TUGboat, Volume 22 (2001), No. 1/2

Macros

Macros with optional arguments
Victor Eijkhout

Users of IMTEX are familiar with macros that have
optional arguments, such as \newcommand.

\newcommand\testa{ ... }
\newcommand\testb[2]{ ... }

Here, the second argument is optional; its inclusion
alters the workings of \newcommand. Wouldn’t it be
nice to be able to write such macros yourself?

Let’s set ourselves the project, for now, of writ-
ing a macro with one optional and one required ar-
gument. If the optional, first, argument is omitted,
the value of the second, required one should be used.
That is, our macro, which we shall call \aa, should
have the following behaviour: the input

\aa [1]2
\aa 2
should give the output
Opt: [1] Req: [2]
Opt: [2] Req: [2]
The crux to these optional arguments is a test
for the occurrence of the opening square bracket;
that is, somehow we need to peek at what follows

the macro. For this, TEX has the \futurelet com-
mand. The example

\futurelet\x\y z
has the effect of
\let\x z\y

That is, the first argument \x is ‘\let’ to whatever
follows the second argument \y, and then the sec-
ond argument is executed. Why does this help us?
Well, we can now \futurelet the token after \aa
to, say, \next, and then call a macro that investi-
gates whether \next is a square bracket, and acts
accordingly. The ‘acting accordingly’ part means
calling one or the other of two macros, the one han-
dling the case where there was a square bracket, the
other the case where there wasn’t.

\def\aa{\futurelet\next\aaX}
\def\aaX{¥%
\ifx[\next \expandafter\aaXX
\else \expandafter\aaXXX \fi}

We now define two separate macros, one with and
one without optional argument.
\def\aaXX [#1]#2{

Opt: [#1] Req: [#2]\par}

83

\def\aaXXX#1{
Opt: [#1] Req: [#1]\par}

Since we decided that calling the macro without
the optional argument would have the effect of dou-
bling the required argument —something that hap-
pens frequently in the internals of BTEX —we can
write

\def\aaXXX#1{\aaXX [#1]{#1}}

and save ourselves some code duplication.

If, instead of duplicating the first required ar-
gument, we wanted to use some default value for the
omitted optional argument, we would write

\def\aaXXX#1{\aaXX [<default>]{#1}}

Just one remark. Note that until the end, where
we call \aaXX, we never look at the other arguments,
and we do not care how many of them there are.
In calls such as \aa [1]1234... we repeatedly re-
place the \aa control sequences by other control se-
quences. Only the final macros \aaXXX — in the case
of an optional argument — and \aaXX —in the case
of none —touch the actual arguments.

Now let’s consider the case where the optional
argument is not the first but the second. Say, we
want a macro \bb that, called as

\bb 1[2]3

\bb 13

gives

One: [1] Opt: [2] Req: [3]
One: [1] Opt: [3] Req: [3]

The trick here is to scoop up the first argument and
store it away:
\def\bb#1{\def\savedargone{{#1}1}/
\futurelet\next\bbX}
After that, we proceed for a while as before
\def\bbX{%
\ifx[\next \expandafter\bbXX

\else \expandafter\bbXXX \fi}
\def\bbXXX#1{\bbXX [#1]{#1}}

and then we insert the saved argument in between
the final macro and the the remaining arguments:

\def\bbXX{\expandafter\bbY\savedargone}
\def\bbY#1 [#2]#3{
One: [#1] Opt: [#2] Req: [#3]\par}

The \expandafter in \bbXX turns the sequence
\bbXX <arg 2><arg 3>
which first becomes

\expandafter\bbY\savedargone
<arg 2><arg 3>

into



84

\bb <argl><arg 2><arg 3>

Well, there you have it. All the ingredients for
writing macros with optional arguments.

So why isn’t this article over? Well, after writ-
ing macros like this becomes a second nature to you,
you might start wondering if there isn’t a way to au-
tomate this rather repetitive process. And of course
there is. But it is a bit of work. In fact, this may
well be the most mind-bending macro I have ever
written.

A small device to save us some typing:

\let\expa\expandafter
\let\noex\noexpand

We now set ourselves the goal of writing a
macro \defoptargcomm — ‘define an optional argu-
ment command’ — that allows us to write

\defoptargcomm\def\aa [#1]#2{/
Opt: [#1] Req: [#2]\par}

so that again, as above,

\aa [1]2
\aa 2

gives the right result.

I will give the macro in increments. First of
all, the name of the macro to be defined is changed
from a control sequence into a string of characters,
so that we can base other macro names on it:

\def\defoptargcomm#1#2{J,
\edef\bnon{\stringcsnoescape#2}

The auxiliary macro \stringcsnoescape is given
below, as will be all further auxiliaries.

