\mathbf{TUG} BOAT

Volume 22, Number 3 $\,/\,$ September 2001 2001 Annual Meeting Proceedings

	115 117	TUG 2001 Program Participants at the 22nd Annual TUG Meeting
A T _F X Odyssey	118	Hans Hagen / Where will the odyssey bring us?
2 , ,	119	Mimi Jett / Future of publishing, Part 2
	120	William Richter / Integrating TeX into a document imaging system
	131	Arthur Ogawa / REVTeX version 4.0, an authoring package by the American
		Physical Society
	134	Anita Schwartz (Chair) / The TEX History Panel
	136	Hans Hagen / Using TeX for high end typesetting
	137	Peter Flynn / TeX—a mass market product? Or just an image in need of a makeover?
	140	David Tulett / LATEX for Windows: a user's perspective
PDF and TEX	146	Hàn Thế Thành / Margin kerning and font expansion with pdfTeX
	149	Ross Moore / PDF presentations using the Marslide package
	160	Hans Hagen / Using TeX to enhance your presentations
	161	Donald P. Story / Techniques of introducing document-level JavaScript into a PDF file from a LATEX source
	168	Ross Moore / Online self-marking quizzes, pdfTeX, exerquiz
	180	Martin Schröder / Using pdfTEX in a PDF-based imposition tool
	181	Nelson Beebe / pdfTEX Panel
Graphics, XML,	188	Ross Moore / Adobe plugin for WARMreader
and MathML	197	Stephen Oliver / The TeXspec tool for computer-aided software engineering
	204	William Hammond / GELLMU: A bridge for authors from LATEX to XML
	208	Bob Caviness / Creating Math Web Documents (Workshop)
Fonts and Tools	209	Alan Hoenig / Typesetting Hebrew with TEX
	216	Alan Hoenig / Modernizing Computer Modern
	220	Nelson Beebe / Fonts Panel
	228	Michael Downes / Managing multiple TDS trees
	238	Michael Doob / Installing a CTAN mirror on your desktop
	240	Richard Koch / Installing TEXshop
	247	William Adams / Font installation: Agfa/Eaglefeather to Linotype Zapfino
News &	251	Calendar
Announcements	253	TUG 2003 Announcement
TUG Business	254	Institutional members
Advertisements	255	TeX consulting and production services
	256	Just Published: TEX Reference Manual by David Bausum
CO	over3	Blue Sky Research

TeX Users Group

Memberships and Subscriptions

TUGboat (ISSN 0896-3207) is published quarterly by the T_EX Users Group, 1466 NW Naito Parkway, Suite 3141, Portland, OR 97209-2820, U.S.A.

2001 dues for individual members are as follows:

- Ordinary members: \$75.
- Students: \$45.

Membership in the TEX Users Group is for the calendar year, and includes all issues of *TUGboat* for the year in which membership begins or is renewed. Individual membership is open only to named individuals, and carries with it such rights and responsibilities as voting in TUG elections. For membership information, visit the TUG web site: http://www.tug.org.

TUGboat subscriptions are available to organizations and others wishing to receive TUGboat in a name other than that of an individual. Subscription rates: \$85 a year, including air mail delivery.

Periodical-class postage paid at Portland, OR, and additional mailing offices. Postmaster: Send address changes to TUGboat, TEX Users Group, 1466 NW Naito Parkway, Suite 3141, Portland, OR 97209-2820, U.S.A.

Institutional Membership

Institutional Membership is a means of showing continuing interest in and support for both TEX and the TEX Users Group. For further information, contact the TUG office (office@tug.org).

TUGboat© Copyright 2001, TEX Users Group

Permission is granted to make and distribute verbatim copies of this publication or of individual items from this publication provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this publication or of individual items from this publication under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this publication or of individual items from this publication into another language, under the above conditions for modified versions, except that this permission notice may be included in translations approved by the TEX Users Group instead of in the original English.

Copyright to individual articles is retained by the authors.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TeX-arcana[†] Mimi Jett, President*+ Kristoffer Rose*+, Vice President Don DeLand*+, Treasurer Arthur Ogawa*+, Secretary Barbara Beeton Karl Berry Kaja Christiansen Susan DeMeritt Stephanie Hogue Judy Johnson⁺ Ross Moore Patricia Monohon Cheryl Ponchin Petr Sojka Philip Taylor Raymond Goucher, Founding Executive Director[†]

Hermann Zapf, Wizard of Fonts[†]

Addresses

General correspondence,
payments, etc.
TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.
Delivery services,
parcels, visitors
TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223 - 9994

Fax

+1503223-3960

Electronic Mail

(Internet)

General correspondence, membership, subscriptions: office@tug.org

Submissions to *TUGboat*, letters to the Editor: TUGboat@tug.org

Technical support for TEX users: support@tug.org

To contact the Board of Directors: board@tug.org

World Wide Web

http://www.tug.org/
http://www.tug.org/TUGboat/

Problems not resolved?

The TUG Board wants to hear from you: Please email to board@tug.org

TEX is a trademark of the American Mathematical Society.

^{*} member of executive committee

 $^{^+}member\ of\ business\ committee$

 $^{^\}dagger honorary$

2001 Annual Meeting Proceedings

TEX Users Group Twenty-second Annual Meeting Newark, Delaware, August 12-16, 2001

TUGBOAT

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

Proceedings Editors Karl Berry

 $M{\rm IMI}\;B{\rm URBANK}$

Volume 22, Number 3
Portland
•

Oregon

September 2001

U.S.A.

TUGboat

The September 2001 issue (Vol. 22, No. 3) contains the Proceedings of the 2001 TUG Annual Meeting. One issue remains in the 2001 volume year.

For the 2002 membership year, the communications of the TeX Users Group will be published as one double issue and two regular issues. One issue (probably Vol. 23, No. 1) is expected to contain the proceedings of the TUG 2002 Annual Meeting.

We are unfortunately not able to set a definitive schedule for the appearance of the next few issues.

TUGboat is distributed as a benefit of membership to all members.

Submissions to *TUGboat* are reviewed by volunteers and checked by the Editor before publication. However, the authors are still assumed to be the experts. Questions regarding content or accuracy should therefore be directed to the authors, with an information copy to the Editor.

Submitting Items for Publication

Owing to the lateness of the present issue, and the scarcity of material submitted for future issues, suggestions will be accepted and processed as received.

Manuscripts should be submitted to a member of the *TUGboat* Editorial Board. Articles of general interest, those not covered by any of the editorial departments listed, and all items submitted on magnetic media or as camera-ready copy should be addressed to the Editor-in-Chief, Barbara Beeton, to the Managing Editor, Robin Laakso, or to the Production Manager, Mimi Burbank.

The TUGboat "style files", for use with either plain TEX or IATEX, are available from CTAN. For authors who have no network access (browser or FTP), they will be sent on request; please specify which is preferred. Send e-mail to TUGboat@tug.org, or write or call the TUG office.

This is also the preferred address for submitting contributions via electronic mail.

Reviewers

Additional reviewers are needed, to assist in checking new articles for completeness, accuracy, and presentation. Volunteers are invited to submit their names and interests for consideration; write to TUGboat@tug.org.

TUGboat Editorial Board

Barbara Beeton, Editor-in-Chief Robin Laakso, Managing Editor Mimi Burbank, Production Manager Victor Eijkhout, Associate Editor, Macros Jeremy Gibbons, Associate Editor, "Hey—it works!" Alan Hoenig, Associate Editor, Fonts Christina Thiele, Associate Editor, Topics in the Humanities

Production Team:

Barbara Beeton, Mimi Burbank (Manager), Robin Fairbairns, Michael Sofka, Christina Thiele

Other TUG Publications

TUG is interested in considering additional manuscripts for publication. These might include manuals, instructional materials, documentation, or works on any other topic that might be useful to the TeX community in general. Provision can be made for including macro packages or software in computer-readable form. If you have any such items or know of any that you would like considered for publication, send the information to the attention of the Publications Committee at tug-pub@tug.org or in care of the TUG office.

TUGboat Advertising and Mailing Lists

For information about advertising rates, publication schedules or the purchase of TUG mailing lists, write or call the TUG office.

Trademarks

Many trademarked names appear in the pages of *TUGboat*. If there is any question about whether a name is or is not a trademark, prudence dictates that it should be treated as if it is. The following list of trademarks which appear in this issue may not be complete.

METAFONT is a trademark of Addison-Wesley Inc. PostScript is a trademark of Adobe Systems, Inc. T_FX and $\mathcal{A}_{\mathcal{M}}\mathcal{S}$ -T_FX are trademarks of the American

Mathematical Society.

UNIX is a registered trademark of X/Open Co. Ltd.

TUG 2001 Program

Monday, August 13, 2001 A TEX Odyssey

Time	Talk	Speaker
09:00-09:15	Official Opening and Welcome	Mimi Jett
09:15-10:00	T _E X 2001: Where will the odyssey bring us?	Hans Hagen
10:00-10:30	Future of Publishing, Part 2	Mimi Jett
10:30-11:00	Break	
11:00-11:30	Integrating TEX into a Document Imaging System	William Richter
11:30 -12:00	REVTEX version 4.0, an authoring package by the American Physical Society	Art Ogawa
12:00-13:30	Lunch	
13:00-13:30	PANEL: TEX History	Anita Schwartz (Chair)
13:30-14:15	Using TEX for high end typesetting	Hans Hagen
14:15–14:45	TEX—a mass market product? Or just an image in need of a makeover?	Peter Flynn
14:45-15:15	Break	
15:15-16:00	LATEX for Windows: A User's Perspective	David Tulett

Tuesday, August 14, 2001 PDF and T_EX

Time	Talk	Speaker
09:00-09:30	Margin kerning and font expansion with pdfTEX	Hàn Thế Thành
09:30-10:00	PDF presentations using the Marslide package	Ross Moore
10:00-10:30	Break	
10:30-11:15	Using TEX to enhance your presentations	Hans Hagen
11:15–11:45	Presentations with pdfTEX using PDFscreen	C. V. Rahdakrishnan (presented by Martin Schröder)
11:45-13:30	LUNCH	
13:30–14:15	Techniques of Introducing Document-level JavaScript into a PDF file from a LaTeX source	Don Story
14:15-14:45	Online self-marking Quizzes, pdfTEX, exerquiz	Ross Moore
14:55-15:15	Break	
15:15-15:45	Using pdfTEX in a PDF-based imposition tool	Martin Schröder
15:45-16:00	PANEL: pdfT _E X	Hans Hagen (chair)

Wednesday, August 15, 2001 Graphics, XML, and MathML

Time	Talk	Speaker
09:00-09:45	TUG Business Meeting	
09:45-10:30	Adobe plugin for WARMreader	Ross Moore
10:30-11:00	Break	
11:00-11:45	The TEXspec Tool for Computer Aided Software Engineering	Stephen Oliver
11:45-12:30	GELLMU: A Bridge for Authors from LATEX to XML	William Hammond
12:30-13:30	Lunch	
13:30-15:00	Creating Math Web Documents	Bob Caviness
15:00-15:15	Break	
15:15-16:00	Online DEMO: MathML processing	Hans Hagen
18:00	Banquet: The Arsenal at Old Newcastle	

Thursday, August 16, 2001 Fonts and Tools

Time	Talk	Speaker
09:00-09:30	Typesetting Hebrew with TEX	Alan Hoenig
09:30-10:00	Modernizing Computer Modern	Alan Hoenig
10:00-10:30	Break	
10:30-11:30	PANEL: Fonts	Nelson Beebe (Chair)
11:30-12:00	Managing Multiple TDS Trees	Michael Downes
12:00-13:00	Lunch	
13:00-13:45	Installing a CTAN mirror on your desktop	Michael Doob
13:45-14:30	Installing TEXshop	Richard Koch
14:30-15:30	Font Installation: Agfa/Eaglefeather to Linotype Zapfino	William Adams
15:30-16:00	Break	
16:00-16:15	Closing & Wrap-up: Tug 2002—Kerala, India	

Participants at the 22nd Annual TUG Meeting August 12-16, 2001 University of Delaware, Newark, Delaware, USA

William Adams

ATLIS Graphics & Design, Camp Hill, PA, USA

Frederick Bartlett

Springer-Verlag, New York, NY, USA

John Beach

Columbus, OH, USA

Nelson Beebe

University of Utah, USA

Barbara Beeton

American Mathematical Society, USA

Richard T. Bumby

Highland Park, NJ, USA

Susan DeMeritt

IDA/CCR La Jolla, USA

Michael Doob

University of Manitoba, Winnipeg,

Manitoba, Canada

Michael Downes

American Mathematical Society, USA

Frank Ganz

Springer-Verlag, New York, NY, USA

Steve Grathwohl

Duke University Press, USA

Andreas Guelzow

Concordia University College of Alberta, Edmonton, AB, Canada

Hans Hagen

PRAGMA Advanced Document Engineering, The Netherlands

James Haines

Society for Industrial & Applied Math, Philadelphia, PA, USA

Barbara Hamilton

IDA-CCR Princeton, NJ, USA

William Hammond

University of Albany, NY, USA

Hán Thế Thánh

Masaryk University, Czech Republic

Melissa Harrison

Far Field Associates, LLC,

Snohomish, WA, USA

Jim Hefferon

Saint Michael's College, Colchester,

Alan Hoenig

Knowledge Equity, Inc., USA

Stephanie Hogue

Lansdale, PA, USA

Mirko Janc

Technical Typesetting Inc., Baltimore, MD, USA

Mimi Jett

IBM, USA

Judy Johnson

Personal TeX, Inc., USA

Richard Koch

University of Oregon, Eugene, OR, USA

Robin Laakso

TEX Users Group, USA

Jenny Levine

Duke University Press, USA

Bernice Lipkin

Sachs L plus B Associates, Bethesda, MD, USA

Elizabeth Loew

TeXniques, Inc., Cambridge, MA, USA

Tom Lucas

MCR Inc., Mayfield Village, OH, USA

Paul Mailhot

PreTEX, Inc., Halifax, Nova Scotia, Canada

Wendy McKay

California Institute of Technology,

Lothar Meyer-Lerbs

Bremen, Germany

Bruce Miller

NIST, MCSD/ITL, Gaithersburg, MD, USA

Thomas Miller

University of Wisconsin-Madison, WI,

Margaret Mitchell

Springer-Verlag, New York, NY, USA

Patricia Monohon

University of California, San

Francisco, USA

Ross Moore

Macquarie Universtiy, Sydney,

Australia

P. Narayanaswami

Memorial University of Newfoundland Canada

Bob Neveln

Widener University, Chester, PA, USA

TEX Consultants, Three Rivers, CA,

Stephen Oliver

University of Manitoba and Atomic Energy Canada, Ltd., Canada

Cheryl A. Ponchin

Institute for Defense Analyses,

Princeton, NJ, USA

J.C.N. Rajendra Eastern University, Sri Lanka, Chenkalady, Batticalor, Sri Lanka

William Richter

Texas Life Insurance Company, USA

Chris Rowley

Open University, London, UK

Volker Schaa

Dante e.V., Germany

Lakshmi Sadasiv

Academic Press, Burlington, MA,

Martin Schröder

TEX Merchandising, Germany

Anita Schwartz

University of Delaware, DE, USA

William Slough

Eastern Illinois University, Charleston, IL, USA

Michael Sofka

Rensselaer Polytechnic Institute, Troy, NY, USA

John L. Spiegelman

John L. Spiegelman Publication Services, Jenkintown, PA, USA

Don P Story

The University of Akron, OH, USA

James P. Summe

Centers for Medicare & Medicaid Services, DHHS, Baltimore, MD, USA

Matthew Swift

Allston, MA, USA

Paul Travis

MacKichan Software, Inc., Bainbridge Island, WA, USA

David Tulett

David Memorial University of Newfoundland, St. John's, NF, Canada

Alan Wetmore

Army Research Laboratory, USA

Jiri Zlatuska

University, Brno, Czech Republic

TeX '2001: Where Will the Odyssey Bring Us?

Hans Hagen Pragma ADE, GH Hasselt, The Netherlands pragma@wxs.nl http://www.pragma-ade.com

Abstract

If there is one thing that the 2001 Space Odyssey movie has demonstrated, it is probably that even on a relatively short time-span, predictions are hard to make. In spite of much research, some predictions have turned out the opposite while other developments were not foreseen. When Knuth wrote TEX, one of his assumptions was that in 100 years from their incarnation, people should still be able to reproduce his books from the sources. Can we look that far ahead when it comes to typesetting? What will happen in the (near) future with publishing? Is there a pattern in today's developments? Will all typographic problems be solved? In this talk I will try to reflect on these issues from the perspective of today's TEX based publishing.

The Future of Publishing, Part 2

Mimi Jett
IBM Research
jett@us.ibm.com
http://www.software.ibm.com/techexplorer

Abstract

At the beginning of the past decade, (TUG'90 in TEXas), we explored the future of publishing with an eye on the role TEX and the TEX community might play in the evolution of digital publishing. The idea of open software was fostering open communication between all players along the supply chain, from author through editorial and production. Did this dream materialize? Beyond the imagination, but the real benefits are yet to come. Now we see the collaboration between disparate groups and individuals from academia, business, and government resulting in powerful open standards that will shape not only digital publishing, but interaction and communication worldwide.

Integrating TeX into a Document Imaging System

William M. Richter

Texas Life Insurance Company, 900 Washington Avenue, Waco, TX 76703, USA hcswmr@texlife.com

Abstract

TEXmerge is an application programming interface for merging variable data into a pre-existing TEX document. This paper introduces the API and discusses its application in a document production and imaging environment.

Introduction

Modern computer hardware and software has made possible the construction of "document-imaging" systems. These systems maintain large repositories of documents in electronic form. In production environments of many large companies and in particular the life insurance industry, a significant percentage of printed documents are produced electronically in an automated fashion, usually by merging variable data into an existing document with some fixed structure. Storing scanned images of these electronically produced print documents wastes time, computing resources, and disk storage space. It is useful to address the problem of document storage along with the related problem of electronically formatting and producing printed documents. Then the choice of document formatter can be made such that the formatting engine used to produce printed documents may be reused to display those same documents in a document imaging environment.

TeX has been used as an important component in building a document production and imaging system at Texas Life Insurance Company. TEX's macro facilities, conditional typesetting, text-based source files, a robust page formatting mechanism, and precompiled format files allow it to play a central role in the system. TeXmerge, a C-language API, was developed to allow variable data to be merged, under program control, with static TFX source documents containing special merge tags to produce a final output document. This API is used to prepare policy contracts, produce automated client correspondence, as well as in interactive document preparation and in application-specific document production. Documents produced via the TFXmerge API are filed in the imaging system using a minimalist approach. TFX form files are stored once and separately from all document instances. Variable data along with a pointer to its associated TFX form file is all that comprise a stored document instance. When

the document is displayed a "just-in-time" compile technique is used to reconstruct the document's .dvi file which is converted to PostScript for display purposes.

TEX has additional attributes that make it an excellent choice as document formatting engine. The ability to convert raster bitmaps to TEX fonts allow complex letter-head/footer macros to be developed and easily used in a fashion that lends itself to effective revision management. Incorporation of a Code 2-of-5 scalable barcode font has enabled printed forms and documents that are returned to the company from external individuals to be recognized by the document imaging scanner and automatically filed in the imaging system.

TeXmerge API

TEXmerge is a C-language API for merging variable data into a pre-existing TEX document (referred to as the "form"). The API is simple, light-weight, and easy to integrate into applications.

The API consists of a small number of functions, here listed in appendix A in the normal order of use. Most functions return an integer result code. Zero implies successful return. The integer result may be passed to the function TeXmerge_GetErrorString() to retrieve the corresponding error text string.

Example C Program A straightforward application of the TEXmerge API is illustrated in fig. 1. This program,

- Creates an associative array with three elements.
- 2. Sets the elements to have names THISVAR, THATVAR, and ANOTHERVAR, respectively.
- 3. Opens an output file.
- Merges the associative array into an existing TEX file called test_form.tex to create a temporary file called temp.tex.
- 5. Closes the output file and processes it for viewing with xdvi.

```
#include "stdio.h" #include "TeXmerge.h"
int main(int argc, char **argv) { TeXmergeName_t *array; int
count=3; int ret; FILE *fp; char *out_pathname="temp.tex"; char
*form_pathname="test_form.tex";
   array = TeXmerge_AllocNames(count);
   TeXmerge_SetArrayEntry("THISVAR", "some value", &array[0]);
   TeXmerge_SetArrayEntry("THATVAR", "blah, blah", &array[1]);
   TeXmerge_SetArrayEntry("ANOTHERVAR", "la-te-dah", &array[2]);
   ret = TeXmerge_OpenOutput(out_pathname, &fp, 0);
   if (ret != TXM_OK) {
      fprintf(stderr, "TeXmerge_OpenOutput(%s): %s\n", out_pathname,
        TeXmerge_GetErrorString(ret));
      return(1);
   }
  ret = TeXmerge(form_pathname, array, count, 0);
   if (ret != TXM_OK) {
      fprintf(stderr, "TeXmerge(%s): %s\n", form_pathname,
        TeXmerge_GetErrorString(ret));
      return(1);
   }
   TeXmerge_CloseOutput(fp);
   TeXmerge_View(out_pathname, TXM_WAIT);
   return(0);
```

Figure 1: C-language example application of the TFXmerge API

```
\batchmode
\def\THISVAR{some value}
\def\THATVAR{blah, blah}
\def\ANOTHERVAR{la-te-dah}
\input test_form.tex
\bye
```

Figure 2: A T_EX file produced by the sample C program in fig. 1

After the call to TeXmerge_CloseOutput() the contents of temp.tex would appear as in fig. 2.

test_form.tex can have any TEX code of your using TEX merge and applications relating to the choosing, including invocations of \THISVAR, \THATVAR, document imaging system (DIS). Most of the lines and \ANOTHERVAR.

Python Binding A Python¹ binding for the T_EX-merge API is also available. A re-implementation of the previous C-code is given in fig 3.

Notes:

- 1. The Python version is cleaner.
- Error detection via return values has been replaced with Python's exception mechanism; i.e., instead of methods returning integer result codes, they throw exceptions of the appropriate

type which may be caught via the try/except construct.

- The TeXmergeName_t arrays used in the C-code example just use simple Python dictionary objects. As a result the nagging count integer with tracks the number of array elements is no longer needed.
- Constants defined in TeXmerge.h are accessed as attributes of the Python TeXmerge module.

TeXmerge in Production

Figure 4 depicts data flow between applications using TEXmerge and applications relating to the document imaging system (DIS). Most of the lines in the figure represent, not the flow of documents, but the flow of data necessary to build documents. Data from the policy administration system feeds a number of print-producing applications. Print producers come in four "flavors".

Bulk and Custom Print Producers create large volumes of documents such as annual reports to policy-holders, billings for premium due, and automated client correspondence. Most of these documents are from one to three pages in length and usually consist of three standard parts: a client copy, an agent copy and a file copy. All three parts have

¹ http://www.python.org

Figure 3: Python example.

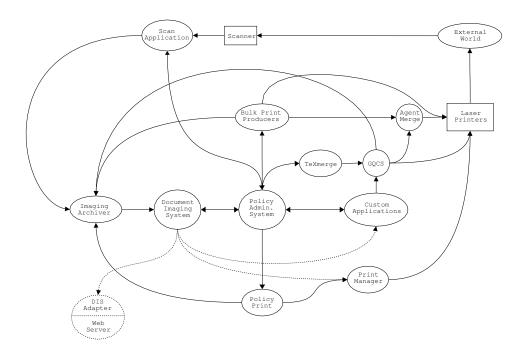


Figure 4: Intra-application flow of document data.

content in common, but the agent and file copies may have additional information.

Policy Print is a customized application which produces policy contracts. Contents of policy contract documents vary by product and state in which the policy is issued. Typical contracts are 20 to 30 pages in length when printed duplex and their structure can be complex formatting-wise. A number of pages contain variable tabular information, certain pages must draw paper from an alternate input paper source on the printer, and still other pages must be landscape oriented. Because of the volume of print produced by the policy print ap-

plication² its output is routed to a print manager which tracks what documents are to be printed and performs the task of driving print streams to multiple printers. Work is currently under way to deposit a copy of policy contracts into the DIS. Also under construction is a mechanism which will allow the print manager to access the DIS "on-the-fly" as a document is being printed to retrieve an image copy of the original "application for insurance" and insert it into the print stream.³

² As of this writing, Texas Life produces around 2,000 policy contracts per month.

³ This and other trickery such as selecting alternate input paper sources on the printer are accomplished through especially malicious abuse of the special macro.

General Queue Collection System Before discussing the last two print producer types we introduce the General Queueing Collection System (GQCS). Multi-user interactive applications produce multi-part documents that need to be saved for later processing or printing. GQCS removes the details of output handling from print producing programs and becomes a central point for collecting data related to print requests. It collects the tagged data for these documents and stores it in subqueues. A single GQCS daemon can serve multiple sub-queues. Usually it serves three for the standard image, agent, and client copies of a document. At night the contents of each sub-queue is extracted in bulk to output files, each file being forwarded to its destination system for final processing. Documents in the image sub-queue are routed the image archiver for storage in the DIS. Documents in the agent sub-queue are routed to the agent merge system which correlates items destined to a given agent into a consolidated print stream that is printed and mailed as a single bundle to the agent. Documents in the client sub-queue are printed and mailed to the external world.

Interactive Print Producers The final two print producer types are interactive in nature. Custom Applications are stand-alone systems that integrate Texmerge to produce printed documents associated with transactions executed against the policy administrative system. Like the bulk print producers, these programs create documents that usually consist of the standard client / agent / file copies.

The TeXmerge Application The remaining print producer is TeXmerge. It was the first application developed to use the TeXmerge API, and its purpose is to generate documents interactively from preconfigured "form" letters. A detailed data flow diagram of TeXmerge is shown in fig. 5. TeXmerge uses a configuration file (XMC file) to declare the constituent parts of a document and to which subqueue of a GQCS daemon each part of the document should be deposited.

For illustrative purposes consider the following files which together make a TEXmerge document.

Example.xmc:

Example_client.tex client
Example_agent.tex agent
Example_image.tex image

$Example_client.tex:$

% Example_client.tex - the client copy
\stdLetterHead

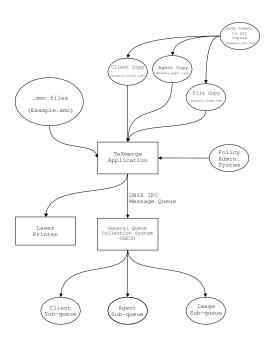
\input Example_com.tex
\stdFooter

$Example_agent.tex:$

% Example_client.tex - the agent copy
\stdLetterHead
\input Example_com.tex
\vfil \centerline{* AGENT COPY *}\vfil\stdFooter

Example_image.tex:

% Example_image.tex - the image copy
\stdLetterHead
\input Example_com.tex
\vfil \centerline{* FILE COPY *}\vfil\stdFooter


$Example_com.tex:$

% Example_com.tex - part of the document
% common to all three parts
\texmergevar THISVAR \texmergevar THATVAR
\texmergevar ANOTHERVAR

This is just a sample document to show how the multi-part document mechanism operates and how merge variables work. Here we insert \THISVAR. and now \THATVAR, and finally \ANOTHERVAR.

These four example .tex files and the .xmc file correspond directly with the entities shown in fig. 5. The environment variable \$TEXMBASEDIR connects the TeXmerge application to the directory where the .xmc and .tex files reside. It looks for .xmc files in a subdirectory named xmc within \$TEXMBASEDIR and for .tex files in a subdirectory named tex within \$TEXMBASEDIR.

At startup TeXmerge scans the XMC directory and assumes the files it finds there are XMC configuration files and lists them in a chooser box as in fig. 6. When a selection is made, the configuration file is read to determine what .tex files will be used in the document and to what GQCS subqueues the constituent parts will be deposited when saved. Then each configured .tex file is scanned recursively via the TFXmerge API to determine what merge variables are declared and it displays a frame as in fig. 7. With the frame displayed, TFXmerge's work is done and it's the user's turn to work. The task of entering data into the merge fields may be shortened in many cases. The TFXmerge application has been programmed to recognize the names of many merge variables and it assigns special meaning to them. For example, ONAME represents a policy owner's name, INAME is the insured's name, SDATE is the system date, etc. By typing a policy number into the POLNUM field and pressing enter TEXmerge

Figure 5: TEXmerge multi-part document configuration.

will access the policy administration system using the entered value. If it finds data for the matching number then all merge variable names found to have special meaning will be filled with data from the system. Once the merge fields are populated the document can be saved via GQCS, printed, or viewed via xdvi. The printing and viewing operations are accomplished via functions in the TEXmerge API.

Workflow Management Using a 2-of-5 barcode font with TEX has enabled a simple workflow environment to be established. A number of documents are intended to be completed by clients externally and returned to the company for further processing. The TEXmerge API has been extended in the following way: When a document is printed via the TeXmerge_Print() API call the form document is scanned for the sequence \def\WRKBARCODESTR{...}. If this macro is in the document two things happen.

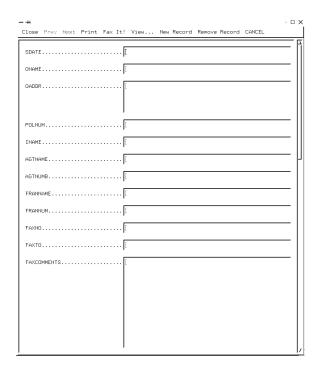
- A transaction identification number will be assigned to the document and stored in the policy administration system.
- The transaction identification number will be encoded as a barcode and printed in the footer of the document. When the document is re-

→ Multi-Document

Queue Info. agent_memo.xmc certificate_for_duplicate_policy.xmc death_of_owner_contingent_named.xmc endorse_bene_agent.xmc endorse_benes_agent.xmc endorsed_assign_to_bank.xmc endorsed_bene_to_owner.xmc endorsed_form_to_agent.xmc endorsed_form_to_owner.xmc endorsed_forms_mul_policy.xmc endorsed_forms_mulpol_agt.xmc endorsed_forms_to_agent.xmc endorsed_forms_to_owner.xmc endorsed_owner_pension.xmc notice_of_address_change.xmc rls_assign_ltr_owner.xmc rls_assign_to_bank.xmc send_bene_forms.xmc send_certificate_of_ins.xmc send_chg_of_owner.xmc

Figure 6: Top-level window of the TEXmerge application.

turned and it is scanned, the transaction identification number will be recognized by the document scanning equipment.


These events enable the document to be automatically archived into the DIS without operator intervention. Future enhancements will also automatically route and image of the document back to the clerk who initiated the transaction for final processing.

Integrating TEX into the Document Imaging System

Finally we focus on the document imaging system in use at Texas Life, and the storage of documents produced via the TeXmerge API. A full description of the DIS is outside the scope of this paper; however a brief overview is appropriate here.

The DIS was originally designed to store two types of documents.

1. Reports normally printed on an old-style IBM line printer. These reports range from one to 10,000 pages or more, each page consisting of a

Figure 7: Merge field input window of a T_FXmerge document.

fixed number of rows and columns of printable characters from the ASCII codeset.

2. Scanned images. Usually stored in the CCITT Group-3 fax format.

Over time document types based on Hewlett-Packard's PCL page formatting language (i.e., PCL print streams normally destined to a LaserJet printer), and Adobe's PostScript page description language were added, as well as several standard graphics file formats such as GIF, JPEG, and TIFF.

The screen shots in figures 10 and 11 are of the browser used to view documents stored in the DIS. They show both the index panel used for reviewing the document titles that are stored in the system, and the document panel which actually displays the documents. Folder tabs near the bottom of the window allow quick switching between the index and document displays and eliminate the need for manipulating multiple windows.

From a storage perspective the DIS is split into two components (see fig. 8). Contents of documents are stored in files residing within a UNIX filesystem (host files). Document titles are indexed into a hierarchical system having a familiar "document/folder" paradigm and is provided by a Relational Database which associates each title with a host file containing

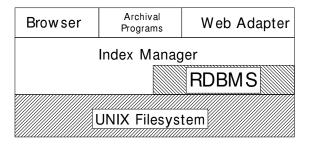


Figure 8: Layer diagram of the document imaging system.

the document's content. Further, the index tracks what folders own what documents.

Host files have a simple internal format. Each host file contains a line-oriented metadata section, which stores data about the document. The metadata section contains index information and can be used to rebuild the DIS database index should it become damaged. Format of the host file following the metadata section is document type dependent. ASCII- and PCL-based documents store multiple pages per host file. Scanned documents in CCITT Group-3 fax/JPEG/GIFF/etc. store each page in a separate host file. The storage mechanism for TEX-merge and PostScript documents will be discussed in the next section.

Storage Strategy for TeXmerge Documents The storage mechanism for archiving TeXmerge-based documents provides several options which result in files sizes from only a few kilobytes (depending on the amount of variable data to be merged into the document) up to the size required to hold a full PostScript version of the document.⁴ The different options for storing TeXmerge-based documents are rooted in the idea that this type of document can exist in at least three forms:

- 1. A simple associative array of tagged data. Special tags in the data specify what .tex file the data should be merged with (TEXFILE) and in what directory the .tex file is to be found (TEXMBASEDIR). This is the canonical form of a Texmerge document (at least from a storage perspective) and consumes the least amount of disk space.
- 2. A file of TEX code ready to be compiled. A TEXmerge document in this form would appear as in fig. 2.

⁴ Most correspondence produced by Texas Life results in PostScript file sizes of 70 kilobytes on average.

3. A PostScript file from dvips and is obtained from processing the .dvi file which result when compiling the file from item 2 above. From a display/ rendering perspective PostScript is the canonical form for TEXmerge documents since they must be in this form before they can be displayed.

There are benefits and disadvantages to storing TeXmerge documents in each of these forms (a classic speed vs. space dilemma), although the first and last forms seem most useful. Operationally, storing the PostScript is simplest and is least demanding in CPU cycles. In the present DIS Ghostscript is used to rasterize PostScript code for display on an X-Windows terminal, and already having the document in PostScript yields the least amount of work to get the image displayed. Depending on complexity of the document, number of fonts used, etc. the size of a PostScript file produced by dvips can be considerable, so storing TeXmerge documents in this form does not minimize disk space usage.⁵ Option 1 above minimizes disk space usage at the cost of CPU cycles and other complications. The majority of documents will be stored and seldom, if ever, viewed. Therefore, the constraint minimizing disk space is the controlling consideration when choosing a storage strategy.

The Minimalist Storage Strategy Saving disk space costs in other areas. Each time the document is displayed, it must be compiled by TeX and then converted to PostScript via dvips which costs in CPU cycles. Both of these operations can be accomplished via the TeXmerge API. The more subtle problem is how to store the .tex form files.

TeX-Freeze and Revision Management Saving the tagged data array in the document along with the name of its associated .tex form file is not sufficient to enable the document to be reproduced. The form file (and any .tex files that it \input's) must somehow also be stored internal to the DIS.⁶ A complicating factor is that the original form files themselves will be modified at various times and new forms will be added. So while the form files are living, evolving entities, the documents stored in the DIS must be static and always appear exactly as they did the day they were produced.

The mechanism which allows TEXmerge documents to appear static in the DIS "freezes" the

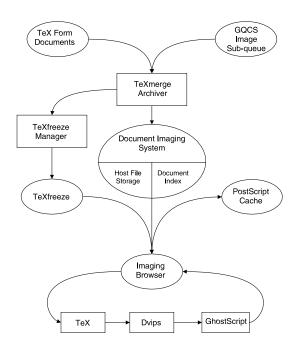
form files when TEXmerge documents are archived into the DIS. The place where frozen form files are stored is called the "TEXfreeze", and it is simply the mount-point for a UNIX filesystem. Pathnames of form files in the TEXfreeze are derived by concatenating the TEXfreeze pathname and the form's original pathname. For example, if we have a form /x/y/z/tex/form1.tex and the TEXfreeze directory is /texfreeze, then the pathname of the frozen version of form1.tex would be /texfreeze/x/y/z/tex/form1.tex.

Having a storage mechanism is only half the picture; we still need a method to allow for multiple versions of the same form. We accomplish this by inserting a timestamp into the filename of the form document. So the frozen pathname in the example above would become something like /texfreeze/x/y/z/tex/form1_20010618.tex. The most recent version of each form is pointed to by a softlink. The name of the softlink is the forms's un-timestamped name. Continuing the example; in /texfreeze/x/y/z/tex we would have a directory entry that looks like:

form1.tex -> form1_20010618.tex.

Freezing of form files is the task of the TEX-freeze manager. It detects changes between a form file and its current frozen version by calculating an MD5 cryptographic hash of the two files. If the hash values differ the new version of the form is stored in the TEX-freeze as discussed above and the softlink is updated to point to the new version. The TEX-freeze manager also recursively follows \input macros and freezes those files also.

Within the document's data there is a tag (TEXMFORMAT) which controls the format TEX should use when processing the input source. Having laid out the scheme for tracking revisions of TEXmerge forms, it should be pointed out that the exact same process is carried out for freezing format files.


With TEXfreeze providing archival and revision management facilities for form files, we turn to the process of archiving tagged data for a TeXmerge document. The document's data is stored in a host file as discussed in the section "Storage Strategy for Texmerge Documents" with one slight modification. The value of TEXFILE (the document's associated form filename) is adjusted to have the proper timestamp value (obtained from a readlink(2) system call on the softlink) inserted into the filename. Also,

 $^{^5}$ The current DIS stores over 500,000 TeX merge documents. (And growing daily.)

⁶ Form files used by the T_EXmerge application and other T_EXmerge-enabled applications are stored in UNIX filesystems and are independent (but related) to the forms stored in the DIS.

 $^{^7}$ The MD5 hashes are also saved in the TeXfreeze for efficiency purposes.

 $^{^8}$ Using the environment variable TEXINPUTS to search for non-explicit pathnames.

Figure 9: Storage strategy for T_EXmerge documents.

the TEXMFORMAT tag will be adjusted with its proper timestamp value.

"Just-in-Time" Compile With form files frozen in the TEXfreeze and the document's data archived in the DIS the task of displaying the document is almost trivial. The TEXmerge API is used to convert the tagged data into a .tex file which is compiled by TeX. The .dvi is passed through dvips and the resulting PostScript is rasterized and displayed. One "trick" here is getting TEX to find the form file(s). There is a tag in the document's data, TEXMBASEDIR which originally pointed to the directory in which the document's form resided. That value must now be prepended with the directory of the TEXfreeze. complish this by setting an environment variable, TEXFREEZE, to point to the Texfreeze directory. Then, just before exec()'ing the TFX compiler, the environment variable TEXINPUTS is prepended with \$TEXFREEZE/\$TEXMBASEDIR/tex.

The pipeline sequence of tagged-data to .tex to .dvi to .ps to pixmap is expensive computationally. An easy way to limit this series of operations each time a TeXmerge document is displayed is to insert a cache manager at the beginning of the sequence. The final PostScript output is saved in the cache. Each time before a TeXmerge document is displayed a check is made to see if the PostScript is already in



Figure 10: Index panel of imaging browser application.

the cache. If it is found there the whole compile sequence is skipped. Files are dropped from the cache after reaching an age of two weeks to keep the size of the cache directory bounded.

Future Developments

TEXmerge-2 Development is complete for the TEXmerge API and no further work on it is planned. TFXmerge-2, a follow-on API, is being developed. The monolithic .tex form files will be replaced with a mechanism which assembles the .tex file from a series of small text segments or paragraphs that can be reused in various documents. The simple \texmergevar variable declaration will expanded to include other types of variables such as toggle buttons and option boxes to make documents with conditional elements easier to construct. All configuration information, text segments, and variable declarations will be stored in RDBMS tables. A major reason for eliminating the .tex form files is resistance from non computer-literate users to embrace the T_FX philosophy and learn a new skill. Documents based on the TeXmerge-2 API will not have the space efficiency that TEXmerge documents have since all text for TEXmerge-2 documents will be stored directly in the document's data tags, and

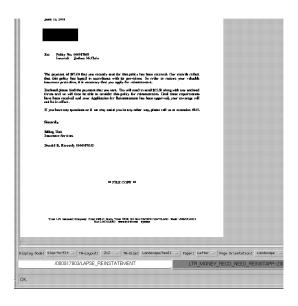


Figure 11: Document panel of imaging browser application.

preparation of the finished document will be less efficient due to the large number of database accesses that will be required to build the TEX code for the document. It is the opinion of the author that TEXmerge-2 is not the best track that new development efforts should take; it is management and end-users desire.

Web Interface to DIS As shown in fig. 4, work is currently under way to serve documents from the DIS to web browsers. A set of library routines is being developed to render any document type in the DIS to Adobe's Portable Document Format (PDF).

This library will be used in the planned DIS web server adapter. Security issues are a major consideration that make this an extensive development effort.

Integrate METAPOST into DIS Other authors have integrated METAPOST into applications. METAPOST is anticipated to be useful in designing forms where lots of graphics primitives (lines, curves, etc.) are required. An API similar in style to the TeXmerge API is planned.

Utilize Advanced TeX Formats To date all form documents are based essentially on the plain TeX format. The TeXmerge API allows any TeX format to be used via the TeXMFORMAT environment variable. The LaTeX and ConTeXt formats are anticipated to be useful tools in developing new policy contract forms and for other documents needing a consistent "look-and-feel."

Utilize Other Typesetters Other typesetting engines such as pdfTEX, xmltex, and $\mathcal{N}_{\mathcal{T}}\mathcal{S}$ should be investigated to see what benefits they might bring to the document production and archival environment.

Conclusion

TEX is an excellent engine for integration into a production environment where large volumes of documents need to be produced and archived efficiently. The TEXmerge API allows that integration to occur in many applications and for many purposes. Efficiency is gained by moving data between systems instead of fully formatted documents. Finally, using TEXmerge in the DIS has provided many benefits, the most important being the space savings derived from the method of storing TEXmerge documents, and the ability to interactively produce documents and archive them using the same formatting engine.

Appendix A TEXmerge API

TeXmergeName_t *TeXmerge_AllocNames(int count)

Variable data is passed to TeXmerge as an associative array. Each entry in the array is a name/value pair. This function allocates an array of such name/value pairs containing count entries.

TeXmergeName_t *TeXmerge_FreeNames(TeXmergeName_t *array, int count)

This functions frees a name/value array. Obviously this one is not listed in order of use!

int TeXmerge_SetArrayEntry(char *name, char *value, TeXmergeName_t *entry)

This function sets entry to the passed name and value strings. The next two functions are for convenience and their use is not mandatory. In this and the next function, value may be passed as NULL to indicate 'no value'.

int TeXmerge_SetName(char *name, char *value, TeXmergeName_t *array, int count)

This function searches array for an entry whose name value matches name, and then sets the entrie's value to value.

char *TeXmerge_GetName(char *name, TeXmergeName_t *array, int count)

This function searches array for an entry whose name value matches name, and then returns the entries value string. The function returns NULL is name is not found in array.

char *TeXmerge_GetNames(char *pathname, TeXmergeName_t **array, int *count)

This function searches the .tex file specified in pathname for occurrences of lines having the format: \texmergevar NAME

Lines of this form enumerate the merge variables that the document will use. The function returns a list of the names in the pointer variable pointed to by array. The number of elements in the array is returned in the integer pointed to by count. array should be freed when no longer needed with a call to TeXmerge_FreeNames().

int TeXmerge_OpenOutput(char *pathname, FILE **outFP, char *preamble)

This functions creates an output file named pathname. An opened FILE pointer is returned in outFP. preamble is an optional "snippet" of TEX code that should be written at the beginning of the file. If preamble is passed as null, then no preable code is generated.

int TeXmerge(char *pathname, TeXmergeName_t *array, int count, FILE *fp, int options)

This function is the heart of the API. pathname is the name of a TEX form file containing invocations of macros whose names are the name values set in the passed array. fp is the FILE pointer returned by TeXmerge_OpenOutput(). options controls the merge operation. Currently the only option is whether or not to draw a frame around the merged variables (TXM_FRAMEVARS).

int TeXmerge_CloseOutput(FILE *fp)

After all invocations of the above functions are complete, this function should be called to close the output file. fp is the FILE pointer returned from TeXmerge_OpenOutput().

int TeXmerge_Process(char *pathname, char *dvidrv_name)

Once the output file has been closed, it is ready for backend processing by TEX. This function invokes TEX and then the dvi driver named in dvidrv_name. All temporary .log and .dvi files are removed after use.

int TeXmerge_View(char *pathname, int waitOption)

A convenience function to run TEX and then run xdvi. waitOption is one of TXM_WAIT or TXM_NOWAIT. If TXM_NOWAIT is passed, then the current process if forked and then xdvi is run in a child process.

int TeXmerge_Print(char *pathname, char *lpargs, char *output_pathname)

A convenience function to run TEX and then run dvilj. If lpargs is non-NULL then it is used as switches for the lp command and the resulting .lj file will be queued for printing via the lp system. The pathname of the resulting .lj is returned in the character array pointed to by output_pathname.

char *TeXmerge_MakeBarcodeStr(char *composite, TeXmergeName_t *array, int count);

Encodes the comma-separated list of data names in composite and corresponding values in a character string. It does the encoding by converting the name/value pairs to a Python dictionary object and passing it to the Python barcodeUtil module's encode function.

TeXmergeName_t *TeXmerge_DecodeBarcodeStr(char *str, int *count, int *ret);

Decode a barcode string and return its contents as an array of TeXmergeName_t structures. Caller is responsible for disposing of the array with TeXmerge_FreeNames(). If an error occurs, this function returns NULL and returns an error code in the integer pointed to by ret. On successful return a pointer to the array is returned, the number of elements in the array is returned in the integer pointed to by count and 0 is returned in the integer pointed to by ret.

$\verb|char *TeXmerge_MakeTeXBarcodeMacro(char *name, char *composite, TeXmergeName_t *array, int count);|$

Build a snippet of TEX code encoding the values from array for names listed in comma-separated list passed in composite appropriate for printing with a Code 2-of-5 barcode font. The name of the macro will be the string value pointed to by name. The returned value is in a static char char array; it must not be freed and will be overwritten on subsequent calls.

char *TeXmerge_GetErrorString(int)

This functions returns a character string description corresponding to the passed integer value.

REVTEX version 4.0, an authoring package by the American Physical Society

Arthur Ogawa TeX Consultants, Three Rivers CA 93271, USA ogawa@teleport.com

Abstract

The American Physical Society has just released a new version of their REVT_EX authoring package, REVT_EX version 4.0. The revtex4 document class for LAT_EX2e is completely new code, not a rewrite of REVT_EX version 3.1. Those preparing electronic submissions to APS journals, like Physical Review, to American Institute of Physics journals, or to Optical Society of America journals will use revtex4, available via http://publish.aps.org/revtex4 as well as on CTAN.

Other journals and societies may create their own plug-in customizations of REVTEX, as has been done by, e.g., the Optical Society of America.

Introduction

The revtex4 document class allows you to prepare a LATEX document suitable for electronic submission to any journal of the American Physical Society, or any journal of a participating society.

The formatting details connected with a particular target journal are entirely taken care of by a single document class option, the *journal substyle*. For example, a submission to Physical Review Letters would contain the simple statement:

\documentclass[prl]{revtex4}

If instead targetting the Reviews of Modern Physics, prl is changed to rmp, without further alteration. Within the document itself, the syntax is unaltered.

REVTEX therefore establishes a single set of markup that can be used for any of a large and growing number of journals in their electronic submissions programs. In the APS, REVTEX documents are destined for conversion to SGML, a purely descriptive markup scheme, therefore them emphasis is on IATEX documents that avoid procedural markup.

The revtex4 document class is modeled after LATEX's classes.dtx-based document classes, thus writers familiar with LATEX's article class will find it easy to adopt REVTEX.

However, REVTEX has additional descriptive markup tools allowing for better structuring of the information on the title page, in the document body, and within the bibliography. It also has options to conveniently compose the material in a format similar to that of the target journal.

Availability and installation

REVTEX is distributed in ready-to-install form, has complete source with prebuilt documentation, and includes with user documentation and sample files. Its distribution point is http://publish.aps.org/revtex4 and it also appears on the Comprehensive TEX Archive Network (http://tug.org) in the directory texarchive/macros/latex/contrib/supported/revtex. It is available under the LATEX Project Public License (LPPL).

Installation is simple if your TEX system uses the TEX Directory Structure: REVTEX files are installed in just two locations:

- Macros in texmf/tex/latex/revtex4, and
- BIBTEX styles in texmf/bibtex/bst/revtex4

Relationship to REVTEX 3

The revtex4 document class for LATEX2e carries almost the entire feature set of the outdated REVTEX 3.1 (which was a LATEX 2.09 style), with greater convenience and considerably more powerful formatting. All of the special characters accessible with version 3 have been retained, along with special features, like tables that can break over pages.

Compatability with LATEX packages

REVTEX is compatible with the American Mathematical Society 2.0 packages amsfonts, amssymb, and amsmath.

REVTEX is compatible with the LATEX required packages array, dcolumn, graphics, and graphicx,

as well as such popular LATEX extensions as url and hyperref.

Other well-behaved IATEX packages are likely to be compatible with revtex4. However, compatability will be problematic with packages that extend IATEX in ways already provided for by REVTEX.

REVT_EX is *not* compatible with the packages multicol, cite, endfloat, and float.

REVTEX is compatable with the longtable package, and besides repairing some of that venerable package's bugs, extends it to work properly in a two-column page layout: you can create tables that break over columns if need be.

Extra convenience in formatting

Title page information, in the past restricted to, e.g., \title, \author, and \thanks, now accommodate in a descriptive way all of the required features of academic journals, such as \collaboration, \email, \altaffiliation, \homepage, and \affiliation. This novel feature originated with David P. Carlisle.

The revtex4 class is capable of all of the features of LATEX's twocolumn option, but additionally allows switching to- or from a one-column page layout anywhere on the page. There is an environment, \begin{widetext}, expressly for the purpose of presenting extra-wide math displays that interrupt a two-column layout.

A number of bugs in LATEX have been fixed, among them the infamous \begin{eqnarray} spacing problem.

Patrick Daly's natbib package is always loaded by revtex4, and his custom-bib package has been used in the preparation of BibTeX styles for APS journals. If you have been using BibTeX or natbib, you will find REVTeX a familiar environment.

Power under the hood

The revtex4 class incorporates two new extensions to the IATEX kernel, ltxutil and ltxgrid, which are available separately for public use under the LPPL. The latter package, based on the work of William E. Baxter, provides a completely rewritten output routine for IATEX, one that has far fewer limitations, and which fixes many of IATEX's bugs.

Adaptability

The revtex4 class's use extends far beyond APS and OSA journals; participants in our beta testing program have employed it for submissions to other journals and for the production of monographs, conference proceedings, and more. Also, the revtex4 document class provides an extensible architecture for other societies and journals to use: all of its APS-specific features are collected into a

"sub-package", called aps.rtx. Anyone wishing to customize revtex4 to their own journal is encouraged to write their own .rtx file.

Class options

The document class options of REVTEX are organized into three categories.

Society and Journal substyles An option such as prl specifies the target journal of your document. For most purposes, specifying the journal is sufficient, with no other options needed. At present revtex4 has about a dozen journal substyles.

Processing options REVTEX's option preprint declares that the document should be formatted appropriate to copyediting, with generous leading, larger fonts, and wide margins. An alternative, twocolumn, implies closer adherence to the journal's typeset appearance. Another, lengthcheck, attempts an even closer adherence, to the point of allowing you to make a good prediction of the number of pages for the published article.

Simple options The option bibnotes specifies that title block notes (otherwise formatted as footnotes on the title page) are to appear within the bibliography, a choice common in APS journals. This option is *simple* in that it controls a single aspect of document processing.

Other simple options include footinbib, which directs footnotes into the bibliography, endfloats, which collects figures and tables at the end of the document (a format used in older preprint styles),

A large set of options exerts control over the way the title block is formatted. For instance, the groupedaddress option collects authors above a common affiliation set; alternatively superscript-address lists each individual affiliation just once, and ties an author to her related set of affiliations with a set of numerical superscripts, a format common in APS journals. There are several dozen simple options in revtex4.

In summary, a processing option will effectively invoke multiple simple options, and a journal substyle will invoke a set of such options appropriate to the target journal.

Specifying the title page

After the \begin{document} statement, a simple document would have a set of title block statements like:

\title{My paper}
\author{Me}
\affiliation{%
Domain University\\

```
Somewhere, US }
```

A more complex author list would have one or more \author statements followed by one or more \affiliation statements:

\title{My paper}
\author{You}
\author{Me}
\author{Her}
\affiliation{Here}
\affiliation{There}
\affiliation{Everywhere}

This can be thought of as an author group: an affiliation set with a related author list. (An author lacking an affiliation would be followed by a \noaffiliation statement.)

An even more complex author list would have multiple author groups, and it is not uncommon for a particular affiliation to appear in more than a single author group. (In revtex4 it is essential that each \affiliation statement for a particular institution to be the same in each instance!)

Furthermore, an author, title, or the first instance of an \affiliation may be followed by an arbitrary set of \homepage, \email, \thanks, or \altaffiliation statements, e.g.,

\author{Me} \altaffiliation{Here} \email{Me@hereur.edu}%

This markup scheme promises to encompass any sort of author list a journal might practically encounter, while still allowing the title block to be formatted using either the groupedaddress or the superscriptaddress form. It will be interesting to see if this promise is fulfilled.

Access to special features

More robust handling of floats An aggravating problem not uncommonly encountered by IATEX users is the situation where an overly tall figure or table fails to be placed until the end of the document, effectively carrying with it all following floats of the same kind. I call such a situation a *stuck float*. Thanks to the low-level procedures of the ltxgrid component of revtex4, this state can be detected and emergency action taken. The floatfix class option enables this emergency processing.

A second, related disaster is heralded by the LATEX message "Too many unprocessed floats". This situation readily occurs when a document is thick with figures or tables: LATEX's queue of float registers fills up before any can be placed. Here, too, floatfix enables emergency processing that, at the

very least, allows TEX to complete the typesetting of your document without halting.

Both of these features are available to any document class that incorporates ltxgrid, as revtex4 does.

Switching between page layouts The ltxgrid package allows one to interrupt a two-column page with full-page-width material, without starting a new page. Likewise, a two-column page layout may be begun on a page with existing full-page-width material. (These features, not available in LATEX, will be familiar to users of the multicol package.)

Markup that invokes this process is not at all descriptive, so REVTEX avoids the mistake of packaging this capability up as a LATEX environment. Instead, the low-level tools are invoked by descriptive markup elements, for instance, begin{bibliography}. Nonetheless, two commands are made available to the user, to allow access to the functionality in case of need. The \text{twocolumngrid} command begins a two-column page layout, the \onecolumngrid command returns to a full-page-width layout.

Provenance

The revtex4 document class is the responsibility of the American Physical Society's Mark Doyle. Under contract to the APS, the first draft was written by David P. Carlisle, with continued development by the author. The APS also supports the work of Patrick Daly, depending as it does on natbib and custom-bib.

The APS is firmly committed to revtex4's utility as a convenient way to compose electronic submissions for its journals and those of other societies. In addition, revtex4 is intended to serve as a effective vehicle for other projects that users may conceive, with an emphasis on compatability with LATEX and extensions thereto, and on support for descriptive markup, hypertext, and multipurposing.

