TUGBOAT

Volume 21, Number 3 / September 2000
2000 Annual Meeting Proceedings

155 Robin Fairbairns / Editorial Comments — TUG 2000
157 TUG 2000 Program

Talks 159 Benjamin Bayart / The description language chosen for FDNTEX

176 Barbara Beeton / Unicode and math, a combination whose time has come —
Finally!

186 Alexander Berdnikov, Yury Yarmola, Olga Lapko, and Andrew Janishewsky /
Some experience in converting LH Fonts from METAFONT to Typel
format [Abstract)]

187 Wiodek Bzyl / Typesetting TEX documents containing computer code

193 David Carlisle / XMLTEX: A non validating (and not 100% conforming)
namespace aware XML parser implemented in TEX

200 Donald DeLand / Developing interactive, Web-based courseware [Abstract)

201 Michael Downes / The amsrefs INTEX package and the amsxport BIBTEX style

210 Jonathan Fine / Line breaking and page breaking

222 Michel Goossens and Sebastian Rahtz / PassiveTEX: from XML to PDF

235 Pedro Palao Gostanza / Fast scanners and self-parsing in TEX

243 Hirotsugu Kakugawa / A device-independent DVI interpreter library for various
output devices

250 M. Y. Kolodin, O. V. Eterevksy, O. G. Lapko, and I. A. Makhovaya /
“Russian style” with IATEX and babel: what does it look like and
how does it work

251 Alex Kostin & Michael Vulis / Mixing TeX & PostScript: The GEX model

265 Michel Lavaud / The AsTEX Assistant and Navigator [Abstract)

266 Bernice Sacks Lipkin / IATEX and the personal database

278 Frank Mittelbach / Formatting documents with floats: A new algorithm for
ATEX 2¢

291 Timothy Murphy / The Penrose notation: a IATEX challenge [Abstract]

298 Marina Yu. Nikulina and Alexander S. Berdnikov / Chess macros for chess
games and puzzles

303 John Plaice / Omega version 2 [Abstract)

292 Apostolos Syropoulos and Richard W. D. Nickalls / A Perl port of the mathsPIC
graphics package

304 Philip Taylor and Jii{ Zlatuska / The N'TS project: from conception
to birth [Abstract]

News & 306 Calendar
Announcements 154 TUG’2001 Announcement
305 Miscellaneous Photos

TUG Business 308 TUG 2000 Attendees
307 Institutional members
310 TUG membership application

Advertisements 311 TEX consulting and production services
312 IBM techexplorer
cover 3 Blue Sky Research

TEX Users Group

Memberships and Subscriptions

TUGboat (ISSN 0896-3207) is published quarterly
by the TEX Users Group, 1466 NW Naito Parkway,
Suite 3141, Portland, OR 97209-2820, U.S.A.

2000 dues for individual members are as follows:
= Ordinary members: $75.
= Students: $45.
Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. A
membership form is provided on page 000.
TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $85 a year, including air mail delivery.
Periodical-class postage paid at Portland, OR,
and additional mailing offices. Postmaster: Send
address changes to TUGboat, TEX Users Group,
1466 NW Naito Parkway, Suite 3141, Portland, OR
97209-2820, U.S.A.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org).

TUGboat (© Copyright 2000, TEX Users Group

Permission is granted to make and distribute verbatim
copies of this publication or of individual items from this
publication provided the copyright notice and this permission
notice are preserved on all copies.

Permission is granted to copy and distribute modified
versions of this publication or of individual items from
this publication under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

permission is granted to copy and distribute transla-
tions of this publication or of individual items from this
publication into another language, under the above condi-
tions for modified versions, except that this permission notice
may be included in translations approved by the TEX Users
Group instead of in the original English.

Copyright to individual articles is retained by the
authors.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana®
Mimi Jett, President* ™

Kristoffer Rose*™, Vice President

Don DeLand**, Treasurer

Arthur Ogawa* T, Secretary

Barbara Beeton

Karl Berry

Kaja Christiansen

Susan DeMeritt

Stephanie Hogue

Judy Johnson™

Ross Moore

Patricia Monohon

Cheryl Ponchin

Petr Sojka

Philip Taylor

Raymond Goucher, Founding Ezecutive Director?
Hermann Zapf, Wizard of Fonts!

*member of executive committee

tmember of business committee
fhonorary

Addresses

General correspondence,
payments, etc.

TEX Users Group

P.O. Box 2311

Portland, OR 97208-2311

U.S.A.

Delivery services,
parcels, visitors

TEX Users Group

1466 NW Naito Parkway

Electronic Mail
(Internet)

General correspondence,
office@tug.org
letters to the Editor:
TUGboat@tug.org

Technical support for

Suite 3141 TEX users:
Portland, OR 97209-2820 support@tug.org
U.S.A.

To contact the
Telephone Board of Directors:
+1 503 223-9994 board@tug.org
Fax

+1 503 223-3960

World Wide Web
http://wuw.tug.org/
http://wuw.tug.org/TUGboat/

Problems not resolved?
The TUG Board wants to hear from you:
Please email to board@tug.org

TEX is a trademark of the American Mathematical
Society.

membership, subscriptions:

Submissions to TUGboat,

0 TUGboat, Volume 21 (2000), No. 3
Calendar
2000 Jun 6-8 Society for Scholarly Publishing,
23" annual meeting, San Francisco,
Nov 13— Gutenberg exhibit, including working California. For information, visit
Jan 6 replica of his original printing press, http://wuw.sspnet.org.
Louisville Free Public Library, Jun 13—-17 ACH/ALLC 2001: Joint International
Louisville, Kentucky. Conference of the Association for
Computers and the Humanities, and
2001 Association for Literary and Linguistic
Computing, New York University, New
Feb 28— DANTE 2001, 94th meeting, York. For information, visit http://
Mar 3 Fachhochschule Rosenheim, www.nyu.edu/its/humanities/ach_allc2001/.
Germany. For information, visit Jul 6 The Best of the Best: A traveling
http://www.dante.de/dante2001/. Aug 18 juried exhibition of books by members
Mar 2628 XML World Europe, Amsterdam, of the Guild of Book Workers.
Netherlands. For information, visit Columbia College Chicago Center for
http://www.xmlworld.org/. Book and Paper Arts, Chicago, Illinois.
Apr 1- The Best of the Best: A traveling juried Slte§ and dates are listed at http://
Jun 15 exhibition of books by members of the palimpsest.stanford.edu/byorg/gbv.
Guild of Book Workers. Ohio State Jul 13—-15 TypeCon 2001, Rochester, New York.
University Library, Athens, Ohio. For information, visit
Sites and dates are listed at http:// http://www. typecon2001. com.
palimpsest.stanford.edu/byorg/gbw. Jul 16 - Rare Book School Summer Session,
Apr 9-13 Seybold Boston, Boston, Aug 10 University of Virginia, Charlottesville,
Massachusetts. For information, visit Virginia. A series of one-week
http://www.key3media.com/ courses on topics concerning rare
seyboldseminars/boston2001/. books, manuscripts, the history of
th . books and printing, and special
Apr 29 Bacho'IEX 2001, 9 a’nnual meeting of collections. For information, visit
May 2 the Polish TEX Users’” Group . http://www.virginia.edu/oldbooks.
(GUST), “Contemporary publishing
TEXnology”, Bachotek, Brodnica Lake
District, Poland. For information, visit TUG 2001
http://www.gust.org.pl/BachoTeX/. University of Delaware, Newark, Delaware.
May 14— 17 Congrés GUTenberg 2001, “Le document For information, visit http://www.tug.org/tug2001/.
au XXIe Siecle”, Metz, France. Aug 6-10 Intermediate/Advanced IATEX training
For information, visit http:// class.
www . gutenberg. eu.org/manif/gut2001/. Aug 12-16 The 22" annual meeting of the TEX
Jun 4-8 Rare Book School Summer Session, Users Group, “2001: A TEX Odyssey”.

University of Virginia, Charlottesville,
Virginia. A series of one-week

courses on topics concerning rare
books, manuscripts, the history of
books and printing, and special
collections. For information, visit
http://www.virginia.edu/oldbooks.

Aug 12-17 Extreme Markup Languages 2001:
“There’s Nothing so Practical as a
Good Theory”, Montréal, Canada.
For information, visit
http://wuw.gca.org.

Status as of 1 December 2000

For additional information on TUG-sponsored events listed above, contact the TUG office
(4+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

Additional type-related events and news items are listed in the Sans Serif Web pages,

at http://www.quixote.com/serif/sans.

TUGDboat, Volume 21 (2000), No. 3

Aug 12-17

Sep 8

Sep 10—
Oct 26

Sep 17-20

Sep 23-27

SIGGRAPH 2001, Los Angeles,
California. For information, visit
http://www.siggraph.org/s2001/.

WDA’2001: First International Workshop
on Web Document Analysis, Seattle,
Washington. For information, visit
http://www.csc.liv.ac.uk/"wda2001.

The Best of the Best: A traveling
juried exhibition of books by

members of the Guild of Book
Workers. Dartmouth College,
Hanover, New Hampshire. Sites and
dates are listed at http://
palimpsest.stanford.edu/byorg/gbw.

XML World 2001, San Francisco,
California. For information, visit
http://www.xmlworld.org/.

EuroTEX 2001, “TEX and Meta: the
Good, the Bad and the Ugly Bits”,
Kerkrade, Netherlands. For information,
visit http://www.ntg.nl/eurotex/.

Sep 29

Oct 2426

Nov 5—
Dec 21:

Nov 9-10

29th Annual General Meeting of the
Danish TEX Users Group (DK-TUG),
Arhus, Denmark. For information, visit
http://sunsite.dk/dk-tug/.