Next we define the macro that peeks at a pos-
sible square bracket. To get the effect of

\def\aa{\futurelet\next\aaX}

we write (where \nxarg and \nxname are auxiliaries;
see below)

\edef\anon{\nxarg#1{\bnon}{%
\futurelet\noex\next
\nxname{\bnon X}}}\anon

This is a good trick: since we will have to form some
new control sequences, we build the define state-
ment inside the \edef of an otherwise unimportant
macro. Calling this macro will then execute the def-
inition. (The auxiliary \nxname serves to build a
control sequence and further prevent it from being
expanded. See the end of this article.)

We use this trick again, this time to define the
macro that will decide, based on the presence or not
of a square bracket, which further macro to call. For

\def\aaX{%
\ifx[\next \expa\aaXX
\else \expa\aaXXX}\fi}

TUGboat, Volume 22 (2001), No. 1/2

we write

\edef\anon{\nxarg#1{\bnon X}{’
\noex\ifx[\noex\next
\noex\expa
\nxname{\bnon XX}
\noex\else
\noex\expa
\nxname{\bnon XXX1}%
\noex\fi}}\anon

Here is the macro that duplicates the first argument
if there is no optional argument. For the equivalent
of

\def\aaXXX#1{\aaXX [#1]{#1}}
we write

\edef\anon{’
\nxarg#1{\bnon XXX}####1{/
\nxname{\bnon XX} [####1] {####1}},
Fanon

And now we would have to do the actual definition of
the macro with optional argument, as we did in the
first part of the article. However, we can skip this,
as the definition was already in the input stream, so
we conclude the definition of \defoptargcomm with
the \def control sequence (argument #1) and the
name with two Xs attached. For

\def\aaXX
% .. after this come the parameters
% .. and definition

we conclude with
\arg#1{\bnon XX}}

Phew.

What? You want more?

Well, the assumption that an omitted optional
argument should take on the value of the first present
argument is a bit limiting. You may want it to take
on some default value. For instance, the syntax
\defoptargcomm[4] \def\bb [#1]#2{%

Opt: [#1] Req: [#2]\par}
would mean that the value taken in absence of an
optional argument is ‘4’. The input

\bb [1]2

\bb 2

then gives

Opt: [1] Req: [2]

Opt: [2] Req: [2]

That is not very hard to do: we need yet another
application of \futurelet.

\def\defoptargcomm{%
\futurelet\next\defoptargcommX}



TUGboat, Volume 22 (2001), No. 1/2

\def\defoptargcommX{’

\ifx[\next
\expandafter\defoptargcommXX
\else \def\optarg{ [########1]}),
\expandafter\defoptargcommXXX

\fi}
\def\defoptargcommXX [#1]{%
\def\optarg{ [#1]}\defoptargcommXXX}

We are thus saving the value of the optional argu-
ment in a control sequence \optarg. Note the se-
quence of eight hash characters, which I will not
further explain®.

Now the macro \defoptargcommXXX has to use
the value of \optarg. For this we change only a
small part. For the equivalent of

\def\bbXXX#1{%
\bbXX [optarg] {#1}}

\edef\anon{%
\nxarg#1{\bnon XXX}####1{J,
\nxname{\bnon XX}\optarg{####1}+}J
Hanon

Tada!

Now, if you’ve followed this exposition carefully,
you’ll have noticed that this ultra-powerful macro
can still not do something that we could do by hand:
let any argument be optional, not just the first. Let
us say that we want to write

\PACdefoptargncomm3Y

\def\cc#1#2 [#3]1#4{First: [#1,#2]
Opt: [#3] Req: [#4]\par}
\cc 12[3]4
\cc 124
and get
First: [1,2] Opt: [3] Req: [4]
First: [1,2] Opt: [4] Req: [4]

Deep breath. Here comes the final version of
our macro for defining macros with optional argu-
ments.

I will explain this one bottom-up, instead of
top-down. Our first problem is that we need to get
the first couple of fixed arguments out of the way
before we can look at the optional argument. Sup-
pose we have a macro \firstarg that expands to
the arguments before the optional one, in this case

1 Okay, just a little bit then. If TEX sees one hash charac-
ter followed by a letter — which can only happen in a macro—
it replaces it by the corresponding macro argument. Two
hash characters in a row are replaced by a single, which is
further left untouched. Unless, that is, it is scanned again.
Since in the end the sequence here will be scanned three times
we need to write eight hash characters in order to get #1 in
the input stream.