Bugs and problems can be reported to revtex@aps.org. Any incompatibility with a package declared to be compatible with revtex4 will receive priority attention.

The future

Plans for revtex4 include further modularization, splitting out its author/affiliation procedures as a LATEX packge, and extending its ability to format journal pages so that it can be used to prepare APS journal articles for delivery over the internet.

I hope that revtex4 fits into your future plans, either as an authoring tool, or as a platform for your society's journals.

The T_EX History Panel

Anita Z. Schwartz (chair)
User Services, Information Technologies, University of Delaware
anita@udel.edu

Anita Schwartz chaired the TFX History Panel. She introduced herself as a member of TUG for 15 years and has been involved in supporting TEX and LATEX at the University of Delaware for past 15 years. She has developed a number of macros specifically for professors writing books and styles/classes for theses and dissertations. As part of the history of T_EX, she provided old issues of TUGboat (1980), some special issues, TEXniques[4], which led to the current conference Proceedings issues of TUGboat, EuroT_EX'92 (the only hard bound issue) and t-shirts to view from over the years. Also three framed posters by Professor Alban Grimm (see Poster Exhibition article in TUGboat, Volume 20 (1999)) were on display.

Barbara Beeton introduced herself as one of the first users of TeX. She is a true TeX Historian. She provided two original TeX books that she used to learn the TeX system and spoke about her early experiences with TeX. She talked about her communications with Don Knuth over the years. Also Barbara modeled one of the original light blue t-shirts with black lettering {\TeX\ User Group}.

Nelson Beebe spoke about his original interest and involvement with TEX and how he got to know about it. His involvement with T_FX began in the spring of 1979, when during a trip to the Bay Area, he was invited to Xerox PARC Laboratory to hear a talk given by Don Knuth on the new typesetting system, called TeX, that Don was working on. This was of immediate interest to him, because he had long been interested in software portability, and had long wanted to have portable documentation for software. In the mid-1970s, Nelson developed a prototype document formatting system, called DOCUMENT, with many similarities to UNIX nroff, although he had not heard of nroff at the time, since it too was under development. A check of Gehani's book[2] shows a report dated 1977 by Joseph Ossana "nroff/troff User's Manual", and a 1975 paper on eqn[3], so evidently

nroff/troff goes back to at least about 1975. These were more ambitious than DOCUMENT, having the advantage of a real typesetter, and the implementation language C, which did not become widely available outside Bell Labs until the early 1980s. [For portability reasons at the time, Nelson was restricted to Portable Fortran, and later, translated the code to a very nice structured Fortran preprocessor language, SF-TRAN3, developed at the Jet Propulsion Laboratory, Pasadena, CA.] When Nelson saw what Don had done, he was very excited, because here was a vastly better system than anything he'd seen before, and furthermore, it ran on the same hardware that he used at Utah (a DEC-20 running TOPS-20). Importantly, it could do mathematics! It wasn't long before Nelson fetched over Don's early T_FX'78 distribution from Stanford and made early experiments with dot matrix printers (the Florida Data and the Printronix) to see whether cheap draft output might be possible, because he could not find US\$20K to buy an early model laser printer from Imagen (a Stanford spin-off). He based his work on what Mark Senn had done (at Purdue) for the BBN BitGraph terminal, because he happened to have one. This work was later chronicled in a TUGboat paper [1]. It wasn't until 1984 that Nelson finally was able to get a real laser printer that could produce decent output. Nelson has been able to attend all but two of the annual TUG meetings, including the first one, and today, T_FX is very much a part of his everyday life.

Hans Hagen mentioned he felt more like a newcomer, but was willing to note predictions about the future history of TEX. He noted that before the World-wide Web was widely used, it was not trivial to get TEX up to speed and up to date when you were not part of the "university scene." He had to buy TEX programs, buy patterns, tweak English tuned files that he didn't understand, etc. It was one of the things that drove him to develop his own macros: he was simply unaware of the things happening and the TeX community, because everyone expected everyone to be online. He noted later, post-conference, that he even bought back issues of TUGboat, but most went unread since he lacked any reference point and understanding of TeX cum suis; it's only recently that he has an idea how things were back in the TeX 80's.

Martin Schroeder discussed the real history of TEX and requested that if you had knowledge of important TEX dates to submit them to be placed in the TEX calendar. He also mentioned important recent and upcoming birthdays of Don Knuth and Leslie Lamport.

References

- [1] Nelson H. F. Beebe. Low-cost downloadable font devices. *TUGboat*, 4(1):11–12, April 1983.
- [2] Narain Gehani. Document Formatting and Typesetting on the UNIX System. Silicon Press, 25 Beverly Road, Summit, NJ 07901, USA, 1986. ISBN: 0-9615336-0-9.
- [3] Brian W. Kernighan and Lorinda L. Cherry. System for typesetting mathematics. *Communications of the ACM*, 18(3):151–157, March 1975.
- [4] TEXniques, Publications for the TEX community. TEX User Group, http://www.math.utah.edu/ pub/tex/bib/index-table-t.html#texnique, 1988-1990.

Using TeX for High-end Typesetting

Hans Hagen Pragma ADE, GH Hasselt, The Netherlands pragma@wxs.nl http://www.pragma-ade.com

Abstract

The fact that TEX is already quite old does not change the fact that it can still pretty well compete with high-end desktop publishing programs. The fact that XML has simplified coding, if only by posing limitations, gives TEX an even stronger position in today's typesetting arena. In this presentation I will discuss the challenges that come to us, present a couple of tools, and demonstrate what we may expect from TEX today. I will also demonstrate that a modern TEX-like pdfTEX can give today's TEX users a pretty strong position.

TEX—a mass-market product? Or just an image in need of a makeover?

Peter Flynn Silmaril Consultants peter@silmaril.ie

Abstract

Despite widespread acceptance in the scientific field and with some publishers, and recent advances in the humanities, TEX-based systems have largely been publicised by word of mouth, and no-one can tell how many users there are. The commercial versions advertise where they deem fit but generic publicity for TEX is not common.

Users can be TEX's best advocates, but formal training is rare. Users learn mostly from colleagues—themselves often ill-taught—and acquire bad habits which are hard to overcome. The results are often responsible for the poor image TEX has had among most printers and publishers. If TEX systems are so good at typographics, the question is often asked, why does the output look so poor? Although TUG runs courses, it is hard to cover such a geographically dispersed user population.

Support for TEX via the Internet is excellent, often far superior to that of other products, but there is always a need for more introductory documentation aimed at the beginner and the non-scientific user. Some installation help is also still needed, especially for the first-timer: the assumption that everyone is already skilled in the principles of computing no longer holds.

This paper argues that the biggest need is for distributable publicity targeted at identifiable markets backed up by presentable documentation. More of the power of LATEX should be made use of in creating these documents if it is to regain its market share.

Bad habits die hard

One of the early joys of LATEX was the speed with which a new user—assuming some competence in using a text editor—could learn half a dozen commands and create a paper which looked infinitely better than anything a wordprocessor of the time could produce. Passing on the information that LATEX could do this, even with mathematics, was probably the prime factor in its widespread adoption in the scientific community. Questions could be answered online in the newsgroups and mailing lists, and the TEX Users Group had its annual conference and thousands of members. The academic and research community at that time formed a self-contained mass market.

Synchronous typographic editing, popularised by early DTP systems and graphical wordprocessors did not initially affect TEX-based systems, as the formatting and mathematical capabilities of what were coming to be called 'graphical' systems were primitive by comparison with TEX. Faster proces-

sors enabled more sophisticated interfaces, however, and encouraged the perception that what you saw was all there was to it.

LATEX remains the most sophisticated programmable non-proprietary system, but the prevalent text-mode interface and the perceived difficulty of learning textual commands have long been recognised as major discriminants in a user's choice of application, despite at least half a dozen systems over the years using TeX in a synchronous graphical mode.

Training and learning Notwithstanding the continuing availability of training courses in LATEX (both publicly by TUG and privately within user institutions), many users still acquire their knowledge of how to use the system from colleagues in laboratories, classrooms, libraries, and offices. Misconceptions persist, as anyone involved in institutional or newsgroup support of TEX can verify from experience. Numerous well-written documents exist on the CTAN servers which can be used in self-study

to learn how to use IATEX properly, but many of the answers to frequently-asked questions have to be repeated regularly on the newsgroup comp.text.tex as well as appearing in the comprehensive FAQs, and the training technique known as 'sitting by Daisy'¹ continues to predominate.

This comes to a head not in the production of private or internal documents but in the submission of LATEX files to publishers. Although many of them have use LATEX for years, most would claim that it is only because of pressure from authors who insist on supplying it. Few publishers now employ LATEX experts to undertake the syntactical correction of LATEX files necessitated by the authors' misunderstandings, and some even find it more profitable to print out an author's document with errors and have the entire thing retyped from scratch in Word by keyboarding companies in the Far East.

Most of the publishers' misconceptions ('IATEX has only one font', 'IATEX can't do graphics', 'IATEX is only for mathematics', et cetera ad nauseam) stem from their experience of authors' own misconceptions and lack of training. Given the unfortunate look and feel of the default formats (book, article, report, and letter), and the early (pre-IATEX $2_{\mathcal{E}}$) difficulty of using anything other than Computer Modern, the publishers' view that IATEX was typographically inadequate is perhaps understandable.

Authors claim, with some validity, that they are not to blame for this, as it is their job—for example—to perform particle physics experiments, write business reports, or analyse the linguistic aspects of a manuscript, rather than to become typesetters. However, it remains true that one of the major advantages of using LATEX, with its wide range of packages, is that the authors precisely do not have to become typesetters, any more than they would have to using a word processor (although in both cases there is an assumption that the author is familiar with the standard requirements of publishers for accuracy, consistency, and familiarity with the conventions of publication).

Documentation We can see, therefore, that some of the negative publicity encountered by proponents of LATEX derives from the exposure of the user (whether author or publisher) to examples of LATEX which abuse or misuse the language because of a lack of understanding engendered by inadequate training. The same claim, however, can also be made of any sophisticated system used by untrained

operators. The scientific, business, or humanities author who tries to pick up the rudiments of Quark XPress or Framemaker from similarly untrained colleagues is likely to encounter similar difficulties. The problem of training is a large one, given that the first task is to persuade sufficient potential users even to consider using the system in the face of the negative image so often encountered.

More and better documentation can probably help here, especially if sufficient attention is paid to its formatting so that it creates a superior image to that presented by other systems, and to its content so that it does not presume an unwarranted familiarity with any particular discipline.

Using IATEX it is perfectly possible to create styles which reflect current trends in user documentation. There is a tendency or desire, however, on the part of some documentation authors to stick with the default formats, and it is unclear if this stems from a lack of experience or a reluctance to introduce what others may see as unneeded dependencies (on PostScript, for example). There are of course occasions when the defaults are desirable, such as the documentation for packages, but there must surely be many more when a different look and feel would be more conducive to persuading the potential user inn favour of IATEX.

It is this initial task of *persuading* which seems to offer the best hope of countering the current antipathy or apathy, by way of giving LATEX's image the makeover referred to in the subtitle.

Publicity

The meetings of the TUG Publicity Committee have from time to time considered the production of large-scale generic marketing material, but so far as I am aware (and as a member the fault is as much mine as anyone's), previous attempts have foundered due to lack of personal time and the problems of agreeing on the content. The TUG office has produced brochures and leaflets, but these have tended to be targeted at specific TUG-related objectives such as increasing membership or conference attendance, rather than simply broadening the appeal of TEX itself.

The hard work which the many people involved have put into efforts to date has not gone unheeded, however. The assorted minutes of meetings and the present author's own notes have been used to provide a framework for an experimental document²

 $^{^{\}rm 1}$ Informal learning from a co-worker, derived from the method of training of company telephone operators in the $1930{\rm s}$

² It should be noted that the current experiment is not a part of any TUG activity, as it was originally designed as an internal project within the author's institution.

in the form of a brochure aimed at publicising LATEX with specific reference to:

- portability, persistence, and durability;
- ease of use and flexibility in application;
- widespread support;
- commercial and free versions;
- examples of real-life applications.

The objective of this experimental leaflet is to test its effectiveness at generating interest in LATEX among non-users and re-generating interest among those with misconceptions. As formal in-depth market research at the level normally conducted by full-scale academic or commercial research projects is out of the question for financial reasons, the participation of individual LATEX consultants as well as TUG and the online TEX community will be sought when editing of this first draft is finished in October 2001.

The current draft is implemented as a 4-page brochure which will print on A3 or A4 paper folded once to A4 or A5 respectively. It includes the following content:

- a brief explanation of what LATEX is and why the user might need it;
- a list of the principal features;
- quotes from commercial and academic users about its usefulness;
- samples of different kinds of output with brief comments about them, specifically
 - a reset fragment of the 42-line Bible;
 - font samples;
 - mathematics;
 - tabular setting;
 - vector and bitmap graphics;
 - automated cross-referencing.
- information about where to obtain a copy;
- details of vendors, platform support, and technical requirements;
- information about networked support and the TEX Users Group;
- space for the contact details of a local distributor, user group, consultant, vendor, etc.

The quotes and availability information are currently sourced from the present author's institution, where the leaflet has so far been distributed on a pilot basis at meetings on academic publishing and the reproduction of study texts, but other more

globally representative quotes and details can of course easily be used to replace these, within the space available.

As a first step in extending the pilot phase outside the author's institution, criticisms, suggestions, and replacement text are actively sought for the four main categories of content:

- the quotations from users;
- the illustrations;
- the font samples;
- the marketing and descriptive text.

The effect of using the current draft as an internal pilot has been marked. The leaflet was distributed to about 200 academics at a variety of document-related meetings within the author's institution and some 20 individuals were sufficiently interested to ask for more information and the installation of the software to test (the TeX Live 5 CD-ROM was made available). A further exposure by the author's consultancy to four clients with specific typesetting requirements has resulted in two of them installing the software for evaluation.

The current version can be found in http://www.silmaril.ie/downloads/documents/leaflet.pdf and http://www.silmaril.ie/downloads/documents/leaflet.ps.gz, and copies will be available for inspection at the TUG annual conference in the University of Delaware in August 2001.

Conclusions

It is not possible to say from the limited pilot information at this stage if this approach will be successful, as the individuals involved were to some extent a self-selected group with an existing express desire to seek alternative solutions to their current systems.

As explained earlier, the prime objectives are to generate interest in LATEX and overcome misapprehensions about it. A more widespread test is needed against groups who have a) no previous knowledge of the existence of LATEX, or b) previous (poor) experiences of using LATEX. It should be noted that the author is not a professional designer, so the current implementation should not be taken as indicative of any future version.

Further development of this concept therefore rests on there being sufficient interest among the wider community.

LATEX for Windows – A User's Perspective

David M. Tulett
Faculty of Business Administration
Memorial University of Newfoundland
dtulett@mun.ca

Abstract

LATEX is a technically brilliant package for typesetting, but in the Windows world Microsoft Word continues to be widely used. From the perspective of an end-user of these products, the relative strengths and weaknesses of LATEX and Word are examined.

Introduction

Among operating systems for personal computers, the Microsoft Windows family (95/98/ME/NT/2000) has over 90% of the market, and it is on this market on which this paper focuses. For printing text on to paper, most users of Windows use Microsoft Word. Word can be bought as a standalone package, or it can be bought as part of the Office suite package, which contains many popular programs such as Excel and PowerPoint. There are other word processing packages for Windows users, such as Corel Word-Perfect, but this package mostly appeals to those who have always used it and have remained loyal to it, or to those who are very price-sensitive. There are also desktop publishing systems such as Corel Ventura, Quark Express, and Adobe PageMaker. These latter programs are quite expensive, and the technical advantages over Word have diminished as Word continues to add new features. These wordprocessing and desktop publishing systems are all WYSIWYG (what you see is what you get). While to a certain extent all these packages compete with LATEX, in this paper the scope is restricted to a comparison between the hugely-successful Word and LATEX, which is by comparison a niche product.

One major advantage of LaTeX is that it does a very good job of type setting mathematics. Even something as simple as x+y=z looks better in LaTeX than it does in Word. The difference between the two approaches widens considerably when type setting something more complex, such as:

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{bmatrix}^{-1} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

The second major advantage (though it may seem like a disadvantage at first) of LATEX over Word is its different paradigm for document creation. In contrast to the WYSIWYG approach, the user of LATEX specifies the structure and lets LATEX handle the design of the document. The advantage of this approach over WYSIWYG has been extensively described – see, for example, Love [10] for a discussion of LATEX versus Word, and Taylor [12] for a critique of WYSIWYG in general.

This paper addresses the issue of why LATEX has nowhere near the numbers of users that Word has. I know of many people with technical backgrounds who have never tried LATEX, and indeed I know of some who have given up on LATEX and have switched to Word. This paper is written from the perspective of an ordinary user of LATEX, not someone who is a computer programmer. The rest of the paper is organized as follows. First, a personal historical background of how I became interested in LATEX is presented. Secondly, a comparison of LATEX and Word is made. Thirdly, we look at other options. Finally, recommendations are given.

Historical Background

The Dark Ages (Before LATEX) In this section I wish to explain how I became interested in LATEX. During my engineering undergraduate education (1971-75), all assignments involving mathematics (except my thesis) could be hand-written, and were. For prose essays, I used an electric typewriter. In 1975, I wrote my undergraduate thesis on a typewriter, using a special ball to handle mathematical symbols. I was glad that this was the only requirement for this technology. After working for several years, I entered a doctoral program in management science, and wrote my dissertation in 1985. While there were developments in the TEX world at that time, they were not available to me.

¹ There are many references in this paper to trademarks or registered trademarks. These have been capitalized.

What was available (on the university's mainframe) was a program for word-processing which had limited ability to write mathematical text. Writing something like $\alpha = \beta + \gamma$ was easy to do, but creating a display equation was not. For example, the LaTeX expression $\{y = \sum_{i=1}^n x_i \}$ creates

$$y = \sum_{i=1}^{n} x_i$$

Making this equation back then required writing an n on one line, $y = \sum x_i$ on a second line, and finally writing i = 1 on a third line. This would have to all be set in a non-proportional font and then trial-and-error would have to be used to make sure that all the symbols lined up correctly. It goes without saying that putting the three lines together produced an equation which looked terrible. At the time I thought that this word processor was a tremendous improvement over my 1975 experience, but of course hoped that something better would become available.

In 1985 I began working for my current employer. In the previous year the Faculty of Business Administration had acquired a large number of Macintosh computers for faculty and staff, and I began to use the Mac for everyday things like making up tests. At first MacWrite was the only word processing program, but then Microsoft Word was released, long before it came to Windows. In 1988 a colleague and I decided to make up a set of notes for a course which we taught. I decided to have a look at what was available.

The Middle Ages (LATEX 2.09) In searching for a software package to help us write our book, I did some reading on the WYSIWYG packages, and saw references to LATEX, which was then in version 2.09. We decided to adopt it, mostly because of its ability to create nice-looking equations. The other advantage of LATEX, that it used logical rather than visual design, seemed at the time to be a disadvantage - after three years of using a Mac it was hard to leave an established paradigm. This was especially true given how we printed the dvi files. We had terminals to the mainframe, which of course let us view the ASCII-based tex file, but there was no way to preview the dvi file. The 300 dpi laser printer was located in another building about 300 metres away.

To learn LATEX, I purchased the first edition of Lamport's book [8]. I read it over a weekend to get the general idea of what it was all about, and then read it again trying to learn the content. Even with this preparation, I needed to have the book next to my side for the first several months. (Even

today, I often need to consult a book for a particular problem.) By contrast, I learnt how to use Word without ever reading the manual.

During this period with a terminal on my desk, my 512K Mac had become obsolete, and I obtained an IBM PC mostly to use a lot of common business software such as the then-popular Lotus 1-2-3. The university had a site license for a commercially-made version of LATEX, and for about² C\$50 I had it installed on my machine. This was still 2.09, but now I could view dvi output on my monitor.

One nagging problem at the time was what to use as an editor for creating the tex file. I tried several things, but eventually settled on using WordPerfect, simply saving the file in ASCII format. (I needed WordPerfect anyway, for communication with non-TEX users.) Compared with what I had had only a few years earlier, this setup seemed to be the cat's meow.

I had become a proficient user of LATEX, and now saw limitations in what had once been a package with so many new things. The biggest limitation was graphics. I can remember trying to approximate a parabola by drawing a sequence of short straight lines. Even straight lines had a small finite set of angles from which to choose. For making a problem involving two-dimensional linear optimization, I would make the objective function and the constraints so that when drawn they would be at angles which LATEX could handle, which is surely the tail wagging the dog!

The Renaissance (LATEX 2_{ε}) Walking through a bookstore in 1995, I came across the second edition of Lamport's book [9]. After reading it, I followed Lamport's recommendation to obtain The LATEX Companion [3], and I inquired at the university about upgrading the software. The company from which the site license had been obtained was no longer selling LATEX, and we were left to fend for ourselves. We obtained a two-CD set of the CTAN archive, and my colleague managed to figure out how to use it despite the lack of instructions. The effort to upgrade LATEX was in my opinion justified by the new \quad \quad \quad \text{command}, but we soon found other useful features, such as the ability to: print on legal size paper; use colour; import graphics; and import new packages. In particular, I was glad to see the times and mathptm packages had been made for creating words and mathematical characters in Times-Roman fonts. The Computer Modern fonts

 $^{^2}$ Prices are in US dollars unless indicated as C\$ to mean Canadian dollars. These figures are approximate and may have changed after March, 2001.

which I had used up to this point never looked as nice as Times-Roman.

When I obtained Internet access, I discovered a new world, soon finding the web page for TUG, from which many other resources could be accessed. Joining TUG provided among other things annual editions of the TeX Live CD. A colleague in the mathematics department recommended the Professional File Editor (PFE) to me, and this was a substantial improvement over editing files in Word-Perfect. Later I found out about WinEdt, and for only \$40 I then had something even better for creating tex files.

One problem that remained was that I was a LATEX user in a predominantly non-LATEX environment. I could not expect, for example, my students (business majors) to be able to read dvi files. However, on the web page for the commercial vendor PCT_FX, I found a free dvi viewer called DVIscope, which I set up on my computer. This viewer had all sorts of new features, such as magnification and the ability to print only selected pages, and I soon recommended this to my students. However, installing the viewer was not easy. Then I discovered Portable Document Format, and now instead of having the students install the dvi viewer, I recommend the Adobe Acrobat reader, which is useful for other courses and indeed other purposes. Of course, the reader only became useful because of the creation of the pdftex program and other ways of creating pdf files. Related to the use of pdftex are the hyperref and url packages for creating internal and external references.

To learn how to use some of features described here, I added three more books to my collection: The LATEX Graphics Companion [5]; A Guide to LATEX [7] for a more recent general-purpose book; and The LATEX Web Companion [4]. Along with LATEX: A Document Preparation System [9] and The LATEX Companion [3], these five books comprise my current LATEX library. An additional resource for the basics of LATEX is the Not So Short Introduction to LATEX 2ε available on the Web from [11].

LATEX versus Word

Are There Problems with LATEX? Much has been said about the long learning curve for LATEX when compared with Word. However, this is not all that fair when the two packages are asked to do different things. If all that one wanted to do was write prose, a half-hour spent on learning LATEX would be sufficient. To write equations, more time is needed to learn LATEX, but then more time would be needed to learn the Equation Editor in Word. Specialized

packages for LATEX have their own learning curves, but their equivalents in Word (if they exist) require learning too.

Another complaint about LATEX concerns the lack of variety of fonts. This was a very valid concern when all LATEX had was Computer Modern. Now, the set of available fonts is adequate for most purposes. Indeed, when using Word with its very large number of fonts, I only use two of them: Times New Roman (for most things); and Courier (when a non-proportional font must be used). For LATEX, the free times and mathptm fonts are adequate for my purposes.

Every other perceived inadequacy of LATEX has in my opinion been addressed. The TEX live CD and new editors such as WinEdt have improved the user friendliness, and all the new packages have greatly improved the functionality. Being able to write to pdf has improved the accessibility of completed LATEX documents to non-LATEX users.

Word - The Ubiquitous (Sub)-Standard At my office Microsoft Windows 2000 is the "standard" operating system, and Microsoft Office 2000 is the standard applications software. These standard products are provided at no charge to the user, and training and other help is available. Non-standard products like Linux and LATEX are permitted, but at the user's own expense,³ and with no training or help provided. I understand why some level of standardization is necessary – at one time we had Mac-OS, DOS, and Windows 95, and even within one operating system there would be both WordPerfect and Word. In an environment where documents need to be shared, standardization helps bring order out of chaos. At the same time, it's hard to see how LATEX could flourish in this environment. Among forty-five members of faculty, three use LATEX for Windows, and one uses LATEX for Linux. On a positive note, Adobe Acrobat Reader has recently become a standard, enabling users of LATEX to share files by using pdf format.

At least at the office I am allowed to use IATEX. The same cannot be said for some professional societies. The Administrative Sciences Association of Canada (ASAC) requires that all articles for its annual conference or for publication in the ASAC Bulletin be submitted in either Word or WordPerfect. I recently received a call for papers for the ANZAM/IFSAM VIth World Congress (Australia, 2002) with the same requirement.

³ To be fair, we are given C\$400 per annum which could be used to buy non-standard software, but this money could also be used to buy books or computer peripherals.

Another example of Word being imposed as a standard was when I developed some materials for an on-line course. The details of creating the web pages were being handled by a private company, which needed to have all input in Word. Wanting to be cooperative, I did everything in Word, learning how to use its Equation Editor for the first time. Just as I was finishing this document, everything started to freeze. It seems that I had reached a limit for the number of display equations in a document. I had to convert a couple of display equations to intext equations to finally finish the document. In a way I'm glad that I had to make this document in Word rather than LATEX, because I had a chance to truly evaluate Word as an alternative to LATEX. To be fair, there are some good points about Word:

- Word is very easy to learn. Whenever I've needed to learn something specific, such as how to make a footnote, all I've had to do is use the pull-down help menu.
- 2. Fonts are plentiful, and can be switched at will. Overall, however, I believe that LATEX is a superior product for document creation because:
 - IATEX handles mathematics well, both in creation of the document and in printing the final product.
 - 2. For everything but very short documents, logical design beats visual design.

Obtaining Word and LATEX Though there are many retailers of Word, only Microsoft makes it. Word (as part of Office) ships with many highend personal computers. Many companies have site licenses for Word or Office. For those who need to buy the program, it's expensive for business use, but very inexpensive for academic use. Where I work, Word 2000 can be purchased for C\$117 (about \$75).

IATEX for Windows can be obtained both as freeware and commercial packages. Every member of TUG (currently \$65 per annum for an individual) obtains the latest version of IATEX from the annual TEX live CD. In addition to obtaining IATEX, a text editor is needed (such as the shareware program WinEdt for \$40), and a book such as A Guide to IATEX [7] (about \$40) should be obtained. In total, the cost to get started is about \$145.

This cost can be reduced, because one could obtain IATEX from CTAN for free, but I believe that those who benefit from all the work that goes into the development of IATEX should pay something for it, and this something is the annual \$65 cost of belonging to TUG.

At the other end of the scale, one can pay far more than \$65 plus \$40 to obtain a commercial version of LATEX with its own editor. The commercial vendors of LATEX for Windows as listed on the TUG website are (in alphabetical order): MicroPress VTEX; PCTEX; TrueTEX; and Y&Y.

The premium packages from these suppliers sell for several hundreds of dollars (though some offer older or more basic packages for much less). I do not own any of these packages, and being puzzled as to why someone would buy one, I wrote to all four companies. The most detailed response was from Y&Y [13], in which the following points for buying a commercial system (particularly theirs) were made: ease of setup; access to support; additional features (e.g., cut and paste to PowerPoint); and better fonts. It would be useful if someone were to properly evaluate all four of these commercially available packages and compare them with each other and with what is on the TEX Live CD, but that is beyond the scope of this paper.

Finding out About Word and LATEX It is probably true to say that every user of LATEX has heard about Word. How many Word users have heard about LATEX? In my experience, most people have never heard of LATEX, let alone have any knowledge about it. This situation may upset us, but it shouldn't surprise us. Bookstores offer a multiplicity of books about Word, but only a few high-end bookstores carry anything about LATEX. Schools will have almost always have either Word or WordPerfect, but rarely have LATEX. A new computer may have a word processing package bundled with it, but it won't have LATEX. A word search made in March 2001 on PC Magazine shows that the last five mentions of LATEX go back to 1997; the last five mentions of Word go back only to the last two issues. Clearly, it is easy to never have been exposed to LATEX, and this problem must be addressed.

Even among those who have heard of LATEX, I would offer the conjecture that most have never tried it, and I know of some who have tried LATEX only to later abandon it.

Other Options

LyX LyX is a program which tries to combine the typesetting ability of LATEX with the WYSIWYG feel of Word, though LyX call this WYSIWYM (what you see is what you mean). LyX began on the Unix operating system, but has been ported to other operating systems, and in particular it has been ported to Windows by Claus Hentschel (based on previous work by Steven van Dijk). LyX requires that LATEX be installed on the user's computer, and at the present time there is a laborious process to

get LyX installed and running. If those who use Word are doing so in part because setup is easy, then I don't believe that they will experiment with LyX. As for the established base of LATEX users, not having WYSIWY(G or M) on the screen is not a serious disadvantage, as one can always use pdftex before the tex file has been completed to see how it looks so far. If the day comes when LyX with all the necessary ancillary programs for Windows comes on a CD with an automatic install feature, then it may well improve the use of LATEX by Windows users, but we're certainly not there yet.

Converters Another approach is to use a "converter". Such a program translates the output from a package such as Word into LATEX, or vice versa [6]. Going from LATEX to Word might be useful, for example, for someone who has written a paper in LATEX and now wishes to submit it to a journal or conference which requires submission in Word. Nevertheless, to me it seems like changing wine into water, because all the elegant mathematical typesetting is lost. Going in the Word to LATEX direction, however, could be useful to someone who wants the ease of Word combined with the functionality of LATEX. The Word2TEX \$45 shareware program [2] performs such conversions, but not always flawlessly. The examples provided on the website of files in .doc, .tex. and .pdf formats are quite impressive. However, when I used the program to convert a Word file that I had created, the converter made incorrect guesses about the \section and \subsection commands. I would make the conjecture that the Word2TFX program works well when the original Word document is well structured (perhaps by using styles), but flounders when the original document has been made completely in the WYSIWYG paradigm in which most Word users operate. The program merely creates tex files; one still needs a LATEX system to create a dvi or pdf file.

XML and Epic There has been much attention paid to the subject of how to write mathematics on the web. This subject, which is extensively described in [4], is one area where both LATEX and Word have problems. My opinion is that for short discussions, the ability to see equations on a browser is useful, but for anything longer than a couple of pages the natural tendency is to want to print the document. This being the case, simply using pdf files (which are easily produced using pdfTEX) gives far better quality.

Arbortext [1] claims that its Epic E-content Engine is able to translate a wide variety of what they call "legacy" formats (including Word and ETEX) into XML. Also, the Epic Editor creates XML documents from scratch. Epic, the company claims, enables the user to create a single source XML document from which versions for print, Web, and wireless can be made. Since XML will eventually replace HTML, this may be a company to watch. I know of one major corporation which once used ETEX for technical documents, but has switched to Epic.

What Needs to be Done

Do we care if people use alternatives to LATEX? Those who use products like LyX or Epic are using products which have tried to move beyond LATEX. Any improvement to LATEX will probably help these other products too. However, if someone is using Word instead of LATEX, then they have something which is deficient in several ways when compared with LATEX. Nevertheless, if that's what they choose to do, knowing that they could switch to LATEX, then we have to respect that choice. However, I believe that LATEX has few adherents when compared with Word because most people have never heard of it, and those that have may have overestimated its complexity. For these people, I think that we should proclaim what we know to be a better product. Unlike the commercial vendors of LATEX, whose profitability would improve if LATEX were more prominent, the rest of us have nothing to gain financially by encouraging the use of LATEX. However, more users might improve the development of LATEX, in particular the LATEX3 Project.

The TEX Users' Group has greatly helped the technical improvement of IATEX. Perhaps TUG needs to focus more of its efforts on the promotion of IATEX. With TUG's blessing, perhaps the TEX Live CD could be bundled with all books about IATEX. Indeed, this has already happened with the German edition of A Guide to IATEX [7]. We could go even further than this – the CD could be bundled with new computer systems. An editor would be required as well – perhaps PFE would be sufficient at the outset. A pdf file (or even a plain ASCII text file) could contain more information such as how (and why) to join TUG, how to obtain WinEdt or something similar, and a bibliography of books about IATEX.

In summary, I believe that IATEX is superior to Word, especially for documents which contain mathematics. However, for a variety of reasons, Word is many times more popular than IATEX. To increase the number of IATEX users, we need to make it very easy for people to obtain the IATEX software,

possibly by widespread distribution of the TeX Live CD.

References

- [1] Arbortext. Epic, 2001. http://www.arbortext.com:80/.
- [2] Kirill A. Chikrii and Anna V. Chikrii, 2001. http://www.word2tex.com/.
- [3] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion. Addison-Wesley, Reading, Massachusetts, 1994.
- [4] Michel Goossens, Sebastian Rahtz, et al. The E^AT_EX Web Companion. Addison-Wesley, Reading, Massachusetts, 1999.
- [5] Michel Goossens, Sebastian Rahtz, and Frank Mittelbach. The LATEX Graphics Companion. Addison-Wesley, Reading, Massachusetts, 1997.
- [6] Wilfried Hennings. Converters between LATEX and PC Textprocessors, 2001. http://www.tug.org/utilities/texconv/index.html.

- [7] Helmut Kopka and Patrick W. Daly. A Guide to LATEX. Addison-Wesley, Reading, Massachusetts, third edition, 1999.
- [8] Leslie Lamport. EATEX: A Document Preparation System. Addison-Wesley, Reading, Massachusetts, first edition, 1985.
- [9] Leslie Lamport. ETEX: A Document Preparation System. Addison-Wesley, Reading, Massachusetts, second edition, 1994.
- [10] Tom Love. Why LATEX?, 2000. http://www-h.eng.cam.ac.uk/help/tpl/textprocessing/latex_advocacy.html.
- [11] Tobias Oetiker et al. The not so short introduction to LATEX 2_{ε} , November 2000. http://ctan.tug.org/tex-archive/info/lshort/english/lshort.pdf.
- [12] Conrad Taylor. What has WYSIWYG Done to Us?, 1996. http://www.ideography.co.uk/library/seybold/WYS-ante.html.
- [13] Y & Y. Personal communication, 2001.

Margin Kerning and Font Expansion with pdfTFX

Hàn Thé Thành

Introduction

pdfTEX has some micro-typographic extensions that are not so widely used, for the lack of documentation and quite complicated setup. In this paper I would like to describe their use in a step-by-step manner so the reader can give a try afterwards. Two extensions will be introduced: margin kerning and font expansion.

Margin kerning is the technique to move the characters slightly out to the margins of a text block in order to make the margins look straight. Without margin kerning, certain characters when ending up at the margins can cause the optical illusion that the margins look rather ragged. Margin kerning is similar to hanging punctuation, but it can also be applied to other characters as well. When used with appropriate settings, this extension can help to considerably improve appearance of a text block.

Font expansion is the technique to use a slightly wider or narrower variant of a font to make interword spacing more even. A font that can be expanded thus has some "stretchability" and "shrinkability". The potentiality to make a font wider or narrow then can be used by the line-breaking engine to choose better breakpoints.

I will describe the use of those two extensions by examples, as I find it a very good way to explain how to use something in practice. People interested in the concepts and further details will find more in my thesis.

Margin kerning

The simplest use of margin kerning can look like:

\input protcode.tex
\font\f=cmr10
\rpcode\f'\-=700
\adjustprotcode\f
\f
\pdfprotrudechars=1
Some text...

\rpcode stands for "right protruding code". The first parameter is a font identifier, and the second parameter is a character code. The third parameter specifies the amount how much the character will be moved to the right margin. The above example says that if the hyphen character from font

\f ends up at the right margin, it should be moved out to the margin by 700 thousandths of its width (i.e., 70%).

It is conveninent to specify the protruding factor for individual characters in thousandths of character width. This is also the way how \rpcode was implemented in versions up to 0.14h. However, this method cannot be used for characters with zero width ("faked" characters that can be used to protrude other elements than normal characters), so in version 0.14h and later, the protruding amount is specified in thousandths of an em of the font. A macro called \adjustprotcode (defined in file \protrude.tex) is used here to checks whether the used version is older than 0.14h and if so it will convert the settings for versions before 0.14h (i.e., in thousandths of character width) to the corresponding settings for later versions (i.e., in thousandths of an em).

By default, all characters have their \rpcode set to zero, so no characters will be protruded unless we explicitly set \rpcode.

The primitive \pdfprotrudechars is used to control margin kerning at global level.

- ≤ 0 : no margin kerning.
- 1: level 1 margin kerning, which does not have effect to line breaking. This setting is handy if you want to keep line-breaking to be compatible with T_FX.
- \geq 2: level 2 margin kerning, which usually gives different result of line breaking. This setting causes the line-breaking engine to take the amount needed to protrude the characters at the margins into account. As the result, interword spacing is better.

Now we go for another example:

\input protcode.tex
\font\f=cmr10
\lpcode\f'\'=700
\rpcode\f'\'=700
\adjustprotcode\f
\f
\pdfprotrudechars=2
Some text...

This example introduced another primitive, \lpcode. It is the counterpart of \rpcode, used for protruding at the left margin. The above example

thus sets the left quote to be protruded at left mergin and the right quote at the right margin. We set \pdfprotrudechars to 2, which may lead to different line breaking.

Fortunately one does not have to set \lpcode and \rpcode for each character. A common set of protruding factors works quite reasonably for most of body fonts, so one can use them as in the following example:

\input protcode.tex
\font\f=cmr10
\setprotcode\f
\f
\pdfprotrudechars=2
Some text...

The macro \setprotcode is also defined in the file protcode.tex and it will call \adjustprotcode after settings the common values for protruding, that is why we do not have \adjustprotcode in this example.

Assignment to \local lpcode and \rpcode is always global. In a LATEX document, setting up margin kerning can look like:

\documentclass{report}

. . .

\input protcode.tex
\begin{document}
\setprotcode\font
{\it \setprotcode\font}
{\bf \setprotcode\font}
{\bf\it \setprotcode\font}
Some text...
\end{document}

In case the settings in protcode.tex do not look for a particular font, you can always change it to your taste.

Font expansion

Use of font expansion is more complicated due to the need to create expanded versions of a font. This task can be done on-the-fly; however, its setup is system-dependent so I will describe rather how to create these fonts manually.

Creating expanded fonts Font expansion can be used with

- 1. fonts based on Computer Modern fonts (i.e., Computer Modern fonts and variants for Czech, Vietnamese, etc.);
- 2. Type 1 fonts;
- 3. Multiple Master fonts with a width axis.

Expanded fonts have the name from the base font, followed by the expansion amount in thou-

sandths. For example, cmr10 expanded by 10 thousandths (1%) will be named cmr10+10. Expansion value can be negative, which stands for condensing.

Putting the created fonts into their correct location is another matter. I suggest simply putting all expanded fonts into a single directory to play with. Computer Modern fonts Computer Modern fonts can be expanded by altering the *unit width* in the source. For example, cmr12+10.mf is created by copying the source of the base font (cmr12.mf), with a line appended after the place where the unit width is defined as:

u#:=20/36pt#; % unit width u#:=u#+10/1000u#;

Then the changed source is used to generate the expanded TFM as well as the bitmap font needed for rendering the output. While using expanded Computer Modern fonts, the corresponding entries in used the map files must be commented out, otherwise pdfTEX will treat them as Type 1 fonts. Type 1 fonts Type 1 fonts are expanded by altering the FontMatrix of Type 1 fonts. pdfTEX will do that for you, the only task is to create the expanded TFM files. Suppose that we have an AFM file putr8a.afm (Adobe Utopia Regular). Then creating 8y-encoded TFM expanded by 10 thousandths (1%) can looks like:

```
afm2tfm putr8a.afm -e 1.010
-T texnansi.enc putr8y+10.tfm
```

You also need an entry in the map files that looks like:

```
putr8y Utopia-Regular "TeXnANSIEncoding
   ReEncodeFont" <texnansi.enc <putr8a.pfb</pre>
```

Only the entry for the base font (non-expanded) is needed. The expanded versions will be embedded according to the entry for the base font.

Multiple Master fonts Only Multiple Master with a width axis can be expanded. The idea is to create a new instance with the width value increased by the expansion amount. The following example shows how to create an Multiple Master instance and a variant expanded by 20 thousandths:

```
mmafm --weight=400 --optical-size=12 -
    -width=535 -
    -output pmnr8a12.afm MinionMM.afm

mmafm --weight=400 --optical-size=12
    --width=545.7
```

The magic number 545.7 comes from the expression $535 \times (1 + \frac{20}{1000})$, which means that we

--output pmnr8a12+20.afm MinionMM.afm

increase the width value of the base instance by 20 thousandths.

The PFB font files are created in a similar way. Afterwards the AFM can be converted to TFM using afm2tfm:

```
afm2tfm pmnr8a12.afm -T
  texnansi.enc pmnr8y12.tfm
```

```
afm2tfm pmnr8a12+20.afm -T
  texnansi.enc pmnr8y12+20.tfm
```

Similar to Type 1 fonts, only the entry for the base font is needed in map files:

Using font expansion Suppose that given a font, we know how to create expanded versions of that font. Now let us try an example:

```
\font\f=cmr10
\pdffontexpand \f 20 10 5 1000
\efcode\f'\e=1000
\f
\pdfadjustspacing=1
Some text...
```

The primitive \pdffontexpand says that font \f can be expanded up to 20 thousandths, condensed to 10 thousandths by step 5 thousandths. This means that only variants whose expansion amount is a multiple of 5 are needed. In our example, the following variants are needed (they must be created before running the example): cmr10+20, cmr10+15, cmr10+10, cmr10+5, cmr10-5, cmr10-10.

The last parameter is so-called font expansion factor, and 1000 is the recommended value for most cases. More details in my thesis.

The primitive \efcode (character expansion factor) has syntax similar to \lpcode and \rpcode. The third parameter says how much the character 'e' is allowed to be expanded in thousands, in this case fully. This parameter can be used to restrict expansion of certain characters that are more sensitive to expansion. The default value of \efcode is zero, thus no expansion is allowed unless we explicitly set \efcode.

\pdfadjustspacing is also similar to \pdfprotrudechars, i.e., is used to control font expansion at global level: 0: no expansion; 1: expansion with backward compatibility (unchanged line breaking); and ≥ 2 : expansion that may change line breaking.

A macro called \resetefcode, available in the file efcode.tex, can be used to reset all expansion factors to 1000.

So we can try to put margin kerning and font expansion together:

```
\input protcode.tex
\input efcode.tex
\font\f=cmr10
\setprotcode\f
\reasetefcode\f
\pdffontexpand\f 20 20 5 1000
\pdfadjustspacing=2
\pdfprotrudechars=2
\f
Some text...
    or in a LATEX document:
\documentclass{report}
\input protcode.tex
\input efcode.tex
\def\setupfont#1{
    \setprotcode#1
    \resetefcode#1
    \pdffontexpand#1 20 20 5 1000
}
\begin{document}
\setupfont\font
{\it \setupfont\font}
{\bf \setupfont\font}
{\bf\it \setupfont\font}
Some text...
\end{document}
```

Conclusions

Margin kerning is a simple extension but quite effective. Its setup and use is very easy, while the gain is considerable. I would recommend it to regular use.

Font expansion must be used with care, as use with too tolerant expansion limits can be dangerous. According to practical experiments, the limit is $\pm 2\,\%$.

References

- 1. My thesis (PDF version): http://www.fi.
 muni.cz/~thanh/download/thesis.pdf
- Various macros for margin kerning and font expansion with pdfTFX: ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/ext/

PDF presentations using the Marslide package

Wendy McKay
Control and Dynamical Systems, CalTech, Pasadena, USA
wgm@cds.caltech.edu
http://www.cds.caltech.edu/ wgm/

Ross Moore

Mathematics Department, Macquarie University, Sydney ross@maths.mq.edu.au http://www.maths.mq.edu.au/ ross/

Abstract

The Marshide package is useful for creating high quality PDF presentation slides, especially when mathematics is required. It works equally well with both pdf-LATEX and LATEX+dvips+distill methods for generating documents in PDF format [2].

The package does not of itself provide a lot of new functionality; rather it combines the use of existing packages in a consistent way, solving problems of compatibility and loading-order. With such problems solved, the full power of packages such as hyperref, texpower, geometry and everyshi can be exploited fully, to produce presentation slides that rival, indeed surpass, what can be achieved with other tools.

Some new sub-packages are included to make it easy to use alternative fonts (in particular Lucida for mathematics, and some Adobe or TrueType fonts), and to place background images on every page. An extended option-loading mechanism allows for arbitrary extension of the package, and customised document styles.

What's in a name?

The collection of LATEX macros that are used within what we now call the *Marslide* package have been developed over many years, in response to a direct need for projecting mathematics for lectures and seminar talks. Professor Jerrold Marsden, at the California Institute of Technology's Control and Dynamical Systems group, is a prolific writer of advanced mathematics texts. Jerry has used TeX exclusively for many years, both for book manuscripts and for lectures and seminars. One of us (Wendy) is his administrative assistant.

The other (Ross) has enjoyed several invitations to visit CalTech, for the purposes of helping to debug/develop TeXniques for use in the books, and to share TeXpertise in web-site construction and onscreen presentations via the 'CalTeX Talks' lecture series [4, 5, 6, 7]. Some of these visits have correlated well with annual TUG meetings in the USA; the WaRMreader macros [9] (the subject of another talk at this meeting) were developed to solve a specific

problem concerning the labelling of graphics for some of Jerry's many books.

The *Marshide* package itself was developed so as to have a unified way to prepare slides for two different situations:

- lectures and talks, involving significant amounts of mathematics and written text in a classroom setting;
- copying a particular style, developed initially using PowerPoint, to be used at a particular meeting where several presenters were to be using the same uniform style.¹

In this latter case, the need to include a significant amount of properly typeset mathematics meant that a good TEX-based solution needed to be developed. This was done, to the great satisfaction of all who viewed the presentation. Thus the 'Mars' in the

¹ This style was developed by Peter Schröder, for the Multiresolution Simulation & Engineering Design (mRSED) project at CalTech.

name 'Marslide' refers to Prof. Marsden, not to the heavenly body.²

Marslide, as a meta-package

Although loaded as a LATEX package, using a command such as

\usepackage[options] {marslide}

it is better to think of *Marshide* as being a *meta*-package, for the following reasons.

- There are not many new commands or environments defined within marslide.sty itself.
 Most of the specialised behaviour is achieved by loading other packages, already available with all LATEX distributions; e.g., geometry, graphicx, hyperref, color, verbatim, fontenc, multicol and also amssymb, amsmath, tabularx.
- 2. Extra packages texpower, everyshi and eso-pic are used for specialised effects. These are available at CTAN or elsewhere on the Internet.
- 3. To adjust font-sizes and page-layout to be suitable for a screen presentation, *Marslide* overrides such aspects of the document-class chosen with the \documentclass command. (The reason why *Marslide* was not implemented as a document-class is discussed below.)
- Extra subsidiary packages hugefonts, bgimages and lucrotis have been written primarily for use with Marslide. (These packages are sufficiently self-contained to be usable also in other contexts.)
- 5. Marslide can be customised to include extra features. Indeed it must be customised. A subsidiary file marsdefs.sty is loaded as the default customisation when no alternative option has been specified.
- Customisation is achieved using a flexible extension to L^ATEX's optional argument mechanism. For example,

\usepackage[...,mydefs]{marslide}

will cause a file mars-mydefs.sty to be read at the appropriate time during processing of the document preamble, provided such a file is in the current working directory, or can be found on the usual search paths. (Any string instead of mydefs can be used, except for strings that correspond to valid options to marslide or the packages listed in items 1, 2 and 4 above or to the lucidabr package.) The reason for this structure is because *Marslide* needs to load packages such as geometry, hyperref, etc. with some specific optional parameters. However, some of these packages can conflict with one another, in the sense that reversing the loading order can lead to unexpected results from the LATEX processing.

Authors may wish to use other options as well with these packages. This can be done using LATEX's \PassOptionsToPackage command, before the command to load marslide.

Similarly, authors may wish to load other packages as well as those provided automatically as part of the *Marslide* setup. Beware that the use of extra packages increases the possibility of encountering situations where unexpected effects may occur due to incompatibilities, or a dependency on the order in which the packages need to be loaded. To be able to deal with such dependencies it is important that packages may be loaded either before, or after marslide.sty is read. Since it is an error in LATEX to use \usepackage before the \documentclass command, it was necessary to not write marslide.cls, but use marslide.sty as a (meta-)package.

Note that it is possible that some packages may not give the correct results when loaded either before or after marslide, due to conflicts with other packages. Instead, such packages may need to be loaded as part of Marslide. This is a secondary purpose of the customisation mechanism, outlined in item 6 above, which causes the customisation file to be read after most of the standard packages in items 1, 2 and 4, but before the geometry package has been read. IATEX's \RequirePackage command can be used within the customisation file, to load such packages.

Not just for PDF

In setting-up the package-loading structure (as described above) for *Marslide*, much care was taken to ensure that features worked correctly whatever processor was used. Thus the appearance of the PDF document should be the same, whether it is generated directly using pdf-I&TeX(i.e., pdf-TeX [8], with the pdflatex.fmt format) or using I&TeX, followed by a distillation to PDF of the resulting PostScript job.

Indeed the .dvi output from IATEX can be used directly for the presentation, either by (color) printing to transparencies, or directly onscreen with a dvi viewer. Even the sequential page-building features of the texpower package are available in the dvi version, and some viewers support the hyperlinking

² However, the association is not entirely misplaced, as Jerry's work in many-body problems includes techniques for the calculation of orbits of planets and spacecraft. This includes simulations for actual space-missions to the red planet.

features produced using hyperref. This latter requires that the correct driver files are loaded for the particular TEX implementation. The WaRM team³ have successfully used *Marslide* with teTEX under Unix, and *Textures*⁴ for the Macintosh, as well as with pdf-TEX.

Customisation

As noted above, a customisation file is *required* to use *Marslide*. The main purposes of this customisation are to:

- 1. establish the size and orientation of the paper, and the area in which typesetting is to occur;
- 2. select the font-faces and sizes to be used for the typesetting;
- choose colours for textual and graphic elements in the resulting slides;
- declare graphics for logos, and define other special features to appear on all pages, or just some of them.

It is also usual to define macros for establishing running headers and/or footers within the customisation file, and to define commands making it easy to layout a distinctive title-page for the presentation. These things could be defined within the document preamble, but it is neater to hide them away within the customisation file, so that the document source is not cluttered with hard-to-read macro definitions.

The default customisation file provides a good starting point for defining your own. Firstly you should copy marsdefs.sty and rename this copy before making any changes inside. Since it contains a \ProvidesPackage command, using \filedate and \fileversion, please adjust these within the copy.

The default customisation begins by loading the geometry package, as follows:

```
\usepackage[landscape, letterpaper, verbose,
%,textheight=5.5 truein %calculated by geometry
%,textwidth=10.0 truein %calculated by geometry
 ,voffset=-.35pt
 ,hoffset=0pt
 ,tmargin=0pt
 ,bmargin=0pt
 ,lmargin=36pt
 ,rmargin=36pt
 ,headheight=78pt
 ,headsep=20pt
 ,footskip=0.20 truein
                         %non-mRSED
 ,tmargin=.10truein
]{geometry}
\addtolength{\voffset}{-.10truein}
```

The sizes given here work very nicely for US-letter sized paper, oriented as landscape. Consult documentation on the geometry for the use of any of these parameters, if it's not clear from the names. In practice, small adjustments to margins or offsets may be needed to remove a single row or column or white pixels at the edge of the paper, when the slide presentation is viewed in a PDF browser. (It is better to do this kind of edit within a customisation file rather than within a larger package.)

The default marsdefs.sty also allows for using Lucida fonts, as an alternative to TeX's standard Computer Modern fonts. Of course, you'll need to have purchased a set of Lucida fonts, and have correctly installed them for your TeX application, to be able to use this option. Using the option lucida, when loading the marslide, causes a file lucrotis.sty to be read. This in turn loads the lucidabr package, along with suitable options, some of which may have been inherited from options given to marslide. Options, such as callig, handw, sslucida, seriftt, can be used to determine which of the Lucida fonts is used for the main text font, and the facee used with \texttt. Other options, such as T1, OT1, 7bit, 8bit determine which font encoding to use, by loading the fontenc package with an appropriate option.

The lucrotis also allows for the use of Adobe's Rotis font, which has an unusual, but quite pleasing, appearance in its semi-serif form. To use this, you'll need to have .pfb (or other PostScript) files for the fonts, and have installed appropriate metrics, virtual fonts and .fd files. Metrics and TEX/IATEX-specific files can be distributed with Marslide, but you'll need to purchase the fonts themselves from Adobe, if you wish to use these fonts. Similarly the interface files can be constructed (e.g., using the fontinst package) for use with Marslide, but that's a whole other story.

Features & Documentation

Most of the special features of *Marslide*, some using the default marsdefs customisation file, are displayed in the PDF documentation that accompanies the package, at its distribution site⁵. Figures 1–5 reproduce this documentation, as slides created using the package itself, then captured as 4-up using the pdfpages package.

These slides show how to make use of features such as:

• heading levels: different font-sizes, bullets, colorings and indents;

³ Wendy and Ross M(oore or McKay, take your pick!).
⁴ produced by Blue Sky Research; see the website http:

⁴ produced by Blue Sky Research; see the website http://www.bluesky.com/.

 $^{^5~{\}rm http://www.cds.caltech.edu/^wgm/WARM/slides/marslide/}$

Figure 1: Marsden Slide Package Documentation; pages 1–4, showing different heading levels with associated bullets, coloring and font-sizes. Also some mathematics is shown.

Figure 2: Marsden Slide Package Documentation; pages 5–8, showing examples of code-listings, color-specifications and some predefined color-commands for partical graphic elements and styles of text.

Figure 3: Marsden Slide Package Documentation; pages 9–12, showing the sizes associated with LATEX's size commands, and examples testing that ligatures and accents are correctly formed.

Figure 4: Marsden Slide Package Documentation; pages 13–16, showing how to include graphics and colored banners, as well as examples of inserting dingbats either explicitly or implicitly.