4* International Conference

on The Electronic Document,

Toulouse, France. For information, visit
http://www.irit.fr/CIDE2001/.

The Best of the Best: A traveling juried
exhibition of books by members of the
Guild of Book Workers. Smith College,
Northampton, Massachusetts.

Sites and dates are listed at http://
palimpsest.stanford.edu/byorg/gbw.

ASM Symposium on Document
Engineering, Atlanta, Georgia.

For information, visit
http://wuw.documentengineering.org.

Institutional
Members

American Mathematical Society,
Providence, Rhode Island

Center for Computing Services,
Bowie, Maryland

CNRS - IDRIS,
Orsay, France

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

CSTUG, Praha, Czech Republic

Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

Hong Kong University of

Science and Technology,
Department of Computer Science,
Hong Kong, China

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

ICC Corporation,
Portland, Oregon

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

Iowa State University,
Computation Center,
Ames, lowa

Kluwer Academic Publishers,
Dordrecht, The Netherlands

KTH Royal Institute of
Technology, Stockholm, Sweden

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

Max Planck Institut
fir Mathematik,
Bonn, Germany

National Institute for Child
& Human Development,
Bethesda, Maryland

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag Heidelberg,
Heidelberg, Germany

Springer-Verlag New York, Inc.,
New York, New York

TUGDboat, Volume 21 (2000), No. 3

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University of Canterbury,
Computer Services Centre,
Christchurch, New Zealand

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Universitiat Koblenz—Landau,
Fachbereich Informatik,
Koblenz, Germany

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Universita degli Studi di Trieste,
Trieste, Italy

Vanderbilt University,
Nashuille, Tennessee

Vrije Universiteit,
Amsterdam, The Netherlands

TUGboat, Volume 21 (2000), No. 3

TEX Consulting & Production Services

Information about these services can be obtained
from:
TEX Users Group
1466 NW Naito Parkway, Suite 3141
Portland, OR 97209-2820, U.S.A.
Phone: +1 503 223-9994

Fax: +1 503 223-3960

Email: office@tug.org

URL: http://www.tug.org/
consultants.html

North America

Loew, Elizabeth

President, TEXniques, Inc.,

675 Massachusetts Avenue, 6th Floor,

Cambridge, MA 02139;

(617) 876-2333; Fax: (781) 344-8158

Email: loew@texniques.com
Complete book and journal production in the areas of
mathematics, physics, engineering, and biology. Services
include copyediting, layout, art sizing, preparation of
electronic figures; we keyboard from raw manuscript or

tweak TEX files.

Ogawa, Arthur

40453 Cherokee Oaks Drive,

Three Rivers, CA 93271-9743;

(209) 561-4585

Email: Ogawa@teleport.com
Bookbuilding services, including design, copyedit, art,
and composition; color is my speciality. Custom TEX
macros and IATEX2e document classes and packages.
Instruction, support, and consultation for workgroups and
authors. Application development in IATEX, TEX, SGML,
PostScript, Java, and 8C++. Database and corporate
publishing. Extensive references.

Outside North America

DocuTgXing: TEX Typesetting Facility

43 Tbn Kotaiba Street,

Nasr City, Cairo 11471, Egypt

420 2 4034178; Fax: +20 2 4034178

Email: main-office@ocuTeXing.com
DocuTgXing provides high-quality TEX and IATEX
typesetting services to authors, editors, and publishers.
Our services extend from simple typesetting and technical
illustrations to full production of electronic journals. For
more information, samples, and references, please visit our
web site: http://www.DocuTeXing.com or contact us by
e-mail.

Editor’s notes

Robin Fairbairns
Computer Laboratory
University of Cambridge
UK

rfl10@cam.ac.uk

Oxford (and Cambridge)

Here, finally, we have the proceedings of TUG 2000:
TUG’s annual meeting in Oxford (“the other place”).
It may seem odd to have a Cambridge-based editor
of an Oxford conference: but you may not under-
stand why this would be remarkable, so I shall bore
you all with a little academic history (some of it
decidedly personal...).

My decision, of which of the two “old” English
universities' to grace with my presence as a student,
was made on the basis of deep academic consider-
ation. Cambridge, when I first visited over the fi-
nal weekend of the Cuban missile crisis in 1962, was
beautiful under a frosty, clear sky; I spent two nights
at the home of a school friend, whose father was a
don of long standing, and all was wonderful.

When 1 first visited Oxford in early 1963, the
weather was foul —windy, wet and cold; I had hoped
to spend time with a friend from school, but he had
left town for the weekend. Over all the years since,
I’'ve never had the opportunity to “get the feel” of
the city: on each visit I've either had no spare time,
or the weather has been bad.

Which is all terribly . . . characteristic. The Uni-
versity of Cambridge (in something approaching its
present form) was probably established by dissident
Oxford students getting on for eight hundred years
ago. Ever since, Cambridge people have been ex-
pected not to know about Oxford, and to despise all
of Oxford’s doings. We're supposed to despise their
style of poling their punts?, and to disparage their
academic achievements. And vice versa.

I’ve never really believed in this silly caricature,
so a week to get to know Oxford, based in the centre
of the city, in weather as good as we get nowadays
(with global warming apparently already upon us
and bringing even more rain in our summers), was
a real treat.

I There are other universities almost as venerable as Ox-
ford and Cambridge in these islands, but I didn’t know about
them in 1963

2 Which in fact are of a completely different design from
those we use in Cambridge, so would be poled differently

The meeting

We have to thank the local team (led by Sebastian
Rahtz and Kim Roberts) for a splendidly run confer-
ence. The college seemed to me ideal for the sort of
“small” conference that TUG runs: compact enough
that everyone could feel they were on top of the
whole event, and yet spacious enough that we could
spread out and feel comfortable. The social events
(notably the reception in the University Museum)
were splendid, and Kim’s arrangement for those that
wanted to go to an open-air dramatisation of Car-
roll’s “Through the Looking Glass” was inspired (for
this member of the audience at least, despite less-
than-ideal weather).

A strong cast presented an intriguing set of pa-
pers, with meat for every taste in the TEX world.
For me, the highlights were Mike Vulis on his VTEX/
GEX system, discussion of the achievements and fu-
ture of the PDFTEX and Omega projects, Don De-
land’s demonstration of his interactive courseware,
and (of course) Frank Mittelbach’s paper on direc-
tions for the ITEX output routine (which was voted
best paper of the conference).

The papers

I took over preparation of these proceedings at a
late stage, and from the start I experienced prob-
lems. Neither I, nor the printers that Kim Roberts
had chosen, could print one of the pages of Kostin
& Vulis’ paper for the preprints: I don’t believe
I’ve ever before seen conference proceedings with an
apology for the absence of a page for that reason.

The papers that follow represent much of the
best in the conference, but there are sad omissions:
none of DeLand’s presentation of his use of IBM’s
techexplorer, the AsTEX, the PDFTEX or the Omega
presentations is here represented. TUGboat hopes
to present a detailed account of PDFTEX in a fu-
ture issue, but we can do little but hope for papers
covering the other topics.

The difficult papers Two papers presented par-
ticular technical difficulties, since both of them de-
manded use of the technology they described.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 155

Robin Fairbairns

Alex Kostin & Mike Vulis described VTEX, and
their paper included demonstrations of the capabil-
ities of VIEX/GEX. I suppose we could have faked
the effects, but the simpler course seemed to be to
install and use a copy of the free (Linux) version
of VIEX. The installation itself proved very sim-
ple, but (as mentioned above) there were problems
with the output. VTEX produces its output of the
paper in PDF, and the problem with the output
wasn’t apparent in Adobe’s Acrobat Reader, merely
when that program produced printer output. Inter-
estingly, PostScript output of the troublesome page
also defeated Adobe’s Acrobat Distiller, so that at
the time of the meeting I suspected a bug (that I
couldn’t at the time characterise) in the Acrobat
suite. The bug was in fact in VIEX’s failure to de-
tect some infelicity in the data for one of the paper’s
diagrams, and has long since been corrected; the
preprint of the paper was an ordinary ETEX docu-
ment that used a series of \includegraphics com-
mands on images of the working pages of the paper,
and had an apology in place of the rogue page. The
paper presents itself in glorious TEXnicolour; which
you can’t see in these proceedings, but which will be
visible when the paper appears on TUGboat’s web
site.

Frank Mittelbach described the outcome of ex-
perimental work on the algorithms desirable for a
future version of IATEX: this is another in a long
series of papers on directions towards the mythic
IXTEX 3 and in most respects is the answer to the

156

2 ‘\W&%y

. ¢) §‘~« //',
Y A3
= %\\}\Wﬂ» WJ
N

average maiden’s prayer. However, the version I
worked with couldn’t deal with the (old WTEX) con-
struct \twocolumn|({stuff)], which is how the TUG-
boat class creates paper titles in a proceedings issue.
So after much agonising, we have decided to set the
paper with the title set separately, so as to demon-
strate that the code he describes “works” (in so far
as it does!).

Regrets

I need hardly repeat that I'm deeply ashamed at
how long it has taken me to produce these proceed-
ings: even now they wouldn’t be with you had it not
been for editing support from Barbara Beeton and
the continuing sterling work done by Mimi Burbank
behind the scenes. (In particular, Mimi’s taken on
the role of “Robin’s conscience”, prodding me ev-
ery so often on the necessity of getting on with it!)
The time since the meeting has been very full (I've
moved house, for example), but the delays have, I
admit, been mostly of my own making.

