
the cube (figure 3). For that, we will give the coor-
dinates of its eight vertices.

The 3d package defines a concept of point or
vector as a triple of numerical values. The points

2 This module is available on CTAN under graph-
ics/metapost/macros/3d.

TUGboat, Volume 22 (2001), No. 4

Figure 3: A cube shown in linear perspective.

must be defined by an allocation mechanism and
must be freed when they are no longer used. The
allocation of a point (resp. a vector) is done with
new_point (resp. new_vec). This is a macro taking
a point (resp. vector) name and allocating a memory
area to store it. Freeing a point or a vector is done
with free_point or free_vec, by giving the point
or vector identification as a parameter. Hence, a
program that wishes to use a vector v will look like
this:

new_vec(v);

free_vec(v);

The set of all points and vectors is stored in-
ternally in a stack. Allocating or freeing a vector
merely changes the stack pointer. As a consequence,
points and vectors must be freed in the reverse order
of their allocation. If that order is not respected, an
unallocation error is raised.

new_point(pa); new_point(pb);

free_point(pb); free_point(pa);

It is not compulsory to free vectors or points,
but not doing so will often have dramatic conse-
quences if the allocations are within loops.

In order to ease the manipulation of sets of
points, arrays can be allocated with new_points and
freed with free_points. An array defined in that
way has a name and a number of elements n. The
elements are numbered from 1 to n. In our example,
in order to create a cube, we declare a vertex array
of eight points:

new_points(vertex) (8) ;

free_points(vertex) (8);

Each vertex is declared with the set_point_
command, for instance:
set_point_(vertex1) (0,0,0);

By default, the perspective is linear (or cen-
tral) and we have a camera witnessing the scene
(figure 4). The camera must also be set. It cor-
responds to the predefined point Obs. Its position
can be defined in space with set_point_. Moving
the camera is done by expressing its coordinates in
a parametric way, for instance:?

3 In the code, cosd and sind represent the trigonometric
functions with arguments in degrees.

TUGboat, Volume 22 (2001), No. 4

Obs(3.23,2.35,2)~,

301

(0,0,1)

(1,1,0)

Figure 4: A cube and its projection on the screen. The focused point is circled.

NN AR

Figure 5: Five views of the cube “animation.”

set_point_(0bs) (20*cosd(3.6%i) ,20*sind(3.6%1),6) ;

By varying ¢, the camera goes through points of
the circle C(t) = (20 cos(3.6t),20sin(3.6t),6). Fig-
ure 5 shows five views of that sequence, for i =
0,5,10,15 and 20. An animation can be obtained
by creating a sufficient amount of close views and
by transforming the METAPOST outputs into GIF
files. The procedure is explained in detail in our first
article (Roegel, 1997).

Besides the camera position, it is necessary to
define its orientation. It can be specified by three an-
gles, but also in a simpler way by indicating a point
towards which the camera is oriented and an angle.
In order for the camera to be constantly focused on
vertex 8, with the angle 90 (this angle corresponds
to the degree of freedom of a rotation around the
direction of view), it suffices to write:

Obs_phi:=90;
point_of_view_abs(vertex8,0bs_phi) ;

The “:=" assignment is used because it makes it
possible to change the value of a variable when this
variable already has a value. Writing Obs_phi=90
can produce an error if Obs_phi is already set, and
in particular if it has a value different from 90.

Finally, in order to define the view completely,
the position of the screen must be given. In linear
perspective, the screen is a plane orthogonal to the
viewing direction. It is on the screen that the points
in space are projected. Figure 4 shows that the fo-
cused point lies in the middle of the screen. The

screen is determined by its distance to the camera.
This distance should also be that from which the
computed scene is looked at (provided the scene is
not scaled). We take for instance:

Obs_dist:=2;

At the time of projection, this value as well as
the other coordinate values are multiplied by the
value of drawing_scale, which defaults to 2cm.
The above value of Obs_dist therefore corresponds
to a camera located at a distance of 4cm from the
screen.

Once the cube’s vertices and the camera are in
place, the points must be projected on the screen
with the project_point command. To each point
in space corresponds a point in the plane. With
project_point(3,vertex3), point z3 of the plane
is associated to vertex 3 of the cube. Once the points
have been projected, the edges can be drawn:

draw zl--z2--z4--z3--cycle;
draw zb--z6--z8--z7--cycle;

draw zl1--z5; draw z2--z6;
draw z3--z7; draw z4--z8;

The complete program, with a few more initial-
izations as well as the loop creating the animation,
is given in figure 6. (This example didn’t make use
of the geometry module.)

4.2 Improvements to the previous example

The source code producing the cube is rather sim-
ple, but it is easy to come up with drawings that

302

input 3danim; drawing_scale:=10cm;
new_points(vertex) (8);
for i:=0 upto 20:
beginfig(100+i) ;
% Cube

TUGboat, Volume 22 (2001), No. 4

set_point_(vertex1)(0,0,0); set_point_(vertex2)(0,0,1);
set_point_(vertex3)(0,1,0); set_point_(vertex4) (0,1,1);
set_point_(vertex5)(1,0,0); set_point_(vertex6) (1,0,1);
set_point_(vertex7)(1,1,0); set_point_(vertex8)(1,1,1);

% Observer/camera

set_point_(0bs) (20*cosd(3.6%1i),20*sind(3.6%1),6);
Obs_phi:=90; Obs_dist:=2; point_of_view_abs(vertex8,0bs_phi);

% Projections

for j:=1 upto 8:
project_point (j,vertex[jl);

endfor;

% Lines

draw z1--z2--z4--z3--cycle; draw z5--z6--z8--z7--cycle;
draw zl1--z5; draw z2--z6; draw z3--z7; draw z4--z8;

endfig;
endfor;
free_points(vertex) (8);
end.

Figure 6: Program producing the cube animation.

are more complex and very difficult to handle, be it
only because of the large amount of points involved.
Moreover, the points do not necessarily belong to
the same objects (we can have a cube, a tetrahe-
dron, or other objects all present at the same time)
and they may be subject to different treatments.
It is in this spirit that we have introduced in the
3d package notions of classes and objects making it
possible to group a number of points, in order to
manipulate them globally, or in order to instantiate
certain classes several times (see (Meyer, 1997) for
more details on object-oriented programming). We
will therefore redefine the cube, as a class, and then
instantiate it.

The new code (figure 7) shows the definition of
a “C” class. All the objects of that class are cubes.
The class definition is split in three parts, which have
to be called def_C, set_C_points and draw_C:

e The general definition function is def_C: This
function takes as a parameter an object name
and instantiates it. Specifically, this function
defines the number n of points making up the
object (they will be numbered 1 to n) and calls
the function defining the points. Depending on
the nature of the defined objects, it may per-
form other initializations; in particular, though
it is not the case here, the initialization can de-

pend on the object name, that is, on the pa-
rameter.

e set_C_points, the function defining the
points, takes the calls to set_point_ but
replaces them with set_point. Calling
set_point (1) (0,0,0) means that point 1 of
that object is defined. Thus, we have now a
local point notion.

e Finally, a drawing function draw_C indicating
how the object must be drawn.

The instantiation itself, that is the operation
associating an object to a class, is done with a call
to assign_obj("cube","C"). The latter operation
defines the cube object as an instance of the C' class.
It leads in particular to the call of the def_C func-
tion, hence to the computation of the cube’s points.
It should be noted that in this example the points
of the cube are set before the camera is set. In more
complex drawings (like in figure 21), it is sometimes
necessary to have points of an object depending on
the position of the camera. In that case, besides the
call to the assign_obj function (which must only
occur once per object), the object positions can be
recomputed with reset_obj (set_C_points cannot
be used directly since this function doesn’t state how
the absolute point numbers should be computed).

TUGboat, Volume 22 (2001), No. 4 303

input 3danim; drawing_scale:=10cm;

vardef def_C(expr inst)=
new_obj_points(inst,8); set_C_points(inst);
enddef;

vardef set_C_points(expr inst)=
set_point (1) (0,0,0); set_point(2)(0,0,1); set_point(3)(0,1,0); set_point(4)(0,1,1);
set_point(5) (1,0,0); set_point(6)(1,0,1); set_point(7)(1,1,0); set_point(8)(1,1,1);
enddef;

vardef draw_C(expr inst)=
draw_lines(1,2,4,3,1); draw_lines(5,6,8,7,5); draw_line(1,5);
draw_line(2,6); draw_line(3,7); draw_line(4,8);

enddef;

assign_obj("cube","C");

for i:=0 upto 20:
beginfig(100+1i);
% Camera
set_point_(0bs) (20*cosd(3.6%1i),20*sind(3.6%1),6);
Obs_phi:=90; Obs_dist:=2; point_of_view_obj("cube",8,0bs_phi);
draw_obj ("cube") ;
endfig;
endfor;

end.

Figure 7: “3d object” code of the cube.

The main loop is now almost empty. The defi-
nitions concerning the camera have not been modi-
fied, except that concerning the focused point. The
point_of _view_obj function is now used to aim an
object point, here the cube point 8, and not an ab-
solute point. Figure 8: The cube with a camera five times

Finally, the cube is drawn with draw_obj. This closer as in figure 3.
command does both the projection and calls the
draw_C command (with the "cube" parameter) and
it is therefore not sufficient to call draw_C("cube").

The projection imposes a correlation between an ob- Definition of C class def_C et set_C_points
. 5 1 1 int d th £ th 1 It ; Drawing definition of C class draw_C
ject’s local points an ose of the plane. is no Object instantiation assign_obj
longer possible to automatically associate point 7 of Operations translate_obj
an object to zo, for instance. rotate_obj

In the sequel, we will always encapsulate our S°a1:-°:-?

. reset_obj

constructions in classes, even if (like here) we in- Object drawing draw_ob]

stantiate the class only once. The table below sum-
marizes the main functions acting on objects.
4.3 Perspective
By default, all representations are done in linear (or
central) perspective, that is the perspective corre-
sponding to what a camera sees when its field of view
is projected on a plane orthogonal to the viewing di-
rection (Le Goff, 2000). The legitimate construction

304

rules of a linear perspective drawing have been cod-
ified by the Quattrocento painters and architects.
This perspective is not very apparent on figure 3, be-
cause the camera is far from the cube (we are more
than 2 meters away from a cube with a 10 cm side).
If the camera gets close (and if drawing_scale is de-
creased to prevent the drawing from becoming too
large) we obtain (with no changes to the cube) fig-
ure 8. The linear perspective shows clearly the van-
ishing lines.

In this example, the hidden edges have been
dashed. The cube being defined as in the figure 7,
it is not possible to determine automatically what
is visible and what is not, since nothing has been
said about the faces. But if the cube is defined as
a polyhedron with the 3dpoly extension (Roegel,
1997), the removal of hidden faces can be done au-
tomatically. However, this removal is for the mo-
ment only implemented for isolated convex objects.
In the present article, all dashed lines are inserted
manually.

Other perspectives are provided when the value
of projection_type is changed. 0 corresponds to
the linear perspective. 1 corresponds to a parallel
perspective, where all projections are done parallel
to the viewing direction and orthogonally to the pro-
jection plane. This perspective is different from the
cavalier drawing. It corresponds to a camera set at
an infinite distance, but looking at the scene with
a telescope of infinite power. Since this perspec-
tive doesn’t change the sizes, it is usually necessary
to reduce the size of the projection by decreasing
drawing_scale.

A first category of parallel projections are the
isometric (also called military) perspective, dimetric
and trimetric projections, all usually grouped un-
der the axonometric perspectives. However, accord-
ing to Krikke (Krikke, 2000), these projections are
misnamed. Whereas the isometric perspective was
invented by William Farish in 1822 to fulfill needs
created by the industrial revolution, the real axono-
metric perspective is a perspective that originated
in China and Japan, in particular because it is well
suited to a presentation in rolls. In all parallel per-
spectives, the appearance of an object depends only
on its orientation, not on its distance. A distant
object doesn’t appear smaller than a close object.

A value of 2 for projection_type corresponds
to the oblique perspectives (which are parallel per-
spectives), but where the projection plane is not nec-
essarily orthogonal to the projection direction. In
general, the projection plane is chosen parallel to
one of the object’s faces. The most common oblique
perspectives are the cavalier drawing and the cabinet

TUGboat, Volume 22 (2001), No. 4

drawing. The asian axonometry, where an horizon-
tal axis is orthogonal to the viewing direction, also
seems to be an oblique perspective.

The 3d package makes it possible to obtain any
of these perspectives. In the case of parallel per-
spectives, the camera position is only used to find
the viewing direction, not how close the view is. In
the case of oblique projections, the projection plane
being distinct from the camera, it is necessary to
give it explicitly.

Figure 9 summarizes the various parallel per-
spectives.

H

Figure 10: Orthogonal projections.

Another type of representation uses orthogonal
(or orthographic) projections that are complemen-
tary. An object is described by several orthogonal
projections on planes which are themselves orthog-
onal (see figure 10). The use of several orthogonal
views and their crosschecking is known since antiq-
uity, but have been expounded geometrically for the
first time by Piero della Francesca in the Renais-
sance (cf. (Le Goff, 2000, p. 70)). The crosschecking
of orthogonal views can be used to build a linear per-
spective view. For instance, in figure 10, if the two
projections on planes F' and G are represented in
the same plane, the central projection on the plane
H can be determined by crosscheckings. Albrecht
Diirer used this technique to build the intersection
of a cone and a plane in a famous engraving (Diirer,
1525).

Later on, Gaspard Monge systematically stud-
ied the method of double projection and codified it

TUGboat, Volume 22 (2001), No. 4 305

Dimetric Isometric
|
|
! |
! !
! |
! |
: |
B P |
- |
- - U P
Cayvalier Cabinet

Figure 9: Parallel or perspective projections. The projections in the first row are projections where

the projection plane is orthogonal to the projection direction. These projections are also named
axonometric by certain authors (Gourret, 1994). The projections in the second row are oblique
projections, where the projection plane is not orthogonal to the projection direction. The trimetric
projection is the usual case of axonometric projection. In the dimetric projection, two of the axes are

at the same scale and in the isometric projection, the three axes are represented at the same scale.

In the oblique projections, one of the faces of the object is in general parallel to the projection plane
and appears therefore without deformation. In the three cases shown, one of the faces of the projected
cube is indeed a square. The angle of the vanishing lines varies. In the cavalier projection, the vanishing
lines are represented at the same scale as the lines in the projection plane, which confers a non-natural
aspect to that projection (even though it is a genuine oblique projection with no deformation). In order
to get a natural feeling, one should observe the drawing from the right. In the cabinet projection, the
vanishing lines are represented at 1/2 scale which gives a more natural representation, even though there
is no vanishing point. Certain oblique projections are also called planometric, for instance when the

face parallel to the projection plane represents a floor plan and when the vertical lines appear vertical in
projection.

in his Géométrie descriptive (1799). His construc- stack. The local index of a point is that point’s num-
tion method is sometimes called Monge construction ber as it appears in the object definition, if it has
or Monge projection. The developments of this tech- been defined as an object point. When we defined

nique led to the standard representation in technical the point 2 of our cube with set_point, 2 was not
drawings in France, where a front face of an object is this point’s index in the stack, but an index relative
displayed, to its left the view on the right, to its right =~ to the beginning of that object in the stack.

the view on the left, below the view seen from the In certain cases, it is necessary to know the ab-
top, etc. (In the U.S, the order is reversed, and the solute index of a point, for instance because certain
left-side view is on the left, the right-side view is on functions need it. This absolute index is obtained by
the right, etc.) The 3d package currently does not the pnt function. For instance, in order to compute
provide an automatic means of representing these the middle of two points 1 and 2 and put the value
perspectives, but they can be simulated easily. in point 3, all these points being local points of an

L. object, one way is to write:
4.4 Local and absolute point indices
vec_sum_(pnt(3) ,pnt (1) ,pnt(2));

We have seen that each point or vector defined with vec_mult_(pnt(3),pnt(3),.5);
new_point or new_vec corresponds to a stack ele- o
ment. A point is then given by its index in that This is because vec_sum_ (sum of two vectors)

and vec_mult_ (scalar multiplication of a vector)

306

g
<

U

vec_sum_(w,u,v)

TUGboat, Volume 22 (2001), No. 4

<y

—_—
u

vecmult_(v,u,3)

Figure 11: Two vector operations.

(see figure 11) take as parameters absolute indices.
It is not sufficient to create variants of these func-
tions for the cases where these points (vectors) are
local (these variants do exist and are called here
vec_sum and vec_mult) because there are often in-
termediate cases involving local points from one or
several objects, as well as points given by their ab-
solute index (like for instance Obs). As a conse-
quence, we have provided variants for the most com-
mon functions, but not for all of them. In certain
cases, one has to resort to the pnt function. How-
ever, for the previous example, the mid_point func-
tion can be used:

mid_point(3,1,2);

The non-local (absolute) variant of mid_point
is mid_point_. The more “internal” functions from
the 3d package have this final “_.” Thus, making
the call mid_point(3,1,2) is equivalent to calling
mid_point_(pnt(3),pnt(1),pnt(2)).

If we had wanted to define a non-local point p
(defined outside an object) as being the middle of
two local points, we would have written:

mid_point_(p,pnt(1),pnt(2));

In all cases, we should be careful to use pnt
only inside an object (this makes it possible not to
mention the object explicitly in the above examples)
and more precisely only in the functions def and
draw of that object.

4.5 Space structures

The objects definable with the 3d package are in
general rather complex objects which will end up
being projected and drawn. These objects are not
specially suited for a mathematical treatment. How-
ever, geometrical constructions, be it in the plane
or in space, involve simple concepts such as lines,
planes and other mathematically defined surfaces or
volumes. These concepts, which we call here struc-
tures, are often used as intermediates for finding new
points or new curves. The structures are seldom
drawn. We will never draw a line, but only a seg-

ment of a line. We will never draw a plane, but only
for instance a rectangle in that plane, or merely a
few points in that plane.

In order to facilitate the manipulation of these
structures, we have created them in a different and
simpler fashion than the objects. These structures
bear some similarities to the primitive types of Java.
Each structure could be wrapped in an object or
associated with an object, but we don’t do it here.

The structures are defined in the 3dgeom mod-
ule. They must also be allocated and freed.

4.5.1 Lines

The simplest of the structures we define is the line.
A line is defined with two points. For instance, in
order to define the line [going through local points
4 and 6, we write:

new_line(1) (4,6);

This function (abs. vers. new_line_) memorizes
the two points, so that a later modification of these
points does not modify the line. The line is there-
fore only initially attached to the points. However,
this is seldom a problem for the structures are often
introduced locally in a construction. Moreover, it is
possible to create a version of new_line that does
not duplicate the points.

Sometimes we want to define a line whose points
have not yet been computed. Sometimes also, we
would like to define a line using another pair of
points, in order to start a different construction.
The set_line (or set_line_) command can then
be used:

set_line(1)(4,8);

Finally, when a line is no longer needed, it can
be freed with free_line (which has only one ver-
sion):

free_line(1);

It should be observed that the structures de-
fined in an object must always be freed within that
object and, as with the points, in the reverse order
of their allocation.

TUGboat, Volume 22 (2001), No. 4

4.5.2 Planes

A plane is defined in a manner analogous to a line,
but using three points:
new_plane(p) (i,j,k);
set_plane(p) (i,j,k);
free_plane(p);
new_plane_ and set_plane_ are the absolute
versions of these functions.

4.5.3 Other structures

Other structures (in the plane or not, such as circles,
spheres, etc.) are defined in 3dgeom, but they have
not yet all been developed. It is very easy to add
new structures and functions manipulating them.

4.6 Elementary constructions
4.6.1 Plane definitions

The use of structures tremendously simplifies geo-
metric constructions in space. For instance, in order
to draw the projections of the tetrahedron vertices
in figure 10, we have defined the three projection
planes with new_plane:

new_plane(f) (9,10,11);

new_plane(g) (13,14,15);
new_plane(h) (5,6,7);

4.6.2 Perpendiculars of a plane

We have then obtained the perpendiculars of these
planes going through the object points, using the
def_vert_pl function:

def _vert_pl(17) (1) (h);
def_vert_pl(18)(2) (h);
def_vert_pl(19) (3) (h);
def_vert_pl(20) (4) (h);

This function takes a point and a plane and
determines the foot of the perpendicular to the plane
going through the point given as parameter (here the
second parameter).

4.6.3 Intersections between lines and
planes

One of 3dgeom’s functions computes the intersection
of a line and a plane:

boolean b;

b:=def_inter_p_1_pl(i) (1) (p);

The intersection of the line [and of the plane p,
if it exists, is computed. If there is an intersection
reduced to a point, the function returns true, oth-
erwise false. The returned point is i (local index).

This function will be illustrated with a high
school plane geometry problem: ABCD is a tetra-
hedron such that AB = 3, AC =6, AD =4.5. I
is the point of [AB] such that AI =1 and J is the

307

Figure 12: Tetrahedron: first construction.

point of [AC] such that AJ = 4. We must deter-
mine the intersection of the line (IJ) with the plane
(BCD). We start by constructing the tetrahedron
(figure 12).

We should first notice that several tetrahedra
are fulfilling the requirements: B, C' and D are in-
dependent. In order to obtain a rather general con-
struction, we must parameterize it. A can for in-
stance be set in (0,0,0), B in (3cos 3,3sinj3,0), C
in (6cos~y,6sin~,0) and D obtained by the means
of two rotations, one around E, the other around a
vector orthogonal to k. In METAPOST, this is done
with the commands given in figure 13.

On figure 12, the numbers of the points have
been added as indices. This figure is of course not
well suited to this problem, because (BCD) is facing
the observer. We will therefore move the observer,
for instance to C+5DC +5BC +3CA (figure 14).
In order to achieve this shift, we have reached to
tetrahedra points outside of the tetrahedron with
the pnt_obj function (this function makes it also
possible to define points of an object using points
from another object):

new_vec(v_a);

new_vec(v_b);

new_vec(v_c);

vec_diff_(v_a,pnt_obj("tetra",3),
pnt_obj("tetra",4)); % DC

vec_mult_(v_a,v_a,5); % 5-DC

vec_diff_(v_b,pnt_obj("tetra",3),
pnt_obj("tetra",2)); % BC

vec_mult_(v_b,v_b,5); % 5.BC

vec_diff_(v_c,pnt_obj("tetra",1),
pnt_obj("tetra",3)); % A

vec_mult_(v_c,v_c,3); % 3.CA

% C+5DC :

vec_sum_(Obs,pnt_obj("tetra",3),v_a);

% C+5-DC +5-BC :

vec_sum_(Obs,0bs,v_b);

% C+5-DC +5-BC +3-CA:

vec_sum_(Obs,0bs,v_c);

free_vec(v_c);

free_vec(v_b);

free_vec(v_a);

308

set_point(1)(0,0,0); % A

set_point (2) (3*cosd(b) ,3*sind(b),0); % B
set_point (3) (6*cosd(c),6%sind(c),0); % C
new_vec(v_a); new_vec(v_b);
vec_def_vec_(v_a,vec_I); %h U, <7

TUGboat, Volume 22 (2001), No. 4

vec_rotate_(v_a,vec_K,d); % rot. of v, around k by an angle d

vec_prod_(v_b,v_a,vec_K); % U «— U, ANk

vec_rotate_(v_a,v_b,e); % rot. of U, around ¥, by an angle e

vec_mult_(v_a,v_a,4.5);
vec_sum_(pnt(4) ,,pnt(1),v_a); % D
free_vec(v_b); free_vec(v_a);

% Determination of I and J:

% I=A+AB /| AB |

vec_diff(5,2,1); % EHA_B) .
vec_unit(5,5); % Vs «— AB /|AB ||
vec_sun(5,5,1); % I — A+ 4B /|4B|
% J=A+4.4C J|AC |
vec_diff(6,3,1); % EHE -
vec_unit(6,6); % Vs — AC /|AC|
vec_mult(6,6,4); % Vs «— 41W/||1W||
vec_sum(6,6,1); % J<—A—|—4-W/HWH

Figure 13: Code for figure 12.

Ay

Dy
B,

C3

Figure 14: Tetrahedron: second construction.

We now come to the computation of the inter-
section of the (1J) line with the (BCD) plane (fig-
ure 15).

new_plane(bcd) (2,3,4) ;

new_line(ij) (5,6);

boolean b;
b:=def_inter_p_1_pl(7) (ij) (bcd):

if not b: message "no intersection"; fi;
free_line(ij);

free_plane(bcd) ;

Two other intersections can be computed using
K, the middle of [AD] (figure 16). The three inter-
sections are then aligned. (We can see that L, M
and N are as a matter of fact on the intersection of
the planes (IJK) and (BCD).) We have shown the
alignment with a segment slightly extending on each
side, using

Ay

B i
AN

Cs YA

Figure 15: Tetrahedron: third construction.

draw_line_extra(9,10)(-0.1,1.1);

The second pair of parameters indicates how
much the segment extends on each side. (0, 1) cor-
responds to no extension and a smaller (or larger)
value for the first (or second) parameter produces
an extension.

Figure 16 also illustrates the famous theorem by
Girard Desargues (1639), which is the cornerstone of
projective geometry. According to this theorem, two
triangles BCD and IJK being given in the plane, the
lines (BI), (CJ), (DK) have an intersection if and
only if the intersections of (IK) and (BD), of (1J)
and (BC), and of (KJ) and (DC) are aligned. In
our case, the lines (BI), (CJ), (DK) have indeed
an intersection, namely A, and the intersections L,

TUGboat, Volume 22 (2001), No. 4

Figure 16: Tetrahedron: fourth construction.

M and N are aligned. The theorem states that the
converse also holds. Seen in space, the theorem is
very simple, but a purely plane proof is difficult.

Another function of 3dgeom allows for the direct
computation of the intersection between two planes:
b:=def_inter_1_pl_pl(1) (p)(q);

where b is a boolean. If the intersection between the
planes p and ¢ is a line, the function yields true and
the line is stored in [. Otherwise, the function yields
false. Let us see on an example how this function
can be used. Consider the drawing of a tetrahedron
SABC whose edges SA, SB et SC are known, as
well as the angles ASC, ASB and BSC. Figure 17
shows such_a tetrahedron with SA = 9, SB = 8,
SC =4, ASC = 60°, ASB = 40° and BSC = 30°.
Contrary to the previous example, here we do not
have a wide margin to place the points. We can of
course start to construct the SAC triangle. It then
only remains to place the B vertex.

B

S

Figure 17: A tetrahedron specified by three
lengths and three angles.

The angles ASB and BSC being given, B is
obviously located on two cones: the cone of axis
(SA), of apex S and of angle ASB and the cone of
axis (SC), of apex S and of angle CSB. These two

309

cones in general intersect in two lines and B is on
one of these intersections at the distance SB of S.

With a well-chosen implementation of a cone
structure, the intersection can of course be automat-
ically obtained. But it is also possible to use more
restricted means by observing that we can draw the
heights [SH]| and [SK] stemming from B for each of
the triangles SAB and SBC. For instance, SH =
SB - cos(ASB). We can then define the planes or-
thogonal to the lines (SA) and (SC') going through
the two heights’ feet. The function

def_orth_pl_1_p(p) (1) (i);

constructs the plane p orthogonal to the line [and
going through the local point i.

The intersection between the two constructed
planes can then be computed. This intersection is a
line orthogonal to the plane of the triangle SAC. On
this line, we look for a point B at a given distance
from S. The function call

b:=def_point_at (i) (d) (j) (1);

where b is a boolean variable, defines the local point
i as being a point of the line [at a distance |d| from
the local point j if such a point can be found. In
that case, the return value of the function is true,
otherwise it is false. In general, two points satisfy
the condition and the function will return either one
depending on the sign of d.

Essentially, the figure is thus produced by the
commands in figure 18.

Figure 19: A tetrahedron specified by three
lengths and three angles (construction).

The whole construction is given in figure 19.
In order to draw it, we have “unlocalized” points
such as the heights’ feet and the intersection between
the perpendicular in B to the (SAC) plane. In or-
der to produce the right angles, we have used the
commands def_right_angle for the definition and
draw_double_right_angle for the drawing. Each

310

new_point(h); new_point(k);
set_point(1)(0,0,0); % S
set_point(2)(1sa,0,0); % A

TUGboat, Volume 22 (2001), No. 4

set_point (4) (lsc*cosd(aasc),lsc*sind(aasc),0); % C

vec_diff_(h,pnt(2),pnt(1));
vec_unit_(h,h);
vec_mult_(h,h,lsb*cosd(aasb));
vec_sum_(h,h,pnt(1)); % H
vec_diff_(k,pnt(4),pnt(1));
vec_unit_(k,k);
vec_mult_(k,k,lsb*xcosd(absc));
vec_sum_(k,k,pnt(1)); % K

new_plane(hp) (1,1,1); % initialization to three points

new_plane(kp) (1,1,1); % ditto
new_line(sa)(1,2); % (SA)
new_line(sc) (1,4); % (SC)

new_line(inter)(1,1); % intersection line of the two planes

def_orth_pl_1_p_c(hp) (sa) (h); % plane orthogonal to (SA) in H

def_orth_pl_1_p_(kp) (sc) (k); % plane orthogonal to (SC) in K

if def_inter_1_pl_pl(inter) (hp) (kp): % there is an intersection
if not def_point_at(3)(-1lsb,1) (inter): % B

message "Should not happen";
fi;
else:

message "PROBLEM (probably the angle ASC too small)";

set_point(3)(1,1,1);
fi;

free_line(inter); free_line(sc); free_line(sa);

free_plane(kp); free_plane(hp);
free_point(k); free_point(h);

Figure 18: Code for figure 19.

right angle is made of two segments, defined us-
ing three points. These three points are new ob-
ject points. For instance, one of the right angles is
created with

def_right_angle(7,8,9,5,1,3);

This means that three points (numbered locally
7, 8, and 9) are introduced and that they are set
according to the angle determined by the triangle of
points (5,1,3).
The drawing, on the other hand, is simpler:
draw_double_right_angle(7,8,9,5);

4.7 Visual complements
4.7.1 Representation of planes

A plane is often represented using four particular
points making a rectangle. These points must be
defined. The drawing of an horizontal rectangle cor-
responding to the (SAC) plane in figure 19 can be
obtained as follows (see figure 20):

set_point(14) (-2,-2,0); % p1
set_point(15) (11,-2,0); % p2
set_point(16) (11,10,0); % p3
set_point(17)(-2,10,0); % pa

The points are connected with draw_lines.

4.7.2 Hidden parts and visual intersections

As shown on figure 20, there is (currently) no auto-
matic hidden parts removal or a special treatment
of those parts. It is necessary to handle the dashed
lines by hand and this is only practical in the case
of non-moving images. With animations, the per-
spective can be subjected to such variations that it
is advisable to have an automatic solution of the
problem.

However, on a non-moving image, the problem
of removing (or handling in a special way) hidden
parts is rather simple to express and solve. It is ac-
tually a matter of determining “apparent” intersec-
tions between two curves. In the previous example,

TUGboat, Volume 22 (2001), No. 4

311

D1

Figure 20: The addition of a plane to the drawing in figure 19.

b1

Figure 21: The interruption of a plane.

sides of the tetrahedron seem to meet sides of the
rectangle representing the plane, even though they
do not meet in space.

If the plane had to be represented in a clearer
way, the apparent (or visual) intersections of the
sides [BA] and [BC] with the most distant side of
the rectangle would have to be determined. How
can this be done?

One way is to construct a point of the seg-
ment [paps], but as a function of the observer’s po-
sition. The intersection between (Obs,pa,ps) and
(Obs, A, B) is a line going through the observer and
through the point of (paps) of interest to us. It
is then sufficient to determine the intersection be-
tween this line and the (paps) line. This intersec-
tion being computed in space, care must be taken
that rounding errors can prevent the intersection
of two lines which should otherwise intersect. The
def_inter_p_1_1 function finds the middle of the
two points of each line where the line is closest to
the other line. This function also returns the dis-
tance between the two points. This makes it possi-
ble to find a point of (pap3) corresponding to the vi-

sual interruption caused by the [BA] segment. Simi-
larly, it is possible to find the point corresponding to
the visual interruption caused by the [BC] segment.
These two points, with ps and p3, make it possible
to draw a more natural plane. This is what is done
in figure 21.

The def_visual_inter function takes care of
this procedure. It takes four local points and com-
putes a fifth one:

boolean b;
b:=def_visual_inter(i) (j,k,1,m);

If the function returns true, point 7 is located
on (jk) at the apparent intersection of (jk) and (Im).

It should be noted that in a central perspec-
tive, the computed intersections depend on the ob-
server’s position. If this position changes, the inter-
sections must be recomputed. As a consequence, as
we already indicated it, it is necessary to call the
reset_obj function after the redefinition of the ob-
server’s position.