Figure 5: Marsden Slide Package Documentation; pages 17–20, showing the full range of available dingbats at different sizes, and how to use hyperlinks in the bibliography.

the director, that is intended to account for finite-thickness effects. Specifically, we obtain the Kirchhoff-Love theory by imposing constraints on the director field and deriving the general strained elasticity. In Naghdi's treatment of the subject the Kirchhoff-Love theory is not derived from the Cosserat theory but instead is considered separately on the basis of distinct balance and "Computing exact, elastodynamic linear three-dimensional solutions for plates from classical twoical basis two vector fields defined on the surface, one that defines the particle position, and the forms of the associated response functions through a careful application of the rigorous Lagrange multiplier rule. Although this rule is standard, the constraints considered are of an unusual type invariance postulates. This contrasts with our view that the Cosserat theory should reduce to the Kirchhoff-Love theory upon the introduction of appropriate constraints. There are additional differ-Mini-Symposia MSP 059-062 and the development thus includes more detail than one usually finds in the literature on con-On the relationship between the Cosserat and general Cosserat theory of deformable surfaces with a single director. The latter has as its kinemat Mini-Svmposia MSP 059-062 'A thick hollow sphere compressed by equal and opposite concentrated loads; An asymptotic solution different approaches to the determination of the transverse shear stiffness in the plate theory Julius D Kaplunov: (Institute for Problems in Mechanics, Russian Academy of Sciences, Russia) ences between Naghdi's treatment and ours. For example, his relies on the moment-of-mome Reinhold Kienzler: (University of Bremen, Department of Production Engineering, Germany) Kirchhoff-Love theories of elastic shells Khanh Chau Le: (Lehrstuhl fuer Allgemeine Mechanik, Ruhr-Universitaet Bochum, Germany) We clarify the relationship of the Kirchhoff-Love theory of elastic "High-frequency vibrations of shells and rods: Variational-asymptotic approach" Holm Altenbach: (Martin-Luther-Universität Halle-Wittenberg, Halle, Germany) "On different approaches to the determination of one consecuence." R Douglas Gregory: Dept. of Mathematics, University of Manchester, US "Flexural transient waves in shells of revolution: An asymptotic approach" University of California, Berkeley, USA steigman@euler.berkeley.edu D Steigmann James G Simmonds: (Univ. of Virginia, Charlottesville, USA) Frederic Y M Wan: (University of California at Irvine, USA) Leonid Yu Kossovich: (Saratov State University, Russia) peakers: Anthony J M Spencer: (University of Nottingham, UK) 'Edge and interfacial vibrations of shells and plates" Cornelius O Horgan: (University of Virginia, USA) 20 Mini-Symposia MSP 059-062 interest in several fields, especially in geophysics, where such experiments are used to study high-pressure behavior of earth materials. Impacts generated in these experiments sometimes induce The role of transition kinetics in determining the material response is explored, and the task of phase changes. This talk describes the application to impact-induced phase transitions of recently developed continuum mechanical models of the macroscopic behavior of phase-changing solids chanics and applied mathematics Professor Eric Reissner (1913-1996). Among participants there are his friends, students and colleagues. The majority of pre-Recent advances in non-linear wave propagation, computation mechanics, analysis The minisymposium is dedicated to an outstanding scientist in the field of mesentations are concerned with the theory of shells and plates and related topics. "Mathematical Methods in Solid Mini-Symposia MSP 059-062 involving high-velocity impact on metallic or ceramic specimens Shock-induced phase changes in solids of singularities and the theory of phase changes in solids are also discussed. Chairs: Julius D Kaplunov and Frederic Y M Wan 7. Asymptotics 24. Mathematics in Industry, Modelling of Industrial Processes Mechanics" California Institute of Technology, USA inferring such kinetics from experimental results is briefly discussed James K Knowles Summary: 17. Solid Mechanics Subject Areas: 5-9 666 July Figure 6: Introductory slides for a congress mini-symposium, with speaker listing and abstracts of all the

talks.

With addition and subtraction, for any $a, b \in \mathbb{Z}$ it is true that the **Definition.** Suppose that $a, b \in \mathbb{Z}$ and $a \neq 0$. Then we say that a **Integer Linear Combination:** If $a,b,c \in \mathbb{Z}$ satisfy $a \mid b$ and $a \mid c$, To see this, note that $a \mid b$ and $a \mid c$ means that there are integers So whichever are the two known multiples of a, then the third can Now bx + cy = (am)x + (an)y = a(mx + ny) and $mn \in \mathbb{Z}$. Suppose $x, y, z \in \mathbb{Z}$ are such that x + y = z, and there is $a \in \mathbb{N}$ which divides two of x, y, z; then a divides all three of x, y, z. We also say that a is a **divisor** of b, or that b is a **multiple** of a. For multiplication, $ab \in \mathbb{Z}$, but $\frac{1}{a}$ and $\frac{1}{b}$ are not elements of \mathbb{Z} . **divides** b, denoted $a \mid b$, if there exists $c \in \mathbb{Z}$ such that b = ac. A useful consequence of this is the Rule of "2 out of 3": Nevertheless, some quotients $\frac{a}{b}$ do give numbers in \mathbb{Z} . be written as an integer linear combination of these $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, 3, \dots\}$ numbers -a, -b, a+b and a-b all remain in In this section we work with the set of integers then for every $x, y \in \mathbb{Z}$ we have $a \mid (bx + cy)$ ision of Integers **Division of Integers** $m, n \in \mathbb{Z}$ such that b = am and c = anA slightly more complicated property is: *Proof.* Since $z = x + y = 1 \times x + 1 \times y$, Hence the third is also a multiple of a. We want to study this more closely. then $x = z - y = 1 \times z + (-1) \times y$ and $y = z - x = 1 \times z + (-1) \times x$. To see this, note that $a \mid b$ and $b \mid c$ means that there must be integers $m, n \in \mathbb{Z}$ such that b = am and c = bn; so that c =Here are some simple examples and properties of 'divides' as de-**Examples:** We have 2 | 6, and 13 | 78, and 25 | 125, and 7 | 28, etc. MATH237 — Discrete Mathematics **Transitivity:** If $a, b, c \in \mathbb{Z} \setminus \{0\}$ satisfy $a \mid b$ and $b \mid c$, then $a \mid c$. Division & Factorization **Reflexivity:** For every $a \in \mathbb{Z} \setminus \{0\}$, we have $a \mid a$ and $a \mid -a$. **Units:** For every $a \in \mathbb{Z} \setminus \{0\}$, we have $1 \mid a$ and $-1 \mid a$. **Zero Divisors:** If ab = 0 then either a = 0 or b = 0. M-Strand, Lecture 2 ivision of Integers (am)n = a(mn). Clearly $mn \in \mathbb{Z}$. fined in this way.

Figure 7: Lecture slides for use in mathematics teaching.

- colors: RGB-codes, color-names and color commands;
- font-sizes, ligatures and accents;
- colored banners: in the header, or part of the body-text;
- dingbats: different shapes and sizes, open or solid;
- graphics: imported using \includegraphics;
- hyperlinks: for cross-references, citations, etc.

There are some newer features which are not yet documented there. These include:

- using a background image on every page, or several images on select pages;
- removing the banner in the header, for a larger text-body;
- generation of PDF bookmarks to document sections, or pages where the banner text changes;
- macros to insert hyperlinks to external movie files, with a poster-picture as the hyperlink button to start the movie;
- set a margin to avoid the edges of the paper that cannot be printed, but which does not show when the PDF slides are viewed in a browser.

More examples

Figure 6 shows a document style that could be used effectively at a large conference or congress. This document presents the speakers and abstracts for just one lecture session or mini-symposium on a specialised topic. Typically there'll be many of these, distributed together on CD-ROM, with speaker and subject indexes for the whole congress.

Figure 7 shows lecture slides that one author has used when teaching a mathematics course. Such documents are available to students from a web-site, so that they can review the lecture presentation. As there are typically many incremental page-builds, these documents are not suitable for printing as lecture notes. Instead, a 4-up version is provided of the fully-built pages, as are presented here in this proceedings volume.

Elsewhere in this volume are other papers by the same author(s) [9, 10]. These include further examples of the use of Marslide.

References

- [1] Adobe Systems Inc.; Acrobat Reader, viewer for PDF format [2] documents, available free of charge from http://www.adobe.com/.
- [2] Adobe Systems Inc.; "Portable Document Format, Reference Manual, Version 1.3"; March 11, 1999.
- [3] Adobe Systems Inc.; "pdfmark Reference Manual"; Technical Note #5150; Adobe Developer Relations; Revised: March 4, 1999.
- [4] CalTEXTalk #1, June 1998: "Automatic Generation of Web-sites using LATEX2HTML"; online abstract: http://www.cds.caltech.edu/caltex/1998/.
- [5] CalTEXTalk #2, July 1999: "TEX is Alive and Well for Web-based Presentation of Mathematics"; abstract: http://www.cds.caltech. edu/caltex/1999/.
- [6] CalTEXTalk #3, May 2000: "High Quality Electronic Presentation of Mathematics; Using PDF, TEX/LATEX, and More"; abstract: http://www.cds.caltech.edu/caltex/2000/.
- [7] CalTEXTalk #4, August 2001: "Advanced uses of pdfETEX"; abstract: http://www.cds.caltech.edu/caltex/2001/.
- [8] Hàn, Thế Thành; pdfTEX, free software for generating documents in PDF format, based on the TEX typesetting system. Available for all computing platforms; see http://www.tug.org/applications/pdftex/.
- [9] McKay, Wendy and Moore, Ross and Ruark, Tom; "Adobe plugin for WARMreader" TEX Users Group 2001 Proceedings, (elsewhere in this volume).
- [10] Moore, Ross and Griffin, Frances; "MacQTEX: Online self-marking Quizzes, using pdfTEX and exerquiz" TEX Users Group 2001 Proceedings, (elsewhere in this volume).

Using TEX to Enhance Your Presentations

Hans Hagen Pragma ADE, GH Hasselt, The Netherlands pragma@wxs.nl http://www.pragma-ade.com

Abstract

The quality of a presentation can be improved by using a decent visualization of the content. For this purpose ConTeXt comes with a bunch (currently there are some 25) of presentation styles. In this talk I will demonstrate how you can use TeX to structure your presentation in such a way that it suits the topic and way you think. I will show that the combination of structure and high end typesetting will give your presentations the finishing touch they deserve. Although making presentations can be done with any TeX, I will discuss the power of coupled ConTeXt and pdfTeX.

Techniques of Introducing Document-level JavaScript into a PDF file from a LaTeX Source

D. P. Story

Department of Mathematics and Computer Science, University of Akron, Akron, OH 44325 dpstory@uakron.edu

http://www.math.uakron.edu/~dpstory/

Abstract

The method of introducing Acrobat document-level JavaScript (DLJS) into a PDF depends on the application used: pdftex or dvipdfm. Until recently, users of Acrobat's distiller did not have the ability to automatically introduce such JavaScript into the document from a LATEX source. For users of Acrobat 5.0, this situation is, at last, rectified. The focus of this paper is to enumerate, illustrate and discuss these various methods.

A new package, insDLJS, is also introduced. This package enables both package and document authors to insert document-level JavaScript.

Introduction

Adobe's Portable Document Format (PDF) has become widely used by some as a document exchange format; LATEX users routinely convert their research papers and technical documents to PDF and post them on the Internet, or e-mail them to a interested colleague. When the LATEX package hyperref, written by Sebastian Rathz and Heiko Oberdiek, is used, cross-references created by standard LATEX commands are automatically converted into hyperlinks within the PDF document.

However, LATEX and PDF are capable of more than just producing an electronic copy of a paper document. By utilizing LATEX's package customization feature (LATEX packages) and Acrobat's form elements and powerful JavaScript language, an author can build a colorful, richly interactive PDF. Such a document can be used as a teaching tool that would quicken the interest of the student.

The focus of this paper is on JavaScript. Java-Script can be attached to a PDF document in many ways, for example, to a form button. JavaScript attached to buttons can be used to initiate actions. Any scripts that are repeatedly used, are general (not form specific), or are rather lengthy, can be placed at what Acrobat calls the *document-level*; they are called document-level JavaScripts (DLJS). A button action, then, can simply call these DLJS to perform various calculations or tasks.

For authors or package writers who really want to tap into the power of JavaScript, document-level scripts need to be written that perform the target task and embedded into the PDF. In the context of developing an educational document, many revisions to the document are typically made and the JavaScript must be reinserted each time the PDF is built. Ideally, the JavaScripts should appear within the LATEX source file, which makes it easy to access and modify them, and then *automatically* inserted when the PDF is built.

The applications pdftex and dvipdfm both support the insertion of DLJS from a LATEX source. Historically, it was not possible to insert DLJS from a LATEX source through the distiller method, and sadly, this is still the case. However, the Acrobat application, version 5.0, does include some extensions that can be exploited to obtain an automatic insertion of DLJS. For version 5.0, it is the Acrobat application that inserts the DLJS automatically following distillation, not the distiller itself.

The discussion that follows—for the case of production of PDF by the distiller method—assumes that the author has the full Acrobat 5.0 product. It is important to note that it is only necessary for the *author* to have full Acrobat 5.0; the user, the one who reads the document, needs only have the Acrobat Reader (version 4.0 or later).

Inserting DLJS

We begin by discussing the basic techniques for each of the common applications used for producing a PDF document. Suppose we wish to introduce the following JavaScript function at the document level.

```
function HelloWorld()
{
    app.alert("Hello World!", 3);
}
```

A variation on a rather well-known, yet useless function.

In the sections that follow, it is assumed the source document uses the hyperref package, with the appropriate driver setting: dvips, dvipsone, pdftex and dvipdfm. Some of the commands in the code below have their definitions in the hyperref package.

Within a package, or preamble, make the following definitions. This code is common to all cases, pdftex, dvipdfm and distiller.

```
\def\jsR{\string\r} % carriage return in JS
\def\jsT{\string\t} % tab in JS
\begingroup\obeyspaces\obeylines%
\global\let^^M=\jsR%
\gdef\DLJS{%
function HelloWorld()
{
    app.alert("Hello World!", 3);
}
}%
\endgroup
```

This defines a macro that expands to the code of the desired JavaScript function. Note that \obeyspaces and \obeylines are used; \global\let^^M=\jsR will insert a \r at the end of each line of the JavaScript code, this nicely formats the script within the PDF file itself.

pdftex and dvipdfm The approach to DLJS insertion is similar in the case of these two applications, both of which fully support, through primitives or specials, DLJS insertion.

In each case, insertion is a two step process: (1) create an PDF object dictionary containing the necessary key-value pairs

```
<< /S /JavaScript /JS (\DLJS) >>
```

and (2) enter the script name and reference offset into the Names array of the JavaScript dictionary.

The implementation of these two steps is different for these two applications.

We wrap the code in the next subsections in a \AtBeginDocument command. For private macros, this is not necessary, but for public macro packages it is useful to delay the insertion of the code until after the preamble.

pdftex For pdftex, the following is all the additional code needed to get DLJS insertion:

```
\AtBeginDocument
{%
  \immediate\pdfobj
    { << /S /JavaScript /JS (\DLJS) >> }
  \xdef\objDLJS{\the\pdflastobj\space 0 R}
  \immediate\pdfobj {%
    << /Names [(Doc Level JS) \objDLJS] >> }
```

```
\edef\objNames{\the\pdflastobj\space 0 R}
\pdfnames {/JavaScript \objNames}
}
```

The control sequences \pdfobj and \pdfnames are pdftex primitives.

dvipdfm Similarly, for dvipdfm, we need only include the following code to get the DLJS:

```
\AtBeginDocument{%
  \immediate\@pdfm@mark{obj @objDLJS
     << /S /JavaScript /JS (\DLJS) >> }
  \immediate\@pdfm@mark{obj @objnames
      << /Names [(Doc Level JS) @objDLJS] >> }
  \@pdfm@mark{put @names
      << /JavaScript @objnames >> }
}
The command \@pdfm@mark is defined in terms of
```

The command \@pdfm@mark is defined in terms of a dvipdfm \special,

\def\@pdfm@mark#1{\special{pdf: #1}}
as defined in hyperref.

Multiple Functions More than one function can be grouped together using the obvious approach:

Now, we proceed as described above.

An alternate approach is to have separate definitions for each of you functions, say, \DLJSi and \DLJSii, and insert each of them separately into the JavaScript dictionary. For example, in the case of pdftex, we could include the following code:

```
\verb|\AtBeginDocument|
```

```
>> }
  \edef\objNames{\the\pdflastobj\space 0 R}
  \pdfnames {/JavaScript \objNames}
```

Similarly for dvipdfm.

Acrobat expects the script names of the DLJS (these are 'Doc Level JS' and 'More DLJS', in the example above) to be *sorted*; otherwise, the Acrobat application does not give editing access to the scripts that are 'out-of-sorts'. The scripts would be accessible from within Acrobat or Reader, but would not necessarily be available for editing within Acrobat.

Acrobat 5.0 For authors that use Acrobat 5.0 (those that use dvips or dvipsone to produce a PostScript file and then distill) the problem is a little more complicated. Version 5.0 comes with an extended FDF (Forms Data Format) specification. This new specification allows DLJS to be placed within the FDF file. The FDF file is then imported into the document and the DLJS is inserted.

The Concepts Take our basic HelloWorld Java-Script function, and place it into the FDF file, which I'll call dljs.fdf, as follows:

```
%FDF-1.2
1 0 obj
<<
  /FDF
    /JavaScript
      /Doc 2 0 R
    >>
  >>
>>
endobi
2 0 obj
[ (Doc Level JS) 3 0 R ]
endobj
3 0 obj
<<>>
stream
function HelloWorld()
{
  app.alert("Hello World!",3);
}
endstream
endobi
trailer << /Root 1 0 R >>
%%EOF
```

Once this file has been created, it can be inserted into the PDF file by including the following code in your LATEX document:

```
\AtBeginDocument{\literalps@out{%
[ {Page1} << /AA << /0 << /S /JavaScript /JS
  (%
  if(typeof HelloWorld == "undefined")\jsR\jsT
  this.importAnFDF("dljs.fdf");
  )
  >> >> >
/PUT pdfmark}}
```

This code creates an open page action for page 1 of the PDF. When the document is first opened in the Acrobat application, usually immediately following distillation, if the function HelloWorld is not already defined, the JavaScript method importAn-FDF will import the specified FDF into the document; otherwise, the open action does nothing. The JavaScript function HelloWorld will be placed at the document-level because of the structure of the FDF file.

A Simple Implementation The FDF can be created and edited as a separate file; however, our goal was to have all code contained in the LATEX source file itself. A simple solution would be to use a verbatim write to write the necessary code to a FDF file.

For example, consider the following code. It is assumed that the verbatim package has been loaded.

```
\makeatletter
\newwrite \dljs@FDF
% open a stream
\immediate\openout\dljs@FDF=dljs.fdf
\let\verbatim@out=\dljs@FDF
% verbatimwrite Environment: Writes to current
%\verbatim@out. Based on examples and macros
% of the verbatim package. Set \verbatim@out
% before calling this macro
\newenvironment{verbatimwrite}
 {\@bsphack
  \let\do\@makeother\dospecials
  \catcode'\^^M\active
  \def\verbatim@processline{%
    \immediate\write\verbatim@out
        {\the\verbatim@line}}%
  \verbatim@start}%
 {\immediate\closeout\verbatim@out\@esphack}
    Now write the FDF file from the LATEX source.
\begin{verbatimwrite}
%FDF-1.2
1 0 obj
<<
  /FDF
    /JavaScript
```

<<

 $^{^{1}}$ Neither pdftex or $\mbox{dvipdfm}$ sorts the $\mbox{\tt Names}$ array by script names.

```
/Doc 2 0 R
>>
endobj
2 0 obj
[ (Doc Level JS) 3 0 R ]
endobj
3 0 obj
<<
>>
stream
function HelloWorld()
    app.alert("Hello World!", 3);
}
endstream
endobj
trailer
  /Root 1 0 R
%EOF
\end{verbatimwrite}
```

Use pdfmark to import the FDF when Acrobat is first opened.

```
\AtBeginDocument{\literalps@out{%
[ {Page1} << /AA << /0 << /S /JavaScript /JS
  (%
   if(typeof HelloWorld == "undefined")\jsR\jsT
   this.importAnFDF("dljs.fdf");
   )
   >> >>
/PUT pdfmark}}
\makeatother
```

Once the DLJS has been inserted, save the file (using "Save As"). The DLJS now is saved with the file. When the document is opened in Acrobat (or Reader) the JavaScript is available to be executed. You can delete the open action at this point.

Multiple Functions Multiple functions can either be written to the same FDF file, or to separate FDF files. When you import multiple FDF files into Acrobat using importAnFDF, their script names are automatically sorted, see the footnote at the end of 'Multiple Functions', page 162.

Plain TEX Users The above examples illustrate the basics of DLJS inclusion. Plain TEX users can (easily) adapt these techniques to plain TEX. This is left as an exercise.

The insDLJS Package

All the code described earlier works very well, and is adequate for someone trying to develop materials for the WWW or for a CD-ROM using a private

macro package. Such a person typically uses only one system—pdftex, dvipdfm, or the distiller—to create the materials. These macros cannot be used conveniently as part of a package, where the user—the one using the package—may want to modify the script and/or define a custom script. A general insert DLJS package is needed. In this section, we discuss a new package called insDLJS.

The package insDLJS takes the basic techniques already discussed, modifies them so that the insertion will be friendly to package authors who use insDLJS to write LATEX packages, and to document authors who want to jazz up their documents with DLJS as well.

The package has four driver options: dvipsone, dvips, pdftex and dvipdfm. The insDLJS also defines a new environment called insDLJS; the syntax is

```
\begin{insDLJS}[<func>]{<base>}{<name>}
<JavaScript functions or exposed code>
...
\end{insDLJS}
...
```

where,

- #1: This optional parameter, <func>, is required for the dvipsone and dvips options; otherwise it is ignored. It's value must be the name of one of the functions defined in the environment.
- #2: This parameter, <base>, is an alphabetic word with no spaces. It is used to build the names of auxiliary files and to build the names of macros used by the environment.
- #3: The third parameter, <name>, is the script name of your JavaScript. This name appears in the "JavaScript Functions" dialog of Acrobat, under the menu

```
Tools > JavaScript > Document JavaScripts..
```

This environment writes one file (<base>.def), or possibly two files (<base>.def and <base>.fdf).

In the case of pdftex or dvipdfm options, the

base>.def, which contains the necessary definitions and code, as discussed in 'pdftex', page 162

and the following section on 'dvipdfm', is read back into the output document to set the DLJS code.

In the distiller case, <base>.def is read in and second file, <base>.fdf, is written. It is the file <base>.fdf that is imported into Acrobat following distillation, as outlined on page 163.

The DLJS defined within the insDLJS environment in a package and in a preamble of a document will be included in the PDF document automatically. It is important to choose a base name,

'same, and a script name, <name, different from any that has

already been declared earlier; otherwise, code will be overwritten or simply not appear.

Example 1. The following example assumes the driver is either dvipsone or dvips; in these cases the first parameter is required.

```
\begin{insDLJS}[HelloWorld]{mypkg}{Pkg DLJS}
function HelloWorld()
{
    app.alert("Hello World!", 3);
}
\end{insDLJS}
```

This would result in the automatic insertion of the specified JavaScript at the document-level when the PDF is built.

In this case, the importAnFDF method (Java-Script) is used, as discussed on page 163. The value of the optional argument, 'HelloWorld', is used to detect whether the script has already been imported. The environment generates the following code:

```
\AtBeginDocument{\literalps@out{%
[ {Page1} << /AA << /O << /S /JavaScript /JS
(%
  if (typeof HelloWorld == "undefined")\jsR\jsT
  this.importAnFDF("mypkg.fdf");
  )
  >> >>
/PUT pdfmark}}
```

The optional argument is ignored and need not even be included when pdftex or dvipdfm is specified as a package option.

Example 2. A IATEX package writer may want to use the insDLJS environment to insert DLJS into the package; also, a document author who uses such a package may want to define additional DLJS. In this case, just place the code in the preamble, for example,

```
\begin{insDLJS}{dljs}{Private DLJS}
function tugWelcome()
{
    app.alert("Welcome to TUG 2001!", 3);
}
\end{insDLJS}
```

The script will be automatically introduced into the PDF document. $\hfill\Box$

The Exerquiz Package² has been rewritten to use the insDLJS package. This not only makes the JavaScript code easier to read, modify and maintain, it also allows users of Exerquiz to add in their own DLJS. Exerquiz uses the base name of exerquiz.

Example 3. A package author who uses the package insDLJS to insert DLJS may wish the package user to modify the scripts in some authorized way. For example, the package author may include

```
\newcommand\Hello{"Hello World!"}
\begin{insDLJS}
function HelloWorld()
{
    app.alert(@Hello, 3);
}
\end{insDLJS}
```

The script included in the output file (.dvi or .pdf) using the \AtBeginDocument mechanism. The user then has the opportunity to redefine \Hello to, say,

\renewcommand\Hello{"Bonjour le Monde\space !"}

Now the HelloWorld function will create an alert dialog that says, "Bonjour le Monde!". □

Important. Note that '@' is used as the escape character within the environment. The insDLJS environment eventually leads to a verbatim environment. The at-char, '@', has its catcode changed, \catcode'\@=0; this will allow macros to expand within the verbatim environment. The backslash '\' is needed in JavaScript since it is used as an escape. JavaScript does *not* use the '@' symbol at all, so we are free to use it here.

A Complete Example The following listing is a complete example of usage of the insDLJS package.

```
\documentclass{article}
\usepackage[pdftex]{hyperref}
\usepackage[pdftex]{insdljs}
\newcommand\tugHello{Welcome to TUG 2001!}
\begin{insDLJS}{mydljs}{Private DLJS}
function HelloWorld()
{
    app.alert("@tugHello", 3);
}
\end{insDLJS}
\begin{document}
\begin{Form}
                 % needed for \PushButton
\section{Test of the \texttt{insDLJS} Package}
% use built-in form button from hyperref
Push \PushButton[name=myButton,
        onclick={HelloWorld();}]{Button}
\end{Form}
\end{document}
```

A Double-Edged Problem In the process of extending the exerquiz package to include the ability to evaluate objective-style questions using DLJS, one big problem was encountered; consider the following example:

```
\begin{insDLJS}[<func>]{<base>}{<name>}
function TestForLParen(string)
{
    if (/\(/.test(string))
        app.alert("Found Left Parenthesis!",3);
}
\end{insDLJS}
```

² CTAN:macros/latex/contrib/supported/webeq

The Problem. The above script will search the parameter string for a left parenthesis, '('. When dvipsone or dvips is used (i.e., the distiller is used), the

base>.fdf file is created, imported into the PDF file and the script works correctly. When pdftex or dvipdfm is used this code does not work! When the file is opened in Acrobat an exception is thrown, and an error message appears:

```
SyntaxError: unterminated parenthetical (
```

In the case of pdftex and dvipdfm, the JavaScript code is written directly to the PDF file, bypassing distiller. The problem with the above code turns out to be unbalanced parentheses. (Acrobat treats '\(')\(')\) as a left parenthesis, not an escaped special character.) All special characters, therefore, need to be escaped; we want

```
\begin{insDLJS}[<func>]{<base>}{<name>}
function TestForLParen(string)
{
    if (/\\(/.test(string))
        app.alert("Found Left Parenthesis!",3);
}
\end{insDLJS}
```

This code now works when the option pdftex or dvipdfm is used; however, when this code is used with the distiller (with the dvipsone or dvips option), Acrobat 5.0 crashes!

The Solution. We have two opposing problems, solving one creates another. The solution is to introduce a command, \e. (The 'e' is for escape.) The macro has two definitions: for the dvipsone and dvips options, we define \gdef\e{}; for pdftex and dvipdfm options, we make the following definitions:

```
\catcode'\@=0 @catcode'@\=12 @gdef@e{\}
```

Note that in all cases, we do change the catcode of '@' to \catcode'\@=0.

Thus, to get the function TestForLParen to be properly defined for all options, we must type:

```
\begin{insDLJS}[<func>]{<base>}{<name>}
function TestForLParen(string)
{
   if (/@e\@e(/.test(string))
       app.alert("Found Left Parenthesis!",3);
}
\end{insDLJS}
```

This problem is not limited to regular expressions. Anywhere there is an escape character '\', there is a potential for problems. For example, if you want to assign the variable x a value of '\', you would have to say, within some insDLJS environment:

```
var x = "@e\@e\";
app.alert(x, 3);
```

In systems using the dvipsone/dvips, this would expand to var x = ""; in contrast, on systems

```
using the pdftex/dvipdfm option, it would expand
to var x = " \ \ ". Tricky!
    Here is a final complete example.
\documentclass{article}
\usepackage[dvipdfm]{hyperref}
\usepackage[dvipdfm]{insdljs}
\newcommand\tugHello{Welcome to TUG 2001!}
\begin{insDLJS}{mydljs}{My DLJS}
function HelloWorld()
{
    app.alert("@tugHello", 3);
}
function TestForLParen(string)
{
    if (/@e\@e(/.test(string))
        app.alert("Found Left Parenthesis!",3);
}
\end{insDLJS}
\begin{document}
\begin{Form}
\section{Test of the \texttt{insDLJS} Package}
\begin{itemize}
    \item \PushButton[name=myButton,
        onclick={HelloWorld();}]{Button:}
    \item \TextField
            [name=myText,width=2in,
             keystroke={if(event.willCommit)
                TestForLParen(event.value);}
            ]{Text Field:}
\end{itemize}
```

\end{Form} \end{document}

A button and a text field are created. Click on the button to get an alert dialog. Enter some text in the field; when the data is committed, the function TestForlParen is called, and the field is scanned for a left parenthesis.

A Note to pdftex and dvipdfm Users If you plan to make extensive use of DLJS, and to write complex functions, such as the ones that appear in the exerquiz package, the purchase of the full Acrobat suite is *strongly* recommended.

The only way to debug Acrobat JavaScript is through the JavaScript edit window of the Acrobat viewer. If you only use Acrobat Reader, there is very little feedback as to what goes wrong with a particular script; development and debugging of scripts will be a very long and tedious process.

All the JavaScripts in the exerquiz package were first written from within the JavaScript editor and

tested. Once the script was operating correctly, it would be copied, and pasted into the exerquiz source file for automatic inclusion.

Final Comments

Acrobat Reader provides a forms capability and a powerful JavaScript engine that can be exploited to create dynamic, interactive PDF documents. The LATEX system with its flexible "plug-in" capability (LATEX packages) is a solid authoring tool for creating high-quality typeset content. The LATEX packages that give access to PDF are

- 1. The hyperref³ package written by Sebastian Rathz, Heiko Oberdiek, et al., automatically creates bookmarks and cross-reference hyperlinks, allows document information fill-in and provides basic form creation code, to mention a few. This package is fundamental to any author who wants to create PDF documents for distribution over the Web.
- The webeq⁴ (D. P. Story) and pdfscreen⁵ (Radhakrishnan CV) packages are screen ori-

- ented packages. With them, an author can develop a document with page size suitable for presentations or on-line viewing. These packages come with other bells and whistles as well.
- 3. The exerquiz⁶ package (D. P. Story) defines several environments for creating exercises and quizzes, both multiple choice and fill-in. This package makes extensive use of the form features and (document-level) JavaScript.
- 4. The insDLJS package gives the package or document author an easy and convenient method of including document-level JavaScripts.

There are many other packages (e.g., for graphics insertion, color creation) too numerous to mention.

As a result of the above mentioned packages, as well as the various applications for producing PDF (pdftex, dvipdfm and the distiller), an author now has a fairly complete set of authoring tools for developing such a colorful, visually attractive and highly interactive documents.

³ CTAN:macros/latex/contrib/supported/hyperref

⁴ CTAN:macros/latex/contrib/supported/webeq

⁵ CTAN:macros/latex/contrib/supported/pdfscreen

⁶ CTAN:macros/latex/contrib/supported/webeq

MacQTeX: Online self-marking Quizzes, using pdfTeX and exerquiz

Ross Moore

Mathematics Department, Macquarie University, Sydney ross@maths.mq.edu.au http://www.maths.mq.edu.au/ross/

Frances Griffin

Mathematics Department, Macquarie University, Sydney fgriffin@maths.mq.edu.au http://www.maths.mq.edu.au/~fgriffin/

Abstract

The MacQTEX quiz system uses JavaScript [1, 9] embedded within PDF format [4] documents to allow students to do multiple-choice style quizzes. The Internet may be used to supply the quiz document, and to record results. But even when not connected, there is immediate feedback as to how many questions were answered correctly and what are the correct answers, as well as providing worked solutions indicating how the correct answers could be deduced.

The highest quality of typesetting is employed in the quizzes by using the TEX typesetting software [7], via the pdfTEX variant [6], to control the generation of the PDF documents [4]. Other software, such as Perl [12] and *Mathematica* [13], can be used to control the production of unique instances of a particular quiz so that each student gets slightly different questions to answer.

PDF Quizzes

At Macquarie University the Mathematics Department has been developing¹ a web-based system for producing quizzes which allow students to test their knowledge of mathematical ideas commonly used in courses that we teach. Currently these quizzes are used mainly at the most elementary level, for revision of the basic skills which the students should have acquired from courses at high school.

The current version of this quiz facility provides students with a multiple-choice answer quiz, of typically 10–12 questions, as a PDF document [4] downloaded from a web-site (figure 1). This document is an interactive form, controlled using embedded JavaScript [1, 9], which allows a student to read and work with the document, using the Acrobat Reader plug-in [2] to his/her favourite web-browser (figure 2). Figures 2–7 show some views of such a quiz, as it appears to the student before, during and after attempting to answer the questions.

In this paper we will concentrate mainly on the TEXnical aspects of the MacQTEX quiz system. For other aspects of the full system, such as the rationale for using quizzes at all, and features available to an instructor when preparing a set of quizzes for use by students, figures 13–15 show presentation slides prepared² for talks at educational meetings.

pdfT_EX, exerquiz and JavaScript

A quiz document is typeset using pdf-LATEX [6], with the exerquiz [10] macros to handle the embedded JavaScript [1, 9] actions needed to produce appropriate interactivity. In this setting, JavaScript controls

- the appearance of check-boxes, as the student selects his/her answers;
- counting the number of correct choices selected, and displaying an appropriate message;
- showing which of the student's selections were correct, which were wrong, and which were the correct choices for each question;
- resetting the form, for further attempts at the same set of questions.

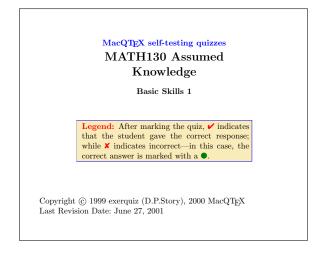
Donald Story [10] has explained some of these methods elsewhere in this volume.

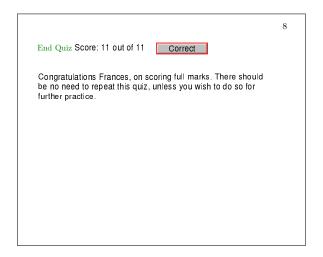
¹ This project has received funding via a 'Targeted Flagship Grant' from the Center for Flexible Learning, Macquarie University, and the Division of Information and Communication Sciences, Macquarie University as well as an equipment grant from Apple Computer, Australia Pty Ltd, via the Apple Universities Consortium.

²...using the Marslides package [8].

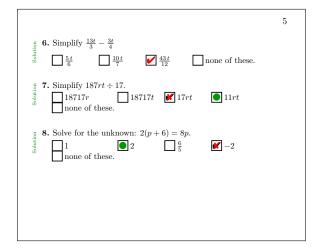
ma/ minutes/	Netscape: MATH130 Quizzes - DE1 2001
	MATH130 Quizzes - DE1 2001
	Assumed Knowledge Quizzes and Practice Quizzes
support the quizz trying to reinstall a	web browser to have the Acrobat Reader software, version 4.0 or 4.05. Yersion 5.0, does not res, so if you have installed this, then you should do the quizzes on campus (see below), rather than noider version of Acrobat. Acrobat 4.05 can be downloaded for free from adobe's site. Get the browser the instructions provided to install it.
you may still be to do this. If a ne	have the Acrobat Reader installed so that it runs inside the browser window. If not, able to do the quiz, but your results will not be recorded - Acrobat needs the browser window opens with the quiz in it, then Acrobat is not running inside your browser.
sufficient, or MacOS 7	pure your computer to have a recent operating system; Win'95, Win'96, Windows NT (v.4) or later should be 1.6 or later for Macintosh systems. be enough, but more is preferable.
	complete the first three quizzes, getting full marks. You may try as many times as you like, the quiz will e, and your results for each attempt will be recorded.
The Practice quizzes	are not compulsory, but are recommended if you are having difficulty with the compulsory quizzes.
Enter your Student r Student ID	number, or other identifying string, then choose your quiz and hit the button:
Name:	
Compulsory Qu	aizzes
THE RESERVE AND ADDRESS OF THE PARTY OF THE	
A STATE OF THE PARTY OF T	Skills Quiz 1
O Basic S	Skills Quiz 1 Skills Quiz 2
O Basic S	
O Basic S	Skills Quiz 2 Skills Quiz 3
O Basic S	Skills Quiz 2 Skills Quiz 3 FES
○ Basic S ○ Basic S ○ Basic S Practice Quizz	Skills Quiz 2 Skills Quiz 3 FES
O Basic S O Basic S O Basic S Practice Quizz O Fracti	Skills Quiz 2 Skills Quiz 3 <i>FES</i> ons

Figure 1: Quiz-site (at http://www.maths.mq.edu.au/~fgriffin/quizzes/MATH130quizzes.html) from which students can download the compulsory quiz documents. Username/password are required for recording accesses and results. Also from this site they may download practice quizzes, devoted to a particular mathematical concept. Guest access is also allowed for all quizzes.




Figure 2: An opening page to a typical quiz.

Basic Skills 1 Begin Quiz **1.** Evaluate $\frac{5}{3} - \frac{11}{9}$ $\frac{4}{9}$ $-\frac{1}{2}$ $-\frac{2}{9}$ none of these. 2. Which of the following fractions is less than 1? $\frac{43}{41}$ $\frac{41}{80}$ none of these. $\frac{44}{44}$ 3. Simplify 10 - 7(-4 + 2). 40 -10 \Box -6 none of these.


Figure 3: First page of questions, with "Begin Quiz" button and user-selections.

In fact we have added some extra features not found in the released versions of exerquiz. Hence the macro file that we actually use is named exerquizX,

and epdftexX has the coding specific to the pdfTEX driver. These extra features include:

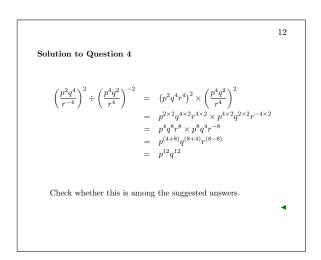

Figure 4: Last page of questions, after having selected the "End Quiz" button, showing the total score, and personalised confirmation message.

Figure 5: Embedded JavaScript [1, 9] is used to show the correct answer, when the student has made an incorrect choice. Also visible are buttons, previously hidden, which link to worked solutions.

- a quiz variant including both the self-marking feature *and* worked solutions;
- submission of a student's results to a server, via the Internet;
- return of a personalised message, as feedback to acknowledge receipt of the submitted results.

With these features, a quiz document provides a nicely typeset collection of questions and solutions which can be studied by a student, even when not connected to the Internet. The quiz can be reset for repeated attempts at answering the questions.

Figure 6: Worked solutions use properly typeset mathematics, as do the questions themselves. This one makes substantial use of mathematical symbols and equation alignments.

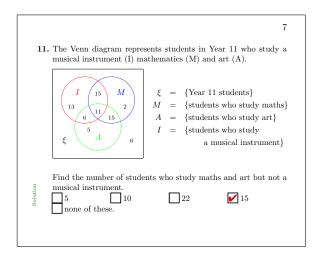


Figure 7: Elegant mathematical diagrams can also be used, both in the quiz questions and worked solutions.

Only the first attempt can be recorded, and even then only if there is an active network connection.

Concerning the worked solutions, these must remain inaccessible until the quiz has been completed and the results submitted. To do this, the worked solutions are typeset in a separate document, then each is imported as a separate image to be the icon for a button field. This button can be shown or hidden under the control of embedded JavaScript code. As well as allowing the solutions to be viewed, a hyperlink from the question to its solution becomes accessible. This is done by hiding an opaque button

which otherwise screens the active area of the link from receiving mouse-clicks.

Another novel aspect of the MacQTEX quiz system is the use of randomness to produce a slightly different quiz for each student access. Currently this is done using the *Mathematica*³ [13] software, programmed to write a file of TEX definitions for each question. Other ways of doing this could be used; e.g., other software could be used, or sets of \definitions could be read from a file which has been generated in advance specially for this purpose.

Designing a new quiz

Constructing a new quiz is done at a MacQTEX quizsite, using an HTML form, as shown in figure 8. Here an instructor may choose from pre-prepared question topics; currently there are 14 such types available, covering areas of basic mathematics.

For each topic, there are up to 6 actual question types. Both the number of topics and question types for a topic can be easily extended, though some knowledge of TEX or LATEX is needed to do this. When randomisation is required, then some knowledge of programming in *Mathematica* is also useful. For a successful quiz, it is necessary to generate plausible incorrect answers, as well as the correct answer. Generating these in *Mathematica* can be an interesting challenge. Sometimes it is necessary to discard random choices where an answer intended to be wrong actually agrees with the correct answer; that is, obtaining the correct answer by a completely fallacious method.

Figure 9 shows the work-flow for making a new quiz. This includes loops for producing example quizzes, and for editing of LATEX sources for wording and/or layout. Only when the instructor is completely satisfied should a batch (e.g., 50) of quizzes be generated, and made available for student access.

LATEX source code

Figure 10 shows the directory structure at a quiz site. It can be seen that there are many files with .tex suffix, which need to be read as part of a typesetting job. Reading all of these files in the correct order is essentially a bootstrap process, in which \definitions are made as required, before the next file is \input.

For example, the main job for the quiz which was used for figures 2 to 6 uses a file having the name MATH130quiz1.tex, as follows:

\def\recipient{}

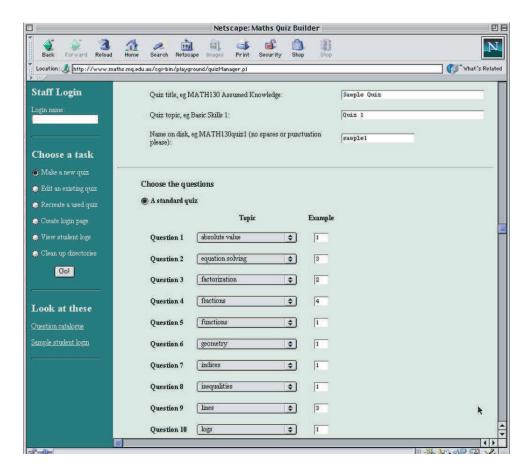
```
\def\defsdir{newquiz50/}
\def\texdir{../}
\nonstopmode
\catcode'\@=11
\edef\eq@author{\recipient}
\edef\eq@keywords{version 50}
\catcode'\@=12
```

```
\def\loginID{version 50}
\def\whichquiz{MATH130quiz1}
\input \texdir user.tex
```

The number 50 that occurs here is because 50 instances of this quiz have been generated. For each instance the number would have been different.

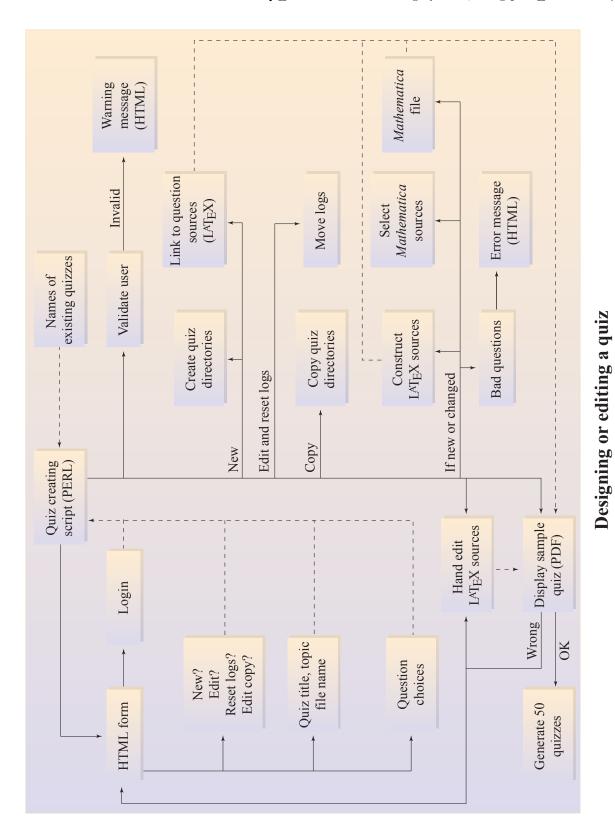
The file user.tex is constant, for all quiz instances:

```
\def\author{Fran}
\def\imagedir{\texdir}
\input \texdir a.tex
\def\quizname{Basic Skills 1}
\input \texdir b.tex
\input \texdir bb.tex
\input \texdir c.tex
\input \texdir z.tex
```


Those files a.tex, b.tex, bb.tex and z.tex are constant for all instances of a particular quiz. Indeed b.tex and c.tex are created by a Perl [12] script, and hard-code variables such as the title of the quiz and its topic. It is a.tex which contains the \documentclass command, and loads the (modified) exerquiz package, as well as other standard LATEX packages. Similarly, the \end{document} is in z.tex. These two files are simply copied from a global storage location.

Information for the opening page of a quiz is contained in b.tex. This file could well be edited to alter the instructions, or to convey other information about the quiz. The main information in bb.tex is the URL to which results submissions should be sent. Other specialised TEX definitions can be added here, when not suitable to be included in other packages. It is thus c.tex which controls input of the questions themselves, as follows:

```
\mbox{\%}\mbox{\%} You may edit this file to change the order of \mbox{\%} the questions, or adjust spacing and pagination.
```


```
\def\answerdir{\defsdir}
\def\CheckifGiven
  {Check whether this is among the suggested answers.}
\def\bfR{{\mathbf{R}}}
\def\bfZ{{\mathbf{Z}}}
\def\errOnSend
  {Your quiz results have not been received.}
%
\begin{quiz}*{\whichquiz}
%
\begin{quiz}*{\whichquiz}
%
\begin{questions}
```

 $^{^3}$ Mathematica is a trademark of Wolfram Research Limited. [13]

Figure 8: This web-page is used by instructors and course coordinators to design quizzes for the students to use. Questions can be chosen from predefined categories; each category has up to 6 choices of question.

```
\item \input{\texdir question1.tex}
                                                          \TextField[name=progress,height=3cm,width=10cm,
\medskip
                                                            align=0,bordercolor={1 1 1},default=\errOnSend,
\vfil
                                                            multiline=true,readonly=true]{}
\goodbreak
                                                          From this it can be seen that the source code for
\vfilneg
                                                          the questions themselves is contained in files named
\item \input{\texdir question2.tex}
\medskip
                                                          question1.tex, ..., question11.tex. This also
  . . .
                                                          contains the LATEX source for the worked solution.
 . . .
                                                          One of these looks like:
  . . .
                                                          \def\setupvalues{%
\goodbreak
                                                          \def \frac{1}{\det fracsumb{2}\det fracsumc{5}}
\vfilneg
                                                          \def\fracsumd{9}\def\fracsump{9}\def\fracsumq{2}
\item \input{\texdir question11.tex}
                                                          \def\fracsumr{18}\def\fracsums{19}
\medskip
                                                          \def\fracsumsign{+}
\vfil
                                                          \def\ok{\frac{\fracsums}{\fracsumr}}
\goodbreak
                                                          \def\wronga{3}\def\wrongb{\frac{6}{11}}}
\vfilneg
\end{questions}
                                                          \IfFileExists{\defsdir defs\thequestionno}
\end{quiz}
                                                           {\input{\defsdir defs\thequestionno}}{\setupvalues}
                                                          Evaluate
\TextField[name=\whichquiz,width=1.25in,
                                                          ${\frac{\fracsuma}{\fracsumb}}
 align=0,bordercolor={1 1 1},
                                                            \fracsumsign {\frac{\fracsumc}{\fracsumd}}$
 default=Score:,readonly=true]{}%
 \raisebox{3.5pt}\quad{\eqButton{\whichquiz}}
\therearequizsolutionstrue
                                                          \RandomAnswers[123]{\answerdir answers\thequestionno}
\medskip
                                                          \begin{answers}[\whichquiz:q\thequestionno]{5}
```


Figure 9: Work-flow for designing a new quiz, based on selections made from the HTML form shown in figure 8. Copies of existing files can be edited to taste. Constructing new question types requires more substantial editing, especially when randomisation is required.

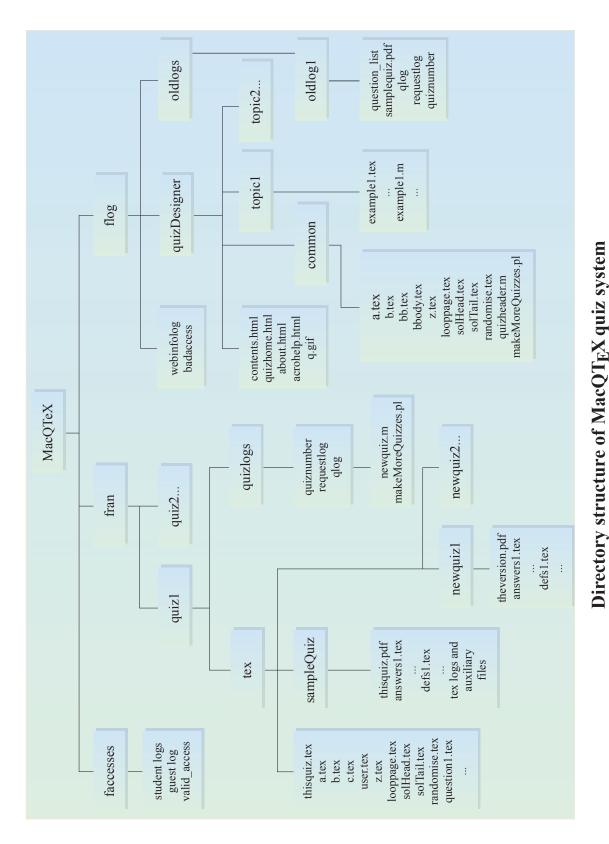


Figure 10: Directory structure of a quiz site, showing the locations of all the (E^{\pm}) TeX input files for each question and quiz instance.

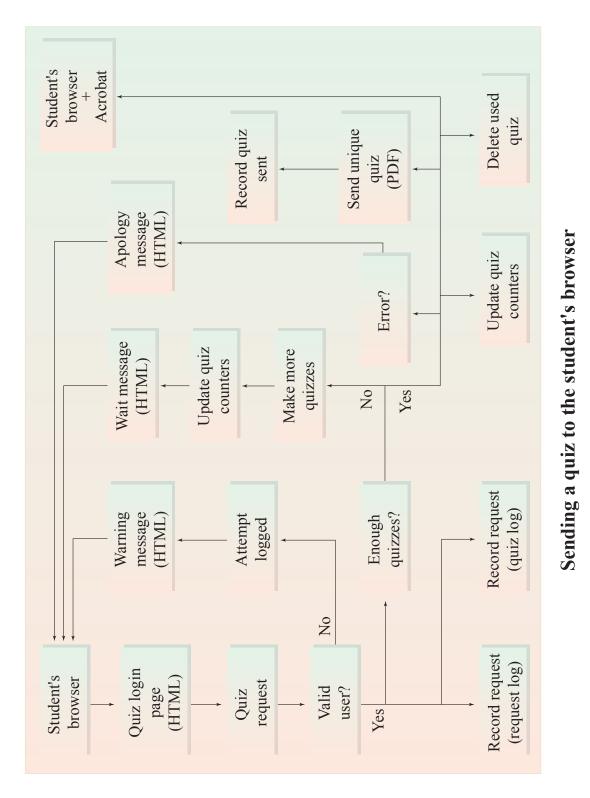
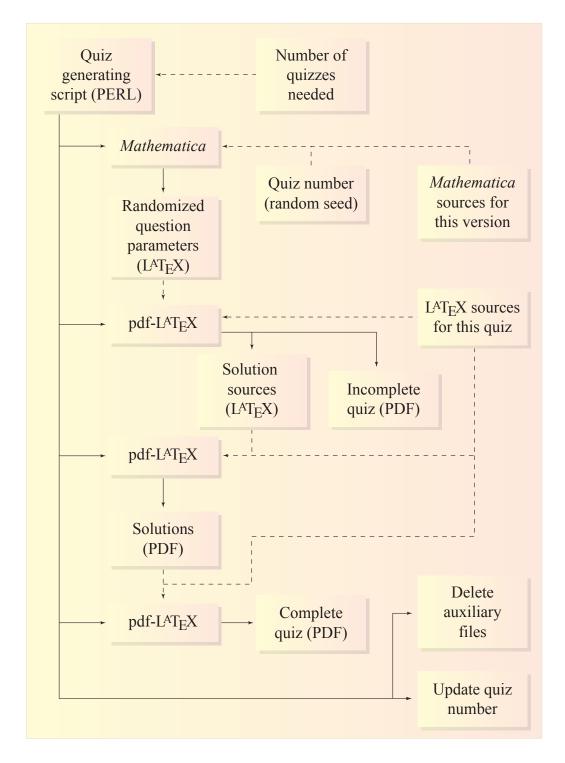
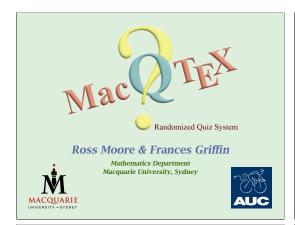




Figure 11: Detailed work-flow for sending a quiz to the student's browser. Only at the step "make more quizzes" does pdf-LATEX come into play within this work-flow, as otherwise sufficiently many quiz documents have been typeset, awaiting requests for downloads. See figure 12 for the work-flow when it is necessary to generate quiz documents.

Generating new quizzes

Figure 12: Details of the sequence of calls to pdf-IATEX for generating a quiz instance, along with its worked solutions. The first call causes a new document to be made containing the IATEX coding for worked solutions. These are typeset at the 2nd call. Finally the 3rd call constructs a PDF document containing both the quiz questions and each worked solution, imported as a single graphic.

Mathematics Quizzes

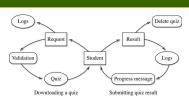
At Macquarie University the Mathematics Department has been developing 1 a web-based system for producing quizzes which allow students to test their knowledge of mathematical ideas required in the courses that we teach. Currently these quizzes are used mainly at the most elementary level, for revision of the basic skills which the students should have acquired from mathematics courses at high school.

Examples

- Basic Math Skills: MATH130, examples
- Discrete Math Ouizzes, with answers: MATH237

¹This project has received funding via a 'Targeted Flagship Grant' from the Center for Flexible Learning, Macquarie University, and the Division of Information and Communication Sciences, Macquarie University as well as an equipment grant from Apple Computer, Australia Pty Ltd, via the Apple Universities Consortium.

Training not Testing


The aim of the quizzes is not so much for assessment as for selftesting and practice of material covered previously in lectures or back at school. Why use quizzes?

For various practical reasons, related to the students ...

- wide range in ability and mathematical background;
- not their main area of study, so need to identify holes in their mathematical knowledge;
- several years since last studied any mathematics;
- maybe only a refresher course may be needed;
- insufficient staff to help every student.