Several of the presentations at the conference
have not resulted in papers in these proceedings (we
print the pre-conference abstracts in these cases).
Most of the presentations are sorry omissions from
these proceedings, but we will perhaps pick up mat-
ter to publish in future editions of TUGboat. The
lack of the papers comes as an awful warning to us
all: we must attend the annual meetings to keep
up with what is going on with TEX and its related
technologies.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Programme, TUG 2000

TUG 2000
Programme of events

Sunday, August 13, 2000

Mimi Jett, President of TUG
The Tao of TEX

Barbara Beeton
Unicode and math, a combination whose time has come — Finally!

Frank Mittelbach
Formatting documents with floats: A new algorithm for IXTEX 2¢

Phil Taylor
NTS Report

Jonathan Fine
Line breaking and page breaking

Monday, August 14, 2000

Benjamin Bayart
The description language chosen for FDNTEX

Michel Lavaud
The AsTEX Assistant and Navigator

Hirotsugu Kakugawa
A device-independent DVI interpreter library for various output devices

Donald DeLand
Developing Interactive, Web-based Courseware
Alexander Berdnikov
Some experience in converting LH Fonts from METAFONT to Typel format

Michael Vulis
Mixing TEX & PostScript: The GEX model

Tuesday, August 15, 2000

Hans Hagen
What is PDF?

Sebastian Rahtz
The history of pdfTEX
Erik Frambach
Fonts in pdfTEX
Han The Thanh
How pdfTEX can improve your pages
Hans Hagen
Graphics in pdfTEX
Ed Cashin
pdfTEX in a workflow
Hans Hagen
Going beyond static documents
Ed Cashin
Setting up pdfTEX
Berend de Boer
Postprocessing PDF

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 157

Programme, TUG 2000

Han The Thanh
The future of pdfTEX

TUG Annual General Meeting

John Plaice
Omega version 2

Wednesday, August 16, 2000
Pedro Palao Gostanza
Fast scanners and self-parsing in TEX

Wtodek Bzyl
Typesetting TEX documents containing computer code

Timothy Murphy
The Penrose notation: a BTEX challenge

David Carlisle
xmltex: A non validating (and not 100% conforming) namespace aware XML parser
implemented in TEX

Sebastian Rahtz and Michel Goossens
PassiveTEX: XSL processing using TEX

Bernice Sacks Lipkin
KTEX and the personal database

Michael Downes
The amsrefs BTEX package and the amsxport BIBTEX style

Alexander Berdnikov
Chess fonts and chess macros for chess games and puzzles

Olga Lapko
“Russian style” with I TEX and Babel: what does it look like and how does it work

Dick Nickalls and Apostolos Syropoulos
A Perl port of the mathsPIC graphics package

Thursday, August 17, 2000
Tutorials

John Plaice
Omega Tutorial

Hans Hagen, et al.
ConTeXt and PDF Tutorial

Friday, August 18, 2000
Tutorials

Frank Mittelbach et al.
IATEX3 Tutorial

Sebastian Rahtz and Michel Goossens
XML and XSL Tutorial

158 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

The description language chosen for FDNTEX

Benjamin Bayart
10, rue du Croissant
75 002 Paris

France
bayartb@edgard.fdn.fr

Abstract

In this paper I will introduce the package description language that has been cho-
sen to be used in FDNTEX. In short, this language is XML with a dedicated DTD.
First, I'll introduce FDN'TEX, to obtain a good representation of its requirements.
Then, I’ll introduce the data that have to be contained in the description files.
Finally, I’ll introduce briefly the DTD itself.

This paper has to be understood for what it is: first thoughts on how to
obtain the right language. What has to be expressed by this language is something
definite, but the DTD itself is in an early stage development at the time of writing.
Thus, if the goals described in the firsts sections and the DTD described later are

in conflict, consider the DTD is wrong.

Vocabulary

The word “package” will be used with several mean-
ings in this paper, this can be troublesome in certain
places. A package can be, depending on the context:

o a IMTEX style file, like array.sty;

e a part of the distribution, e.g., the package con-
taining TEX itself, or the one containing €;

e a binary version, in a given flavour, of the pre-
vious one, e.g., the rpm file containing €, or

TEX.

It’s sometimes hard to distinguish between the three
meanings since they often represent three stages in
the life of the same object: array which is a package
in the first meaning, as any B TEX user knows, is also
a package according to the second meaning, since
FDNTEX has a description of it, with dependencies,
methods to build and install it, and so on; and will
also be a package in the third meaning since the
rpm flavour of the distribution will contain an rpm
package called array.

FDNTEX is designed to exist under several “ver-
sions”, e.g., one for FreeBSD, one for Linux/RPM,
one for Linux/Debian, one for HP-UX 9, and so on.
Those versions will be named “flavours” in this pa-
per, to avoid confusing the reader between “versions”
of FDNTEX and versions of the packages that are
part of it.

According to the context, “I” will refer either to
the author, or to an hypothetical user’s thoughts.

Introduction

FDNTEX is a new distribution of TEX, based upon
different ideas from the previous ones.

Before teTEX appeared, a “TEX distribution”
was, de facto, a pure distribution of “TEX, the pro-
gram” and the strictly required files to build it and
make it work in a standalone way. Any other tools,
like fonts or formats or extensions, had to be in-
stalled by hand.

Since teTEX appeared, we have lived in a more
user-friendly world: one can install the whole thing
and obtain a rather complete TEX-based system in-
cluding WTEX and lots of useful extensions.

But going on straight in the same way will lead
us to a really heavy system, providing any available
font, say Japanese fonts, to any user, even Russian-
speaking ones. Thus distributing a hundreds-mega-
bytes system, 85% of it being useless for each given
end-user.

To avoid this problem, two ways can be studied:
restrict distributions to a good subset of what is pos-
sible, and hope users will be successful in installing
the missing parts by themselves; or use a different
approach of the distribution problem. FDNTEX is
an attempt to fulfill the second solution.

The basic ideas underlying FDNTEX design are
briefly described as follow:

e Fully modular, and fine grained. I don’t want
to use patgen, thus I don’t install it.

e KEasy to upgrade a part without reinstalling the
whole thing. I upgrade my BTEX kernel every

TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting 159

Benjamin Bayart

six months or so, and I don’t want to change
my Computer Modern fonts that often.

e Easy to install on the target system. If I use a
distribution instead of the root-source, it’s just
because I don’t want to install a useless C com-
piler.

The original idea was even simpler. We use
TEX, in the leading team of FDN!, for adminis-
trative purposes, and thus we all need to have it
installed on our computers in a satisfactory way.
Most of us are not good at using TEX outside of
this restricted use (in fact, I'm the only one in
the team who knows about the internals of TEX).
teTEX didn’t contain the packages we needed. Thus
I started developing a TEX distribution that could
satisfy those requirements. And this is also why this
distribution is called “FDNTEX”, originally, it was a
TEX distribution to be used by FDN.

Let’s have a look at some instructive examples
to have a more precise view of what is standing be-
hind those three simple ideas.

Fully modular By stating that “FDNTEX is to be
modular”, several problems are addressed.

The first problem has already been discussed:
if I don’t need patgen, since I don’t want to gener-
ate hyphenation patterns for a new language, then
I don’t want it on my system. Simmilarly, if T don’t
use PostScript fonts at all, I don’t want to have their
metrics and the related software. It’s useless, will
slow down my system, and will obstruct the use of
TEX on an old computer with a small disk.

The second problem is harder to understand.
As 'm a French native, 2 is of some help to me. If
I decide to use only Q and Q-based formats, then
I don’t want to install TEX itself, but 2 instead.
It means that the minimal subset needed to start
FDNTEX needn’t contain TEX itself.

The third problem is that I want to be al-
lowed to install only the minimal subset of the whole
TEXware required to build the book I'm writing.
That means that I don’t want to install large things
like “all the PS metrics” if I don’t use PostScript
fonts at all in my book. And, even more, if I only
use Times for some titles, I don’t want to install
something too large on the poor old laptop that I
have to use to write this book. Thus, something as
large as “all the PS metrics” will not be a valid pack-
age for FDNTEX. It will have to be split into several
parts, probably one per font.

All that leads us to a system with hundreds of
packages. Just by splitting down the web2c bundle
into distinct software units leads to several dozen

L A non profit organization, which is an Internet access
provider.

packages. FEach of the hundreds of extensions of
ETEX is also an autonomous package, at least, and
sometimes several, for large parts. This makes hun-
dreds, or perhaps thousands, of packages as part of
the final distribution.

One cannot afford to know all of them in enough
details to be able to choose. Thus, there must be
a reliable description of the dependencies between
packages (who will ever remember that tabularx re-
quires array to be installed, or that concmath uses
url?), and there must be a way to choose a reason-
able subset for a given use. FE.g., if I want to use
TEX to typeset a paper about electronics, I need a
way to say “everything related to electronics is of
interest to me”, and a second way to give more pre-
cise instructions later to add or remove packages by
hand.

Easy to upgrade This point is easier to under-
stand, and easy to automate. The only really hard
thing is to handle strange cases.

Let’s have a look at a hypothetical example.
Let’s say Mr. X wrote a few packages, a, b and ¢
which are really small ones and thus are distributed
as a single one. As those packages are small, and
distributed as a single thing, they are in the same
bundle in FDNTEX. But, a few months later, our
good old Mr. X has worked a lot, and his packages
have gained hundreds of features, and are now really
large ones, each being composed of dozens of small
independent parts. We would then need to re-bundle
them separately. Thus, how to explain to the system
that upgrading from the first a&b&c bundle means
installing the three separate bundles, and that from
this point each part can be upgraded separately?

Of course the symmetrical example is also trou-
blesome. If two separate things are now unified in
a single bundle, how can we explain this to the sys-
tem?

Even more, one can mix the problems: three
elements are replaced by two in the new version.
How to upgrade easily?

The 18 months spent working on FDNTEX have
not yet led to any general solution to this ugly prob-
lem.