In a parallel projection, the observer is not used
in the computation of the visual intersection, but
the interface remains the same. The intersections

312

are almost computed in the same way, except that
the planes whose intersection is computed are not
determined by the observer and a segment, but by
the projection direction and a segment.

4.7.3 Vanishing points

Figure 22: The three classical vanishing points of
a cube.

The representation of an object containing par-
allel segments in a central perspective shows vanish-
ing lines and points. The projected lines are usually
no longer parallel and intersect. An example of a
cube representation with three vanishing points is
given in figure 22. The classical representations of-
ten distinguish the drawings with one, two or three
vanishing points. The drawings with one or two van-
ishing points are special cases corresponding to lines
which are parallel to the projection plane. In fig-
ure 22, none of the cube’s sides are parallel to the
projection plane, and this leads to vanishing points.
If the projection plane had been parallel to the ver-
tical segments of the cube, these segments wouldn’t
have exhibited vanishing points. If it is a whole face
which is parallel to the projection plane, there is
only one vanishing point left.

The vanishing points correspond to points lo-
cated at the infinite in space, along a direction go-
ing through the observer and directed by a vector
corresponding to the object’s segment. Very often,
some of the vanishing points will be quite distant on
the drawing, and possibly outside the drawing.

The classical representations in architecture or
in painting put two vanishing points on an horizontal
line and a third vanishing point corresponding to the
vertical vanishing lines. Figure 22 differs from that
representation because the observer is not oriented
along a vertical axis.

A different number of vanishing points do not
correspond to different projections, but on the one
hand to objects which are positioned differently in
space with respect to the projection plane, and on
the other hand to objects of different nature. A
sphere will of course have no vanishing point! The
number of vanishing points can actually be any num-
ber, including a number greater than three. It suf-
fices to choose a pair of parallel lines on the ob-

TUGboat, Volume 22 (2001), No. 4

Figure 23: A fourth vanishing point.

ject. Figure 23 shows that besides the three classical
vanishing points, the six vanishing points stemming
from the diagonal segments of the cube can be con-
sidered. Onme of those is represented on the figure.
(It should be remarked that vanishing points being
very sensitive to the location of the observer, it is
rather difficult to find by hand a location where the
nine vanishing points are simultaneously visible in a
restricted space.) More complex objects would have
even more vanishing points.

A vanishing point can be determined in a sim-
ple way by computing the intersection between the
projection plane and the line going through the ob-
server and oriented by a vector of the object. The
following lines find the vanishing point of the seg-
ment connecting two points numbered 1 and 5:

% defines the projection plane

def_screen_pl(screen);

new_line(1)(1,5);

if not
def_vanishing_point_p_1_pl(11) (1) (screen):
message "no vanishing point";
set_point(11)(0,0,0);

fi;

Like for the visual intersections, the vanishing
points depend on the observer’s position and each
time the point of view changes (either because the
observer moves, or because the object moves), the
object points must be recomputed with reset_obj.

It would also be possible to recompute the van-
ishing points directly in the plane. This would be a
mere application of whatever (see section 2).

4.7.4 Shadows

The shadows corresponding to projections are sim-
ulated by shading the projected part. An example
is given in figure 24. In that example, a triangle is
projected on a plane. We have merely computed the
projections of the three vertices of the triangle and
we have then shaded the projection. This technique
works for each projection, as long as the projection
is made along a line and on a plane or a set of planes.

TUGboat, Volume 22 (2001), No. 4

Figure 24: The cube with a shadow.

5 Modifications with respect to the first
distribution

When we worked on the new version of the 3d pack-
age, we made various changes which seemed to go in
the direction of a greater homogeneity. A number
of elementary functions have been renamed in or-
der to respect our new function naming conventions.
Hence, our first article (Roegel, 1997) on that matter
is now no longer strictly correct because functions
such as vect_sum must be replaced by vec_sum_.
All the “vect” have been replaced by “vec.” Fi-
nally, the creation of vectors and points has slightly
changed. The differences are not especially impor-
tant, but in order to make the transition easier for
the reader, we have put on CTAN a corrected version
of the original article, with differences highlighted.

6 Conclusion and limits

This package contains numerous features which have
not been mentioned and it is easy to add new ones,
in particular concerning the manipulation of new
structures. We silently omitted drawing curves such
as circles which involve another module that will be
described elsewhere. More comprehensive documen-
tation comes with the package.

A study of this article also reveals that the coor-
dinates of a point have only explicitly been used for
a few points constructed directly with set_point_
or set_point. All other points have been obtained
through various geometric operations. It doesn’t
mean that the coordinates are not accessible! They
are given by the functions xval, yval and zval ap-
plied to a vector or point reference.

This package is of course not perfect and has
limits. Besides METAPOST’s limits, in particular in
numerical capacity (the dimensions are bounded to
4096 PostScript points, at least for a normal use),
our package lacks automatic computations. Still

313

many manual interventions are needed. Other limi-
tations concern (currently) the absence of a decent
and automatic hidden parts removal algorithm. Fi-
nally, error handling in METAPOST will not be sim-
ple for who is not somewhat accustomed with the
language.

This work can of course be compared to other
works going in the same direction. First, it should
be clear that we do not claim to compete with pro-
fessional CAD or computer algebra tools. We want
above all to provide a light and powerful system
helping the creation of geometric constructions, in
particular suited for a geometry class in high school.
In the TEX world, there are to our knowledge only
few works integrating space. METAGRAF (http:
//w3.mecanica.upm.es/metapost), also based on
METAPOST, is an interactive system with a notion
of space, but which doesn’t seem to provide possibil-
ities of geometric constructions, animations, changes
of perspective, etc. The PSTricks system has a 3D
module, but it is relatively undeveloped. The com-
putations are done with TEX and extending the sys-
tem is tedious. Outside the TEX world, various
3D languages are available, in particular OpenGL,
which goes much beyond our system with respect
to rendering. As a teaching tool for geometry, we
should also mention the Cabri-Géometre software
(cf. http://www.cabri.net).

7 Acknowledgements

I would like to thank Nicolas Kisselhoff who led me
to develop the 3dgeom module by providing me with
figures from his geometry course, Sami Alex Zaimi
who developed the notion of an object and has in-
directly influenced this work and Pablo Argon who
convinced me many years ago of the usefulness of
METAPOST for the geometry of the ruler and the
compass. Hans Hagen proofread the French version
of the article and pushed me to clarify it even fur-
ther, in particular through the introduction of new
figures. Finally, Jean-Michel Hufflen and Damien
Wyart have made corrections and suggested various
improvements.

References

Diirer, Albrecht. Underweysung der messung mit
dem zirckel und richtscheyt in Linien ebnen unnd
gantzen corporen durch Albrecht Diirer zu samen
getzogen und zu nutz aller kunstliebhabenden
mit zu gehdrigen figuren in truck gebracht im
jar. M.D.X.X.V. 1525. Facsimile (Portland, Or.:
Collegium Graphicum, ¢1972.).

314

Goossens, Michel, S. Rahtz, and F. Mittelbach.
The BTEX Graphics Companion. Reading, MA,
USA : Addison-Wesley, 1997.

Gourret, Jean-Paul. Modélisation d’images fixes et
animées. Paris : Masson, 1994.

Hagen, Hans. MetaFun, 2002. http://www.
pragma-ade.com.

Hobby, John D. “A User’s Manual for MetaPost”.
Technical Report 162, AT&T Bell Laborato-
ries, Murray Hill, New Jersey, 1992. http://cm.
bell-labs.com/who/hobby/MetaPost.html.

Hoenig, Alan. TgX unbound. BTEX & TEX Strategies
for Fonts, Graphics, & More. Oxford, New York :
Oxford University Press, 1998.

Knuth, Donald E. Computers & Typesetting, wvol-
ume C: The METAFONTbook. Reading, MA :
Addison-Wesley Publishing Company, 1986.

Krikke, Jan. “Axonometry: A Matter of Perspec-
tive”. IEEE Computer Graphics and Applica-
tions 20(4), 7-11, 2000. http://www.computer.
org/cga/cg2000/pdf/g4007 . pdf.

Le Goff, Jean-Pierre. “De la perspective a l'infini
géométrique”. Pour la Science (278), 6672,
2000.

Meyer, Bertrand. Object-oriented software construc-
tion. Upper Saddle River, N.J.: Prentice Hall,
1997.

Roegel, Denis. “Creating 3D animations with
METAPOST”. TUGboat 18(4), 274-283,
1997. ctan:graphics/metapost/macros/3d/
tugboat/tb57roeg.pdf. An updated version is
located at the same place.

¢ Denis Roegel
LORIA
BP 239
54506 Vandoeuvre-les-Nancy
FRANCE
roegel@loria.fr
http://www.loria.fr/ roegel

TUGboat, Volume 22 (2001), No. 4

314

TUGboat, Volume 22 (2001), No. 4

The plot functions of pst-plot*
Jana VoB and Herbert Vo3

Abstract

Plotting of external data records is one of the standard
problems of technical and industrial publications. One
common approach is importing the data files into an ex-
ternal program, such as gnuplot, provided with axes of
coordinates and further references, and finally exported
to IATEX. By contrast, in this article we explain ways to
get proper data plotting without using external applica-
tions.

1 Introduction

The history and the meaning of PostScript have been
covered sufficiently in many articles. For the program-
ming language PostScript have a look at [3, 4]. The
package pst-plot [8] under consideration here is part
of the pstricks project. It must be loaded into a IATEX
document as usual with \usepackage{pst-plot} or
alternatively, for documents written in plain TEX, with
\input pst-plot.tex.

pst-plot provides three plot macros for the repre-
sentation of external data, with the following syntax:

\listplot* [<parameter>] {<data macro>}
\dataplot* [<parameter>] {<data macro>}
\fileplot* [<parameter>] {<file name>}

The starred forms have the same meaning as with
all macros of pstricks: to plot the data in a reversed
mode. Thus, for a default black-on-white diagram one
produces the negative with the starred command form,
namely white-on-black. Additionally, a negative plot im-
plies that PostScript closes the path of the points from the
last to the first one and fills all points inside this closed
path with the actual fillcolor. For our purposes in this
article there will be no real sense in this negative view;
therefore, all of the following examples are plotted with
the normal (unstarred) form only.

For further information about pstricks, have a
look at the (more or less) official documentation [6], or
the extensive description in the “standard IXTEX” book
[2] or in [1, 9]. Altogether, however, these do not fully
describe the substantial differences between these three
plot macros.

For all of the examples in this article, the complete
pspicture environment is indicated, so that the exam-
ples may be directly copied. The documentation for the
multido macro used here can be found in the package
itself [7]; macros not otherwise mentioned are described
in the pstricks documentation [6].

* Based on “Die Plot-Funktionen von pst-plot,” Die TeXnische
Komododie 2/02, June 2002, pages 27-34, with permission.

TUGboat, Volume 22 (2001), No. 4

Table 1: Possible options

style option | meaning
plotstyle=dots | plot (x,y) as a dot
=line | draw a line from a dot to the
following one
=polygon | nearly the same as line, but
with a line from the last to the
first dot
=curve | interpolation between three
dots, whereby the curve can
go beyond the point of origin
and/or termination point
=ecurve | like curve, but ends at the
first/last dot
=ccurve | like curve, but closed

The general plotstyle parameter is particularly
important, and can take the values shown in table 1.

By default, the 1ine option is selected.

The following general commands are also useful in
conjunction with the plot commands. They are also de-
fined by the pst-plot package:

\readdata{<data macro names}{<file name>}
\savedata{<data macro name>}{<file name>}

In the following examples only the \readdata
macro is used, but it would be straightforward to create
examples with \savedata.

2 Examples for \1istplot
The syntax of \1istplot is:
\listplot{<data macro name>}

The data macro may contain any additional (I&)TEX-
or PostScript-commands. The (I&)TEX macros are ex-
panded first before they are passed as a list of x|y values
to PostScript. The data records can be defined inside the
document like

\newcommand{\dataa}

1.00000000 1.00000000
0.56000000 0.31000000
0.85841600 0.17360000

or can be read from an external data file with \readdata:
\readdata{\dataA}{/anyPath/data.dat}

The example in figure 1 shows the Henon attractor,
a typical graphic of a system with chaotic behavior[5].

Figure 2 is nearly the same as figure 1, with the ad-
dition of PostScript code to get the "Draft" watermark.
(Some familiarity with PostScript is needed to fully un-
derstand its operation.) To save space, listing 2 does not
contain the data, which is nothing more than a sequence

315

of pairs of floats, each value separated by a space, as
shown above.

Figure 1: Example for\1istplot

Figure 2: Example for modified \1istplot

Listing 1: I&TEX source for figure 1

\readdata{\henon}{henon.dat}
\psset{xunit=1.5cm, yunit=3cm}
\begin{pspicture} (-3,-0.5) (2.25,1.25)
\psaxes{->}(0,0) (-2,-0.5) (1.5,1.25)
\listplot[%
showpoints=true, %
linecolor=red, %
plotstyle=curvel {\dataA}
\end{pspicture}

© ® 9 U R W R =

Listing 2: I&TEX source for figure 2

\newcommand{\DataA}{ %

1

2 [... data ...]

3 gsave % save graphic status

4 /Helvetica findfont 40 scalefont setfont

316

5 45 rotate % rotate by 45 degrees
6 0.9 setgray % 1 is color white

7 -60 10 moveto (DRAFT) show

8 grestore

o}
10 \psset{xunit=1.5cm, yunit=3cm}
11 \begin{pspicture} (-3,-0.5) (2.25,1.25)

12 \psaxes{->}(0,0) (-2,-0.5) (1.5,1.25)
13 \listplot [%

14 showpoints=true, %

15 plotstyle=curvel {\dataA}

16 \end{pspicture}

Naturally, [... data ...] is replaced by all
the x|y-values; they’re omitted here only to save space.

As an alternative to direct modification of the data
set passed to \listplot, one can redefine the macro
defScalePoints from pst-plot. For example, to
change the x|y values and then rotate the whole plotted
graphic (don’t ask why!), the redefinition is as shown in
listing 3.

Listing 3: I&TEX source for figure 3

1 \makeatletter
> \pstedef{ScalePoints}<%

4 45 rotate % rotate the whole object

I

6 /y ED /x ED

7 counttomark dup dup cvi eq not { exch pop
} if

8 /m exch def /n m 2 div cvi def

9 n {

10 @ mmmmm s m e e e o

13 y mul m 1 roll
14 x mul m 1 roll
15 /m m 2 sub

16 def } repeat>

17 \makeatother

This gives figure 3.

Thus, the advantage of \1istplot is that one can
easily modify the data values without any external pro-
gram. Here is one more example—suppose you have the
following data records:

1050, 0.368
1100, 0.371
1200, 0.471
1250, 0.428
1300, 0.391
1350, 0.456
1400, 0.499
1500, 1.712
1550, 0.475
1600, 0.497

which perhaps came automatically from a technical de-
vice. The unit of the x-values is micrometer but it makes

TUGboat, Volume 22 (2001), No. 4

-1

2 4

Figure 3: Example for \1istplot with a redefined
ScalePoints

more sense to use millimeter for the plot. A redefinition
of ScalePoints makes it very easy to plot the data with
this change of scale:

Listing 4: Rescale all x values

1 \makeatletter

> \pstedef{ScalePoints}<%

3 /vy ED /x ED

4 counttomark dup dup cvi eq not { exch pop
}if

5 /m exch def /n m 2 div cvi def

6 n {

7 y mul m 1 roll

8 x mul 1000 div m 1 roll$% <-- divide by

1000

9 /m m 2 sub

10 def } repeats>

11 \makeatother

Figure 4: Example for modified data values with a
redefined ScalePoints

3 Examples for \dataplot

\dataplot has the same syntax as \listplot, so the
first question is, what is the difference between the two?

TUGboat, Volume 22 (2001), No. 4

\listplot builds alist of all the data and then multiplies
all values with the length unit. This takes some time, so
you may prefer a so-called “quick plot”, where the data
can be passed more quickly to PostScript, depending on
the plotstyle and especially the option showpoints. Ta-
ble 2 shows whether this is possible. A quick plot is not
possible with \listplot, whereas \dataplot uses it
whenever possible. When it is not possible, \dataplot
simply calls \1istplot.

Table 2: Possible options for a ’quick plot™

plotstyle options macro
line all, except quick plot
linearc, showpoints, | \listplot
arrows,
polygon all, except quick plot
linearc, showpoints \listplot
dots all quick plot
bezier all, except quick plot
arrows, showpoints \listplot
cbezier all, except \listplot
showpoints quick plot
curve all \listplot
ecurve all \listplot
ccurve all \listplot

\dataplot needs to be passed a macro holding the
data. The data is typically saved in an external file, which
can be read by (for instance) the \readdata macro, as
follows:

\readdata{<object names}{<data files}
For example:
\readdata{\feigenbaum} {feigenbaum.data}

The amount of data is limited only by TgX’s mem-
ory. The above example can be plotted with:

\dataplot{\feigenbaum}

Overlays with different data files are also possible.
For example, figure 5 shows the use of two different data
files which are plotted using one coordinate system. It
shows the sorting time for “Bubble-Sort” and “Select-
Sort” as a function of the number of the elements.

Listing 5: IATEX source for figure 5

1 \psset{xunit=0.0005cm,yunit=0.005cm}
> \begin{pspicture} (0,-50) (10000,1100)
3 \readdata{\bubble}{bubble.data}

4 \readdata{\select}{select.data}

5 \dataplot [%

6 plotstyle=1line, ¢

7 linecolor=blue] {\bubble}

8 \dataplot [%

9 plotstyle=1line, %

10 linecolor=red, %

317

time

Bubble-Sort

elect-Sort

elements

Figure 5: Example for \dataplot

1 linewidth=2pt] {\select}

12 \psline{->}(0,0) (10000, 0)

13 \psline{->}(0,0) (0,1000)

14 \rput [1] (20,995) {time}

15 \rput [r] (9990, -20) {elements}

16 \rput [1] (4500,800) {Bubble-Sort}
17 \rput [1] (7500,200) {Select-Sort}

13 \end{pspicture}

In short, the advantage of \dataplot is the possi-
bility of a ”quick plot*, and the advantage of \1istplot
is that it is easy to manipulate the data values before they
are plotted.

4 Examples for \fileplot

\fileplot can be used whenever (x|y) data that is saved
in a file is to be plotted. The values must be given as
pure numerical values in pairs, one pair on each line,
and may have spaces, commas, parentheses, and braces
as punctuation, as follows:

Xy
XY
(x,y)
{x v}

The tab character (\t or ASCII \009) is often used
as a separator, but tab is not valid here. Tabs may be
converted to spaces in many ways, for example with the
standard Unix utility tr:
tr "\t’ ’ '’ <inFile soutFile

The data files may also contain % characters, but no
other characters are allowed.

Our first example for \fileplot is shown in fig-
ure 6, which is an UV/VIS absorber spectrum A = 1g17°
as a function of the wavelength. The second example
(figure 7) shows the evolution of a population as a func-
tion of the spawn factor (Feigenbaum diagram [5]). The
source code for these images is shown in listings 6 and 7.

318 TUGboat, Volume 22 (2001), No. 4

................................ 5 \psaxes{->}(0,0) (4.05,1)
6 \rput (4,-0.05) {x}

7 \rput (0.2,1.05) {y}
8
9

\rput [1] (0.2,3.75) {Feigenbaum-Diagram}
\end{pspicture}

As you may see in listing 8, \fileplot does lit-
tle of its own. It first calls \readdata to read the data,
and then, depending on the kind of data and specified
options, \fileplot uses \dataplot for a quick plot if
possible. Otherwise, it falls back to \l1istplot.

...............................

o L N

0 400 800 1200 1600 Listing 8: The source of the \fileplot macro

1 \def\fileplot{\def\pstepar{}\pste@object

Figure 6: Example for \fileplot fileplot}}

> \def\fileplot@i#l{%
3 \pst@killglue
4 \begingroup
Listing 6: I&TEX source for figure 6 ’ \useepar
)] 6 \@pstfalse
1 \psset{xunit=0.0025cm,yunit=1.1lcm} ; \@nameuse | testgpe@\psplotstyle}
> \begin{pspicture} (-25,-.25) (1950, 4) . \ifepst
3 \fileplot [plotstyle=1line] {fileplot.data} 0 \dataploteii{\pstereadfile{#1}}%
4 \psaxes [dx=400,Dx=400] {->} (1900, 4) o \else
5 \multido{\n=200+200}{9}{* 1 \listplote@ii{\pstealtreadfile{#1}}%
6 \psline[linestyle=dotted] (\n,0) (\n,4) % ” \£i
’) . 13 \endgroup
8 \multido{\n=+1}{5}{¢ 14 \ignorespaces#$
9 \psline[linestyle=dotted] % 5}
10 (0,\n) (1800,\n) ¢
1 1 \fileplot has the advantage of being easy to use,
2 \end{pspicture} but the disadvantage of needing a lot of memory: TEX

has to read the all the data values before it can process
anything. As a rule of thumb, when there are more than
1000 data entries TEX’s main menory must be increased.
Furthermore, the running time may be enormous, espe-
cially on slow machines.

To prevent such problems, one can use the macro
\PSTtoEPS to create an eps file. For more information,
see the documentation of pstricks [6].

Feigenbaum-Diagram

References

[1] Denis Girou. Présentation de PSTricks. Cahier
GUTenberg, 16:21-70, April 1994.

[2] Michel Goossens, Frank Mittelbach, and Alexander
Samarin. The BIEX Graphics Companion. Addison-
x Wesley Publishing Company, Reading, Mass., 1997.

[3] Nikolai G. Kollock. PostScript richtig eingesetzt:
vom Konzept zum praktischen Einsatz. IWT, Vater-
stetten, 1989.

[4] Glenn C. Reid. Thinking in PostScript. Addison-
Wesley, Boston, 1990.

\psset {xunit=1.5cm, yunit=6cm) [5] Herbert VoB. Chaos und Fraktale selbst program-

\begin{pspicture} (-0.25,-0.05) (4.25,1) mieren: von Mandelbrotmengen iiber Farbmanipu-

\fileplot [plotstyle=dots] {$ lationen zur perfekten Darstellung. Franzis Verlag,
feigenbaum.data} Poing, 1994.

0 1 2 3

Figure 7: Another example for \fileplot

Listing 7: I&TEX source for figure 7

TUGboat, Volume 22 (2001), No. 4

[6]

[7]

(8]

[9]

Timothy van Zandt. PSTricks - PostScript macros
for generic TEX. http://www.tug.org/
application/PSTricks, 1993.

Timothy van Zandt. multido.tex - a loop
macro, that supports fixed-point addition.
CTAN: /graphics/pstricks/generic/
multido.tex, 1997.

Timothy van Zandt. pst-plot: Plotting two di-
mensional functions and data. CTAN :graphics/
pstricks/generic/pst-plot.tex, 1999.
Timothy van Zandt and Denis Girou. Inside
PSTricks. TUGboat, 15:239-246, September 1994.

¢ Jana Vol
Wasgenstr. 21
14129 Berlin GERMANY
Jana@perce.de

<o Herbert Vof3
Wasgenstr. 21
14129 Berlin GERMANY
voss@perce.de
http://www.perce.de

319

TUGboat, Volume 22 (2001), No. 4

Three dimensional plots with pst-3dplot
Herbert Vof3

Abstract

The well-known pstricks package [7] offers excellent
macros for creating more or less complex graphics which
could be inserted into the document without having it
exported to EPS or PDF. pstricks itself is the base
for several other additional packages, which are typically
named pst-xxxx, such as pst-3dplot.

There exist several packages for plotting three di-
mensional graphical objects. pst-3dplot handles three
dimensional objects, mathematical functions, and data
files similarly to pst-plot in two dimensions.

1 Introduction

The pstricks packages are available as usual from
any possible CTAN server. The base parts are lo-
cated at CTAN:graphics/pstricks/generic/ and
most of the additional packages at CTAN:graphics/
pstricks/contrib/ [7].

All \psgrid commands are only for a better view
of the examples, they are not really necessary for the 3D-

319

plots. They are always used with the globally defined

options

\psset {subgriddiv=0,griddots=5, %
gridlabels=7pt}

2 The parallel projection

Figure 1 shows a point P(x,y,z) in a three dimensional
cartesian coordinate system (x, y, z) with a transformation
into P*(x*,y*), the point in the two dimensional system
(XE,YE).

YE
a: horizontal rotating angle
B: vertical rotating angle

x-sinafy . cosy

X-COsSO

tal

y-coso +x-sina

L y-sina —x-cos @

Figure 1: Lengths in a three dimensional system

The angle « is the horizontal rotation with positive
values for anti-clockwise rotations of the 3D coordinates.
The angle 3 is the vertical rotation (orthogonal to the
paper plane). In figure 2 we have o = 8 = 0. The y-axis
comes perpendicularly out of the paper plane. Figure 3
shows the same for another angle with a view from the
side, where the x-axis shows into the paper plane and the
angle B is greater than O degrees.

Figure 2: Coordinate system for oo = 3 = 0 (y-axis
comes out of the paper plane)

The two dimensional x coordinate x* is the differ-
ence of the two horizontal lengths y-sina and x - cos o
(figure 1):

x'=—x-cosat+y-sina e))

The z-coordinate is unimportant, because the rota-

tion comes out of the paper plane, so we have only a

320

different y* value for the two dimensional coordinate but
no other x* value. The 8 angle is well seen in figure 3
which derives from figure 2, if the coordinate system is
rotated by 90deg horizontally to the left and vertically
by B also to the left.

Zj =z-cosf

—(y-cosa+x-sina)-sin 3 y-coso +x-sinqQ

Figure 3: Coordinate system for ¢« =0 and 8 > 0
(x-axis goes into the paper plane)

The value of the perpendicular projected z coordi-
nate is z* = z-cos 3. With figure 3 we see that the point
P(x,y,z) runs on an elliptical curve when 3 is constant
and o changes continously. The vertical alteration of P
is the difference of the two “perpendicular” lines y-cos &
and x-sina. These lines are rotated by the angle 3, so
we have to multiply them with sin 3 to get the vertical
part. We get the following transformation equations:

XE = —XCOS & + ysin &

. . 2
ye = —(xsina+ycosa)-sinf3 +zcos B @
or the same written in matrix form:
. X
XE\ —coso sino 0\ 3)
ye) \ —sinasinf8 —cosasinf cosp z

3 Coordinate axes

The syntax for drawing the coordinate axes is
\pstThreeDCoor [<options>]

Without any options, we get the default view seen
in figure 4 with the predefined values:
xMin=-1, xMax=4,
yMin=-1, yMax=4,
zMin=-1, zMax=4,
Alpha=45,Beta=30

There are no restrictions for the angles and the max
and min values for the axes; all pstricks options are
possible as well. The following example (5) changes the
color and the width of the axes. The angles Alpha and
Beta are important to all macros and should always be
set with psset to make them global to all other macros.
Otherwise they are only local inside the macro to which
they are passed.

1 \begin{pspicture} (-2,-1) (1,2.25)
2 \psgrid

TUGboat, Volume 22 (2001), No. 4

Figure 5: Axes with a different view and color

3 \psset{ Alpha=-60,Beta=30}
4 \pstThreeDCoor[$
5 linewidth=1.5pt, linecolor=blue,
6 xMin=-1,xMax=2,yMin=-1,yMax=2, ¢
7 zMin=-1, zMax=2]

8 \end{pspicture}

4 put command

The syntax is similar to the \rput macro from the
package pst-plot:
\pstThreeDPut [<options>]%

(x,y,2) {<any material>}

- TUGboat

Figure 6: Example for the \pst ThreeDPut macro

1 \begin{pspicture} (-2,-1) (1,2.25)

TUGboat, Volume 22 (2001), No. 4

Figure 7: 3D dots with marked coordinates

\psgrid

\psset{ Alpha=-60,Beta=-30}

\pstThreeDCoor [%
linecolor=blue, %

yMin=-1, yMax=2, %
zMin=-1, zMax=2]
\pstThreeDPut (1,0.5,2) {\red\large TUGboat}
10 \pstThreeDDot [drawCoor=true] (1,0.5,2)
11 \end{pspicture}

2
3
4
5
6 xMin=-1, xMax=2,
7
8
9

Internally, the \pstThreeDPut macro defines a
two dimensional node temp@pstNode and then uses the
default \rput macro from pstricks. Because of the
perspective from which the coordinate system is viewed,
the 3D dot will not be seen as the center of the printed
material when this is also a three dimensional one. This
does not happen for figure 6, because the text is only a
two dimensional object.

5 Nodes
The syntax is
\pstThreeDNode (%, Yy, z) {<node name>}

This node is internally transformed into a two di-
mensional node, so it cannot be used as a replacement
for the parameters (x,y,z) of the 3D dot which is
possible with the macros from pst-plot. If A and B
are two nodes, then \psline{A} {B} draws a line from
A to B. Doing the same with pst-3dplot is not yet
implemented. On the other hand, it is not a problem
to define two 3D nodes c and D and then draw a two
dimensional line from C to D.

6 Dots

The syntax for a dot is
\pstThreeDDot [<options>] (X,y, z)

Dots can be drawn with dashed lines for the three
coordinates, when the option drawCoor is set to true
(figure 7).

1 \begin{pspicture} (-2,-2) (2,2)

2 \psset {xMin=-2, xMax=2, yMin=-2, %

3 yMax=2, zMin=-1, zMax=2,Beta=25}
4 \pstThreeDCoor

321

\psset{dotstyle=*,dotscale=2, ¢
linecolor=red, %
drawCoor=true}

\pstThreeDDot (-1,1,1)

\pstThreeDDot (1.5,-1,-1)

10 \psgrid

11 \end{pspicture}

© ® N W

In the figure 8 the coordinates of the dots are
(a,a,a) where a is —3,-2,—1,0,1,2,3.

Figure 8: Another demonstration for drawing dots

1 \begin{pspicture} (-4,-2) (3,3.25)

2 \psgrid

3 \psset {xMin=-3.5, xMax=3.5, yMin=-7, yMax=6, zMin
=-2,zMax=2.5, %

4 Alpha=20,Beta=15}

5 \pstThreeDCoor

6 \psset {dotstyle=square,dotsize=5pt, ¢

7 linecolor=blue,drawCoor=true}

8 \multido{\n=-3+1}{7}{%
\pstThreeDDot (\n, \n, \n) ¢

10 }

11 \end{pspicture}

7 Lines

The syntax for a three dimensional line is

\pstThreeDLine [<options>]%
(x1,y1,z1) (x2,y2,22)

All options for lines from pst-plot are possible,
there are no special ones for a 3D line. The only differ-
ence in drawing a line or a vector is that the first one has
an arrow of type — and the second type —> (figure 9).

1 \psset {xMin=-2, xMax=2, yMin=-2, yMax=2, %
2 zMin=-2, zMax=2}

3 \begin{pspicture} (-2,-2.25) (2,2.25)
4 \pstThreeDCoor

5 \psset {dotstyle=*, linecolor=red, %
6 drawCoor=true}

7 \pstThreeDDot (-1,1,0.5)

8 \pstThreeDDot (1.5,-1,-1)

9 \pstThreeDLine[$

10 linewidth=3pt, ¢

11 linecolor=blue,

12 arrows=->%

13]1(-1,1,0.5) (1.5,-1,-1)

322

Figure 9: Drawing a 3D vector

14 \psgrid
15 \end{pspicture}

8 Triangle

A triangle is given by its three points:

\pstThreeDTriangle [<options>] (P1) (P2) (P3)
When the option fillstyle is set to value other

than none, the triangle is filled with the active color or

with the one which is set with the option fillcolor
(figure 10).

Figure 10: Triangles with fill option

1 \begin{pspicture} (-3,-4) (4,3.25)

2 \psgrid

3 \pstThreeDCoor [xMin=-4, xMax=5, yMin=-3, zMin=-4,
zMax=3]

4 \pstThreeDTriangle[$%

5 fillcolor=yellow, fillstyle=solid, ¢

6 linecolor=blue, ¢

7 linewidth=1.5pt] (5,1,2) (3,4,-1) (-1,-2,2)

8 \pstThreeDTriangle[$%

9 drawCoor=true, linecolor=black, %

TUGboat, Volume 22 (2001), No. 4

10 linewidth=2pt] (3,1,-2) (1,4,-1) (-3,2,0)
11 \end{pspicture}

For triangles especially, the option linejoin is
important. Its value is passed to the PostScript command
The default value is 1, which gives
rounded edges (figure 11).

setlinejoin.