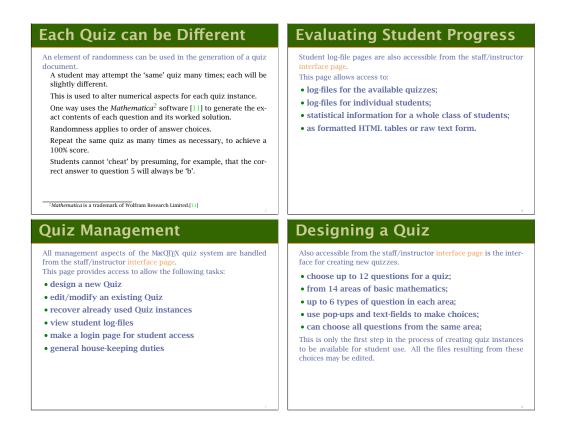
The quizzes can be used by students to **identify for themselves** where they are weak and may need to seek the extra help that *can* be provided.

Student Interaction

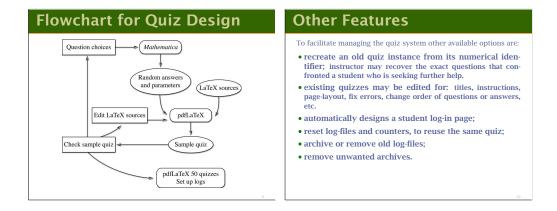
When a student requests a quiz, the identity is first validated; if authorized, a quiz is sent to the student's browser. A record is kept of all request details.

After completing the quiz, submitted results are recorded in the student's log and in the overall quiz log. A personalized message concerning the student's progress is returned as FDF data. This appears in a form field at the end of the PDF quiz document.

Figure 13: Presentation slides, mainly for use at education meetings. These give the rationale for using quizzes, as well as giving a rough representation of a student's interaction with the system. Also one slide has active hyperlinks to some actual web pages from whence quizzes can be downloaded.


\theAnswersStream \multicolumn{2}{1}{\AnsO none of these. \hfil} \end{answers} \begin{solution} \medskip \def\setupvalues{% $\def \fracsum{9} \def \fracsum{9} \def \fracsum{2}$ \def\fracsumr{18}\def\fracsums{19} \def\fracsumsign{+} \def\ok{\frac{\fracsums}{\fracsumr}} $\def\wronga{3}\def\wrongb{\frac{6}{11}}}$ \addtocounter{solutionno}{1} \IfFileExists{\defsdir defs\thesolutionno} {\input{\defsdir defs\thesolutionno}}{\setupvalues} Using the common denominator \fracsumr \$\$\frac{\fracsuma}{\fracsumb} \fracsumsign \frac{\fracsumc}{\fracsumd} =\frac{\fracsuma\times\fracsump}{\fracsumr} \fracsumsign

\frac{\fracsumc\times\fracsumq}{\fracsumr}
=\ok.
\$\$
\medskip


\CheckifGiven \end{solution} \medskip

In the above TEX coding, the role of \setupvalues is to provide default definitions, just in case there is no file defs\thequestionno (that is defs1, defs2, ... according to the question number) within the \defsdir directory on the local file-system. If it does exist, (e.g., having been written by Mathematica⁴, after performing calculations employing a random-number seed) then it should contain the necessary \definitions. Similarly there can be a file \answerdir answers\thequestionno to govern

 $^{^4}$ Mathematica is a trademark of Wolfram Research Limited. [13]

Figure 14: These presentation slides indicate how a random aspect is incorporated into the quizzes. Also shown are other aspects of generating quizzes, obtaining statistical information from the log-files, and general house-keeping duties that can be performed.

Figure 15: One slide here gives a rough view of the work-flow involved when preparing a set of quizzes for student use. A more detailed work-flow is given in figure 11.

the order in which the answers are presented in the quiz question.

References

- [1] Adobe Systems Inc.; "Acrobat Forms JavaScript Object Specification, Version 4.0"; Technical Note #5186; Revised: January 27, 1999.
- [2] Adobe Systems Inc.; Acrobat Reader, viewer for PDF format [4] documents, available free of charge from http://www.adobe.com/.
- [3] Adobe Systems Inc.; "FDF Toolkit Overview"; Technical Note #5194; Revised: August 10, 1999.
- [4] Adobe Systems Inc.; "Portable Document Format, Reference Manual, Version 1.3"; March 11, 1999.
- [5] Adobe Systems Inc.; "pdfmark Reference Manual"; Technical Note #5150; Adobe Developer Relations; Revised: March 4, 1999.
- [6] Hàn, Thế Thành; pdfTEX, free software for generating documents in PDF format, based on the TEX typesetting system. Available for all computing platforms; see http://www.tug.org/applications/pdftex/.
- [7] Lamport, Leslie; LaTeX, a Document Preparation System. This is free software available for all computing platforms. Consult the TeX Users Group (TUG) web site, at http://www.tug.org/.

- [8] McKay, Wendy and Moore, Ross; "PDF presentations using the Marslide package." TEX Users Group 2001 Proceedings, (elsewhere in this volume).
- [9] Netscape Communications Corporation; Netscape JavaScript Reference, 1997; online at: http://developer.netscape.com/docs/ manuals/communicator/jsref/toc.htm.
- [10] Story, Donald; exerquiz & AcroTEX, packages for including special effects in PDF documents, using TEX and LATEX. Dept. of Mathematics and Computer Science, University of Akron. Software available online from http://www. math.uakron.edu/~dpstory/webeq.html.
- [10] Story, Donald; "Techniques of Introducing Document-level JavaScript into a PDF file from a IATEX source." TEX Users Group 2001 Proceedings, (elsewhere in this volume).
- [12] Wall, Larry; *Perl*, a general purpose scripting language for all computing platforms. This is Free Software, available from http://www.perl.com/.
- [13] Wolfram Research Inc; *Mathematica*, a system for doing Mathematics by computer. Consult the web site at http://www.wri.com/.

MacQTEX: Online self-marking Quizzes, using pdfTEX and exerquiz

Ross Moore

Mathematics Department, Macquarie University, Sydney ross@maths.mq.edu.au http://www.maths.mq.edu.au/ ross/

Frances Griffin

Mathematics Department, Macquarie University, Sydney fgriffin@maths.mq.edu.au

http://www.maths.mq.edu.au/~fgriffin/

Abstract

The MacQTEX quiz system uses JavaScript [1, 9] embedded within PDF format [4] documents to allow students to do multiple-choice style quizzes. The Internet may be used to supply the quiz document, and to record results. But even when not connected, there is immediate feedback as to how many questions were answered correctly and what are the correct answers, as well as providing worked solutions indicating how the correct answers could be deduced.

The highest quality of typesetting is employed in the quizzes by using the TEX typesetting software [7], via the pdfTEX variant [6], to control the generation of the PDF documents [4]. Other software, such as Perl [12] and *Mathematica* [13], can be used to control the production of unique instances of a particular quiz so that each student gets slightly different questions to answer.

PDF Quizzes

At Macquarie University the Mathematics Department has been developing¹ a web-based system for producing quizzes which allow students to test their knowledge of mathematical ideas commonly used in courses that we teach. Currently these quizzes are used mainly at the most elementary level, for revision of the basic skills which the students should have acquired from courses at high school.

The current version of this quiz facility provides students with a multiple-choice answer quiz, of typically 10–12 questions, as a PDF document [4] downloaded from a web-site (figure 1). This document is an interactive form, controlled using embedded JavaScript [1, 9], which allows a student to read and work with the document, using the Acrobat Reader plug-in [2] to his/her favourite web-browser (figure 2). Figures 2–7 show some views of such a quiz, as it appears to the student before, during and after attempting to answer the questions.

In this paper we will concentrate mainly on the TEXnical aspects of the MacQTEX quiz system. For other aspects of the full system, such as the rationale for using quizzes at all, and features available to an instructor when preparing a set of quizzes for use by students, figures 13–15 show presentation slides prepared² for talks at educational meetings.

pdfT_FX, exerquiz and JavaScript

A quiz document is typeset using pdf-LATEX [6], with the exerquiz [10] macros to handle the embedded JavaScript [1, 9] actions needed to produce appropriate interactivity. In this setting, JavaScript controls

- the appearance of check-boxes, as the student selects his/her answers;
- counting the number of correct choices selected, and displaying an appropriate message;
- showing which of the student's selections were correct, which were wrong, and which were the correct choices for each question;
- resetting the form, for further attempts at the same set of questions.

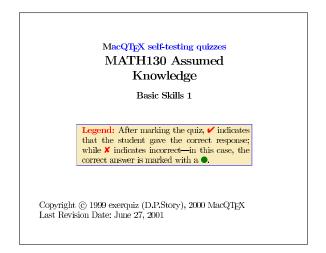
Donald Story [10] has explained some of these methods elsewhere in this volume.

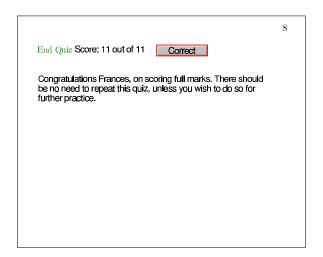
¹ This project has received funding via a 'Targeted Flagship Grant' from the Center for Flexible Learning, Macquarie University, and the Division of Information and Communication Sciences, Macquarie University as well as an equipment grant from Apple Computer, Australia Pty Ltd, via the Apple Universities Consortium.

²...using the Marslides package [8].

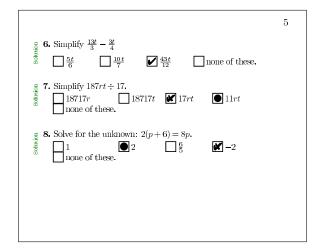
Netscape: MATH130 Quizzes - DE1 2001	9
MATH130 Quizzes - DE1 2001	
Assumed Knowledge Quizzes and Practice Quizzes	
Quizzes require your web browser to have the Acrobat Reader softwere, version 4.0 or 4.05. Yersion 5.0 , does not support the quizzes , so if you have installed this, then you should do the quizzes on campus (see below), rather than trying to reinstall an older version of Acrobat 4.05 can be downloaded for free from adobte saite. Bet the browser plug-in, and follow the instructions provided to install in.	
It is important to have the Acrobat Reader installed so that it runs inside the browser window. If not, you may still be able to do the quiz, but your results will not be recorded - Acrobat needs the browser to do this. If a new window opens with the quiz in it, then Acrobat is not running inside your browser. Here are some instructions if you need them.	
Note that this may require your computer to have a recent operating system; Win'95, Win'98, Windows NT (v.4) or later should be sufficient, or Hao08 7.6 or later for Macintosh systems. 16+ MByte RAMI may be enough, but more is preferable.	
You are required to complete the first three quizzes, getting full marks. You may try as many times as you like, the quiz will be different each time, and your results for each attempt will be recorded.	
The Practice quizzes are not compulsory, but are recommended if you are having difficulty with the compulsory quizzes.	
Enter your Student number, or other identifying string, then choose your quiz and hit the button: Student ID:	
Student ID:	
Compulsory Quizzes	
(Basic Skills Quiz 1	
Basic Skills Quiz 2	
O Basic Skills Quiz 3	
Practice Quizzes	
○ Fractions	
Manipulating Expressions	
○ Indices and Logarithms	
Geometry and Functions	

Figure 1: Quiz-site (at http://www.maths.mq.edu.au/~fgriffin/quizzes/MATH130quizzes.html) from which students can download the compulsory quiz documents. Username/password are required for recording accesses and results. Also from this site they may download practice quizzes, devoted to a particular mathematical concept. Guest access is also allowed for all quizzes.




Figure 2: An opening page to a typical quiz.

3 Basic Skills 1 Begin Quiz 1. Evaluate $\frac{5}{3} - \frac{11}{9}$ 4 $-\frac{1}{2}$ none of these. 2. Which of the following fractions is less than 1? none of these. $\frac{43}{41}$ $\frac{41}{80}$ $\frac{44}{44}$ **3.** Simplify 10 - 7(-4 + 2). $\square 40$ ☐ −10 □ -6 none of these.


Figure 3: First page of questions, with "Begin Quiz" button and user-selections.

In fact we have added some extra features not found in the released versions of exerquiz. Hence the macro file that we actually use is named exerquizX,

and epdftexX has the coding specific to the pdfTEX driver. These extra features include:

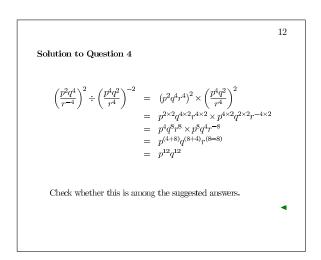

Figure 4: Last page of questions, after having selected the "End Quiz" button, showing the total score, and personalised confirmation message.

Figure 5: Embedded JavaScript [1, 9] is used to show the correct answer, when the student has made an incorrect choice. Also visible are buttons, previously hidden, which link to worked solutions.

- a quiz variant including both the self-marking feature *and* worked solutions;
- submission of a student's results to a server, via the Internet;
- return of a personalised message, as feedback to acknowledge receipt of the submitted results.

With these features, a quiz document provides a nicely typeset collection of questions and solutions which can be studied by a student, even when not connected to the Internet. The quiz can be reset for repeated attempts at answering the questions.

Figure 6: Worked solutions use properly typeset mathematics, as do the questions themselves. This one makes substantial use of mathematical symbols and equation alignments.

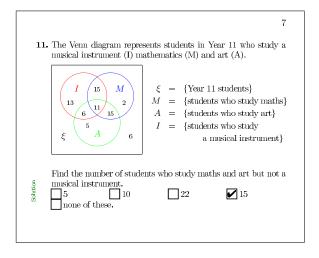


Figure 7: Elegant mathematical diagrams can also be used, both in the quiz questions and worked solutions.

Only the first attempt can be recorded, and even then only if there is an active network connection.

Concerning the worked solutions, these must remain inaccessible until the quiz has been completed and the results submitted. To do this, the worked solutions are typeset in a separate document, then each is imported as a separate image to be the icon for a button field. This button can be shown or hidden under the control of embedded JavaScript code. As well as allowing the solutions to be viewed, a hyperlink from the question to its solution becomes accessible. This is done by hiding an opaque button

which otherwise screens the active area of the link from receiving mouse-clicks.

Another novel aspect of the MacQTEX quiz system is the use of randomness to produce a slightly different quiz for each student access. Currently this is done using the *Mathematica*³ [13] software, programmed to write a file of TEX definitions for each question. Other ways of doing this could be used; e.g., other software could be used, or sets of \definitions could be read from a file which has been generated in advance specially for this purpose.

Designing a new quiz

Constructing a new quiz is done at a MacQTEX quizsite, using an HTML form, as shown in figure 8. Here an instructor may choose from pre-prepared question topics; currently there are 14 such types available, covering areas of basic mathematics.

For each topic, there are up to 6 actual question types. Both the number of topics and question types for a topic can be easily extended, though some knowledge of TeX or LaTeX is needed to do this. When randomisation is required, then some knowledge of programming in *Mathematica* is also useful. For a successful quiz, it is necessary to generate plausible incorrect answers, as well as the correct answer. Generating these in *Mathematica* can be an interesting challenge. Sometimes it is necessary to discard random choices where an answer intended to be wrong actually agrees with the correct answer; that is, obtaining the correct answer by a completely fallacious method.

Figure 9 shows the work-flow for making a new quiz. This includes loops for producing example quizzes, and for editing of LATEX sources for wording and/or layout. Only when the instructor is completely satisfied should a batch (e.g., 50) of quizzes be generated, and made available for student access.

LATEX source code

Figure 10 shows the directory structure at a quiz site. It can be seen that there are many files with .tex suffix, which need to be read as part of a typesetting job. Reading all of these files in the correct order is essentially a bootstrap process, in which \definitions are made as required, before the next file is \input.

For example, the main job for the quiz which was used for figures 2 to 6 uses a file having the name MATH130quiz1.tex, as follows:

\def\recipient{}

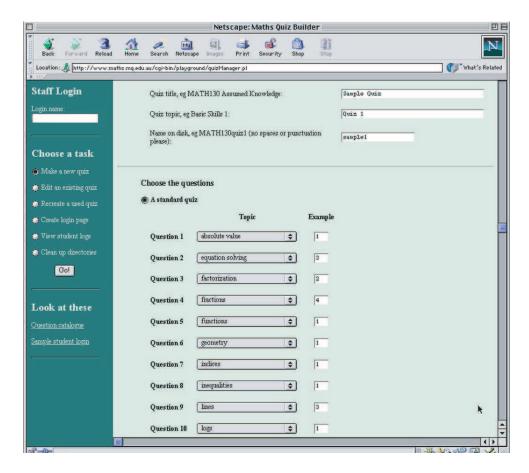
```
\def\defsdir{newquiz50/}
\def\texdir{../}
\nonstopmode
\catcode'\@=11
\dedf\eq@author{\recipient}
\edef\eq@keywords{version 50}
\catcode'\@=12
```

```
\def\loginID{version 50}
\def\whichquiz{MATH130quiz1}
\input \texdir user.tex
```

The number 50 that occurs here is because 50 instances of this quiz have been generated. For each instance the number would have been different.

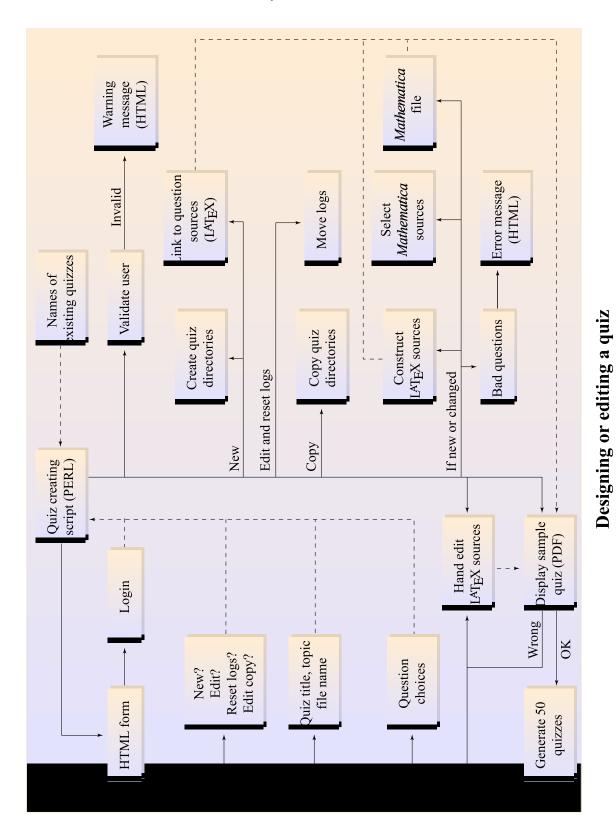
The file user.tex is constant, for all quiz instances:

```
\def\author{Fran}
\def\imagedir{\texdir}
\input \texdir a.tex
\def\quizname{Basic Skills 1}
\input \texdir b.tex
\input \texdir bb.tex
\input \texdir c.tex
\input \texdir z.tex
```


Those files a.tex, b.tex, bb.tex and z.tex are constant for all instances of a particular quiz. Indeed b.tex and c.tex are created by a Perl [12] script, and hard-code variables such as the title of the quiz and its topic. It is a.tex which contains the \documentclass command, and loads the (modified) exerquiz package, as well as other standard LATEX packages. Similarly, the \end{document} is in z.tex. These two files are simply copied from a global storage location.

Information for the opening page of a quiz is contained in b.tex. This file could well be edited to alter the instructions, or to convey other information about the quiz. The main information in bb.tex is the URL to which results submissions should be sent. Other specialised TEX definitions can be added here, when not suitable to be included in other packages. It is thus c.tex which controls input of the questions themselves, as follows:

```
%% You may edit this file to change the order of % the questions, or adjust spacing and pagination.
```


```
\def\answerdir{\defsdir}
\def\CheckifGiven
  {Check whether this is among the suggested answers.}
\def\bfR{{\mathbf{R}}}
\def\bfZ{{\mathbf{Z}}}
\def\errOnSend
  {Your quiz results have not been received.}
%
\begin{quiz}*{\whichquiz}
%
\begin{quiz}*{\whichquiz}
%
\begin{questions}
```

 $^{^3\,}Mathematica$ is a trademark of Wolfram Research Limited.[13]

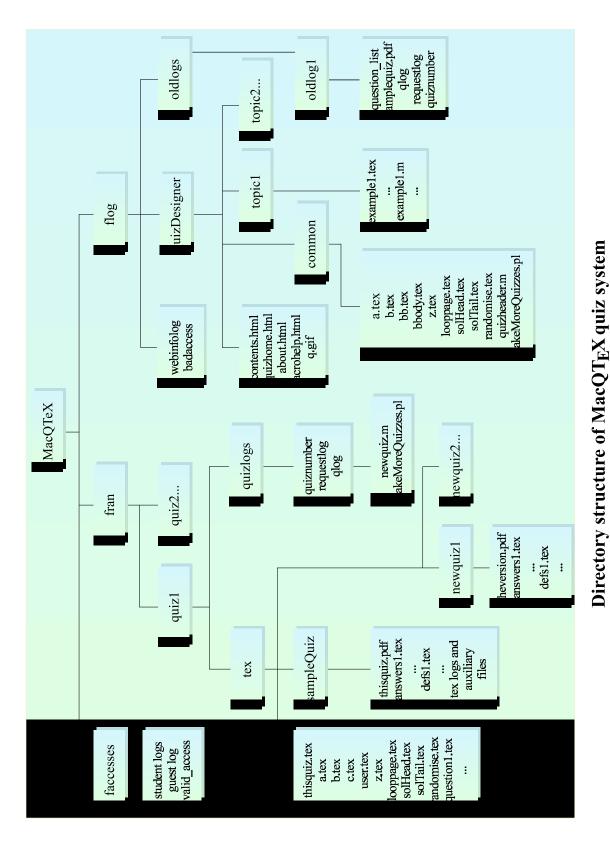


Figure 8: This web-page is used by instructors and course coordinators to design quizzes for the students to use. Questions can be chosen from predefined categories; each category has up to 6 choices of question.

```
\item \input{\texdir question1.tex}
                                                          \TextField[name=progress,height=3cm,width=10cm,
\medskip
                                                            align=0,bordercolor={1 1 1},default=\err0nSend,
\vfil
                                                            multiline=true, readonly=true] {}
\goodbreak
                                                          From this it can be seen that the source code for
\vfilneg
                                                          the questions themselves is contained in files named
\item \input{\texdir question2.tex}
\medskip
                                                          question1.tex, ..., question11.tex. This also
 . . .
                                                          contains the LATEX source for the worked solution.
 . . .
                                                          One of these looks like:
                                                          \def\setupvalues{%
\goodbreak
                                                          \def\fracsuma{1}\def\fracsumb{2}\def\fracsumc{5}
\vfilneg
                                                          \def\fracsumd{9}\def\fracsump{9}\def\fracsumq{2}
\item \input{\texdir question11.tex}
                                                          \def\fracsumr{18}\def\fracsums{19}
\medskip
                                                          \def\fracsumsign{+}
\vfil
                                                          \def\ok{\frac{\fracsums}{\fracsumr}}
\goodbreak
                                                          \def\wronga{3}\def\wrongb{\frac{6}{11}}}
\vfilneg
\end{questions}
                                                          \IfFileExists{\defsdir defs\thequestionno}
\end{quiz}
                                                          {\input{\defsdir defs\thequestionno}}{\setupvalues}
                                                          Evaluate
\TextField[name=\whichquiz,width=1.25in,
                                                          ${\frac{\fracsuma}{\fracsumb}}
 align=0,bordercolor={1 1 1},
                                                            \fracsumsign {\frac{\fracsumc}{\fracsumd}}$
 default=Score:,readonly=true]{}%
 \raisebox{3.5pt}\quad{\eqButton{\whichquiz}}
\therearequizsolutionstrue
                                                          \RandomAnswers[123]{\answerdir answers\thequestionno}
\medskip
                                                          \begin{answers}[\whichquiz:q\thequestionno]{5}
```


Figure 9: Work-flow for designing a new quiz, based on selections made from the HTML form shown in figure 8. Copies of existing files can be edited to taste. Constructing new question types requires more substantial editing, especially when randomisation is required.

Figure 10: Directory structure of a quiz site, showing the locations of all the (IA)TEX input files for each question and quiz instance.

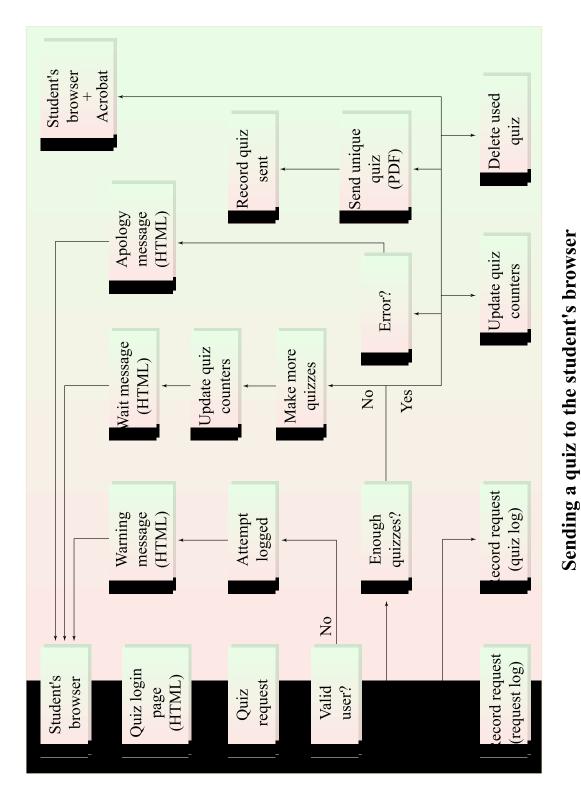
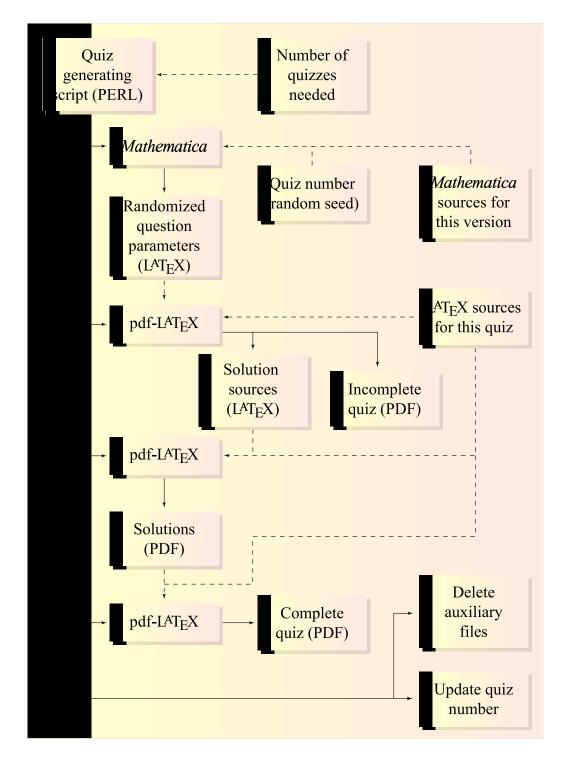
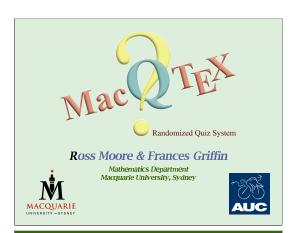




Figure 11: Detailed work-flow for sending a quiz to the student's browser. Only at the step "make more quizzes" does pdf-LATEX come into play within this work-flow, as otherwise sufficiently many quiz documents have been typeset, awaiting requests for downloads. See figure 12 for the work-flow when it is necessary to generate quiz documents.

Generating new quizzes

Figure 12: Details of the sequence of calls to pdf-IATEX for generating a quiz instance, along with its worked solutions. The first call causes a new document to be made containing the IATEX coding for worked solutions. These are typeset at the 2nd call. Finally the 3rd call constructs a PDF document containing both the quiz questions and each worked solution, imported as a single graphic.

Mathematics Quizzes

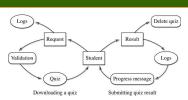
At Macquarie University the Mathematics Department has been developing $^{\rm I}$ a web-based system for producing quizzes which allow students to test their knowledge of mathematical ideas required in the courses that we teach. Currently these quizzes are used mainly at the most elementary level, for revision of the basic skills which the students should have acquired from mathematics courses at high school.

Examples

- Basic Math Skills: MATH130, examples
- Discrete Math Quizzes, with answers: MATH237

¹This project has received funding via a Tangeted Hagship Grant' from the Center for Hexible Learning, Macquarie University, and the Division of Information and Communication Scierices, Macquarie University as well as an equipment grant from Apple Computer, Australia Pty Ltd, via the Apple Universities Consortium.

Training not Testing


The aim of the quizzes is not so much for assessment as for selftesting and practice of material covered previously in lectures or back at school. Why use quizzes?

For various practical reasons, related to the students...

- · wide range in ability and mathematical background;
- not their main area of study, so need to identify holes in their mathematical knowledge;
- · several years since last studied any mathematics;
- maybe only a refresher course may be needed;
- · insufficient staff to help every student.

The quizzes can be used by students to **identify for themselves** where they are weak and may need to seek the extra help that *can* be provided.

Student Interaction

When a student requests a quiz, the identity is first validated; if authorized, a quiz is sent to the student's browser. A record is kept of all request details.

After completing the quiz, submitted results are recorded in the student's log and in the overall quiz log. A personalized message concerning the student's progress is returned as FDF data. This appears in a form field at the end of the PDF quiz document.

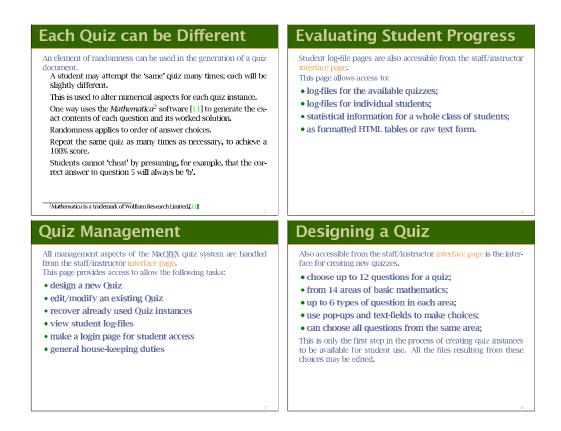
Figure 13: Presentation slides, mainly for use at education meetings. These give the rationale for using quizzes, as well as giving a rough representation of a student's interaction with the system. Also one slide has active hyperlinks to some actual web pages from whence quizzes can be downloaded.

\theAnswersStream
%
\multicolumn{2}{1}{\Ans0 none of these. \hfil}
\end{answers}
%
\begin{solution}
\medskip

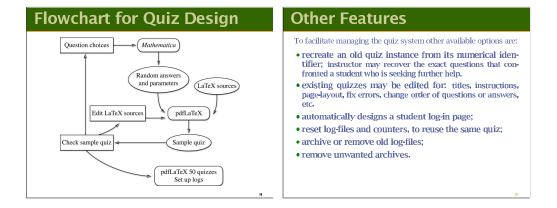
\def\setupvalues{%
\def\fracsuma{1}\def\fracsumb{2}\def\fracsumc{5}
\def\fracsumd{9}\def\fracsumq{2}
\def\fracsumr{18}\def\fracsums{19}
\def\fracsumsign{+}
\def\ok{\fracs\fracsums}{\fracsumr}}
\def\wronga{3}\def\wrongb{\frac{6}{11}}}

\addtocounter{solutionno}{1}

\IffileExists{\defsdir defs\thesolutionno} {\input{\defsdir defs\thesolutionno}}{\setupvalues}


Using the common denominator \fracsumr \$\frac{\fracsuma}{\fracsumb} \fracsumsign \frac{\fracsumc}{\fracsumd} = \frac{\fracsuma\times\fracsump}{\fracsumr} \fracsumsign

\$\$ \medskip


\CheckifGiven \end{solution} \medskip

In the above TeX coding, the role of \setupvalues is to provide default definitions, just in case there is no file defs\thequestionno (that is defs1, defs2, ... according to the question number) within the \defsdir directory on the local file-system. If it does exist, (e.g., having been written by Mathematica⁴, after performing calculations employing a random-number seed) then it should contain the necessary \definitions. Similarly there can be a file \answerdir answers\thequestionno to govern

 $^{^4}$ Mathematica is a trademark of Wolfram Research Limited. [13]

Figure 14: These presentation slides indicate how a random aspect is incorporated into the quizzes. Also shown are other aspects of generating quizzes, obtaining statistical information from the log-files, and general house-keeping duties that can be performed.

Figure 15: One slide here gives a rough view of the work-flow involved when preparing a set of quizzes for student use. A more detailed work-flow is given in figure 11.

the order in which the answers are presented in the quiz question.

References

- [1] Adobe Systems Inc.; "Acrobat Forms JavaScript Object Specification, Version 4.0"; Technical Note #5186; Revised: January 27, 1999.
- [2] Adobe Systems Inc.; Acrobat Reader, viewer for PDF format [4] documents, available free of charge from http://www.adobe.com/.
- [3] Adobe Systems Inc.; "FDF Toolkit Overview"; Technical Note #5194; Revised: August 10, 1999.
- [4] Adobe Systems Inc.; "Portable Document Format, Reference Manual, Version 1.3"; March 11, 1999.
- [5] Adobe Systems Inc.; "pdfmark Reference Manual"; Technical Note #5150; Adobe Developer Relations; Revised: March 4, 1999.
- [6] Hàn, Thế Thành; pdfTEX, free software for generating documents in PDF format, based on the TEX typesetting system. Available for all computing platforms; see http://www.tug.org/applications/pdftex/.
- [7] Lamport, Leslie; Lamport, a Document Preparation System. This is free software available for all computing platforms. Consult the TeX Users Group (TUG) web site, at http://www.tug.org/.

- 8] McKay, Wendy and Moore, Ross; "PDF presentations using the Marslide package." TeX Users Group 2001 Proceedings, (elsewhere in this volume).
- [9] Netscape Communications Corporation; Netscape JavaScript Reference, 1997; online at: http://developer.netscape.com/docs/ manuals/communicator/jsref/toc.htm.
- [10] Story, Donald; exerquiz & AcroT_EX, packages for including special effects in PDF documents, using T_EX and L^AT_EX. Dept. of Mathematics and Computer Science, University of Akron. Software available online from http://www.math.uakron.edu/~dpstory/webeq.html.
- [10] Story, Donald; "Techniques of Introducing Document-level JavaScript into a PDF file from a IATEX source." TEX Users Group 2001 Proceedings, (elsewhere in this volume).
- [12] Wall, Larry; *Perl*, a general purpose scripting language for all computing platforms. This is Free Software, available from http://www.perl.com/.
- [13] Wolfram Research Inc; *Mathematica*, a system for doing Mathematics by computer. Consult the web site at http://www.wri.com/.

Using pdfTEX in a PDF-based Imposition Program

Martin Schröder ArtCom GmbH, Grazer Strae 8, 28359 Bremen, Germany ms@artcom-gmbh.de http://www.oneiros.de

Abstract

 $\operatorname{pdfT\!E\!X}$ has been successfully used to build an industrial-strength, PDF-based, imposition program.

We give an introduction to imposition, and describe the system and our reasons for using pdfTeX. The system stores its information in an internal format that is translated into LaTeX. This file is run through pdfTeX which collects the images and puts them all on a single page. We describe the transformation and our experiences in setting up a TeX-installation and present our enhancements and corrections to pdfTeX.

The PDF Panel

Nelson H. F. Beebe Center for Scientific Computing University of Utah Department of Mathematics, 322 INSCC 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA

Email: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org, beebe@ieee.org (Internet)

URL: http://www.math.utah.edu/~beebe

Telephone: +1 801 581 5254

 $FAX: \ +1\ 801\ 585\ 1640, \ +1\ 801\ 581\ 4148$

Introduction

The TUG'2001 Portable Document Format (PDF) Panel convened on Tuesday, August 14, 2001, with members Nelson H. F. Beebe, Hans Hagen (chair), Martin Schröder, Don Story, and Hàn Thế Thành, with many comments and questions from the audience.

The list of topics that was projected on the screen makes up the sectional headings in what follows.

Any errors or omissions in this article are solely the fault of this reporter. The text is based on cryptic notes that I typed into a computer file immediately after the panel session, but has been expanded into English, with literature and Web references.

PDF design goals

Adobe Systems defined the Portable Document Format (PDF) in a specification published in 1993 [7], and updated in 2000 [3] and 2001 [4]. Adobe maintains a developer's Web site for PDF at http://partners.adobe.com/asn/developer/technotes/acrobatpdf.html where technical notes and electronic versions of the specifications may be found.

The PDF language shares much of the syntax of PostScript, but unlike PostScript, is not a true programming language. Several technological goals influenced the development of PDF:

- The data format must be identical on all operating system platforms.
- The data format must be public.
- A compact page description is desirable, to reduce data storage and transfer costs. While later versions of PostScript defined additional compression algorithms, their use has primarily been for compressing bitmaps, and program-

mers have to work quite hard to produce compact PostScript. [Tom Rokicki's dvips and my dvialw have both taken this about as far as is feasible: both produce much more compact output than the majority of PostScript-producing packages.]

- Page independence is needed to support highspeed parallel printing, to speed up screen display, and to permit network transmission of document fragments.
- Random access to individual page descriptions is needed to speed processing.
- Single-pass file generation is required.
- It should be possible to incrementally update page description files, while retaining the complete original contents. Examples include addition of reader comments in overlay notes, replacement of low-resolution figures by highresolution ones, and repair of minor typographical errors.
- A simplified, nonextensible, page-description language permits simpler and faster implementations of page rendering software.
- Font embedding promotes document portability.
- Font subsetting may reduce file size, and, for some vendors, solves the font copyright issue.
 For more information about this, see the TEX Font Panel article in these proceedings.
- The format should be extensible, so that new object types (e.g., audio and video) can be added in the future, without invalidating software that recognizes only older formats.
- It should be possible to encrypt file contents, and prevent (or at least, strongly discourage) certain actions, such as data extraction and printing.

These goals have all been met in Adobe's implementations of PDF processing software.

Interestingly, TEX DVI files, defined fifteen years earlier, fulfill all of these requirements, except for font embedding, encryption, and incremental updating.

PDF advantages

Publishers and print shops like PDF, because such files are less troublesome to deal with than Post-Script files often are. Numerous magazines and newspapers are now printed locally from master PDF files shipped electronically, saving the significant expense and delay of long-distance transportation of printed matter.

Some printer vendors exploit page independence to achieve very high performance: IBM has a PDF printer with 24 CPUs simultaneously rendering PDF page images to print at more than 400 pages/minute.

At least one PDF file viewer is freely available for each of the major platforms, including a hand-held Personal Digital Assistant (PDA), so the vast majority of computer users can view PDF files without cost. Besides Adobe's free Acrobat Reader, and their commercial Capture, Catalog, Distiller, InDesign, Photoshop, and Illustrator tools, there are Ghostscript (http://sourceforge.net/projects/ghostscript/), Ghostview, gv, and xpdf (http://www.foolabs.com/xpdf/) for viewing and printing, pdf2ps for printing, pdftotext for extracting raw text, and Ghostscript's ps2pdf and Frank Siegert's PStill (http://www.wizards.de/~frank/pstill.html) for converting PostScript to PDF.

The availability of multiple independent implementations is critical for demonstrating the sufficiency of the published PDF specification. It also promotes market competition, and gives users alternatives when the inevitable nasty software bug arises.

Apple's MacOS X operating system uses PDF as the native screen description format. There were early attempts to use PostScript for that purpose by Sun, with the *Network extensible Window System*, NeWS [8], in the late 1980s, and by NeXT, with Display PostScript [2, 9], in the early 1990s. Regrettably, processing power at the time was insufficient to make those efforts successful.

Adobe developed a special simplified generic PDF-producing printer driver, PDFWriter, for Microsoft Windows and Apple MacOS. This has made it possible for software vendors on those platforms to add PDF output capability with relatively little effort. Regrettably, output quality is sometimes inferior to what Distiller can produce, leading to user confusion and dissatisfaction. Adobe Acrobat 5 now installs a PostScript driver instead of PDFWriter.

PDF supports the notion of 'thumbnails': small bitmap images of pages that can be quite helpful in navigating through those documents where pages have recognizably different appearance. It also has bookmarks and hypertext links.

PDF viewers also offer magnification, which can be quite helpful in overcoming low screen resolution, or compensating for vision impairment.

Newer PDF viewers provide for page rotation, which is essential for reading documents with tables in landscape orientation.

Adobe offers a free PDF file creation service on the Web at https://createpdf.adobe.com that can be used to convert files from a variety of current desktop publishing and bitmap graphics file formats to PDF.

PDF has been extended to handle *forms*: documents with boxes to be filled out and transmitted electronically. The U.S. Internal Revenue Service provides income tax forms this way.

PDF and TeX

Hàn Thế Thành's important Ph.D. thesis research that led to pdfTEX has shown how TEX users can directly enjoy the benefits of PDF. The close coupling between typesetter and device driver makes some things possible that would perhaps be impractical in the conventional TEX \rightarrow DVI \rightarrow PostScript \rightarrow PDF production path.

Elsewhere in these proceedings, Don Story shows how JavaScript can be used with TEX and PDF to create interactive documents, and Hans Hagen's fine work with ConTEXt and PDF is almost magical.

The hyperref package, written by Sebastian Rahtz, Heiko Oberdiek, and others, modifies LATEX sectional and cross-referencing commands to emit TEX \special commands to record hypertext links that some DVIware, and pdfTEX, can deal with. PDF supports such links, so PDF file viewing is automatically enhanced with navigational links. The package is available in the CTAN archives at ftp://ctan.tug.org/tex-archive/macros/latex/contrib/supported/hyperref/.

PDF and document archiving

In my view, the open specification and wide acceptance of PDF is very likely to ensure that it can be used for 'long-term' document storage, something

that cannot be said for *any* of the proprietary desktop publishing formats.

Nevertheless, because PDF is a page description language, rather than a document markup language, it is still best to preserve document input forms, provided those are open and, possibly de-facto, standard.

PDF disadvantages: availability

Despite the praise of the previous sections, PDF is imperfect.

PDF implementations do not always agree with the specification, and Adobe's software often precedes the specification by months, or even a few years, as happened with PostScript Level 3. Third-party software developers then face the Herculean task of trying to reverse engineer the specification from experiments with Adobe's software. The development of both Ghostscript and pdfTEX has been significantly delayed by such problems.

Adobe's initial support of PDF for Apple Mac-OS, IBM PC DOS and OS/2, Microsoft Windows, and several flavors of UNIX (Compaq/DEC OSF/1, GNU/Linux on Intel x86, Hewlett-Packard HP-UX, IBM AIX, and Sun SunOS and Solaris) was encouraging. After all, a file format can hardly have the term 'Portable' in its name if it is not usable almost everywhere.

Sadly, Adobe's original commitment to broad support of PDF has been sharply curtailed. While the free Acrobat Reader component is offered for a number of platforms and human languages (see http://www.adobe.com/products/acrobat/alternate.html), the Acrobat product family with Distiller and Exchange has been completely dropped on all but MacOS and Windows. This is extremely troublesome, when Adobe markets PDF as a ubiquitous solution for page description.

The Acrobat releases for UNIX systems have an un-UNIX like command line, and lack support for path searching to find needed files. They also ship without any manual pages, a deficiency that I remedied locally. I donated my work back to Adobe for free and unfettered future distribution. Since the UNIX product line was dropped, that did not happen, so I am willing to make that documentation available on request to licensees of the product. For copyright reasons, I cannot place it in a public archive.

Were it not for Aladdin Ghostscript, users on other platforms would be mostly unable to produce PDF files at all. While the *Aladdin Free Public License* is quite generous, it does restrict commercial re-use, which, among other things, means that Aladdin Ghostscript cannot be included on TUG's annual TEX Live CD-ROM. Instead, TEX Live has to use the approximately one-to-two-years-older GNU release of Ghostscript.

It is never a good idea to rely on any software product that has a sole implementation, or runs only on a single platform. Software is complex, and even the yet-to-be-written perfect software package can be crippled by errors in the compiler, or runtime libraries, or operating system, or even hardware. Scientific experiments are never considered reliable until they have been independently reproduced. Software use is, after all, just another kind of experiment, and experience should have taught us to be highly skeptical of the outcome of any change to input data, or to program code.

Thanks to the fine work of Karel Skoupý and the NTS team [16], even TEX now has an independent implementation, although METAFONT still does not.

PDF disadvantages: complexity

PDF is compact because of data compression, and use of a binary, rather than ASCII, representation. Although the latter is possible, and was originally touted as an advantage of PDF [7], in practice, binary encoding is now almost universally used.

Compression and binary encoding both introduce a serious problem: data transformations that were formerly simple in uncompressed plain text now become immensely more complicated. A great many of the problems posted to the PDF user and developer mailing lists would have relatively simple solutions with plain text files.

What is needed is a standard tool for dumping PDF into a text format that can be edited, then converted back to the binary form, much as Geoffrey Tobin's extremely useful dv2dt and dt2dv tools (ftp://ctan.tug.org/tex-archive/dviware/dt1) do for DVI files, and Lee Hetherington's and Eddie Kohler's t1disasm and t1asm utilities (ftp://ctan.tug.org/tex-archive/fonts/utilities/t1utils) do for Type 1 outline font files. To my knowledge, no such freely-distributable tool exists for PDF files.

PDF's numbered, rather than named, object structure means that modifications generally require complete parsing of PDF, because objects must be renumbered if any are added or removed. Any future PDF disassembler/assembler tool must take this into account: it should be possible to hide this design blemish entirely.

The PDF file structure makes it impossible to simply concatenate multiple PDF documents to obtain a single document, something that is generally problem free with PostScript files.

Until I wrote this article, I knew of no generally-available free software that can combine PDF files, although there are commercial products for desktop systems that do so.

Now, with the TEX Live distribution, ¹ it is as simple as this:

texexec --pdfarrange *.pdf --result=all
The resulting all.pdf file will contain all of the PDF

files listed on the command line.

The binary format is also a serious problem for indexing of document collections, such as by Web search engines, or search tools like glimpse (see http://webglimpse.net/) or mg [19]. All of these need a PDF disassembler. Adobe's Acrobat Catalog product for indexing PDF file collections is platform specific, and GUI based, making it useless for many applications.

Except for dvipdfm (ftp://ctan.tug.org/tex-archive/dviware/dvipdfm/), TEX DVI drivers are incapable of dealing with PDF. pdfTEX can import PDF figures, but it cannot handle PostScript figures, or support the wizardry of the pstricks package (ftp://ctan.tug.org/tex-archive/graphics/pstricks/).

No PDF viewers provide information about the properties (font, color, texture, metric, ...) of user-selected displayed text.

PDF disadvantages: no logical markup

The PDF format lacks begin/end markers for identifying words, lines, paragraphs, sections, This is a serious design flaw that T_FX DVI and PostScript also share. UNIX troff at least outputs word and line markers. The reason that these boundaries are important is that some operations can reliably only be done on the formatted text, that is, the text that actually appears on the page image. Such operations include text extraction, cataloging and indexing, spell checking, grammar checking, and string searching. Attempting to do so on the input files is problematic: it is unreliable in the presence of macro expansion (such as in TFX files), and the job must be done differently for each possible document input format. It would be far better to perform these actions on the final typeset text in PDF form,

so that the programming job could be done just *once* for *all* input formats.²

The begin/end marker lack is just a special case of a more general problem: all current page description languages (DVI, PCL, PDF, PostScript, ...) completely lose all logical markup that was present in the input. The PDF discussion lists again provide ample evidence that what users really need is a page description language in which all logical markup is preserved, allowing recovery of the input and reliable translation into any markup system. It is simply not the case that one can always go back to the original document: often, that document is no longer available, or is in a proprietary format that is no longer available or supported, or is not usable on the current platform.

The recent PDF version 1.3 [3, Section 8.4.3] has some logical structure facilities, and PDF version 1.4 [4] introduces the notion of 'Tagged PDF'. These may supply the needed features to preserve logical markup. One reviewer, however, expressed reservations at their complexity, and it remains to be seen whether PDF-producing applications will take advantage of them.

PDF disadvantages: design limitations

Cut-and-paste with Acrobat Reader is deficient: ligatures (fi, fl, ffi, ffl, ...) are lost, or corrupted, on every MacOS, UNIX, and Windows platform that I've used. xpdf does *not* have this problem.

While PDF viewers offer page selection for printing, only the now-dropped Acrobat Exchange viewer had the ability to clip out a rectangular region of a page and save it as a separate file, with the 'supercrop' toolbar item. That feature is poorly documented, hard to use, imposes an obnoxious minimum crop size, and requires installation of an additional plugin software component. Borrowing figures and text snippets from other documents is a common need in document preparation, so perhaps it is fear of copyright violation that discourages software developers from including the capability in PDF viewers.

Although the Acrobat product family is released in numbered versions for multiple platforms, the viewer features differ between platforms. For example, Acrobat Reader 4 on Apple MacOS has a page cropping feature that is absent from the same version on Microsoft Windows, and the toolbar and menus differ between the two versions. While the

¹ The T_EX Live CD-ROM lacked space to include precompiled formats for ConT_EXt, so you first have to build them, like this:

env TEXMFINI ..some-path../texmf/web2c: \
 texexec --make en nl metafun

 $^{^2}$ The dvispell utility, announced by Daniel Taupin on the tex-euro mailing list on 29-Oct-2001, does something similar: it reconstructs text to be spell checked directly from the TEX DVI file.

differences are not major, they still require a certain amount of mental retooling for the human user.

In my view, such differences are simply poor software design and management. The window system interface, while platform-dependent, should be a relatively small portion of the PDF viewer code, most of which has the much more difficult task of dealing with complex PDF and font file formats. For example, in xpdf version 0.92, less than 10% of the code deals with the window system (as evidenced by inclusion of window-system-related header files), out of a total of 175,000 lines of C++ code (about nine times as much as either TEX or METAFONT have).

The color matching problem is still not satisfactorily solved, although other page description formats have the same problem. We have no technological way yet to guarantee that colors that the author used are very close to what the remote reader or printer gets.

Text searching, and page changing, in all current PDF viewers are vastly slower than those operations in a good text editor on a similarly-sized body of text on the same platform, and regularexpression pattern matching searches are unavailable. PDF viewer startup times are also far too long. Sometimes, performance gets worse instead of better: version 0.91 of xpdf introduced a much more powerful font rendering engine that has dramatically slowed that viewer. A test of viewing each page of this document showed that the new version runs two to fourteen times slower, depending on whether the file server and display are local or remote. Fortunately, the new rendering can be turned off with a command-line option, restoring performance to about the same as that of Acrobat Reader and gv.

The original PDF specification anointed 14 fonts as standard, requiring them to be supported by all viewers, and therefore, eliminating the need to store them in PDF files. When fonts are omitted from PDF files, their metrics are still stored, so that when the required font cannot be found, PDF viewers can substitute other fonts and obtain correct letter spacing, even though the letter shapes are wrong.

With the release of Acrobat version 4, the standard font set was abandoned, and some viewers changed their default fonts, so that displayed documents now look different. Unfortunately, Distiller does not give the user sufficient control to ensure that all fonts will be embedded or subsetted, so users may not be able to ensure the same appearance everywhere for their PDF files. This particular flaw has caused users of the U.S. National Science Foundation FastLane grant proposal process a huge

amount of grief, since PDF files that do not include full embedding and subsetting are rejected.

PDF version 1.4 [4] introduced a transparency feature, something that is completely absent from the PostScript imaging model of opaque paint. It is uncertain how such documents will be converted back to PostScript. So far, the transparency feature is little used, because most software cannot yet produce it. Its omission from PostScript, along with support for 3-D coordinates (and 4-D homogeneous coordinates), are the major flaws in that language that prevent PostScript from serving as a universal output format for modern computer graphics.

PDF disadvantages: bugs

In order to simplify, or compress, complex Post-Script files that use language features (see [1, Appendix H.2.4]) that prevent their inclusion in other documents as Encapsulated PostScript figures, it can be helpful to convert such files to PDF, and then back to PostScript.

Unfortunately, Distiller has an automatic page rotation feature that is beyond user control, even though there is an option for it. I posted an example to the PDF developers list showing two small Post-Script files differing only by a single comment: one was rotated by Distiller, and the other was not. This has to be a bug, and it completely prevents automated PostScript \rightarrow PDF \rightarrow PostScript cleanup of collections of figure files. ps2pdf does *not* have this problem.

Several PDF producers incorrectly rename subsetted fonts, causing the UniqueID problem discussed in the $T_{E\!X}$ Font Panel article elsewhere in these proceedings.

One audience member reported that the Hewlett-Packard 4550N has problems with some PDF files that other HP printer models with PostScript Level 3 support do not have. This may perhaps be traced to the lag between specification and software: the former should always come first.

Some PDF viewers incorrectly handle fonts with characters in positions 0...31 or 128...159.

Despite the fact that Adobe's own co-founder, and chief architect of PostScript, showed over twenty years ago how to use monitor gray scale for effective display of fonts [17], Acrobat Reader does a completely unacceptable job of displaying PDF files that use bitmap fonts (see http://www.math.utah.edu/~beebe/fonts/outline-vs-bitmap-fonts.html for further discussion, and visual comparisons). There is no excuse for this! PostScript and PDF are capable of handling several different font formats, and

PDF viewers should be able to perform equally well with all of them, subject to bitmap resolution in the original font data. By contrast, Paul Vojta's xdvi (ftp://ctan.tug.org/tex-archive/dviware/xdvi/) does an excellent job with bitmap fonts.

When Adobe announced Acrobat version 5.0 in August 2000, there was soon a flurry of correspondence on the PDF user and developer mailing lists about problems with the new release. These appeared serious enough, and were shown to impact PDF files produced from TEX documents, that we chose not to install the new version on local desktops at my site, even though we are licensed to do so. A year later, these problems are still under investigation, and the available version remains at 5.0. This seems to indicate quality control problems that should not be present in commercial offerings (even though they are rampant in the desktop software industry).

PDF files may contain metadata, such as text annotations, bookmarks, hypertext links, and so on, which must be coded in either Unicode, or in a superset of 7-bit ASCII called PDFDocEncoding, defined in [3, Table D.1, p. 551]. The encoding defines 194 characters, which should be the same in all applications. However, while writing software to convert text using standard TEX accents to PDFDocEncoding, Hans Hagen discovered platform differences for at least these characters: L, Œ, Š, Ÿ, Ž, Ø, and their lowercase companions. Such deviations are simply inexcusable when the specification is so clear.

Further reading

The three editions of the PDF Reference Manual [7, 3, 4] define the PDF language.

Thomas Merz's books [11, 10, 12] are a good source of information about PDF, and PDF forms. They are also typographically interesting, having been typeset with colored ink.

There are a few other books on PDF that I've recorded, but not yet seen [5, 6, 13, 14, 15, 18].

Finally, an extensive bibliography of publications about PDF and PostScript is available in the TEX Users Group bibliography archive at http://www.math.utah.edu/pub/tex/bib.