Easy to install on the target This point is an
interesting one since it’s one of those which led to
lots of discussions about the design of FDNTEX.

The main idea can be explained so: as I run a
RedHat system, I want each FDNTEX package to be
an rpm file, so that I can install it easily, using my
usual system tools.

This means creating several flavours of the dis-
tribution, something like one per target system, and

160 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

The description language chosen for FDNTEX

description

1

pre-processor

Internal representation

T

generator generator
' /
debian-tree Makefiles
' '
processor processor
' '
.deb file BSD ports

N

generator generator
\ '
.spec HTML Catalogue
'
processor
'
.rpm file

Figure 1: In this diagram, each teletype text identifies a physical representation of the information,
and each roman text identifies a process to go from one representation to the other. The “Internal
representation” is different since it only exists in the memory of a program, and not in a real file.

sometimes more, if several flavours of a system ex-
ist (as for Linux where Debian-based systems have
almost no common point with RedHat-based ones).

Another way would be to develop a really stan-
dalone system, that would provide everything from
the description language to the final binary format,
including the building tools and all the other things
needed. Such a system would be really easier for me
(read “the distribution maker” here, instead of just
“me”) but would lead to something of less interest for
most people. On the other hand, it would permit de-
velopment of a reasonably complete distribution in a
short period of time. The prototype was developed
in only 6 months. And it would avoid developing all
the general system that we are discussing here.

The ideas developed here are meaningful as long
as there is a team working on the distribution, with
people dedicated to each generator, but are mean-
ingless if this is not the case, at least because I will
never have all the variety of operating systems, and
all the knowledge that is required to develop all of
the flavours.

Several technical problems arise from this inten-
tion to be close to the target system; we will expose
them later on, in the section “Developers’ tools”.

Design, implementation, tools

In this section, we will discuss the way FDNTEX is
to be developed, and what will be the development
tools. That is to say, not what the resulting binary
packages should be, nor which packages will be part
of the distribution, but how packages will be created
for any flavour of the distribution.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

The system design The prototype of FDNTEX?
was written directly in an rpm representation (tech-
nically, it is a large bundle of files in .spec format,
which is that used by rpm), and from that auto-
matically translated into the right bundle of files for
FreeBSD ports. This approach is of course wrong,
but at least has shown that writing such a distribu-
tion is feasible.

The right choice is, of course, as shown on fig-
ure 1, to have a complete and precise description of
the package and to consider its representation in a
given system (say rpm, swtools, or things like that)
as a projection. Thus this description has to be a su-
perset of what can be expressed in the various target
languages.

Developers’ tools The tools used to create the
distribution itself are clearly shown in figure 1. The
first one is the pre-processor (mainly a parser) that
understands the original description of the distri-
bution. This one is, in fact, strongly linked to the
language used to describe the packages.
Discussions about TPM? led to the conclusion
that writing a brand new language from scratch
seems to be a bad choice, and that it is better to
use XML as the representation of the knowledge

2 This prototype can be downloaded from ftp://ftp.
lip6.fr/pub/TeX/FDNTeX/Prototype. It’s rather old but
good enough to give a more precise idea of the goal to reach.

3 The TEX Package Manager, an idea proposed by Simon
Cozens, Sebastian Rahtz and Fabrice Popineau, grew inde-
pendently of FDNTEX but leads to a really similar system. It
was widely discussed, first on comp.text.tex, and then on a
separate mailing list.

161

Benjamin Bayart

database underlying the distribution. Thus, the pre-
processor in figure 1 is only a suitable XML-parser
with some knowledge of the system.

The most interesting points of XML for this
purpose is that good XML-parsers exist on most
systems, written in various languages, so that one
can use a Perl-based system on Unix systems, or
an anything-else-based one on Maclntoshes, with-
out troubles related to the description of the distri-
bution.

The various processors are, of course, based on
the tools dedicated to the various flavours of the dis-
tribution, but not only that. They will include tools
to automatically manage the rebuilding, so each one
might look like a Makefile which uses the system
dedicated tools.

The most complicated part is the generators,
since they know about the data in the description
of the package, and are able to create the projection
for a given flavour. This part is hard to achieve, due
to the large number of flavours.

Thus, the evidence seems to indicate that the
only way to obtain good results is to have people
with good knowledge of the target systems writing
those generators.

Users’ tools As stated before in the introduction,
there will be some needs for users’ tools, some be-
ing provided by the target system, like the ones to
install or upgrade a package, others not, like the
ones that manage configuration of the whole thing.
Those tools will probably be re-used from previous
distributions, like the ones used in teTEX or TEXlive.

More information The main aim of this paper is
not to describe the internals of FDNTEX in a full
extent, but to expose how the description language
used by it was designed, and to discuss the points
that have led to this design. Thus, if one wishes to
have more information about other points related to
FDNTEX, the reference documents, like the FDNTEX
manifest or the current version of the DTD, can be
retrieved from ftp sites like ftp://ftp.1lip6.fr/
pub/TeX/FDNTeX

At the time of writing, the FDNTEX manifest is
no longer up-to-date but will probably be updated
before you read it.

Describing a package

The description of a package should contain several
parts.

First, its full identification, providing the ver-
sion number, information about its author, a short
description in various languages whenever possible,

and other things of the like. All this information can
be taken from the well-known Catalogue®.

Second, information to locate it, like where it is
located, in source form, on CTAN sites, or any other
source-location for non-CTAN packages. This is dif-
ferent from the list of source files, and is to be used,
e.g., to show the packages in a tree for download.
Other kinds of locations are of interest. A good one
will be to place the package in a tree based on the
functionality it provides instead of its location on
CTAN, in such a tree, algebra would be a subset
of mathematics, and any package related to type-
setting algebra would be in this subtree, ignoring
whether it’s a package for plain TEX or for INTEX.

Third, its content, i.e., the list of files contained
in the package, and their position in a TDS conform-
ing structure.

Fourth, information on how to build it, that is,
going from the source available on the Internet to a
representation that can be directly used.

Fifth, information on how it’s linked to other
packages, that is, dependencies.

Sixth, information on how to manage it on
the target system (procedures for installation, de-
installation, upgrade, and so on).

Contents of the package The only technical
choice is to decide if it only lists files relative to
a supposedly well-known root, or if it lists them
in a more parametric way. For example, in the
first case, the font metric of cmr10 can be listed
as texmf/fonts/tfm/public/cm/cmrl0.tfm, while
in the parametric form it might be expressed as
%TEXTFMSY,/%MYDIRY%/cmr10.tfm so that it can be
automatically adjusted on the fly to a given target.
Since this kind of re-mapping of trees seems
easy to obtain from real paths, the first choice has
been retained. If one needs to re-map a TDS con-
forming tree to another one, it will be done in the
“generator” rather than in the “pre-processor”.

Building a package During the discussions about
this description language, two different ways of de-
scribing the building have been studied.

The first one, the easier one from the developer
point of view, and the more powerful, is to use a
powerful language like a scripting one (Bourne Shell
would be a perfect candidate) and to write the script
in a well parameterized form, so that it can be used
on a large variety of systems. This is simple, since
the tools just have to use the script as is, and pow-
erful, since one can express in this language exactly

4 The Catalogue can be retrieved from any CTAN site or
mirror at CTAN:/help/Catalogue and is written with XML,
which will help re-using its contents.

162 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

all of what is feasible on a real system. But a burden
is created for the person who writes the description
of the package, and it creates a lack of portability:
Bourne Shell would be of no interest on non-Unix
systems. And moreover, there are large differences
between different flavours of this language.

The second one, harder to achieve from the de-
veloper’s point of view, and less powerful, is to ex-
press it in a high-level language. To build the tools
bundle, it can be something like:

LATEX tools.ins
DTXTODVI afterpage IND GLO
DTXTODVI array IND GLO

stating that the . ins file to be processed to build the
packages is tools.ins, and that each item of docu-
mentation has to be compiled twice, then has a run
of makeindex to produce the index, then another
one to produce the history of changes (a kind of
glossary, technically), and another last run through
ATEX.

The second way is far better for people who
have to describe a package, and is easily translated
on any system by the “generator”. But if one wants
to have a complete enough language to handle any
and every case, one will create a language as complex
as a traditional scripting one. Such a complex high-
level language would then be useless, since it would
be too hard to understand.

The good choice is, then, to have both. If the
high level language can express what is needed to
build the package for most flavours, then just use it,
and, if a given flavour needs to express it in a more
dedicated form, then just override the first high-level
description.

Moreover, if a given package is too hard to ex-
press its building in the high level language, then
just use the low-level one, and discard the generic
description of the building.

This model sounds good, since 95% of the pack-
ages will be described in the easy way, and only the
the most problematic 5% will be described in the
hard one. Thus porting the distribution to a new
system will be: 1) providing the right generator, 2)
porting those 5%.

Some other information will be of use to build
the package, like a knowledge of what is required to
be installed before starting to build anything.

An example can be “one cannot build web2c
without make and a C compiler”, but this is an easy
one, and external® so that we can avoid saying it.

5 Indeed, the requirements expressed here are not in the
scope of this distribution. We will summarise those require-

The description language chosen for FDNTEX

Another strange example is that, to build € one
needs ITEX, which is strange since BTEX can be
built on top of Q. In fact, KTEX is required only
during the building stage, to produce the documen-
tation in a suitable dvi form; but IXTEX is not re-
quired to install 2 on a target system.

Thus, in the dependencies section of the de-
scription, one will have to pay attention to the build-
ing stage. Of course, conflicts can arise (e.g., one
cannot build the documentation if a given flavour of
a package is installed).

Another point is that a single “building” can
produce several packages, e.g., compiling the web2c
bundle produces dozens of packages. Thus, there
must be stated in some way what building is re-
quired for which package.