Figure 11: Meaning of the PostScript command
setlinejoin=0|1]2

9 Squares

The syntax for a 3D square is:
\pstThreeDSquare$%

[<options>]

(<vector o0>)%

(<vector u>) (<vector v>)

Figure 12: Drawing a square with three vectors

Squares are nothing more than a polygon with the
starting point P, given with the origin vector ¢ and the
two direction vectors # and v, which build the sides of
the square as shown in figure 12. With the fillstyle
option the square can be filled with the in pst-plot
defined styles, for example solid like in figure 13. All
the options of pstricks are allowed for this macro.

1 \begin{pspicture} (-3,-2) (4,4)
2 \psgrid
3 \pstThreeDCoor [xMin=-3, xMax=3, yMin=-1, yMax=4,
zMin=-1, zMax=4]
\pstThreeDSquare[$%
fillcolor=blue, ¢
fillstyle=solid, ¢
drawCoor=true, dotstyle=*] (-2,2,3) (4,0,0)
(0,1,0)
8 \end{pspicture}

O SRS

TUGboat, Volume 22 (2001), No. 4

Figure 13: Drawing a filled square with the vectors
from figure 12

Figure 14: Drawing a box with three vectors

10 Boxes

A box is a special case of a square and has the syntax
\pstThreeDBox$%

[<options>]

(<vector o>%

(<vector u>) (<vector v>) (<vector w>)

All options from pstricks are possible here. The
other parameters are the origin vector ¢ and the three
direction vectors #, Vv and w. The figure 14 shows a
box together with these four vectors. In this example the
three direction vectors are perpendicular to each other.

\begin{pspicture} (-2,-1) (3,4.25)

1

2 \psgrid

3 \setkeys{psset}{Alpha=30,Beta=30}

4 \pstThreeDCoor [xMin=-3, xMax=1, yMin=-1, yMax=2,
zMin=-1, zMax=4]

5 \pstThreeDPut (-1,1,2) {\pstThreeDBox (0,0, 2)
(2,0,0) (0,1,0)}

6 \pstThreeDDot [drawCoor=true] (-1,1,2)

7 \setkeys{psset}{arrows=->,arrowsize=0.2}

8 \uput [0] (0.5,0.5) {\vec{o}}

323

9 \uput [0] (0.9,2.25) {S\vec{u}s$}

10 \uput [90] (0.5,1.25) {\vec{v}}

11 \uput [45] (2,1.) {$\vec{w}S$}

12 \pstThreeDLine[linecolor=green] (0,0,0) (-1,1,2)
13 \pstThreeDLine[linecolor=blue] (-1,1,2) (-1,1,4)
14 \pstThreeDLine[linecolor=blue] (-1,1,2) (1,1,2)

15 \pstThreeDLine[linecolor=blue] (-1,1,2) (-1,2,2)

16 \end{pspicture}

11 Ellipses and circles
The equation for a two dimensional ellipse (figure 15) is:

e: (X*XM)2 T (Y*yM)z

=1 @)

a b?

Figure 15: Definition of an ellipse

(xm;ym) is the center, a and b the eccentricity. For
a =b =1 in equation 4 we get the “one” for the circle,
which is nothing more than a special case of an ellipse.
The equation written in parametric form is
xX=a-cosa

. 5
y=b-sinx)
or the same with vectors to get an ellipse in a 3D system:

e:X=¢+cosa-u-+sino -V
0< <360 (6)

where ¢ is the center, i and V the directions vectors which
must be perpendicular to each other.

11.1 Options

In addition to all possible options from the package
pst—plot, we have two special ones for the drawing of
an arc (with predefined values for a full ellipse or circle):
beginAngle=0
endAngle=360

Using the parametricplotThreeD macro (de-
scribed in section 13.2, ellipses and circles are drawn
with a default setting of 50 points for the ellipse or circle.

11.2 Ellipse

In a 3D coordinate system, it is very difficult to see the
difference between an ellipse and a circle. Depending on
the point of view an ellipse may be seen as a circle and
vice versa (figure 16). The syntax of the ellipse macro
is:

324

Figure 16: Drawing ellipses

\pstThreeDEllipse%

[<options>]%

(cx,cy,cz)%

(ux,uy,uz) (vx,vy,vz)
where c is for center and u and v for the two direction
vectors (eq. 6).

1 \psset{xMin=-1, xMax=2, yMin=-1, yMax=2, zMin=-1, zMax

=2}

2 \begin{pspicture} (-2,-2) (2,2)

3 \psgrid

4 \pstThreeDCoor

5 \pstThreeDDot [%

6 linecolor=red, %

7 drawCoor=true] (1,0.5,0.5) % the center
8 \pstThreeDEllipse[%

9 linecolor=blue, linewidth=1.5pt]%

10 (1,0.5,0.5) (-0.5,1,0.5) (1,-0.5,-1)

11 % settings for an arc

12 \pstThreeDEllipse[$

13 beginAngle=0, endAngle=270, %

14 linecolor=green] %

15 (1,0.5,0.5) (-0.5,0.5,0.5) (0.5,0.5,-1)

16 \end{pspicture}

11.3 Circle

The circle is a special case of an ellipse (eq. 6) with the
vectors i and ¥ which are perpendicular to each other:
|id| = |¥| = r. withii-¥ =0
The macro \pstThreeDCircle is nothing more

than a synonym for \pstThreeDEllipse. In the fol-
lowing example the circle is drawn with only 20 plot-
points and the option showpoints=true.
\begin{pspicture} (-2,-1) (2,2)

\psgrid

\pstThreeDCoor [%

xXMin=-1, xMax=2, yMin=-1, yMax=2, zMin=-1, zMax

=2,%

S

5 linecolor=black]

6 \pstThreeDCircle[$%

7 linecolor=red, linewidth=2pt, ¢

8 plotpoints=20, showpoints=true] ¢

9 (1.6,+0.6,1.7) (0.8,0.4,0.8) (0.8,-0.8,-0.4)

10 \pstThreeDDot [drawCoor=true, linecolor=blue
1(1.6,+0.6,1.7)

11 \end{pspicture}

TUGboat, Volume 22 (2001), No. 4

Figure 17: Drawing a circle with the option
showpoints

12 Spheres

Internally, pst-3dplot uses the macro from the pst-vue3d

package! to draw spheres, and places it with the \rput
macro at the right place. The syntax for this macro is

\pstThreeDSphere[<options>] (x,y, z) {Radius}

(x,y,2z) is the center of the sphere. For all the
other possible options or the possibility to draw demi-
spheres, refer to the documentation.[3]

Figure 18: Drawing a sphere with package
pst-vue3d

1 \begin{pspicture} (-4,-2) (2,4)

2 \psgrid

3 \pstThreeDCoor [xMin=-3, xMax=4, yMin=-1, yMax=2,
zMin=-1, zMax=4]

\pstThreeDSphere[linecolor=blue] (1,-1,2) {2}

5 \pstThreeDDot [dotstyle=x, linecolor=red, drawCoor
=true] (1,-1,2)

6 \end{pspicture}

! CTAN:graphics/pstricks/contrib/pst-vue3d, and from Manuel
Luque’s homepage[3]. The documentation is in French, but it is mostly
self-explanatory.

TUGboat, Volume 22 (2001), No. 4

13 Mathematical functions

There exist two macros for plotting mathematical func-
tions f(x,y), which work similarly to the one from
pst-plot.

13.1 Function f(x,y)

The macro for plotting functions does not have the same
syntax as the one from pst-plot[5], butitis used in the
same way:
\psplotThreeD [<options>]%

(xMin, xMax) (yMin, yMax) %

{<the function>}

The function has to be written in PostScript code
and the only valid variable names are x and y. For
example, {x dup mul y dup mul add sqrt} rep-
resents the math expression /x2-+y?. The macro

325

The function is calculated within two loops:
for (float y=yMin; y<yMax; y+=dy)

for (float x=xMin; x<xMax; x+=dx)

z=f(x,y);

Because of the inner loop it is only possible to
get a closed curve in x direction. Therefore fewer
yPlotpoints are not a real problem, but too few
xPlotpoints results in a bad drawing of the mathemat-
ical function, especially for the plotstyle option line.

Drawing three dimensional mathematical functions
with curves which are transparent makes it difficult to see
if a point is before or behind another one. \psplotThreeD
has an option hiddenLine for a primitive hidden line
mode, which only works well when the y-interval is
defined such that y, > y;. Then, every new curve is
plotted over the previous one and filled with the color

\psplotThreeD has the same plotstyle options as \psplot, White. Figure 20 is the same as figure 19, only with the

except the plotpoints-option which is split into one
for x and one for y (table 1).

Table 1: Options for the plot macros

Option name | value
plotstyle dots

line

polygon

curve

ecurve

ccurve

none (default)
showpoints default is false
xPlotpoints | defaultis 25
yPlotpoints | defaultis 25
hiddenLine default is false

Equation 7 is plotted with the following parameters
and seen in figure 19.

2=10 (¥ +x* - g) e (074

n o ((—1.225)24)2) 7

\begin{pspicture} (-6,-4) (6,5)

\psgrid

\psset {Alpha=45,Beta=15}

\psplotThreeD[%
plotstyle=line, ¢
yPlotpoints=40, xPlotpoints=30, ¢
linewidth=1pt] (-4,4) (-4,4) {8

x 3 exp x y 4 exp mul add x 5 div sub

© 9w R W N =

10 mul
9 2.729 x dup mul y dup mul add neg exp
mul
10 2.729 x 1.225 sub dup mul y dup mul add

neg exp add}
11 \pstThreeDCoor [xMin=-1, xMax=5, yMin=-1, yMax=5,
zMin=-1, zMax=5]
12 \end{pspicture}

option hiddenLine=true

13.2 Parametric plots

Parametric plots are possible for drawing curves or areas.
The syntax for this plot macro is:
\parametricplotThreeD [<options>]%
(tl,t2) (ul,u2)%

{<three parametric functions x y =z}

The only possible variables are t and u with t1, t2
and ul, u2 as the range for the parameters. The order
for the functions is not important and u may be optional
when having only a three dimensional curve and not an
area.

x = f(t,u)
y =f(tu) ®)
z = f(t,u)

To draw a spiral we have the parametric functions:
X =rcost
y =rsint)
z =1/600

In the example, the ¢ value is divided by 600 for the
z coordinate, because we have the values for 7 in degrees,
here with a range of 0°...2160°. Drawing a curve in a
three dimensional coordinate system does only require
one parameter, which is by default t. In this case we do
not need all parameters, so that we can write
\parametricplotThreeD [<options>]$%

(tl,t2)%

{<three parametric functions x y =z}
which is the same as (0, 0) for the parameter u. Figure
21 shows a three dimensional curve.

1 \begin{pspicture} (-3,-2) (3,5)
2 \psgrid

3 \parametricplotThreeD[$%

4

5

xPlotpoints=200, ¢
linecolor=blue, $

326 TUGboat, Volume 22 (2001), No. 4

, i
S
o \\\‘:"Wl S

Figure 19: Plot of equation 7

Figure 20: Plot of equation 7 with the hiddenLine=true option

TUGboat, Volume 22 (2001), No. 4

Figure 21: Drawing a 3D curve

6 linewidth=1.5pt,

7 plotstyle=curve] (0,2160) { %

8 2.5 t cos mul

9 2.5 t sin mul

10 t 600 div$

11 }

12 \pstThreeDCoor [xMin=-1, xMax=4, yMin=-1, yMax=4,

zMin=-1, zMax=5]
13 \end{pspicture}

Instead of using the \pstThreeDSphere macro
(see section 12) it is also possible to use parametric
functions for a sphere. The macro plots continous lines
only for the t parameter, so a sphere plotted with the
longitudes needs the parametric equations as

X =cost-sinu
Y =Cost-cosu
z = sint

(10)

The same is possible for a sphere drawn with the
latitudes:
X =cosu-sint
Yy =cosu-cost
z=sinu

(11

and lastly, we can have both of these parametric func-

tions together in one pspicture environment (figure 22).

1 \begin{pspicture} (-1,-1) (1,1)

2 \psgrid

3 \parametricplotThreeD[#%

4 plotstyle=curve,yPlotpoints=40] (0, 360) (0,360) { %
5 t cos u sin mul

6 t cos u cos mul

7 t sin
8}

9 \parametricplotThreeD[#%

10 plotstyle=curve, yPlotpoints=40] (0, 360) (0,360) {%
11 u cos t sin mul

12 u cos t cos mul

13 u sin

327

4}
15 \end{pspicture}

_‘i::-Z
l \ —_%.—
— <
> <
\If =

Figure 22: Different views of the same parametric
functions

14 Plotting data files

We have the same conventions for data files which hold
3D coordinates as for 2D. For example:

0.0000 1.0000 0.0000
-0.4207 0.9972 0.0191
0.0000, 1.0000, 0.0000
-0.4207, 0.9972, 0.0191

(0.0000,1.0000,0.0000)
(-0.4207,0.9972,0.0191)

{0.0000,1.0000,0.0000}
{-0.4207,0.9972,0.0191}

There are the same three plot functions:

\fileplotThreeD[<options>] {<datafile>}
\dataplotThreeD[<options>] {<data object>}
\listplotThreeD[<options>] {<data object>}

The data file used in the following examples has
446 entries like

6.26093349..., 2.55876582..., 8.131984...

328

Using the 1istplot ThreeD macro with many data
entries may take considerable time on slow machines.
The possible options for the lines are the same as earlier,
given in table 1.

14.1 \fileplotThreeD
The syntax is straightforward:

\fileplotThreeD[<options>] {<datafile>}

If the data file is not in the same directory as the
document, use the file name with the full path. Figure 23
shows a file plot with the option 1inestyle=1line.

Figure 23: Demonstration of \fileplotThreeD
with Alpha=30 and Beta=15

1 \begin{pspicture} (-7.5,-3) (6,10)
2 \psset {xunit=0.5cm, yunit=0.75cm, %
3 Alpha=30,Beta=30}$% the global parameters
4 \pstThreeDCoor [%
5 xMin=-10, xMax=10, %
6 yMin=-10, yMax=10, %
zMin=-2, zMax=10]
8 \fileplotThreeD[plotstyle=polygon] {data3D.
Roessler}
9 \end{pspicture}

14.2 \dataplotThreeD
The syntax is:
\dataplotThreeD [<options>] {<data object>}

In contrast to \fileplot ThreeD, the second macro
\dataplotThreeD reads the data entries from another

TUGboat, Volume 22 (2001), No. 4

macro. Using \readdata, external data can be read
from a file and saved in a macro, to be passed to
\dataThreeD [1].

\readdata{<data object>}{<datafile>}

Figure 24: Demonstration of \dataplotThreeD
with Alpha=-30 and Beta=30

\readdata{\dataThreeD}{data3D.Roessler} [...]
\begin{pspicture} (-6,-2.25) (6,11
\psset{xunit=0.5cm, yunit=0.75cm, %
Alpha=-30}
\pstThreeDCoor [%
xMin=-10, xMax=10, %
yMin=-10,yMax=10, %
zMin=-2, zMax=10]
\dataplotThreeD[plotstyle=1line] {\dataThreeD}
0 \end{pspicture}

© % N9 U B W N —

143 \listplotThreeD
The syntax is:
\listplotThreeD[<options>] {<data object>}

There is no essential difference between the ma-
cros \istplotThreeD and \dataplotThreeD. With
\listplotThreeD, one can pass additional PostScript
code, which is appended to the data object. For example:

TUGboat, Volume 22 (2001), No. 4

\dataread{\data} {data3D.Roessler}

1

2 \newcommand{\dataThreeDDraft}{$

3 \data\space

4 gsave % save graphic state

5 /Helvetica findfont 40 scalefont setfont
6 45 rotate % rotate 45 degrees

7 0.9 setgray % 1 ist white

8 -60 30 moveto (DRAFT) show

9 grestore

Figure 25: Demonstration of \1istplotThreeD
with a view from above (Alpha=0 and Beta=90)
and some additional PostScript code

Figure 25 shows what happens with this additional
PostScript code. Another example can be found in [5],
where ScalePoints isredefined. For pst-3dplot,
the equivalent macro is named ScalePointsThreeD.

\begin{pspicture} (-5,-4) (5,4.5)
\psset {xunit=0.5cm, yunit=0.5cm, %
Alpha=0,Beta=90}
\pstThreeDCoor [%
xMin=-10, xMax=10, %
yMin=-10, yMax=7.5, %
zMin=-2, zMax=10]
\listplotThreeD[plotstyle=line]{\
dataThreeDDraft}
9 \end{pspicture}

S =N S SO O

329

15 PDF output

pst—3dplot is based on the popular pstricks pack-
age and writes pure PostScript code[2], so it is not possi-
ble to run TEX files with pdfIATEX when there are pstricks
macros in the document. If you need PDF output, there
are the following possibilities:

e the package pdftricks.sty [6]
o the free (for Linux only) program VIEX/Lnx (http:
//www.micropress—inc.com/linux/
e the ps2pdf (dvi—ps—pdf) or dvipdfm utilities
o the ps4pdf package [4].
If you need package graphicx.sty, load it be-

fore any pstricks package. You do not need to load
pstricks.sty, as this will be done by pst-3dplot.

References

[1] Laura E. Jackson and Herbert VoB3. Die Plot-
Funktionen von pst-plot. Die TgXnische
Komddie, 2/02:27-34, June 2002.

[2] Nikolai G. Kollock. PostScript richtig eingesetzt:
vom Konzept zum praktischen Einsatz. IWT, Vater-
stetten, 1989.

[3] Manuel Luque. Vue en 3D. http://members.
aol.com/Mluque5130/vue3dl6112002.zip,
2002.

[4] Rolf Niepraschk. ps4pdf. CTAN: /macros/latex/
contrib/psdpdf/, 2003.

[5] Herbert Vo3. Die mathematischen Funktionen von
PostScript. Die TEXnische Komdodie, 1/02:40—-47,
March 2002.

[6] Herbert VobB. PSTricks Support for pdf.
http://www.educat.hu-berlin.de/~voss/
lyx/pdf/pdftricks.phtml, 2002.

[7] Timothy van Zandt. PSTricks - PostScript
macros for Generic TgX. http://www.tug.org/
application/PSTricks, 1993.

< Herbert Vof3
Wasgenstr. 21
14129 Berlin GERMANY
voss@perce.de
http://www.perce.de

330

Axis alignment in Xy-pic diagrams
Alexander R. Perlis

Abstract

By default, Xy=pic aligns diagrams according to the
center of each object. For many types of diagrams,
such center alignment is the preferred choice; how-
ever, axis alignment is sometimes better. For exam-
ple, compare A A2 (center-aligned) with A->A?
(axis-aligned); the arrow stayed in the same place,
but the A moved up a little, and the A% moved up
a lot. Note that the simple TEX code $A \to A~2$
uses axis alignment: A— A2,

This article studies attempts to instruct Xy-pic
to use axis alignment and presents a concise solu-
tion to the problem. Enhancements to Xy-pic are
proposed.

1 Preliminaries

The version of Xy-pic used here is 3.7 (16Feb1999).
The Xy=pic User’s Guide will be cited as [XY GUIDE],
and the Xy pic Reference Manual as [XY MANUAL].
These documents are part of the Xy-pic distribution
available on CTAN.

This article’s abstract already defined center
alignment and exhibited the subtle differences be-
tween that and axis alignment, but the latter was
left undefined. For now, it means “the alignment
used by the simplest of TEX code”. Matters will
make more sense after section 5, where the align-
ment practices of TEX and Xy-pic are explained in
detail.

For most of this article, we will study attempts
at axis alignment using the \xymatrix feature of
Xy-pic. (It is introduced nicely in [XY GUIDE].) The
one-line solution to our alignment problem appears
in section 7. Solutions for the \xygraph feature and
for Xy-pic kernel code appear there as well.

2 The problem

We are (happily) compelled to use Xy-pic because
it produces fantastic diagrams we cannot otherwise
obtain, yet we recognize that many of our center-
aligned diagrams ought to be axis-aligned. We wish
to instruct Xy-pic to use the preferred alignment.
To study the matter, we need a toy example
that exhibits a wide gulf between the two types of
alignment, yet fits in this article’s columns.

\def\toyone{c} \def\toytwo{a\frac{x}{y}}
\def\toythree{\underline{\underline{g}}}
\def\toyfour{\hat{\hat{\overline

{\overline{h~2}}}}}
\def\toyexample{’,

TUGboat, Volume 22 (2001), No. 4

\toyone \ar[d] \ar[r]
& \toytwo \ar[d] \ar[r] \ar[dl]
& \toythree \ar[d] \ar[r] \ar[dl]

& \toyfour \ar[d] \ar[dl] \\
\toyfour \ar [r]

& \toyone \ar[r]

& \toytwo \arl[r]

& \toythree \\

}

The result of \xymatrix{\toyexample} is

v

What a monstrosity! To shirk responsibility, let’s
take the viewpoint that a famous mathematician has
hired us to typeset this bewildering diagram as part
of her new book. The notation is beyond our control.

A quick peek (go ahead!) at the end of section 7
shows what we’re after. To get a sense of the dif-
ference, compare the top rows of the two diagrams
without the arrows:

»<=0

s
HQ%;‘;H»

h?

gh2.

caigﬁ versus caj
The reader interested merely in the solution to our
problem should skip directly to section 7, or to sec-
tion 5 for some background on that solution.

The material below in sections 3 and 4 has noth-
ing to do with the ultimate solution, and is included
mainly for the Xy-pic enthusiast interested in why
\xymatrix@l and variations on that theme do not
solve our problem.

3 Using \xymatrix01
The first idea is to try \xymatrix@1l in place of

\xymatrix. This gives

/|

The top row is

<0
<l

a

ISS) %;.SH»

<8

h2

ca%gﬁ.

That’s neither center-aligned nor axis-aligned! To
be fair, [XY GUIDE, §1.4, p.3] only encourages use of
\xymatrix@l with one-line diagrams. Leaving our
toy example aside for the rest of this section, let’s

TUGboat, Volume 22 (2001), No. 4

experiment a bit with one-line diagrams:"

$\xymatrix{A \ar[r] & A’}$ A=A
$\xymatrix@1{A \ar[r] & A’}$ A=A

Hoorah! The latter is axis-aligned! But if we replace
A" with A%, we get:

$\xymatrix{A \ar[r] & A"2}$ A= A2

$\xymatrix@1{A \ar[r] & A"2}$ A= A2

Unhoorah. This time the result is neither center-
aligned nor axis-aligned: the placement of A2 is too
low. The mistake is easier to spot by enlarging and
putting all the diagrams on a rule:

/ / /

— — —

2 2

— A2 -~ —

Left: \xymatrix. Middle: \xymatrix@1l. For com-
parison, $A \to A’$ and $A \to A~2$ are included
on the right—being the simplest of TEX code, they
are axis-aligned by definition!

In one case of a one-line diagram, \xymatrix@1
succeeds, yet in another, it fails. Why did that
happen? The difference between \xymatrix and
\xymatrix@1 is that the latter inserts a zero-width
left parenthesis at the start of every entry, and doing
so affects the vertical spacing.?

/ ~ / N /

2 A A2

=

—~ A2 —

An entry’s center is determined by its bounding box,
which in turn is determined by the parts of the entry
that stick out the most. Both A and A’ are dwarfed
by the parenthesis, but A? is not: the superscript
sticks out more than the parenthesis. Consequently,
the center of (A? is slightly higher than that of (A
or (A’; thus, to align entries by their center, Xy-pic
must lower (A2 slightly. (Why doesn’t it instead
raise everything else? We’ll answer this question in
section 5.)

In summary, \xymatrix@1 gives an axis-aligned
result only when the diagram’s entries fit inside reg-
ular parentheses. Otherwise, the result likely will be
neither center-aligned nor axis-aligned.

1 The diagrams in $. . .$ were made smaller by setting up
\xymatrix with @-1.25pc@M=1pt. The sample code does not
reflect this.

2 There is another difference between \xymatrix and
\xymatrix@l, not documented in [XY MANUAL]: @1 implies
@M=1pt. This explains why, in comparing the diagram at the
start of section 3 to the one at the end of section 2, the arrows
are closer to the entries.

331

4 Mimicking \xymatrix@1

Ah ha! With large entries, the zero-width left paren-
thesis inserted by \xymatrix@1 is not tall enough,
so let’s use a taller one. Since

\xymatrix@1{\toyexample}
is equivalent? to

\everyentry={\vphantom(}
\xymatrix{\toyexample}

we might first try

\everyentry={\vphantom{\bigl (}}
\xymatrix{\toyexample}

but discover this isn’t enough, and after running out
of named sizes, we might try letting TEX make the
precise calculation:

\everyentry={\vphantom{\left (\toyone\toytwo

\toythree\toyfour\right.}}
\xymatrix{\toyexample}

o
S
<8
1SS}
>
[\V)

>
o
o
S
|
INS)

Hey, this is axis-aligned! Unfortunately, many of the
arrows now appear to be afraid of the entries. To
understand what went wrong, take a look at the size
of the delimiter we inserted around each entry:

cafghi
y:

Each entry’s vertical size is determined by the de-
limiter, and then, as usual, \xymatrix adds an ad-
ditional margin:

\left (\toyone\toytwo
\toythree\toyfour\right.

ne

|

o}
S
< |8
IS

Py

ol =<
<~
B S

o
S

<8

IS}

Evidently, the promising approach of inserting zero-
width material to affect vertical alignment, which
is used by \xymatrix@1, is fundamentally flawed:
important height information gets lost!

It’s time to step back and study the alignment
algorithms in TEX and Xy-pic.

332

5 How TEX and Xy-pic align objects

Earlier we asked: in going from A=A’ to A=A',
why does the arrow stay put and the A and A’ move
up, instead of, say, the A staying put, the arrow
moving down, and the A’ moving (slightly) up?

Inside math mode, TEX maintains two reference
lines for alignment purposes: the baseline and the
axis. These lines are not part of the characters being
typeset; rather, they depend only on the current font
and thus should be thought of as being part of the
underlying canvas. As for the characters, each one
has a bounding box and a reference point (obtained
from the font’s TFM file).

In horizontal mode and in math mode, TEX po-
sitions each character so that the character’s refer-
ence point lands on the canvas’s baseline. The axis
comes into play when TEX builds a fraction: the nu-
merator and denominator are positioned so that the
bar of the fraction lands on the canvas’s axis. Each
delimiter, such as the left parenthesis, is designed
to involve both lines: as with all characters, TEX
positions the delimiter so that its reference point
lands on the canvas’s baseline; however, in so do-
ing, due to the shape of the delimiter, the middle
of the delimiter lands precisely on the canvas’s axis.
In other words, after placement, each delimiter has
equal height and depth when measured from the axis,
but not when measured from the baseline.

Xy-pic, on the other hand, maintains its own
reference point for each object, which starts out in
the center of the object. When Xy-pic hands a fin-
ished object to TEX for placement, it does so in such
a way that the object’s Xy-pic reference point lands
on the canvas’s axis.?

Let’s summarize. When TEX is in charge, the
TEX reference point lands on the baseline. When
Xy-pic is in charge, the Xy-pic reference point lands
on the axis.

Let’s illustrate. On the left, we see how TEX
positions an A: the TEX reference point e lands on

the baseline.

A X A
A AN |

Next we see how Xy-pic positions A, (4, and (4%

the Xy-pic reference point o, which defaults to the

object’s center, lands on the axis. In the case of (4,
the TEX reference point happens to land on the base-

3 As explained in [XY MANUAL, §2.1, p.6], that’s true only
when Xy-pic was entered inside math mode. Otherwise there
is no axis, and so the canvas’s baseline is used. This affects
everything. The net effect is to shift the entire diagram, ar-
rows and all, by a fixed amount.

TUGboat, Volume 22 (2001), No. 4

line, but that’s merely a consequence of how delim-
iters are designed (discussed earlier in this section).
We wish to achieve the following:

((A2

The Xy-pic reference point should be positioned away
from the center in such a way that when it lands on
the axis, the TEX reference point will land on the
baseline. The crucial measurement is easy to spot:
the vertical distance between the Xy-pic reference
point and the TEX reference point should be the
same as the distance between the canvas’s baseline
and axis. TEX will cough up that distance if you
feed it \fontdimen22\textfont?2.

By positioning the Xy-pic reference point appro-
priately, we achieve the desired alignment without
changing the object’s bounding box. This is the so-
lution we’ve been seeking! The code is presented in
section 7.

6 Aside: the term axis-aligned

By the discussion in the previous section, we con-
clude that axis-aligned means: objects are aligned
with their TEX reference point on the baseline, while
diagram arrows point to the axis (because that’s
where the Xy-pic reference point is). But the fol-
lowing description does a better job justifying the
term. Before being dropped on the canvas, each
object is typeset in its own box and thus has its
own axis. Getting the object’s TEX reference point
onto the canvas’s baseline is equivalent to getting
the object’s axis onto the canvas’s axis. Thus azis-
aligned means: each object’s axis lies on the canvas’s
axis, and each arrow points to that common axis. In
short, everything is aligned by the axis!

7 The solution

We have seen that Xy-pic positions an object so that
the Xy-pic reference point, which defaults to the ob-
ject’s center, lands on the canvas’s axis. To alter
the placement, we either move the object’s center by
changing its size, or move the Xy-pic reference point
away from the center. In section 4 we disposed of
the idea of changing the object’s size, because the
original size is needed later for drawing arrows. At
the end of section 5, we saw that moving the Xy-pic
reference point appropriately solves our problem.
All said and done, our solution is to put

\entrymodifiers={+!!<0pt,\fontdimen22\textfont2>}

prior to each \xymatrix, or simply once and for all
in the document’s preamble.

TUGboat, Volume 22 (2001), No. 4

The + sets up a margin similar to the default
margin used by \xymatrix (the difference is dis-
cussed briefly in section 9). The first ! moves the
XY-pic reference point from the object’s center down
to the line containing TEX’s reference point, and
then !<Opt,\fontdimen22\textfont2> moves it up
the appropriate distance so that, when it is dropped
on the canvas’s axis, the TEX reference point lands
on the canvas’s baseline.

Although [XY GUIDE] introduces Xy-pic in terms
of the \xymatrix feature, there are other ways of
using Xy-pic, notably \xygraph or even direct kernel
code. With the \xygraph feature, axis alignment is
obtained by putting
17x{+!11<0pt,\fontdimen22\textfont2>}

at the start of each graph. With Xy-pic kernel code,
add the drop modifiers
11<0pt, \fontdimen22\textfont2>

to each object that should be axis-aligned. But be
careful: the effect is cumulative. Thus, if you drop a
\composite of objects that should be axis-aligned,
either axis-align the composite object, or the indi-
vidual objects, but not both.

Returning to our toy example from section 2,
the axis-aligned result is:

\entrymodifiers={+!!<0pt,\fontdimen22\textfont2>}
\xymatrix{\toyexample}

aZ
Yy

/

» <— 0

h2

o

I
e <—|»

8 Caveats
8.1 Size

By default, Xy-pic builds objects in \textstyle.* If,
say, \scriptstyle is used instead, then each use of
\textfont2 in our solution should be replaced with
\scriptfont2. After all, the distance between the
baseline and axis depends on the size of the math
font.

8.2 Labels

By default, Xy-pic places arrow labels halfway be-
tween the Xy-pic reference points of the source and
destination objects. Even though the shenanigans
in this article move the reference point away from
the object’s center, from the viewpoint of the un-

4 [XY MANUAL, §4] incorrectly claims the default to be
\displaystyle. To actually obtain \displaystyle, one puts
\objectstyle=\displaystyle.

333

derlying canvas, it is the object that moves, not the
reference point! On the canvas, the final locations of
the reference points remain the same, and thus all
labels and arrow destinations remain put. However,
objects shift vertically, thus affecting their bound-
ing boxes and the lengths of arrows. That in turn
affects our perception of whether a label is properly
placed. In short, hand-tuned code that does a great
job with labels on a center-aligned diagram may not
do a great job on an axis-aligned diagram. Moral:
first settle on a choice of diagram alignment, then
tune the placement of your labels.

9 Proposed enhancements to Xy-pic
Both from the public Xy-pic list
http://tug.org/mailman/listinfo/xy-pic

and from private email exchanges, I gather that the
authors of Xy-pic welcome the discussion of ideas for
improving Xy-pic. Perhaps someone familiar with
the source code of Xy-pic could experiment with im-
plementations of the following ideas.

1. The kernel language might support the drop
modifier !'A to have the same effect as

1<0pt,\fontdimen22\textfont2>.

(The letter ‘A’ reminds us of “axis” and “align-
ment”.) Actually, the definition should depend
on \objectstyle. For example, with

\objectstyle=\scriptstyle,
1A should be shorthand for
1<0pt, \fontdimen22\scriptfont2>.

2. The \xymatrix feature could support @A as a

setup to have the same effect as setting
\entrymodifiers={+!!A}.