85

#1#2, and a macro \savedarg with the same, but
in braces: {#1}{#2}, then to get the equivalent of

\def\cc#1#2{\def\ccsaved{{#1}{#2}1}%
\futurelet\next\ccX}

we write—and compare this with the above —

\edef\anon{\nxarg#i{\bnon}\firstarg
{\def\nxname{\bnon saved},
{\savedarg}’
\futurelet\noex\next
\nxname{\bnon X}}}\anon

Now that we have the first arguments set aside, we
can look for the square bracket. If is is not there, we
have to call a macro that duplicates the next argu-
ment; if is is there, we re-insert the saved arguments,
and call the final macro. This would read

\expa\ccXX\ccsaved
but because it occurs in a conditional it becomes

\expa\expa\expa\ccXX\expa\ccsaved
\else

and because it happens inside an \edef there are
\noexpands interspersed everywhere:

\edef\anon{\nxarg#1{\bnon X}{J
\noex\if [\noex\next
\noex\expa\noex\expa\noex\expa
\nxname{\bnon XX1}%
\noex\expa\nxname
{\bnon saved}%
\noex\else
\noex\expa\nxname{\bnon XXX1}%
\noex\fi}}\anon
By comparison, the macro to duplicate the argu-
ment after the omitted optional argument is child’s
play:
\edef\anon{%
\nxarg#1{\bnon XXX} ####1{}
\noex\expa\nxname{\bnon XX}%
\nxname{\bnon saved}/
[\optarg] {####1}}}\anon
Note the \optarg, which contains either the tokens
####1, or a default value.
All this is inside a macro

\def\defoptargcommXXX#1#2{/,

\def\protect{}%
\edef\bnon{\stringcsnoescape#2}
< ... the above ... >

\arg#1{\bnon XX}}

This is the macro that handles the explicit default
value:

\def\defoptargcommXX [#1]{%
\def\optarg{#1}\defoptargcommXXX}



86

We’re getting close to the interesting bits. This the
macro that tests for a default value:

\def\defoptargcommX{%
\ifx[\next
\expandafter\defoptargcommXX
\else
\edef\anon
{\def\noex\optarg{\protect\hashi}y,
Hanon
\expandafter\PACdefoptargcommXXX
\fi}
Note the occurrence of a macro \hash, which we
will define in a minute. Here is the old macro for an
optional first argument:

\def\PACdefoptargcomm{’
\def\PACfirstarg{}\def\PACsavedarg{}
\def\protect{\noex\protect\noex}/
\def \hash{########}7,
\futurelet\next\defoptargcommX}

This is the nasty one: the macro that accepts the
location of the optional argument and builds the
\firstarg, \savedarg macros. We use two token
lists, which gradually get build inside a loop.

\def\defoptargncomm#1{%
\toksa={}\toksb={}\counta=#1\relax
\def\protect{\noex\protect\noex}/
\def \hash{########1},

{\count1=1 \count2=#1
\loop
\edef\PACanon{
\global\PACtoksa={\the\PACtoksa
\protect\hash\number\count1}%
\global\PACtoksb={\the\PACtoksb
{\protect\hash\number\count1}}%
}\PACanon
\advance\countl by 1\relax
\ifnum\counti<\count2 \repeat
%
\edef\anon{\def\noex\firstarg
{\the\toksal}}\PACanon

TUGboat, Volume 22 (2001), No. 1/2

\edef\anon{\def\noex\savedarg
{\the\PACtoksb}}\PACanon
\futurelet\next\defoptargcommX}

And that’s it. You can get this monster from
CTAN as PAC_utils.tex; you also need CS_auxs.tex

Finally, here are the auxiliary macros. I will
leave out mentioning various conditions on the func-
tioning of these macros; normally they will be sat-
isfied. To convert a control sequence to a string of
characters, purely by expansion:

\let\expa\expandafter
\let\noex\noexpand
\def\stringcsnoescape#1{/
\expa\gobbleescape\string#1}
{\escapechar-1
\expa\expa\expa\gdef
\expa\expa\expa\CSgobblearrow
\expa\string
\csname macro:->\endcsname{}
}
\def\gobbleescape#1{%
\ifnum‘\\=‘#1 \else #1\fi}

Here are various macros to build a control sequence
out of a string of characters, and subsequently to
protect the control sequence from further expansion:

\def\name#1{\csname#1\endcsname}
\def\arg#1#2{/,
\expa#l\csname#2\endcsname}
\def\csarg#1#2{%
\name{#1\expal}\csname#2\endcsname}
\def\nxarg#1#2{%
\expa#1l\expa\noex
\csname#2\endcsname}
\def\nxname#1{Y,
\expa\noex\csname#1\endcsname}

¢ Victor Eijkhout
Computer Science Department
University of Tennessee
Knoxville, TN 37996-1301 U.S.A.
victor@eijkhout.net