Links between packages As we have already
seen, several kinds of links can exist between pack-
ages. The next few sections will list them, and will
examine the level of complexity required.

Installation dependency This kind of link is
the most evident one: listing in a package descrip-
tion all the packages that need to be installed for
this one to work correctly.

A first hard point is to determine this list, by
reading the package documentation, by reading its
source, by examining its behaviour closely, and so
on. It is easy to state these dependencies in the
description file, even if the information is hard to
obtain. Just stating that tabularx requires array
is easy.

The second hard point, and the really hard one,
is that not all dependencies are that easy to give.
Let’s study two interesting examples.

The first example is the “functionality” one.

It seems clear that array has no meaning if
ITEX is not installed, and that IXTEX has no mean-
ing without TEX. Now, consider that array is of
interest if Q) and A are installed®. Such a case can
be solved in two ways—either put the burden on
the side of array, by stating “this requires INTEX or
A to be installed” (which places burdens on lots of
package descriptions), or put the burden on BTEX
and A to state “this provides a WTEX-like format” (so
that the array description may say “this requires a
BTEX-like format”).

In fact, the second alternative requires that we
have a list of defined functionalities that packages

ments as “one needs a complete and working operating system
to build/install FDNTEX".

6 Q is an evolution of TEX adding features useful for inter-
nationalisation, like Unicode; and A is the name of IATEX 2¢
when built on top of Q.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 163

Benjamin Bayart

may provide (or require), and to be sure to express
functional dependencies only according to this list,
if there is a way to do so.

On targets that already use this kind of thing,
it’s easy to realise the projection of this information
by direct translation. On other targets, it will be
a little harder — we will need to express “A or B or
C or...” by listing all the alternatives for a given
functionality. Fortunately the job can be done by
the generator, since it has a knowledge of all the
packages before it starts to generate anything.

The second example is “soft” dependencies.

Imagine a document class that has an option
psfonts that can be called to adapt the layout
to PostScript fonts instead of traditional Computer
Modern ones, and another option concrete that
uses beton instead of Computer Modern. Does
this class depend on Computer Modern, beton, and
PostScript fonts?

The conundrum is, that the class really depends
only on Computer Modern or beton or PostScript,
yet if only one of these sets of fonts is installed,
the class is not fully usable. Dependency checking
should not report “everything good” if in fact a part
of the system cannot be used for lack of another.

We can describe this situation by introducing
the concept of soft dependencies — that is “this pack-
age prefers this other one to be installed, but can be
used without it, at your own risk”.

It seems useful to define several levels of soft-
ness for this situation, e.g., strong if the default be-
haviour, or the one the most used, needs the depen-
dency, and weak if the dependency is needed for a
weird use of the package, or by an option of little
interest.

If the softness is expressed on a range from 0
to 10, 0 representing “not required at all” and 10
“strictly required” (like array for tabularx), the
system could be controlled by specifying a single
value n, to express “install all dependencies higher
than n”. The system may set a default value n = 3,
so that the end-user can care only about the points
he wants to, or drop to n = 1, if he doesn’t want to
bother at all about choosing, or raise n to 10 if he
wants a really minimal system.

Same source bundle Two packages produced
from the same source bundle, such as patgen and
gftopk which are both produced from web2c, do
have a link between them; this link has to appear
clearly in the description.

One way to describe the situation is to use
a purely object oriented representation. One has
a source-bundle web2c, a building method build-

web2c and a package patgen, then one states that
the method build-web2c has to be applied to the
source web2c in order to produce the package pat-
gen’.

A second way is to consider that the real object
is the source-bundle and that the packages that are
created from it are pieces of information related to
it, and only to it, that is, in a structural way, the
package description is a part of its parent source-
bundle description.

The first technique sounds really powerful, but
will quickly become hard to handle, and will create
a heavy burden for a lot of people, only to handle
extremely rare cases (no such cases have arisen in
the 472 packages in the Prototype that would require
such a complex system, even if some extremely rare
ones have been met in the real world).

Thus, currently, the second technique is used.

Stage dependencies A case of “stage depen-
dency” that was considered in the previous section
is the “installation dependency”. Installation depen-
dencies are complex, and are probably the only ones
that need the idea of soft dependencies.

Some other cases have to be handled.

One, also considered earlier, is the “building
dependency”, which states that one cannot build a
given package unless another is installed. We can in-
sist that building dependencies should all be strict,
though one can find funny cases when soft depen-
dency might be useful (the best one is METAFONT
which requires X11, but can be built without win-
dowing support). Forcing strict dependencies for the
building stage is a strategic choice: FDNTEX has to
behave everywhere in the same way, independently
of the system on which it is built. Thus if one wants
to rebuild the METAFONT binary package, X11 li-
braries have to be installed first since it have been
decided that METAFONT has windowing support in
FDNTEX.

Another interesting case would be to list doc-
umentation dependencies in a separate list, so that
the system could ask the user “XXX is required in or-
der to read the documentation of the package you're
installing, do you want to install it?”. This is of im-
portance, since on a minimal system, the user can
decide not to install a large set of fonts that is only
required by the documentation of a tiny package.

7 The way it’s expressed is of no importance here, it can
be patgen that states how it wants to be built, or the building
method which states what it’s able to build, but both meth-
ods are equivalent, given that when a generator runs, all the
descriptions of all the packages have been loaded to permit
consistency checking.

164 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Conflicts The last kind of relationship be-
tween two packages is conflict: that is, a pack-
age cannot be installed if another one is already.
The most evident case is the tree KTEX-package,
since three different implementations exist, have the
same name (tree.sty), have different syntaxes and
different behaviours, and installing more than one
would lead to non-predictable results (one cannot
say which one would be called during the building of
a document). Those packages clearly conflict. (The
difficulty is not in finding packages that conflict,
that’s rather easy, but in describing the conflict.)

The technique used in other similar languages
is to have each package state which others would
conflict, e.g., if a and b are in conflict, then a states
in its description “There is a conflict with b”, and
vice versa. There is a serious drawback to this tech-
nique: if a third package (say c) arises that conflicts
with the two previous ones (this is the most probable
case, if it conflicts with one, there are great proba-
bilities it will also conflict with the other), then it
has to state “There is a conflict with a and with b”,
and then the descriptions of a and b have to be cor-
rected to indicate this new conflict. This is clearly
troublesome, not least because a and b have to be
rebuilt and to change their version numbers while
their descriptions otherwise remain the same.

Another technique would be to have a separate
list of mutual exclusions that is the only document
that has to be corrected to handle those cases, given
that the generator will easily translate the informa-
tion provided by this list into the form described in
the previous paragraph.

At the time of writing, the traditional way is
used in FDNTEX; but we plan to switch to the other
technique when a robust solution to the release num-
ber automatic increment is found.

Automatic behaviour from dependency
and conflict information As already discussed,
we aim to have tools, driving the system processor,
that create the final package if the system is not able
to do the job fully automatically.

The easy part is to use the building dependen-
cies to automate this process. Whenever the au-
tomated system wants to build a given package, it
first checks that all the building dependencies are
satisfied.

The hard part may be explained with an exam-
ple. Let’s say that a package a needs the first flavour
of tree to build its documentation, and that b needs
the second flavour. When attempting to build a, the
system will build and install the first flavour of tree
if it’s not already present. But, when the system
tries to build b, it will notice the lack of the second

The description language chosen for FDNTEX

flavour of tree and try to install it, which will fail
due to the conflict.

The right behaviour would be to remove the
conflicting flavour, then to install the required one,
taking care of the dependencies while doing it (that
is, remove everything that requires the conflicting
flavour).

This is not linked to the way the information is
provided, but to the way it is used.

Management information The management in-
formation is that which needs to be bundled with
each package to allow good management of the
whole system in a consistent way (like checking the
dependencies, configuring the various elements, al-
lowing one part to use another if both are installed
on the target, and so on); and to allow management
of the package itself (when installing, uninstalling,
upgrading, and so on).

Most packages have minimal and recurrent re-
quirements of management: rebuilding the 1s-R
database; handling the configuration files (a dozen
or so cover a large majority of the packages); adding
the right symbolic links at the right place; rebuilding
the formats; and so on. Building stage information
will be given in a generic fashion, using a high-level
language, but can be given in fully user-controlled
fashion too, if required.

Optimizations can almost certainly be described
here too, like the fact that, if one installs 6 pack-
ages, it will probably be enough to rebuild the 1s-R
database only once, after the last package. This op-
timization is important, since repetitive rebuilding
of the database is time consuming, and can be han-
dled easily: the rebuilding is delayed until either the
end of the installations, or an instruction that an up-
to-date database is needed immediately. Then, the
rebuilding will take place only when strictly needed
and at the end of all the installations.

Some subtle cases can arise, because the ac-
tions to be accomplished are complex to describe.
For example, in the first stages of an upgrade, the
actions relate to the previous version of the pack-
age, and thus should be provided by it, and during
the final stages, the actions relate to the new ver-
sion. Describing the upgrade of a package requires
description in each version how to install and how
to un-install it for an upgrade. (These actions might
be slightly different from a normal (un)installation
procedure.)

Further subtleties can arise when packages
evolve strangely, as in the previous case of 3 pack-
ages that are replaced by 2. We must consider how
packages can describe an evolution that has not been

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 165

Benjamin Bayart

planned; moreover, the description of the last stages
may have to care about the previously installed ver-
sions of the packages to decide how to handle the
whole operation smoothly.

A good model to be reused, at least for the func-
tionalities it provides, is that used by Debian since it
takes into account all the subtleties outlined above.
Please refer to the “Debian packaging manual” to
have a more precise idea of what can be of interest.