Actually, the source code indicates that the de-
fault value is \entrymodifiers={\entrybox},
and the source for \entrybox seems to do more
than \entrymodifiers={+} would do. Is that
true? If so, @A should probably also use the
more complicated behavior. The point is to
gain axis alignment without losing something
else.

3. The setup @1 could be redefined to simply mean
@A@M=1pt. As discussed in section 3, today’s @1
is a buggy construct: the math strut negatively
affects vertical spacing and arrows; in particu-
lar, today’s @1 even fails to properly align sim-
ple one-line diagrams like A—A2.

4. The matrix option might support some kind of
global \everyxymatrix={.. .}, so that one can
easily specify setups like @A once and for all in a
document’s preamble. The alternative is to put

334

\entrymodifiers={+!!A} in the preamble, but
newcomers to Xy-pic are likely to master the use
of \xymatrix setups prior to tackling kernel-
level drop modifiers.

5. Similarly, the graph option might support
\everyxygraph={...}. When missing, the
usual defaults [XY MANUAL, p.53] would apply.

10 Acknowledgments

The problem of aligning objects and arrows appro-
priately to achieve beautiful diagrams is hardly new.
(Just think of TEX itself, or all the diagram packages
available on CTAN.) Within the context of Xy-pic,
the problem was discussed and solved in 2001 on
the Xy-pic list by Vadim Radionov, whose solution
is essentially identical to the one obtained here.

I thank Ross Moore and Florian Lengyel for
commenting on earlier versions of this article, and
Michael Abbott for discussing the ideas in section 9.

¢ Alexander R. Perlis
Department of Mathematics
The University of Arizona
Tucson, AZ 85721 USA
aprl@math.arizona.edu

TUGboat, Volume 22 (2001), No. 4

334

Eukleides: A geometry drawing language
Christian Obrecht

As a mathematics teacher in a French high school,
I have to compose a rather large number of doc-
uments for my students, containing both text and
formulas. In my point of view, IXTEX is the best
tool in such a situation, combining efficiency and
high quality. Very often, these documents should be
illustrated with geometric figures. I first used the
excellent PSTricks package to draw them. I didn’t
want to use WYSIWYG software instead, because I
wanted to keep following I4TEX’s philosophy, that is:
What You Mean Is What You Get. Unfortunately,
PSTricks isn’t designed for geometry at all and is
rather inappropriate in many situations.

One night, I wanted to draw a triangle with
an inscribed circle, so I had to compute by hand
the coordinates of the center and the radius of this
circle, which is quite boring. During these calcula-
tions, I realized that they could easily be done by a
computer, and that gave me the idea to create Eu-
kleides, a geometry drawing language. My goal was
to make it as close as possible to what mathemat-

TUGboat, Volume 22 (2001), No. 4

ics teachers would say to describe geometric figures.
For instance, the former problem, written as an ex-
ercise, could be:

Let ABC be a triangle and Z its inscribed
circle. Draw ABC and .

In Eukleides, it gives:

A B C triangle
I = incircle(A,B,C)
draw(A,B,C) ; draw(I)

Which leads to the following graphical result:

frame(-0.5,-0.5,6.5,4.5) A B C triangle I =
incircle(A,B,C) draw(A,B,C) ; draw(I)

Once the design of the language was done, I
wrote eukleides,! a compiler which translates Eu-
kleides code into PSTricks macros. This program
can run as a filter. That is, it can take a KTEX
source containing Eukleides code, and replace this
code with PSTricks macros, producing a ready-to-
TEX file.

There’s also a graphical interface to the lan-
guage, with additional interactive features, named
xeukleides. It was first meant for classroom pre-
sentations, but it can also be seen as a tool to com-
pose and tune some Eukleides code for later inclu-
sion in a KTEX source.

Both programs are released under the GNU
Public License. They were developed on a
GNU/Linux system, and were ported to several op-
erating systems: NetBSD, FreeBSD, Mac OS X,
MS Windows. Their source code is available from
CTAN? or the Eukleides home page® (which also of-
fers GNU/Linux and Win32 executables).

Around Morley’s triangle

As a first introduction to the Eukleides language,
we’ll study the source code which gives the following
figure. It illustrates Morley’s theorem: The points
of intersection of the adjacent trisectors of the an-
gles of any triangle are the vertices of an equilateral
triangle.

frame(-1,-0.5,7,4.5) A B C triangle a =
angle(B,A,C) b = angle(C,B,A) ¢ = angle(A,C,B)
ab = angle(vector(A,B)) bc = angle(vector(B,C))
ca = angle(vector(C,A)) 11 = line(A,(ab + a/3):)
12 = line(A,(ab + 2*a/3):) 13 = line(B,(bc +
b/3):) 14 = line(B,(bc 4+ 2*b/3):) 15 = line(C,(ca
+ ¢/3):) 16 = line(C,(ca 4+ 2*¢/3):) D =

1 It was formerly named euklides, but this name was
already given to other geometry software.

2 In /tex-archive/support/eukleides/.

3 At http://perso.wanadoo.fr/obrecht/.

TUGboat, Volume 22 (2001), No. 4

intersection(11,14) E = intersection(13,16) F =
intersection(12,15) color(lightgray) draw(11) ;
draw(12) draw(13) ; draw(14) draw(15) ; draw(16)
color(black) draw(A,B,C) ; draw(D,E,F)

Here is the corresponding code?.

1 A B C triangle

2 a = angle(B,A,C)

3 b = angle(C,B,A)

4 ¢ = angle(4,C,B)

5 ab = angle(vector(4,B))

6 Dbc = angle(vector(B,C))

7 ca = angle(vector(C,A))

8 11 = line(A,(ab + a/3):)

9 12 = line(A, (ab + 2*a/3):)
10 13 = line(B,(bc + b/3):)
11 14 = 1line(B, (bc + 2*b/3):)
12 15 = line(C,(ca + c/3):)
13 16 = 1line(C, (ca + 2%c/3):)
14 D = intersection(11,14)

15 E = intersection(13,16)

16 F = intersection(12,15)

17 color(lightgray)

18 draw(1l1) ; draw(12)

19 draw(13) ; draw(14)

20 draw(l5) ; draw(16)

21 color(black)

22 draw(A,B,C) ; draw(D,E,F)

In Eukleides source code, a line can contain
several commands (in that case, they have to be
separated by semicolons). Commands are of two
kinds: variable assignments and graphical com-
mands. Among variable assignments are single as-
signments (see lines 2-16) and multiple assignments
(line 1). A variable can store a wide variety of ob-
jects used in elementary geometry: numbers, vec-
tors, points, lines, segments, circles, conics.

Multiple assignments are used for definitions of
polygons and for some intersection determinations.
The statement in line 1 defines an optimal scalene
triangle such that segment AB is horizontal and 6
cm long. All these characteristics can be modified
by adding some optional parameters to the keyword
‘triangle’. Forinstance ‘A B C triangle(4,5,6)’
would define a triangle ABC such that AB = 4 cm,
BC =5 cm and AC = 6 cm.

If the desired triangle has to be of a specific
kind, the simplest way is to replace ‘triangle’ with
‘right’, ‘isosceles’ or ‘equilateral’. For in-
stance ‘A B C right(5,30:,10:)’ would define a
triangle ABC with an angle of 30° in A, a right an-

4 The numbers at the beginning of each line are not part
of it.

335

gle in B and such that segment AB measures 5cm
and makes an angle of 10° with the horizontal di-
rection. The colon character is used to distinguish
angular parameters from others (like lengths).

On lines 2-7, one can see two possible usages
of the function ‘angle’. In the first case (lines 2—4),
it simply gives the measures of the angles in trian-
gle ABC. In the second case (lines 5-7), it gives
the argument of some vectors. As with many func-
tions in Eukleides, ‘angle’ can handle several kinds
of arguments.

On lines 8-13 are the definitions of the trisec-
tors of the triangle ABC. Since trisectors (unlike
bisectors) aren’t very common objects, there’s no
built-in function to define them. The function ‘line’
is used instead. Here, the second argument is the an-
gle that the line makes with the horizontal direction.
This is not the only way to define a line: the second
argument could have been a point or a vector.

Graphical commands are of two kinds: setting
commands (see lines 17 and 21) and drawing com-
mands (see lines 18-20 and 22). To draw an object,
one simply has to use the function ‘draw’. This func-
tion can take additional arguments in order to mod-
ify the aspect of the drawn object (such as ‘dotted’
or ‘dashed’ for lines). On line 22, the arguments
of ‘draw’ are a list of points: it’s the way to draw
polygons. Since polygons are not considered as spe-
cific objects in Eukleides, there’s no need to declare
DEF as a triangle before drawing it.

More graphical commands

Usually, a geometric figure doesn’t contain only
straight and curved lines, but also letters and some
conventional marks (used to make some properties
obvious). Below is a classical example of such a fig-
ure representing a parallelogram.

A B C D parallelogram(5,4,105:) O =
barycenter(A,B,C,D) frame(-2,-1,6,4.5)
draw(A,B,C,D) ; draw(O) draw(” A”,A,-130:)
draw(” B”,B,-30:) draw(”C”,C,50:)
draw(” D”,D,130:) draw(segment(A,C),dotted)
draw(segment(B,D),dotted) mark(segment(A,0))
mark(segment(O,C)) mark(segment(B,0),cross)
mark(segment(O,D),cross) mark(B,A,D)
mark(D,C,B) mark(C,B,A,double)
mark(A,D,C,double)

Here is the corresponding code.

1 A B C D parallelogram(5,4,105:)
0 = barycenter(A,B,C,D)
frame(-2,-1,6,4.5)
draw(A,B,C,D) ; draw(0)
draw("A",A,-130:)

U W N

336

draw("B",B,-30:)
draw("C",C,50:)
draw("D",D,130:)
draw(segment (A,C) ,dotted)
10 draw(segment(B,D),dotted)
11 mark(segment(A,0))

12 mark(segment(0,C))

13 mark(segment(B,0),cross)
14 mark(segment(0,D),cross)
15 mark(B,A,D)

16 mark(D,C,B)

17 mark(C,B,A,double)

18 mark(A,D,C,double)

Noliie JaEN Be

Since this figure is rather simple (from a ge-
ometrical point of view) only two assignments are
needed. On line 1 is a multiple assignment which de-
fines a parallelogram ABC D such that AB =5 cm,
AD = 4 cm and BAD = 105°. On line 2, a single
assignment defines O as the center of parallelogram
ABCD.

Even though Eukleides is designed in order to
use as few coordinates as possible, the internal rep-
resentation of the geometrical objects is based on
them. By default, figures are drawn in a frame such
that the lower left corner has coordinates (—2; —2)
and the upper right corner (8;6). The function
‘frame’ enables one to change these settings.

As one can see on line 4, the function ‘draw’ is
useful to represent single points (the default shape
is a dot, but it can also be a square or a cross). This
function can also be used to give names to points,® as
in lines 5-8. Here, the first argument is a string, the
second a point and the third an angular argument
specifying the position of the label. This string can
contain TEX code® such as mathematical formulas.

On lines 11-18 are the marking commands. It
is possible to mark, in various ways, either segments
(lines 11-14) or angles (lines 15-18).

A classical locus problem

In some situations, a computer screen can be very
useful to teach geometry. For instance, a locus prob-
lem becomes much easier if one can see several states
of the figure. The program xeukleides has been
developed for this. At startup, it appears as a text
editor. If you type the lines below:

1 x interactive(2,.1,0,6,"A",right)

2 A MTI equilateral(x)

3 M B J equilateral(6-x)

4 color(lightgray)

5 Or to put any kind of text in a specific place.
6 This code will only be interpreted if you run eukleides
and latex. With xeukleides it is displayed verbatim.

TUGboat, Volume 22 (2001), No. 4

draw(segment (I,J))
color(black)

draw(A,M,I) ; draw(M,B,J)
draw(barycenter(I,J))

0 3 O Ot

and press the escape key, the text area will be re-
placed by a graphical area containing the following
figure:

frame(-0.5, -0.5, 6.5, 4) x
interactive(2,.1,0,6,” A” right) A M I equilateral(x)
M B J equilateral(6-x) color(lightgray)
draw(segment(1,J)) color(black) draw(A M) ;
draw(M,B,J) draw(barycenter(I,J))

If you now press the right arrow key, you’ll see
the left triangle becoming bigger and the right one
smaller. Pressing the left arrow key performs the
opposite transformation. Pressing the escape key
again switches back to the text editor.

On line 1 of the source code is an interactive
assignment: it allows to modify the value of the nu-
merical variable z (and consequently the figure) by
pressing the arrow keys. The first argument is the
initial value of x, the second the increment which is
added to (subtracted from) x every time the right
(left) arrow key is pressed. The third and fourth are
the optional lower and upper bound. The fifth ar-
gument has to be a string containing a single letter.
It indicates the key that has to be pressed before
modifying the variable.” This is useful when more
than two variables have to be bound to the key-
board. The sixth argument is either ‘right’ or ‘up’.
It indicates which pair of arrow keys (right/left or
up/down) is bound to the variable.

In an interactive assignment, the initial value
can be modified while viewing. If you press the F1
key, the program replaces the original initial value
in the source code by the last value of the variable
and switches back to the text editor.

The first multiple assignment on line 2 defines
an equilateral triangle AMT such that segment AM
is horizontal and x c¢cm long. The second assignment
defines an equilateral triangle M BJ such that seg-
ment M B is horizontal and 6 —x cm long. A specific
feature of polygonal assignments is used here: if the
first variable is already in use (and contains a point)
its content remains the same (if not, the variable is
set to the origin). This implies that segment AB
has a constant length of 6 cm and that M belongs
to AB.

7 Since the program starts viewing in state “A”, there’s
no need here to press this key.

TUGboat, Volume 22 (2001), No. 4

Drawing curves

In elementary geometry, the most usual curves are
conics. Eukleides provides a large number of func-
tion to define and handle these objects. For less
common curves, there’s the ‘trace’ command. For
instance, the figure below illustrates the geometri-
cal definition of a cubic curve known as the Witch
of Agnesi.
frame(-4,-1,4,3) O = point(0,0) ¢ =
circle(point(0,1),1) 1 = line(point(0,2),0:)
trace(t,.1,179.9) L = line(O,t:) O M
intersection(L,c) P = intersection(L,1)
point(abscissa(P),ordinate(M)) t = 50 L =
line(O,t:) O M intersection(L,c) P =
intersection(L,]) N =
point(abscissa(P),ordinate(M)) draw(O)
style(dotted) draw(segment(M,N))
draw(segment(P,N)) draw(L) thickness(.5) ;
style(dashed) draw(c) ; draw(l)

This curve is obtained by drawing a line from
the origin through the dashed circle, then picking
the point with the x coordinate of the intersection
whith the dashed line and the y coordinate of the in-
tersection with the circle. Here is the corresponding
code:

1 frame(-4,-1,4,3)

2 0 = point(0,0)

3 ¢ = circle(point(0,1),1)

4 1 = line(point(0,2),0:)

5 trace(t,.1,179.9){

6 L = line(0,t:)

7 0 M intersection(L,c)

8 P = intersection(L,1)

9 point(abscissa(P),ordinate(M))}
10 t = 50

11 L = line(0,t:)

12 0 M intersection(L,c)

13 P = intersection(L,1)

14 N = point(abscissa(P),ordinate(M))
15 draw(0)

16 style(dotted)

17 draw(segment (M,N))

18 draw(segment(P,N))

19 draw(L)

20 thickness(.5) ; style(dashed)
21 draw(c) ; draw(l)

337

On lines 2-4 we create the objects which are
needed to define the curve. Lines 5-9 are related
to the ‘trace’ command. They are based on the
geometrical definition above. Line 5 tells variable
t to scan the numbers between® 0.1 and 179.9. A
line-circle intersection can lead to two points, hence
in Eukleides a multiple assignment (like the one at
line 7) is used to obtain these points. Since lines
are implicitly directed, in the present case the first
assigned point will always be O and the second, the
wanted point. The last line (line 9) contains a point
valued expression. This is the point which will be
drawn for each value of ¢.

To draw this curve, it would also be possible
to use parametric representation. Nevertheless, in
the present case the geometrical definition is more
appropriate because the same piece of code can be
used again (in lines 11-14) to produce an example
of the construction.

The last part (lines 15-21) contains the drawing
commands. The setting command ‘style’ changes
the default aspect of drawn objects. This may some-
times shorten the code.

Conclusion

In my humble opinion, Eukleides is now mature
enough to be considered by TEX users as an effective
way to create geometric figures. As a matter of fact,
the language is sufficiently powerful to describe al-
most any figure which can be seen in an elementary
geometry textbook.

My aim is now to enhance Eukleides with fea-
tures such as tests, loops, and user-defined func-
tions. Since I did not anticipate this when I started
the project, I'll have to rewrite large parts of the pro-
grams. This is a long-term undertaking, so I'll soon
stop working on the present versions of eukleides
and xeukleides.

¢ Christian Obrecht
3, impasse Bellevue
89100 PARON
FRANCE
christian.obrecht@wanadoo.fr
http://perso.wanadoo.fr/
obrecht/

8 These bounds are chosen in order to avoid 0 and 180,
which are invalid and may cause spurious lines to appear.

338

Book Review

Book review: TEX Reference Manual
Stephen Moye

David Bausum, TgX Reference Manual. Kluwer
Academic Publishers, Boston, Dordrecht and Lon-
don, 2002, ISBN 0-7923-7673-0. $100.

A new TEX book!

The arrival on the scene of a new book about TEX is
always an occasion for great joy. I'm only too happy
to have another reference that causes me to look at
a problem in a new way.

Teaching by example

A useful approach. Bausum’s book is particu-
larly useful in that it covers TEX’s primitives. It
is therefore of use to anyone who uses any flavor of
TEX. The author asks early on, “Why is TEX so hard
to learn?” He asserts that the reason is twofold: It is
a large programming language with 325 primitives,
and parts of TEX are not intuitive. The purpose of
the book, I take it, is to address these issues and to
make the learning process more efficient.

The author begins by separating TEX primitives
into nineteen “families” such as The Box Family,
The Font Family, The Paragraph Family and The
Tables Family. This is a useful approach for those
starting out because it brings a greater sense of
structure to the primitives other than their relevance
to vertical and horizontal mode.

The next section — the bulk of the book, about
310 pages —is given over to an annotated listing of
TEX primitives, complete with extensive cross ref-
erences to The TEXbook and examples for virtually
every entry. At the head of each entry is a kind
of graphical /shorthand overview of the primitive —
be sure that you review the first two pages of this
section (pp. 25-26) so that you know how to inter-
pret this. The book concludes with three appen-
dices, “Typesetting Verbatim Material”, “Working
with PostScript Fonts” and “Typesetting Material
in Two columns”.

Generally speaking the content is very good.
I like lots of examples about how things work —
to learn by doing. Each of the TEX primitives is
covered in three parts: a description of what the
primitive does; examples of how it can be used,
accompanied by the output of the examples where
appropriate; and finally a commentary to clarify
issues that may have been raised by the examples. It

TUGboat, Volume 22 (2001), No. 4

is clear that the TEX Reference Manual is not meant
to stand on its own. You will want to have a copy of
Knuth’s The TEXbook close at hand. Bausum also
makes occasional reference to some other of Knuth’s
books if he thinks the material there explains a given
issue better, so you will have to have access to them
as well.

Occasionally there is a less-than-ideal turn of
phrase. On page 220, Bausum says: “Normally,
an output routine has no idea where it is in a
document.” Hmmm... Yes and no: The output
routine may not know exactly where it is on a given
page, but it does know enough to form a decision as
to how much of the page it has to fill, and which page
it is on— a useful piece of information for formatting
that requires different things on even as opposed to
odd pages. Still, these failings are generally minor,
and, to do the author credit, the appropriate pages
in Knuth’s books are copiously referenced if there is
any question.

One modest grievance I have centers on the
clock that adorns the beginning of the discussion
of each primitive. The macro for producing it
(\mkclockA) is not listed in the index. It is only
defined in the course of an example centering on the
primitive \special. So obvious a formatting feature
should have been better documented, nor is the
PostScript file (clock.ps) given. I believe strongly
that books about typography should completely
elucidate the details of their own creation.

When bad things happen to good books

Given Knuth’s exhortation, “Go forth now and
create masterpieces of the publishing art,”! there are
some less than masterful touches in evidence here.

Fonts. The choice of font, Caslon 224, is less than
happy in my opinion. First, it is a very idiosyncratic
version of Caslon. Second, there are the ligatures.
Given the discussion of fonts in Appendix B, I am
surprised that no ligatures are in evidence here
beyond the usual fi and fl particularly in view of the
fact that the unligatured ff, fi and f1 are notably
odd looking. But then, there is no “expert set”
available for Caslon 224 which would have provided
the missing ligatures. Surely, Adobe Caslon or
Berthold Caslon (both of which have expert sets)
would have provided more attractive type.

To TEX or not to TeX. And then there is the
matter of the logotype: TEX. The author feels
that what he calls the “familiar form” (TeX) is less
distracting than the formal form (TEX). Oddly,

1 The TEXbook, page 303

TUGboat, Volume 22 (2001), No. 4

the formal form is used in the Preface, while the
familiar form is used in the rest of the book. First, I
think that anyone who is serious about learning TEX
had best get used to the formal form in very short
order. Indeed, I can think of no serious work about
TEX —and typeset using TEX —that does not use
the formal form. The use of the familiar form makes
the book look as if it were composed using Quark
XPress rather than TEX. Using ‘TEX’ is just the
right thing to do. Second, reverting to a familiar
form is no excuse for doing the formal form badly.
The half-title, title and back cover have some very
unlovely interpretations of the formal form.

Printing. The print quality is less than wonderful.
The book was apparently mastered on some sort of
laser printer of modest resolution. The resulting
hard copy was used to make printing materials in
such a way that the type occasionally comes close
to breaking up: serifs are degraded, thin strokes
tending almost to disappear.

The price tag. I feel compelled to venture the
opinion, given the less-than-stellar production val-
ues evidenced in this book, that $100 for it seems ex-
cessive — there isn’t even a CD with the macros and
examples shown in the book. There is absolutely no
doubt in my mind that this is a fine $30-$50 book,
but $100 renders it considerably less attractive to a
prospective purchaser than it could, and should be.

The bottom line

This is a good reference for people who have a bit
of plain TEX under their belts, as the examples mix
primitives and plain rather freely. If you can find
this book for a reasonable price, buy it because
it is a useful and informative book. Despite some
failings —some superficial, some not—it is worth
having in your reference library, particularly if you
use plain TEX, or have to delve into TEX’s innards
for any reason.

& Stephen Moye
American Mathematical Society
201 Charles Street
Providence, RI 02904
sgm@ams . org

339

TUGboat, Volume 22 (2001), No. 4

339

Hints & Tricks

Glisterings
Peter Wilson
Not all that tempts your wand’ring eyes

And heedless hearts, is lawful prize;
Nor all, that glisters, gold.

Ode to a Favourite Cat
THOMAS GRAY

For many years Jeremy Gibbons has edited a
very successful column in TgX and TUG NEWS and
TUGboat called Hey — It works![3]. T have learnt
much from this but apparently not enough to de-
cline when asked to take over the column. On the
other hand I have learnt to my cost that the quick-
est way to get a correct answer to a question on the
comp.text.tex (ctt) newsgroup is to give an in-
correct answer. In order not to sully Jeremy’s rep-
utation my first thought was to change the title to
Hey — It might work but after some consideration
the new title is as you see it above — Glisterings —
implying that there might be some dross among the
nuggets.

Corrections, suggestions, and contributions will
always be welcome.

Several questions on ctt recently have been re-
lated to comparing two words or strings. To my
chagrin I gave an incorrect answer to one of the ques-
tions, so I’ll now try and redeem myself.

If you can meet with triumph and
disaster

And treat those two imposters just the
same. . .

If—

RUDYARD KIPLING

Checking for an optional argument

If you are defining a new command that has an op-
tional argument you often need some way of check-
ing whether or not it is present when the macro is
called, especially when it should be ignored if it is
not present. One convention is to use the kernel
\@empty macro as the default for the optional argu-
ment.
\newcommand{\mine} [2] [\@empty] {/
% 1if #1 is \@empty do nothing else
% do something

To me the obvious way of performing the check
was to use TEX’s \ifx primitive to compare \Q@empty
and the actual value of the argument, as in

340

\newcommand{\testoptarg}[1] [\@empty]{%
\ifx #1\Qempty
Optional (#1) unused,
\else
Optional (#1) present’
\fi}
If you try this you can get some odd results:
\testoptarg Optional () unused
\testoptarg[full] Optional (full) present
\testoptarg[oops] psOptional (oops) unused
It was kindly explained to me! that \ifx checks
the following two tokens and in TEX a token is ei-
ther a command sequence (e.g., \@empty) or a single
character, like ‘0’. In the oops example, \ifx checks
‘o’ and ‘0o’, concludes that they are the same, and
hence the strange result. Flipping the token order-
ing works better:

\ifx\@empty#1

Now \testoptarg and \testoptarg[\@empty] will
report ‘Optional () unused’. Any other call, for
example \testoptargl], will report ‘Optional ()
present’, and in particular \testoptargloops] re-
ports ‘Optional (oops) present’.

String comparisons

A more general problem along the same lines is to
check if two words, or strings are the same. We can
use \ifx for this as well. When \ifx compares two
tokens that are macro names, the result is true if
the macros have been defined in the same way, and
if their first level replacement texts are the same.
So, we define two macros whose replacement texts
are the strings, and compare these.
\newif\ifsame
\newcommand{\strcfstr}[2]{%
\samefalse
\begingroup

\def\1{#1}\def\2{#2}/,

\ifx\1\2\endgroup \sametrue

\else \endgroup

\fi}
The two arguments to \strcfstr? are the strings
to be tested. \ifsame is set true if the two strings
match character to character. If the arguments are
macro names it checks the characters in the names,
not their definitions. If there are any spaces in the
arguments, each group is reduced to a single space
before the strings are compared. \strcfstr{}{ }
sets \ifsame false but \strcfstr{ }{_ .} sets it
true.

\newcommand{\StrCfStr}[2]{%

1 By, among others, Donald Arseneau, Michael Downes
and Stephan Lemke.

2 The cf used in the names of macros is the abbreviation
¢f (from the Latin confer = compare).

TUGboat, Volume 22 (2001), No. 4

\lowercase{\strcfstr{#1}{#2}}}

The \StrCfStr macro performs a case insen-
sitive test on two strings. For example, it will set
\ifsame true for any of the pairs (abc, abc), (abc,
Abc), (abe, aBc), and so on. It uses \lowercase
to convert any uppercase letter to a lowercase let-
ter so all the letters will be lowercase at the time
\strcfstr does the checking. This will not work if
the arguments include differently cased macro names
as \lowercase does not touch those.

The \strcfstr and \StrCfStr macros have
provided all the string testing that I have needed,
but I'll show a couple of extensions. One thing is
that \strcfstr relies on \def which is not expand-
able so, for example, it cannot be used in an \edef.
Both Victor Eijkhout [2, section 13.8.7] and David
Kastrup [4] have presented solutions for this. The
other is that you may want to check if a macro ex-
pands to a particular string. David’s expandable
macro also provides a solution for this and Michael
Downes|1] gives a somewhat different method using
\expandafter.

We can use \strcfstr as the basis for the macro
to string comparison, by using \expandafters.
\newcommand{\macrocfstr}[2]{},

\expandafter\strcfstr\expandafter{#1}{#2}}

The first argument to \macrocfstr is either a string
or a macro that is expected to expand to a string.
The second argument is the test string.

We can also do a case insensitive test by using
\newcommand{\MacroCfStr}[2]{/

\lowercase{\macrocfstr{#1}{#2}}}

The \charscfchars expandable macro below
is based on Victor’s code. It is tricky because it
uses recursion to perform pairwise comparisons of
the individual characters in its two arguments, and
it requires two supporting macros.
\catcode‘\""G=11 7% make a letter
\newcommand{\charscfchars} [2]{%

\IfAllChars#1~"G\Are#2~"G\theSame}

\charscfchars adds a character at the end of its
arguments to mark the ends of the strings. Victor
used $ as the marker which meant that neither argu-
ment could include $ among the characters. I chose
to use ~~G (TEX’s notation for the ASCII BEL con-
trol character, which is normally invalid TEX). The
\catcode changes first make ~~G appear to be a let-
ter and then at the end of the macro definitions it
is set back to its normal invalid state.

The next macro, which is presented with some
interspersed commentary, does most of the work.
\def\IfAllChars#1#2\Are#3#4\TheSame{/,

\if#1~"G\if#3~"G\sametrue
\else\samefalse\fi

TUGboat, Volume 22 (2001), No. 4

The macro takes two pairs of arguments that are
delimited by the tokens \Are and \TheSame. The
first pair of arguments are for the first string under
test and the second pair for the other string. More
specifically, #1 will be the first character in the first
string and #2 contains the remaining characters (in-
cluding the ~~G marker), and similarly for #3 and
#4. If the ends of both strings have been reached,
then the strings are the same, but if only the end
of the first string has been reached, the strings are
different. If we are not at the end of the first string
there is more work to be done.
\else\if#1#3\IfRest#2\TheSame#4\else
\samefalse\fi\fi}

If the corresponding characters in the two strings are
the same then the rest of the character pairs must be
checked, otherwise the characters don’t match and
we are done.

The last of the macros takes three arguments
which are delimited by the tokens \TheSame, \else,
and \fi\fi. The first two arguments are strings to
be compared, and it throws away the third.
\def\IfRest#1\TheSame#2\else#3\fi\fi{%

\fi\fi \IfAllChars#1\Are#2\TheSame}
\catcode‘\""G=15 J, return to invalid

This macro simply calls \IfAl1Chars... to com-
pare the strings.

\charscfchars can be used as a basis for case
insensitive and macro to string comparisons exactly
like \strcfstr.

Apart from \charscfchars being expandable
while \strcfstr is not, it also ignores all space
characters while \strcfstr does not. For exam-
ple, \charscfchars{ab}{a b} thinks that the ar-
guments are identical but they will be reported as
different if \strcfstr{ab}{a, b} is used.

References

[1] Michael J. Downes. Re: catcodes for jobname macro
— stupid question. Post to comp.text.tex news-
group, 25 April 2001.

[2] Victor Eijkhout. TgX by Topic, A TgXnician's Ref-
erence. Addison-Wesley, 1991. ISBN 0-201-56882-9.
(Available at http://www.eijkhout.net/tbt/).

[3] Jeremy Gibbons. Hey — it works! 7TgX and TUG
NEWS, 2(2):7-11, April 1993.

[4] David Kastrup. Completely expansible string
comparison. Post to comp.text.tex newsgroup,
3 September 2002.

o Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166 USA

peter.r.wilson@boeing.com

341

TUGboat, Volume 22 (2001), No. 4

341

The Treasure Chest

Packages posted to CTAN

The vast number of available packages is at once a
wonderful resource and strength of the TEX com-
munity, a veritable embarrassment of riches as well
as an awkward political minefield and urban turf
war (divisions between (Plain) TEX and BTEX and
other macro packages). Despite extraordinary ef-
forts on the part of volunteers like Graham Williams,
the CTAN team and participants in comp.text.tex,
and most especially Robin Fairbairns, maintainer of
the UK TEX FAQ, available at http://www.tex.ac.
uk/faq, many users find it difficult to find the ap-
propriate package for their needs.

This is a chronological list of packages posted
to CTAN between January and June 2001 with de-
scriptive text pulled from the announcement or re-
searched at need and edited for brevity — however,
all errors are mine. Packages are in alphabetic or-
der and are listed only in the last month they were
updated. Individual files / partial uploads are listed
under their own name if so uploaded. If not other-
wise noted, packages are inmacros/latex/contrib/
supported/. Subdirectories (e.g. foo) of macros/
latex/contrib are listed as . ../foo to save space.

This is my second of three columns for “The
Treasure Chest”. Mark LaPlante is scheduled to do
the next column (for July —December 2001); my fi-
nal column will cover the beginning of 2002; and
Mark’s tour of duty will then continue without fur-
ther interference from yours truly. Hopefully this
column and those which follow will help to make
CTAN a more accessible resource to the TEX com-
munity.

Corrections and suggestions are welcome.

January 2001

attachfile Attach arbitrary files to PDF documents for
later extraction. Also adds the ability to modify the
file icon.

circuit_macros in graphics

(V.5.0) A set of macros for drawing high-quality
electric circuit diagrams containing fundamental el-
ements, amplifiers, transistors, and basic logic gates.
Several tools and examples for other types of dia-
grams are also included. More robust NOT_gate,
Function pmod(), macro shade(), etc. Examples are
now in Xfig version 3.2 format, web-based examples
and updated links, new, more robust macros, edi-
torial changes to the manual.