Acknowledgements

Thanks go to my fellow panel members, my wife Margaret, and L. Peter Deutsch of Aladdin Software, for many helpful comments on, and historical background for, drafts of this article.

References

- Adobe Systems Incorporated. PostScript Language Reference Manual. Addison-Wesley, Reading, MA, USA, second edition, 1990. ISBN 0-201-18127-4. viii + 764 pp. LCCN QA76.73.P67 P67 1990.
- [2] Adobe Systems Incorporated. Programming the Display PostScript System with X. Addison-Wesley, Reading, MA, USA, 1993. ISBN 0-201-62203-3. LCCN QA76.73.P67 D57 1993. US\$29.95.
- [3] Adobe Systems Incorporated. PDF reference: Adobe portable document format, version 1.3. Addison-Wesley, Reading, MA, USA, second edition, 2000. ISBN 0-201-61588-6. xvi + 679 pp. LCCN QA76.76.T49 P38 2000. US\$49.95. http://partners.adobe.com/asn/developer/acrosdk/DOCS/PDFRef.pdf.
- [4] Adobe Systems Incorporated. *PDF reference:* Adobe portable document format, version 1.4. Addison-Wesley, Reading, MA, USA, third edition, 2001. ISBN 0-201-75839-3. US\$54.95.
- [5] Ted Alspach and Jennifer Alspach. PDF with Acrobat 4. Peachpit Press, Inc., 1085 Keith Avenue, Berkeley, CA 94708, USA, 1999. ISBN 0-201-35461-6. 240 pp. US\$17.99. http://www.amazon.com/exec/ obidos/ASIN/0201354616/thepdfzone/ 002-7978061-6024210.
- [6] Mattias Andersson et al. PDF Printing and Publishing: the next revolution after Gutenberg. Micro Publishing Press, Torrance, CA, USA, 1997. ISBN 0-941845-22-2. vii + 198 pp.
- [7] Tim Bienz and Richard Cohn. Portable Document Format Reference Manual. Addison-Wesley, Reading, MA, USA, 1993. ISBN 0-201-62628-4. xii + 214 pp. LCCN QA76.9.F5P67 1993. US\$24.95.
- [8] James Gosling, David S. H. Rosenthal, and Michelle Arden. The NeWS Book: an introduction to the Network/extensible Window System. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1989. ISBN 0-387-96915-2. vi + 235 pp. LCCN QA76.76.W56 A731 1989.
- [9] David A. Holzgang. Display PostScript Programming. Addison-Wesley, Reading, MA, USA, 1990. ISBN 0-201-51814-7. x + 406 pp. LCCN QA76.73.P67 H63 1990.
- [10] Thomas Merz. PostScript and Acrobat/ PDF: applications, troubleshooting, and crossplatform publishing. Springer-Verlag, Berlin,

- [11] Thomas Merz. Mit Acrobat ins World Wide Web: Effiziente Erstellung von PDF-Dateien und ihre Einbindung ins Web. dpunkt Verlag, Ringstraße 19, 69115 Heidelberg, Germany, 1997. ISBN 3-9804943-1-4. 225 pp. DM 69,00; ATS 504,00; CHF 61,00. Includes CD-ROM. Also available in a revised edition in an English translation [12].
- [12] Thomas Merz. Web Publishing with Acrobat/ PDF. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1998. ISBN 3-540-63762-1. xi + 234 pp. LCCN TK5105.888.M47 1998. Includes CD-ROM. Revised and extended English translation of the original German edition, [11].
- [13] Bruce (Chauncey Bruce) Page and Diana Holm. Web publishing with Adobe Acrobat and PDF. John Wiley and Sons, New York, NY, USA; London, UK; Sydney, Australia, 1996. ISBN 0-471-14948-9. xx + 363 pp. LCCN Z286.E43P34 1996. US\$35.96.
- [14] Frank Romano. Acrobat PDF and Workflow In-Detail. P T R Prentice-Hall, Englewood Cliffs, NJ 07632, USA, 2000. ISBN 0-13-088948-2. ca. 522 pp. US\$39.99. http://www.phptr.com/ ptrbooks/ptr_0130889482.html.
- [15] Frank Romano, Melbert B. Cary Jr., Mattias Andersson, William Eisley, Amie Howard, and Mark Witkowski. PDF Printing and Publishing: The Next Generation After Gutenberg: The definitive guide to creating and using Adobe Acrobat 3.0 files. Agfa Division, Bayer Corporation, 100 Challenger Road, Ridgefield Park, NJ 07660, 1997. US\$27.95.

- http://www.AgfaHome.com/publications/dcp8text.html; http://www.amazon.com/exec/obidos/ASIN/0941845222/qid%3D905955098/002-1104103-2057202.
- [16] Philip Taylor and Jiří Zlatuška. The $\mathcal{N}_{\mathcal{T}}\mathcal{S}$ project: from conception to birth [Abstract]. $TUGboat,\ 21(3):304,\ September\ 2000.\ ISSN\ 0896-3207.$
- [17] J. E. Warnock. The display of characters using gray level sample arrays. Computer Graphics, 14(3):302–307, July 1980. CODEN CGRADI. ISSN 0097-8930.
- [18] Mark Witkowski. The PDF Bible: The Complete Guide to Adobe Acrobat 3.0. GATF-Press, 200 Deer Run Road, Sewickley, PA 15143-2600, USA. Telephone 412-741-6860, Fax 412-741-2311, Toll Free 1-800-662-3916, 1998. ISBN 0-941845-23-0. 438 pp. http://www.bookbuyer.com/aisles/titles/834607.htm; http://www.gatf.lm.com/98-10.HTM.
- [19] Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compressing and Indexing Documents and Images. Morgan Kaufmann Publishers, San Francisco, CA, USA, second edition, 1999. ISBN 1-55860xxxi + 519 pp.LCCN TA1637 570-3. .W58 1994. US\$54.95. http://www.mkp. com/books_catalog/1-55860-570-3.asp; ftp://munnari.oz.au:/pub/mg;http: http://www. //www.cs.mu.oz.au/mg/; cs.mu.oz.au/~alistair/arith_coder/; ftp://ftp.math.utah.edu/pub/mg/; http://www.math.utah.edu/pub/mg/; ftp://ftp.math.utah.edu/pub/mg/ mg-1.3x/bibsearch-1.02.tar.gz; http://www.math.utah.edu/pub/mg/mg-1. 3x/bibsearch-1.02.tar.gz.

Adobe 'Marked Objects' plugin for WaRMreader

Wendy McKay

Control and Dynamical Systems, CalTech, Pasadena, USA wgm@cds.caltech.edu http://www.cds.caltech.edu/ wgm/

Ross Moore

Mathematics Department, Macquarie University, Sydney ross@maths.mq.edu.au http://www.maths.mq.edu.au/ross/

Thomas Ruark

Adobe Systems Inc., San Jose truark@adobe.com

Abstract

The WaRMreader [4] method of using Xy-pic for placing labels over imported graphics was presented at TUG'99* in Vancouver [3]. Central to this method is the use of a .bb file, which contains information concerning "marked points" within the graphic, as well as specifying the bounding box.

A plugin module has been developed, for use with Adobe's *Illustrator* [2] (vers. 9, and later), which makes it easy to specify the desired marked points, and store the corresponding information within a .bb file. This information is valuable markup which could be used also for different purposes, with other software packages.

In this talk we demonstrate some possible work-flows for using the new plugin tool. Also, we describe the work done to convince the *Illustrator* Development Team, at Adobe Systems Inc., that such a tool is a simple and useful addition to their software.

Using the WaRMreader macros

The WaRMreader [4] method is an extension of Xypic's \xyimport command, that facilitates placement of labels over imported graphics. It works by having knowledge of the location of interesting places in the imported graphic, stored within a separate file in an easily readable text-based format. Since this file must also contain the bounding box information for the graphic, we refer to it as the .bb file, even though filename extensions other than .bb can (and should) be used, according to the format of the information within the file.

Back in 1999, when WaRMreader was presented at TUG'99, there was no convenient way for automatically generating a .bb file from graphics software on most computing platforms. In this paper we describe a new plugin module for Adobe's *Illustrator* [2] software that provides an intuitive windowed interface for the easy creation of such a

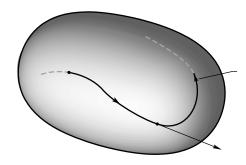


Figure 1: Image created with Adobe's *Illustrator* program, with no visible labels. Such labels will be added later, when the image is included within a LATEX document.

file, by inserting 'marked points' and other associated information. Before showing how this works, within the *Illustrator* program, we first revisit how the information is used within a (LA)TEX document

```
%%Creator:Adobe Illustrator 9.0, Macintosh 2000
%%Title: Fig8_2_1.eps
%%Date: 7/6/2001 7:16:6 PM
%%BoundingBox: 0 0 165 108
%%Coordinates: LL
%%StartMarkedPoints
%%MarkedPoint:(144,75) : point(0,0) : M %M, manifold
%%MarkedPoint:(164,62) : point(0,0) : traj %trajectory of\\fluid particle\\moving through\\$x$ at time $t=t$
%%MarkedPoint:(151,4) : point(0,0) : u %u(\varphi_t(x),t)
%%MarkedPoint:(105,22) : point(0,0) : phi %\varphi_t(x)
%%MarkedPoint:(38,61) : point(0,0) : x %x
%%EndMarkedPoints
```

Figure 2: Contents of the file exampl.bb defining the 'marked points' for exampl.eps, as shown in figure 3.

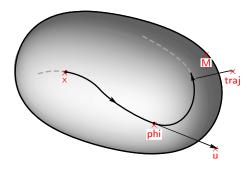


Figure 3: This is the image in figure 1, now showing the locations of 'marked points' whose coordinates and ID names have been read from a .bb file(exampl.bb).

for placing nicely typeset labels over an imported graphic image. This will help in understanding the nature of the information that needs to be provided within the .bb file, and consequently gives a motivation for the operations that can be performed with the new plugin tool and its associated windows and dialogs.

Figure 1 shows a mathematical diagram created using the *Illustrator* software. The need for explanatory labels is clear, but just which parts of the image should be labelled, and what these labels should say, is dependent upon the context in which the image is to be used. In figure 3 several important features of the diagram are marked with small crosses, each with an identifying string. These crosses and identifying names correspond to the information in the .bb file, listed in figure 2.

A possible set of labels is shown in figure 4, using the Xy-pic environment and coding shown in figure 5.² Essentially the same coding will work in

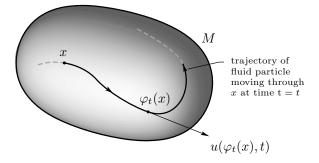


Figure 4: Imported image, fully annotated with meaningful labels, typeset by TEX and positioned using the intuitive XY-pic notation, as in figure 5.

```
\begin{center}
\def\Fname{exampl}%
\renewcommand{\xyWARMinclude}[1]{%
  \includegraphics[scale=.95]{#1}}
\begin{xy}
 \xyWARMprocessMoEPS{\Fname}{pdf}
\xyMarkedImport{\Fname}% repeat name for pdfTeX
 \xyMarkedPos\{x\}*++!D\{x\}
\xyMarkedPos{phi}*++!D!L(.3){\varphi_t(x)}
\xyMarkedPos{M}*+!LD{M}
\xyMarkedPos{u}*+!UL{u(\varphi_t(x),t)}
\xyMarkedPos{traj}*++!L!U(.5){\parbox{6em}%
{\scriptsize trajectory of\\fluid particle\\
 moving through\\$x$ at time $\mathrm{t}=t$}}
\end{xv}
\end{center}
```

Figure 5: This is the LATEX coding for the placement of labels, as in figure 4, over the imported graphic of figure 1.

Plain T_EX, or other T_EX format, by using macros \xy ...\endxy as delimiters, instead of the I^AT_EX xy environment. Also another macro for importing the image could replace \includegraphics, provided that this macro creates a box of the correct size to exactly contain the image.

Placement of the labels is best done using a \xyMarkedPos command, defined in warmread.sty,

² The 2nd argument to \xyWARMprocessMoEPS is 'pdf' when the processor is pdf-LATEX and exampl.pdf has been created from exampl.eps. When the processor is LATEX+dvips (or other driver) this would be 'eps' with the imported graphic named exampl.eps.

Figure 6: The imported graphic has been resized and the styles used for the labels has been made larger and heavier. Yet the coding to position the labels over the graphic is essentially unchanged.

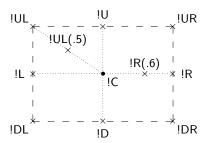
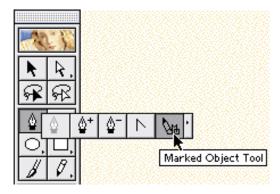


Figure 7: Xy-pic modifiers corresponding to the center (!C), the edges (!L, !R, !U, !D), all 4 corners (!UL, !UR, etc.), and arbitrary locations (!R(.6) etc.), to be the anchor point for positioning of an object over a marked point.

for each marked-point using its identifier. There is one line of coding for each label placed, with the TeX coding for the label itself as the $\{\ldots\}$ on each such line, assuming math mode. Detailed positioning of the labels is achieved using short Xypic 'modifier" strings. For example, with the upoint, the !UL means that the Upper-Left corner of the rectangle containing $u(\varphi_t(x),t)$ should be at the location of the marked point. In fact the preceding + (within *+!UL) has "grown" the rectangle to include a margin of 3pt on all sides; it is the upper-left corner of this enlarged rectangle that is positioned exactly over the marked point. For more details, consult the Xy-pic Reference Manual [5].

Although the WaRMreader [4] macros provide some alternative ways to position labels, the above method using Xy-pic modifiers is the most flexible for ensuring that labels can be easily positioned over parts of the image which are both near to the feature being labelled, and are relatively clear of other features prominent within the graphic. For example, the larger image with bold-faced labels, shown in figure 6, uses exactly the same coding as in figure 5 to position all the labels. That heavier style of labelling is more suited for display as a lecture slide, whereas the lighter style of figure 4 is better suited to a journal or book. (Indeed the image in figure 4 was scaled to 95%, so that after adding labels the whole figure would still fit snugly into the 2-column format of this journal.) The difference in coding is simply to precede the xy environment with LATEX and Xy-pic style-changing commands, as follows:


\def\Fname{exampl}%
\mathversion{bold}\LARGE\bfseries
\renewcommand{\xyWARMinclude}[1]{%
\includegraphics[scale=1.3]{#1}}%
\objectmargin{5pt}%
\begin{xy}

. . .

and to change the \scriptsize within the \parbox to \large, for one of the labels.

The primary advantages of using this method to label graphics are as follows.

- The style, size, and font-face of labels placed over imported images necessarily matches that used in the surrounding document.
- Since labels are added within the LATEX source, the wording of labels can be changed without need to alter the underlying graphic in any way.
- The same image can be used in many settings, with different sizes, styles or text for the labels;

Figure 8: The Pen tool pop-out has a new icon, corresponding to the 'Marked Objects' point selector.

there is no need to make any edits within the image file itself.

A subsidiary advantage is that the method of labelling is unaffected by compatibility problems in font technologies within the software used to create the graphic images. For example, there are known problems with the use of Computer Modern fonts in artwork created with earlier versions of *Illustrator*. When such images are viewed in recent versions of Adobe software, either font substitutions occur, or some glyphs may fail to appear at all. With the WaRMreader method such problems become irrelevant, since no text fonts are needed at all within the imported images.

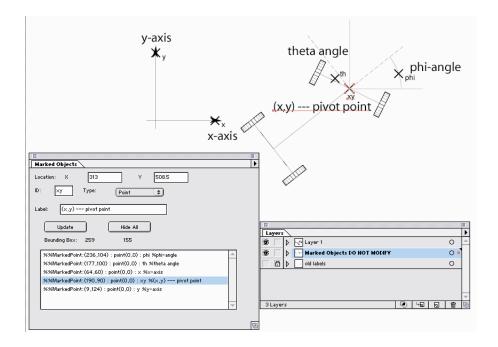
Adobe 'Marked Objects' plugin tool

In response to a request from Wendy and Ross, Tom Ruark has been working on a plugin module for Adobe *Illustrator* which greatly simplifies the task of constructing a .bb file while composing artwork using that program. This work is not yet complete, but a beta version of the plugin is available at Wendy's site.³ There is one variant for Macintosh and another for Windows-based platforms.

When the plugin is installed (in the sub-folder named Plug-ins/tools/ within Illustrator's installation folder) an icon for an extra tool (MO-pen) appears within the pop-out 'Pen Tool' menu, see figure 8. When selected, the cursor changes; any click within the artwork canvas creates a 'Marked Object' within a new non-printing layer. Selecting 'Show Marked Objects window' from the 'windows' menu, reveals a window that allows properties of marked objects to be seen and edited. Figure 9

shows a view of this dialog, along with the 'Layers window' showing the presence of the special layer.

As a new marked point is created, by a mouseclick with the MO-pen tool, it is allocated a default ID which is a count of the number of marked objects that have been created. (This count also includes any that have been subsequently deleted.) Using the Marked Objects window and selecting the list entry for the marked object, this ID can be adjusted to something that is more meaningful within the particular artwork. Also a text-string may be associated with the marked point. This allows a short meaningful description of the place being marked to be included with the artwork. These strings are located in the special layer, so will normally be nonprinting, however the layer can be made printing if desired; e.g., for editing purposes. Furthermore, by click and drag with the usual selection tool, these string objects can be shifted around within the artwork for clarity. The font and other attributes of these strings can be adjusted to taste; this includes altering the default position for the location of these strings relative to the marked point. See figure 10 for an example showing the appearance of some artwork, both when the marked objects are hidden and when visible. In future it may become possible to specify also a shape and size for marked objects, other than just points.


Saving the marked point information in a .bb file occurs automatically when the artwork is saved. However a variant of the .bb file can be saved at any time, with an arbitrary filename prefix, using a file dialog accessed from the Marked Objects window, as shown in figure 11.

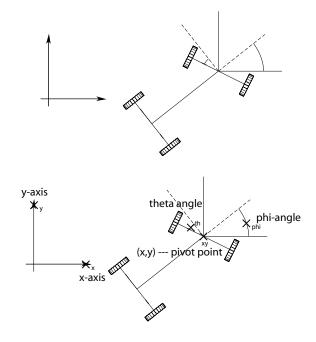
Getting help from Adobe

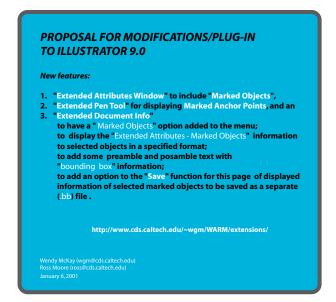
When Wendy first approached Adobe with the proposal for a plugin to create .bb files, Tom requested that she provide a work-flow for how the module would be used. Figure 12 shows such a work-flow. As well as this, Wendy and Ross designed a possible interface to the plugin tool, based on extending existing interfaces within *Illustrator*. The realisation was that the kind of coordinate information required in the .bb file is similar to what is needed for creating image-maps for graphics on web pages. That is, it was recognised that all the information that might be needed for marked objects should be already available (at least internally) for artwork being edited with *Illustrator*. To emphasise this, the original proposal suggested that the 'Marked

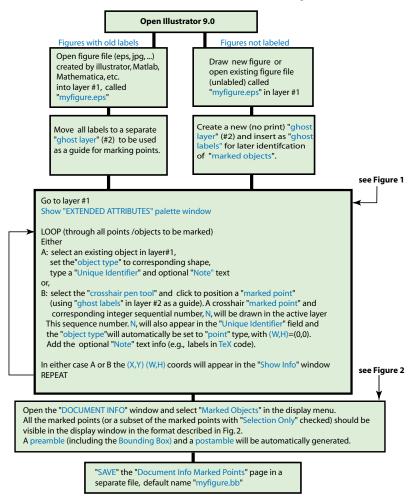
 $^{^3}$ http://www.cds.caltech.edu/~wgm/WARM/adobe/

 $^{^4}$ The current version of the plugin is slightly buggy in that it always saves a .bb file, even when there are no marked objects.

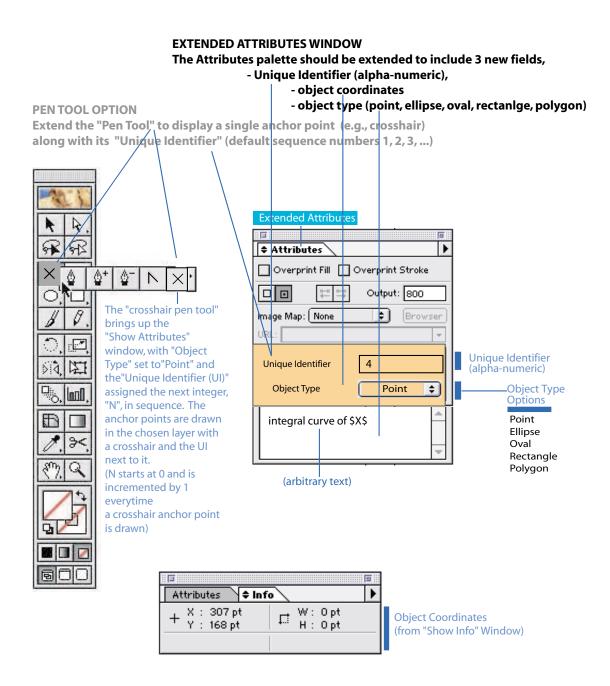
Figure 9: The 'Marked Objects' window lists all the marked points and allows their locations and other properties to be adjusted. Marked objects are created within a separate layer which should be 'hidden' and made non-printing before the artwork is saved into an .eps file.




Figure 10: The upper image shows some artwork with the Marked Objects layer hidden; i.e., as it would be seen when imported into a LATEX document. The lower image shows also the marked objects with their IDs and associated strings.


Figure 11: Saving a .bb file happens automatically, or can be done at any time from the 'Marked Objects' window, using the menu item shown here.

Object' interface could be developed as extensions to the existing interfaces showing 'Document Info' and other 'Attributes'. These suggestions are illustrated in figures 13 and 14, which accompanied the workflow (in figure 12) for the proposal.


In fact Adobe's *Illustrator* team of developers decided that a separate interface would be best. Programming this should not present great difficulty, as indeed all the APIs necessary to collect the required information were already available within the existing code-base for the *Illustrator* program. Sure enough, Tom was able to produce the first attempt at a working plugin within a very short time. Subsequent revisions have been to improve the interface and to fix bugs that have emerged during testing.

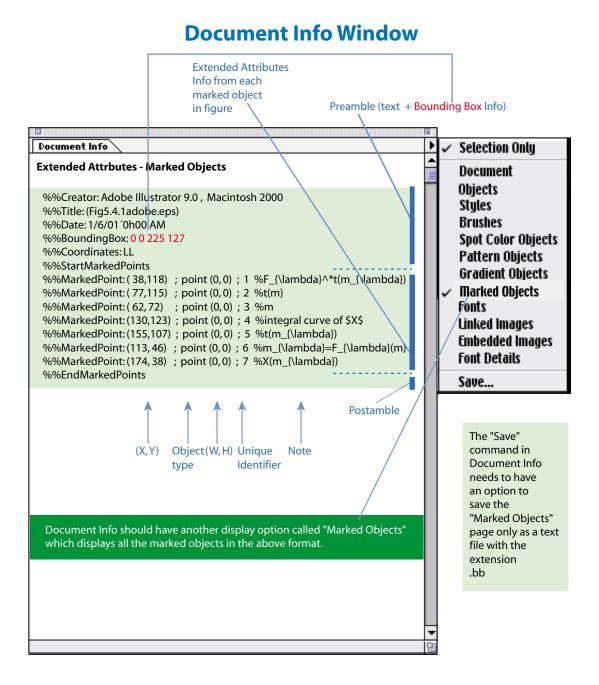

Extended Attributes & Marked Objects

Figure 12: Reproduction of the proposal to produce a plugin module for Adobe's *Illustrator* software. Top: front-page with brief summary. Bottom: workflow, for how the plugin tool might typically be used.

Figure 13: Reproduction of Figure 1 from the proposal to produce a plugin module: extensions to the pen-tool and 'Attributes' window. In the actual module the MO-pen icon was redesigned. These extensions to the windows, and that to the 'Document Info' window shown in figure 14, were combined into a single new 'Marked Objects' window; see figure 9.

Figure 14: Reproduction of Figure 2 from the proposal to produce a plugin module: proposed extensions to the 'Document Info' window, to display information about marked points. These extensions were not implemented as shown, but were combined with the coordinate data and presented in the 'Marked Objects' window, as shown in figure 9.

Known bugs and workarounds

As mentioned earlier, the plugin module is still under development, mainly to ensure that the interface is reliable and easy to use. Some 'bugs' are known to exist. Mostly these can be worked around, with advance knowledge of what can go wrong.

The following problems have been encountered while working with *Illustrator* and the Marked Objects plugin.

bounding-box wrong, by large amount:

This occurs when marking points in graphics originally created using older versions of Illustrator. These can have a bounding-box whose bottom-left corner is not at the origin of coordinates (0,0), which is usual for .eps files created in Illustrator version 9.0 and later.

One 'fix' is to open the corresponding .eps file in a text editor, copy its %%BoundingBox, then paste this into the .bb file to replace the incorrect information there.

A better 'fix' is to create a new document for artwork in *Illustrator* 9, then 'Select All' objects in the older artwork. Copy and paste these into the new document. Do all marking of points in the new version only. (Note that it is *not* sufficient to do a 'Save As...' version 9.0 update of the older artwork. This will *not* make any difference to its %%BoundingBox, so the problem will persist.)

bounding-box wrong, by small amount:

This occurs when there are hidden layers in the artwork, other than the special Marked Objects layer, in which there is an object that lies (at least partially) outside the bounding-box of the unhidden layers. The %%BoundingBox recorded in the .bb file encloses the hidden objects, whereas that for the .eps file only covers objects in the unhidden layers.

The fix is to copy the %%BoundingBox comment from the .eps file into the .bb file, as in the first 'fix' above

absurd coordinates for a marked point:

4- or 5-digit numbers, perhaps negative, lying clearly outside the boundary of the artwork, have been observed to occur as coordinates for marked-points. This appears to happen only

with artwork created with earlier versions of *Illustrator*, after an ID or attached string is moved manually.

The above solution of copying all the artwork into a new *Illustrator* 9 document should ensure that this problem does not occur.

badly sorted numerical IDs:

This occurs when the default numerical IDs for marked points are never changed. Then the order will be lexicographic; e.g., 1, 10, 11, 12, 2, 3, 4, 5,

It is better to use alphanumeric identifiers, which have names that are meaningful to the places being marked.

Acknowledgement

Two of the authors are deeply indebted to Professor Jerrold Marsden for continued support in the development of WaRMreader and other TeX-related software projects. The images used as examples for labelling graphics have come from one [1] of the many mathematical texts which Jerry has either written or co-authored.

References

- Abraham, R., J.E. Marsden and T. Ratiu; "Manifolds, Tensor Analysis and Applications".
 Applied Mathematical Sciences Series, Vol. 75; Springer-Verlag, New York, (1988) 654pp.
- [2] Adobe Systems Inc.; Adobe *Illustrator* 9 (latest version 9.02); purchase online from http://www.adobe.com/products/illustrator/main.html.
- [3] Moore, Ross and Wendy McKay; "Convenient Labelling of Graphics, the WARMreader Way". TUGboat Vol. 20 (3), 1999; pp. 262–271.
- [4] Moore, Ross; "What is WaRMreader?", examples, documentation and macros for warmread.sty; available online at http://www-texdev.mpce.mq.edu.au/WARM/and http://cds.caltech.edu/wgm/WARM/reader2001.html.
- [5] Rose K. and R. Moore; Xy-pic Reference Manual; accompanies the Xy-pic diagram macros for TEX; version 3.7 available from http://www.ctan.org/ctan/tex-archive/CTAN::/macros/generic/diagrams/xypic/.

The TextspecTool for Computer Aided Software Engineering

Stephen E. Oliver Whiteshell Labs, Pinawa, Manitoba, Canada R0E1A0 seolivers@bellsouth.net

Abstract

This paper reviews the development of the TEXspec tool, which assists in the development and documentation of quality assured software in a regulated environment. The tool can assist in the development of a broad range of software, but targets the development of software that implements mathematical models. The original application relates to the development of models of a repository for Canada's high level nuclear waste, but is not limited to this use. TEXspec is particularly useful when documenting models and associated programs which rely on mathematical notations to communicate the intent of the software.

Problem Definition

Canada has developed computer programs to model a deep geologic repository for used nuclear fuel [3, 2]. Regulators require that these programs be of demonstrably high quality to support licence applications.

In 1999, the Canadian Standards Association (CSA) adopted standard N286.7 [6] for the development of nuclear safety related computer programs, a scope that includes the AECL models. While the software development process used to date had been considered robust, it required refinement in order to achieve compliance with this standard.

The Texspec project seeks to address the issue of compliance with CSA N286.7. The tool supports a compliant software development procedure, while imposing a minimum of additional overhead. While optimised to meet requirements associated with the modeling nuclear fuel waste, it is hoped that Texspec will find more common usage.

Several commercial Computer Aided Software Engineering (CASE) tools will support a robust software development methodology, but none provide support for the mathematical notations that are common in scientific models. Texspec provides extensive support for this notation.

Software Development Methodology. Although Object Oriented (OO) analysis and design is appropriate for documenting many software applications, there are still applications for procedure/flow based software. In particular, some models which are basically linear in structure are best described using structured (non-OO) methodologies.

Many scientific models have, to date, been described using a modified Yourdon/DeMarco

methodology [5, 11]. Although OO methods would perhaps be more appropriate for some models, priority is given to the more common Yourdon/DeMarco analysis methodology. Products associated with this methodology are:

- data flow diagrams (DFDs),
- process descriptions (mini-specs),
- structure charts,
- subprogram design descriptions, and
- data dictionary listings.

DFDs and mini-specs comprise the requirements specification, while structure charts and subprogram design descriptions document the design. Data dictionary listings may be separated into requirements and design, or combined into a single product.

Requirements Specification. Figure 1 illustrates the main concepts of data flow diagrams. Diagram 0 shows the input and output 'flows' to/from a single 'process'. This high level abstraction is intended to allow the reader to identify the functions of the complete system. Process 1 is broken into components in Diagram 1. The diagrams may be thought of as a hierarchy, with higher level diagrams having shorter process numbers (i.e., Diagram 1.2.3) is 'higher' than Diagram 1.2.3.4) The numbering convention of the diagrams and the processes allows the decomposition to be clearly seen. Once processes are decomposed to a point where they can be clearly specified in a short textual description, they appear on a DFD with a double circle, as Process 1.4 illustrates. Such 'atomic' processes are associated with a mini-spec, rather than a lower level diagram. Data flows, like processes, can be broken up into constituent parts on lower diagrams. In figure 1, for example, 'Implements' on Diagram 0 becomes 'Measuring Cup', 'Bowl', 'Oven', and 'Pan' on Diagram 1. These flows are associated with multiple processes on Diagram 1, so they must be shown individually.

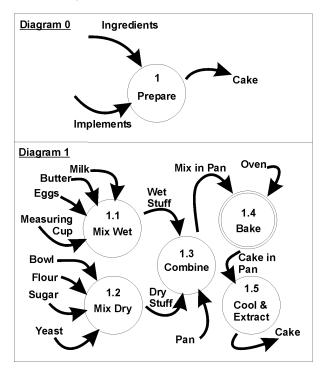


Figure 1: Example Data Flow Diagrams (DFDs)

Mini-specs for each atomic process repeat some of the information on the DFD, and also detail the requirements for a low level process in any manner deemed suitable by the author. For scientific codes, mini-specs often make extensive use of diagrams and mathematical notations.

Design Specification. Figure 2 illustrates the main concepts of structure charts. The boxes represent 'subprograms' to be composed in a procedural programming language such as FORTRAN. The chart is intended to illustrate the nature of the interface between subprograms. The lines between the subprograms indicate a 'calling' relationship, with the subprogram which is closer to the top of the structure chart invoking the lower. The transfer of data at these interfaces is also shown. Data can be passed from one subprogram to another via an argument list (shown along the connecting line), or through common storage that can be accessed from multiple subprograms (shown inside the subprogram box). The interface variables can be input, output,

or both, as denoted by arrowheads next to the variable name.

Structure charts do not have a hierarchical organization paralleling DFDs. However, a large structure chart may span many pages using off-page connectors.

Each subprogram must itself be documented. Subprogram design descriptions repeat some of the information on the structure chart, and document the algorithm and design details of the subprogram. This may include material common with minispecs, as the design reflects the requirements. In particular, many of the mathematical equations are referenced in both places.

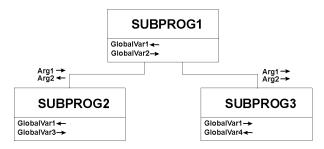


Figure 2: Example Structure Chart

Consistency Between Products. Experience at AECL has shown that lack of consistency between software products has been a major source of software defects [7].

Commercial CASE tools have helped to reduce this inconsistency, but these tools all have difficulty in one or more critical areas:

- Lack of support for scientific and mathematical notations. The nature of scientific software demands that mathematical notations (e.g., $A_i(t) = \int_0^t \left[F_i^{IN}(\tau)\right] d\tau$) be permitted in specifications.
- Insufficient accountability. The principle of ownership and accountability for products is not strictly enforced. While a record of who updated products is often kept, the process control is typically inadequate.
- Assembling large products from smaller components is not adequately supported. Many defects originate as transcription errors between products. Mathematical equations are particularly susceptible.
- Insufficient consistency checking between products.

The TeXspec Solution

TEXspec takes advantage of the plain text nature of IATEX input to permit processing and tracking of shared components. The main TEXspec processing is performed by modules which have been implemented in Perl [10], as indicated in figure 3. A graphical user interface (GUI) captures interactions with the user. Most of this interaction consists of displaying and manipulating 'component' files, which form the inputs for the TEXspec scripts that select components and assemble them into products. These products are primarily IATEX or Noweb [8] input files, which can be post-processed to produce output suitable for viewing, printing, or compiling.

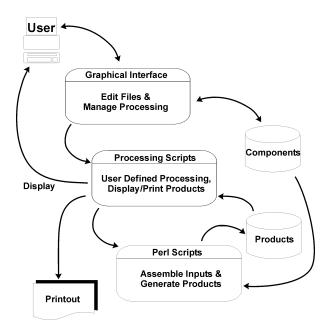


Figure 3: TeXspec Architecture

While the GUI is a convenient way to construct components and initiate processing, it can be bypassed if required. The components can be generated by any means that can generate an plain text output file, including a text editor. More importantly, the processing can be controlled by any means that can initiate a process, with no requirement for interaction with a GUI. When processing many components, or when a log of processing is required, this 'batch' style processing is a useful alternative.

Neither the TEXspec scripts, nor the GUI can display or print the products. Figure 3 indicates that an intermediate script, which is intended to be edited by the user, initiates TEXspec to produce the product files, then controls post-processing as

appropriate. This flexibility allows the user to integrate TeXspec into existing procedures. For example, if a static code analyzer such as Floppy [1] is in use, it can be run automatically on code as it is generated. Interaction with a version control system might be desired, or the user may even wish to compile code as it is generated. Alternatively, processing that is not needed can be removed, such as removing documentation generation (including LATEX processing) until the code is stable.

In order to support sharing of equations and data definitions, while tracking ownership and responsibility for content, Texspec supports a fine granularity of components. Each Texspec component is tracked independently by placing each in a unique file which is mapped by the file name to the name of the component, and by the file name 'extension' (in the tradition of MS-DOS or CP/M) to the type of component.

TEXspec components, with associated file name extensions, are:

- Requirements Data Dictionary entries (.rdd),
- Design Data Dictionary entries (.ddd),
- Equations (.teq),
- Data Flow Diagrams (.dfd),
- Mini-Specs (.ms),
- Structure Charts (.sc),
- Subprogram Design Descriptions (.ds), and
- Manuals (.tex).

Data Flow Diagrams. DFDs such as figure 4 are produced using the xy-pic package [9] under LATEX.

TeXspec shows the details of composite data flow decomposition explicitly on the DFD. In figure 4, for example, flow 'conc-majoranions' (which would appear on Diagram 1.4.3) is shown as constituent components 'CCL' and 'CSUL'. If a composite flow contains components which do not appear on the current diagram, they are shown in a regular font, while components that do appear on the current diagram are shown in a bold font.

Consistency between DFDs is monitored by TEXspec. A warning messages is generated for any inconsistency between a DFD and it's parent.

Labels can be shown with mathematical notation, rather than the plain text shown. Switching from plain text to mathematical labels is simple, since flows are taken from the requirements data dictionary (file **name.rdd**), which typically contains both a mathematical and a plain text label. Although this is an interesting capability, there has

Pri Sep 29 11:09:56 2000	DataFlowDiagram.cls Ver 1.1
INROC-LE	inroc
Data Flow Diagram 1.4.3 Determine Speciation of Groundwater	Version 01B
Author: Ted Melnyk	Feb 22, 2000
Implementer: Steve Oliver	Sep 29, 2000
Reviewer:	September 29, 2000

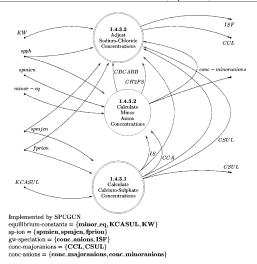


Figure 4: TFXspec Data Flow Diagram (DFD)

been little enthusiasm among users to take advantage of it.

The format of the header in figure 4 is common to all TEXspec products, detailing the project, the responsible author, implementer, and reviewer, along with an indication of the genealogy of the product (in very small type), which can be used to trace back the source of any defects.

Mini-Specs. Atomic processes are not broken down into lower level DFDs, but are further specified using a mini-spec. This document is intended to be flexible in format, permitting the author freedom to communicate the intent of the process in whatever manner is most effective.

The standard TEXspec header is generated for each mini-spec, as shown in figure 5. The author must explicitly state input and output flows, which are presented in tabular format and verified for consistency with the DFD.

Equations appearing in mini-specs are often referenced in other documents. Authors are encouraged, but not required, to place each equation in a separate file (name.rdd), and reference that file from within the mini-spec. The equation can then be reused in subprogram design descriptions or manuals. At AECL, a commercial package is used to create equations that can be saved in IATEX format which includes information encoded as IATEX comments which permits reuse by word processors.

Pri Apr 14 01 42-12 2000	MiniSpecials Ver 1.1
CC4	INROC
Process: 1.1: Determine Container Failures	Version 01A
Author: T.E. Melnyk	Feb 22, 2000
Implementer: S.E. Oliver	Apr 10, 2000
Roviowore	March 17, 2001

Determine the number of containers that have failed at the start of the simulation.

Variable	Symbol	Long Name	Units	1/0
NCONFS_sec	N_F	Number of containers failed in a sector		0
IFAILQ_sec	Q^F	instant container failure quantile		1
IFRACT	P_{F}	instant failure fraction		1
NCONSC_sec	N_T	containers in a sector	Ö	1

The failure probability of any individual container P_F is constant and the same for all containers, so the number of failed containers, N_F , out of N_T total containers is determined from the cumulative binomial distribution:

If
$$Q^F \le P(0; N_T, P_F)$$

$$N_F = 0$$
 Otherwise determine $N_F \in \{1...N_T\}$ such that

 $P(N_F - 1; N_T, P_F) < Q^F \le P(N_F; N_T, P_F)$ (2)

Where P(m; N, p) is the cumulative binomial probability distribution. The quantity m is called the number of "successes" (container failures) from N trials (total containers), each having probability p of "success".

$$P(m; N, p) = \sum_{j=0}^{m} {N \choose j} p^{j} (1-p)^{N-j}$$
 (3)

This is discussed in the "Container Failures" section of the Inroc Theory Manual.

Figure 5: TEXspec Mini-Spec (MS)

By keeping an equation in a single file, available for reuse, transcription errors are reduced.

Structure Charts. TeXspec structure charts such as figure 6 are produced using the xy-pic package [9] under LATeX. Subprograms can be grouped using

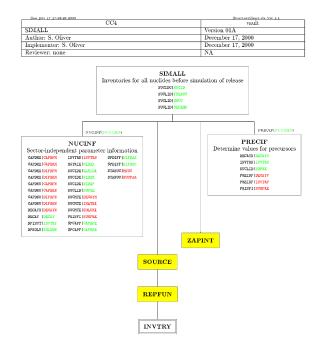


Figure 6: TFXspec Structure Chart

colour coded backgrounds. In figure 6, subprograms

'SOURCE', 'ZAPINT', and 'REPFUN' are grouped with a yellow background indicating that they are library routines, not part of the software being documented.

Input and output variables are also colour coded: green for input, red for output, and blue for both. This applies to both the arguments to a subprogram and to the common storage variables.

FORTRAN groups common storage variables into named blocks, which are indicated to the left of each variable name. Blocks are sorted alphabetically, and variables are sorted alphabetically within a block.

For subprograms that are functions, rather than subroutines, an additional output variable is provided in the name of the subprogram itself. In this case the name of the subprogram appears in red.

Most of the information on the structure chart is extracted from the subprogram design description (subprogram.ds) file for each subprogram on the chart. Presentation details are contained in a structure chart file (name.sc). The structure chart file lists the subprograms to be placed at specified locations. It also indicates the calling relationship between the subprograms and the location of the connecting lines. Texspec generates a warning message if the specified calling relationship is not consistent with the FORTRAN code.

The description of the subprogram, and the argument list, are extracted from the subprogram design description file, and can be quite long. The structure chart may specify a maximum line length for these elements, and TeXspec inserts line breaks appropriately.

The double box 'INVTRY' at the bottom of figure 6 is an off-page connector to another structure chart. This chart is referenced by an off-page connector 'SIMALL' on another chart.

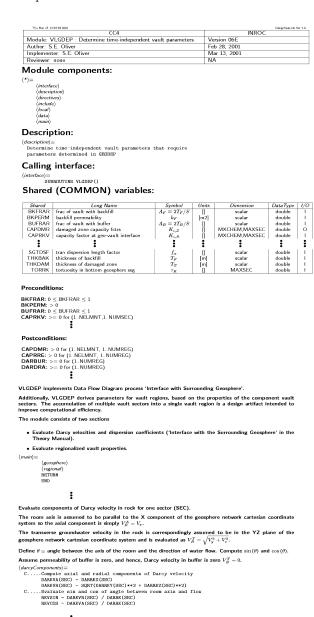
Subprogram Design Descriptions. Texspec supports literate programming techniques [4] via use of the Noweb [8] package. Some preprocessing and postprocessing is required to achieve the desired products, but Noweb users will be immediately familiar with the format.

Subprogram design descriptions can be long documents, but an abrieviated product is shown in figure 7. The TEXspec header is followed by a Noweb-style list of code blocks that comprise the subprogram.

Code blocks to declare variables are replaced by a tabular form which contains additional data dictionary information. Of particular interest is

the 'Symbol', which is the mathematical notation for a variable. This allows variables to be traced through equations, making the relationship between code and requirements much easier to follow. Also specified is the input/output status of each variable, which TeXspec validates against the contents of the code blocks.

Several tables may be generated. One each for subprogram calling arguments, common storage variables, local storage variables, and constants. After each table, the design may optionally specify preconditions and postconditions for the tabulated variables. Specifying valid ranges for data has proven to make testing much more accurate, and the process of specifying those ranges has identified many defects. Specifying preconditions and postconditions early in the design process is an effective and inexpensive quality control device.


Following the tables are the code blocks, each including commentary in IATEX format which may feature equations shared with mini-specs or other documents. Sharing equations ensures consistency. Consistency between subprogram design descriptions and compilable code is guaranteed, since Noweb extracts the code from the subprogram design description. Information for each subprogram on a structure chart is also extracted from the subprogram design description, ensuring that all design documentation is consistent.

Data Dictionaries. TEXspec distinguishes between dictionary entries for requirements and design specification. Some design information is never applicable to requirements (e.g., a common storage block name).

It is possible to have a close correlation between entries in the requirements and design dictionaries. Design entries may optionally state a requirements dictionary entry which is related. When this is done, fields in the design dictionary acquire default values equivalent to the requirements data dictionary. This is particularly useful to inherit the mathematical symbol and description.

TeXspec produces a data dictionary listing which can show a cross reference of which products use which dictionary entries.

Graphical User Interface. There is a considerable amount of data contained in many plain text files in a typical TeXspec documented project. To assist users, a GUI has been developed as a Java application to act as a front end to the process. While there is little new technology embedded in the GUI, it is interesting to note that the GUI, at over

Figure 7: A portion of a TEXspec Subprogram Design Description

20,000 lines of code, is much larger that the TEXspec scripts.

An example screen is shown in figure 8. Here, the structure chart 'SIMALL' from figure 6 is being edited in the upper window. A subprogram on the chart is being modified in the lower window. The GUI can open many windows, so it is contained within an application desktop, which produces only one icon on the user's desktop.

When editing a subprogram (module) on a structure chart, the user specifies the subprogram

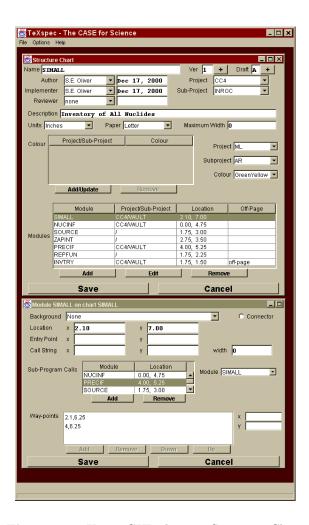


Figure 8: T_EXspec GUI editing a Structure Chart

name, and sets a position in x,y coordinates. If the user wants to show an entry point on the chart to this subprogram (useful for charts with multiple entry points), then the location of the entry point must be specified. The location of the call string, and the maximum width of that string is also entered. Calls to other subprograms can be added from a dropdown list of all available modules. For each called subprogram, 'waypoints' determine the shape of the line connecting the two boxes.

Similar editing capability is provided for the overall structure chart in the upper window. Selecting a subprogram from the scroll list at the bottom of the upper window causes the lower window to appear.

Future Development

The next stage of TeXspec development will be to add some object oriented programming extensions, and a rudimentary interface between the GUI and an Integrated Development Environment (IDE) to assist in debugging and performance analysis.

The plain text files that store TeXspec data are formatted to be human readable and editable. This allowed TeXspec to be used before the GUI was developed. With the advent of a GUI to interface with this data, the file format may be redefined to an XML syntax.

The Perl scripts may be reimplemented in Java, to permit a more seamless interface between the GUI and the main application.

The application may be divided into a client and a server. This would improve performance, assist in sharing data between users and projects, and provide more robust auditing and version tracking. The system could allow installation of files into a configuration management system. Dependencies between files would be monitored by the server, and ownership would be enforced.

A number of extensions may be made to the GUI, including preview capability for mathematical notations.

More diagram types and programming languages may be supported. In particular, object oriented diagrams may be added, and the full FORTRAN-9x, Java, or Perl syntax may be added.

The GUI support for the graphical products (Data Flow Diagrams and Structure Charts) could be based on editable graphics, or perhaps provide a 'preview' window. Having to process the file to see the format of the output is not a optimal.

Some allowance for formal tracing between design and requirements could be provided.

Conclusion

TEXspec provides a workable solution to computer aided software engneering requirements that are peculiar to scientific programs. It is a significant quality assurance device for these programs.

TEXspec is in use on several projects relating to modeling the disposal of Canada's nuclear waste. As such, it is a working tool, but is still in the early phases of development. Further enhancement will improve the capability of meeting quality assurance requirements imposed by standards such as CSA N286.7.

References

- [1] J.J. Bunn. Floppy and flow user manual. 1997.
- [2] B.W. Goodwin, T.H. Andres, D.C. Donahue, W.C. Hajas, S.B. Keeling, C.I. Kitson, D.M.

- LeNeveu, T.W. Melnyk, S.E. Oliver, J.G. Szekely, A.G. Wikjord, K. Witzke, and L. Wojciechowski. The disposal of Canada's nuclear fuel waste: A study of postclosure safety of inroom emplacement of used candu fuel in copper containers in permeable plutonic rock. Volume 5: Radiological assessment. Technical Report AECL-11494-5,COG-95-552-5, Atomic Energy of Canada Ltd, 1996.
- [3] B.W. Goodwin, D.B. McConnell, T.H. Andres, W.C. Hajas, D.M. LeNeveu, T.W. Melnyk, G.R. Sherman, M.E. Stephens, J.G. Szekely, P.C. Bera, C.M. Cosgrove, K.D. Dougan, S.B. Keeling, C.I. Kitson, B.C. Kummen, S.E. Oliver, K. Witzke, L. Wojciechowski, and A.G. Wikjord. The disposal of canada's nuclear fuel waste: Postclosure assessment of a reference system. Technical Report AECL-10717,COG-93-7, Atomic Energy of Canada Ltd, 1994.
- [4] D.E. Knuth. *Literate Programming*. Center for the Study of Language and Information, 1992.
- [5] D.M. LeNeveu. Analysis specifications for the cc3 vault model. Technical Report AECL-10970, COG-94-100, Atomic Energy of Canada Ltd, 1994.
- [6] Quality assurance of analytical, scientific, and design computer programs for nuclear power plants. Technical Report N286.7-99, Canadian Standards Association, 178 Rexdale Blvd. Etobicoke, Ontario, Canada M9W 1R3, 1999.
- [7] S. Oliver, K. Dougan, K. Kersch, C. Kitson, G. Sherman, and L. Wojciechowski. Unit testing - a component of verification of scientific modelling software. In T.I. Oren and G.B. Birta, editors, 1995 Summer Computer Simulation Conference, pages 978–983. The Society for Computer Simulation, 1995.
- [8] N. Ramsey. Literate programming simplified. *IEEE Software*, September 1994.
- [9] K. Rose. Very high level 2-dimensional graphics. In 1997 TeX User Group Conference. TeX User Group, 1997.
- [10] L. Wall, T. Christiansen, and R. Schwartz. Programming Perl. O'Reilly & Associates, 101 Morris Street, Sebastopol, CA 95472, second edition, 1989.
- [11] E. Yourdon. *Modern Structured Analysis*. Yourdon Press/Prentice-Hall, 1989.

GELLMU: A Bridge for Authors from LATEX to XML

William F. Hammond
Department of Mathematics & Statistics, University at Albany
hammond@math.albany.edu
http://www.albany.edu/~hammond/

Abstract

GELLMU, which stands for "Generalized Extensible LATEX-Like Markup", is a system for using LATEX-like markup, though not LATEX itself, to write consciously for a markup language in the SGML category or in its popular XML subcategory. The basic level of GELLMU offers a way to use LATEX-Like notation together with a LATEX-Like newcommand (with arguments) macro facility to write web pages. The advanced level of GELLMU enables one additionally to incorporate certain LATEX-Like features, such as the use of a blank line for a new paragraph, in writing for an SGML language. The didactic GELLMU production system provides an "article" XML language, with some resemblance to LATEX itself, that is a rigorous domain for translation to other formats.

Author Level Markup

Inasmuch as the World Wide Web is becoming an important library resource, one wants one's publications to be accessible online, and one wants webcrawling robots to be able to catalogue them properly.

Despite the popularity of Adobe's Portable Document Format (PDF) the distribution of PDF reading software is not as widespread as the distribution of web browsing software, and web-crawling robots often do not scan the contents of PDF documents.

What is available for the LATEX author toward this end? More specifically, consider the following situations:

Online publication archives Specifically, I would like to cite the T_EX/I^AT_EX-based e-print archive begun at Los Alamos in the early 1990's by Paul Ginsparg, now known as "ArXiv", a participant in the Open Archives Initiative. While in its early time the term e-print was understood to mean "electronic pre-print", ArXiv has more recently become a repository for established journals including, for example, the highly regarded Annals of Mathematics, which was founded in 1884 by Ormond Stone of the University of Virginia, and Ginsparg now tells us that the term e-print denotes "self-archiving by the author" under a new overall academic publication design.

Course handouts How can a college teacher prepare course handouts for both paper and online distribution? If the teacher writes LaTeX, some manual intervention will likely be needed in order to obtain correct HTML. If the teacher writes HTML, then the paper distribution² will be limited by what can be expressed in HTML, which is not as rich a markup as LaTeX.

TUG articles Before preparing a TUG 2001 article an author is asked to read Preparation of documents for multiple modes of delivery by Ross Moore, which is available on the web only as a two-column PDF printed page image. From this article one might conclude that carefully prepared LATEX may be suitable for translation to HTML although no HTML version of the article seems to be available.

GNU documentation While working for TUG on the TeX Directory System (TDS) guidelines — see /tds/standard/ at CTAN — in January 1998, Ulrik Vieth produced a LaTeX document and a tailored program for translating that document into Texinfo, the language of the GNU documentation system.

Texinfo is a T_EX-based system that pre-dates HTML. Its original purpose was to provide both print and (early online hypertext) Info

¹ Paul Ginsparg, "Electronic Clones vs. the Global Research Archive", http://arXiv.org/blurb/pg00bmc.html.

 $^{^2}$ If the HTML is correctly written, then robust translation to LATEX is possible.

versions of GNU software project documentation. When HTML came along, it was possible to provide fairly reliable transation from Texinfo to HTML because Texinfo is a well-structured markup. In fact, Texinfo is very nearly equivalent to an SGML language, and, Daniele Giacomini in August 2000 came up with an effort in that direction: Sgmltexi.

Although programs are available for translating carefully structured LATEX into HTML and sometimes into XML extensions of HTML, this method of generating online content for the basic level of the web sometimes requires manual intervention. A more direct approach to the world of SGML offers better prospects for long-term access to new web formats without sacrificing access to the quality of print typesetting that is available through LATEX.

The basics of basic GELLMU

In looking over Vieth's set-up for the TDS document in the late spring of 1998, I arrived at the idea of using LATEX-like notation for conscious writing in document languages under SGML and I have written a program in the GNU Emacs Lisp language, the GELLMU syntactic translator, for converting this LATEX-like markup to SGML markup.

The advantage of SGML markup is that each markup language (formally document type) under the SGML umbrella constitutes a structured domain for the application of automatic processors that are easy to create under any of a number of structured processing frameworks. There are frameworks accessible in standard computing languages, and there is also a recent framework *xmltex* by David Carlisle for writing TEX typesetting routines for XML document types.

The root idea in using LATEX-like markup for the conscious writing of markup under SGML is the simple syntactic correspondence between markup such as

some \em{emphasized} text
on the one hand, and the markup
some emphasized text
on the other.

Most LATEX commands are analogous to SGML elements. Moreover, the attribute list associated with an SGML element can be made to correspond with a LATEX command option. For example,

\a[href="http://foo.dom/"
]{The Foo Domain}
matches
<a href="http://foo.dom/"
>The Foo Domain

Enhancement with \newcommand

The idea of using LaTeX-like syntax for conscious writing under an SGML document type gains power when one realizes that although the notion of SGML entity provides, among other things, simple macro expansions, there is no provision under SGML for macros that take arguments. Moreover, there is no obvious method of extending SGML systems to accommodate macros with arguments apart from the idea of extending a document type.³

GELLMU provides a LATEX-like meta-command⁴ called *newcommand* that may be invoked with arguments. For example, if one writes

\newcommand{\afoo}[2]{%
\a[href="http://www.foo.org/#1 "]{#2}}
then a subsequent invocation

\afoo{tex-archive/tds/}{TDS at Foo} will yield (without line breaks):⁵

<a href=
"http://www.foo.org/tex-archive/tds/"
>TDS at Foo

This newcommand markup differs from that of IATEX in that it is classical macro substitution rather than vocabulary expansion. Since the syntax of a newcommand invocation is very similar to that of an SGML element, the use of newcommand can, apart from its on-the-fly convenience, be a help in the development of SGML document type extensions. A new name in a test document can be moved from being that of a macro to being that of an element simply with the removal of a newcommand definition.