A DTD to store this information

We will now introduce the first draft of the DTD that
will be used by FDNTEX to store the descriptions of
the packages. It’s not yet, at the time of writing,
used to produce any package. It will evolve quickly
to a first release version, used to produce the first
flavours, and then, probably, evolve again to a more
mature version when new flavours appear.

Of course, any comments, improvements or sug-
gestions are welcome, as far as they improve the
DTD and make it closer to the description given in
the previous sections, as this description is more ma-
ture than the DTD itself.

General structure A full document, validated ac-
cording to this DTD, is a series of Author, License
and BPackage. The description of the whole distri-
bution can be seen, for convenience, as a single very
large document, since one will need the descriptions
of all the packages to generate the description in a
given flavour (it’s required for some flavours, like the
FreeBSD one, and harmless for others, like the RPM
one). Physically, there will more probably be one
external document for each entity in the document:
one per Author, per License and per BPackage, and
maybe even one per Package (an internal element of
BPackage).

Author and License are top-level objects just
because there are relatively few of them, and there is
a need for consistency, thus instead of “describing”
dozens of times who is David P. Carlisle, it seems
more efficient to describe him in a unique entity,
and then give a reference wherever it’s needed, in
the description of all the packages he has written.
Similarly for licenses: since there are only a dozen
or so of them (according to the Catalogue), it seems
useless to describe them separately for every pack-
age.

Thus, if considered as a single document, the
description of the whole distribution might look like
figure 2.

If we want to consider it as more modular, then
we have to choose a method to aggregate all the in-
formation. One approach is to believe in XML even
more strongly and use it to aggregate the whole doc-

<?xml version="1.0" standalone=’yes’?>
<!DOCTYPE doc SYSTEM "./fdntex.dtd">

<doc>
<Author Id="Carlisle">
<Name>David P. Carlisle</Name>
<EMail>david@latex-project.org</EMail>
</Author>

<License Id="LPPL">
LaTeX Project Public License

</License>

<BPackage>
<BPIdentification>

<)ﬁéldentification>
<)é§ackage>
<}ééc>
Figure 2: The whole description seen as a single
file: this is the way it will be seen by the parser

and by the various “generators”’, not the way it has
to be written.

ument, using entities; this would lead us to a doc-
ument which looks like the one in figure 3. An ad-
vantage is that the XML-parser can perform some
consistency checking, such as one on the ids of the
objects (e.g., check that Author has been defined
when referred to in a package description). The
disadvantage is that the aggregating document will
change each time a new package or author or license
is added to the system.

Another approach is to use a full standalone
document for each part, each having its own DTD,
and then to rely on the top-system to parse all the
needed documents in the right order. In such a case,
when the system needs a reference to the Author-
id “Carlisle” it looks for a file named ./authors/
carlisle.xml, parses it, and then performs the con-
sistency checking. This does not use the XML-based
mechanism, and needs no top-file to handle the list
of all other files, but it requires that we develop an-
other parser on top of the XML one, and also re-
quires more work when porting the distribution to
a new target.

The third solution, while being more complex,
seems the most interesting and will probably be used
in the final system. In the DTD presented here, only

166 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

<?7xml version="1.0" standalone=’yes’?>
<!DOCTYPE doc SYSTEM "./fdntex.dtd" [
<!ENTITY carlisle

SYSTEM "./authors/carlisle.xml'>
<!ENTITY bayart

SYSTEM "./authors/bayart.xml">

<IENTITY 1ppl
SYSTEM "./licenses/lppl.xml">

<!ENTITY tools
SYSTEM "./packages/tools.xml">

1 >
<doc>

&carlisle;
&bayart;

K1pp1;
&ééols;
</doc>
Figure 3: A multi-part document based upon

entities: this allows the XML-parser to check the
ids and id-references in the whole system.

the first two alternatives (which are equivalent for
the XML-parser) are available.

Authors and licenses Top-level objects Author
and License are both identified by a unique id; the
id system provided by XML is used for this purpose.

An Author refers to a physical person, or to
a well-defined group. It might be the author of a
package, or of a package description, depending on
when it’s referred to, or even of both. Up to now,
this contains little information, the aim being not
to collect personal data about people, but merely to
cite them to allow anybody to contact them in case
of troubles like bug reports, or license problems.

Currently, the three basic elements used here,
namely Name, EMail and License are, in the XML
typing system ‘ANY’, that is any non-parsed text. In
the near future it will become a bit more structured
with markups for the license text, and a more formal
way to give an e-mail address. An example of the
current structure can be seen in figure 2. The EMail
markup in the Author entity is optional and might
be repeated if needed.

About BPackage A BPackage is a bundle of pack-
ages (or big-package) which are all built from the
same sources, as TEX and METAFONT are both built

The description language chosen for FDNTEX

from the same web2c source-tree. web2c will then
likely be a BPackage, producing several packages, in-
cluding tex for TEX and metafont for METAFONT.

A BPackage contains a BPIdentification tag
that identifies it in the distribution, a SourceBun-
dle to help retrieve the sources, a Building section
saying how to build the packages from it, and a non-
empty list of Packages.

The BPIdentification contains a mandatory
BPName, which is used to identify the bundle when
producing a packaged version of sources in a given
flavour®, an optional version number, two textual
descriptions: a ShortDescription (maybe several,
in several languages), a LongDescription (may also
be in several languages), a mandatory Licenseld
and a non-empty list of AuthorId.

The Licenseld is the license under which the
bundle is distributed, independently from FDNTEX.
If the packages are bundled together only for conve-
nience in the distribution, but are not when referring
to the original sources, then the license will be the
same as the one for the whole distribution. The li-
cense under which the description file is distributed
is the one of FDNTEX, if the author of the descrip-
tion wants to claim that it’s part of FDNTEX, and
then it doesn’t need to be exposed there.

The AuthorId can be the author of the bundle,
that is the people who put all those things together,
or the author of the description. There is currently
no way to distinguish between them.

The descriptions are supposed to be identical,
when several are provided, but in various languages.
That is, if four ShortDescriptions are provided,
they are supposed to be four times the same text,
but in different languages, the language being spec-
ified as usual in an XML document, and defaulting
to English, e.g.:

<ShortDescription xml:lang=’fr-FR’>
Description en frangais
</ShortDescription>

<ShortDescription>
English description
</ShortDescription>

A bundle of sources A SourceBundle, as re-
quired by a BPackage, is a non-empty list of Source-
File and a Prepare directive that describes how to
unpack all of those sources in a suitable tree for the
building stage.

& Some flavours, like RPM and Debian, have their own
source distribution format, and thus will need a name for
the source package; others, like FreeBSD, give references to
the real-world source, and then might not need all of that
information. Since it’s required by some, it’s provided to all.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 167

Benjamin Bayart

<SourceBundle>

<SourceFile FileId="esieecv-1">
CTAN:/macros/latex/contrib/supported/ESIEEcv.tar.gz

</SourceFile>

<Prepare UnpackTo="./ESIEEcv/">
<untgz FileId="esieecv-1""/>

</Prepare>
</SourceBundle>

Figure 4: Example of a SourceBundle tag for a simple package with sources from CTAN.

A SourceFile needs an id, to be referred to
by the Prepare directive, and is supposed to be
URL-like, that’s either a URL, or something like
CTAN:/systems/knuth/web.tar.gz, which is not a
true URL. Several pseudo-protocols, which actually
are default generic locations, will be defined. The
need for two of them (CTAN to refer to any CTAN
mirror, and FDNTEX to refer to any mirror of the
whole distribution sources?) is already plain.

‘Composite’ generic locations may also be de-
fined: for example, a package may be derived from
CTAN, but a patch (maybe as simple as a Makefile)
to facilitate its handling within FDNTEX may come
from FDNTEX.

The Prepare directive is used for the usual sorts
of files (tar, zip, and so on archives, patch files,
etc.). Its variant PrepareCust (customize) is not
yet well defined; its intent is to provide extensions
for system-specific requirements, as when a particu-
lar flavour requires special treatment for unpacking
the sources.

The preparation directive has an attribute that
gives the place where it will unpack the sources rel-
ative to a supposed well-known root directory. E.g.,
for the RPM flavour, the sources are supposed to
be unpacked somewhere under /usr/src/redhat/
BUILD, usually in a directory called source if the
source archive is source.tgz, but maybe elsewhere
if several sources are provided. In the default case,
for this example, the attribute will be "source".
The directive is a list of actions, in the right order,
that are to be accomplished to obtain a full source
tree.

An example is shown at figure 4.

When retrieving the source file, the system is
supposed to issue FTP commands like:

[whatever is required to connect to the
local CTAN mirror and go to the root
of the mirror]

cd macros/latex/contrib/supported

9 Even if FDNTEX will probably become equivalent to some-
thing like CTAN:/systems/unix/fdntex.

get ESIEEcv.tar.gz

This is of importance, since, when a tarball is
built on the fly, like this one, it will most probably
have the same structure as it has on the archive disk.

At the time of writing, several actions are de-
fined, but others will probably be added:

untar expands a tarball, has a mandatory attribute
which is the FileId, and an optional one named
Offset, used if an archive has to be expanded
somewhere in the tree provided by a previous
tarball (like xdvik within web2c);

untgz which behaves exactly in the same way with
archives compressed by gzip or by the tradi-
tional compress;

untbz which behaves in the same way with archives
compressed by bzip2;

patch which applies a patch, as provided by a “uni-
fied diff” to a source tree; it takes at most 4 at-
tributes: the FileId (mandatory), an Offset
(optional) which allows a patch to be applied to
a subtree, a Depth (optional) which is used as
the -p argument to the patch command that is
issued, and a Compression (optional, default to
none) which specifies how the patch was com-
pressed, can be gz, bz2, Z or none.