342

cmtiup in fonts/cm
Replacement of cmti* fonts by cmtiup#* simplifies
typesetting of articles where otherwise author or
editor have to use additional commands in italic
text with formulas.

CWEBbin in web/c_cpp
(V.3.63) A set of change files (to be applied with
the TIE processor) that make the original sources
usable with ANSI-C/C++ compilers on UNIX/Linux,
MS Windows, and Amiga. Extra functionality, like
macros, and macros for international documenta-
tion of CWEB programs, is introduced.

dice3d in fonts/dice
METAFONT source for 2D and 3D pictures of dice.

EC in nonfree/systems/win32/bakoma/fonts
EC fonts in ATM compatible Type 1 font format
intended for installing under BaKoMa TEX 3 and
later.

Eplain in macros/eplain
V.2.8.1 of Eplain, a macro package that extends
the definitions of plain TEX.

hypernat.sty in .../supported/misc
(V.1.0a) Makes hyperref and natbib with options
numbers and sort&compress work together. Thus
the citations (e.g. [3,2,1]) will be compressed to [1—
3], where the ‘1’ and the ‘3’ are (color-)linked to
the bibliography.

hyphenat This package can be used to disable all hy-
phenation in a document or just in selected text. It
also enables hyphenation of words with analpha-
betic characters (e.g., that include underscores),
and hyphenation in monospaced fonts. V.2.3a fixes
a double hyphen problem with some fonts.

IEEEtran v13.cls in .../supported/IEEEtran
This is a new beta test version of the class for
authors of papers in journals published by the
Institute for Electrical and Electronics Engineers
(IEEE).

jurabib Supports various forms of short and long ci-
tations—now more flexible and no longer just for
German law students. Changes and improvements
in v.0.5e too numerous to mention.

Kto8 in systems/mac
Converts the strangely ASCIl-encoded text files of-
ten used by TEX into true 8-bit text files. Presently
a freeware program realized for Macintosh OS as a
tiny drag-and-drop utility.

LATEX2E.BKZ in nonfree/systems/win32/bakoma/dst
This module includes updated KTEX 2¢ with re-
quired packages, AMS-BTEX, and HyperRef pack-
ages.

LH in nonfree/systems/win32/bakoma/fonts
LH fonts in ATM compatible Type 1 font format
intended for installing under BaKoMa TEX 3 and
later.

MiKTeX in systems/win32/miktex/2.0
MiIiKTEX is a free TEX distribution for Windows.

TUGboat, Volume 22 (2001), No. 4

minutes.sty in .../supported/minutes
Writing minutes, v.1.6 offers: new votes, new fields
for title (location, guest) and solved some bugs.

mkpic in support/mkpic
(V.0.1) Perl script interface for making pictures
with mfpic.

ps2eps in support
A tool to produce EPS/EPSF files from usual one-
paged PostScript documents. New v.1.28 improves
the calculation of bounding boxes. Requirements:
Perl, Ghostscript and an ANSI-C compiler if your
platform is not Linux, Solaris, Digital UNIX or Win-
dows 2000/9x/NT (binaries included).

sepnum.sty in .../supported/misc
This package provides a means of formatting num-
bers with (a) a decimal separator different than the
default ¢ and (b) a separator (default ‘) every
three digits. All separators are user-definable; the
macro implementation is fully expandable and can
therefore be used in places where problems occur
with fragile commands.

titlesec Essentially a replacement — partial or total —
for the B'TEX macros related to sections; namely, ti-
tles, headers, and contents (upgrade to v.2.4). This
version contains the incremental updates in previ-
ous releases and bug fixes.

ttf2pt1-3.3.2 in fonts/utilities/ttf2ptl
System for converting TrueType fonts to Type 1
and installing them.

TXFONTS.BKZ in nonfree/systems/win32/bakoma/fonts
TX Fonts (3.1) and PX Fonts (1.0) in ATM com-
patible Type 1 font format intended for installing
under BaKoMa TEX 3 and later.

WinShell in systems/win32/winshell
Beta version of WinShell, a graphical user interface
for easily working with TEX. It is not a TEX system
so requires one to have a system such as MikTEX
or TEXLive installed.

xtem in support/xtem_texmenu/xtem.v8

Provides for a simple and comfortable graphical
user interface (GUI) to control TEX/KTEX. Runs
with new Tcl/Tk version 8. First version which
does not need TclX. Select boxes in setting menus
are now expandable, modifications of logfile ana-
lyze; warnings can now be displayed and editor op-
tions can now be modified.

ziffer in .../supported/misc
Formats numbers with the correct German spacing

(even in math mode).

February 2001

abstract Gives you control over abstracts, and in par-
ticular provides for a one column abstract in a two
column paper. V.1.1 adds an option for a run-in
heading.

ae in fonts/ae
This package is a set of virtual fonts for creating

TUGboat, Volume 22 (2001), No. 4

PDF files with T1-encoded CMR fonts. New in v.1.3
adds support for the slides fonts.

ASCII-Cyrillic in language/ascii-cyrillic
A new system for dealing precisely with Cyrillic
languages using no more than an ASCII keyboard
and screen font.

babel in macros/latex/required/babel
(V.3.7) Very much like the later releases of babel
3.6k and later. The concept of language attributes
is new in this release and support for a number of
languages has been added.

catdvi in dviware
(V.0.11) The program is a .dvi-to-plain text trans-
lator capable of generating ASCII, Latin-1 and UTF-
8 (Unicode) output. It aims to become a superior
replacement for the dvi2tty utility. The previous
version is usable for previewing (on character-cell
displays) .dvi files that contain mostly linear text.
The new version includes a much improved layout
algorithm which can generate a fairly pleasantly
readable text file from a multicolumn .dvi file.
cd-cover in .../other
Class for typesetting various forms of CD covers.
.../other
Macro and font provide new arrows for chemical re-
action schemes. Easy to use and @sthetically more
pleasing.

chemarrow in

chngpage Provides commands to change the page layout
in the middle of a document, and to robustly check
for typesetting on odd or even pages. V.1.1lc fixes
odd/even page check problem when used with calc
or hyperref.

epsdice Scalable dice font, accepts counter values as
arguments; v.1.1 works with pdfEXTEX.

epstopdf.sty in .../supported/oberdiek
Adds support for handling images in eps format to
graphic{s,x} with option pdftex.

euro-ce in fonts
METAFONT source of the official Euro currency sym-
bol and CE logo including variants, in both solid
and outline.

GenMPage in .../supported/genmpage
Generalizes I¥TEX’s minipages. Keyval options and
styles can be used to determine their appearance in
an easy and consistent way. V.0.3 introduces op-
tions for paragraph indentation and vertical align-
ment with respect to the visual top and bottom

margins.
hvmaths.ins in .../supported/psnfssx
Install scripts can be processed with plain or Ini-

TeX.

JavaBib in biblio/bibtex/utils
GUI BibTEX reference manager written in Java.
Beyond easy reference entry, JavaBib can search
a database, and paste citations to the system clip-
board.

343

jPicEdt in graphics/jpicedt
Java program that allows you to draw pictures from
a menu-driven interface, using #TEX’s picture en-
vironment or epic/eepic macro packages.
listings Source code printer for I TEX. This update
adds support for Visual Basic and removes some

bugs.
lyl.txt in .../supported/psnfssx
Fixes a misleading typo.
nomentbl in .../other

This package is a redefinition of the nomencl pack-
age. Instead of the usual makeindex style it uses
a longtable environment to put the symbol list in
three columns: symbol, description and unit.
pdflscape.sty in .../supported/oberdiek
Adds PDF support to the environment landscape
of package lscape by setting the page attribute
/Rotate. Also works with dvips.
pdftricks Helps to include pstricks code in a docu-
ment to be processed by pdfIATEX.
prelim2e in .../supported/ms
(V.1.23) Package to mark preliminary versions of
a document. Adds danish and italian options.
psnfssx Cleaned up and reorganized. This directory
is the home of packages that complement the basic
PSNFSS distribution, primarily to support commer-
cial PostScript fonts. The following subdirectories
are provided: adobe, lucidabr, mathtime, hvmath,
tmmath, 1y1, 8r and obsolete.
rfc2bib.awk in biblio/bibtex/utils
gAWK script to automatically generate BibTEX en-
tries from IETF RFCs. The script has been updated
to better handle RFCs with periods in the title and
to deal with what appears to have been a change
in the format of the date for just RFC768.
sviewer3b1l.exe in systems/win32/scientificviewer
Scientific Viewer 3.51 is a free program for reading
and printing (read-only) documents created with
Scientific Notebook, Scientific Word or Scientific
WorkPlace by MacKichan Software, Inc. It can also
be used to view many native TEX documents.
tmmaths.ins in .../supported/psnfssx
Install scripts can be processed with plain or IniTEX.
wp-conv.zip in help
Updated version of FAQ pages on converters be-
tween (I4)TEX and wordprocessors.

March 2001

alg Added support for German. Fixed typo in the
French language support. Now uses the language
selected for the babel package and has more flexi-
bility in handling marginwidth.

allrunes in fonts
Almost all runes ever used in Europe, including not
only the main forms, but most variant forms.

A1ProTex.sty in web/protex
Minor modifications to this literate programming
system, for compatibility with TeX4ht.

344

appendix Provides various ways of formatting the ti-
tles of appendices. Also (sub)appendices environ-
ments are provided that can be used for per chap-
ter/section appendices.

bophook (V.0.2) Hook for adding material at the begin-
ning of each page. New version adds partial support
for hyperref.

boundbox.sty in .../supported/sttools
Calculate TEX Bounding Box in points.

braille.sty in .../supported/braille
Update of package for typesetting braille.

bundledoc A post-processor for the snapshot package
that bundles together all the classes, packages, and
files needed to build a given document. Ships with
configuration files for teTeX/Linux and MikTeX/
WinNT.

ccaption Provides continuation captions, unnumbered
captions and legends, captions outside float envi-
ronments, bilingual captions, etc. It also enables
the definition of new float environments and their
captions. Tools are provided for defining your own
captioning styles. V.3.0 provides the same tools as
tocloft for styling List of floats.

chbibref in .../supported/misc
Provides a class-independent means of changing the
Bibliography /References title.

chngentr in .../supported/misc
Provides commands to change the resetting of coun-
ters (i.e., it provides wrappers for \@addtoreset
and \@removefromreset).

compactbib.sty in .../supported/compactbib
Enables multiple bibliographies with different names
and continuous numbering.

comprehensive in info/symbols
Major update of this list of well over 2,000 sym-
bols available for use in I¥TEX. Changes include:
T1 fonts used only where absolutely necessary, the
addition of a README file and an ASCII symbol
list (SYMLIST), and a prebuilt PostScript version.
Symbol tables have been categorized into “text”,

“math”, “science/technology”, and “other” sym-
bols.
CurVe in .../supported/curve

A class for making CVs (in distinct versions). Pro-
vides commands to create rubrics, entries in these
rubrics, etc.

cuted.sty, midfloat.sty in .../supported/sttools
Mixing onecolumn and twocolumn modes at any
place on a page.

cv A style for a curriculum vite and an example CV.

dvii in dviware
Extracts and displays information regarding a dvi
file.

eulervm in fonts
(V.2.6) This is a set of virtual math fonts, based on
Euler and CM. Included is a BITEX package, which
makes them easy to use, particularly in conjunction

TUGboat, Volume 22 (2001), No. 4

with Type 1 PostScript text fonts. Should work
with the latest amsmath.sty and now has an option
to load the fonts at 95% of their nominal size.

excel2latex in support
Exports the current selection of a Microsoft Excel
spreadsheet as a file, which can be included in an
existing document. Nearly all formattings are sup-
ported (bold, italic, border lines, multicolumn cells,
etc.). Now works with Excel 97.

fink This package looks over your shoulder and keeps
track of files \input or \included in your document
and provides a macro to access the name of the file
currently being processed.

fixme Provides ‘fixme’ notes in draft documents, in-
cludes support for AUC-TeX.

floatpag.sty in .../supported/sttools
Different pagestyles for text and float pages.

flushend.sty in .../supported/sttools
Columns balancing at last page.

french in language
Light version has a maximum of automatic features:
translation, layout, microtypography, etc., but no
specific commands are available. Footnotes should
no longer generate an “undefined!” error message.

FrenchPourWin in nonfree/language/french
Windows distribution of French Pro V.5.02.

fullpict.sty in .../supported/fullpict
Enhances the previous enviroment scalepicture in
that it works properly inside tabular and minipage
environments, and also chooses appropriate font
size for the scale of the picture.

hanging Facilitates typesetting of hanging paragraphs.
It also enables typesetting with hanging punctua-
tion. V.1.2 adds option for less aggressive hanging
punctuation.

is0-8859-2.xmt in macros/xmltex/base
Encoding support file.

KTeXShell in systems/unix
A graphical user interface to TEX, KTEX, and re-
lated programs, running on Linux/UNIX with KDE.
It is not another WYSIWYG approach. Instead it
provides a document development interface where
you can define your files, edit, compose, view, and
print them with a mouseclick. V.0.4.0 updates to
compile under KDE2.

lcg in .../other/lcg
Writes random numbers (integers) to a counter via
a linear congruential generator (Schrage’s method).
Corrected docs and implements a key “quiet” to
suppress the output to the screen and the log-file.

marginal.sty in .../supported/sttools
Enlarge free and show lost marginal inserts.

MNRAS in .../supported/mnras
Class file that enables authors to produce papers
for submission to Monthly Notices of the Royal As-
tronomical Society and to produce references in a
suitable format.

TUGboat, Volume 22 (2001), No. 4

MPEdit in graphics/metapost/tools
METAPOST text editor for Windows 98, 95, NT 4,
and 5, and ME. Provides the main possibilities on
creation and editing of METAPOST files.

numprint Prints numbers with a separator every three
digits and converts numbers given as 123e456 to
123 - 10*%. If an optional argument is given it is
printed upright as a unit.

paralist This style file provides some new list envi-
ronments. Itemized and enumerated lists can be
typeset within paragraphs, as paragraphs and in a
compact version. Most environments have optional
arguments to format the labels. Additionally, the
IXTEX environments itemize and enumerate can be
extended to use a similar optional argument.

polynom Implements macros for manipulating polyno-
mials, for example it can typeset long polynomial
divisions.

presfull.pdf in .../supported/sttools
“Inside IMTEX 2¢ kernel” by Sigitas Tolusis.

PSTricks in graphics/pstricks
New versions of pst-gr3d and pst-poly (to draw
for three dimensional grids and to draw polygons)
and a new contribution pst-lens to simulate the
effect of a lens.

px_patchl.zip in fonts/pxfonts
Fixes an encoding mistake in Math Italic fonts.

sc3demo.tex in .../supported/sidecap
Small example for the package sidecap.

stabular.sty in .../supported/sttools
Multipage tabular.

stfloats.sty in .../supported/sttools
Floating baselineskip, footnotes below the floats,
dblfloats at bottom.

TeX4ht in support
An enhanced version of a system for translating
(I2)TEX sources into hypertext.

texorlll.exe/txt in systems/win32/util
Free Windows front-end with buttons which can be
assigned to run specific programs.

TeXProject.sty in graphics/dratex
An enhanced version of a (I&)TEX-based project
management system.

TeXshade in .../supported/texshade
A macro package for setting shaded nucleotide and
protein alignments. It can process multiple se-
quence alignments in the .MSF and .ALN file for-
mats. Update fixes some bugs and offers new com-
mands for the fine adjustment of feature lines and
allows one to add a caption to the alignment.

texsort.sty in .../supported/sttools
Sort/compress numerical lists.

TeXtopo in .../supported/textopo
Plots topology data of membrane proteins derived
from PHD predictions, from SwissProt database files
or from manually entered data, and transmembrane

345

domains as seen from above or beneath the cell
membrane. Fully compatible with TeXshade — this
allows one to apply calculated shading based on se-
quence conservation and functional aspects of the
residue sidechains.

tfmpk in fonts/utilities
Font viewer for TEX tfm/pk fonts.

thumbpdf in support
V.2.9 provides support for thumbnail previews in
PDF files.

titling Provides control over the typesetting of the
\maketitle command, and makes the \title,
\author and \date information permanently avail-
able. V.2.1 adds support for new titling elements,
additional controls for the layout of thanks text and
a method for centering on the physical page.

tmview in dviware
(V.01.03) Fixes a number of bugs and adds some
limited support for color specials.

ttf2tex in support
Bash script which will create all files neccessary to
use TrueType fonts with teTEX.

tx_patchl.zip in fonts/txfonts
Fixes an encoding mistake in math italic fonts.

varindex Provides a convenient front-end for the \index
command. For example, it allows generation of
multiple index entries in almost any form by a single
command. Extremely customizable. Works with all
versions of KTEX and most other TEX formats, too.

windows-1250.xmt in macros/xmltex/base
Encoding support file.

April 2001

aeguill Update to v.1.01 to work properly with the
frenchle package. Provides several kinds of guille-
mets which are useful with the AE font which lacks
guillemets.

amsldoc in info/italian/amsldoc
Italian translation, “Manuale utente per il pacchetto
amsmath.”

amsthdoc_it in info/italian/amsthdoc
Italian translation of amsthdoc, “Utilizzo del pac-
chetto amsthm.”

authblk in .../other/preprint
Allows footnote-style printing of author and affilia-
tion.

balance in .../other/preprint

Balances the columns of two-column mode.

dashrule Draws a huge variety of dashed rules in BTEX,
with parameters for the pattern of dash segments
and the space between.

clock Graphical clocks (with a classical 12h dial and
two hands) and text clocks (in 24h format) which
can show an arbitrary or system time with user
expandable appearance.

346

combine (V.0.42) Bundles individual documents into
a single document, such as when preparing a con-
ference proceedings. The auxiliary combinet pack-
age puts the titles and authors into the main doc-
ument’s Table of Contents. Update works with
fancyhdr and fixes a pagebreaking problem.

diagnose Provides tools to allow package authors, sys-
tem administrators or users to determine if every-
thing a given package needs is installed.

diffs-m_it in info/italian/amsmath
Diff files for Italian— “Vari files AMS”.

dingbats in fonts
Provides #TEX names for some of the characters
in the dingbat.mf and ark10.mf fonts, including
decorations, pointing hands, pencil, anchor, etc.

docindex in macros/latex/exptl/xdoc
Reimplementation of the doc mechanisms for sort-
ing and formatting a sorted index with easier con-
figuration.

dpfloat Assists in formatting double-page figures or ta-
bles, as two consecutive elements. Ensures that the
first of the pair is on a left-hand page.

eps_anleitung.html in info/german/grafik
Describes how to create eps files under Windows.

egparbox Allows one to define tags for \eqgparboxes—
all such with the same tag are set to the same width.

examdesign Typesetting of exams (incl. matching and
multiple choice) and answer keys.

figcaps in .../other/preprint
Suppresses printing of figures and puts all captions
and tables at the end of a manuscript (as is required
by some submission guidelines).

fmp Provides a means to include Functional MetaPost, a
Haskell front end to the METAPOST language, into
ITEX. Includes documentation in PDF format.

Fontmap.cmr in fonts/cm/ps-typel/contrib
Makes certain fonts distributed with tetex avail-
able to ghostscript, including tx and pxfonts. Up-
date for MarVoSym name change.

formular Macros for typesetting forms (formular docu-
ments). Supports blank fields to be written in, or
predefined contents.

fullpage in .../other/preprint
Sets all margins to be either 1 inch or 1.5 cm, and
specifies the page style.

itfancyhdr in info/italian/fancyhdr
Italian translation of the fancyhdr documentation,
“Layout di pagina in IXTEX”.

import.sty in .../supported/misc
Allow input (with variations) of a file with its own
inputs from another directory.

itlshort in info/lshort/italian
Italian translation of The Not So Short Guide
to BTEX — Una (mica tanto) breve introduzione a

HTEX 2.

TUGboat, Volume 22 (2001), No. 4

koma-script Reimplementation of the ITEX classes
(article, report, book, letter), “implementing
Furopean rules of typography and paper formats”
as documented by Tschichold in Selected Papers on
Book Design and Typography .

manjutex in language/manju
Package using TEX or BTEX 2¢ and METAFONT to
typeset Manju, a language of North East Asia, be-
longing to the Tungusic branch of the Altaic lan-
guages.

MiKTeX-WinEdt-TrueType-Anleitung in info/german
Describes the co-operation of MiKTEX with Win-
Edt, and includes a German translation of Damir
Rakityansky’s “Using TrueType fonts with TEX
(BTEX) and pdfTEX (pdfBTEX)”.

multibbl in
nonfree/macros/latex/contrib/supported
Facilitates the inclusion of bibliographies written in
different scripts, e.g., Greek and Hebrew.

newlfm Integrates the letter class with fancyhdr and
geometry to produce letters, (standard or business)
memos and faxes. Supports stationery, a database
for addresses, other languages, tables, figures, Av-
ery address labels and has a full manual.

noTeX in biblio/bibtex/utils
A BibTgX style that outputs HTML. It can be
used to automatically generate bibliographies for
the web.

pdfpages Package to enable the inclusion of pages of
external PDF documents. V.0.1i enables hypertext
features.

pkfix in support/pkfix
Attempts to replace bitmap fonts in dvips-generated
PostScript files with Type 1 outline fonts.

pl-mf in language/polish
METAFONT source for Polish version of Computer
Modern.

poligraf in macros/generic/TeX-PS
(V.2.0) Robust set of macros for prepress (CMYK
separations, cropmarks, color or grayscale bars, mir-
ror print). Works with Plain and IX*TEX; includes
sample files and docs in English and Polish.

srcltx Inserts source specials in .dvi files, enabling
switching from a particular point in a previewer
which supports them (e.g., Yap or xdvi-22.38) to
the matching source in an editor which supports
external direction to a specific point.

sublabel in .../other/preprint
Enables subnumbering (4a, 4b, 4c...) of even user-
defined counters.

texdoctk in systems/unix/teTeX/1.0/contrib/
(v.0.5.1) A Perl/Tk-based GUI for easy access to
package documentation. Bugfix update allows view-
ing of compressed files and other enhancements (see
the README).

textpos Places boxes (containing text, or graphics, or a
table, etc.) at absolute positions on the page. Ver-
sion 1.le corrects a spacing bug in 1.1d.

TUGboat, Volume 22 (2001), No. 4

tocbibind A package to add document elements like a
bibliography or an index to the Table of Contents.
The “List of ...” headings can also be put into
the ToC. V.1.5 no longer needs stdclsdv and fixes
problem when used with hyperref.

tocloft The package provides control over the typog-
raphy of the Table of Contents, List of Figures,
and List of Tables. V.2.2 updated to work with
hyperref.

ua.dic in systems/win32/winedt/dict
Ukrainian dictionary for WinEdt.

uhrzeit Time of day and ranges of time in German
and international formats, including ancient for-
mats (minutes superscripted and underlined).

uk-tex-faq in help
Moved from usergroups/uktug/faq.

upquote Modifies \verb and verbatim so that single
quotes are vertical/straight, not curly.

xdoc2 in macros/latex/exptl/xdoc
Second prototype for the hypothetical xdoc pack-
age. Reimplements some of the features found in
the standard IXTEX doc package. Additionally pro-
vides support for defining new commands similar
to \DescribeMacro and new environments similar
to the macro environment, for two-sided document
layouts, for external cross-referencing, for making
index entries for invisible characters, and for op-
tionally ignoring certain prefixes (such as @ and @@)
in macro names when sorting them.

May 2001

dehyphn.tex in language/hyphenation
Version R31 of the “New German” hyphenation
patterns. Fixes two bugs.
diagxy in macros/generic/barr
Front end for xypic to draw commutative diagrams.
everyshi in .../supported/ms
XTEX package which provides hooks into shipout.
V.3.0 update adds \AtNextShipout command.
fixmath in .../supported/was
A package to provide italic uppercase Greek letters
in math and an additional bold italic math alphabet
to be used with Computer Modern.
hvmath in .../supported/psnfssx
V.1.2b bug-fix update of this package for using Mi-
croPress’” HV-Math (Helvetica Math) fonts.
icomma in .../supported/was
An ‘intelligent’ comma, which yields proper spac-
ing in decimal numbers as well as in mathemati-
cal expressions which does not depend on a specific
encoding, and works with decimal numbers of arbi-
trary length.
isodate (V.2.03) Tunes the output format of the
\today command providing \isodate, \numdate,
\shortdate, \TeXdate and \origdate to print a
date argument using the actual date format (Ger-
man (old and new rules; Austrian), US English,

347

French, Danish, and Norwegian) for output. Com-
patible with bibgerm style file.

itgrfguide in info/italian
Italian translation of the documentation for the
graphics bundle.

itpfgguide in info/italian/psfrag
Italian translation (“Il sistema PSfrag”) of the doc-
umentation for PSfrag.

jlshort in info/lshort/japanese
Japanese translation of The not so short introduc-
tion to ETEX 2¢ by Tobias Oetiker, version 3.13.

lettre Designed to write letters in French, German, or
English. Configurable, through a number of dimen-
sions and macros,; these may be grouped in an “in-
stitute package” called at initialization. Includes
documentation (in French) and examples.

mathlig in macros/generic
Multicharacter ligatures in Math Mode, which can
make for much more readable source, e.g., => could
expand to \rightarrow, without compromising the
normal math mode use of - and >.

mdvi in dviware
Previewer for dvi files which supports a wide vari-
ety of font formats (PK, GF, VF/OVF, Type 1 and
TrueType).

memoir in macros/latex/exptl
Initial (alpha) release of Peter Wilson’s flexible
IXTEX documentclass for typesetting of books such
as novels, biographies, histories, etc., with options
for trim marks, draft (double-spaced, ragged right,
no hyphenation, typewriter font) appearance, vari-
ous sizes and much more. Note: This package has
moved out of alpha and into a highly refined state
and is now in memoir.

mftinc Include pretty-printed Metafont source in a
ITEX document.

mtfonts.fdd in .../supported/psnfssx/mathtime
Source for the .fd files for Y&Y’s MathTime fonts.
All fontnames changed to lowercase, to match the
files as now distributed by Y&Y (cf. the IXTEX bug
report psnfss/3001).

newcommand.py in support/newcommand
Python program to automatically generate I#TEX
macro definitions for macros which require powerful
argument processing.

oesch in fonts/oesch
METAFONT script font (partial T1 encoding) for
Austrian School Writing in 10 and 20 point sizes.

pdftex.def in macros/pdftex/graphics
(V.0.03g) Update to handle zero values for paper-
width and paperheight.

petri-nets in macros/generic
Set of TEX/IXTEX packages for drawing Petri-nets
(and related models) in PostScript documents, with
macros related to PBC, M-nets, etc.

psnfss-beta in macros/latex/required
Public test release of the new version 8.2. Integrates
the mathpazo package into psnfss.

348

snapshot Provides a snapshot of the current process-
ing context external dependencies of the document
insofar as it can be determined from inside ETEX.

toolbox (V.2.1) Macros for various tasks often needed
in TEX programming.

ukrhyph in language/hyphenation
Update.

upgreek in .../supported/was
A package to provide the upright Greek letters from
the Euler or Adobe Symbol fonts as additional math
symbols, with proper scaling in super- and sub-
scripts.

varindex Customizable and convenient front end for
the \index command. Version 2.2 fixes placeholder
replacement with commas, adds new variables to
control the output, and more. Requires toolbox
2.1.

wp2latex in support
Conversion from Wordperfect 6 —8 into KTEX. Up-
date adds ability to extract WPG to PostScript.

June 2001

abstract Gives you control over abstracts, and in par-
ticular provides for a one column abstract in a two
column paper.

bakoma in systems/win32
Upgrade to BaKoMa TEX system to v.3.50.

BibTexMng in biblio/bibtex/utils
(V.2.0) Easy to use bibliographic software for
Windows. Combines online searching, reference
management, bibliography making, and informa-
tion sharing into a single user-friendly environment.
It was written to be used with IXTEX, using BibTEX.
Update improves interface, provides for HTML bib-
liography and bug fixes.

bluesky/pfb in fonts/cm/ps-typel
Updated to fix a typo in eexec routine in the out-
line font binaries which caused problems when pre-
viewing with Acrobat 5.0.

cbgreek.zip in fonts/greek/cb/mf
Updated version of CB Greek fonts.

chemarr.sty in .../supported/oberdiek
(V.1.1) Chemical reaction arrows with the possibil-
ity to put text above and below. Requires amsmath.

emtexTDS/£ix007 in systems/os2/emtex-contrib
Fix pack for enTEX/TDS 0.55 (0S/2).

esdiff Typesets derivatives, partial derivatives, multi-
ple derivatives.

footmisc Updated version with improved support for
ITEX code, better hiding of debugging informa-
tion and improved per-page algorithm (tested on
documents in the hundreds of pages).

gtex-letter in support
A Gnome assistant (wizard/druid) to create let-
ters (including list-merges) with support for the
Gnome address book, PIM and batch operation
and UNIX pipes; features user-selectable interface

TUGboat, Volume 22 (2001), No. 4

modes (novice—expert) which access the features
of the IMTEX letter class.

ifmslide (V.0.45) Produce printed slides and online
presentations from only one source, add buttons for
navigation and visual effects.

ifpdf.sty in .../supported/oberdiek
Allows detection of pdfTEX in pdf mode. Works
with plain or BTEX formats.

invoice.sty in .../supported/invoice
A tailor-made, yet expandable solution for invoicing
in local and foreign currencies, including multiple
assignments for a single client.

12kurz in info/lshort/german
Slightly updated release of the German ETEX 2¢-
Kurzbeschreibung.

latex2man in support
V. 1.14. A tool to translate UNIX manual pages
written with ITEX into a format understood by the
UNIX man(1)-command (or into TeXinfo or HTML).

lstpatch.sty in .../supported/listings
Patch to the listings package (v.0.2 1h) to fix “warn-
ing: destination with the same identifier” error with
pdfTEX 3.14159-14f.

makor in language/hebrew
Fonts and macros to typeset Hebrew in a natural
manner with a software switch to turn vowels off or
on, and examples.

METAOBJ in graphics/metapost/contrib/macros
A large METAPOST package providing high-level
objects. It implements many of PSTricks’ features
for node connections, but also trees, matrices, and
many other things and is easily extensible.

mf2ptl in support
Produces PostScript Type 1 fonts from METAFONT
source in conjunction with the tlasm program from
the tlutils suite.

MiniPlot Typesets eps figures using an easy-to-use in-
terface with options for multiple figures and sub-
figures— wrapped figures are also supported as are
informational frameboxes.

SchemeWEB2 in web/schemeweb2
Literate programming for Lisp and Scheme. Im-
proved version of SchemeWEB, by John D. Rams-
dell.

teubner Package for philological typesetting, especially,
but not only, Greek.

ushort Updated version of this class for configurable
underlining (shorter or longer, multiples) is up to
four times faster.

VTeX/Free in systems/vtex
Release 7.33 of MicroPress’ TEX for OS/2 and Linux-
x86. Supports PDF security options and xpdf source
specials.

¢ William F. Adams
75 Utley Drive, Ste. 110
Mechanicsburg, PA 17055
USA

willadams@aol.com

TUGboat, Volume 22 (2001), No. 4

Highlighting in the I TEX picture
environment

David M. Tulett

Emphasizing text is normally accomplished in type-
set text by changing the font, which in IMTEX is usu-
ally done by using the \emph command. However,
a popular way for students to emphasize what is
important in their textbooks is to use a highlighter.
These come in various colours, but a golden shade
of yellow is most common. I wanted to create this
effect in WTEX documents, not only for text (which
is simple), but for pictures too.

For text all that is needed is the \colorbox
command, with a colour being chosen to mimic the
typical highlighter. For this I created a colour which
I named marygold (a play on words, it’s a homonym
of marigold but named after my wife Mary) by using
the following definition:

\definecolor{marygold}{cmyk}’,
{0,0.1,0.5,0%}

We can then produce highlighted text (it will
appear as a shade of grey in this publication) by
using:

\colorbox{marygold}{highlighted text}

So far, everything is easy, but highlighting in
the picture environment is not so trivial. I had
made a graph in which segments of some of the
lines needed to be highlighted (to show the regions
of highest expected profit). The graph with the
highlighted line segments appears in the figure to the
right. The line marked A4 will serve as an example.
The black line was created using;:

\put(15,350){\1line(3,-2){240}}

This line intercepts the As line at coordinate (75,310),
hence the highlighter had to run from (15,350)
to (75,310). To make highlighting without text,
an appropriately-sized \hspace command is used
where the text would be in the \colorbox com-
mand.