SGML vs. XML

Basic GELLMU as enhanced by its macro facility is as far as one can sensibly go toward conscious writing under a language in the restricted subfamily of SGML document types known as XML.

From one viewpoint the differences between SGML and XML are not very important since most correct documents under the larger category can, if

³ While document type extensions require enough work that they cannot be spontaneous, they provide a sound way to avoid the tangles that can arise working with TEX or IATEX when attempting the simulataneous use of conflicting macro packages.

⁴ In GELLMU while a *command* corresponds to an SGML element, a *meta-command* is something having the same syntax as a command that does not correspond to an SGML element and instead receives resolution into other SGML markup under the syntactic translator.

⁵ The syntactic translator maintains line number alignment between its input and its SGML output so that line numbers used by SGML parsers in flagging errors match those in source markup.

correct, be automatically translated into equivalent documents under XML. For example, classical HTML that passes validation can be translated into the newer XML form of HTML using either James Clark's classical SGML library SP or Dave Raggett's program tidy.

However, the rules for XML were designed to make things easy for processors rather than for humans, and for that reason an author writing toward an ultimate XML document type usually is well-advised to write for a version of the document type under more author-friendly SGML rules.

For example, if in an SGML language a forced linebreak is represented by the defined-empty element brk, then the markup
brk> is sufficient, whereas under the more restrictive XML version of the same language, either the markup
brk></brk> or its abbreviated form
brk/>6 must be used. For GELLMU this means that the markup \brk and the markup \brk{} are interchangeable under SGML, except for the case of \brk abutting a following character without intervening whitespace, but not equivalent under XML. GELLMU provides the form \brk; to represent the abbreviated form
brk/> of an element that is defined as empty.

Advanced GELLMU

Basic GELLMU deals with markup languages more or less at the level of syntax without getting to the level of grammar.

Advanced GELLMU may be used to roll language-independent grammatical concepts into the picture.

The first of these is LATEX-like multiple argment/option syntax. For example under advanced GELLMU the markup

 $\frac{x + b}{c x + d}$

is converted in syntactic translation to

provides a list variable consisting of names that have only this type of content and that, therefore should be given close tags after the sequence of arguments and options. Absent that, the author must provide a close tag unless an SGML parser can infer it, and even in that case, if the element can appear in the mixed content model of another element such as, for example, a paragraph, then the parser's automatic placement of a close tag could lead to the unwanted collapse of a word boundary similar to that which occurs in LATEX when an author's careless markup

\TeX benchmark

gets typeset as "TEXbenchmark" instead of as "TEX benchmark".

If multiple argument/option syntax is used, then there is ambiguity on the nature of the first pair of chained delimiters if it is the pair '[', ']' — whether it represents an $op\theta$ or an attribute list. Therefore, in this case it is required that it is an attribute list if the first character after its '[' opening delimiter is a colon (':').

In basic GELLMU the following four of the ten LATEX-special characters are special:

Additionally, the character '#' is special when used in the definition of a newcommand, the characters '[' and ']' are special when used for LATEX-like option syntax, and the character '&' is special when followed immediately by a letter since then it is the introducer for SGML entity invocations.

Advanced GELLMU provides for the possibility of giving traditional LATEX meaning to '&' when not followed immediately by a letter and also to the other four LATEX-special characters, which are

Additionally, it provides for the possibility of giving traditional LATEX-like meaning to other short forms of markup such as "\(. . . \)" for inline math, "\[. . . \]" for displayed math, "--" for a range-dash, "--" for a punctuation-dash, "\" for an inter-word space, "\," for a short space, and others including also, if desired, the use of blank lines, as appropriate, for paragraph boundaries.

The didactic production system

The conversion of both basic and advanced GELLMU source markup to SGML is performed by my program called the syntactic translator.

If one wishes to write consciously for a public document type such as HTML or the Text Encoding Initiative's TEI using GELLMU's LATEX-like

⁶ Moreover, some confusion may arise from the fact that under the SGML syntax (formally SGML declaration) specified for HTML neither of these XML forms of markup would not be permitted.

syntax, the syntactic translator is the only part of GELLMU that will be of interest.

The optional features of advanced GELLMU described above can only be used when one is writing for a document type that provides markup in which the corresponding concepts have representation. For example, IATEX-like use of the character '~', for non-breaking space requires a markup that provides non-breaking space.

Moreover, if blank lines are going to be paragraph boundaries, then the syntactic translator will need a list of element names before which a new paragraph does not make sense, and, since there is no separate provision for a list of names after which a paragraph must end, the document type cannot be XML.

The GELLMU didactic production system provides such a document type and also provides tools, which can be used as inter-changeable components, for working with that document type.

The didactic production system consists of the syntactic translator and the following additional components:

- 1. An SGML document type called "article".
- 2. Its XML cousin, also called "article".
- 3. A program for translating SGML article to XML article.
- 4. A program for translating XML article to HTML.
- 5. A program for translating XML article to IATEX.

The document type is intended to be comfortable for authors with past experience in LATEX.

The document type and the components are didactic. They are intended to illustrate how such a system can be assembled from inter-changeable components. They are not finished in any sense, and each has shortcomings.

They do serve, I hope, to demonstrate to the community of LATEX authors that it will find no limitations in this approach to document production.

At the same time it is intended to provide a whole new way of thinking about the subjects of package design and class design.

Its unfinished nature is intended to make it relatively easy for those who are so inclined to move in various ways to finish such a system that fits their needs.

Production of this Document

This document and the slides used during its presentation were prepared with the GELLMU didactic production system. Pre-publication versions of the sources and various automatic formattings are available in the author's web.

Subsequent to the GELLMU run on this document a copy of its LATEX output was manually modified for conformance with TUG guidelines. If I were going to submit a number of such TUG articles, it would be worthwhile to make another variant of the LATEX formatter for TUG.

Creating Math Web Documents

Bob Caviness University of Delaware caviness@mail.eecis.udel.edu

Abstract

In this workshop, we will show how to combine techexplorer, Java, and JavaScript to produce interactive web content with a mathematical flavor. We will start with a brief overview of techexplorer (the IBM browser plugin for displaying TeX and MathML markup on the web), Java, and JavaScript. Then we will discuss in some detail an application that shows how to tie all these tools together with HTML in a natural way that leverages each of their strengths. The result will be a rather sophisticated interactive calculator, but the ideas are useful for many other applications.

The Makor System for Typesetting Hebrew

Alan Hoenig

Department of Mathematics, John Jay College, City University of New York ahoenig@suffolk.lib.ny.us

Introduction

I'd like to describe this morning a new TEX-based system for typesetting Hebrew. I call this system *Makor*, from the Hebrew word for 'source'. I don't know how many Hebrew speakers there are here today—I'm not one myself—so I'll describe this project from the point of view of coping with yet another new font subject to some curious rules. The worth of this project—insofar as there is any—lies in a few areas:

- First of all, I hope it will be of use not only for documents in Hebrew, but also in languages also using Hebrew fonts, such as Yiddish and Ladino.
- 2. Secondly, I hope this project serves as a model for adapting the TEX engine for typesetting foreign languages. The problems associated with Hebrew are quite different from ones associated with European-language typesetting, and I hope this inspires people who want to typeset, say, Devenagari or Arabic efficiently with TEX.
- 3. Finally, this project would have been orders of magnitude more difficult to implement without the convenience and power of virtual fonts. Virtual font technology is now over ten years old, and yet this area remains terra incognita for most TEX users. Perhaps this project can be interpreted as additional instruction in virtual fonts.

Prior work Any work on Hebrew typesetting must acknowledge Yannis Haralambous's great *Tiqwah* system. It is described in several places [1], and the last illustration in that paper must rank as one of the milestones in TeX typesetting history. Not only does it include two systems of diacritic vocalizations (one for pronouncing—see below—and one for liturgical chanting), but it does so so that the final product is a thing of great beauty. His METAFONT-created font is especially noteworthy. It's not clear, though, how to extend Yannis's work to apply to other fonts.

More recently, Sivan Toledo [2] has developed a PostScript system which cooperates with TEX for Hebrew. The illustrations that appear in his article are intriguing, but I have not been successful in using it myself. This article contains a useful list of sources for additional information.

The CTAN archives contain a generous collection Hebrew meta-fonts. Generally speaking, though, these fonts are not of sufficiently-high caliber for use with a comprehensive typesetting system. Most of them, for example, do not contain dotted letter variants or the vowel marks (see below for explanations). In the same way, the dozens of Hebrew fonts available on the Web are not TEX-worthy. So far, the only acceptable and freely-available font I've been able to lay my hands on is the font that is part of the Omega system (due to Yannis Haralambous and John Plaice). If anyone can point me to high quality fonts in addition to OmegaSerifHebrew, I would be grateful.

Describing Hebrew

For typesetting purposes, we can consider Hebrew in the following terms. It is a caseless language read from right to left (but from top to bottom). Although it is caseless, most letters have two forms—with and without a (more-or-less centrally located) dot. There are a total of twenty-seven letterforms (not counting the dotted variants), but five of those occur only at word endings. You can see these characters in figure 2. There they are presented in three groups separated by asterisks '*'. The last group (read right-to-left!) are the word-final letters.

Actually, all these letters are consonants. Vowel sounds are represented by diacritical marks which appear below the consonant. However, these marks are not mandatory, most often being omitted entirely from adult reading matter. They appear in language texts, children's books, and on occasion to make clear how to pronounce a new word or a foreign name. These diacritics differ from European accents in one intriguing way. They are centered not with respect to a central axis but with respect a particular axis whose location varies from letter to letter. Actually, the location of this axis should be specified by the font designer. (I am indebted to Yannis Haralambous for this crucial observation.)

Vocalized consonants appear in figure 3. The same vowel (best described as a simple dot under a

GENESIS I

In the beginning of God's creating the heavens and the earth—when the earth was bewilderment and void, with darkness over the surface of the deep, and the breath of God was hovering upon the surface of the waters—God said, "Let there be light," and there was light. God saw that the light was good, and God separated between the

בראשית א

ראשִׁית בָּרָא אֱלֹקִים אֵת הַשְּׁמִיִם

נְבֹּהוּ וְחֹשֶׁךְּ עַל־פְּנֵי וְהָאָרֶץ הְיְתָה תֹהוּ

נְבֹהוּ וְחֹשֶׁךְּ עַל־פְּנֵי תְהוֹם וְרוּחַ אֱלֹקִים

גְּ מְרַחֶפֶּת עַל־פְּנֵי הַמְּיִם: וַיֹּאמֶר אֱלֹקִים

זְּ יְהִי־אוֹר וְיִהִי־אְוֹר: וַיַּרְא אֱלֹקִים בֵּין

אָת־הָאוֹר כִּי־טוֹב וַיַּבְדֵּל אֱלֹקִים בֵּין

גַּמְרֹ יוֹם וְלַחֹשֶׁךְּ קַרָא לַיְלָה וְיְהִי־ לָאוֹר יוֹם וְלַחֹשֶׁךְּ קַרָא לַיְלָה וְיְהִי־ לָאוֹר יוֹם וְלַחֹשֶׁךְּ קַרָא לִיְלָה וְיְהִי־ לֵּאָר יוֹם אֶחֶד:

4 light and the darkness. God called the light: "Day," and to the 5 darkness He called: "Night." And there was evening and there was morning, one day.

Figure 1: A proposed Biblical layout.

אבגדהוזחטיכלמנסעפצקרששׁ שׂת * אבּגדהוּזּחטיכלמנּסעפצ קרּששׁשׂת * דְּםוְרְץ

Figure 2: The base characters in the Hebrew alphabet.

consonant) appears under two different letters. As you see, in the left consonant, it appears under the right letter stroke—about as far away from centering as you can get! In the remaining letter, the vowel is closer to the center, but not exactly at it.

Further considerations pertain to keyboard entry. I wanted to be able to use a standard computer keyboard to type my Hebrew source. Most of the Hebrew letters correspond to Latin letters but there are complications. For various reasons, several Hebrew consonants represent the same sound, and there are a handful of Hebrew letters that have no English counterpart.

For those readers who have trouble delaying their gratification, I present in figure 4 a sample of fully-vocalized Makor output. This selection is drawn from the final few verses of Deuteronomy.

Goals and implementation Don't worry—I have no intention of describing the features of Makor that properly belong in the User manual. But even without these details, there is enough interesting stuff going on that I hope you won't be bored, or at least *too* bored. On occasion, I suppose I will have to refer to details of the system, but I will try to keep those references to a minimum.

I set myself the goal of designing a system that uses a reasonable keyboard entry mechanism to typeset Hebrew according to the rules set out above and consistent to the high quality of which TeX is capable. You can decide how well I succeeded.

Several of these considerations are easily dealt with. To get right-to-left text, we demand that you use Makor with any of the extended TEX's that do this, such as Omega or eTEX. I noticed some minor but distinctive differences in the typeset output depending on which of these programs you use, so try both of them and use the best. The differences all appear in spacing before and/or after a bit of right-to-left text.

TEX's virtual font mechanism easily handles end-of-word glyphs, so that's not a problem.

TEX's ligature mechanism is quite helpful in this project. Although several Hebrew sounds are foreign to English, an English (or at least American) set of conventions has arisen for their representation. For example, Hebrew contains the gutteral throat-clearing sound that is present in some German words, such as in the name of the composer J. S. Bach. We agree in Makor to type ch whenever we

Figure 3: Hebrew vowel diacritics are not centered.

וַיָּמָת שָׁם מֹשֶׁה עֶבֶּד־ידוד בְּאֶרֶץ מוֹאָד עַל־פִּי ידוד: וַיִּקְבֹּר אֹתוֹ בַגַּי בְּאֶרֶץ מוֹאָב מוּל בֵּית פְּעוֹר וְלֹא־יָדַע אִישׁ אֶת־קְבֻרֶתוֹ עַד הַיּוֹם הַזֶּה: וּמֹשֶׁה בְּן־מֵאָה וְעֶשְׂרִים שָׁנָה בְּמֹתוֹ לְא־כָהֲתָה עֵינוֹ בְּלֹא־נָס לֵּחְה: וַיִּבְכּוּ בְנֵי יִשְׂרָאֵל אֶת־מֹשֶׁה בְּעַרְבֹת מוֹאָב שׁלֹשִׁים יוֹם וַיִּתְּמוֹ יְמֵי בְּכִי אֵבֶל מֹשֶׁה מוֹאָב שׁלֹשִׁים יוֹם וַיִּתְמוֹ יְמֵי בְּכִי אֵבֶל מֹשֶׁה בְּיִשְׂרָאֵל בְּוֹי עָלִיוֹ וַיִּשְׁמְעוּ אֵלֶיוֹ בְּנְיִ־יִשְׂרָאֵל וַבְּעֲשׁוּ בְּיִשְׂרָאֵל כְּמֹשֶׁה אֲשֶׁר יְדָעוֹ ידוד בָּנִים אֶל־בָּנִים: בְּיִשְׂרָאֵל בְּמִים אְשֶׁר שְׁלֵחוֹ ידוד לַעֲשׁוֹת בְּעָרְי מִאְרִים לְּבַּרְעֹה וּלְכָל־עֲבָדִיו וּלְּכָל־אַרְיִם לְּבָּרְעוֹ וּלְכָל־אַרְצְבָּיוֹ וּלְּכָל־אַרְיִּ וֹלְכֹל הַמִּרָ הִשְּׁר אֲשֶׁר עָשָׁר עָשָׁר בְּשָׁר עִשְׁר בְּשָׁר עָשָׁר עִשְׁר בְּיִלְיה וּלְכֹל הַמּוֹרָא הַנְדוֹל אֲשֶׁר עָשָׂר בִישְׁר בְּעָבָר הַמֹּוֹרָא הַנְּדִוֹל אֲשֶׁר עָשָׁה וּלְכֹל הַמּוֹרָא הַנְדוֹל אֲשֶׁר עָשָׁר בְּשָׁר הַיְּלִבְּי בְּיִוֹ וּלְכַל־בִייִם לְבַּרְיוֹ וּלְכֹל הַמּוֹרָא הַנְדִיוֹ וְבְּעָר עָשָׁר בְיִים בְּיִבְּיִים בְּיִבְיִים בְּבְּיִיוֹ וּלְכָל הַמִּיר הְחָזָקָה וּלְכֹל הַמִּרְר הַעָּבְ בְיִיוֹ וּלְכָל בִּיִּי בְּלִבְיר הַיִּר בְּתְחָיָבָה וּלְכֹל הַמִּיר בְּעָר בְּבְיר בְּעִרְר בְּבְרִיוֹ וּלְכַל הַמִּיר בְּעָבְיר בְּיִרְיִבְעָּר בְּיִר בְּיִבְיר בְּבְּרִים בּיִבּר הְחָזָבְה וּלְכִיל הַמִּיר הְחָזָבָה וּלְבֹל הַמִּיר בְּבְּרִים בּיִבּים בְּבֹּר בִיּיִּרְבְּבְיוֹי וּלְבִיל בְּבְיר בְּיִבְרִים בּּבְיר בְּיִבְירְבְּבְיוֹים בּיִבּים בּיים בּיִים בְּיִבּים בּיִבּר הְחָיִבְּבְּים בּיִבּים בּיִּים בְּיִבְיוֹים בְּיִים בְּעִירְים בְּיִבְים בְּיִבְּבְיוֹים בְּיִבְיִים בְּיִבְיוֹם בְּיבְּיִבְיוֹים בְּיִבּים בְּיבּים בְּיִבּים בְּיבְים בְּיִבְּים בְּיִבְּיוֹים בְּיִבְיִים בְּיִבְּיוֹים בְּיִים בְּיִבְּיִים בְּיִים בְּיִבְּיִים בְּיִים בְּיִבְּיוֹים בְּיִבְּיִים בְּיִים בְּיִבְּים בְּיִים בְּיִבְּיִים בְּיִבְּיִים בְּיִים בְּיִים בְּיִבְּיִים בְּיִבְּיִים בְּיִבְּיִּבְּיִים בְּיִּיבְּים בְּיִים בְּיִיבְּיים בְּיִים בְּיִיוֹים בְּיִיבְּיִיבְּיִים בְּ

Figure 4: Fully vocalized Hebrew output.

want that gutteral to appear in text. In a Hebrew font, ch is a special ligature that selects that letter.

Vowels The nexus of the project involved the representation and typesetting of vowels. Deciding on input conventions was straightforward—first of all, I let English consonants and only these consonants represent Hebrew consonants, and the flip side of that coin is that English vowels and only these vowels represent Hebrew vowels. However, the conventions of reading Hebrew demand that the vowel—which is a diacritic accent, remember, not a distinct letter—follows the consonant, a convention contrary to normal TeX conventions. At the same time, each time a consonant is typeset, we need to access somehow the location of its visual axis to know where to place the diacritic accent.

It's too bad that there is no \lastchar primitive in TEX, the way there is a \lastbox and a few other \last... things. To keep track of the most recent character, I had to coopt the italic correction, one of the few signposts that TEX erects to mark a recently set character. Since there really is no such thing as a Hebrew italic, at least in my fonts, its loss for marking genuine italic corrections is not missed

by anyone. In my special fonts, I redefined the italic corrections to equal the character code of the glyph. Italic corrections are just kerns, and they can be removed with \lastkern and examined to see how big they are, and thus which character has just been placed in the .dvi file.

Once I know which character I've just set, I can get the location of the optical axis. I previously made sure to store the distance of this optical axis from the central axis as a *kern* between the character in question and a special character which, although present in the font, is not used otherwise to typeset. It's possible to measure this kern, and so to know where and how to center a vowel. The Makor macros do all this for us.

There's one other aspect of vowels that I wanted to take into account. I mentioned earlier on that vowels are often omitted in actual Hebrew typesetting. Nevertheless, one might want to include them in the source document, if for no other reason than to make reading of the source file less of a bother. For example, there is a (reasonably) well-known Jewish holiday that occurs usually in December. According to my Makor input conventions, you would typeset it, fully vocalized, as

chanookauh.

To eliminate the vowels in the output, you eliminate them in the input, so the source should now read chnkh.

Does any reader doubt that this input is ugly, unpleasant, and difficult to read? In Makor, there is a companion font which maps the vowels to null characters, so you could de-vocalize the output while maintaining ease of reading in the input by typing something like

{\CXLV chanookauh}

Here, the command **\CXLV** is not a Roman numeral, but rather the instruction to cancel the vowels. But it's really just a font selection command, and you can play with it as you would any font selection command.

Active characters The only way I could differentiate between consonants and vowels in the source is by making all vowels active. For those still breaking their teeth on TEX, you should know that making a character active makes that character eligible to receive macro treatment—you can assign it a definition as you would to a control sequence.

This dual categorization leads to far few problems than I expected, but of course one immediate consequence is that virtually all of our familiar arsenal of LateX and TeX commands appear to become useless. A simple command like hapace is no longer—at least from the point of view of the TeX engine—an escape character followed by a sequence of letters. Here, we have an escape character (the backslash) followed by the letters hap, followed by an active character a whose definition LateX tries to plug in, followed by a c (which is typeset in the document), followed finally by an active e. There are straightforward ways out of this impasse, but it is a sticky wicket to be sure.

Numbers Numbers introduce an amusing problem as well. Although it's true that all Hebrew is typeset right to left, the only exception is for (ironically named) Arabic numerals when they appear in a Hebrew document—they are to appear left to right. How then do we typeset them?

If you think about it just a bit, you would be tempted (as I was) to simply come out of Hebrew mode to typeset the numerals and return to Hebrew mode for the remainder of the text. If $\$ and $\$ are the toggles for entering and exiting Hebrew mode, then you might typeset

אבגדה12345קרשת

schematically as

\[first bit of Hebrew \]% 12345%

\[second bit of Hebrew \]

If you do that, you get instead

קרשת12345אבגדה

which, for those not proficient in Hebrew reading, is schematically the same as

\[second bit of Hebrew \]%
12345%

\[first bit of Hebrew \]

If you think hard about this for a few moments, you see why this is so, and why it's necessary to introduce a \NUM macro to typeset the numbers. \NUM involved a recursive macro, easier to create than you might think since I plundered it wholesale from a timely example in the *TeXbook*.

Fleshing out the font Hebrew fonts tend to be sparse. What you get for your money is generally just the special Hebrew glyphs. If you're lucky, you get matching numerals, but almost never do you get a full complement of punctuation and special symbols. By virtue of the magic of virtual fonts, it's easy to flesh out the virtual Hebrew fonts with characters from an existing Latin font, but from which one?

It seems to me that the best match, at least for the OmegaSerifHebrew I used for my development work, is Palatino regular. However, it's a proprietary PostScript font, and although common (it's one of the fonts typically resident in any PostScriptenabled printer), I still wasn't comfortable assuming that everyone had access to it, and access to it under the fontname scheme that most modern TeX's adhere to.

Consequently, I used my second choice, although it's still a good choice. I chose the Computer Modern Fibonacci font cmfib8 as the font-flesher-outer. Although cmfib8 is a favorite of mine, I have heretofore not been able to find a legitimate use for it. Recall that this quirky font has META-FONT parameter values chosen from the sequence of Fibonacci numbers, an interesting group, at least from a mathematician's point of view. I used cmfib8 scaled by 699, where 699 is the sum of the eleventh and fifteenth Fibonacci numbers (if that's at all significant!).

The two examples above show the Hebrew letters in combination with Fibonacci numerals.

Further examples I'd like to present now just a few examples of Hebrew-English typesetting with Makor that at least look interesting. In figure 5 you

Rabbinic Hebrew (RH) does not differ greatly from Biblical Hebrew (BH) in its inflection of the noun, although the neutralization of final mem and nun means that the masculine plural is often, as in Aramaic, y-. Apart from the more frequent use of the archaic feminine suffix הַ as in אַלֶּמֶת 'priest's wife' and אָלֶמֶת 'dumb woman', RH also employs the suffixes ית and ה- for example ארמית 'Aramaic' and עבדות 'servitude'. RH developed distinctive feminine plural suffixes in אות (Babylonian) or יות (Palestinian), for example מרחצאות/מרחציות "bath-houses' and מָלְכָיּוֹת 'kingdoms' for вн "kingdoms' for вн מְלְכִיֹת, for nouns ending in ז- in the singular. Masculine plural forms sometimes differ from those that would be expected, or are normally found, in BH, for example, נוקין from אור from שורים 'damage', שור from אורים 'ox', שור from אָרָ ישוּק 'side', מצָאין from אָדָדִים from תְצָאין from תָצָאין from תָצָאין 'half', and שָׁלֹחָין from שָׁלִיחַ 'envoy'. The same is true of feminine nouns, for example אותיות from אות 'letter (of alphabet)', בריתות from בריתות 'covenant (without plural in вн)', and אמהות from אם 'mother'.

Some masculine nouns take the feminine plural suffix הור, for example, חָנוֹת from חֶן 'favour', כָּלֶל from כָּלֶל from כָּלֶל 'rule', חַיָלות from תִּינוֹק 'baby', חַיַלוֹת from חָיָלוֹת 'army', אַיָרוֹת from מִים from מִים 'water'. Similarly, there are some feminine nouns which take the masculine plural suffix יונים from יונים 'dove', נמלים from ביצה 'egg', for example. Occasionally, both types of plural are evidenced, as with יוֹם from יַמִים/יַמוֹת יgrom שָׁנִים/שַׁנוֹת from שָׁנִים 'year', with each form having a slightly different shade of meaning and the 'feminine' variant only used with suffixes. In RH we sometimes find plurals of nouns only attested in the singular in BH, for example אָבֶרִים from אָבֶר 'limb', from תָּמִדִים 'grass', and תָּמִדִים from תָּמִיד 'daily sacrifice'. Likewise, there are singular forms of nouns only attested in the plural in вн, for example אָלְמוּג 'coral-wood', בֵּיצָה 'egg', and בַּצַל 'onion'. The dual is used more than in BH, with existing forms retained and new ones created, for example מְּסְפַרֵיִם 'scissors' and 'meanwhile'. (1993: Saenz-Badillos, A History of the Hebrew Language, Cambridge University Press, pp. 188-89.)

Figure 5: Mixing Hebrew and English together.

חַגְגִית הָאֵרוּסִין שֵׁל חַיוּתָה סביון ליברכט אָת חגיגת האַרוּסִין של חַיוּתה קבעוּ בַּמָהִירוּת, OENGAGEMENT POIN אַחָרֵי שָהַצְעִירִים הוֹדִיעוֹ עֵל כַּדְ פָּתָאוֹם לַהוֹרִים. חָמִישָׁה־עָשֶׂר יָמִים לָפָגֵ הַחָגִיגָה, עִדַיִן לֹא חָשַׁב אִישׁ ַעַל הַבּוּשָׁה° שֶׁעָלוּל' סַבָּה מֱנִדָל לִהָבִיא עַל כּוּלָם. °SHAME **ŒI ŒI** •LIABLE עלול פּוּלֶם הָיוּ עִסוּקִים: עַרְכוּ רְשִׁימוֹת שׁל הָאוֹרְחִים, הַמָּאַכַלִים, הַכֵּלִים שָׁיֵשׁ לְהַכִין, הַשְּׁכֵנִים שֵׁמוּכַנִים לַעזוֹר, הַמָּתָנות שֶׁחֵיוּתָה מְבַקֶּשֶׁת לְקַבֵּל. בַּלָה, אָמַהּ שָׁל חַיוּתַה, הָבִּיטַה בַּבַּיָת וְנִבְהַלָה°. °BE FRIGHTENED נבחל מתם stain יהַכְּתַמִים על בַּדֵי הַרְפּוּד ינֵרְאוּ לַהּ קוֹפְצִים לַעַיָן, הַוֹילוֹנוֹת כָּבָר יִשָּׁנִים, עַל נָיַר הַקִּיר בַּחִבַר הָאוֹכֵל רוֹאָים אָת הַסִימַנִים שֵׁל הַכִּסְאוֹת. וָכֶדְ נוֹסְפָּה גַם רְשִׁימָה שֵׁל חָנוּיוֹת לְבַדֵי רְפּוּד וּלְבַעְלֵי־ OPROFESSIONAL בעל־מקצוע בַּתוֹדְ כַּל הַרַעִשׁ נַזְכַּרָה בֵּלָה שֵׁהִיא עדַיִן לֹא הָחָלִיטָה

Figure 6: Page from a proposed Hebrew primer.

אֵיזוֹ שִּׁמְלָה תָּכִין בְּעַצְמָה לַחֲגִינָה.

see how easy it is to mix lots of Hebrew with lots of English.

Although you do have to keep aware that vowels are active, it's surprising how few restrictions there actually are on Makor typesetting. In figure 6, we see the page of a book as it might be typeset for beginning students in the language.

Liturgical books frequently demand interesting layouts. In figure 1, verse numbering is automatic. The look of figure 7 mimics that of certains books of legal exposition.

Future work and further comments

Several important tasks remain in this project. Of course, as in all such projects, it's important to eliminate remaining bugs, continue macro support and so on; that goes without saying. The user manual has to be greatly expanded. Eventually, the Makor package will consist of a Perl script in addition to fonts. The script will greatly aid users who want to convert their own fonts to the form the Makor macros expect.

I also plan to add additional fonts—fonts for the typesetting of Yiddish and Ladino, and fonts which allow users to type their input from an Israeli keyboard. The Perl script I just mentioned will facilitate this task immeasurably. There are apparently a few other dialects of Hebrew plus whatever that use the Hebrew alphabet, and if I can found out more about them, I would like to support them as well. (Most people know what Yiddish is—sort of a creole between medieval German and Hebrew. Ladino stands in the same relation to medieval Spanish and Hebrew.)

Extended TeX's I've been out of the loop for a long time—not that I was really ever in the loop—as far as the development of extended TeX goes. The two such projects I know about are Omega, under the direction of Yannis Haralambous and John Plaice, and a larger team for eTeX under the stewardship of Phil Taylor. There were several facilities that are missing in TeX whose presence would have made my life much easier.

First off, I would have loved a facility that gives me the character number of the most recently set character, perhaps to be called \lastchar. Because of the presence of ligatures in a font, even knowing the last character in the source file is not sufficient for knowing the last typeset character.

I would have liked the possibility of having an entire series of character dimensions allotted for each character, in the same way that font dimensions are allotted for each font. The first four character dimen's would coincide with the width, height, depth, and italic correction of the character, but any additional \chardimen's would have meanings given to them by the font designer. For example, a fifth and sixth chardimen for these Hebrew fonts might correspond to the location of the upper and lower visual axes. Some letters might have additional \chardimen's giving the location of forbidden portions, areas where diacritical marks may never appear. I feel sure that this would be useful concept for other languages, for reasons I could not begin to guess. Of course, I have no idea how easy that would be to implement, nor what it would do to the size of the resulting .tfm file.

Finally, I would have liked additional category codes available to me. Classifying vowels as active, though useful, is fraught with some peril. Moreover, I suspect that for other languages, there are several categories of glyphs that I would not have been able to handle without additional \catcode's.

Getting the software

The current version of Makor software is always available in the CTAN archives, in the directory

languages/hebrew/makor

Plea to the reader and user

If any reader or user could point me to additional high-quality Hebrew fonts, I'd be most grateful. As of this writing, I am unable to test my macros and information-encoding schemes on other fonts.

Please don't hesitate to forward additional suggestions, queries, requests for clarification, and so on to me; email is best. Thanks for your interest.

אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם

נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר דה אבג שת וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר דה אבג שת וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת דה אבג וזח טיכך למם נוס עפרצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך

למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם

> נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר דה אבג שת וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר דה אבג שת וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר דה אבג שת וזח טיכך למם נוס עפרצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך

למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת אבג דה וזח טיכך למם נוס עפףצץ קר שת

Figure 7: Another layout.

אַרְבָּעָה אָבוֹת נִזִּיקִין, הַשּוֹר

References

- [1] Haralambous, Yannis. Type setting the Holy Bible in Hebrew, with TeX. TUGboat, 15(3): 174–91, September 1994.
- [2] Toledo, Sivan. A simple technique for typesetting Hebrew with vowel points. *TUGboat*, 20(1): 15–20, March 1999.

Modernizing Computer Modern Fonts

Alan Hoenig

Department of Mathematics, John Jay College, City University of New York ahoenig@suffolk.lib.ny.us

Many TFX users know that the workhorse TFX font, Computer Modern Roman (CMR; we'll refer frequently to the Computer Modern fonts as CM), was modelled after a real-life font called Modern 8a. To name a font in this way is to invite questions: are there other members in the Modern font sequence? what does the suffix 'a' denote? I can't claim comprehensive answers to these questions, but I've kept my eyes and ears open over the years, and have occasionally come across other members of this font family. One of my most intriguing possessions is of a novel by Herman Melville set entirely in Modern fonts, namely numbers 8 (no suffix) and 4. Appropriately enough, the novel is called *Typee!* These types are extremely readable. In fact, they positively invite the reader to set a spell and lose themself in the volume.

The digital age has not been kind to this superfamily of fonts. As far as I can tell, only one of the Modern types is available in digital form. (I welcome correction on these matters.) The font in question is called simply Monotype Modern, and is, to my eyes, extremely handsome; see figure 1 for an extended selection .

Monotype Modern bears an unquestioned resemblance to Computer Modern (or is it the other way 'round?), but somehow the printed page using this font comes across as brighter and more interesting, at least to my eyes. The TEX user quickly comes a cropper when she tries to adapt this font for use with TEX—there are no expert fonts available for Monotype Modern, so matching small caps and the full suite of double-f ligatures appear to be unavailable.

The purpose of my work in this area has been to try to flesh out this font to the point where not only are all ligatures and small caps are available, but matching math fonts and some others specialty fonts are available too.

A Meta-font Monotype Modern?

My first approach was reasonable, but misguided. I reasoned that if I carefully measured the dimensions of the anatomy of letters in a Modern font, and then put those values in a METAFONT parameter file,

This is a test of the TEX typesetting system. Abcd Efgh Ijkl Mnop Qrst Uvwx Yzab; Cdeg Ghij Klmn Opqr Stuv Wxyz. (0123456789!) Nàíve garçöñ.

The quick brown fox jumps over the lazy cow. Now is the time for all good men to come to the aid of the party.

Efficient effluent effectively fights flightiness.

Do you see this Ring?

T is Rome-work, made to match (By Castellani's imitative craft) Etrurian circlets found, some happy morn, After a dropping April; found alive Spark-like 'mid unearthed slope-side figtree-roots That roof old tombs at Chiusi; soft, you see, Yet crisp as jewel-cutting. There's one trick. (Craftsmen instruct me) one approved device And but one, fits such slivers of pure gold As this was, such mere oozings from the mine, Virgin as oval tawny pendent tear At beehive-edge when ripened combs o'erfow, Since hammer needs must widen out the round, And file emboss it fine with lily-flowers. Ere the stuff grow a ring-thing right to wear. (Browning, The Ring and the Book)

Figure 1: An extended selection set in Monotype Modern.

This is a test of the TEX typesetting system. Abcd Efgh Ijkl Mnop Qrst Uvwx Yzab; Cdeg Ghij Klmn Opqr Stuv Wxyz. (0123456789!)

Nàive garçöñ.

The quick brown fox jumps over the lazy cow. Now is the time for all good men to come to the aid of the party.

Efficient effluent effectively fights flightiness.

Figure 2: Monotype Modern plus meta-ligatures in one virtual font.

then METAFONT could simply generate a variant of Computer Modern which would essentially "be" Monotype Modern. This approach appealed to me for a variety of reasons. First of all, it was an excuse to mess around with METAFONT, one of the neater computer languages around! Second, I looked forward to being able to "discover" in this way a new and exciting typeface that lay hidden in the space of all possible values of parameter values.

Although this approach remained my meatand-potatoes approach for this project, it was far
from satisfactory. Basically, the letter forms of the
Monotype font were often different in non-trivial
ways than their meta-font cousins. The strokes were
different in kind. For example, many thin strokes in
CM (Computer Modern) are modelled by a curved
pen stroke:

However, the corresponding
part of a MM (Monotype Modern) font did not
have the feel of a stroke:

There's no reason why METAFONT's stroke commands couldn't
mimic this kind of form, but that's not how the CM
fonts have been set up.

I had looked forward to a meta-Monotype Modern font, but *c'est la vie*. Really, though, such a font would have been overkill—after all, Monotype's own Modern font is perfectly good enough—or is it? Could I create proper sets of ligatures and small caps in the closest Meta-equivalent to MM, to create a virtual font which would combine the meta-ligatures and small caps to the Monotype glyphs, and to see how all this looks?

I decided that measuring the parameters of Monotype Modern and inserting them into a META-FONT parameter file would give me the "best" approximation to MM possible from the existing CM-METAFONT program files. Measuring was easy, but a bit tedious. You can easily do this by creating a document with the MM font at some humongous design size, say 500-pt. Then, you view it under Ghostscript. It's a little-known fact, but under the 'Edit' pull-down menu, there's an option called 'Measure'. If you click on this option, you awaken the utility that allows you to measure distances on screen between a click of the mouse and any other position. Thus, it's easy enough to measure the 61 parameters that go into a meta-font. The resulting font, though, didn't look much like Monotype Modern—it still bore the look and feel of a CM font.

It was my hope, though, that the double-f ligatures, the oldstyle numerals, and the small caps generated in this manner were visually compatible with MM. It was relatively easy to cobble together a virtual font that incorporates the glyphs from MM

THIS IS A TEST OF THE TEX TYPE-SETTING SYSTEM. ABCD EFGH IJKL MNOP QRST UVWX YZAB; CDEG GHIJ KLMN OPQR STUV WXYZ. (01 23 456 789!) (THIS IS THE FAKE SMALL CAPS FONT.)

THIS IS A TEST OF THE TEX TYPESETTING SYSTEM. ABCD EFGH IJKL MNOP QRST UVWX YZAB; CDEG GHIJ KLMN OPQR STUV WXYZ. (01 23 456 789!) (THIS IS THE MM PLUS METAFONT-MODIFIED SMALL CAPS FONT.)

Figure 3: Comparison viewing—fake small caps (top) versus the real thing (bottom).

together with the METAFONT ligatures. A specimen from this font appears in figure 2.

Many people think that SMALL CAPS fonts are easy to create—simply use scaled-down uppercase letters as the lowercase counterparts in a small-caps font. This is not a bad approximation to such a font, but the proportions are not quite right, and any hard-core TEX user rejects this solution! In figure 3, you see the comparison between a MM fake small caps font, and a "real" small caps font, created with uppercase characters drawn from MM and lowercase letters drawn from a METAFONT approximation to MM-small caps. You should see that the second example is better.

Bold-face I've always found the decision to use cmbx as the workhorse bold font in TEX to be a mysterious one. To my mind, this font is far too in-your-face. Moreover, the bold face in all Modern, non-TEX contexts never resembles these fonts, but rather the bold font that's part of the MM suite of fonts, which closely resembles cmb10 (at least at a 10-pt design size).

In figure 4, we see the virtual, improved version of MM Bold. The strategy is the same: we begin with font mmb10, the closest approximation we can make to MM Bold, and then we "virtualize" a new bold font that contains the mmb10 ligatures with the MM Bold glyphs.

Italic Italic follows the same pattern. We create a font mmti10, a close approximation to MM Italic, and then we form the appropriate virtual font. This font appears in figure 5. To my eyes, this is the least successful experiment of all the ones I describe in this article, for the CM curves are somehow less pleasing than the MM curves.

This is a test of a modified bold font. This is a test of the TeX typesetting system. Abcd Efgh Ijkl Mnop Qrst Uvwx Yzab; Cdeg Ghij Klmn Opqr Stuv Wxyz. (0123456789!)

Nàíve garçöñ.

The quick brown fox jumps over the lazy cow. Now is the time for all good men to come to the aid of the party. Efficient effluent effectively fights flightiness.

Bold with roman. This is **bold** together with Modernized Roman.

Figure 4: Testing a modified bold font.

This is a test of mcmri7t, a modified italic font. This is a test of the TEX typesetting system. Abcd Efgh Ijkl Mnop Qrst Uvwx Yzab; Cdeg Ghij Klmn Opqr Stuv Wxyz. (0123456789!)

Nàive garçöñ.

The quick brown fox jumps over the lazy cow. Now is the time for all good men to come to the aid of the party. Efficient effluent effectively fights flightiness.

Figure 5: Testing a modified italic font.

Sans-serif and typewriter fonts For some reason, a matching sans-serif to Monotype Modern was difficult to conjure up. In the course of my experiments, I stumbled upon one version, a sans serif of figure 6 that has an interesting 1920's art deco flavor to it that would not be out of place for the title of an Agatha Christie reprint or the cover of the New Yorker magazine. Close scrutiny shows some strokes of some types that need fixing; these are high on my to-do list. The best I could do for a more normal sans serif appears in figure 7.

I don't quite know how to characterize the quirkiness of the mmtt10 font, although I personally like it. Take a look for yourself at figure 8 to decide how to characterize it. The proportionally greater

This is a test of the T_EX typesetting system. Abcd Efgh Ijkl Mnop Qrst Uvwx Yzab; Cdeg Ghij Klmn Opqr Stuv Wxyz. (0123456789!)

Nàíve garçöñ.

The quick brown fox jumps over the lazy cow. Now is the time for all good men to come to the aid of the party. Efficient effluent effectively fights flightiness.

Figure 6: Modernized Modern 'art deco' sans serif.

Here's some Roman. This is a test of the TEX typesetting system. Abcd Efgh Ijkl Mnop Qrst Uvwx Yzab; Cdeg Ghij Klmn Opqr Stuv Wxyz. (0123456789!)

Nàíve garçöñ.

The quick brown fox jumps over the lazy cow. Now is the time for all good men to come to the aid of the party. Efficient effluent effectively fights flightiness. Here's some Roman.

Figure 7: Modernized Modern sans serif.

depth of the descending characters is the strongest contributor to this slight idiosyncrasy.

Math fonts

In addition to your choice of text fonts, you need three kinds of special fonts in order to typeset mathematics properly. The first is the extension font, cmex10, and I decided to use this unchanged for "mmex10." In the same way, we need special symbol fonts, this time at three sizes, and I've appropriated them unchanged from CM. These have the names cmsy10, cmsy7, and cmsy5.

We also need three sizes of special math italic fonts. Although with other font families, we have to somehow adapt the text italic for math, it's nice here to be able to adapt the *cmmi* fonts. That's because Knuth paid close attention to certain details, such as a special math italic a (compare the text italic a) that you just don't see in these other fonts. I adapted them simply by adjusting the gross parameters—figure height, cap height, x-height, and so on—but leaving other parameters alone. The resulting math italics don't quite match the text font, but perhaps they shouldn't. After all, math is different from text. Anyway, the match is close enough. A sample appears in figure 9, and I hope you agree.

Installing and using the fonts

Notice: Whenever you install new files or fonts, don't fail to update or refresh the file-name database used by your version of TEX! This filename updating is a consequence of Kpathsea's file searching mechanism which has become an integral component of most modern TEX's, or so I believe.

Let me emphasize that these fonts are no good without the Monotype Modern fonts in hand. You need them—you need to buy them, plus you need the adjunct files (.tfm, .vf, .fd, etc. files) to make them usable by TeX. These additional files

should be available for downloading from CTAN; the fontname family name is mmo.

The fonts here require ten METAFONT source files. These files have names like mmr10.mf, and should all be placed in a directory like

 $\langle texmf \rangle$ /fonts/source/public/modern

In addition, place all .tfm and .vf font files in your TeX system in places like

$$\langle texmf \rangle$$
/fonts/tfm/public/modern

and

 $\langle texmf \rangle$ /fonts/vf/public/modern.

Finally, put the files moderniz.tex and moderniz.sty in

 $\langle texmf \rangle / \texttt{tex/plain/public/modern}$

and

 $\langle texmf \rangle$ /tex/latex/public/modern.

Plain documents To create documents in plain TFX, place the statement

\input moderniz

at the beginning of your source file. Thereafter, nicknames like \it and \bf use the modernized fonts. Note that this macro file provides two new commands, \sc and \sans for small caps and sans serif. To use the art deco font, place a statement like

\font\deco=mmdeco10

in your source, after which \deco invokes this font.

LATEX documents Place the incantation

\usepackage{moderniz}

following the \documentclass command. In the document, commands like \rm, \bf, \it, \sc, and \tt select modernized fonts. To use sans serif fonts, select font family mmss with the medium and normal series and shape:

\fontfamily{mmss}\fontseries{m} \fontshape{n}\selectfont

To use the art deco font, use the de fontshape:

Here's some Roman. This is the slightly quirky typewriter font that is part of the Modernized Computer Modern family. This is a test of the TEX typesetting system. Abcd Efgh Ijkl Mnop Qrst Uvwx Yzab; Cdeg Ghij Klmn Opqr Stuv Wxyz. (0123456789!)

Naíve garçöñ.

The quick brown fox jumps over the lazy cow. Now is the time for all good men to come to the aid of the party. Efficient effluent effectively fights flightiness. Here's some Roman.

Figure 8: Modernized Modern typewriter.

This is a test of the Modernized Computer Modern fonts. Let's do math: $\kappa = \int_0^{\frac{\pi}{2}} e^{-x^2} dx = \frac{\sqrt{2}}{\phi!}$. This doesn't look so bad.

Let's do some display math!

$$\kappa_{543^{21}} = \int_{0}^{\frac{\pi}{2}} e^{-x^{2}} \, dx = \frac{\sqrt{2}}{\phi!} \quad f'(x) = \frac{df}{dx} = \sum_{n=0}^{\infty} \frac{1}{x^{i}}$$

That's all. folks!

Figure 9: A snippet of modernized math, together with some text fonts.

\fontfamily{mmss}\fontseries{m} \fontshape{de}\selectfont

The normal math delimiters work to select the modernized math fonts.

Conclusion

This package can be obtained from CTAN. Alas, as of this writing, the exact folder there is not known. Please report all bugs, suggestions, or comments to the author at

ahoenig@suffolk.lib.ny.us

Thanks!

The T_EX Font Panel

Nelson H. F. Beebe (chair) Center for Scientific Computing University of Utah Department of Mathematics, 322 INSCC 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA

Email: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org, beebe@ieee.org (Internet)

URL: http://www.math.utah.edu/~beebe

Telephone: +1 801 581 5254

 $FAX: \ +1\ 801\ 585\ 1640, \ +1\ 801\ 581\ 4148$

Introduction

The TUG'2001 Font Panel convened on Thursday, August 16, 2001, with members William Adams, Nelson H. F. Beebe (chair), Barbara Beeton, Hans Hagen, Alan Hoenig, and Ross Moore, with active participation by several attendees in the audience. The list of topics that was projected on the screen makes up the sectional headings in what follows, and the topics are largely independent.

Any errors or omissions in this article are solely the fault of the panel chair.

Unicode

The work of the Unicode Consortium, begun in 1988, and first reported on for the TeX community in a TUGboat article [9], has reached version 3.0 of the Unicode Standard [29]. Version 3.1 appeared about the time of the TUG'2001 conference, and version 3.1.1 shortly thereafter. Unicode is a proper subset of the ISO/IEC 10646 Universal Character Set Standard [14], but publication of the latter lags.

Unicode defines a character set that is intended ultimately to cover all of the world's writing systems. Its first 128 entries are identical to the ASCII character set (dating from 1964) used by most of the world's computers.

There is a very active Unicode technical discussion e-mail list: send subscription requests to unicode-request@unicode.org. The list is archived at http://www.unicode.org/mail-arch/.

Unicode conferences are held twice a year, with the twentieth in late January 2002; see http://www.math.utah.edu/pub/tex/bib/index-table-u.html#unicode for a bibliography of publications about Unicode.

Since most programming languages, operating systems, file systems, and even computer $\rm I/O$ and $\rm CPU$ chips, have character knowledge designed into

them, changing the character set has huge ramifications for the computing industry and for worldwide business data processing, data exchange, and record keeping.

Fortunately, a particular encoding scheme called UTF-8 makes it possible for files encoded in pure ASCII to also be Unicode in UTF-8 encoding, easing the transition to the new character set.

Up to version 2.0 in 1996, the Unicode character repertoire could be fit into a table of $2^{16} = 65\,536$ entries. Version 3.0 in 2000 increased the count to over a million, although just under 50 000 are assigned and tabulated in the book. Version 3.2 in 2002 has just over 95 000 assigned. Consortium members hold the view that 20 or 21 bits per character (just over two million) may ultimately be necessary by the time all historical scripts have been covered.

Despite the Consortium's warning that the collection was expected to grow, several vendors did not pay attention, and prematurely adopted 16-bit entities to hold Unicode characters.

Thus, the C language data type, wchar_t, introduced in 1989 Standard C [7, 13, 28], is implemented as a 16-bit unsigned integer in many C and C++ compilers, with a companion function library that also has this limitation.

Even worse, the popular Java programming language is defined in terms of an underlying virtual machine [23, 24], already implemented in hardware, whose instructions are permanently designed for 16-bit characters.

These 16-bit limitations can be overcome by representation of Unicode values with variable numbers of bytes, as was done with the UTF-8 encoding. Unfortunately, the opportunity to simplify character processing significantly by having fixed-size units is tragically lost.

In the panel chair's view, these design errors will rank with the infamous ASCII/EBCDIC split

in 1964, with IBM System/360 adopting EBCDIC, and everyone else (by about 1980) adopting ASCII, with enormous economic costs, and user confusion, that lasted for decades.

Newer operating systems are already designed to use Unicode as the native character set, and vendors of older ones are migrating in that direction through UTF-8 encoding.

Of course, jumping from a 256-character set to one with potentially millions of characters poses an almost impossible problem for font vendors. It will be a very long time before the Unicode font repertoire is adequate. Current systems with native Unicode support generally provide only a subset of characters, and then sometimes only in low-resolution screen bitmaps. Bitstream for a while offered their Cyberbit Unicode font, but in July 2001, withdrew it without explanation.

Thanks to fine work by fellow TUG members Yannis Haralambous and John Plaice [26], TEX has been extended to fully support Unicode. Their system is known as Ω (Omega), and it has been available on the annual TEX Live CD-ROM distributions since at least version 5 in 2000. Development has not been as rapid as end users might like, but it must be understood that this is a hugely complex problem, and the Ω designers have been proceeding very carefully, cognizant of other TEX developments such as pdfTEX, ε -TEX, and $\mathcal{N}_{\mathcal{T}}\mathcal{S}$, in addition to the evolution of the Unicode Standards.

Mathematics fonts

Fonts for mathematics are a substantial problem, because, among the more than twenty thousand fonts on the market, only a handful have a remotely adequate repertoire of mathematical glyphs. These fonts are almost the only choices: Computer Concrete, Computer Modern, Informal Math, Lucida, MathTime, PA Math, PX, Palatino Math, Pandora, and TX.

While it is, of course, possible to use an existing mathematics font with any other text font, the results are rarely visually successful. For some careful studies of this, see Hoenig's book [11, Chapter 10].

Font subsetting

DVI drivers for virtually all devices, other than Post-Script, subset the fonts that they include in their output streams: descriptions of unused characters are simply omitted.

Doing this for PostScript Type 1 outline fonts has proved considerably more trouble-some. These fonts are generally encrypted, but Adobe has published the encryption algorithm and

keys, so software like t1disasm (from Lee Hetherington's and Eddie Kohler's t1utils package, available at ftp://ctan.tug.org/tex-archive/fonts/utilities/t1utils) can readily disassemble a font.

Disassembly reveals essentially a table of *num-bered* (not named) subroutines, Subrs, each containing positioning commands, and calls to other subroutines, plus a table of character definitions, CharStrings, indexed by character name. Each entry of CharStrings also consists of positioning and drawing commands, and calls to the numbered subroutines.

Because subroutine numbers could be constructed dynamically, it is in general not possible to identify which of the numbered subroutines can be omitted, but a DVI driver could drop unused entries from the CharStrings table. This is transparent to font rendering software, since the entries are named, rather than numbered.

It was reported by a reviewer that computation of subroutine numbers is in practice not done in existing Type 1 and Type 2 Compact Font Format (CFF) fonts, so perhaps it is safe to drop subroutines that are not explicitly called.

Recent versions of Tom Rokicki's dvips driver are capable of subsetting PostScript Type 1 outline fonts, as can Adobe Acrobat Distiller and Ghostscript's ps2pdf.

However, this subsetting introduces new problems. What if the DVI file also included PostScript figures which themselves used fonts? Subsetting might remove characters needed by those figures.

It is infeasible, or unreliable, for the DVI driver to attempt to examine an included figure file to determine its font requirements, because far too many PostScript producing programs fail to conform to Adobe's Document Structuring Conventions that would otherwise clearly, and simply, record the file's font needs. Those conventions are clearly described in the first two editions of the PostScript Language Reference Manual [1, Appendix C] [3, Appendix G, but were ominously dropped from the third edition [6]. They are, however, documented at the Adobe Web site among the technical notes collected at http://partners.adobe.com/asn/ developer/technotes/postscript.html, in the file http://partners.adobe.com/asn/developer/ pdfs/tn/5001.DSC_Spec.pdf.

Each Type 1 font contains a special 24-bit (0...16777215) unsigned number, the UniqueID, which is intended to allow printing devices to cache bitmaps of rendered fonts between jobs. A million of these numbers are reserved for private use, and

the rest are allocated to font vendors on request. A subsetted font is a *different* font, because it lacks some characters, and so must be assigned a UniqueID from the private use area. A random choice from this area would mean a one-in-a-million chance of confusion between fonts in a printer.

Regrettably, several versions of Adobe's own Acrobat Distiller, and most versions of Ghostscript (until the panel chair, who is a long-time Ghostscript beta tester, reported the problem) use a fixed UniqueID and fixed name for subsetted fonts! Happily, versions of Ghostscript released in 2001 no longer have this problem.

This non-UniqueID and fixed fontname problem fouls up more than just printers. It has been a huge headache in the U.S. National Science Foundation FastLane grant proposal project, started about 1998 to speed up, and regularize, proposal submission.

FastLane is a clear case of technology being adopted before its time. Had NSF required submission of a single PDF file for the entire proposal, or not refused to accept documents without font subsetting, the UniqueID and fontname issue would never have been noticed.

Unfortunately, they instead require submission of multiple PDF files, with subsetted and embedded fonts. These files are then merged into one PDF file for the entire proposal, then distributed back to the submitter for printing and verification, and sent electronically to proposal reviewers.

Because of the non-UniqueIDs and fixed fontnames, the software that does the merging gets hopelessly confused, and fails to produce correct output. The proposal submitter is then held to be at fault. The panel chair has spent an inordinate amount of time working with colleagues, and remotely, with NSF staff and administrators, to overcome these problems. After three years of user complaints, NSF has finally relaxed their draconian requirements, and now accepts DVI and PostScript files as well.