The PrepareCust directive will be used to pro-
vide full control to the author of a description for
a given flavour of the distribution. For example,
it’s not clear how a zoo archive can be unpacked
on a Windows-like system, so it would be better to
provide full control to the author, instead of a too
fragile action in the generic directive. A way to mix
both the Prepare and the PrepareCust might be
provided in a future version.

After all the actions have been accomplished,
the sources have to be ready in the directory spec-
ified by UnpackTo relative to the well-known root
defined by the flavour of the distribution.

Description of the building stage As for the
preparation stage, the building stage may be writ-
ten in a generic way, using pre-defined actions, in

168 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

a Building directive. Otherwise (when the pre-
defined actions are not suitable), it may be written
in a system specific way with any kind of scripting
language, using a BuildingCust directive. The kind
of scripting language used will be chosen according
to the target system.

There must be, at most, one Building direc-
tive, and there may be several BuildingCust ones.
If so, they all have to have different targets. The
Building directive is optional since some packages
might not be built in any generic way. FE.g., a dvi
viewer is strongly system-dependent and then has
no generic building description, since it’s not to be
built on unknown targets.

Up to now, only 6 actions have been provided
for building a package, but, of course others will be
in the first non-alpha release of the DTD.

tex to call TEX on a file, which has two attributes,
file (mandatory) is the name of the file to
be processed, and format (optional, default to
plain) is the name of the format to be used.

latex to call BTEX on a file, which has a file
mandatory argument.

dtxtodvi provides a high level interface to build
the documentations of WTEX packages (which
is, de facto, most of the work when building
the distribution). It has a mandatory file at-
tribute which is supposed to be a suffix-less file
name (suffix has to be dtx), and 5 optional at-
tributes. idx (default to no) saying if there is
an index to process. glo (default to no) saying
if there is a glossary (history of changes, usu-
ally) to process. bib saying if a bibliography
requires a BIBTEX run. Those 3 attributes can
be either yes or no. pre-runs (default 2) says
how many times I#TEX has to be run before
the index, glossary and bibliography are pro-
cessed. post-runs (default 1) says how many
times IXTEX has to be run after that.

mktexlsr which has an optional attribute named
mandatory which states if the action can be de-
layed or not, and rebuilds the 1s-R (or equiva-
lent on the target) database. Today, it is use-
less, but will be useful in a near future when
the necessary actions are created to install a
font while building a package. This is required
for packages which are composed of a font itself
and the BTEX package to handle it, since they
usually have to be installed before building the
documentation.

move takes two mandatory attributes, from and
to, and is used to move a file or a directory
from a place to another. No wildcard is allowed

The description language chosen for FDNTEX

here. It’s not to be used here for the installa-
tion of the package, but only for moving files
while building the package.

cd takes a mandatory argument to and is used to
move into the tree while building. Building
is supposed to start in the directory specified
in the UnpackTo attribute of the preparation
stage.

A call to

<tex file="myfile.tex" format="latex"/>
is of course equivalent to

<latex file="myfile.tex"/>

as far as the target system handles the two following
commands in the same way:

tex ’&latex’ myfile.tex
latex myfile.tex

which is ‘not always’.
An example of such a Building directive is
shown at figure 5.

Description of the package itself As one can
guess, this is the most complex part of the descrip-
tion, or at least the really interesting one.

A package description is composed of 6 parts:
Identification, Installation, UnInstallation,
FileList, Methods, and Dependencies directives.
The definition of none of these is final, but we will
discuss what we believe is a good prototype.

A Package has a mandatory Id attribute that
will be used when one needs to refer to it in de-
pendencies of other packages. The Id should be the
name of the package, but it’s permissible to use any-
thing else.

Identifying a package Just as a BPackage has a
BPIdentification, a Package has an Identifi-
cation, which is to be systematically used (the BP-
Identification will only be used by some flavours
of FDNTEX).

The Identification hasto provide a Version,
which is the one provided by the main file of the
package. If there are several important files which
all have their version number, then the version num-
ber provided here can be an aggregate of those, or a
date. F.g., if the two important files are numbered
1.2 and 5.6, then the resulting package can be num-
bered 1.2.5.6 or 5.6.1.2, both being valid. When a
date is provided, e.g., for the BTEX kernel, it should
be like 20000403 to ease the comparison of two ver-
sion numbers when upgrading the system.

If a version number is provided for the bun-
dle (in the BPIdentification of the correspond-
ing BPackage) then it’s appended to the version

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 169

Benjamin Bayart

<Building>

<latex file="ESIEEcv.ins"/>

<dtxtodvi file="ESIEEcv" idx="yes" glo="yes" />

<latex file="test.tex"/>
</Building>

Figure 5: Example of a Building directive for a simple IATEX package with a full documentation

including index and history of changes.

number of the package itself, so that TEX 3.14159,
bundled in web2c 7.3a will be in a package num-
bered 3.14159.7.3a in the final binary version of each
flavour of the distribution.

A Release is mandatory to indicate if the pack-
age has evolved in its FDNTEX port but not in its
source version, as when a forgotten dependency is
added to the description. Currently, the release is
a single integer. The release number can by in-
creased either by the author of the description, when
it evolves, or by the system, in cases of automatic
dependency handling (see section “Conflicts”, above,
for an example of such a case).

In future releases of the DTD the Release will
probably be more informative, perhaps in a 2- or 3-
integer system, like 1.0.0 for the first release, then,
increasing the first one if the description of the pack-
age has evolved in an important way (e.g., mending
broken building directives), increasing the second
digit if it evolved in a harmless way (e.g., added
a dependency) which means there is probably no
need for upgrading, or the third digit if it evolved in
a minor way (e.g., to fix a typo in a LongDescrip-
tion) in which case there is absolutely no reason to
upgrade.

Textual descriptions use exactly the same struc-
ture as those for BPackages, as do the Licenseld
(which is the license under which the package itself
is distributed) and AuthorId (which is the author of
the package). Here, there is no confusion between
‘author of the package’ and ‘author of the descrip-
tion”: It’s systematically the author of the package;
the author of the description has already been cited
in the identification of the bundle.

Installing a package Some target systems may
not be able to deal correctly with the case where a
single source-bundle provides several packages. On
such systems, the BPackage acts as a ‘virtual’ pack-
age which has no real existence, and which installs
no files on the system. All the related packages will
require the virtual package to be built and installed
(through the dependencies mechanism) before build-
ing themselves. The ‘building’ stage of such pack-
ages will be empty, and their ‘installation’ phase

will install the part of the virtual package that is
required.

Of course, such a subtlety need only be used
when there are several Packages in a BPackage. In
such cases, the building and installation stages will
be system-specific only for those targets that expe-
rience difficulties, and for that class of packages.

In most cases, when the bundle has to be in-
stalled in a single run, the installation stage will
be handled within the building stage, and the per-
package installation stage will be empty.

1. When we build web2c on a system that can han-
dle multiple packages, the building stage builds
and installs the whole thing, and the installa-
tion stage does nothing.

2. When we build web2c on a system that cannot
handle multiple packages, the building stage
only builds the bundle, and the per-package
installation system installs that package’s part
(e.g., the dvitype binary for the dvitype pack-
age).

3. The tools bundle of packages for INTEX can be
handled in its entirety by generic directives, but
is inherently a multi-package bundle; for such
bundles the building stage will only build, and
the per-package installation will install each
package, so that the directives have to be writ-
ten only once.

4. When we build a single small package (such as
ESIEEcv) for any system, the building stage
builds and the installation stage installs the
package. This is the most frequent case.

The case of really complex bundles like web2c
is handled like this because re-writing the installa-
tion stage for systems which cannot handle multi-
packages is really hard, and error-prone. Using this
method, the errors will appear only for truly mini-
malist systems, and not for all.

So, just like the building stage, the installation
stage will use a high level language to describe things
to be done, and this generic description can be over-
loaded when a target needs some special things to be
performed that cannot be described by the generic
language.

170 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

It should also be noted that the first instal-
lation —the one performed just after the building
stage has been completed —is likely to differ from
a ‘normal’ one —installing the final package on the
target system. Thus, two tags are provided: While-
Build to describe the installation while we are build-
ing the binary package, and OnTarget for the other
one. Both of them have a “cust” variant, to allow
overriding.

The high level language, at the time of writing,
is quite poor and will evolve a lot. Some information
is given as attributes of the Installation tag:

bindir for the directory where the binary executa-
bles have to be installed, this is supposed to
be relative to the root of the target system,
or at least to another root than the one used
for the other directories; in fact it will often
be bin, which will be concatenated to any pre-
fix given while installing the real thing, e.g.,
/usr/local.

libdir is the same thing for binary system libraries
(mostly libkpathsea).

incdir is for the system include files (mostly the .h
files related to 1libkpathsea).

docdir is the directory where the documenta-
tion for this package should stand, relative to
the root-directory of the TEX system, usually
something like doc/latex/ESIEEcv to be con-
catenated with e.g., /usr/local/share/texmf,
where /usr/local is the prefix specified during
the installation and share/texmf is the “well-
known” root.

stydir is the directory for .sty files provided by
the package.

bstdir same thing for BibTEX styles;

bibdir for bibliographic databases;

tfmdir for tfm files;

mfdir for METAFONT sources;

mapdir for files related to the map system for PS
fonts;

istdir for makeindex styles.
Instructions (defined so far) are as follows:

mkdir to create a directory, out of the ones speci-
fied previously in the attributes.

docfile is a file to be installed in docdir, and the
same for binfile, 1ibfile, bstfile, bibfile,
styfile, tfmfile, mffile, mapfile, and ist-
file. The only one to have an attribute is bin-
file, which has an attribute strip which can
be either yes or no, is optional, and defaults to
yes, and says if the binary is to be stripped.