The \colorbox command needs to be embed-
ded within a \rotatebox command. In conjunction
with the highlighting commands for the As line,
there needs to be a bit of trial-and-error in posi-
tioning the commands and in specifying the length
for the \hspace commands. The four highlighted
line segments were created using;:

% Highlighting

% Al line

\put (194,270) {\rotatebox{18.435}%
{\colorbox{marygold}{\hspace{26pt}}}}
% A2 line

\put (74,310) {\rotatebox{-18.435}%

349

{\colorbox{marygold}{\hspace{122pt}}}}
% A3 line

\put (222.5,279.5) {\rotatebox{45}/
{\colorbox{marygold}{\hspace{37pt}}}}
% A4 line

\put (14,350) {\rotatebox{-33.69}/,
{\colorbox{marygold}{\hspace{66pt}}}}

6.0 6.0

4.5

4.0

4.0

3.5

3.0 . ‘ . : ‘ : 3.0

An Example of Highlighting in the Picture Environment

Since the normal use of a highlighter is to su-
perimpose it upon typeset text, one might presume
that everything to appear in black would be drawn
first, and that the commands to create the high-
lighting would come afterward. However, doing it
this way creates the highlighting with the black lines
underneath being removed. Instead, I discovered
by experimentation that the commands to perform
the highlighting need to come immediately after the
\begin{picture} command. When I discovered
this, I had incorrectly presumed that there was a
special effect caused by the ordering of the com-
mands within the picture environment. I am grate-
ful to an anonymous reviewer for pointing out that
this effect is caused instead by the “PostScript/PDF
rendering model, which places later elements over
previous elements [thereby] obscuring them.”

¢ David M. Tulett
Faculty of Business Administration
Memorial University of
Newfoundland
St. John’s, NF, Canada, A1B 3X5
dtulett@mun.ca

350

Macros

A complement to \smash, \llap, and \rlap
Alexander R. Perlis

Abstract

In both plain TEX and KTEX, most local align-
ment issues are addressed using \smash, \phantom,
\vphantom, \hphantom, \1lap, and \rlap. (WTEX
also provides \makebox. All these macros are re-
viewed in this article.) However, conspicuously
missing is a horizontal version of \smash, which is
necessary, for example, to eliminate the excessive
whitespace surrounding the large operator in

X= Y Xy
1<i<j<n
Another snag: whereas \smash and \phantom be-
have as expected in both horizontal mode and math
mode, \1llap, \rlap, and \makebox are not suited
for use in math mode.

This article introduces the macro \clap (simul-
taneously a centered version of \1lap/\rlap and a
horizontal version of \smash), and the three macros
\mathllap, \mathrlap, and \mathclap (versions of
\1lap, \rlap, and \clap designed for math mode).

1 Think in terms of boxes

To understand how alignment works, we should fol-
low a TEX guru’s mantra: think in terms of boxes.

x=|] Iy

J

If we ignore some of the details, we are left with:

X=| D |

1<7<j7<n|

Evidently every item typeset by TEX has two com-
ponents: the ink component, and the box compo-
nent. The latter is often called the “boundary box”
of the item, but this can be misleading, as the box
may differ radically from the tightest one surround-
ing the ink. TgX’s alignment calculations are per-
formed entirely in terms of box components. In fact,
TEX understands nothing about the ink component
(such as its shape), and merely passes it along to
the output file.

For individual glyphs, the box is part of the
font’s design and is encoded in the font’s TFM file.
That box may admit a margin or allow ink to spill
out: , K. But when TEX constructs a big box
from many small boxes, the new outer box will be

TUGboat, Volume 22 (2001), No. 4

the tightest one around all inner boxes:!

>

1<:<j<n

Finally, TEX composes a line by placing boxes side-
by-side without overlap.

Thus, to eliminate the excessive whitespace sur-
rounding the large operator, we must reduce the
width of yet preserve the ink. We might
as well set the width to 0. In pictures, we want to
change

to
1<igj<n,

which is a box of width 0 (indicated by a line) with
ink sticking out equally on either side. The result:

X =
1<idjikn
(What looks like a box surrounding “i < j” is actu-
ally the bottom portion of the outer box that sur-
rounds the box of the operator and the zero-width
box of the subscript.)

In the next section, we’ll review the macros,
available in plain TEX and KTEX, that affect align-
ment by altering boxes. Then we’ll introduce the
new macro for achieving the effect discussed above.

2 Review of existing macros

The macro \smash boxes up its material but sets
the height and depth of the box to 0. Thus it is the
box itself that gets smashed, not the ink in the box.
To smash both the box and the ink, i.e., to smash the
box and eliminate the ink, use \hphantom in place
of \smash. Thus \hphantom produces no ink: the
horizontal phantom remaining after the smashing is
an infinitely thin horizontal line segment just as wide
as the original material.

align align

original \smash \hphantom

(By the way: it may be easier to understand these
macros by their effect in the context of neighboring

1 In the example here, the extra whitespace at the bot-
tom is due to a another box (more precisely: a kern) that
lies below the subscript but is not indicated in our image.
This mysterious box arises from the elaborate rules TEX fol-
lows for generating boxes in math mode. As explained in
The TgXbook, Appendix G, Rule 13a: additional whitespace
below subscripts (and above superscripts) of math operators
is determined by \fontdimen13 of the math extension font.
Rule 13a furthermore explains how TEX avoids an underfull
box: it starts with the two boxes and [[<7<j<mn], repack-
ages them as and I<i<j<n, and puts them (along
with some kerns) on top of each other.

TUGboat, Volume 22 (2001), No. 4

material, which is shown in the two tables at the
end of this article.) Now compare the above with:

align |
original \phantom \vphantom

Evidently \phantom eliminates the ink without
changing the box, while \vphantom eliminates the
ink and smashes the box horizontally. (The first let-
ter of \hphantom and \vphantom refers not to the
direction of smashing but to the shape of the result.)

To smash the box horizontally, without affect-
ing the ink, there are \11lap and \rlap. The former
aligns the smashed box at the right end of the ink
(so that we end up with a “left overlap”), while the
latter aligns the smashed box at the left end (result-
ing in a “right overlap”).

align| l|align
original \llap \rlap
Finally, plain TEX and X TEX diverge as follows.
Missing in plain TEX is a macro we’ll define in sec-
tion 4 and call \clap, which aligns the smashed box
halfway between the left and right ends of the ink
(we might call this a “centered overlap”). KTEX
already provides it under a different name:
\makebox [Opt] [1]{. ..} behaves like \11ap{...}
\makebox [Opt] [r]{. ..} behaves like \rlap{...}
\makebox [Opt] [c]{. ..} behaves like \clap{...}

3 Concerning math mode

Whereas \smash and the three \phantom macros
work correctly both in horizontal mode and in
math mode, \1lap and \rlap (and the HTEX-only
\makebox) are suited only for horizontal mode. To
use them in math mode, we must resort to mon-
strosities like

\rlap{$\mathsurround=Opt\scriptstyle{...}$}.
Here \rlap exited math mode, so we had to:
e use $ to get back into math mode,
e use \mathsurround to eliminate whitespace in-
troduced whenever we enter math mode, and
e reintroduce whatever math style was in effect
before the \rlap.
With \smash and \phantom such shenanigans are
unnecessary (indeed errors) because those macros
use \ifmmode to test for the current mode and
use \mathpalette to maintain the current math
style. Thus where \smash and \phantom are flex-
ible, \11ap and \rlap are efficient.? Why the di-
chotomy? Perhaps Knuth can explain, but the mat-

2 The IATEX macro \makebox is neither flexible (in the
sense under discussion) nor efficient, but has the benefit of
being consistent with the rest of IATEX in its use of optional
parameters.

351

ter is moot: plain TEX is essentially frozen, and fu-
ture versions of XTEX are unlikely to deviate. All
we can do is introduce new macros to fill in the
gaps. They will be called \mathllap, \mathrlap,
and \mathclap.® (For ITEX consistency we might
also define \mathmakebox as a math mode analogue
of \makebox, but don’t show the code here.)

4 The new macros
Use these macros with plain TEX or with ETEX.

% For comparison, the existing overlap macros:
% \def\llap#1{\hbox to Opt{\hss#1}}
% \def\rlap#1{\hbox to Opt{#1\hss}}

\def\clap#1{\hbox to Opt{\hss#1\hss}}

\def\mathllap{\mathpalette\mathllapinternal}
\def\mathrlap{\mathpalette\mathrlapinternal}
\def\mathclap{\mathpalette\mathclapinternal}

\def\mathllapinternal#1#2{J,
\1llap{$\mathsurround=Opt#1{#2}$}}

\def\mathrlapinternal#1#2{J,
\rlap{$\mathsurround=Opt#1{#2}$}}

\def\mathclapinternal#1#2{/,
\clap{$\mathsurround=0Opt#1{#2}$}}

5 Applications

5.1 Large operators

Excessive whitespace may be eliminated as follows:
X = \sum_{\mathclap{i\le i\le j\le n}} X_{ij}

X=> X

1<i<j<n

5.2 Tabular alignments

Consider a complicated alignment, such as polyno-
mial long division. Fiddling with \ialign yields:
\vcenter{\def\ministrut{\vrule height2pt
depth2pt widthOpt}\offinterlineskip\ialign{%
$\mathstrut#$&&\hfil$\mathsurround=0pt#$\cr
&&&x+{}&1+\alpha\cr
\omit&\multispan{4}\rlap{\ministrut

\vrule heightOpt}\hrulefill\cr
x-\alpha\;&\vrule\;\;&x"2+{}&x+{}&2\cr
&&x"2-{}&\alpha x\phantom{{}+{}}&\cr
\omit&&\multispan{3}\ministrut\hrulefill\cr

3 Concerning names, initially I used \hsmash in place of
\clap, and had it test for math mode and maintain the cur-
rent math style. Thus, whereas \smash is like \hphantom, my
\hsmash was like \vphantom. Concerned that the names were
confusing, I pondered: clapping one’s hands together might
be the horizontal analogue of smashing one’s hands on, say, a
desk. Thus the name \clap was born, but the definition still
mimicked \smash. Only later did I realize the obvious connec-
tion (both in name and behavior) with \1lap/\rlap. Remem-
bering the separate need for math versions of those macros,
I arrived at the design presented in this article: three over-
lap macros for horizontal mode, and separately three overlap
macros for math mode.

352

&&& (1+\alpha)x+{}&2\cr

&&& (1+\alpha)x-{}&\alpha-\alpha~2\cr
\omit&&&\multispan{2}\ministrut\hrulefill\cr
&&&&2+\alpha+\alpha~2\cr

3}
T+ 1+«
x—a’xz—i— T+ 2
x? — ox
1+ a)z+ 2
1+ a)z— a—a?
2+ a+a?

By inserting \mathllap thrice, \mathrlap twice,
and \quad once (exercise: determine where), we
reduce whitespace and allow o? to stick out:

z+ 14+
xfa’szr T+ 2
- aw

(14 o)z + 2
(1+a)r —a—a?

2+ a+a?
5.3 Commutative diagrams

Consider the alignment of arrows, objects, and
arrow labels in commutative diagrams. Because
many diagram packages exist, instead of showing the
source for the following simple diagrams, the onus is
on the reader to reproduce the following effect using
the diagram package of choice.

By putting all the primes inside \mathrlap,

o c -2
| , | omight become | | .
C/l C/// C// C//I

I wrote might because some minor additional fid-
dling may be necessary due to the difficulty that the
box of an entry such as C\mathrlap{’’} surrounds
only the “C”; consequently, the neighboring arrow
may land on top of the primes. Depending on your
choice of diagram package, you might work around
this problem by demanding some entries to have a
wider margin, or by defining a new horizontal arrow
that has some extra space at one end. (The dia-
grams above were produced using \ialign, so I sim-
ply preceded each arrow with \mskip\thinmuskip.)

TUGboat, Volume 22 (2001), No. 4

6 Conclusion and acknowledgment

The new macros complement the existing ones by
filling in the obvious gaps, as is evident from the
tables below. My hope is that these macros (along
with \mathmakebox—see section 3) will be incorpo-
rated into a future version of IXTEX, or at least be-
come part of the amsmath package of ANS-ETEX.

MACRO MODE EFFECT IN CONTEXT
none either align| | E===salignk===<]
\smash either align [\d“g)n\]
\phantom | either | | | |] i I |
\hphantom | either I I I]
\vphantom | either |
\1lap horiz. align|
\rlap horiz. lalign
\clap horiz. align
\mathllap | math align|
\mathrlap | math lalign
\mathclap | math align

Table 1: Effect of existing macros (first six) and
new macros (last four).

COMBINATION MODE IN CONTEXT
\1llap{\smash{...}} horiz. | =aligne===x
\rlap{\smash{...}} horiz. | s==>=align=
\clap{\smash{...}} horiz. | c==aliga==<

\mathllap{\smash{...}} | math | calignr===<x
\mathrlap{\smash{...}} | math | cs=s-alignx
\mathclap{\smash{...}} | math | ===align=<<

Table 2: The remaining effects are achieved using
combinations.

For useful comments on an earlier version of
this article, and in particular for telling me about
\makebox, I thank Michael Downes.

¢ Alexander R. Perlis
Department of Mathematics
The University of Arizona
Tucson, AZ 85721 USA
aprl@math.arizona.edu

TUGboat, Volume 22 (2001), No. 4

IATEX

Typesetting critical editions of poetry
John Burt

Abstract

poemscol provides macros for INTEX for setting col-
lections of poetry. It is especially suited for setting
collections of poetry in which several volumes are
combined, such as in a critical edition of a poet’s
Collected Poems. It provides the structures required
to produce a critical edition of the kind specified by
the Modern Language Association’s Committee on
Scholarly Editions, such as line numbering of the
poems and multiple series of endnotes tied to the
line numbers of the poems, and it automatically
marks every occasion where a stanza break falls on
a page break. It provides running headers of the
form “Notes to pp. xx—yy” for the notes sections,
and other structures such as the table of contents,
the index of first lines and titles, divider pages
that separate sections of the book, and automatic
adjustment of the running headers for the different
sections of a Collected Poems volume.

1 Critical editions
1.1 What a critical edition is

A critical edition is a special version of a literary
work in which the editor has, by collating the man-
uscripts, typescripts, galleys, or published versions
of a text, and by examining other kinds of rele-
vant evidence (such as the author’s correspondence
with publishers), attempted to produce a text that
accurately represents what the author intended to
write. While scholars continue to disagree about
what constitutes authorial intentions, about what
counts as evidence for authorial intentions, and even
about whether the concept of authorial intention is
ultimately a meaningful one, critical editions remain
essential tools for the study of literary works, mak-
ing literary works available for the next generation,
and giving reasoned accounts of the editor’s views
of what the author did or did not actually say.
Every scholarly editor has heard the story
about how F. O. Matthiessen, in his pathbreaking
book American Renaissance, provided an illuminat-
ing commentary upon a passage in Melville’s White-
Jacket in which Melville spoke of a sailor falling
from a masthead into the ocean, where he brushes
a “soiled fish of the sea.” Matthiessen brooded at
length upon how a fish could be soiled, unaware that

353

the line is the work of the compositor of the reprint
edition he had been reading; in the first edition, it
is a coiled fish of the sea that the sailor brushes.
Without critical editions, literary critics wind up
catching all too many “soiled fish of the sea.”

Critical editing, of course, has a long history,
stretching back to Renaissance humanists’ attempts
to determine an accurate text of the Bible, but
it assumed its modern form in the middle of the
last century, as W. W. Greg, Charlton Hinman and
others developed methods to establish the texts of
Shakespeare’s works. Thomas Tanselle’s A Ratio-
nale of Textual Criticism provides a thorough, if
conservative, treatment of the history and method
of the scholarly editing of critical editions.

The importance of critical editions is more than
merely scholarly. Only since the appearance in
1955 of Thomas Johnson’s edition of the poetry
of Emily Dickinson (recently superseded by Ralph
Franklin’s new edition) have readers been able to
see how unconventional her poetry is, since only
with Johnson’s edition were readers finally able to
separate what Dickinson wrote from the various
ways her early editors altered the texts of her poems
to suit their own literary sensibilities, regularizing
Dickinson’s meters and straightening out her slanted
rhymes. Critical editions of historical documents are
also important, but the canons of editing them are
slightly different from those employed for literary
texts.

1.2 Features of critical editions

Critical editions have a number of features in com-
mon, many of them specified by the Committee on
Scholarly Editions of the Modern Language Associa-
tion. These include such things as an essay describ-
ing and defending the editor’s choice of copy text
(ideally, say, the fair copy of the manuscript that
the author sent to the publisher) and an account
of the rules the editor employed in emending it,
an introduction laying out some of the key literary
issues about the text, an index of titles and first
lines, and several varieties of notes.

These notes, which may be footnotes or end-
notes, typically include several series. Minimally
they include a list of emendations, accounting for
every instance in which the editor has chosen to
depart from the copy text, and a set of explanatory
notes, making clear allusions or historical references
or other kinds of background information the editor
feels to be necessary in order to understand partic-
ular passages.

Critical editions also usually include textual
collations, sometimes distinguishing what are called

354

“substantive” variants (which are, roughly speaking,
variants in the actual words in the text) and what
are called “accidental” variants (which are, roughly
speaking, variants in the punctuation of the text).
The rule of thumb about substantive and accidental
variants is that if a substantive variant appears in
a late published version for which the author read
proof, it is highly likely to be a considered revision of
the text by the author, but an accidental variant in
a late version for which the author read proof is less
likely to be authorial, since authors are less likely,
when reading proof, to notice accidental variants
than substantive ones.

In critical editions of prose works, it is the gen-
eral practice to include an account of hyphenations
at the ends of lines, distinguishing between instances
in which the hyphen is simply an artifact of a line-
ending (whether in the copy text or in one’s own
edition) and instances in which the hyphen should
be preserved when quoting the text.

1.3 Other critical edition packages

Critical editions are time-consuming to prepare and
expensive to publish, and TEX is ideally suited for
automating some of the most tedious (and error-
prone) tasks, for lowering the cost of producing a
published edition, and for removing the publisher’s
typesetter, a possible source of new errors, from
the production of the document. There are several
packages available for critical edition typesetting on
CTAN. Of these, the gold standard is undoubtedly
EDMAC, a plain TEX format by John Lavagnino and
Dominik Wujastyk. EDMAC is tremendously flexible
and tremendously feature-rich; in addition, it has
a long history of actual use among publishers of
critical editions. Most of EDMAC’s features have
been ported to the IMTEX world with ledmac, a
IMTEX style package by Peter Wilson. A somewhat
different approach has been taken by Uwe Liick in
the ednotes package, which combines existing INTEX
macro packages such as lineno and manyfoot to meet
the needs of critical editions.

2 Special markup for poetry
2.1 Verse lines and physical lines

poemscol differs from these other packages in being
specifically designed for verse. At first glance, this
means only that it does not use the sophisticated
paragraph decomposition technique that EDMAC uses
in order to attach line numbers to prose paragraphs.
But it also means that poemscol pays attention to
the key feature that distinguishes prose from verse,
which is that a verse line is a unit of versification,

TUGboat, Volume 22 (2001), No. 4

not a unit of typesetting, and may run over several
physical lines (if the poet writes long lines, as Whit-
man did), or may be broken over several physical
lines (if the poet, say, shifts speakers or subjects
in mid-line). The verse line also has a complicated
relationship to the stanza or verse paragraph, with
some poets breaking a single line across a stanza
break, as Robert Penn Warren often does.
poemscol is designed for typesetting lyric and
narrative poetry, but it has provisions for poems
that interrupt their verse with prose interludes
(poemscol will not line-number the prose passages,
however, although it will remember what the line
number was when the verse picks up again). With
a certain amount of fiddling, poemscol could be
modified to typeset dramatic verse, although it
doesn’t provide markup for the special structures
for drama (stage directions, speech tags, act and
scene environments, and so on) right now. There
are, however, IWTEX style files and class files with
all of the structures for typesetting drama available
on CTAN, and there is no reason to assume that
poemscol could not work in conjunction with them.

2.2 Marking Logical Units of Poems

With poemscol you mark poem titles, lines, stanzas,
textual notes, emendations, explanatory notes, and
entire poems up as logical units, and KTEX does
your formatting, and your counting, for you. Once
you have marked out the logical units of the poem,
poemscol will take care of the line numbering, and
will automatically mark every textual note, emen-
dation, or explanatory note with the line number.

One advantage of this kind of markup is that
even if the appearance of the poem on the page
may be ambiguous, the editor’s intentions about
the logical structure of the poem will be preserved
in the IWTEX source. poemscol is designed so that
even readers who know no IKTEX can understand
the editor’s intentions by examining the markup.
By manipulating penalties and designing commands
even for relatively unusual circumstances, poemscol
attempts to make it possible for your source files
to contain markup that is almost entirely content-
based, marking the nature of the poetic objects to
be set, with only a little markup of an explicitly
typographical character. Although I¥TEX is a type-
setting language, not a content markup language,
IMTEX comes very close to enabling one to realize
the ideal of completely separating content markup
from formatting, and I have tried to design poemscol
with that ideal in mind.

Should you wish later to produce an electronic
edition of your work, either using XML or the SGML

TUGboat, Volume 22 (2001), No. 4

markup approved by the Text Encoding Initiative,
transforming your texts from IXTEX to XML would
largely (although not entirely) be a matter of per-
forming a series of global search-and-replaces, and
could conceivably be done with a perl script.

2.3 Stanza breaks at page turns

In poetry which does not have a regular stanzaic
form, it is useful to be able to mark occasions where
there is a stanza break at the bottom of a page
which the reader might not notice. When poets
submit their typescripts to publishers, they often
painstakingly mark every occasion in which a stanza
break falls on a page turn, since the typesetter
might omit the stanza break otherwise. But the
publishers themselves mostly do not mark stanza
breaks at page turns, leaving it ambiguous for the
reader whether there is a stanza break at that point
or not. All publishers of poetry should mark stanza
breaks at page turns, but few do. Marking such
stanza breaks by hand is not only tedious and easy
to get wrong, but also a process you will have to start
over again if anything about your volume changes,
if you add a poem, say, or even decide to break a
title across two lines. poemscol automatically marks
cases where the page break coincides with a stanza
break by placing a symbol in the running footer. To
do this, poemscol changes the value of \mark when
one is inside a poem environment, but not inside a
stanza environment. You can decide to mark cases
where there is a stanza break at a page turn, or cases
where there is not a stanza break at a page turn, or
both, and you can choose what mark to put in the
running footer for both cases.

2.4 Titles of poems and poetic sequences

The command names may seem ugly and long. And
there are separate commands for many tasks that
seem closely related, such as a command to mark
the title of a section of a poetic sequence, and a
separate command to mark a subsection. But the
names do describe pretty much what each macro
does, and they do specify exactly what the object
they mark is supposed to be.

There are also many commands for special pur-
poses whose necessity may not seem clear until the
editor finds him or herself in the jam the com-
mand was designed for. If, for instance, a long
poem has several sections whose titles are only ro-
man numerals, the ordinary \poemsectiontitle{}
command may be inadequate, since there may be
other poems in sections that do the same thing,
and \poemsectiontitle{} will confuse the cross-
references poemscol uses to set the page numbers

355

that refer to the section in the textual notes. The
\poemsectiontitlenocontents{}{} macro solves
this problem by having two arguments, the first for
the section title, and the second for the poem title,
so that every section simply titled “III” will have a
unique cross reference.

\poemtitle{} (and a host of related
commands such as \sequencetitle{} and
\sequencesectiontitle{}) sets the title of
the poem. poemscol gives default values for such
things as the font size, the separation between the
top of the title and the bottom of the previous
poem, the separation between the bottom of the
title and the first line, and so on. It also sets
penalties in order to encourage page breaks just
before a title, and to discourage page breaks
between a title and a poem. Finally, it sends
information about the poem to the external files
that manage the table of contents and the various
notes sections about the poem.

Tables of contents of collections of poetry are
unlike tables of contents of scholarly books, and for
that reason I have written macros for making such
a table of contents to use in place of the macros
from KTEX. These macros are rather primitive,
and lack many of the better features of tables of
contents in INTEX, but they do give a consistent look,
and some thought has been given to distinguishing
volumes, poems, poetic sequences, and sections of
poetic sequences in the table of contents.

Every \poemtitle{} will also open a new para-
graph entry in the “Textual Notes” section (if com-
piling textual notes is enabled) headed with the page
number and title of the poem, since presumably
one will want to give information about the pub-
lication history of every poem. The \poemtitle{}
command and its fellows, however, only open new
paragraph entries in the “Explanatory Notes” and
“Emendations” sections (if compiling these is en-
abled) if there actually are explanatory notes and
emendations for that poem in the text that follows.

There are special commands for titles with mul-
tiple lines, for titles with italicized words or other
formatting, and for poems without formal titles
(which may be listed in the table of contents and
in the notes sections by their first lines). There is
even a special command for poems without formal
titles whose first lines include italicized words. By
default, the titles of poems with multiple line titles
will be broken the same way in the table of contents
that they were broken in the body of the text, but
this can be changed by using the nocontents or
baretitle forms of the title commands togther with
\literalcontents{}. In the notes sections, the

356

titles of poems with multi-line titles will be run in
by default, although you could change this using the
nonotes or baretitle forms of the title commands
together with \1iteraltextnote{} and its siblings.
Sequences of related poems, perhaps with an
over-title, demand special handling in the text, in
the notes sections, and in the table of contents.
(A moment’s thought will show that they are dif-
ferent in some ways from poems in sections. For
one thing, a sequence manifests a different rela-
tionship between part and whole than a poem in
sections does, and often provides stronger expe-
riences of momentary closure between sections.)
\sequencefirstsectiontitle{} gives a little more
vertical space between the main title and the first
section title than \sequencesectiontitle{} gives
between adjacent sections later on in the sequence
(since the over-title for the sequence is in larger
type) and adjusts the page breaking penalties to
reflect the fact that such titles should not occur
near the bottom of a page, since there should be
no page break between the sequence title and the
title of the first section of the sequence (although
page breaks are permissible, indeed even slightly
favored, between later sections). There should also
never be a page break between a section title and
the first or second line of the section. The penalties
poemscol sets should take care of these automati-
cally, but you may still have cases which require
you to specify a page break with \pagebreak or
\newpage. There are a host of other commands,
all with self-explanatory titles, that deal with some
special situations that arise in setting the elements
of poetic sequences. These macros don’t of course
exhaust the dizzying possibilities, but from them
you can construct whatever other macros you may
need. (For long poems in books or cantos, it would
be wise to use \poemtitle for the canto names or
numbers, setting the volume title in some other way,
perhaps with \volumetitle described above.)

Finally, the elegantly named commands
\poemsubtitle{},\epigraph{}, \dedication{},
and \attribution{} are for, well, subtitles,

epigraphs, dedications and attributions.

2.5 The poem environment

The body of every poem should be placed in a
poem environment. Putting the body of the poem
between \begin{poem} and \end{poem} resets the
line counter to 1, and puts the poem in a \verse en-
vironment (to handle run over lines automatically).
poemscol slightly modifies the \verse environment
from the standard IATEX definition, increasing the
indentation used for run over lines, in order to make

TUGboat, Volume 22 (2001), No. 4

the difference between the indented run over por-
tion of a long line, on one hand, and an explicitly
indented second line, more obvious in the output.

2.6 No hyphenation in verse

poemscol turns off automatic hyphenation in poetry
environments. The idea here is that every hyphen in
the printed poem is authorial, obviating the need for
you to compile a hyphenated-lines list to distinguish
between authorial hyphens and hyphens added for
lineation purposes. Since poetry is normally not set
with a flush right margin, giving up hyphenation
is no hardship. (You may wish to change this for
your own edition, but if you do so you must keep
track of added hyphens yourself. This list will be
easy to compile, however, because only authorial
hyphens will appear in your source code. Automati-
cally added hyphens will appear only in the output.
You might even modify the output routine so that
automatically added hyphens have a different look.)

poemscol turns automatic hyphenation back on
in prose contexts, so if you wish to keep a hyphen-
ation list for such things as authorial prefaces and
so on, you must do so yourself manually. (Alter-
natively, you can turn automatic hyphenation off
in those contexts as well, by setting the \language
to 255. If you do turn automatic hyphenation off,
it would be wise to restrict the change to some
particular environment, rather than changing the
\language globally.)

2.7 The stanza environment

Every stanza should be placed in its own stanza
environment. Every poem should have at least one
stanza. Marking the beginning and end of every
stanza (with \begin{stanza} and \end{stanza})
provides poemscol with a way of detecting cases in
which a page boundary falls on a stanza break, since
in those cases a page turn happens when one is
inside a poem environment but not inside a stanza
environment. Further, marking the beginning and
end of every stanza makes the logical structure of
the poem (and the editor’s intentions about it) clear
to readers of your source code. poemscol adds a
little bit more white space between stanzas than
the standard ATEX verse environment does. (I
found that the standard stanza breaks did not leap
out on the page as stanza breaks.) \verseline
should mark the end of every line, except the last
line of every stanza (which should be marked with
\end{stanzal).

TUGboat, Volume 22 (2001), No. 4

2.8 Broken lines of various kinds

poemscol automatically runs over long lines, indent-
ing the run over portion on the next physical line.
If you are unhappy with where poemscol has run
over a particular line, you can “bend” that line by
issuing \linebend at the point where you wish it
to run over. The run over portion of the line will
be indented just as if poemscol had “bent” the line
at your selected point. This command only works
if you have chosen to bend the line at some point
earlier than poemscol would have chosen on its own.
If you really do want to extend a line further into
the right margin, you can probably do so by using
a combination of \nobreak and \hbox{}, or by
turning all of the spaces in that line into unbreakable
spaces, marked with ~ in your source. But IXTEX
will complain if you do this, and rightly so, since
the result is likely to be ugly. You may also wish to
use \linebend to reproduce how your author broke
up long lines on the page (if you know that your
author cared about such things and did not leave
them up to the typesetter).

\linebend should only be used for managing
run over lines, not for cases in which a line is to
be broken into separate half-lines. For cases in
which a line is to be broken into half-lines, use the
\brokenline macro. The two macros do similar
(but not identical) things. But a “linebend” is a
feature of typesetting, and a “broken line” is a fea-
ture of versification, and it seems best to distinguish
them logically. (\linebend, like \brokenline, is-
sues a carriage return without incrementing the line
number, but \linebend adds indentation to the
next line.)

\brokenline is normally used with
\versephantom{}, which adds white space exactly
as long as its argument would have been had it
been set in type. \versephantom{} thus provides
an easy way of setting the beginning of the second
half-line flush with the end of the first, whatever
the font size or special formatting of the first line.

The sestet of Yeats’s sonnet “Leda and the
Swan,” has such a broken line:

A shudder in the loins engenders there

The broken wall, the burning roof and tower

And Agamemnon dead.

Being so caught up,

So mastered by the brute blood of the air,

Did she put on his knowledge with his power

Before the indifferent beak could let her drop?

To set the broken line properly, issue:

And Agamemnon dead.\brokenline
\versephantom{And Agamemnon dead.}
Being so caught up,\verseline

357

Some poets occasionally introduce a stanza
break in the middle of a broken line, consider-
ing the line to be a single metrical unit despite
the fact that it straddles a stanza break. To
record these cases, mark the end of the first half-
line with \end{stanza} as usual. But instead
of opening the next stanza with \begin{stanza}
issue \stanzalinestraddle instead. This will
make sure that the line counter counts the strad-
dling line as only one line, despite the stanza
break. \stanzalinestraddle is usually used with
\versephantom{}.

3 Collations, emendations, and
explanatory notes

3.1 Initialization of endnote sections

poemscol makes textual notes of various kinds. It
can set textual collations as footnotes, but it is de-
signed to set collations, emendations, and explana-
tory notes in separate endnote sections as block
paragraphs headed with the page number and title
of the poem they concern. poemscol will automati-
cally generate a running header of the form “Emen-
dations to pp. xx—yy” for the notes sections. (To
do this, poemscol uses the \mark mechanism. Every
time poemscol writes a note to one of the external
files for notes, it also writes out a string which, when
read back in, is a little program which records the
page number of the main text that was being set
when the note was written out to the external file,
compares it to the page number that was written
out for the first note on that page in the notes sec-
tion, and adjusts the \mark for the running header
accordingly.) To collect these textual notes, is-
sue \maketextnotes, \makexplanatorynotes, and
\makeemendations in your preamble. The notes
sections, and the table of contents section, write ex-
ternal files with characteristic extensions. (The code
for doing this is borrowed from John Lavagnino’s
endnotes package.) To set these sections in the
proper place, you will either need to \input them
in your driver file, or use the \finish macro.