Font substitution

A common problem when documents are distributed is that the required fonts may be missing at the enduser site, and because of font licensing, it may not be possible to include the fonts with the documents.

World-Wide Web browsers usually just ignore requests for missing fonts, falling back to a default font. Adobe Acrobat Reader goes further: it uses the original font metrics embedded in the PDF file, and then substitutes the missing font with another. TEX DVI drivers usually complain about missing fonts, but some will then provide a substitute, and

some may even support a user-defined font substitution file.

The PANOSE system [8] is a font classification system that assigns numeric values in 0...15 for ten font attributes (family, serif style, weight, proportion, ...). The system is further described at http://www.w3.org/Fonts/Panose/pan2.html, http://www.w3.org/Printing/stevahn.html, and http://www.agfamonotype.com/print_manu/pan1.htm

Hewlett-Packard now owns the PANOSE technology, but has proposed it for open international standardization. They recommend that font files be augmented with a PANOSE number that can be used by matching software to find the closest available font. In practice, this classification seems not to have been done: in a scan of more than 8700 font files on my system, I found only two that had an embedded PANOSE number.

Nevertheless, since a lot of work has been done in the PANOSE system to identify characteristic properties of fonts, those features should be carefully considered when new font software is written.

Font licensing

Noted font designer Chuck Bigelow thoroughly discussed the issue of typeface copyright issues in an article reprinted in *TUGboat* several years ago [10].

With widespread sharing of PostScript and PDF files on the Internet, it is difficult for font vendors to enforce their licenses. Some vendors, including Adobe, take the view that a subsetted font is sufficiently crippled that it is unlikely to be of interest to font miners, and explicitly permit distribution of documents containing subsetted fonts, while forbidding distribution without subsetting. Others are more restrictive: Bitstream does not permit free distribution of their font metric files, and historically, Autologic would not even reveal font metrics to its own font licensees!

Users can always achieve font subsetting for PostScript files from any source by the simple conversion path PostScript \rightarrow PDF \rightarrow PostScript, provided that Distiller or ps2pdf options have been chosen to turn on subsetting. Regrettably, few Web site owners have the sophistication, or conscience, to do this, and the conversion programs do not subset fonts by default. Versions of ps2pdf after May 2000 subset by default.

More troublesome is the issue of patents on algorithms and file formats, and the U.S. Patent Office, in particular, continues to issue software patents on ideas that are utterly obvious, even to people who have never used a computer. The X

Window System backing store patent held by AT&T essentially says "if you cannot store data here, put it there instead, but only if you license the right to do so from us first". The European Union, followed by the U.S. Government, has retroactively extended patent and copyright lifetimes, exacerbating the problem.

Adobe has always been very open about publishing specifications of PostScript, PDF, and font formats, allowing anyone to implement them. They copyright their tradenames and license their software (see http://partners.adobe.com/asn/developer/legalnotices.html), and by virtue of being both specifiers and implementors, have a head start on their competition. However, they do not interfere with, or discourage, competitors. As a result, several printer vendors have shipped models with non-Adobe PostScript interpreters, and Aladdin and GNU Ghostscript have helped to make PostScript and PDF support almost universally accessible.

TrueType, and possibly OpenType, are covered by Apple patents that restrict what rendering software can do to display the fonts. This is highly unfortunate, and some people may react by refusing to use such fonts. Their widespread use on common desktop operating systems makes it difficult to avoid them, however. For further discussion, see the FreeType Web site, http://www.freetype.org/patents.html.

Font index

Tens of thousands of fonts are available commercially, and hundreds are typically installed on each desktop computer. Sadly, it sometimes takes a expert to hunt down a particular font to make it usable in a particular application.

Font files often have filenames that are not obviously related to font names. For example, BaskervilleMT-BoldItalic might be found in files with names containing mbvbi8a or basbi.... Designers of deficient file systems with drastic filename length limitations are partly responsible, but some platforms complicate things by concealing fonts in 'resources' or 'registries', or by converting standard font formats to proprietary internal ones (without offering the reverse conversion).

The problem of mapping font names to filenames has led software designers to invent several different, and mutually incompatible, map file formats, adding to system administrator burdens. Later on the same day that this was written, traffic on the Ghostscript developers list discussed precisely this problem, with respect to new Apple operating systems; it evidently remains an inadequately solved problem! Font licensing means that few font files are visible to Internet Web search engines, so your hunt for VanDijkBoldPlain might be almost fruitless. While this sentence was being written, a search on http://www.dogpile.com/, a site that searches several other search engines, found only one hit from twelve of them. That hit was to the font index of more than 20000 font names created by, and maintained by, the panel chair at http://www.math.utah.edu/~beebe/fonts.

That font index is vendor neutral: each listed font has a vendor name, linked to a vendor page at the index site that gives company name, address, other contact information, and links to the vendor Web site.

The index is maintained as rigorously validated and prettyprinted HTML files, all in a standard format, and all derived from tables, catalogs, CD-ROM contents, and other resources. The index maintainer has no commercial interest in the font industry, and the index may be mirrored by anyone.

Multiple Master fonts

In 1992, Adobe introduced the concept of 'Multiple Master fonts' [4, 5]. These are fonts with one to four user-adjustable parameters that can be tweaked to change character shapes.

Knuth's METAFONT system is much more general: the Computer Modern fonts have 62 parameters [20, pp. 10–11] whose variation can lead from fixed-width typewriter fonts to proportionally-spaced **bold**, *italic*, roman, sans serif, *slanted*, SMALL CAPS, The design of such 'meta' fonts is truly a landmark of human ingenuity.

Sadly, it appears that Adobe has withdrawn support for Multiple Master fonts: their documentation has been removed (fortunately, the panel chair has an archived copy), and the fonts may no longer be available, although several are still listed at http://www.adobe.com/type/browser/C/C_4e.html. It has also been reported that the metric files for these fonts were not included in font packages sold by Adobe, and are hard to find.

In the hands of expert programmers, the capabilities of Multiple Master fonts could have been made easily available to the masses, but except for one experiment with Illustrator [12], the opportunity was never taken advantage of, and has now been removed. Such technological shortsightedness, probably influenced by quarterly bean-counting reports, is deplorable.

¹ Curiously, if you search for the logical conjunction of the four parts separately, you may be luckier!

Perhaps the OpenType effort (see http://www.opentype.org/) will revive this possibility. In the meantime, some clever programmers could do wonderful things for the font world by creating a fancy interface to METAFONT!

The t1utils package mentioned above can handle Multiple Master fonts, and according to http://developer.apple.com/technotes/tn/tn2029.html, Apple MacOS X has added new printer support for such fonts.

Eddie Kohler's mminstance package, available at http://www.lcdf.org/type/, includes mmafm, for creating an Adobe Font Metric (AFM) file, and mmpfb, for creating a normal Type 1 font file, from a particular instance of a Multiple Master font. These tools have been ported to Microsoft Windows, and are expected to be in the next edition of the TEX Live CD-ROM.

Font file handling problems

The format of Type 1 font files is described in a small book [2]. Unfortunately, software implementors have not always followed that specification.

Adobe's own Type Manager (ATM), which renders Type 1 fonts for screen display on single-user desktop operating systems, is known to be sensitive to the precise formatting of font files, and fails on some third-party fonts that otherwise conform to the specification, and are handled correctly by Post-Script interpreters in printers. Adobe Illustrator may exhibit similar problems.

Recent Adobe products, such as Illustrator 7.0 and later, use a new font-rendering engine, called CoolType, instead of Adobe Type Manager. CoolType tries to reduce font menu clutter, and ends up treating cmr10 and cmr12 as the same font. It also has trouble with subsetted fonts with encoding arrays.

The problems with ATM and CoolType are clear cases where Adobe software developers are not adhering to their own published font specifications, and users should complain bitterly. Fortunately, clever people, notably Tom Kacvinski, in the TeX community were able to react quickly and find workarounds.

Some desktop software products fail to handle Type 1 fonts that contain characters in slots 0...31 or 128...159. The lower 32 slots are vacant in all of Adobe's standard encodings defined in Appendix E of the PostScript Language Reference Manuals [3, 6]; the other 32 are partly used in advanced font encodings, but not in the default StandardEncoding used by most Type 1 fonts. This problem affects most TeX fonts, which tend to contain either 128 or 256 characters.

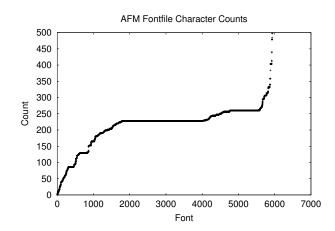


Figure 1: Character counts in 6021 Type 1 fonts, ordered by increasing counts. The largest font in this collection contained 26,304 Chinese characters. A total of 1269 fonts (21%), have more than 256 characters, but only 39 (0.6%) have more than 1000.

Type 1 fonts are based on a named collection of characters, and those names are then assembled into a 256-element 'encoding vector' to provide character access using 8-bit bytes as indexes into the encoding vector. Many fonts have more than 256 characters, as shown in Figure 1, although 8-bit bytes in character strings limit access to 256 in any one instantiation of the font.

Recently, we have encountered Type 1 fonts designed by people who have completely failed to understand the importance of encoding vectors and named characters. These fonts have an encoding vector with the Adobe StandardEncoding names, but the characters with those names have shapes that bear no relation to their names! This makes constructing an encoding vector to use them exceedingly painful and error prone.

The Apple MacOS operating system does not directly use fonts in Type 1 format; instead, it converts them to a proprietary internal format. While this conversion is quite well debugged, it is another possible point of failure. It means that software ported from other platforms must be rewritten to use the MacOS font format. It may also be nontrivial to export fonts from MacOS to other operating systems. Observation of MacOS since its introduction in 1984 clearly shows that its design discourages software developers from porting to it. This may change rapidly once the new UNIX-based MacOS X becomes widely deployed.

GNU Project and Aladdin font-related activities

Work on the GNU font utilities (ftp://ftp.gnu.org/pub/gnu/fontutils) ceased from 1993 to 1998, but a lot of changes were logged for 2000. Much more could be done; can you volunteer?

The already-noted FreeType Project is not part of the GNU Project, but some of the FreeType people involved work in both, and the goals are much the same: freely-distributable software of wide utility.

Although only delayed releases of Aladdin Software's Ghostscript fall into the GNU archive, it is worth noting here that in the last year, Ghostscript development has moved to the bazaar model [27], but an expert chief architect maintains final control over quality, and the developers list is quite active.

Just a month before the TUG'2001 Conference, the first release of ghostpcl was made (see http://www.artifex.com/downloads/). This builds on the Ghostscript source tree, but provides instead, for the first time, a portable and distributable interpreter for Hewlett-Packard's Printer Command Language, PCL. Many low-cost desktop printers, and most laser printers, recognize PCL, even if they lack Post-Script support.

The lack of PCL screen display, until ghostpcl was released, has hindered software development of PCL tools. As ghostpcl matures from its current shaky state, PCL may become of more interest in the TEX community, and that is especially important because PCL is available to those on a low budget. Although Ghostscript can create page bitmaps for many different non-PostScript printers, the files are large, and slow to print.

Other font developments

Some unattributed Polish programmers produced the ttf2pf package for converting TrueType fonts to Type 1 format. It is available at ftp://ftp.gust.org.pl/TeX/GUST/contrib/BachoTeX98/ttf2pf.zip

The CTAN archives in ftp://ctan.tug.org/tex-archive/fonts/utilities/ collect more than 40 packages for dealing with font conversions.

Oleg Motygin's ttf2mf package, available at ftp://ctan.tug.org/tex-archive/support/ttf2mf/, converts TrueType fonts to METAFONT source code. It does so by invoking an operating system function on Microsoft Windows, so it runs only on that platform. Nevertheless, in announcements this year on the tex-euro mailing list, Daniel Taupin has demonstrated that ttf2mf can be used quite effectively to convert such fonts, making them accessible to the majority of TFX

DVI drivers, which are incapable of handling the TrueType format. There are, of course, thorny license issues that must be dealt with, and ttf2mf does not handle hinting, so the METAFONT programs are not expected to produce good results at low resolution. Despite the lack of hinting, I have found that screen display of these fonts is quite acceptable.

A month after the TUG'2001 conference, Vladimir Volovich announced the release of his CM-Super font package, available in ftp://ctan.tug.org/tex-archive/fonts/ps-type1/cm-super. It contains a large collection (376) Type 1 representations of all the EC, TC, and LH fonts, including Cyrillic. These fonts contain characters needed for a half-dozen common LATEX font encodings, and for Adobe's StandardEncoding. This greatly extends the set of TEX fonts that are available in Type 1 form, making them usable in many other software tools, and importantly, for labelling in illustrations.

The TEX Live 6 CD-ROM contains Scott Pakin's mf2pt1 tool for converting a subset of META-FONT to Type 1 format.

The EuroTEX 2001 proceedings are expected to contain an article by Bogusław Jackowski, Janusz M. Nowacki, and Piotr Strzelczyk about their work on METAType1, a METAPOST-based engine for generating Type 1 fonts. Their software is available at ftp://bop.eps.gda.pl/pub/metatype1.

My personal hope is that software will eventually be developed, and made freely available across all major platforms, for automatic and reliable conversion between any of the common outline font formats. Not only would this be of considerable convenience for users, but font designers could then take advantage of features offered by a particular format, such as METAFONT's shaped pens.

Further reading and tool pointers

Tracy's book [30] is an interesting history of type design.

Karow's books [15, 16, 17, 18] are among the few devoted entirely to practical aspects of font design, and font file data representation.

Level, Newman and Newman [21, 22] provide a convenient catalog of thousands of fonts, with samples of each.

Moye [25] describes the commercial Fontographer package (http://www.macromedia.com/software/fontographer/), which is one of the more widely used desktop publishing systems for font design, and font manipulation on desktop platforms.

The commercial FontLab system (http://www.fontlab.com/) provides tools for font design and

manipulation. It began as a program on the Atari ST, and was later ported to Microsoft Windows and Apple MacOS.

Adobe's Type 1 Font Format is described in [2]; that reference contains pointers to an electronic version of the book, and a supplement that covers later developments.

Hoenig's book (in the biased view of the panel chair) is an excellent one for LATEX and TEX users, because it is all about using fonts with TEX.

The online notes for David Kindersley's Workshop [19] make interesting reading about font design and legibility issues.

There are extensive bibliographies on fonts and related issues in the TeX Users Group bibliography archive at http://www.math.utah.edu/pub/tex/bib.

Acknowledgements

Thanks go to my fellow panel members, my wife Margaret, and L. Peter Deutsch of Aladdin Software, for many helpful comments on, and historical background for, drafts of this article.

References

- Adobe Systems Incorporated. PostScript Language Reference Manual. Addison-Wesley, Reading, MA, USA, 1985. ISBN 0-201-10174-2. ix + 321 pp. LCCN QA76.73.P67 A33 1985.
- [2] Adobe Systems Incorporated. Adobe Type 1
 Font Format—Version 1.1. Addison-Wesley,
 Reading, MA, USA, August 1990. ISBN 0-20157044-0. iii + 103 pp. LCCN QA76.73.P67 A36
 1990. US\$14.95. http://partners.adobe.
 com/asn/developer/pdfs/tn/T1_SPEC.PDF.
 See also supplement [5].
- [3] Adobe Systems Incorporated. PostScript Language Reference Manual. Addison-Wesley, Reading, MA, USA, second edition, 1990. ISBN 0-201-18127-4. viii + 764 pp. LCCN QA76.73.P67 P67 1990.
- [4] Adobe Systems Incorporated. Adobe Type 1 font format Multiple Master extensions. Technical note 5086, Adobe Systems Incorporated, 1585 Charleston Road, P. O. Box 7900, Mountain View, CA 94039-7900, USA, Tel: (415) 961-4400, February 14, 1992. Withdrawn and no longer available: superseded by [5].
- [5] Adobe Systems Incorporated. Type 1 font format supplement. Technical note 5015, Adobe Systems Incorporated, 1585 Charleston Road, P. O. Box 7900, Mountain View, CA 94039-7900, USA, Tel: (415) 961-4400, May 15, 1994. http://partners.adobe.com:80/asn/developer/pdfs/tn/5015.Type1_Supp.pdf.

- [6] Adobe Systems Incorporated. PostScriptLanguage Reference. Addison-Wesley, Reading, MA, USA, third edition, 1999. ISBN 0-201-37922-8. xii + 897 pp. LCCN QA76.73.P67 US\$49.95, CDN\$74.95. P67 1999. //partners.adobe.com/supportservice/ devrelations/PDFS/TN/PLRM.pdf; http: //partners.adobe.com/asn/developer/ PDFS/TN/PLRM.pdf. This new edition defines PostScript Language Level 3. An electronic version of the book is available at the Adobe Web site, and is also included in a CD-ROM attached to the book.
- [7] American National Standards Institute and Computer and Business Equipment Manufacturers Association and Secretariat. American National Standard for information systems: programming language: C: ANSI X3.159-1989. American National Standards Institute, 1430 Broadway, New York, NY 10018, USA, December 14, 1989. 219 + vi + 119 pp.
- [8] Benjamin Bauermeister. A manual of comparative typography: the PANOSE system. Van Nostrand Reinhold, New York, NY, USA, 1988. ISBN 0-442-21187-2. xxvii + 257 pp. LCCN Z250 .B34 1988.
- [9] Nelson Beebe. Character set encoding. TUGboat, 11(2):171–175, June 1990. ISSN 0896-3207.
- [10] Charles Bigelow. Notes on typeface protection. TUGboat, 7(3):146–151, October 1986. ISSN 0896-3207.
- [11] Alan Hoenig. TeX Unbound: LATEX and TeX Strategies for Fonts, Graphics, & More. Oxford University Press, Walton Street, Oxford OX2 6DP, UK, 1998. ISBN 0-19-509686-X (paperback), 0-19-509685-1 (hardcover). ix + 580 pp. LCCN Z253.4.L38H64 1997. US\$60.00 (hardcover), US\$35.00 (paperback). http://www. oup-usa.org/gcdocs/gc_0195096851.html.
- [12] Joe Holt. Notes from a slave to Multiple Master fonts. Adobe Developers Association News, 3(2), February 1994. http://partners.adobe.com/asn/developer/techjournal/archived/Vol3no02.pdf.
- [13] International Organization for Standardization.
 ISO/IEC 9899:1990: Programming languages
 C. International Organization for Standardization, Geneva, Switzerland, 1990.
- [14] International Organization for Standardization. ISO/IEC 10646-1:1993, Information technology. Universal Multiple-Octet Coded Character Set (UCS). Part 1: Architecture and Basic Multilingual Plane. International Organization for Standardization, Geneva, Switzerland,

- 1993. 754 pp. CHF 360. http://www.iso.ch/cate/d18741.html. About two dozen corrections and amendments to this Standard have been published.
- [15] Peter Karow. Digital Formats for Typefaces. URW Verlag, Hamburg, Germany, 1987. ISBN 3-926515-01-5. 400 pp. LCCN Z253.3 .K371 1987.
- [16] Peter Karow. Digitale Schriften, Darstellung und Formate, Geleitwort von Hermann Zapf (Digital Fonts, Representation and Formats, Forward by Hermann Zapf). Springer-Verlag and URW Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc. and Hamburg, Germany, 1992. xiii + 457, with 230 illustrations pp. English translation in [17].
- [17] Peter Karow. Digital typefaces: description and formats. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1994. ISBN 0-387-56509-4. xiii + 448 pp. LCCN Z250.7 .K37 1994. Foreword by Hermann Zapf. Translated by Bill Horton from German edition [16].
- [18] Peter Karow. Font Technology: Description and Tools. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc., 1994. ISBN 0-387-57223-6. xvi + 460 pp. US\$79.00.
- [19] David Kindersley and Lida Lopes Cardozo. David Kindersley's workshop. World-Wide Web document, 1987. http://www. kindersleyworkshop.co.uk.
- [20] Donald E. Knuth. Computer Modern Typefaces, volume E of Computers and Typesetting. Addison-Wesley, Reading, MA, USA, 1986. ISBN 0-201-13446-2. xv + 588 pp. LCCN Z250.8.M46 K574 1986.
- [21] Jeff Level, Bruce Newman, and Brenda Newman. Precision type font reference guide, version 5.0. Precision Type, Commack, NY, USA, 1995. ISBN 0-9646252-0-2. xxv + 653 pp. LCCN Z250.7 .P74 1995.
- [22] Jeff Level, Bruce Newman, and Brenda Newman. Precision type font reference guide, version 5.0. Hartley & Marks Publishers, Point Roberts, WA, USA and Vancouver, BC, Canada, 2000. ISBN 0-88179-182-2. xxv + 653 pp. US\$39.95, CDN\$59.95. Republication of [21].
- [23] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley, Reading, MA, USA, second edition, 1999. ISBN 0-201-43294-3. xv + 473 pp. LCCN QA76.73.J38L56 1999. US\$42.95.

- [24] Jon Meyer and Troy Downing. Java Virtual Machine. O'Reilly & Associates, Inc., 103a Morris Street, Sebastopol, CA 95472, USA, Tel: +1 707 829 0515, and 90 Sherman Street, Cambridge, MA 02140, USA, Tel: +1 617 354 5800, February 1997. ISBN 1-56592-194-1. xxiv + 426 pp. LCCN QA76.73.J38M49 1997. US\$32.95. http://www.ora.com/www/item/javavm.html.
- [25] Stephen Moye. Fontographer: type by design.
 MIS:Press, New York, NY, USA, 1995. ISBN 1-55828-447-8. xi + 275 pp. LCCN 250.8.F65 M69 1995.
- [26] John Plaice and Yannis Haralambous. The latest developments in Ω. TUGboat, 17(2):181– 183, June 1996. ISSN 0896-3207.
- [27] Eric S. Raymond. The cathedral and the bazaar: musings on Linux and open source by an accidental revolutionary. O'Reilly & Associates, Inc., 103a Morris Street, Sebastopol, CA 95472, USA, Tel: +1 707 829 0515, and 90 Sherman Street, Cambridge, MA 02140, USA, Tel: +1 617 354 5800, revised edition, 2001. ISBN 0-596-00131-2, 0-596-00108-8 (paperback). xiv + 241 pp. LCCN QA76.76.063 R397 2001.
- [28] Herbert Schildt, American National Standards Institute, International Organization for Standardization, International Electrotechnical Commission, and ISO/IEC JTC 1. The annotated ANSI C standard: American National Standard for Programming Languages C: ANSI/ISO 9899-1990. Osborne/McGraw-Hill, Berkeley, CA, USA, 1990. ISBN 0-07-881952-0. xvi + 219 pp. LCCN QA76.73.C15S356 1990. US\$39.95.
- [29] The Unicode Consortium. The Unicode Standard, Version 3.0. Addison-Wesley, Reading, MA, USA, 2000. ISBN 0-201-61633-5. xxx + 1040 pp. LCCN QA268.U56 1996. US\$50.00. http://www.unicode.org/unicode/standard/versions/. Includes CD-ROM. The principal authors and editors of The Unicode Standard, Version 3.0 are Joan Aliprand, Julie Allen, Joe Becker, Mark Davis, Michael Everson, Asmus Freytag, John Jenkins, Mike Ksar, Rick McGowan, Lisa Moore, Michel Suignard, and Ken Whistler.
- [30] Walter Tracy. Letters of credit: a view of type design. David R. Godine, Publisher and G. Fraser, Boston, MA, USA and London, UK, 1986. ISBN 0-87923-636-1 (Godine), 0-86092-085-2 (Fraser). 219 pp. LCCN Z250.A2 T73 1986. US\$27.50.

Managing Multiple TDS Trees

Michael J Downes

American Mathematical Society, Providence, Rhode Island 02904, USA mjd@ams.org

Abstract

The TDS specification for TEX directory structure provides a good framework for organizing a single TEXMF tree such as the one at the heart of Thomas Esser's teTEX distribution. In practice, however, because of the normal processes of local changes and ongoing upgrades it is often advantageous to set up a more elaborate system of multiple TDS trees. This permits organizing the pieces that have been added above and beyond the original base tree in a way that makes it easier to cope with continuing change.

I could have more accurately indicated the scope of this article by using a longer title: *Managing multiple TDS trees in a web2c-based TEX system*. But it should be fairly clear how to apply the general principles discussed here to other kinds of TEX systems with similar file searching capabilities.

Introduction

TEX Directory Structure After TEX had been in use for some years people started to notice that the set of files needed by TEX when processing documents was growing rather large and unwieldy. The simplest way for TEX to look for input files was to keep them all in a single directory. But this made maintenance difficult.

In response a volunteer committee analyzed the categories of files involved and drew up a specification known as "TDS": TEX Directory Structure. (See http://tug.org/tds.)

The TDS spec gives a recommended hierarchical structure for collections of TEX-related files in a generic form that is intended to be usable and compatible across the various kinds of computers in common use nowadays: PC/Windows, Macintosh, Unix, and so forth. A **TDS tree** is a tree of directories with each major subcategory of files residing in its own subtree — fonts, macros, and documentation, to name a few.

But a TDS tree has everything branching from a single root. In practice it may often be desirable to set up more than one TDS tree, as mentioned in the TDS documentation:

... we shall designate the root
TDS directory by 'texmf' (for "TeX
and METAFONT"). We recommend using
that name where possible, but the
actual name of the directory is up to
the installer. On PC networks, for

example, this could map to a logical drive specification such as 'T:'.

. . .

A site may choose to have more than one TDS hierarchy installed (for example, when installing an upgrade).

In fact, my experience suggests that in most cases it is useful to set up quite a few trees, branching freely whenever you find a key difference in usage or upgrade policy, as long as your TEX system can support it. For example, consider this quote from a recent message on the teTEX mail list:

(We're even using one and the same nfs archive for three platforms, Solaris, Linux and W2k. Only trouble is you cannot update executables for one platform without putting the *0:format files in special local places.)

A solution for such a problem would be to make a separate, very sparse TDS tree that only holds format files (and any other files that are tied to specific binaries). I would probably put the binaries in the same tree, if that could be done without causing extra work elsewhere.

TEX systems: web2c, teTEX, MiKTEX, etc. Installing a TEX system The TEX Users Group has a good listing of TEX systems for various platforms at http://www.tug.org/interest.html. I am going to place my discussion of TDS trees within the framework of a TEX system called teTEX, which

is layered in turn on top of another system called web2c. One of the most important elements in web2c is a library called kpathsea, designed as a tool for other programs to use when they need to efficiently search a tree containing a large collection of files, and in particular to provide ways for users to specify search rules that reflect the needs of a given application. Thus, the versions of TeX, METAFONT, dvips, bibtex, and other programs included in the web2c distribution are all adapted to use the kpathsea library.

The use of the kpathsea library is the critical factor that determines the exact syntax and configuration methods one uses when making arrangements to have TEX search multiple TDS trees. Other TEX systems such as MiKTEX or TrueTEX that support recursive searching through a TDS tree differ in various details, but many of the general principles will be the same.

The web2c guys, notably Karl Berry & Olaf Weber have pulled the source code for the programs TEX, METAFONT, dvips, xdvi, into a coherent collection that compiles easily and plugs in the kpathsea path searching library where applicable. (Thank you, Karl and Olaf, for all your hard work!)

The teTeX guys, notably **Thomas Esser**, have built a big standard collection that includes **web2c** as a base, but (a) is designed to simplify installation for ordinary users who don't necessarily want to have all the sources and don't plan to make a practice of recompiling things; and (b) includes a rather comprehensive set of commonly needed runtime files, which makes the programs easier to use after they are installed. (Thank you, Thomas, for all your hard work!)

Documentation

Much of the most useful documentation for **web2c** and kpathsea is in "Info" form, which can be read with Emacs or with the standalone info application. I found the following docs especially useful:

web2c: web2c.info
kpathsea: kpathsea.info

 ${
m d}{
m vips}$: ${
m d}{
m vips}$.info

 $\mathbf{x}\mathbf{d}\mathbf{v}\mathbf{i}$: man page for $\mathbf{x}\mathbf{d}\mathbf{v}\mathbf{i}\mathbf{k}$

teTFX: See TETEXDOC.* and teTeX-FAQ:

TEXMF/doc/tetex/teTeX-FAQ
TEXMF/doc/tetex/TETEXDOC.dvi

If your T_EX system is teT_EX , you can use the command

texdoc TETEXDOC

to automatically find the .dvi file and start up a viewer (probably xdvi).

When I tried texdoc teTeX-FAQ, however, it didn't work. You may have better luck. My attempt was with teTFX 1.0.

Recursive directory searching For programs whose file searching is based on the kpathsea library,

- A 'path' is the name of a directory (aka folder), which may have several components in its name, one for each level.
- In the texmf.cnf file the generic separator char between components of a path is slash /.
- In a list of multiple paths, the generic separator char between paths is semicolon; (On Unix systems you would normally see colon: here.)
- Trailing // on a directory name means to search subdirectories (recursively).
- A leading !! means to look only in the ls-R database, never on the disk.
- A leading/trailing/doubled; in the paths will be expanded into the compile-time default path.

Use of filename DB to speed up file searches

The kpathsea library supports the use of a "filename database" to speed up file searches. (This database is the referent of texhash, mktexlsr, ls-R files and so on.) It is a simple lookup table that gives the location of each file in a TDS tree.

In practice, using the DB seems to cause users a lot of trouble because it is easy to forget to update the DB after adding files. Because most systems nowadays are fast enough that the search time is negligible for even a fairly large collection of files, I would recommend in most cases to freeze the TEXMFMAIN tree and use the DB lookup for TEXMFMAIN but not for any other trees. Whether this recommendation is a good idea in your situation depends on the following general principles:

- 1. Use the DB for TEXMF trees that don't change.
- 2. Use the DB for TEXMF trees where file access is slow (e.g., across a slow network).

For example, consider the Usenet post shown in Figure 1.

Using an alternate texmf.cnf file If you want to specify a different arrangement of TEXMF trees than the one in the out-of-box cnf file (and in practice this is almost always going to be the case), you have two choices:

1. Edit the texmf.cnf file in the TEXMFMAIN tree

```
From: Peter Neergaard <turtle@cs.bu.edu>
Subject: Re: Why does miktex need to refresh data base
Newsgroups: comp.text.tex
Date: 16 Jul 2001 12:24:59 -0400

On July 16, 2001, Robin Fairbairns wrote:
RF> consider the following example from my texmf.cnf file.
RF> TEXMF = {$HOMETEXMF,!!$TEXMFLOCAL,!!$TEXMFMAIN,!!$TEXMFEXTRA}
RF> the !! indicators mean that ls-R search is obligatory.
[...]

In some cases you might furthermore need to set TEXMFDBS which specifies where tetex looks for ls-R files.
```

On my work, I am actually troubled by the fact that most of the file systems are NFS mounted. I did not get a decent speed of file searching before I started building ls-R files for my private hierachies.

Figure 1: Some discussion of file searching speed

2. Set the environment variable TEXMFCNF to point to a different location (just give the directory name, you don't need to give the full file name)

Obviously, if you do not have privileges to change files in the TEXMFMAIN tree, you will need to resort to the latter option.

To ensure that your cnf file will be read instead of the system-wide cnf file, define the environment variable TEXMFCNF in your shell startup file (.cshrc, .profile, or the equivalent):

for .cshrc:

setenv TEXMFCNF /home/abc/texmf/web2c

The first three lines of the standard teTEX texmf.cnf file at the present time look like this:

```
texmf.cnf -- original runtime path
  configuration file for \fn{kpathsea}.
(If you change or delete 'original'
  on the previous line, the
distribution won't install its
  version over yours.)
```

If you use an alternate texmf.cnf file, outside the TEXMFMAIN tree, the comment in lines two and three is irrelevant. You don't have to change anything.

Single user setup For a typical single user situation, I suggest three trees: MAIN, PLUS (addedpublic), and PRIVATE (added-private), and using

file-database lookup only for the MAIN tree, which is kept frozen. The distinction between public and private is simply this: Put a file into the PRIVATE tree if it is not publicly released somewhere on the World-Wide Web for all to use. This could include

- packages or fonts that you created yourself
- slightly modified versions of publicly available packages, that you use yourself but that are not intended for any wider use.
- packages or fonts that were sent to you privately by a colleague
- old versions of packages that are no longer available from CTAN (but if this becomes a major component of your system you will probably want to add another OLDVERSIONS tree; see the "Old Versions" section below.

So suppose you install version 1.2 of teTeX. The MAIN tree will be the TDS tree as given in the teTeX distribution, out of the box, with absolutely no changes. The PLUS TDS tree will be for any packages that you fetch from CTAN as needed, i.e., whenever you go to use a package and find that it is not present in the MAIN tree. The PRIVATE TDS tree is for any others that are not readily obtainable from the WWWW.

In the texmf.cnf file, use the !! prefix (DB lookup) only for the TEXMFMAIN tree. Suppose that you have: small

This example shows the top of a texmf.cnf file as it would look if you stripped it down to bare essentials in an attempt to understand it before beginning to add more TDS trees. The standard texmf.cnf file that comes with teTeX includes sample definitions for TEXMFLOCAL and VARTEXMF as shown here, commented out.

```
% texmf.cnf -- runtime path configuration file for kpathsea.
%
% The main tree, which must be mentioned in $TEXMF, below:
TEXMFMAIN = /usr/local/teTeX/texmf

% A place for local additions to a "standard" texmf tree. For example:
% TEXMFLOCAL = /usr/local/teTeX/texmf.local

% If defined, teTeX's texconfig stores modifications here (instead of the
% TEXMFMAIN tree).
% VARTEXMF = /usr/local/teTeX/texmf-var
...

TEXMF = !!$TEXMFMAIN
...

% Where to look for ls-R files. There need not be an ls-R in the
% directories in this path, but if there is one, Kpathsea will use it.
% ...
TEXMFDBS = $TEXMF
```

Figure 2: A minimal texmf.cnf file

```
TEXMFMAIN = /usr/local/teTeX/share/texmf
TEXMFPLUS = /usr/local/texmf/plus
TEXMFPRIVATE = /usr/local/texmf/private
(Note the absence of "teTeX" in the latter two.)
Then you would define $TEXMF as
TEXMF =
{$TEXMFPRIVATE;$TEXMFPLUS;!!$TEXMFMAIN}
```

The capabilities of other systems in this respect can vary, of course. The impression I have from looking at the MiKTEX documentation is that multiple TDS trees are supported but at the present time you do not have the option of turning the database lookup on or off for different trees. If this is true then you would have to run the MiKTEX command that updates the database every time you add a new file, regardless of which tree it goes into. (See

http://www.miktex.org/.)

Multi-user setup For a typical multi-user situation, I suggest a set of TDS trees that is basically analogous to the single-user situation but with one or two additional considerations. If your company's name is Bingle Publishing Enterprises, then use MAIN and PLUS trees as before but define a BINGLE tree instead of PRIVATE. You may also want to consider using a VAR tree and, possibly, an OLD tree.

TEXMFMAIN The basic TDS tree provided by teT_{FX}

TEXMFPLUS Additional packages not found in MAIN but needed for Bingle work.

TEXMFBINGLE Additional packages needed for Bingle work but not publicly released (items created in-house or otherwise privately obtained).

VARTEXMF This is the tree alluded to in the texmf.cnf file, which is intended to hold format files and font files generated at your site. If you use this tree it is also a good place to put the Bingle version of texmf.cnf.

TEXMFOLD A tree to hold obsolete versions of packages that may still need to be available for some of your documents. Or maybe more than one tree (see **Old Versions**).

Then your normal definition of TEXMF would be

```
{$TEXMFBINGLE,$VARTEXMF,
$TEXMFPLUS,!!$TEXMFMAIN}
```

and when processing documents that need something from the TEXMFOLD tree, you would change the definition of TEXMF in some appropriate way (it might depend on whether or not any filenames

```
% Earlier entries (in the same or another file) override later ones, and
% an environment variable foo overrides any texmf.cnf definition of foo.
% All definitions are read before anything is expanded, so you can use
% variables before they are defined.
% If a variable assignment is qualified with '.PROGRAM', it is ignored
% unless the current executable (last filename component of argv[0]) is
% named PROGRAM. This foo.PROGRAM construct is not recognized on the
% right-hand side. For environment variables, use FOO_PROGRAM.
% Which file formats use which paths for searches is described in the
% various programs' and the kpathsea documentation.
% // means to search subdirectories (recursively).
% A leading !! means to look only in the ls-R db, never on the disk.
% A leading/trailing/doubled; in the paths will be expanded into the
   compile-time default. Probably not what you want.
% You can use brace notation, for example: /usr/local/{mytex:othertex}
% expands to /usr/local/mytex:/usr/local/othertex. Instead of the path
% separator you can use a comma: /usr/local/{mytex,othertex} also expands
% to /usr/local/mytex:/usr/local/othertex. However, the use of the comma
\% instead of the path separator is deprecated.
\% The text above assumes the path separator is a colon (:). Non-UNIX
% systems use different path separators, like the semicolon (;).
```

Figure 3: Comments from the teTFX texmf.cnf file

in TEXMFBINGLE shadow filenames in the TEXMFOLD tree).

Feel free to choose your preferred tree names

There is nothing sacrosanct about the TDS tree names that I have suggested. The only thing you have to worry about is whether some particular tree names get special handling in your TEX system; this is true in teTEX for VARTEXMF (and VARTEXFONTS), but to the best of my knowledge not for anything else. So instead of MAIN PLUS PRIVATE, you might prefer

TEXMFMAIN TEXMFEXTRA TEXMFLOCAL

or

TEXMFBASE1 TEXMFBASE2 TEXMFBINGLE

And I can think of a few more possible names for the first auxiliary tree, such as TEXMFADD or TEXMFAUX or TEXMFPUBLIC or ...

SELFAUTOPARENT or SELFAUTODIR?

If you look at a real texmf.cnf file you may see that the definition of TEXMFMAIN refers to some puzzling variables SELFAUTOPARENT or SELFAUTODIR. There are two ideas here:

- 1. When TEX or another web2c program starts up, it should be able to decide where to look for the cnf file by checking its own location—i.e., if the full path for the dvips program is /usr/local/teTeX/bin/dvips, then by default dvips will look for the cnf file in /usr/local/teTeX/texmf/web2c.
- 2. The full path of programs such as dvips may vary according to an installation option: whether to include an extra level that indicates the architecture and operating system for which the programs were compiled.

SELFAUTODIR If the executable for TEX is found at

/usr/local/teTeX/bin/tex

then when tex first starts up it sets

- \$SELFAUTOLOC = /usr/local/teTeX/bin
- \$SELFAUTODIR = /usr/local/teTeX
- \$SELFAUTOPARENT = /usr/local

These affect all subsidiary searches that refer directly or indirectly to one of the SELFAUTO variables. Your setting of TEXMFMAIN should refer to SELFAUTODIR, e.g.,

TEXMFMAIN = \$SELFAUTODIR/share/texmf

SELFAUTOPARENT But there is a "multiplatform" installation option for web2c, which would have multiple tex executables in places such as:

/usr/local/teTeX/bin/sparc-sun-solaris2.7/tex Then

- \$SELFAUTOLOC = /usr/local/teTeX/bin/sparc-sun-solaris2.7
- \$SELFAUTODIR = /usr/local/teTeX/bin
- \$SELFAUTOPARENT = /usr/local/teTeX

In this case your definition of TEXMFMAIN should refer to SELFAUTOPARENT.

Using the SELFAUTO... variables is not mandatory

If it becomes too much trouble to sort all this out, you can always fall back on giving the full directory name explicitly in the texmf.cnf file and don't try to make the SELFAUTO idea work.

TEXMFMAIN = /usr/local/teTeX/share/texmf

It won't make any practical difference unless and until you do something such as copy the tree to another machine, and for whatever reason don't put it in the same location. Then you would need to edit the texmf.cnf file to match.

VARTEXMF? VARTEXFONTS?

The option of generating PK files on demand, which has been around for some years now, brings with it some questions about where to put the files that are generated. On a multi-user system, ordinary users cannot normally create files in the main TEXMF tree. If I understand correctly, the idea of setting up a VARTEXFONTS area for the generated files, which was the earliest approach, was later generalized to the idea of a VARTEXMF tree to hold several kinds of locally generated files: pk files, tfm files, tex format files, and configuration files.

The evolution and documentation of this idea was not particularly easy for me to follow, and I believe that if you have a PRIVATE or BINGLE tree it can serve as the location of all the files that would otherwise go into the VARTEXMF tree. But I have not tested this hypothesis extensively enough to rule out the possibility that the name "VARTEXMF" gets special treatment either by the kpathsea library or by some of the teTEX configuration scripts.

At the present time I am using a separate VARTEXMF tree, setting

VARTEXFONTS = \$VARTEXMF/fonts

and following the related recommendations given in the ${\tt texmf.cnf}$ file that comes with ${\tt teT}_FX$.

For some related information see also the "Filesystem Hierarchy Standard" at http://www.pathname.com/fhs/.

HOMETEXME

For individual users on a multi-user system to add personal bits and pieces, there is a convention of using a variable named \$HOMETEXMF.

1. The sysadmin might enable use of \$HOME/texmf for everybody by defining

HOMETEXMF = \$HOME/texmf

and including \$HOMETEXMF in the definition of \$TEXMF, in the system-wide texmf.cnf file. Then anything that you put in that tree immediately becomes usable for you. (Assuming that the sysadmin did not use the !! prefix for the HOMETEXMF tree.)

[One caveat: For the sysadmin herself, it might be better *not* to have HOMETEXMF included in TEXMF when doing TEX system administration tasks.]

- 2. Or if not, you can put files into \$HOME/texmf anyway:
 - (a) Define the environment variable TEXMFCNF = \$HOME/texmf/web2c in your shell login script. This ensures that tex and other programs will use your personal cnf file instead of the system-wide one.
 - (b) Make a small texmf.cnf file in that directory that defines TEXMF to include HOMETEXMF. This ensures that all other kinds of files will be found in the specified search order. You can also copy other lines from the system-wide texmf.cnf file if further customization is needed.

Upgrades

Upgrading teTeX Suppose that you hear teTeX 2.0 has been released and you are eager to install it on your system to replace your current version, 1.4. What will your plan of action be?

Naturally you will want to install version 2.0 in an entirely separate tree where it can be tested for a while, so that you feel reasonably sure that teTeX 2.0 will produce the same results (or, possibly, better) with your existing document base.

Suppose that you currently have:

TEXMFMAIN = /usr/local/teTeX/texmf
VARTEXMF = /usr/local/texmf/var
TEXMFPLUS = /usr/local/texmf/plus
TEXMFBINGLE = /usr/local/texmf/bingle

You could install the new teTeX distrib at /usr/upgrd/teTeX-2.0 (say) and for testing purposes set one environment variable:

TEXMFCNF=/usr/upgrd/texmf/var/web2c

With luck all other adaptations can be handled by editing the new texmf.cnf file that you make in the indicated location, primarily defining TEXMFMAIN and VARTEXMF differently (the latter to hold format files).

TEXMFMAIN = /usr/upgrd/teTeX/texmf
VARTEXMF = /usr/upgrd/texmf/var

Old Versions

The Comprehensive TeX Archive Network does not attempt to systematically archive old versions of software. At any given time, you may see the previous version and the current version of a particular package, or the current version and a beta version of the next release.

Therefore, if you have a need to run different documents with different versions of a given package, you will need to take it on yourself to keep a copy of all the old versions that you want.

How do you arrange that a particular document gets the appropriate version of a particular package? Well, if you thought things were complicated before

. . .

If the number of different package/version combinations remains relatively small, you can use additional TDS trees for this purpose. Let's suppose, for example, that in addition to the latest release of LATEX you would like to be able to run older releases on demand, one for each of the years from 1996 through 2000.

Set up a separate TDS tree for each release of LATEX (here the phrase "tree farm" comes to mind).

/usr/local/texmf.old/latex1996 /usr/local/texmf.old/latex1997

/usr/local/texmf.old/latex1998

/usr/local/texmf.old/latex1999

/usr/local/texmf.old/latex2000

Make links in the teTeX bin directory so that latex1996, etc., can be used from the command line. Then in the texmf.cnf file put

TEXMFOLD=/usr/local/texmf.old
TEXINPUTS.latex1996=

\$TEXMFOLD/latex1996/tex/latex//
;\$TEXMF/tex/{latex,generic}//

and similarly for the others.

Searching

Examining search paths To check what the current value of TEXMF is:

kpsexpand '\$TEXMF'

This shows the end result after expanding all intermediate variable references.

Try kpsexpand '\$TEXMFCNF' and look at the texmf.cnf file found there if you want to examine the variable settings in detail.

Checking the TEXINPUTS search path This gives you the generic search path:

kpsexpand '\$TEXINPUTS'

But that one is seldom used in practice. Instead, one gets a format-specific value of TEXINPUTS from the texmf.cnf file. To find out what it is:

kpsewhich --progname=latex
 --expand-var='\$TEXINPUTS'

This is the most accurate way to check (short of turning on the debugging flags) because it takes into account any environment variables that may be set.

Precedence of environment variables For a program such as LATEX, the search path is taken from the first of the following possibilities that is discovered to be non-null:

- \$TEXINPUTS_latex (env variable)
- \$TEXINPUTS (env variable)
- \$TEXINPUTS.latex (cnf file)
- \$TEXINPUTS (cnf file)

This is for a recent teTeX (1.x). Some options might not be searched for earlier versions.

The simplest way of temporarily changing the search path of a given command is still to set TEX-INPUTS. For example (if you are using sh/bash/ksh):

TEXINPUTS=\$HOME/mystyles: latex xyz

But remember to put the extra colon on the end that indicates "append the usual value here".

Debugging search paths To scrutinize in utmost detail the actual search path that is used for, say, running latex on a particular file:

KPATHSEA_DEBUG=122 latex xyz.tex

or equivalently, for csh users:

(setenv KPATHSEA_DEBUG 122; latex xyz.tex)

See kpathsea.info for more information on the debugging flags that are available. Some programs, for example xdvi, may have special debugging options in addition to the general ones available thrukpathsea. Check their documentation.

Slash versus dot in the TDS tree farm In the past some people have used directory names of the form texmf.local for auxiliary TDS trees. My hunch is that it will tend to work better in practice to make maximal use of the filesystem hierarchy, if you have enough TDS trees to call it a tree farm. So instead of

```
/ams/texmf.plus
/ams/texmf.prod
/ams/texmf.var
I am using
/ams/texmf/plus
/ams/texmf/prod
/ams/texmf/var
```

Fallback search paths

In the standard teTEX texmf.cnf file the TEXINPUTS path for IATEX currently has an interesting part at the end:

```
TEXINPUTS.latex =
    .;$TEXMF/tex/{latex,generic,}//
```

This means search the following trees in order:

```
$TEXMF/tex/latex//
$TEXMF/tex/generic//
$TEXMF/tex//
```

In other words, if a file is not found in the LATEX tree, and not in the generic tree, go back and search the entire TEX tree (all formats!), including searching again in the latex and generic trees.

This is helpful if you notice that some files from one format are useful for use with other formats (e.g., IATEX graphics stuff or certain ConTEXt files). But it also makes you vulnerable to other problems, and ultimately I think it is better to look for a different solution. So I would say:

- Don't put that final comma in.
- And by the way it probably should be a more generic semicolon.
- And by the way the slashes don't really come out right unless you do as I say and omit the comma. (Although kpathsea manages anyway by ignoring extra slashes if there are too many.)

Expanding a path string

```
kpsewhich --expand-path=
   '$TEXMFMAIN/tex/{latex,generic}'
yields:
/usr/local/texmf/tex/latex:
/usr/local/texmf/tex/generic
```

Recursive expansion

kpsewhich --expand-path=

```
'$TEXMFMAIN/tex/{latex,generic}//'
yields all the latex subdirectories first, then all the
generic:
/usr/local/texmf/tex/latex:
    /usr/local/texmf/tex/latex/base:
    /usr/local/texmf/tex/latex/config:
    /usr/local/texmf/tex/latex/amsfonts:
    ...
    /usr/local/texmf/tex/generic/thumbpdf:
    /usr/local/texmf/tex/generic/ukrhyph

Expansion with two TDS trees
kpsewhich --expand-path=
```

'{\$VARTEXMF,\$TEXMFMAIN}/tex/{latex,generic}' yields:

```
/bingle/texmf/var/tex/latex:
  /usr/local/texmf/tex/latex:
  /bingle/texmf/var/tex/generic:
  /usr/local/texmf/tex/generic
```

Recap

Suppose your company name is Bingle. Here in a nutshell is a typical approach you could use.

Environment:

```
export TEXMFCNF=/usr/local/texmf/bingle/web2c
texmf.cnf file:
TEXMFMAIN = /usr/local/teTeX/texmf
```

```
TEXMFPLUS = /usr/local/texmf/plus
VARTEXMF = /var/texmf
TEXMFBINGLE = /usr/local/texmf/bingle
TEXMF = {$TEXMFBINGLE,$VARTEXMF,
$TEXMFPLUS,!!$TEXMFMAIN}
```

TEXINPUTS.context =
 .;\$TEXMF/tex/{context,generic}//

- Put all upgrades and new packages that you get from elsewhere into the TEXMFPLUS tree.
- Put packages in TEXMFBINGLE if they are not publicly available. (This might include old versions of public packages that you want to keep.)
- Put format files and config files in VARTEXMF.
- Debug by setting \$KPATHSEA_DEBUG=122.

References

Most of these links are already mentioned earlier in the text, but I gather them here for convenience.

Appendix M: Some MikTeX notes

To give a flavor of the differences between TEX systems when it comes to search paths, I show some fragments from the MikTEX documentation in Figures 4 and 5.

[LaTeX] Input Dirs=.;c:\users\me//;%R\tex\latex//;%R\tex\generic// The direct teTEX equivalent would be TEXINPUTS.latex=!!/users/me//;!!\$TEXMF/tex/latex//;!!\$TEXMF/tex/generic// although the latter two parts would more usually be combined using brace notation: TEXINPUTS.latex=!!/users/me//;!!\$TEXMF/tex/{latex,generic}//

Figure 4: From the MiKTEX documentation: the search path for LATEX.

Which is the best directory to keep .sty files where MiKTEX can find them?

Each new LATEX package should be installed in the folder tex\latex\package relative to the local TEXMF folder (usually C:\localtexmf\).

Example: suppose you want to install the package thesis-ex which consists of the style file thesis-es.sty: Create a new folder:

```
C:\> mkdir C:\localtexmf\tex\latex\thesis-ex
```

Copy all files (only one in our case) to the new folder:

C:\> copy thesis-ex.sty C:\localtexmftex\latex\thesis-ex

Refresh the file name database so that MiKTEX finds the new files:

 $C:\$ initexmf -u

Figure 5: From http://www.miktex.org/faq/index.html

TeX Directory Structure

- http://www.tug.org/tds/
- http://www.ctan.org/texarchive/tds/standard/tds/tds.html (.pdf, .dvi, etc)

Filesystem Hierarchy Standard

http://www.pathname.com/fhs/

Web2c documentation

- /usr/local/teTeX/info/web2c.info (command-line options!)
- http://www.tug.org/web2c/manual

Kpathsea documentation

- /usr/local/teTeX/info/kpathsea.info (search path syntax!)
- http://www.tug.org/kpathsea/

 $\mathbf{teT}_{\mathbf{E}}\mathbf{X}$: See TETEXDOC.* and $\mathbf{teT}\mathbf{eX}$ -FAQ:

TEXMF/doc/tetex/teTeX-FAQ
TEXMF/doc/tetex/TETEXDOC.dvi

dvips: dvips.info

xdvi: man page for xdvik

Obtaining a TFX system for your computer

See http://www.tug.org/interest.html.

- fpT_EX is a free system for Windows 95/98/ME/NT/2000/XP computers that is based directly on web2c. http://www.fptex.org/ (Thank you, Fabrice Popineau.)
- MikTeX is another one often used on Windows computers.
 http://www.miktex.org/ (Thank you, Christian Schenk.)
- Join the TeX Users Group. Then you will get a TeX Live CD in the mail every year containing several free TeX systems, including the two above, in a ready-to-run or easy-to-install form. (This is also true for most of the other Local User Groups such as Dante, UKTUG, etc.) See http://www.tug.org/texlive.html.

Appendix R: Some Miscellaneous Remarks

- These programs use kpathsea: TEX META-POST, BIBTEX, dvips [dvipsk], xdvi [xdvik], and quite a few others.
- Some programs that don't use kpathsea: ghostscript, ghostview, latex2html, info, and man.
- Drawback of finely subdivided trees as recommended in the TDS spec: It's harder to do group operations across the boundaries. Advantage: It's easier to do operations on the natural subsets.
- I like to put the .tex, x.tex, etc., files from latex into the generic tree.
- kpathsea changes the generic; path separator into the Unix equivalent: when printing messages to the screen, if running on a Unix system.
- If a directory is listed in TEXMFDBS in the texmf.cnf then the disk is never searched—I think. Need to be wary of complications here.

Appendix X: xdvi

xdvi search paths The following variables are significant for xdvi. General setup:

TEXMFCNF to find texmf.cnf and read search path info TEXMFDBS to search for ls-R database files MIMELIBDIR for mime types MAILCAPDIR for mailcap file

For dealing with a particular font (e.g., cmtt10): VFFONTS search for cmtt10.vf
MKTEXPK use mktexpk script? 0 false, 1 true
PKFONTS search for cmtt10.300pk

Generating PK files Here is my weak and superficial understanding of the process, in case it may be of some small help. I have not done a great deal of experimentation with PK file generation.

The config files that affect the generation of PK files are

...teTeX/texmf/web2c/texmf.cnf

and

...teTeX/fontname/*

Note that the latter is *outside of the texmf hierarchy*. If the MF sources were found in one texmf tree, the PK files are written into that same texmf tree. If that TEXMF tree is not writable, the generated fonts go into VARTEXFONTS. The files in the fontname directory control which subdirectory of the PK tree the PK files go into.

Mirroring CTAN

Michael Doob

Department of Mathematics, The University of Manitoba, Winnipeg, Manitoba, Canada

Abstract

The plummeting cost of disk space has made it perfectly reasonable to keep a copy of some or all of the CTAN archive on your local network or even on your own desktop computer. Keeping it up to date without creating unbearable traffic on your network is the job of mirroring software. We'll look at some software available that does this job (almost) painlessly.

The name of the game

Over the past decade CTAN (Comprehensive TeX archiving network) has become a standard tool for TeX users to obtain updates and even full installations of software and documentation. It is not only easy to access, but it also contains the latest version of (sometimes frequently) updated software. The only downside is that sometimes the Internet can be congested and the hosting sites are quite heavily used. In addition, those not graced with high speed connections to the Internet must show great patience when trying to download some of the larger packages. This situation can be ameliorated somewhat by using mirroring software.

The purpose of mirroring software is to keep a copy (mirror) of part or all of some authoritative site. This means that whenever a file is created, modified or deleted from that site, the same files is created, modified, or deleted in the mirror. This implies that the mirroring software must contact the site being mirrored on a regular basis to synchronize the file systems.