3.2 Recording notes

To record information about the copy text, edi-
tions and publication history of individual po-
ems, or any information not tied to specific lines
in the poem, you should place that informa-
tion in the argument to the \sources{} macro.
Typically, you should issue this macro after you
have issued \poemtitle{} and before you issue
\begin{poem}. If you wish to send information
to the textual notes file (such as to force a page

358

break), you can do so by using \sources{}. You
can send typesetting information to other sections
by using \literalemend{}, \literalexplain{},
or \literalcontents{}. There is also a
\literaltextnote{} command, which is equivalent
to \sources{}.

\textnote{} is used to capture variants and tie
them to the correct line number. Issue \textnote{}
immediately after the \verseline command which
marks the ending of the line you wish to comment
upon. Put the text of your note (which may be
simply the recording of a variant in the standard no-
tation) into the argument of the macro. You should
put both the lemma and the variants or comment in
the argument to the \textnote{} macro.

To put the ~ glyph in your note (used for
recording places where the variant and the copy text
have the same word, as for instance when recording
a variation of punctuation) use \sameword. To put
the A glyph into your text (used for recording places
where a punctuation mark is missing in a variant),
use \missingpunct.

\emendation{} and \explanatory{} are used
exactly as \textnote{} is. Issue the emendation
or the explanatory note as the argument to the
command. Place the command immediately after
the \verseline that concludes the line upon which
it is a comment.

3.3 Accidentals and typescript variants

\accidental{} behaves exactly like \textnote{}.
If you wish to distinguish between accidentals and
substantives, this provides a way of doing so. If you
wish to include these accidentals in your textual col-
lations, issue \globallincludeaccidentalstrue
in your preamble.

poemscol does not provide for a separate back-
matter section for accidentals, but it would be triv-
ial to construct one, creating a \makeaccidentals
command on the analogy with \maketextnotes and
redefining the \accidental{} macro to divert its
output into a new, separate external file.

If you wish to exclude accidentals from
your printed output, but to mark them in

your source files, so that your published
collation consists only of substantives, issue
\global\includeaccidentalsfalse in your

preamble. Many publishers are reluctant to
publish accidentals, believing that they are, well,
less substantive than substantives. Using the
\accidental{} command allows you to exclude
accidentals from the published version should your
publisher insist, while preserving the information
about them should the publisher’s mind change.

TUGboat, Volume 22 (2001), No. 4

In the very worst case, if you have marked all the
accidentals in this way you can still produce a list
of accidentals for later use, and other scholars can
search for accidentals in your source files simply by
searching for the string \accidental.

If you wish to distinguish between
published variants and typescript, manuscript,
or galley wvariants, \tsvariant{} provides
a way of doing so. If you wish to include
these wvariants in your textual collations, issue
\global\includetypescriptstrue in your pream-
ble, in which case \tsvariant{} will behave exactly
like \textnote{}. To exclude typescript variants,
issue \globallincludetypescriptsfalse in your
preamble. (Some publishers may turn up their
noses at typescript variants in just the way they
turn up their noses at accidentals.)

If you wish to include typescript entries in a sin-
gle note including those entries in a list with variants
from other published versions (as for instance when
a comma appears in a typescript but only in the
second edition of the published poem), simply issue
\textnote{} as usual, marking the relevant variant
in the list of variants with the \tsentry{} macro.
If \globallincludetypescriptstrue appears in
your preamble, the entry will be included in that
textual note. If typescript variants are excluded, the
typescript entry will also be excluded. You can mark
individual variants with \tsentry{} in the argu-
ments to the \explanatory{} and \emendation{}
commands as well.

Here is a typical use of the \tsentry{} com-
mand:

[\small]

0f moonlit desert. A stallion, white and
flashing, slips,\verseline

\textnote{0f moonlit] Of the moonlit
{\em NY\/}\tsentry{, SP85TS

(revised in black pen to SP85)1}}

In the example, the version of the poem pub-
lished The New Yorker includes a variant, and the
variant is shared with the typescript for the 1985
Selected Poems, but crossed out on the typescript,
and not included in the published version of SP85. If
\includetypescripts is set to false, then the note
in the output will show the variant from The New
Yorker but not the variant from SP85TS. Notice
that since the \tsentry{} comes in the middle
of the list, it begins with a comma, and there is
no white space between that \tsentry{} and the
previous entry.

TUGboat, Volume 22 (2001), No. 4

4 Other structures

Editions of collected poetry might also require spe-
cial structures to reflect the fact that they are made
up of the contents of several volumes of poetry. In
particular, such editions require special structures
for setting up specially formatted divider pages be-
tween volumes. They also require tables of contents
and other front matter. poemscol provides these
structures.

4.1 The main title page and divider pages

The \volumetitlepage environment is an envi-
ronment for divider pages in collections made
up of several volumes. Volume title pages will
always appear on recto pages, and the follow-
ing verso page will be empty. poemscol will
also automatically create a blank verso page
preceding the volume title page if necessary.
\volumeepigraph{}, \volumeattribution{}, and
\volumededication{} mark out epigraphs, attribu-
tions of epigraphs, and dedications on divider pages
or on the main title page. The \maintitlepage
environment is for the title page of the whole book.
The main title page will also automatically always
be on a recto page, with an empty verso. These
divider pages, and their blank versos, have special
page styles, with no page numbers and no running
headers.

4.2 Table of contents

poemscol will also create a table of contents. To
make a table of contents, issue \makepoemcontents.
Generating the information for the table of contents
will take three passes; one to generate the cross-
reference information for the titles, one after running
Makelndex to include the index of titles and first
lines in the table of contents, and one to set the
contents. You will need to \input the contents file
(with extension .ctn) in the proper place, comment-
ing the line out in your driver file until the final run.

4.3 Index of titles and first lines

The Index of titles and first lines is generated by
Makelndex in the usual way, but poemscol provides
formatting information for that index, and automat-
ically provides for adding an entry about the index
to the Table of Contents.

5 Example

Figure 1 shows how a poem with a complex publi-
cation history might be marked up with poemscol,
using the poemscol source for a poem Robert Penn
Warren wrote in his first volume, Thirty-Siz Poems

359

(1935). The poem is the first poem of his sequence
“Kentucky Mountain Farm.” Tt was included in
my edition of The Collected Poems of Robert Penn
Warren, which was set using poemscol. For purposes
of example, I include the over-title, all necessary
package inclusions and other boilerplate (see the
poemscol package documentation for more details).
Figures 2-5 show the corresponding output.

6 Conclusion

Critical editions with all the trimmings, such as
the volumes of Herman Melville produced by the
Northwestern University / Newberry Library group,
or the Thomas More project at Yale, are ambitious
undertakings which require large resources and large
measures of patience, and publication of such edi-
tions is itself highly expensive. But the production
of critical editions plays a crucial role not only in
giving shape to the oeuvre of established authors,
but also in broadening the literary canon to include
authors hitherto neglected. The development of
inexpensive software, such as the several packages
for critical editions found in the TEX world, can, it is
hoped, make critical editions less of a niche product.

References

Burt, John, editor. The Collected Poems of Robert
Penn Warren. Louisiana State University Press,
Baton Rouge, 1998.

Franklin, Ralph W., editor. The Poems of Emily
Dickinson. Harvard University Press, Cambridge,
MA, 1998.

Greg, Walter Wilson. “The Rationale of Copy-
Text”. Studies in Bibliography 3, 19-37, 1950-1.
Greg, Walter Wilson. The Editorial Problem in
Shakespeare; a Survey of the Foundations of the
text. Oxford University Press, Oxford, 1951.
Hinman, Charlton. The Printing and Proof-reading
of the First Folio of Shakespeare. Oxford University
Press, Oxford, 1963.

Johnson, Thomas H., editor. The Complete Poems
of Emily Dickinson. Little, Brown, Boston, 1955.

Matthiessen, F. O. American Renaissance; Art and
Ezxpression in the Age of Emerson and Whitman.
Oxford University Press, New York, 1941.

Tanselle, G. Thomas. A Rationale of Textual Crit-

icism. University of Pennsylvania Press, Philadel-
phia, 1989.

John Burt

Department of English MS023
Brandeis University
Waltham, MA 02454

360

\documentclass[10pt,twoside] {article}

\usepackage{fancyhdr ,makeidx,multicol}

\usepackage{keyval,ifthen,newmarn}

\usepackage{geometry,poemscol}

\begin{document}

\pagestyle{empty}

\setcounter{page}{35} 7 for our example

\leftheader{The Collected Poems of
Robert Penn Warren}

\makeexplanatorynotes

\makeemendations

\maketextnotes

\makepoemcontents

\makelinenumbers

\globallindexingontrue

\global\includeaccidentalstrue

\global\includetypescriptstrue

\sequencetitle{Kentucky Mountain Farm}

\index{Kentucky Mountain Farm@

{\em Kentucky Mountain Farm\/}}

\sources{Text: TSP. Variants:

SP43, SP66 (Deletes ‘¢ ‘The Cardinal,’’

¢‘The Jay,’’ and ‘‘Watershed’’), SP75

(Same sections as SP66), SP85 (Restores

‘‘Watershed’’), {\em Helsinki\/}

[...]

}

\sequencefirstsectiontitle{I. Rebuke

of the Rocksl}\index{Rebuke

of the Rocks @{\em Rebuke of the Rocks\/}}

\sources{Text: TSP.

Variants: {\em Nation\/}, 11 Jan.\ 1928,
p-"47, {\em Literary Digest,\/}

28 Jan.\ 1928, p.~32, {\em Vanderbilt
Masquerader,\/} 10 (Dec.\ 1933), p."16,
SP43, SP66, SP75, SP85, {\em Helsinki\/},
[...]

}

\begin{poem}

\begin{stanza}

Now on you is the

hungry equinox,\verseline

\index{Now on you is the hungry equinox}
0 little stubborn people of

the hill,\verseline

\accidental{hill,] \sameword---

{\em Nation,\/}

{\em Literary Digest\/}

\sameword, {\em Vanderbilt\/} (I include
[...]

ironwood.\end{stanza}

[...]\end{stanza}

\end{poem}

\finish % comment out on first run
\end{document}

Figure 1: poemscol input example for
Kentucky Mountain Farm.

TUGboat, Volume 22 (2001), No.

10

Kentucky Mountain Farm
I. Rebuke of the Rocks

Now on you is the hungry equinox,

O little stubborn people of the hill,

The season of the obscene moon whose pull
Disturbs the sod, the rabbit, the lank fox,
Moving the waters, the boar’s dull blood,
And the acrid sap of the ironwood.

But breed no tender thing among the rocks.
Rocks are too old under the mad moon,
Renouncing passion by the strength that locks
The eternal agony of fire in stone.

Then quit yourselves as stone and cease

To break the weary stubble-field for seed;
Let not the naked cattle bear increase,

Let barley wither and the bright milkweed.
Instruct the heart, lean men, of a rocky place
That even the little flesh and fevered bone
May keep the sweet sterility of stone.

Figure 2: Output of Kentucky Mountain Farm.

CONTENTS

Kentucky Mountain Farm
1. Rebuke of the Rocks / 35

Emendations / 37
Textual Notes / 39

Explanatory Notes / 41
Index of Titles and First Lines / 43

Figure 3: Table of Contents.

TUGboat, Volume 22 (2001), No. 4 361

INDEX OF TITLES AND FIRST LINES

Kentucky Mountain Farm, 35 Rebuke of the Rocks, 35

Now on you is the hungry equinox, 35

Figure 4: Listing of first lines.

TEXTUAL NOTES

35 Kentucky Mountain Farm Text: TSP. Variants: SP43, SP66 (Deletes “The Cardinal,” “The Jay,”
and “Watershed”), SP75 (Same sections as SP66), SP85 (Restores “Watershed”), Helsinki (includes only
“Rebuke of the Rocks” and “At the Hour of the Breaking of the Rocks”). “The Owl” (above) was marked
as a section of “Kentucky Mountain Farm” when it first appeared in Poetry, but it was never included in
any book version of the entire sequence. The sequence in Poetry included, in this order, “The Owl,” “The
Cardinal,” and “Watershed.” TSP uses lower case Roman numerals in the section titles. The typescript
drafts in the Beinecke Library do not seem to be setting copies.

35 1. Rebuke of the Rocks Text: TSP. Variants: Nation, 11 Jan. 1928, p. 47, Literary Digest, 28 Jan.
1928, p. 32, Vanderbilt Masquerader, 10 (Dec. 1933), p. 16, SP43, SP66, SP75, SP85, Helsinki, Broadside:
The Press at Colorado College, printed on paper handmade by Thomas Leech for the American Poetry
Society, April 26, 1985. This poem was not included in SP85 until the second set of galleys, in which a
photocopy of the SP75 text is a stapled insert. 2: hill,] ~— Nation, Literary Digest ~, Vanderbilt (I include
the reading from Vanderbilt even though it is the same as in TSP, because Vanderbilt was published after
the other magazine versions but before TSP.) 8: oldA] ~, Vanderbilt 11: stonen] ~, Vanderbilt 14: milkweed.]
milk-weed. Vanderbilt

Figure 5: Textual notes. The ‘35" which begins each paragraph refers to the page number where the
poem appears.

TUGboat, Volume 22 (2001), No. 4

CV formatting with Gir\e
Didier Verna

Abstract

CurVe is a IMTEX 2¢ class package for writing curricula
vitee. It provides a set of commands to create headers,
rubrics, entries in these rubrics and so on. CurVe will
then format your CV with a consistent layout, while
you can just concentrate on the contents. CurVe has a
very special feature known as the flavor mechanism: it
is able to manage different “flavors” (versions) of your
CV simultaneously.

CurVe is distributed under the terms of the LPPL
license. This paper gives an overview of the features
available in version 1.4.

— — % — —

1 Yet another CV class?

The first draft of GurVe appeared in 2000, when I was
completing my Ph.D. and was starting to look for

361

a job. At that time, several options were available:
using a WYSIWYG editor, using plain (I£)TEX (that
is, with no particular class), or using an already ex-
isting CV class for INTEX. After some investigation,
none of these options turned out to be satisfactory
for me.

As the visual aspect of a CV is something very
important, one could be tempted to use a WYSI-
WYG editor, thinking that the layout conception
would be faster. For me, this was (and still is)
wrong:

e Firstly, WYSIWYG editors are usually far from
it: what you see (on screen) is most of the time
not what you get (on paper). Hence, WYSI-
WYG editors often turn out to be a handicap
rather than a help.

e Secondly, a good CV requires a very strict lay-
out, of the kind on which you spend hours, un-
less it is completely automated. Doing this with
a WYSIWYG editor would involve a deep knowl-
edge of the editor itself (for instance, knowing

362
Didier Verna mailto:didier@lrde.epita.fr
Born April 215 1970 http://www.lrde.epita.fr/"didier
French
L] L]
Curriculum Vitae
Sample made with CurVe
Professional Experience

Lecturing
2002-... o MTEX 2¢: an overview. 3 hours conference.
2000-... e OpenGL Programming. 15 hours lecture, including work-

shops.

e Operating Systems. 30 hours lecture.

Development
ITEX 2¢ o Author of CurVe, FINK and FiXme.
XEmacs e Member of the review board.
GNU e Contributor to other free software projects.

Education

1995-1999 e Ph.D. in computer Science.
1991-1994 e E.N.S.T. engineering school.
1988 e Baccalaureus.

Figure 1: Gur'Ve sample output

how to use styles instead of manually format-
ting all paragraphs the same way). Hence, us-
ing a WYSIWYG editor properly turns out to be
very close to using TEX itself. Since I already
knew IATEX, it would have been a waste of time
to learn yet another tool.

For an interesting discussion on WYSIWYG solu-
tions for TEX, see Kastrup (2002).

The next solution was to use an already exist-
ing class or style with IXTEX. For reasons that I
won’t mention here, but that can be found in its
documentation’s introduction, the only reasonable
option was currvita (Reichert, 1999). This solution
did not satisfy me, mainly because the layout was
too limited for me. Layout is probably something
very personal in this context, but I also believe that
there are different traditions in different countries,
and that CurVe provides a layout that pleases many
people, notably in France. The increasing number
of people using GurVe tends to show that I am not
mistaken.

So I decided to use IMTEX from scratch (some
other reasons for this are explained later). Being
a lazy kind of person however, I tried not to rein-
vent the wheel, and I found that David Carlisle’s
LTXtable package would do most of the formatting
for me. Being also a free software kind of person, I
wanted other people to benefit from my work, so I
naturally made it a proper class with complete doc-
umentation.

TUGDboat, Volume 22 (2001), No. 4

The first release of Cyr'Ve occurred in February
2001. Today, Cur'Ve is a simple yet powerful class,
consisting of only 350 lines of code, probably half of
which is devoted to handling user customizations.

2 Layout

The primary purpose of CurVe is to offer a set of pre-
defined commands to specify the contents of your
CV, while removing from you the burden of format-
ting it. This has two important consequences, how-
ever: GurVe requires that you conform to its docu-
ment structuring scheme, and will expect that you
like the way it formats the output.

Figure 1 shows the output of CGurVe on a very
small sample CV. There is no user-level customiza-
tion in this example.

2.1 Headers

As you can see in the example, a CurVe CV begins
with two optional headers (upper left and upper
right) in which you usually put your name, address,
email, whether you’re married and so on. These
headers will respectively be left and right aligned.
CurVe also lets you insert a small identity photo in
the headers, either on the left, on the right, or be-
tween them. After these headers comes an optional
title and an optional subtitle, which will be centered
on the page.

The headers and titles in this example are spec-
ified in the document’s preamble as follows:

\leftheader{%
\textbf{Didier Vermal}\\
Born April 21$~{st}$ 1970\\
French}

\rightheader{%
\url{mailto:didier@lrde.epita.fr}
\url{http://www.lrde.epita.fr/~didier}}

\title{Curriculum Vit\ae}
\subtitle{Sample made with CurVe}

Later on, after the call to \begin{document},
these headers are formatted like this:

\makeheaders[t]
\maketitle

This scheme is very traditional in IXTEX classes
and should not surprise anybody. The optional ar-
gument to \makeheaders specifies the vertical align-
ment. Here, top is used. Many more commands are
available to customize the appearance of the headers
(positioning, size, fonts, etc.).

TUGboat, Volume 22 (2001), No. 4

2.1.1 Rubrics

The remainder of the document is composed of sec-
tions called “rubrics” in the CurVe terminology. A
rubric represents a major topic that you want to de-
tail in your CV. Typical rubrics, as demonstrated in
the example, are “Education”, “Professional Expe-
rience” and the like. Rubrics have a title (which will
be centered) and appear under the form of properly
aligned “entries” (see below). If a rubric has to be
split across different pages, its title will be repeated
automatically.

Here is the code used to generate the “Profes-
sional Education” rubric:

\begin{rubric}{Professional Experience}
\subrubric{Lecturing}
\entry*[2002-...] \textbf{\LaTeXe: an
overview}. 3 hours conference.
\entry*[2000-...] \textbf{OpenGL Programming}.
15 hours lecture, including workshops.
\entry* \textbf{Operating Systems}.
30 hours lecture.

\subrubric{Development}

\entry*[\LaTeXe] Author of CurVe, FiNK and
FiXme.

\entry*[XEmacs] Member of the review board.

\entry*[GNU] Contributor to other free
software projects.

\end{rubric}

As you can see, each rubric is made within a
rubric environment, which takes the rubric’s title
as a mandatory argument. The other commands will
be explained below. Please note that for technical
reasons due to the use of the LTXtable package, each
rubric must be written in a separate file. This is not
a heavy burden however, and it even made things
easier when I implemented the “flavor” mechanism
described in the next section.

2.1.2 Subrubrics

You might want to further split your rubrics into
different “subrubrics”. For instance, figure 1 shows
two subrubrics named “Lecturing” and “Develop-
ment” under the “Professional Experience” rubric.
Subrubrics’ names are displayed in alignment with
the entries’ contents (see below), but are formatted
differently so that they remain distinguishable. Sub-
rubrics are created with the \subrubric command.
For instance:

\subrubric{Development}

363

2.1.3 Entries

An entry is a final item of information related to the
(sub)rubric under which it appears. An entry has a
“contents”, and an optional “key” under which it
is classified. For instance, consider the “XEmacs”
entry in the example:

\entry*[XEmacs] Member of the review board.

The key is “XEmacs” and the entry’s contents
is “Member of the review board.”. Keys are usually
used to indicate dates. CurVe aligns both keys and
contents together. Keys are optional (hence, they
should be input within brackets) in order for you to
classify several entries together (without repeating
the same key over and over again). For instance:

\entry*[2000-...] \textbf{OpenGL Programming}.
15 hours lecture, including workshops.
\entry* \textbf{Operating Systems}.
30 hours lecture.

Here, the second key is not repeated because
the “Operating Systems” course began in the same
year as the OpenGL one.

You probably have noticed already that a “star-
ified” version of the \entry command is used. Ac-
tually, \entry* commands in rubric environments
are very similar to \item commands in list en-
vironments. The reason for this “star-ification” is
that the first version of Cyr'Ve had a somewhat ill-
designed, unstarred \entry command that took the
whole entry’s contents as a second argument. The
new scheme is much more elegant, but backward
compatibility has been preserved.

3 The “flavor” mechanism

This is a very nice feature of CyrVe, and one of the
reasons that made me write it in the first place.

It is often desirable to maintain several slightly
divergent versions of one’s CV at the same time. For
instance, when I was looking for a job back in 2001,
I had a version of my CV emphasizing Artificial
Intelligence, and another emphasizing Distributed
Virtual Reality. Only the title and some entries in
the “Professional Experience” rubric were a bit dif-
ferent; all other parts basically remained the same.
CurVe provides an easy-to-use mechanism for main-
taining different “flavors” of your CV at the same
time. You basically write different versions of (some
of) your rubrics in different files (this is needed for
technical reasons anyway, as mentioned previously),
tell CurVe which flavor you want to format (GurVe can
even ask you which one to use directly). CurVe will
then use the global skeleton, and whenever it finds
a rubric file specialized for that particular flavor, it

364

will use it. Otherwise, it will simply fall back to the
default one (no particular flavor).

With a clever use of Makefiles, you can even
manage to compile different flavors at the same time.
Suppose you have a mainstream CV (let’s call it
cv.tex), with an “education” rubric in a file named
education.tex and a “skills” one in skills.tex.
Suppose further that you want a slightly divergent
version of your CV with an alternate skills rubric.

The normal way to compile the alternate ver-
sion is to save a new rubric file called, for instance,
skills.alt.tex, and tell GurVe to use it by calling
\flavor{alt} in your document’s preamble. The
only problem is that this alternate version will also
compile to cv.dvi because both versions share the
same skeleton and other rubric files.

To remedy this problem, you can make GurVe
ask you at run-time which flavor to compile (this
is done with the ask class option) and use special
Makefile rules to answer the question for you, build
the different flavors and move the different output
files to flavor-specific names. Here is a Makefile ex-
ample that would allow you to do this for as many
different versions of skills.tex as you wish:

FLAVORS = alt # make other flavors if you want
all: all_flavors cv.dvi

all_flavors:

for i in $(FLAVORS) ; do \
$(MAKE) cv.$$i.dvi FLAVOR=$$i ; \
done

cv.$(FLAVOR) .dvi: cv.tex education.tex \
skills.$(FLAVOR) . tex
echo $(FLAVOR) | latex cv.tex
mv cv.dvi $@

cv.dvi: cv.tex education.tex skills.tex
echo | latex cv.dvi

As you can see, the trick is to fork a new make
subprocess for each flavor you want to build, and ob-
viously finish with the mainstream version. An echo
shell command is used in conjunction with the ask
class option to indicate the current flavor to build.
For each make subprocess, this flavor is stored in
the dynamic variable FLAVOR, and the correspond-
ing cv.$(FLAVOR) .dvi rule is used, with the proper
dependencies.

An implementation sidenote. In order to im-
plement the flavor mechanism, the KTEX macro
\input has been redefined to look for flavored files
first. This is actually very nice because you can use

TUGDboat, Volume 22 (2001), No. 4

it to make different flavors of text that do not be-
long in rubrics. For instance, suppose you want a
special version of the subtitle of your CV for the
flavor alt. Put your alternate subtitle in a file
called subtitle.alt.tex; do something similar for
the default subtitle. Now go to the skeleton of your
CV, and write \input{subtitle} in the preamble.
That’s it. You’ll have different subtitles in your dif-
ferent CV flavors.

4 Conclusion

In this paper, I preferred to concentrate on special
aspects of Cur\e’s history or peculiarities rather than
on its user interface, because the latter is relatively
straightforward and fully described in the package
documentation. Although the layout of CurVe is
strict, it remains deeply customizable. CurVe also
has other features that are worth mentioning, like
support for all standard class options, support for
the .1tx file extension if, like me, you prefer it over
.tex for INTEX files, support for standard KTEX bib-
liographic commands (although I don’t recommend
using them), and support for AUC-TEX. Addition-
ally, GurVe has been translated into six different lan-
guages (English, French, Spanish, German, Italian
and Danish).

For an example of what you can do with GurVe,
get my own CV at http://www.lrde.epita.fr/
“didier/perso/cv.php. You will also find a page
describing some formatting tricks I’ve used to make
it more eye-catching.

Thanks to different contributors of code or sug-
gestions, GurVe has evolved since its first release, and
I hope it will continue to evolve and reach more and
more users in the future.

References
Kastrup, David. “Revisiting ~ WYSIWYG
paradigms for authoring KTEX”. 2002.

http://preview-latex.sourceforge.net/
wysiwyg-draft.pdf.

Reichert, Axel. “currvita.sty”. 1999. A cur-
riculum vitae style for IATEX, available in
macros/latex/contrib on CTAN.

¢ Didier Verna

EPITA, Research and Development
Laboratory,

14-16 rue Voltaire

94276 Le Kremlin-Bicétre,

France

didier@lrde.epita.fr

http://www.lrde.epita.fr/
“didier

TUGboat, Volume 22 (2001), No. 4

Abstracts

Les Cahiers GUTenberg
Contents of Double Issue 39/40
(May 2001)

DANIEL FLIPO, Editorial : le document au XXI°
siecle [Editorial: The document in the 21st
century]; pp.5-6

These are the conference proceedings (although not
all papers are included here) from GUTenberg’s 2001
annual meeting, held in Metz, France, 14-17 May, 2001.
The editor begins by recalling Michel Goossens’ closing
words to his editorial introducing the proceedings from
EuroTEX’98 in Saint Malo:

To conclude, I would like to stress how the en-
thusiasm of the participants ... has transformed
EuroTEX’98 into a real TEX fiesta, proving once
more that the Lion and Friends are well-prepared
and ready to enter the next millenium with con-
fidence and limitless energy! [Cahiers 28/29
March 1998, p. vii]

Flipo then lists the many avenues of ongoing steady
progress since that time: pdfTEX, €2, the annual TEX
Live CDs, even a successor to TEX itself.

The remainder of the editorial focuses on the
conference and its contributions to that same steady
progress. There were three main themes: new TEX
developments, electronic documents in education, and
back-and-forth conversion between KTEX and XML/
MathML. The volume concludes with an article by Hans
Hagen regarding the lessons to be learned from the NTS
experience.’

FREDERIC BOULANGER, KTEX au pays des
tableurs [IATEX in the land of spreadsheets];
pp. 7-16

We show that some spreadsheet-like documents
can be handled efficiently with IATEX. The main
advantage of this approach is the ability to design
separately the computations and the layout of the
document.

We begin with a flight log for private pilots,
the layout of which is fixed and normalised. Then,
we present a document class for paysheets, where
some commands are used to define the structure
of a paysheet, and a command allows us to edit it
according to an already defined structure.

[Author’s abstract (edited)]

1 Originally appeared in Die TpXnische Komdédie, no. 1
(2001), pp. 36-53. Also appeared in TUGboat, 22 (1/2),
March/June 2001, pp. 58-66.

365

DANIEL TAUPIN, Les polices TTF converties
en METAFONT [Converting TTF fonts into
METAFONT]; pp. 17-21

Using the ttf2mf program by Oleg Motygin,
TTF (TrueType) fonts usually available under Win-
dows 9x/NT were converted to METAFONT. Thus,
they are now usable under any environment and
any TEX/BTEX 2¢ distribution, provided that the
METAFONT generator is available, which is usually
the case.

In addition, the availability of a symbolic source
makes it possible to correct imperfections and to
eventually create some missing characters.

[Author’s abstract (edited)]

JEAN-MICHEL HUFFLEN, Vers une extension
multilingue de BIBTEX [Towards a multilingual
BIBTEX extension]; pp.23-38

This paper describes a multilingual extension to
Bi1BTEX, and how it was implemented. We aimed to
meet such user requirements as having the language
used for the bibliographical references of a printed
work to be in the work’s language, as well as the
option of having the language of each reference to be
that of the reference. Our tool will be able to work
with any multilingual IATEX 2¢ package. In addition,
our extension allows both existing bibliographical
files (.bib files) and bibliography style files (.bst
files) to be processed compatibly.

[Author’s abstract (edited)]

JORIS VAN DER HOEVEN, GNU TEXMACS: A free,
structured WYSIWYG and technical text editor;
pp- 39-50

There is a common belief that WYSIWYG tech-
nical editors are not suited for editing structured
texts and generating documents of high typographic
quality. In this paper, we analyze the reasons be-
hind this belief. We next discuss the program GNU
TEXMACS and some of its innovations in relation to
the difficulties of structured, WYSIWYG, technical
text editing. [Author’s abstract (edited)]

AzZEDDINE LAZREK, Aspects de la problématique
de la confection d’une fonte pour les
mathématiques arabes [Aspects to creating a
font for mathematics in Arabic texts]; pp.51-62

A good deal of Arabic mathematics texts con-
tain formulas composed with specific symbols set in
a text that runs from right to left. Up till now, as far
as we know, there has been no system that makes the
typesetting of such documents possible. Millions of
scholars throughout Arabic countries use handbooks
where symbols are still written in by hand.

The system presented in this paper is an at-
tempt to provide the possibility of typesetting such

366

documents. The capabilities of both TEX and Arab-
TEX will be extended to suit this situation.

The Arabic font Naskh designed by K. Lagally
for his package ArabTEX and the Computer Modern
family designed by D.E. Knuth in METAFONT ...
serve as the basic fonts. In math mode, Naskh is
adapted to various sizes according to the different
positions (normal, super- or subscript, etc.). This
font is used to design new signs in different shapes
and for abbreviations. The Computer Modern fam-
ily, especially the Math Symbols and Math Exten-
sion fonts, will help build some special symbols via
glyph inversion. Many difficulties arise afterwards:
heterogeneity of size, bold face level, the position
of symbols with respect to the baseline ... shape
changes in Arabic characters when passing from text
to math mode, to name a few. These difficulties
attest to the limits of systems composed for the
needs of typesetting mathematica in a Latin lan-
gauge whenever these systems are to be adapted to
foreign language contexts.

[Author’s abstract (edited)]

JEAN-MICHEL SARLAT and JEAN-PAUL
VIGNAULT, TEX dans ’enseignment secondaire,
une expérience [TEX in secondary education: An
experiment]; pp.63-69

We present some issues— established facts,
thoughts, wishes — with respect to our efforts to in-
troduce TEX to secondary school teachers, as well as
providing a server to consolidate various initiatives.

[Translation of French résumé|

YOLAINE BOURDA, Objets pédagogiques, vous
avez dit objects pédagogiques ? [Learning objects
... you said ‘learning objects’?]; pp.71-79

Learning objects are currently the subject of
numerous standardization projects. Unfortunately,
the definition itself of ‘learning objects’ is still quite
fluid.

This article attempts to look at what is meant
by learning objects and to ask questions about their
level of granularity and structuring.

[Translation of French résumé|

LAURENT ROMARY, Un modele abstrait pour
la représentation de terminologies multilingues
informatisées TMF — Terminological Mark-up
Framework [An abstract model for representing
computerized TMF (Terminological Mark-up
Framework) multilingual terminology]; pp.81-88
We introduce an abstract model for represent-
ing computerized multilingual terminologies. This
model was developed in XML by Technical Com-
mittee 37 of ISO. It relies on a methodology which
makes an essential distinction between the general

TUGboat, Volume 22 (2001), No. 4

structure of a terminological database and the in-

formation units (data categories) that are used to

describe the various levels of this structure.
[Author’s abstract (edited)]

ERIC-OLIVIER LOCHARD and DOMINIQUE
TAURISSON, “Le monde selon Arcane” :
un paradigme instrumental pour 1’édition
électronique [“The world according to Arcane”:
An instrumental paradigm for electronic editing];
pp- 89-105

The World According to Arcane is an oper-
ating instrumental paradigm for electronic editing
of scientifically established texts and knowledge,
currently being used in several scholarly edition
projects. The world of knowledge is edited in a
database, the architecture of which is both generic
(so as to be applicable to numerous domains) and
simple (any information is a subject of interest): a
multimedia document, a relation between subjects
or an enrichment. Internal or external documents
are enriched with the editing module, independently
of the media and the final publication. The reading
module offers very powerful procedures to inves-
tigate and browse electronic work: typified links
inferred by the architecture, sophisticated index-
ation, dynamic composition of virtual documents,
naturally formulated requests, formal treatments,
and reading itineraries. The publishing module
allows one to export information in various for-
mats (HTML, XML, TEX), to compose paper books,
and to produce electronic books in the form of
autonomous applications distributed on CD-ROM,
DVD-ROM, web site, or database system.

[Author’s abstract (edited)]

DENIS ROEGEL, La géométrie dans l'espace avec
METAPOST [Geometry in space with METAPOST];
pp. 107-138

METAPOST is a tool especially well suited for
the inclusion of technical drawings in a document.
In this article, we show how METAPOST can be
used to represent objects in space and especially how
it can be used for drawing geometric constructions
involving lines, planes, as well as their intersections,
orthogonal planes, etc. All the features belong to
a new METAPOST package aimed at all those who
teach and study geometry. [Author’s abstract]

YANNIS HARALAMBOUS and JOHN PLAICE,
Traitement automatique des langues et
composition sous Omega [Natural language
processing and composition under Omegal;
pp. 139-166

While Q continues to evolve and its function-
ality expand and diversify, one notices that the

TUGboat, Volume 22 (2001), No. 4

methods used to make it possible to typeset Ori-
ental languages can also be used to resolve prob-
lems left unanswered in Occidental languages. The
same types of tools that break Thai phrases down
into words and then syllables can also be used to
determine whether a letter ‘s’ in a German word
written in Gothic ought to be long or short. In these
two cases, the tool in question is a morphological
analyzer, often used in a field of study known as
Natural Language Processing (traitement automa-
tique des langues in French). Thanks to (s external
OTP (Omega Translation Process), we can integrate
such tools into 2 and use them in real time during
composition.

In this article we will study six instances where
such tools or linguistic methods are used, each
varying in complexity and covering a broad range of
languages: English, German, Greek, Arabic, Thai
and Japanese.

[Translation of text drawn
from opening paragraphs]

JEAN-PAUL JORDA, MARIE-LOUISE CHAIX and
AHMED MAHBOUB, KTEX et XML dans la chaine
éditoriale d’EDP Sciences [IATEX and XML in the
production process at EDP Sciences|; pp. 167179
Recent developments in the use of KTEX and
related tools at EDP Sciences are presented. The
production process of the journal Astronomy and
Astrophysics is described, along with the production
and use of XML files generated from KTEX file
headers. [Author’s abstract]

ANDRE VIOLANTE, Une solution de
conversion RTF vers XML/MathML avec
publication Web dynamique en XML/MathML
[RTF-to-XML/MathML conversion with dynamic
Web publication also in XML/MathML];
pp- 181-200

There are several ways to generate HTML web
pages containing mathematical material. For this
purpose, one almost always needs to statically trans-
late mathematical equations into images, applets or
even plug-in data. However, updating the website
then becomes an onerous task, while clients will
often need special navigation environments.

367

A rather different approach is to publish “dy-
namically”, directly with XML/MathML—this is
possible by using “server-side” technology.

In this presentation, we will present a solution
that makes simple XML/MathML generation from
RTF files possible, along with quick publication over
the Internet (or other) without constraints on the
client side. This can be achieved with Cocoon, XSLT
and TEX. [Author’s abstract (edited)]

CHRIS ROWLEY, XSL FOs and TEX: Some data;
pp- 201-204

The XSL FO (Formatting Objects) specification
is a noble and inventive project that is maturing
into a cornucopia of useful insights and intellectual
treats. How can it fail to delight when it formally
describes basic properties, such as wisibility, as
‘magic’!

It is therefore a timely, fascinating and prag-
matic exercise to analyse the assumptions made by
XSL about the process and results of document
formatting. This article provids a small amount
of the data needed for this analysis by comparing
some aspects of the XSL model with that provided
by TEX/TIATEX. [Author’s abstract]

Hans HAGEN, The status quo of the NTS project;
pp- 205-220

A report on the NTS project was presented
by Phil Taylor at the previous GUTenberg annual
meeting in Toulouse [May 2000; report in Cahier 35—
36, pp. 53-78]. Hans Hagen, who had been charged
by Dante with making an independent audit report
on the project, herein presents his views—fairly
critical —on the manner in which the project had
been conducted; he then proposes to regroup the
efforts ot the NTS, Q and pdfTEX developers to give
TEX the successor it deserves.

[Translation of Editor’s Note]

— — % — —

Articles from Cahiers issues can be found in PDF
format at the following site:

http://www.gutenberg.eu.org/pub/gut/
publications

[Compiled by Christina Thiele]

Trumpet loudly TUG 2002’s theme, all ye faithful:

The most exciting TX event of 2002,
the international conference of

TeX Users Group, is scheduled

to be conducted in India during
September 4-7, 2002 at Technopark,
Trivandrum, the capital of the

South Indian State of Kerala,

fondly called God’s Own Country

for its wealth of natural charms.

Themes for Conference

O Using TgX to typeset XML

O Multilingual typesetting using Omega

O High quality hyperdocuments using
pdfTeX

O Fonts for non-Latin languages

O New directions for Metafont and
Metapost

September 4-7, 2002, Technopark, Trivandrum, Kerala, India

Important Dates

O

O

Jan/Feb 2002: Send in abstracts for
papers

28 Feb 2002: Notification of acceptance
of paper

31 Mar 2002: Preliminary program
available

May 2002: Send first version of full paper
July 2002: send final version of full paper
1-3 September 2002: Pre-conference
tutorial in India

4-7 September 2002: TUG conference in
India

Tutorial (1-3 September 2002)

O
O
O
O
O

O

Introduction to TgX

ITEX to SGML/XML/MathML conversion
XML and XSL transformation procedures
TEI XML

Generation of hyperlinked documents
with pdfTgX and ConTgXt

Multilingual typesetting using Omega

Subscribe to TUG2002 Mailing List here

URL: http://www.tug.org.in/tug2002
General: tug2002@tug.org.in

Travel:

travel@tug2002.tug.org.in

Abstracts: papers@tug2002.tug.org.in

http://www.tug.org/mailman/listinfo/tug2002
http://www.keralatourism.org
http://www.tug.org.in/tug2002
mailto:tug2002@tug.org.in
mailto:travel@tug2002.tug.org.in
mailto:papers@tug2002.tug.org.in

TUGDboat, Volume 22 (2001), No. 4 369

Calendar
2002 Sep 19-22 Association Typographique Internationale
(ATypl) annual conference, Rome,

Feb 20-23 DANTE 2002, 260 meeting, Italy. For information, visit
Universitat Erlangen-Niirnberg, http://www.atypi.org/rome2002/.
Germany. For information, visit Sep 24—25 First Annual Conference, Friends
http://www.dante.de/dante2002/. of St. Bride Printing Library,

Apr 29— EuroBachoTEX 2002, 138 meeting London, England. For information, visit

May 3 of European TEX Users and 10th http://www.stbride.org/conference.htm

annual meeting of the Polish TEX Oct 4-5 DANTE 2002, 27th meeting, Zentrum
Users’ Group (GUST), “TEX and Universitat Augsburg, Germany.
beyond”, Bachotek, Brodnica Lake For information, visit
District, Poland. For information, visit Oct 12 UK TUG Autumn meeting,

http://www.gust.org.pl/BachoTeX/2002/. Nottingham University

May 29 Journée GUTenberg, “Distributions”, For information, contact Dick Nickalls,
Paris, France. For information, visit dicknickalls@compuserve . com.
http://wiw.gutenberg. eu. org/. Oct 14-17 Book History Workshop,

Jul 12-14 TypeCon 2002, Toronto, Canada. Institue d’histoire du livre,

For information, visit Lyons, France. For information, visit
http://www.typecon2002. com. http://ihl.enssib.fr.

Jul 21-26 SIGGRAPH 2002, San Antonio, Oct 20—-23 Conférence Fédérative sur
Texas. For information, visit le Document, Hammamet,
http://www.siggraph.org/calendar/. Tunisia. For information, visit

http://www.loria.fr/conferences/cfd/.

TUG 2002 Nov 8-9 ACM Symposium on Document

International Convention Centre, Engineering, McLean, Virginia.

Trivandrum, India. For information, visit For information, visit

http://wuw.tug.org.in/tug2002/. http://wuw.documentengineering.org.

Sep 1-3 Tutorials: IATEX; IMTEX to XML; Nov 21 NTG 30" meeting, Technische
METAPOST; the Text Encoding Universiteit Delft, Netherlands.

Initiative; TEX macro expansion. For information, visit

Sep 47 The 239 annual meeting of the TEX http://wuw.ntg.nl/bijeen/bijeen30.html.
Users Group, “Stand up and be proud of
TEX!”. For information, visit 2003

http://www.tug.org.in/tug2002/.

Mar 24-28 1UC23, The 23" Internationalization

Sep 9—13 Seybold San Francisco, San Francisco, and Unicode Conference, “Unicode,
California. For information, visit Internationalization, the Web:
http://www.key3media.com/ The Global Connection”, Prague,
seyboldseminars/events/events.shtml. Czech Republic. For information, visit

http://www.unicode.org/iuc/iuc23/.

Status as of 1 July 2003

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.
Additional type-related events are listed in the Typophile calendar, at
http://www.icalx.com/html/typophile/month.php?cal=Typophile.
Owing to the lateness of this issue, please consider that all events shown for 2002 are
included only “for the record”.

370

Apr 2—4

May 1-3

May 15-17

May 22

May 2830

May 29 -
Jun 2

Jun 11-13

Jun 24-27

Jul 7—-
Aug 8

Jul 17-20

DANTE 2003, 28th meeting, Universitat
Bremen, Germany. For information, visit
http://www.dante.de/dante2003/.

BachoTEX 2003, 11*" annual meeting of
the Polish TEX Users’ Group (GUST),
Bachotek, Brodnica Lake District,
Poland. For information, visit http://
www.gust.org.pl/BachoTeX/2003/.

Typo Berlin 2003, the 8" International
Design Conference, Berlin, Germany.

For information, visit
http://www.typo-berlin.de.

NTG 31%% meeting, Hogeschool Helicon,
Zeist, Netherlands. For information, visit

http://www.ntg.nl/bijeen/bijeen31.html.

Society for Scholarly Publishing,

25" annual meeting,

“Navigating Change”,

Baltimore, Maryland. For information,
visit http://www.sspnet.org.

ACH/ALLC 2003: Joint International
Conference of the Association for
Computers and the Humanities, and
Association for Literary and Linguistic
Computing, “Web X: A Decade of the
World Wide Web”, University of Georgia,
Athens, Georgia. For information, visit
http://www.english.uga.edu/webx/

or the organization web site at
http://www.ach.org.

Seybold Seminars PDF Summit,
Amsterdam, Netherlands.

For information, visit
http://www.seyboldseminars.com/
pdf_summit/.

EuroTEX 2003, “Back to Typography”,
Brest (Brittany), France.

For information, visit
http://omega.enstb.org/eurotex2003/.
(The EuroTEX 2003 proceedings will be
published in TUGboat.)

Rare Book School Summer Session,
University of Virginia, Charlottesville,
Virginia. A series of one-week

courses on topics concerning rare
books, manuscripts, the history of
books and printing, and special
collections. For information, visit
http://www.virginia.edu/oldbooks.
TypeCon2003, “Counter Culture”,
Minneapolis, Minnesota. For information,
visit http://www.typecon2003. com/.

TUGDboat, Volume 22 (2001), No. 4

TUG 2003

Outrigger Waikoloa Beach Resort,

Big Island, Hawai‘i.

Jul 20-24 The 24" annual meeting of the TEX
Users Group, “Silver Anniversary — 25
years! — of TEX”. For information, visit
http://www.tug.org/tug2003/.

Jul 27— SIGGRAPH 2003, San Diego,
Aug 1 California. For information, visit
http://www.siggraph.org/calendar/.

Aug 3 Web Document Analysis workshop,
Edinburgh, Scotland, UK.
For information, visit
http://www.csc.liv.ac.uk/“wda2003.

Aug 3-6 ICDAR 2003, International Conference on
Document Analysis and Recognition,
Edinburgh, Scotland, UK.
For information, visit http://
www.essex.ac.uk/ese/icdar2003/.

Sep 3—-5 24" Internationalization and Unicode
Conference (IUC24): “Unicode,
Internationalization, the Web:
Powering Global Business”, Atlanta,
Georgia. For information, visit
http://www.unicode.org/iuc/iuc24/.

Sep 8—-9 DANTE 29} meeting, Universitét
Giessen, Germany. For information, visit
http://wuw.dante.de/events/.

Sep 22—-25 Seybold San Francisco, San Francisco,
California. For information, visit http://
www.seyboldseminars.com/sf2003/.

Sep 19—-22 Association Typographique Internationale
(ATypl) annual conference, “Between
Text and Reader”, Vancouver, Canada.
For information, visit
http://wuw.atypi.org/40_conferences.

Oct 20—-21 Second Annual St.Bride Conference,
“Hidden Typography”, London, England.
For information, visit http://
www.stbride.org/conference2003/.

Nov 13 NTG 327 meeting, Arnhem, Netherlands;
no details yet.

Nov 20-22 ACM Symposium on Document
Engineering, Grenoble, France.
For information, visit
http://wuw.documentengineering.org.

TUG 2003: the Silver Anniversary — 25 years! — of TEX

The 24th Annual Meeting and Conference of the TEX Users Group
tug2003 @tug.org

Themes

Resurgence of TEX & IATEX

pdfTEX, ConTEXt, Metapost, Metafont
TEX-XML Symbiosis, TEI, Digital Archiving
Fonts & Graphics

Installations & Management, CTAN
Publisher & Prepress Dilemmas

MacOS X TeX: New Kid on the Block

Oooooood

Important Dates

2002 2003
Abstracts due 18 Nov First draft of paper due 9 Feb
Abstracts accepted 18 Dec Registration deadline 9 Apr ' ” ,
Early-lion registration 31 Dec Final paper due 9 Jun /" ”///4’7 //W’;’l

//////////// /hﬂ

Links
Homepage http://www.tug.org/tug2003/
News Mailing List http://www.tug.org/tug2003/news/
TEX Heritage http://www.tug.org/tug2003/heritage/
Call for Abstracts http://www.tug.org/tug2003/callfor.html

Registration/Donations https://www.tug.org/tug2003/registration.html

TEX Enthusiasts worldwide are invited to join us for a grand reunion to celebrate the accomplishments of TEX
Polish up the old and learn about the shiny new directions in TeX!

July 20-24, 2003, Outrigger Waikoloa Beach Resort, Big Island, Hawaii

[Kona International Airport at Keahole (KOA)]

http://www.tug.org/tug2003
http://www.tug.org/tug2003/news/
http://www.tug.org/tug2003/heritage/
http://www.tug.org/tug2003/callfor.html
https://www.tug.org/tug2003/registration.html

TUGDboat, Volume 22 (2001), No. 4

Institutional
Members

American Mathematical Society,
Providence, Rhode Island

Center for Computing Science,
Bowie, Maryland

Cessna Aircraft Company,
Wichita, Kansas

The Clarinda Company,
Clarinda, ITowa

CNRS - IDRIS,
Orsay, France

CSTUG, Praha, Czech Republic

Florida State University,

School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

Towa State University,
Computation Center,
Ames, Towa

Kluwer Academic Publishers,
Dordrecht, The Netherlands

KTH Royal Institute of
Technology, Stockholm, Sweden

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

Max Planck Institut
fiir Mathematik,
Bonn, Germany

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

373

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Universita degli Studi di Trieste,
Trieste, Italy

Vanderbilt University,
Nashville, Tennessee

"USERS
GROUP

Promoting the use of
TgX throughout the
world

mailing address:
P.O. Box 2311
Portland, OR 97208-2311 USA

shipping address:
1466 NW Naito Parkway,

Suite 3141

Portland, OR 97209-2820 USA
phone: +1-503-223-9994
fax: +1-503-223-3960
email: office@tug.org
web: www.tug.org
President: Mimi Jett

Vice-President: Arthur Ogawa
Treasurer: Donald W. DeLand
Secretary: Susan DeMeritt

2003 TUG Membership Form

Rates for TUG membership and TUGboat subscription are listed below. Please check
the appropriate boxes and mail payment (in US dollars, drawn on an United States
bank) along with a copy of this form. If paying by credit card, you may fax the
completed form to the number at left.

* 2003 TUGboat (Volume 24).
* 2003 CD-ROMs include TgX Live 8 (2 disks) and Dante’s CTAN 2003 (4 disk set).

* Multi-year orders: You may use this year’s rate to pay for more than one year of
membership.

* Orders received after 31 May, 2003: please add $10 to cover the additional expense
of shipping back issues of TUGboat and CD-ROMs.

Rate Amount

Annual membership for 2003 (TUGboat, CD-ROMs) [] $65
Student/Senior membership for 2003 (TUGboat, CD-ROMs)* | | $35
Shipping charge (add to the above if after 31 May, 2003) L] s10
Subscription for 2003 (TUGboat, CD-ROMS) (non-voting) D $85
Institutional Membership for 2003 (TUGboat, CD-ROMs)
(includes up to seven members) D $500 -
Materials for 2002**
TUGboat Volume 23 [] $45
TeX Live 7 CD-ROM Ll s
2002 CTAN CD-ROMs [] s$10
Voluntary donations
General TUG contribution [] _
Contribution to Bursary Fundf L] -
Contribution to TgX Development Fundj L] .
Total §

Payment (check one) | |Payment enclosed [| Charge Visa/Mastercard/AmEx

Account Number:

Exp. date: Signature:
* Please attach photocopy of (if student) 2003 student ID or (if senior) ID showing age 65 years or older.
T The Bursary Fund provides financial assistance for attendance at the TUG Annual Meeting.

1 The TgX Development Fund provides financial assistance for technical projects.

** If you were not a TUG member in 2002 and wish to receive TgX Live and CTAN CDs right away,
these items are available with the purchase of a current 2003 membership.

Information for TUG membership list

TUG uses the information you provide to mail you products, publications, notices, and (for voting members) official ballots,
or in a printed or electronic membership list, available to TUG members only.

Note: TUG neither sells its membership list nor provides it to anyone outside of its own membership.

Allowing TUG to send you notices electronically will generally ensure that you receive them much earlier than the notice in
printed form. However, if you would rather not receive TUG notices via electronic mail, please check the appropriate box.

Do not send me TUG notices via email | |.

TUG plans to prepare a printed or electronic membership list, available to TUG members only. If you would like a listing in
such a publication, please check the appropriate box.

Please do include my information in a published members-only TUG directory | |.

Name:

Department:

Institution:

Address:

Phone:

Fax:

Email address:

Position:

Affiliation:

TUGDboat, Volume 22 (2001), No. 4

375

TEX Consulting & Production Services

Information about these services can be obtained
from:
TEX Users Group
1466 NW Naito Parkway, Suite 3141
Portland, OR 97209-2820, U.S.A.
Phone: +1 503 223-9994

Fax: +1 503 223-3960

Email: office@tug.org

URL: http://www.tug.org/
consultants.html

North America

Loew, Elizabeth

President, TEXniques, Inc.,

675 Massachusetts Avenue, 6th Floor,

Cambridge, MA 02139;

(617) 876-2333; Fax: (781) 344-8158

Email: loew@texniques.com
Complete book and journal production in the areas of
mathematics, physics, engineering, and biology. Services
include copyediting, layout, art sizing, preparation of
electronic figures; we keyboard from raw manuscript or
tweak TEX files.

Ogawa, Arthur

40453 Cherokee Oaks Drive,

Three Rivers, CA 93271-9743;

(209) 561-4585

Email: Ogawa@teleport.com
Bookbuilding services, including design, copyedit, art,
and composition; color is my speciality. Custom TEX
macros and IATEX 2z document classes and packages.
Instruction, support, and consultation for workgroups and
authors. Application development in IATEX, TEX, SGML,
PostScript, Java, and C++. Database and corporate
publishing. Extensive references.

Veytsman, Boris

2239 Double Eagle Ct.

Reston, VA 20191;

(703) 860-0013

Email: boris@lk.net
I provide training, consulting, software design and
implementation for Unix, Perl, SQL, TEX, and IATEX. 1
have authored several popular packages for IATEX and
latex2html. I have contributed to several web-based
projects for generating and typesetting reports.
For more information please visit my web page:
http://users.lk.net/ borisv.

The Unicorn Collaborative, Inc, Ted Zajdel

115 Aspen Drive, Suite K

Pacheco, CA 94553

(925) 689-7442

Email: contact@unicorn-collab.com
We are a technical documentation company, initiated
in 1990, which time, strives for error free, seamless
documentation, delivered on time, and within budget. We
provide high quality documentation services such as
document design, graphic design and copy editing. We have
extensive experience using tools such as FrameMaker, TEX,
IATEX, Word, Acrobat, and many graphics programs. One
of our specialties is producing technical manuals and
books using IATEX and TEX. Our experienced staff
can be trained to use any tool required to meet your
needs. We can help you develop, rewrite, or simply
copy-edit your documentation. Our broad experience with
different industries allows us to handle many types of
documentation including, but not limited to, software
and hardware systems, communications, scientific
instrumentation, engineering, physics, astronomy, chemistry,
pharmaceuticals, biotechnology, semiconductor technology,
manufacturing and control systems. For more information
see our web page http://www.unicorn-collab.com.

Outside North America

DocuTgEXing: TEX Typesetting Facility

43 Tbn Kotaiba Street,

Nasr City, Cairo 11471, Egypt

+20 2 4034178; Fax: +20 2 4034178

Email: main-office@DocuTeXing.com
DocuTgXing provides high-quality TEX and IATEX
typesetting services to authors, editors, and publishers.
Our services extend from simple typesetting and technical
illustrations to full production of electronic journals. For
more information, samples, and references, please visit our
web site: http://www.DocuTeXing.com or contact us by
e-mail.

I AT 58 uwer
the language of science

T Reference
Manual

by David Bausum, Lighthouse & Associates, Beloit, WI, USA

div knf7 f % beg The TeX Reference Manual is the first comprehensive reference manual
calculatic Re eremnce written by a programmer for programmers. It contains reference pages for
dimen i each of TeX’s 325 primitive control sequences. Over 80% of its reference

pages contain examples that range from simple to challenging. Each example
is is typeset verbatim in a style which is easy to read and experiment with.
TeX Reference Manual also just typesets the example, so you can see what
it makes, and explains how the example works. The description on each
primitive’s reference page is an annotated discussion of The TeXbook's
treatment of the primitive. That means a TeX user will find it natural to move
back and forth between the two books. One of TeX Reference Manual’s
innovative features is families. They simplify the search for the primitive which
performs a particular task.

\advance\dimen(by

Primitive Control Sequences TeX Reference Manual has appendices which
Family Name Type| Description provide a comprehensi\{e discussion of:
verbatim material, PostScript fonts, and two-
Box (29) Logic (20) C Command (163) column material. In particular, one word
Character (16) Macro (20) D Derived Command (17) describes its font .macr.os, elegant- T?e Teﬁ(
Debugging (25) | Marks (4) 1Q Internal Quantity (42) '[hafi;i)neileeﬁiag (;l Zlnlg ra]re]\;vn \nglgfsb(l)ef :[I_C;(;(or bot
File I/O (13) Math (69) PI Parameter (integer) (55)
Fonts (5) Page (13) PD | Parameter (dimen) (21)
Glue (12) Paragraph (30) PG Parameter (glue) (15)
Hyphenation (11) | Penalties (12) PM Parameter (muglue) (3)
Inserts (8) Registers (11) PT Parameter (token) (9)
Job (D | Tables © ORDER TODAY!
Kern (7)
TENT., .
CONTENTS 7" ONLINE: WWW.WKAPNL
1. Families and Primitive Control Sequences. Fax your order:
2. Reference Pages for the Primitives. USA: 781-681-9045
Appendix A. Typesetting Verbatim Material. Rest of World: +31 78 6546 474
Appendix B. Working with PostScript Fonts. Phone:

Appendix C. Typesetting Material in Two Columns.

Bibliography. Index. USA: +781-871-6600

Rest of World: +31 78 6392 392
February 2002 Hardbound, ISBN 0-7923-7673-0 390 pp. Email:
Special Price offered to TUGBOAT subscribers:
EUR 97.00 / USD 90.00 / GBP 61.00

Rest of World: services @wkap.nl

"USERS
GROUP

Promoting the use of
TgX throughout the
world

mailing address:
P.O. Box 2311
Portland, OR 97208-2311 USA

shipping address:
1466 NW Naito Parkway,

Suite 3141

Portland, OR 97209-2820 USA
phone: +1-503-223-9994
fax: +1-503-223-3960
email: office@tug.org
web: www.tug.org
President: Mimi Jett

Vice-President: Arthur Ogawa
Treasurer: Donald W. DeLand
Secretary: Susan DeMeritt

2003 TUG Membership Form

Rates for TUG membership and TUGboat subscription are listed below. Please check
the appropriate boxes and mail payment (in US dollars, drawn on an United States
bank) along with a copy of this form. If paying by credit card, you may fax the
completed form to the number at left.

* 2003 TUGboat (Volume 24).
* 2003 CD-ROMs include TgX Live 8 (2 disks) and Dante’s CTAN 2003 (4 disk set).

* Multi-year orders: You may use this year’s rate to pay for more than one year of
membership.

* Orders received after 31 May, 2003: please add $10 to cover the additional expense
of shipping back issues of TUGboat and CD-ROMs.

Rate Amount

Annual membership for 2003 (TUGboat, CD-ROMs) [] $65
Student/Senior membership for 2003 (TUGboat, CD-ROMs)* | | $35
Shipping charge (add to the above if after 31 May, 2003) L] s10
Subscription for 2003 (TUGboat, CD-ROMS) (non-voting) D $85
Institutional Membership for 2003 (TUGboat, CD-ROMs)
(includes up to seven members) D $500 -
Materials for 2002**
TUGboat Volume 23 [] $45
TeX Live 7 CD-ROM Ll s
2002 CTAN CD-ROMs [] s$10
Voluntary donations
General TUG contribution [] _
Contribution to Bursary Fundf L] -
Contribution to TgX Development Fundj L] .
Total §

Payment (check one) | |Payment enclosed [| Charge Visa/Mastercard/AmEx

Account Number:

Exp. date: Signature:
* Please attach photocopy of (if student) 2003 student ID or (if senior) ID showing age 65 years or older.
T The Bursary Fund provides financial assistance for attendance at the TUG Annual Meeting.

1 The TgX Development Fund provides financial assistance for technical projects.

** If you were not a TUG member in 2002 and wish to receive TgX Live and CTAN CDs right away,
these items are available with the purchase of a current 2003 membership.

Information for TUG membership list

TUG uses the information you provide to mail you products, publications, notices, and (for voting members) official ballots,
or in a printed or electronic membership list, available to TUG members only.

Note: TUG neither sells its membership list nor provides it to anyone outside of its own membership.

Allowing TUG to send you notices electronically will generally ensure that you receive them much earlier than the notice in
printed form. However, if you would rather not receive TUG notices via electronic mail, please check the appropriate box.

Do not send me TUG notices via email | |.

TUG plans to prepare a printed or electronic membership list, available to TUG members only. If you would like a listing in
such a publication, please check the appropriate box.

Please do include my information in a published members-only TUG directory | |.

Name:

Department:

Institution:

Address:

Phone:

Fax:

Email address:

Position:

Affiliation:

I AT 58 uwer
the language of science

T Reference
Manual

by David Bausum, Lighthouse & Associates, Beloit, WI, USA

div knf7 f % beg The TeX Reference Manual is the first comprehensive reference manual
calculatic Re eremnce written by a programmer for programmers. It contains reference pages for
dimen i each of TeX’s 325 primitive control sequences. Over 80% of its reference

pages contain examples that range from simple to challenging. Each example
is is typeset verbatim in a style which is easy to read and experiment with.
TeX Reference Manual also just typesets the example, so you can see what
it makes, and explains how the example works. The description on each
primitive’s reference page is an annotated discussion of The TeXbook's
treatment of the primitive. That means a TeX user will find it natural to move
back and forth between the two books. One of TeX Reference Manual’s
innovative features is families. They simplify the search for the primitive which
performs a particular task.

\advance\dimen(by

Primitive Control Sequences TeX Reference Manual has appendices which
Family Name Type| Description provide a comprehensi\{e discussion of:
verbatim material, PostScript fonts, and two-
Box (29) Logic (20) C Command (163) column material. In particular, one word
Character (16) Macro (20) D Derived Command (17) describes its font .macr.os, elegant- T?e Teﬁ(
Debugging (25) | Marks (4) 1Q Internal Quantity (42) '[hafi;i)neileeﬁiag (;l Zlnlg ra]re]\;vn \nglgfsb(l)ef :[I_C;(;(or bot
File I/O (13) Math (69) PI Parameter (integer) (55)
Fonts (5) Page (13) PD | Parameter (dimen) (21)
Glue (12) Paragraph (30) PG Parameter (glue) (15)
Hyphenation (11) | Penalties (12) PM Parameter (muglue) (3)
Inserts (8) Registers (11) PT Parameter (token) (9)
Job (D | Tables © ORDER TODAY!
Kern (7)
TENT., .
CONTENTS 7" ONLINE: WWW.WKAPNL
1. Families and Primitive Control Sequences. Fax your order:
2. Reference Pages for the Primitives. USA: 781-681-9045
Appendix A. Typesetting Verbatim Material. Rest of World: +31 78 6546 474
Appendix B. Working with PostScript Fonts. Phone:

Appendix C. Typesetting Material in Two Columns.

Bibliography. Index. USA: +781-871-6600

Rest of World: +31 78 6392 392
February 2002 Hardbound, ISBN 0-7923-7673-0 390 pp. Email:
Special Price offered to TUGBOAT subscribers:
EUR 97.00 / USD 90.00 / GBP 61.00

Rest of World: services @wkap.nl

introducing

TEXTURES 2.0

W I T H

S Y NCHIRONIUCTITY

AGAIN THE MACINTOSH DELIVERS A NEW TEX WITH A REVOLUTION IN HUMAN INTERFACE.

As computer power has advanced, the
Macintosh has consistently been the leader
in the human and humane connection to
technology, and Textures has consistently
led in bringing ease of use to TEX users.

First with Textures 1.0, the first truly

With Synchronicity, your TEX input documents
are reliably and automatically cross-linked,
correlated, or “synchronized” with the finished
TEX typeset pages. Every piece of the finished
product is tied directly to the source code from
which it was generated, and vice-versa. To go
from TEX input directly and exactly to the

corresponding typeset characters, just click.

integrated TEX system. Then with Lightning
Textures, the first truly interactive TEX
system. Now, with Textures 2.0 and
Synchronicity, Blue Sky Research again
delivers a striking advance in TEX

interactivity and productivity.

It’s that simple: just click, and Textures will take
you instantly and precisely to the corresponding
location. And it goes both ways: just click on
any typeset character, and Textures will take you
directly to the TEX code that produced it. No
matter how many input files you have, no
matter what macros you use, Synchronicity will

take you there, instantly and dependably.

Improve YOUR performance:

G E T

BLUE SKY RESEARCH
317 SW ALDER STREET

PORTLAND, OR 97204 USA

%l?—;%%

S Y NCHIRONTIUCTITY

800 622 8398

503 222 9571

WWW.BLUESKY.COM

	Introduction
	Summary of the technique
	Animated motivation
	The execJS technique
	The execJS environment
	Folder JavaScript

	An animation example
	animation.tex
	ExecJStst.tex

	Another example
	In conclusion
	Introduction
	SVG for portable graphics on the Web
	Inside an SVG document
	Generating SVG instances from TeX fonts
	Producing SVG font instances
	Disassembling Type 1 font sources
	The conversion script

	Transforming a LaTeX document into an SVG document
	Using pstoedit
	Using dvi2svg
	More complex examples

	Conclusion
	Acknowledgments and distribution
	SVG graphics path commands
	SVG Fonts
	Overview
	The font element

	Introduction
	Scanned image to bitmap font: imageto
	Bitmap font to outlines: autotrace
	Testing the new font from TeX
	Scaling: mftrace
	Metrics: afm2tfm
	Running TeX and dvips

	Final outline output: frontline, pfaedit
	Introduction
	Package options
	Usage
	Usage in preamble
	Usage in document body

	Implementation
	Saving the images
	