The current size of CTAN is just under 5 gigabytes, a size easily accommodated even on a personal desktop computer. In the next two sections we'll look at software using two different approaches to mirroring.

The wget program from the gnu collection

The program wget is a relatively small C program developed as part of the GNU project of the Free Software Foundation. The home site for the GNU project is http://www.gnu.org; the source code is available there. For most UNIX systems, it is simply a matter of going through the ./configure \rightarrow make \rightarrow make install cycle.

In addition, precompiled versions are available for the appropriate package manager for various Linux distributions (Red Hat, Debian and Slackware) and wget.exe is on CTAN. Once the executable is available, using it for small sections of CTAN is almost trivial. Suppose you want to get the macros Then using the command wget for TUGBoat. -npm ftp://ctan.tug.org/tex-archive/macros/ latex/contrib/supported/tugboat will download all the files in the given directory on the (authoritative) site http://ctan.tug.org to your own computer. Of course you have to know the name of the directory you want (which can be pretty long) so it is natural to use wget in script or batch files. The -m option is for mirroring. This means that a record will be kept of the files downloaded, and calling wget again will result in only new or changed files being sent.

Once wget completes its download, you'll have a new directory ctan.tug.org which will have a subdirectory tex-archive and so forth so that the downloaded files will be in the same place in the directory tree as on the original site. Other pieces can be filled in as needed. In principal the whole site could be downloaded, but this would take days, even with a high-speed connection to the Internet (see the following section for an alternative).

The wget program will automatically do recursive downloads of directories. The command wget -npmq ftp://ctan.tug.org/tex-archive/macros/latex/contrib/supported would download all of the supported LATEX macros (this makes for a pretty big transfer!) The -mq option is for mirroring quietly so no informative messages come to the screen. Rerunning the command would download only the macros that changed or were added

since the last download, so this could be done periodically (with a cron job in UNIX) and not incur long download times.

It should be noted that if files are deleted on the site being mirrored, they are not deleted from your computer (so in a sense the mirror is halfsilvered). There are also many other options that can be used with wget, and they are given in detail in the excellent manual available from the GNU site.

The mirror program from Imperial College, London

The mirror program is a perl script, so there is nothing to compile. It is available from http://sunsite.org.uk/packages/mirror or ftp://ftp.cs.columbia.edu/archives/perl/mirror. The main program is mirror.pl; it uses an auxiliary file mirror.defaults to configure itself. This is a text file pretty straightforward (and well documented) and allows, for example, for some files to be skipped. Here is a fragment to indicate the type of instructions that appear (in this example the CD images of the texlive distribution and the unneeded 00Contents files are skipped):

package=ctan

When the mirror program is run, it downloads the current directory tree of the authoritative site and compares it with the mirror directory tree. It then downloads new or revised files from the authoritative site and deletes files on the mirror as necessary.

This program is robust enough to mirror the full CTAN collection. It might be preferable to copy the CTAN image from the available CD and then update from an authoritative site rather than download 5 gigabytes across the net. Once it is set up, a nightly run using mirror will normally update the mirror in less than half an hour.

Authoritative sites

There are three equivalent fully authoritative sites from with CTAN may be mirrored:

- ftp://ftp.dante.de (Hamburg, Germany)
- ftp://ftp.tex.ac.uk (Cambridge, UK)
- http://tug.ctan.org (Colchester, Vermont, USA)

In addition there are several dozen mirror sites listed in the file /tex-archive/CTAN.sites on CTAN itself (which themselves can be mirrored).

With only a small amount of effort, the areas of CTAN of interest can be mirrored on a personal computer; the latest software is then always available in a quick and easy fashion. It makes it easy to go forth and multiply!

Installing TeXShop

Richard Koch

Mathematics Department, University of Oregon, Eugene, Oregon, USA koch@math.uoregon.edu http://www.uoregon.edu/~koch

Abstract

TeXShop is a TeX previewer for MacOS X, Apple's new Unix-based operating system for the Macintosh. It uses teTeX as an engine, typesetting primarily with pdftex and pdflatex. The pdf output is displayed using Apple's internal pdf display code.

TeX Implementations for MacOS X

MacOS X is Apple's new operating system for the Macintosh. Four features of this operating system interest us. First, the operating system is Unix at the ground level, so all standard TEX programs run. Second, the command line interface is optional throughout the system, so programmers cannot assume that users understand Unix. Third, the system has a wonderful programming environment inherited from NeXT. This environment, OpenStep on the NeXT, is called Cocoa on the Mac. Finally, the graphic system on MacOS X is based squarely on pdf. For example, the Cocoa environment includes classes to display pdf images; low-level graphic primitives on the system correspond directly to pdf commands.

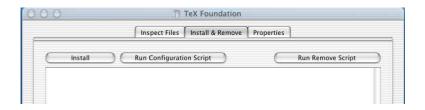
There are several ways to run T_FX on MacOS X. The operating system has a mode called "classic" which runs old Macintosh programs; Textures runs under Classic. The X-windows environment runs on MacOS X, so emacs and xdvi can be used. To obtain X, go to http://www.apple.com/x11. Go to http://fink.sourceforge.net for emacs and xdvi. Several native systems run directly on the new operating system, including CMacTex by Tom Kiffe, OzTex by Andrew Trevorrow, and TeXShop by my group. A number of these systems use the same teTeX distribution, which was compiled and configured for MacOS X by Gerben Wierda. The site http://www.esu.psu.edu/mac-tex lists all of these systems, with links to appropriate web sites. See http://www.uoregon.edu/~koch/texshop to obtain TeXShop and teTeX. TeXShop is free.

Installing TeXShop

In the TUG conference program, 45 minutes were allotted to installing TeXShop; we'll see if that was

enough time. To install, double click on a file named **texshop.dmg** downloaded from my web site.

A window opens containing a TeXShop icon. Drag the TeXShop icon to the Applications folder. Done. TeXShop is installed.


Installing teTeX

We also need to install teTeX. Portions of TeXShop use ghostscript, so we install it at the same time. Double click on the file named II2.dmg.

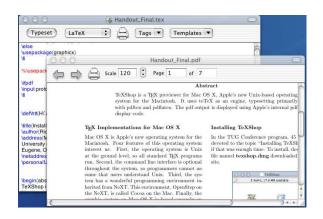
A window opens containing the teTeX installer. Double click on this installer. A panel opens, as shown on the next page.

If we click "Install," the teTeX distribution is installed in /usr/local/teTeX without further input from us. We must also install two other packages; the process takes about five minutes, not counting download time. I refused to install teTeX at the conference because I once watched an Apple Demo

at the University of Oregon in which the demonstrator decided on the spur of the moment to install MacOS-X right before our eyes. Installation was almost complete when the two hour demo ended.

In all, three packages must be installed: TeX Foundation, TeX Programs, and Ghostscript 7. Optional packages are available through i-Installer for graphic conversion, cm-super fonts, etc.

You may have heard that Apple's installer has a bug which sometimes causes it to erase all programs in /Applications while installing new material. For that reason, Gerben Wierda wrote his own installer. You can find details, including full source code for teTeX and for Wierda's installer, on his site at http://www.rna.nl/tex.html.


Running TeXShop

Let's see what we've got. To the right, TeXShop is shown running. The window in the background is a source editor; the window on the front shows the resulting typeset document. The editing window has features we certainly expect: parenthesis matching, syntax coloring, tags. The preview window has buttons which increase or decrease magnification and page forward or backward.

Notice the button named "Typeset" at the extreme left of the editing window. Hitting this button saves the document and calls latex (actually pdflatex) to typeset. If the source code has an error, it can be fixed and typeset again without quitting the original TEX job. The popup menu labeled "LaTeX" next to the "Typeset" button changes the behavior of the first button, allowing users to call TEX, LATEX, BIBTEX, MakeIndex, METAPOST, ConTeXt, or METAPONT.

TeXShop can open multiple documents at the same time. Some of these might be TeX documents and others might be LaTeX documents. When a document is first opened, the button labeled "LaTeX" will default to a choice set in preferences. If a user usually works with LaTeX but happens to open a TeX document, it is easy to switch to TeX for that particular file.

By default, TeXShop calls pdftex and pdflatex to typeset, but pdfetex, pdfelatex and other programs can be chosen in the preferences dialog.

Notice the "Templates" menu. Choosing an item from this menu inserts appropriate text into the document. For instance, I use standard templates to begin LATEX documents and to insert graphic commands. The menu is configurable. Templates are stored in "/Library/TeXShop/Templates. When TeXShop starts, the names of files in this directory are listed in the Templates menu; the contents of a file will be inserted when the item is chosen. To modify the menu, simply change the programs in this folder.

Behind the Scenes

In normal operation, TeXShop does not produce dvi files at all. Instead it calls Hàn Thế Thành's wonderful pdftex and pdflatex to directly output pdf files, which are rasterized by Apple's pdf software. The pdf file is also used in printing. MacOS X's printing architecture always prints using a two pass process: in the first pass the printing job is converted to a pdf file, and in the second pass this pdf file is processed for a particular printer. In TeXShop, the first pass has already been done, so the same pdf file is used for displaying to the screen and printing to the printer. TeXShop has no special code for particular printers.

The basic philosophy behind TeXShop is simple: if software already exists to do a job, use that software rather than inventing your own. TeXShop carries this philosophy to extremes — it doesn't do any hard work itself. Editing is done by the

text object written at NeXT, typesetting is done by the software invented by Knuth and many others, and pdf display is done by Apple's pdf rendering routines.

Here's how TeXShop came about. I bought a NeXT when that machine was introduced because I thought it would be fun to demonstrate to others. Wrong. Friends who used Unix pushed the NeXT windows aside and opened a large terminal window. Mac friends said, "I've got that stuff on my Mac and why are the scroll bars on the left?"

But the NeXT was a wonderful working machine, and I came to rely on Tomas Rokicki's TexView, a TeX previewer which made use of the NeXT's Display PostScript. When Apple bought NeXT, I celebrated and began pestering my Apple representative to make sure TexView was ported. The representative said "we understand that TeX is important and we're working on it." But later he said "who's this Tomas Rokicki anyway."

Around that time someone ported teTeX (minus xdvi) to the MacOS X server. Shortly after that I learned about pdftex and pdflatex and discovered that they were present in the teTeX port. What a revelation. Thank you, Hàn Thế Thành!

But would Apple's software display the pdf? According to the html documentation for Cocoa's NSPDFImageRep class, the class had only a few methods, and none to change the page displayed. "Obviously," I thought, "Apple is using a very primitive form of pdf for graphic display." Then on a fluke I looked at the header files and found other undocumented methods. Done!

Constructing TeXShop was easy. Cocoa contains a powerful text editing object. When I wanted to run IATEX, I looked at the html list of classes and found NSTask, an object which runs other Unix processes. Later I wanted to obtain IATEX errors through some sort of pipe, so I glanced through the html list of classes. "Aha. Here's one called NSPipe." It was all about that simple.

During the beta period for MacOS X, Apple's pdf routines refused to recognize embedded fonts, so TeXShop had the following mild restrictions: you couldn't use symbols and your font had to be Times Roman! It was a thrill to run TeXShop on the release version of MacOS X and see TeX fonts for the first time.

The Cocoa classes provide so much functionality that it sometimes seems they work automatically. After using TeXShop for a while, I needed to find something and hit command-f, but no Find panel appeared. "What sort of lousy software is this

Cocoa?" I thought. "It didn't even give me a Find panel." TeXShop has one now.

A user wrote asking if we could implement a specific emacs key binding. I replied that TeXShop had no key bindings, but we might add some in the future. "What do you mean?" he wrote back. "Most emacs bindings are there." Sure enough ...

The Team

TeXShop is a free program, released under the GPL. Source code is available on my web site. Shortly after TeXShop was released, Dirk Olmes offered to contribute to the program. At least that's how I remember it; perhaps he really wrote "buster, you need help."

When Olmes began, the program code was in a single source file! Olmes broke the code into pieces, rationalized it, and completely rewrote the preferences system while teaching me about the defaults database on OS X. He is now part of our team. Shortly afterward, Jérôme Laurens contributed the TeXShop icon, which I like a lot. Jérôme's signature reads "Dijon, France, where the mustard grows," so I have a romantic image of his home.

Gerben Wierda has become a more and more crucial player in the team. He carefully crafted a version of teTeX which can be used by Mac folks who don't understand Unix. Several scripts used by TeXShop were written by Wierda. He fixed BIBTEX so it can deal with files with Mac line feeds. I'll have more to say about his teTeX in a moment.

Above all, Wierda constructed the teTeX installer; Unix no longer confronts a user who wants to install TeXShop.

It is interesting that the members of this team come from different countries and speak different languages; I have never met any of them. I don't know how old they are, or how they talk, or where they work. For all I know, one of them is a ten-year old kid.

A great many other users have suggested features which are now in TeXShop. Their names and addresses can be found on my web site under the "Credits" link.

Advanced TeXShop Features

Of course eps illustrations must be converted to pdf form for pdflatex. One hopes that future Macintosh programs will create pdf directly, but that may not happen soon; the MacOS X version of Mathematica offers to "Save Selection" as eps, but not pdf.

A few months ago, Sean Luke suggested that TeXShop should be able to typeset using the sequence latex \rightarrow dvips \rightarrow ps2pdf to convert source to dvi, and then to PostScript, and finally to pdf. He sent a shell script to do that. The advantage of this typesetting approach is that old projects with eps illustrations and PostScript special commands typeset directly without modification. TeXShop now includes an option to typeset that way; the option calls an expanded version of Luke's script carefully constructed by Gerben Wierda. The teTeX distribution has been configured to make the resulting pdf file use Type 1 fonts when possibly so it will display rapidly and crisply with Apple's software. Notice that the option requires ghostscript for the final conversion.

The user interface for this option has confused some users. TeXShop is designed so users can have several documents open at once. We imagine that some of these documents will contain pdf illustrations and be typeset by pdflatex, while others will contain eps illustrations and be typeset with TeX and ghostscript. There is a default typesetting command set in preferences; when documents are first opened they are assigned the default typesetting method. But a command in the typesetting menu allows users to change the typesetting method for a particular file after it is open. Users who don't understand this design tend to change the typesetting method in preferences and then discover that the change doesn't affect documents already open.

The latest version of TeXShop has a feature stolen from Rokicki's TexView to simplify choosing a typesetting method. If the first line of a document is %&pdflatex, then pdflatex is used. If the first line is %&latex, then latex and ghostscript are used. Similar remarks hold for %&pdftex and %&tex. If no such line exists, TeXShop reverts to the previous method to determine the typesetting engine.

When working with TEX projects, users often need to examine other files briefly. TeXShop can open many such files itself. This includes text files; log files can be opened and inspected, BIBTEX files can be opened and edited, etc. TeXShop can also open jpg, tiff, and pdf illustrations; indeed it can open any pdf file. The latest version of TeXShop is also able to open dvi files, PostScript files, and eps files. Obviously this is done by converting the file to pdf and displaying the pdf.

In particular, TeXShop can be used to convert eps illustrations to pdf format, since the process of opening an eps also converts it. The conversion indirectly uses epstopdf, but since Macintosh eps files sometimes have Macintosh line feed conventions, the conversion script is able to deal with eps files regardless of the line feed used. In particular, TeXShop users can now convert eps illustrations from Mathematica to pdf without first modifying the file.

When TeX is used to write a book, it is common to organize the project using a controlling "root" file. The chapters of the book and their illustrations are put in separate directories inside the project directory. TeXShop can deal with this organization. In the TeXShop "File" menu, there is an item named "Set Root File." This item allows users to assign a root file to any particular TeX source file; when the source file is typeset, the file is saved, but TeXShop typesets and displays the root file. This root file can be in any directory.

I'm not certain this design is optimal because a root file must be set for each separate book chapter. It would be nice to configure the project just once. So the root file syntax may be modified at some later time.

Configuring teTeX

Although teTeX is the engine underlying TeXShop, users may choose to ignore it completely; teTeX will do the hard work silently.

In MacOS X, Unix directories are hidden from the user. In particular, the directory where teTeX is installed, /usr/local/teTeX, is not visible from the finder. Gerben Wierda automatically adds a symbolic link to this directory to the system Library folder, which is visible. To inspect teTeX in the Finder, go to /Library/teTeX.

The teTeX documentation can be found in /Library/teTeX/share/texmf/doc/tetex. In particular, see the files TETEXDOC.pdf and teTeX-FAQ. More documentation for Wierda's MacOS X compilation is in /Library/teTeX/README.macosx.

It is possible to store additional style files, fonts, etc., in teTeX itself. But that is not a good idea; it is better to keep the teTeX directory pure so it can be upgraded when later versions are released. Instead, users should construct a mirror image of the teTeX directory structure inside their "/Library folder and store personal files there.

Gerben Wierda has configured teTeX to look for TeX files in four locations, in the following order:

- ~/Library/texmf
- /usr/local/teTeX/share/texmf.local
- /usr/local/teTeX/share/texmf.macosx
- /usr/local/teTeX/share/texmf

The first of these spots is where individual users will put extra files. The second is where the system

administrator will put files for all users on the computer. The third is where Gerben Wierda will put his own configuration files for teTeX. The final spot is the original texmf tree maintained by the TeX community and kept as default as possible.

When new upgrades to teTeX are introduced, the installer will overwrite files in the last two directories. But files in the other directories will be left alone.

The teTeX system uses a directory structure invented by the TUG working group. When users want to add files to the system, they need to inspect /Library/teTeX/share/texmf to find a likely spot for the file, and create a mirror image directory in ~/Library/texmf.

I'll show how this works by answering three common email questions about TeXShop. As you'll see, we are only partway along the path leading to Mac-like ways to administer TeX. The answer to the first question below is satisfactory, but the remaining answers require more Unix than we'd like.

How Do I Install REVTEX?

At the time of the conference, REVTEXwas not included in Gerben Wierda's distribution. It is now, but I'll still use it to explain how to install extra packages in the system. I'll simulate a typical installation, including an error which must be debugged.

Visit http://publish.aps.org/revtex4/. At the bottom of this page our package is available as revtex4.tar.gz. Unpack this package.

The folder contains seven input files: 10pt.rtx 11pt.rtx 12pt.rtx aps.rtx revsymb.sty revtex4.cls rmp.rtx

It also contains two BIBTEX files: apsrev.bst and apsrmp.bst. We look inside the teTeX directories and find that most LATEX include files are in folders inside tetex/tex/latex. Therefore, we create the folder ~/Library/texmf/tex/latex/revtex and place all nine REVTEX files in that folder

Next we try REVT_EX on some sample files. Everything works until we use BIBT_EX; the system complains that it cannot find apprev.bst. We conclude that BIBT_EX include files belong in a different directory.

Looking again at teTeX's tetex directory, we find a subdirectory named bibtex. Inside this directory is a directory named bst. Probably BIBTEX include files go into this directory. So we create ~/Library/texmf/bibtex/bst/ and place the two bst files from REVTEX inside. Then everything works.

How Do I Typeset TEX Files Created by Mathematica?

Mathematica can save notebooks in TEX format. This TEX source requires special include files and fonts, which we must install. The required files are packaged with Mathematica. The instructions which follow refer to the MacOS X version of Mathematica. Click on the Mathematica icon while holding down the control key. A dialog allows us to open Mathematica as a folder.

Inside, we find many files, including TEX files. Go to SystemFiles/IncludeFiles/TeX and copy files as follows:

- texmf/tex/latex/wolfram
 - \rightarrow ~/Library/texmf/tex/latex/wolfram
- texmf/fonts/tfm/wolfram
 - \rightarrow ~/Library/texmf/fonts/tfm/wolfram
- texmf/fonts/vf/wolfram
 - → ~/Library/texmf/fonts/vf/wolfram
- texmf/dvips/init/wolfram.map
 - ightarrow ~/Library/texmf/dvips/config/
- /SystemFiles/Fonts/Type1
 - → ~/Library/texmf/fonts/type1/wolfram

So far the instructions are Mac-like, if somewhat complicated. Unfortunately, Wolfram supplies type 1 fonts in pfa format, and teTeX requires fonts in pfb format. So we must convert each Wolfram font from one format to the other. The program required to do this is called t1binary; luckily it exists in teTeX. To convert, say, Mathematica1.pfa to Mathematica1.pfb, type the following command

t1binary --output=Mathematica1.pfb Mathematica1.pfa

Convert all forty-six fonts in this way.

When Mathematica outputs notebooks in TEX format, it writes graphic content as a series of eps files. Hence the notebook should be typeset using TeXShop's "TeX and Ghostscript" option.

How Do I Use the Lucida Bright and MathTime Fonts?

These are commercial fonts, so teTeX does not contain them. But teTeX has all required supporting files, so it is only necessary to obtain the Type 1 fonts themselves and add them to the system.

Many users already own these fonts for earlier Mac operating systems. I'll describe how to use them for users who bought the fonts from Blue Sky Research for Textures. There is just one problem. The Textures fonts are in a Mac format used by Adobe Type Manager. But teTeX uses the pfb format required in the Windows world and elsewhere.

LucidBri	lbr	LucidSan lsr Lucid		cidSanTyp	lstr	
LucidBriDem	lbd	LucidSanDem	lsd	Luc	cidSanTypBol	lstb
LucidBriDemIta	lbdi	LucidSanDemIta	lsdi	Luc	cidSanTypBolO	bl lsbo
LucidBriIta	lbi	LucidSanIta	lsi	Luc	eidSanTypObl	lsto
LucidFax	lfr	LucidNewMatAltIta		lbmo	LucidCalIta	lbc
LucidFaxDem	lfd	LucidNewMatArr		lbma	LucidHanIta	lbh
LucidFaxDemIta	lfdi	LucidNewMatExt		lbme	LucidBla	lbl
LucidFaxIta	lfi	LucidNewMatIta		lbmi	LucidBriObl	lbsl
		LucidNewMatSym		lbms		

Luckily, free conversion software is available on the internet. Running this software is the unpleasant part.

The software needed is called tlunmac. At the conference I had to explain how to retrieve this software and compile it. Luckily, the software is now part of Gerben Wierda's teTeX distribution.

The tlunmac Unix program which will do the conversion. But Unix does not understand the resource fork used by Macintosh fonts, so we must first pack these fonts into a flat file using the old Mac utility BinHex4. As an example, let us convert the Lucida fonts. Run classic, run BinHex4, and use the menu Application \rightarrow Upload to convert LucidBri to LucidBri.Hqx. Convert the other font files similarly.

Move these files to your home directory. Open Terminal and execute the command

```
t1unmac --binhex --pfb --output LucidBri.Hqx
```

to convert the first font to pfb format. Convert the other files the same way.

The pfb files must now renamed; for example, LucidBri.pfb to lbr.pfb (see the table at the top of the page). Place the renamed pfb files in ~/Library/tetex/fonts/type1/yandy/Lucida. To use these fonts instead of the cm fonts, add the following line to your LATEX document:

\usepackage{lucidbry}

Coexisting with Fink

MacOS X uses its own graphic system rather than the X Window System. But X-windows can run on MacOS X. When it does, the user has two views of the same file system and can switch between these views with a keystroke.

It is still necessary to obtain and compile X-windows software like ghostview, xdvi, and xpdf. A remarkable system called Fink has been invented to ease this task. Suppose Fink has been installed and suppose you want to obtain ghostview. Type "fink install gv" in the Terminal. Fink will consult its

database and discover that gv requires ghostscript and ghostscript-fonts. It will ask permission to install these as well, and will then retrieve the source files, retrieve patches for MacOS X, compile the code, and install it, all automatically.

To avoid overwriting files, Fink installs software in its own location, /sw/bin. So far, so good. But when Fink is setup, it modifies the PATH variable to search /sw/bin first. Thus Fink versions of software will be used even if other versions are also installed.

At the time of the conference, this caused problems. Most of these problems have since been fixed, but I'll discuss them briefly for amusement.

Originally TeXShop used ghostscript 6 rather than ghostscript 7 because Apple's pdf rendering software could not interpret TEX fonts in pdf files created by ps2pdf in ghostscript 7. So it was important that TeXShop call the version of ps2pdf in /usr/local/bin rather than the Fink version in /sw/bin. Unhappily, ps2pdf is a script which ultimately calls ghostscript, so even if we called the correct version, the wrong version of ghostscript would run.

Just before the conference, we released new versions of TeXShop and teTeX which were inoculated against Fink. TeXShop now calls scripts which temporarily reset the PATH variable before calling ps2pdf. Even if users installed the fink version of ghostscript, TeXShop will run with no problems. We also modified TeXShop so it will use Gerben Wierda's distribution even if a second version of teTeX is installed.

Later Apple fixed the pdf rendering bug, and our system now uses ghostscript 7.

Since the conference, the Fink distribution of teTeX was modified. The fink installer now asks if it should install its own version or make symbolic links to a version already installed in /usr/local/bin. Users should choose the "symbolic link" option.

Those who install the fink version of teTeX are asking for trouble, because any TEX program called from the command line will use the Fink version,

which is not configured to look for extra files in ~/Library. Thus, include files will mysteriously be found sometimes and not at other times. There is little reason to install the Fink version of teTeX because X-windows software should work fine with Gerben Wierda's distribution. Certainly that is true of the xdvi installed by Fink.

Missing Features

If you are using TeXShop, please report bugs and request extra features. Our email addresses are listed at the end of this article.

Four requests were often made at the time of the conference. We have responded to some of these requests since then. Here are the requests:

Better spell checking: Recent versions of TeXShop set the Macintosh type of files to TEXT. Therefore, these files can be opened with Excalibur, a wonderful LATEX spell-checker. The spell checker cocoaAspell by Anton Leuski was introduced after the conference and also works with TeXShop.

Magnifying glass in the preview window: This was introduced in version 1.27, using code provided by Mitsuhiro Shishikura. Shishikura added other important features in 1.27.

Edit using other editors: Some users want to edit their TEX files with BBEdit or xemacs. This can be done with versions introduced after the conference.

Coordinate the source and pdf windows: Textures has a feature called Synchronicity. We are often asked to provide it for TeXShop. But the Apple pdf classes have no methods for searching pdf files or clicking in the image and finding the corresponding spot in the file. So providing this feature would be hard work.

Samuel Eilenberg was a great topologist. One day a student said to him "Professor Eilenberg, I have decided to work in algebraic topology." Eilenberg replied "Young man, don't let me stand in your way."

Similarly, the TeXShop source code is available at my web site. "Young man, ..."

Email Addresses

Richard Koch koch@math.uoregon.edu Dirk Olmes dirk@xanthippe.ping.de Gerben Wierda Gerben_Wierda@rna.nl

Font Installation: Agfa Eaglefeather to Linotype Zapfino

William F. Adams
ATLIS, 75 Utley Drive, Suite 110, Camp Hill, PA 17055
wadams@atlis.com

Abstract

Here's how I managed to get Agfa Eaglefeather and Linotype Zapfino installed in TEX and some of the things which I learned, from A to Z.

Beginning First, acquire the fonts. I'd purchased Agfa Eaglefeather back when it first came out to do the signage for a Frank Lloyd Wright exhibition at the Longwood Center for the Visual Arts. I've always wanted Zapfino since first hearing of it, so was thrilled to learn it was bundled with Mac OS X.

Choose your font vendor carefully. Considerations include:

Are they on the "short list" of font vendors which are listed in Fontname (http://www.tug.org/fontname/? This eases the process of installation, Agfa for example isn't, and I was having trouble getting the install of Eaglefeather started until I hit upon the idea of lumping it in with Monotype Octavian which I'd installed previously, on the theory that assimilation works both ways (Monotype was bought out by Agfa).

Are .afm (adobe font metric) files provided/available? Not all vendors do this, especially for fonts provided in Mac format. If .afm files are not available, one can make one's own, with certain caveats. The typical case is a Mac lwfn printer font and bitmap screen font pair, in which case the bmp2afm utility from CTAN and other file archives will extract the metric and kerning information. For the Windows .pfm (postscript font metric) format files similar utilities are available. Additionally, most font editors can access this information and write .afm files. pfaedit is an open source font editing/creation program recently announced on SourceForge (http://www.sourceforge.net).

Who made the font and why? Does the font vendor acknowledge the font's designer at least? Make royalty payments? Provide information which helps in learning how the font was first used (or ideally tutorial exemplars such as the lovely booklets which accompanied the Adobe Originals), where it was first used (a few fonts are still named for the book in which they were first used...) and when so that one may write a decent colophon?

As implied above, it is the font's vendor which, in the Fontname scheme, determines the beginning

of the font name. For Agfa-Monotype Eaglefeather, "M", for Apple-Linotype Zapfino, "E". the appropriately named sub-directories (mef and ezo) for the fonts are placed in directories for the relevant vendor (monotype and apple). If you are using a font from a vendor to which no letter or number is assigned, I would suggest using "z" for misc instead of attempting to assign something oneself—not only does this raise the spectre of incompatibility should the number later be formally assigned, it seems not to work without reconfiguration of the TeX Directory Structure settings.

Conversion As a graphic designer by trade, I've always purchased Mac format fonts, working on the theory it's easier to convert from Mac to PC/Unix than in other directions. (This habit was formed, of course, before .pdf) There are a number of tools for this, I use a combination of: Ares FontHopper (to get from Mac to PC format), and Type Designer by Manfred Albracht (to regularise the encoding and generate a .afm), and of course the afore-mentioned bmp2afm and other programs. Of notable interest for those with older TEX systems, ttf2afm, a part of the FreeType project allows .dvi processors to make use of TrueType outline fonts by converting them into bitmap fonts.

Zapfino for MacOS X is provided in the new .dfont resource fork-less format, which is as yet unique to MacOS X. Fortunately, the font tools group at Apple has created "Fork Switcher", a small utility program which switches a font from resource to data fork. Zapfino is also available from Linotype in a more prosaic Type 1, multiple font format, but the Apple version has many additional characters (a total of 1,286) and promises to eventually provide elegant access to all them and more which are yet to be created...

Fork Switcher is available from http://fonts.apple.com. Unfortunately, Ares FontHopper has been discontinued since Adobe purchased Ares, and DTP Software became the German distributor

for Yuri Armola's FontLab program, (http://www.pyrus.com in the U.S., or http://www.fontlab.com) which subsumed the code and features of Type Designer. (Note: This latter Type Designer is not the font editor which once upon a time was sold by Letraset.)

Decisions Eaglefeather was rather straightforward once I'd worked out a solution to its lacking an Expert font set and having "merely" a Small Caps font. (I made my own Expert fonts. This is probably a variant of the "If all one has is a hammer..." maxim.)

I chose "ef" for the name, since it seems unlikely I'd need Egyptienne (the canonical font for this letterpair). Arguably, I should use an unused letterpair, since TEX insists on making a folder for egyptien .tfms.

Zapfino has proven more complex, and even now, I've not reached an equitable solution. Unfortunately, despite its having over 1,000 unique glyphs, very few of them are actually wired up (for example, there's no way to access the old-style figures) for usage in TextEdit.app or WorldText.app (née GXWrite from Apple's QuickDraw/GX)—this program is available in the Extras folder of the Developers' Applications (if you didn't get a Developer CD with your copy of MacOS X, the Tools are available as a download with (free) membership in the Apple Developers' Connection) in MacOS X at this time (10.1 has not yet been released as of this writing). Sadly, this is confirmed by my usage of Zapfino in T_FXGX. Although installation there was almost painfully easy (switch font fork with Fork Switcher, drag to System Folder: Fonts, start TEXGX, use font), GX does not provide access to font features for which layout tables have not been written, and at this time these are limited to the binary options (to ligature or not to ligature) which Apple's TextEdit.app and other programs which use the nstext object make available. One additional consideration here is that the font after conversion bears special handling since it is set for installable embedding which seems not to be covered by Apple's software license. Correspondence with Apple asking for guidance or clarification on this issue has thus far gone unanswered—it's worth noting though that Apple removed font tables from their system fonts so as to preclude the conversion and installation of same in other operating systems.

Eaglefeather David Siegel, the designer of this font under license from the Frank Lloyd Wright Foundation has written "The Story of Eaglefeather" which is available from his website, http://www.

dsiegel.com. By the time this is printed a .pdf version set in the font itself should be available from my personal web site http://members.aol.com/willadams.

Font Installation: fontinst I must confess that I use this amazing macro package by Alan Jeffrey as a "black box" and merely feed it appropriately named collections of .afms and a TEX file consisting of \input fontinst.sty, an appropriate \latinfamily command, and \bye. In addition to the manual, I would especially recommend reading Tako Hoekwater and Ulrik Vieth's presentation for EuroTeX '99 "Surviving the TEX font encoding mess" (filename et99-font-tutorial.pdf) which is included in the pre-release fontinst documentation directory on CTAN.

It is my understanding after extensive reading of the manual and the weaved source of the package itself (included with the pre-release version on CTAN, filename fisource.pdf) that it can be controlled by .etx files, and hope to eventually find the time to experiment with that. Alan Hoenig's wonderful (but sadly out-of-print) book TEX Unbound has extensive tutorials on this as well. One observation before I begin a description of low-level direct manipulation which a better understanding of fontinst might obviate: .etx files are created in the course of font installation by fontinst, and if a second (tweaked) install is attempted, they will be used in lieu of (updated) .afm files which have the same filename.

General Tweaking Making the O FLOAT.

This is specifically suggested for adjustment in "The Story of Eaglefeather", and I did so—couldn't resist. For those with a similar weakness, we start with the vpl for the roman font, and construct an LO ligature First, find an empty character slot. Since there's no "Eng" at D 141, we'll use that. (My apologies to those whose native tongue requires this character.)

```
(CHARACTER D 141 (COMMENT Ng)

(CHARWD R 5.0)

(CHARHT R 5.0)

(CHARDP R 0.0)

(MAP

(SETRULE R 5.0 R 5.0)

(SPECIAL Warning:

missing glyph 'Eng')

)
```

and add in the small cap "o" we'll be inserting.

Find a character to replace and grab the replacement character:

```
(CHARACTER D 111 (COMMENT o)
```

```
(CHARWD R 5.81995)
   (CHARHT R 4.8999)
   (CHARDP R 0.10999)
   (MAP
      (SETCHAR D 111) (COMMENT o)
}
    Merge the two entries:
(CHARACTER D 141 (COMMENT small cap o)
   (CHARWD R 5.81995)
   (CHARHT R 4.8999)
   (CHARDP R 0.10999)
   (MAP
      (SETCHAR D 111) (COMMENT o)
      )
and then tell TFX from where to draw the character:
(CHARACTER D 141 (COMMENT small cap o)
   (CHARWD R 5.81995)
   (CHARHT R 4.8999)
   (CHARDP R 0.10999)
   (MAP
      (SELECTFONT D 1)
            (COMMENT mefr8x at 10.0pt)
      (SETCHAR D 111) (COMMENT o)
      )
   )
```

Unfortunately, KRN only allows us to move characters horizontally, so a character slot must be dedicated to this as far as I know. So, we create the ligature character:

Then we go back and insert a reasonable KRN for A...

After doing this, we must note that even though it was missing, "ng" was kerned (with the values for 'n' I suppose), so we want to delete such kerns. Similarly, we delete any kerns for where we put the "o". This part could be automated by fontinst, I believe...

Kerning after the L₋o pair hopefully won't need too much adjusting.

Next, noting that "L" is CHARACTER D 76, we modify the LIGKERN entry for o which is already there, changing it from a kern to a ligature; from: (KRN D 111 R -0.48999) (COMMENT o) to: (LIG D 111 D 173) (COMMENT o L_o).

Hyphenation One of the things which fontinst doesn't do for the fonts which it installs is a zero-width hyphen. Fortunately, as Don Hosek of Quixote http://www.quixote.com, publisher of the magazine Serif: The Magazine of Fine Type and Typography noted in a post to comp.text.tex ages ago, this is quite easy to do, just:

- open up the appropriate .vpl (e.g., mefr9d.vpl)
- find the "hyphenchar" if it exists, e.g.,

```
(CHARACTER D 127 (COMMENT hyphenchar)
(CHARWD R 2.90991)
(CHARHT R 3.05994)
(CHARDP R 0.0)
(MAP
(SETCHAR D 45) (COMMENT hyphen)
)
```

- zero out CHARWD (or adjust it to the desired value if having the hyphen hang all the way out is not desirable)
- if "hyphenchar" doesn't exist, copy the real hyphen into a blank character slot. Note: CHARDP was −2.5 for the real thing...not sure why it should be zeroed out for this.

Then, in one's TEX file, one must set the hyphenchar in each font definition macro to the correct slot, e.g., \hyphenchar\efroman = 127.

Installation Once fontinst has turned out the basic font property list files (both normal, .pl for regular fonts and .vpl for virtual fonts), one must convert these into the .tfm (TEX Font Metrics) and .vf (virtual fonts) files which TeX itself will use by using plttotf and vptovf. Doing this is specific to one's system/TEX implementation and is well-described in the fontinst manual. There are comments which I copy which describe the appropriate command for each file, but the executable is misnamed in them (pltotfm vice pltotf and vpltovf vice vptovf).

Then, the files should be stored away in the proper places, the fonts added to the dvips config.ps file by way of an added map file and one's TEX filename database refreshed.

Justification A thing which bears noting on TEX's method of justification is that it does not alter intercharacter spacing—this ensures that ligatures will be visually compatible with the text in which they reside. Readers with access to a copy of MacOS X can graphically explore this by setting "office" in the Snyder Bold font bundled with MacOS X in TextEdit, selecting it and turning on "all ligatures".

Kerning A font installed in TEX will inherit the kerning from the relevant .afm files (if any). Kerning should be tested with a text which contains all of the letter triplets used in the intended language, as well as as sensible Cap/lowercase pairs. Such a file for English which makes use of Webster.app, Digital Shakespeare and the King James Version of the Bible is available at http://members.aol.com/willadams/typography/textsamples

Ligatures Only the "basic" f-ligatures are installed by fontinst for a typical font since those are the only ones normally available. Eaglefeather only has f-ligatures as actual glyphs, while others can be created by careful kerning of select letterpairs.

Zapfino on the other hand, has a plethora of ligatures (if only one could get at them).

Quote

TeX started out with a highly irrational and non-composable design, which was partly helped and yet a bit furthered by the fine LATEX NFSS. Making sense out of it all is most difficult.

One concludes that human language and their alphabets cannot be coldly reduced to integer codes. The letter is kept; the spirit is lost

Dr. Richard Kinch responding to Javier Bezos in the thread "TEX and Unicode = where are we?" in comp.text.tex Wednesday 25 April 2001 12:42:01 PDT

Samples and Testing The canonical way to test TeX fonts is "tex testfont". This provides a number of options for providing various character charts and text samples which are fairly rigorous, and quite good at exposing problems (e.g., missing accents, but only for those using plain TeX-like methods of accessing accented characters) with a font which might otherwise be left until crunch time.

Stephen Moye has also done some wonderful macros for generating specimen pages — typespec01-10 — which are available on CTAN where plain TEX-contributed macros are stored.

Zapfino Zapfino had its origins in Prof. Zapf's 1944 sketchbook, when he was a mapping officer during World War II. A previous attempt to render those letterforms as type, Virtuosa Script for D. Stempel had been rather compromised by the limitations of hot metal matrices, especially the swash letters.

This design was revived when David Siegel in 1993, after working on the Euler project with Prof. Zapf, and after graduating approached him about a chaotic calligraphic typeface based upon an example done for the Society of Typographic Arts in Chicago. Remembering the page from his sketchbook, Prof. Zapf saw the chance for a design without compromises due to the advantages afforded by digital type technology.

Digitization was done by Gino Lee, but production halted due to personal problems, and languished until Prof. Zapf showed the design to Linotype. It was then rendered as a traditional, multiple alphabet typeface family.

Apple's having John Hudson of Tiro Type reencode these multiple fonts as a single entity brings this full circle for their new MacOS X and its "ATSUI" (Apple Typographic System for Unicode Information), and Zapfino is, or rather will be, a full-featured hand-writing font...

Calendar

2001		$\mathrm{Feb}\ 19-22$	Seybold New York, New York City. For information, visit	
Sep 8	WDA'2001: First International Workshop on Web Document Analysis, Seattle, Washington. For information, visit http://www.csc.liv.ac.uk/~wda2001.	Feb 20 – 23	http://www.key3media.com/ seyboldseminars/ny2002/. DANTE 2002, 26 th meeting, Universität Erlangen-Nürnberg,	
Sep 17-20	XML World 2001, San Francisco, California. For information, visit http://www.xmlworld.org/.		Germany. For information, visit http://www.dante.de/dante2002/.	
Sep 23-27	EuroT _E X 2001, "T _E X and Meta: the Good, the Bad and the Ugly Bits", Kerkrade, Netherlands. For information, visit http://www.ntg.nl/eurotex/.	Mar 13 – Apr 23	The Best of the Best: A traveling juried exhibition of books by members of the Guild of Book Workers. San Diego State University Malcolm A. Love Library, San Diego, California. Sites	
Sep 29	29th Annual General Meeting of the Danish TEX Users Group (DK-TUG),		and dates are listed at http:// palimpsest.stanford.edu/byorg/gbw.	
	Århus, Denmark. For information, visit http://sunsite.dk/dk-tug/.	Apr 29 – May 3	EuroBachoTEX 2002, 13 th meeting of European TEX Users and 10 th	
Oct 24-26	4 th International Conference on The Electronic Document, Toulouse, France. For information, visit http://www.irit.fr/CIDE2001/.		annual meeting of the Polish TEX Users' Group (GUST), "TEX and beyond", Bachotek, Brodnica Lake District, Poland. For information, visit	
Nov 9-10	ACM Symposium on Document Engineering, Atlanta, Georgia. For information, visit http://www.documentengineering.org.	May 7 – Jun 27	http://www.gust.org.pl/BachoTeX/2002/. The Best of the Best: A traveling juried exhibition of books by members of the Guild of Book Workers. San Francisco Public Library, San Francisco,	
2002			California. San Diego, California. Sites and dates are listed at http://palimpsest.stanford.edu/byorg/gbw.	
Jan 16 – Feb 20	The Best of the Best: A traveling juried exhibition of books by members of the Guild of Book Workers. Swarthmore College,	May 29	Journée GUTenberg, "Distributions", Paris, France. For information, visit http://www.gutenberg.eu.org/.	
	Swarthmore, Pennsylvania. Sites and dates are listed at http://palimpsest.stanford.edu/byorg/gbw.	May 29 – 31	Society for Scholarly Publishing, 24 th annual meeting, Boston, Massachusetts. For information, visit http://www.sspnet.org.	
		Jul 12-14	TypeCon 2002, Toronto, Canada. For information, visit http://www.typecon2002.com.	

Status as of 1 July 2002

For additional information on TUG-sponsored events listed above, contact the TUG office $(+1\ 503\ 223-9994,\ fax:\ +1\ 503\ 223-3960,\ e-mail:\ office@tug.org)$. For events sponsored by other organizations, please use the contact address provided.

Additional type-related events and news items are listed in the Sans Serif Web pages, at http://news.serifmagazine.com/.

Owing to the lateness of this issue, please consider that all events shown for 2001 are included only "for the record".

Jul 21-26 SIGGRAPH 2002, San Antonio, Texas. For information, visit http://www.siggraph.org/calendar/.

TUG 2002

International Convention Centre, Trivandrum, India. For information, visit http://www.tug.org.in/tug2002/.

- Sep 1-3 Tutorials: IATEX; IATEX to XML; METAPOST; the Text Encoding Initiative; TEX macro expansion.
- Sep 4-7 The 23rd annual meeting of the T_EX
 Users Group, "Stand up and be proud of
 T_EX!". For information, visit
 http://www.tug.org.in/tug2002/.
- Sep 19-22 Association Typographique Internationale (ATypI) annual conference, Rome, Italy. For information, visit http://www.atypi.org/rome2002/.
- Sep 24-25 First Annual Conference, Friends of St. Bride Printing Library,
 London, England. For information, visit http://www.stbride.org/conference.htm
- Oct 12 UKTUG Autumn meeting,
 Nottingham University.
 For information, contact Dick Nickalls,
 dicknickalls@compuserve.com.

- Oct 14-17 Book History Workshop, Institue d'histoire du livre, Lyons, France. For information, visit http://ihl.enssib.fr.
- Nov 8-9 ACM Symposium on Document Engineering, McLean, Virginia. For information, visit http://www.sdml.cs.kent.edu/doceng2002/.

2003

TUG 2003

Outrigger Waikoloa Beach Resort, Big Island, Hawaiʻi.

- Jun 24-27: EuroTeX 2003: Back to typography. For more information see http://omega.enstb.org/eurotex2003.
- Jul 15-18 Beginning/Intermediate IATEX class. For more information see https://www.tug.org/tug2003/latexclass.html.
- Jul 20-24 The 24th annual meeting of the TEX Users Group. For information, visit http://www.tug.org.in/tug2003/.
- Jul 27- SIGGRAPH 2003, San Diego, Aug 1 California. For information, visit http://www.siggraph.org/calendar/.

TUG 2003: the Silver Anniversary — 25 years! — of TEX

The 24th Annual Meeting and Conference of the TeX Users Group

tug2003@tug.org

Themes

- ☐ Resurgence of TEX & LATEX
- □ pdfTeX, ConTeXt, Metapost, Metafont
- □ TEX-XML Symbiosis, TEI, Digital Archiving
- ☐ Fonts & Graphics
- □ Installations & Management, CTAN
- □ Publisher & Prepress Dilemmas
- ☐ MacOS X TeX: New Kid on the Block

Important Dates

2002		2003			
Abstracts due	18 Nov	First draft of paper due	9 Feb		
Abstracts accepted	18 Dec	Registration deadline	9 Apr		
Early-lion registration	31 Dec	Final paper due	9 Jun		

Links

Homepage http://www.tug.org/tug2003/
News Mailing List http://www.tug.org/tug2003/news/
TEX Heritage http://www.tug.org/tug2003/heritage/
Call for Abstracts http://www.tug.org/tug2003/callfor.html
Registration/Donations https://www.tug.org/tug2003/registration.html

TEX Enthusiasts worldwide are invited to join us for a grand reunion to celebrate the accomplishments of TEX Polish up the old and learn about the shiny new directions in TeX!

July 20-24, 2003, Outrigger Waikoloa Beach Resort, Big Island, Hawaii

[Kona International Airport at Keahole (KOA)]

Institutional Members

 $\label{eq:matter} \mbox{American Mathematical Society}, \\ \mbox{\it Providence}, \mbox{\it Rhode Island}$

Center for Computing Science, Bowie, Maryland

Cessna Aircraft Company, Wichita, Kansas

The Clarinda Company, Clarinda, Iowa

 $\begin{array}{c} \text{CNRS - IDRIS,} \\ \textit{Orsay, France} \end{array}$

CSTUG, Praha, Czech Republic

Florida State University, School of Computational Science and Information Technology, Tallahassee, Florida

IBM Corporation, T J Watson Research Center, Yorktown, New York

Institute for Advanced Study, Princeton, New Jersey

Institute for Defense Analyses, Center for Communications Research, *Princeton*, *New Jersey* Iowa State University, Computation Center, Ames, Iowa

Kluwer Academic Publishers, Dordrecht, The Netherlands

KTH Royal Institute of Technology, Stockholm, Sweden

Marquette University, Department of Mathematics, Statistics and Computer Science, Milwaukee, Wisconsin

Masaryk University, Faculty of Informatics, Brno, Czechoslovakia

Max Planck Institut für Mathematik, Bonn, Germany

New York University, Academic Computing Facility, New York, New York

Princeton University, Department of Mathematics, Princeton, New Jersey

Springer-Verlag Heidelberg, Heidelberg, Germany

Stanford Linear Accelerator Center (SLAC), Stanford, California

Stanford University, Computer Science Department, Stanford, California Stockholm University, Department of Mathematics, Stockholm, Sweden

University College, Cork, Computer Centre, Cork, Ireland

University of Delaware, Computing and Network Services, Newark, Delaware

University of Oslo, Institute of Informatics, Blindern, Oslo, Norway

Università degli Studi di Trieste, Trieste, Italy

Vanderbilt University, Nashville, Tennessee

TEX Consulting & Production Services

Information about these services can be obtained from:

T_EX Users Group 1466 NW Naito Parkway, Suite 3141 Portland, OR 97209-2820, U.S.A. Phone: +1 503 223-9994

Fax: +1 503 223-3960
Email: office@tug.org
URL: http://www.tug.org/
consultants.html

North America

Loew, Elizabeth

President, TeXniques, Inc., 675 Massachusetts Avenue, 6th Floor, Cambridge, MA 02139; (617) 876-2333; Fax: (781) 344-8158

Email: loew@texniques.com

Complete book and journal production in the areas of mathematics, physics, engineering, and biology. Services include copyediting, layout, art sizing, preparation of electronic figures; we keyboard from raw manuscript or tweak TEX files.

Ogawa, Arthur

40453 Cherokee Oaks Drive, Three Rivers, CA 93271-9743; (209) 561-4585

Email: Ogawa@teleport.com

Bookbuilding services, including design, copyedit, art, and composition; color is my speciality. Custom TEX macros and LaTeX2 ε document classes and packages. Instruction, support, and consultation for workgroups and authors. Application development in LaTeX, TEX, SGML, PostScript, Java, and β C++. Database and corporate publishing. Extensive references.

Veytsman, Boris

2239 Double Eagle Ct. Reston, VA 20191; (703) 860-0013 Email: boris@lk.net

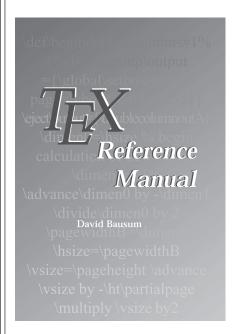
I provide training, consulting, software design and implementation for Unix, Perl, SQL, TEX, and IATEX. I have authored several popular packages for IATEX and latelx2html. I have contributed to several web-based projects for generating and typesetting reports. For more information please visit my web page: http://users.lk.net/borisv.

The Unicorn Collaborative, Inc, Ted Zajdel

115 Aspen Drive, Suite K Pacheco, CA 94553 (925) 689-7442

Email: contact@unicorn-collab.com

We are a technical documentation company, initiated in 1990, which time, strives for error free, seamless documentation, delivered on time, and within budget. We provide high quality documentation services such as document design, graphic design and copy editing. We have extensive experience using tools such as FrameMaker, TFX, LATEX, Word, Acrobat, and many graphics programs. One of our specialties is producing technical manuals and books using $\textsc{IAT}_{\sc{E}}\!X$ and $\textsc{T}_{\sc{E}}\!X.$ Our experienced staff can be trained to use any tool required to meet your needs. We can help you develop, rewrite, or simply copy-edit your documentation. Our broad experience with different industries allows us to handle many types of documentation including, but not limited to, software and hardware systems, communications, scientific instrumentation, engineering, physics, astronomy, chemistry, pharmaceuticals, biotechnology, semiconductor technology, manufacturing and control systems. For more information see our web page http://www.unicorn-collab.com.


Outside North America

DocuTeXing: TeX Typesetting Facility

43 Ibn Kotaiba Street, Nasr City, Cairo 11471, Egypt +20 2 4034178; Fax: +20 2 4034178 Email: main-office@DocuTeXing.com

DocuTeXing provides high-quality TeX and IATeX typesetting services to authors, editors, and publishers. Our services extend from simple typesetting and technical illustrations to full production of electronic journals. For more information, samples, and references, please visit our web site: http://www.DocuTeXing.com or contact us by

TEX Reference Manual

by David Bausum, Lighthouse & Associates, Beloit, WI, USA

The *TeX Reference Manual* is the first comprehensive reference manual written by a programmer for programmers. It contains reference pages for each of TeX's 325 primitive control sequences. Over 80% of its reference pages contain examples that range from simple to challenging. Each example is is typeset verbatim in a style which is easy to read and experiment with. *TeX Reference Manual* also just typesets the example, so you can see what it makes, and explains how the example works. The description on each primitive's reference page is an annotated discussion of *The TeXbook's* treatment of the primitive. That means a TeX user will find it natural to move back and forth between the two books. One of *TeX Reference Manual's* innovative features is families. They simplify the search for the primitive which performs a particular task.

Primitive Control Sequences					
Family Name		Туре	Description		
Box (29)	Logic (20)	С	Command (163)		
Character (16)	Macro (20)	D	Derived Command (17)		
Debugging (25)	Marks (4)	IQ	Internal Quantity (42)		
File I/O (13)	Math (69)	PI	Parameter (integer) (55)		
Fonts (5)	Page (13)	PD	Parameter (dimen) (21)		
Glue (12)	Paragraph (30)	PG	Parameter (glue) (15)		
Hyphenation (11)	Penalties (12)	PM	Parameter (muglue) (3)		
Inserts (8)	Registers (11)	PT	Parameter (token) (9)		
Job (11)	Tables (9)				
Kern (7)					

TeX Reference Manual has appendices which provide a comprehensive discussion of: verbatim material, PostScript fonts, and two-column material. In particular, one word describes its font macros, elegant. The TeX Reference Manual is an invaluable tool for both the experienced and new users of TeX.

CONTENTS

Preface

- 1. Families and Primitive Control Sequences.
- 2. Reference Pages for the Primitives.

Appendix A. Typesetting Verbatim Material.

Appendix B. Working with PostScript Fonts.

Appendix C. Typesetting Material in Two Columns.

Bibliography. Index.

February 2002 Hardbound, ISBN 0-7923-7673-0 390 pp. EUR 108.00 / USD 99.00 / GBP 68.00

Special Price offered to TUGBOAT subscribers: EUR 97.00 / USD 90.00 / GBP 61.00

ORDER TODAY!

ONLINE: WWW.WKAP.NL

Fax your order:

USA: 781-681-9045

Rest of World: +31 78 6546 474

Phone:

USA: +781-871-6600

Rest of World: +31 78 6392 392

Email:

USA: kluwer@wkap.com Rest of World: services@wkap.nl

introducing

TEXTURES° 2.0

WITH SYNCHRONICITY

AGAIN THE MACINTOSH DELIVERS A NEW TEX WITH A REVOLUTION IN HUMAN INTERFACE.

As computer power has advanced, the Macintosh has consistently been the leader in the human and humane connection to technology, and Textures has consistently led in bringing ease of use to TEX users.

First with Textures 1.0, the first truly

integrated TEX system. Then with Lightning Textures, the first truly interactive TEX system. Now, with Textures 2.0 and Synchronicity, Blue Sky Research again delivers a striking advance in TEX interactivity and productivity.

With Synchronicity, your TEX input documents are reliably and automatically cross-linked, correlated, or "synchronized" with the finished TEX typeset pages. Every piece of the finished product is tied directly to the source code from which it was generated, and vice-versa. To go from TEX input directly and exactly to the corresponding typeset characters, just click.

It's that simple: just click, and Textures will take you instantly and precisely to the corresponding location. And it goes both ways: just click on any typeset character, and Textures will take you directly to the TEX code that produced it. No matter how many input files you have, no matter what macros you use, Synchronicity will take you there, instantly and dependably.

Improve YOUR performance:

G E T S Y N C H R O N I C I T Y

BLUE SKY RESEARCH
317 SW ALDER STREET
PORTLAND, OR 97204 USA

8 0 0 6 2 2 8 3 9 8 5 0 3 2 2 2 9 5 7 1 W W W . B L U E S K Y . C O M