The description language chosen for FDNTEX

mktexlsr (see description in section “Description
of the building stage”, above).

format which is empty and has a mandatory at-
tribute name giving the name of the format to
rebuild. There is still no way to say that all
the formats need to be rebuilt or that several of
them have to be; this facility will be provided
in future versions of the description language.

In practice, in most cases, the WhileBuild in-
stallation method will use those instructions, while
the OnTarget will only state a single mktex1lsr, since
the system already takes care to move all the files
listed in the FileList to the right place.

The default behaviour for uninstalling a pack-
age is to perform the converse of the the same ac-
tions as for installing, that is remove the file instead
of installing, remove the directories if empty, and so
on. Formats are also rebuilt as necessary.

The list of files The FileList contains a list of
docfile, cfgfile, file and dir, each being part
of the archive to create. Configuration files are iso-
lated so that the uninstall and upgrade systems can
handle them smoothly and save them. Directories
are removed while uninstalling, if they are empty.

The dependencies The Dependencies tag con-
tains a list of BuildDep which gives the name of a
package that has to be installed in order to build this
one, Dep which gives the name of a package that has
to be installed for this one to be used properly, and
Conflict giving the name of a package that creates
a conflict if installed on the same system as this one.

The Dep tag has an integer attribute that
gives the softness level (see section “Installation
dependency” on page 164), whose default value is
10 (hard dependency). A value of 0 is legal but use-
less since it means no dependency at all.

A more fine-grained system will be used for fu-
ture versions of the description language, at least for
the conflicts since this model is really far from per-
fect. The new system will most probably be based
on an external list of packages that are known to be
in conflict. An analagous softness level will be used
for conflicts, to say if it is legal to override a conflict
directive or not.

A complete example

The package described here is a small one that per-
mits the typesetting of a curriculum vitae as French
companies like to see them. It’s a BTEX package,
with a test file and the documentation included with
the source in the .dtx file. The description given
here has been validated against the DTD we have

TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting 171

Benjamin Bayart

just defined, but not yet used to build a real package
since currently there is still no generator written.

Some parts of the document have been deleted
(like the empty description of the 4 packages listed
in the dependencies list).

<Package Name="ESIEEcv'">
<Identification>
<Version>2.0a</Version>
<Release>1</Release>
<ShortDescription>
ESIEEcv to typeset French
curriculum vitae
</ShortDescription>
<ShortDescription xml:lang="fr-FR">
ESIEEcv pour mettre en forme un
curriculum vitae a la frangaise

<?7xml version="1.0" standalone=’yes’?>
<!DOCTYPE doc SYSTEM "./fdntex.dtd" [
<!-- used to shorten the file name later
since this XML document is typeset in
two columns mode -->
<!ENTITY CTANmlcs
"CTAN: /macros/latex/contrib/supported">

1 > </ShortDescription>
<LongDescription>
<t-- maximum length of a line - This package allows one to typeset

a curriculum vitae as a French
company would expect to receive it.
</LongDescription>
<LongDescription xml:lang="fr-FR">
Ce package permet la mise en forme
d’un curriculum vitae tel qu’une
entreprise frangaise s’attendra a

<doc>
<Author Id="bayart'">
<Name>Benjamin B. Bayart</Name>
<EMail>bayartbQ@edgerd.fdn.fr</EMail>
<EMail>bayartb@guinness.domicile.fr
</EMail>

</Author>

<License Id="lppl">

LaTeX Project Public License
</License>

<License Id="fdntexl">

The FDNTeX license
</License>

<BPackage>

<BPIdentification>
<BPName>BP-ESIEEcv</BPName>
<LicenseId Id="1lppl"/>
<AuthorId Id="bayart"/>
</BPIdentification>

<SourceBundle>
<SourceFile FileId="esieecv-1">
&CTANmlcs;/ESIEEcv.tar.gz
</SourceFile>
<Prepare UnpackTo="./ESIEEcv/">
<untgz FileId="esieecv-1"
Offset=".."/>
</Prepare>
</SourceBundle>

<Building>
<latex file="ESIEEcv.ins"/>
<dtxtodvi file="ESIEEcv"

idx="yes"

glo="yes" />
<latex file="test.tex"/>
</Building>

172 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

le recevoir.
</LongDescription>
<LicenseId Id="1ppl"/>
<AuthorId Id="bayart"/>
</Identification>
<Location>
macros/latex/contrib/supported
</Location>
<Location kind="func">
lang/french
</Location>
<Installation
stydir="tex/latex/ESIEEcv"
docdir="doc/latex/ESIEEcv">
<WhileBuild>
<styfile>ESIEEcv.sty</styfile>
<docfile>ESIEEcv.dvi</docfile>
<docfile>test.tex</docfile>
<docfile>test.dvi</docfile>
<mktexlsr/>
</WhileBuild>
<0OnTarget>
<mktexlsr/>
</0nTarget>

</Installation>
<FileList>

<file>
tex/latex/ESIEEcv/ESIEEcv.sty

</file>

<docfile>
doc/latex/ESIEEcv/ESIEEcv.dvi

</docfile>

<docfile>
doc/latex/ESIEEcv/test.tex
</docfile>
<docfile>
doc/latex/ESIEEcv/test.dvi

</docfile>
</FilelList>
<Methods>
Not yet defined
</Methods>
<Dependencies>
<Dep name="a-LaTeX-format"/>
<Dep name="tabularx"/>
<BuildDep name="a-LaTeX-format"/>
<BuildDep name="tabularx"/>
<BuildDep name="babel'/>
<BuildDep name="fnt-ec"/>
</Dependencies>

</Package>

</BPackage>

</doc>

The full DTD

As has already been explained, this Document Type
Definition (DTD) is not final. It is the DTD that
this paper has described, and it has been used to
validate the description. A more up to date ver-
sion might be available at ftp://ftp.fdn.fr/pub/
FDNTeX/Develop/fdntex.dtd, and a more up-to-
date version of this paper (or at least something
describing the corresponding version of the DTD)
should be available at the same place.

<!ELEMENT doc (Author|BPackage|License)x*>

<!ELEMENT Author (Name,EMailx)>
<!ATTLIST Author Id ID #REQUIRED>

<!ELEMENT Name ANY>
<!ELEMENT EMail ANY>

<!ELEMENT License ANY>
<V'ATTLIST License
Id ID #REQUIRED
xml:lang NMTOKEN ’en’>

<!ELEMENT BPackage (BPIdentification,
SourceBundle,
Building,
BuildingCustx*,
Package+)>

<!ELEMENT BPIdentification
(BPName,

The description language chosen for FDNTEX

Version?,
ShortDescriptionx,
LongDescriptionx,
Licenseld,
AuthorId+)>

<!ELEMENT BPName ANY>

<!ELEMENT Version ANY>

<!-- ShortDescription and LongDescription
are defined later on,
when defining Package -->

<!ELEMENT Licenseld EMPTY>

<!'ATTLIST Licenseld Id IDREF #REQUIRED>

<!ELEMENT AuthorId EMPTY>

<!ATTLIST AuthorId Id IDREF #REQUIRED>

<t--
Identification

BPName
Version?
ShortDescription
LongDescription
License
Authorld

-

<!ELEMENT SourceBundle

(SourceFile+,

(Prepare|PrepareCust)) >
<!ELEMENT SourceFile ANY>
<!ATTLIST SourceFile

FileId ID #REQUIRED>
<!ELEMENT Prepare

(untar|

untgz|

patch)+>
<!ATTLIST Prepare

UnpackTo CDATA #REQUIRED>
<!ELEMENT untar EMPTY>
<!ATTLIST untar

Offset CDATA "."

FileId IDREF #REQUIRED>
<!ELEMENT untgz EMPTY>
<!'ATTLIST untgz

Offset CDATA "."

FileId IDREF #REQUIRED>
<!ELEMENT patch EMPTY>
<!ATTLIST patch

Offset CDATA "."

Depth CDATA "1"

FileId IDREF #REQUIRED

Compression (gz|bz2|Z|none)

"none" >

<!ELEMENT PrepareCust ANY>

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 173

Benjamin Bayart

<!ATTLIST PrepareCust
UnpackTo CDATA #REQUIRED
>

<!--
SourceBundle
SourceFilex*
Prepare | PrepareCust
(UnpackTo?) implied
-=>
<!ELEMENT Building
(tex|
latex|
dtxtodvi|
mktexlsr|
move |
cd)+>
<!ELEMENT tex EMPTY>
<V'ATTLIST tex
file CDATA #REQUIRED
format CDATA "plain">
<!ELEMENT latex EMPTY>
<!ATTLIST latex
file CDATA #REQUIRED>
<!ELEMENT dtxtodvi EMPTY>
<!'ATTLIST dtxtodvi
file CDATA #REQUIRED
idx (yes|no) '"no"
glo (yes|no) "no"
bib (yes|no) "no"
pre-runs CDATA "2"
post-runs CDATA "1">

<!-- mktexlsr will be defined later -->

<!ELEMENT move EMPTY>
<!'ATTLIST move

from CDATA #REQUIRED

to CDATA #REQUIRED>
<'ELEMENT cd EMPTY>
<!'ATTLIST cd

to CDATA #REQUIRED>

<!ELEMENT BuildingCust ANY>
<!ATTLIST BuildingCust

Target (i386|ppc|sparc|alpha)

System (linux|freebsd|solaris]|
#REQUIRED>

hpux9 | hpux10)

<!ELEMENT Package (
Identification,
Locationt,
Installation,

UnInstallation?,
FilelList,
Methods,
Dependencies?,
Provides?)>
<!ATTLIST Package

Name ID #REQUIRED>

<!ELEMENT Identification
Version,
Release,
ShortDescription+
LongDescription+,
Licenseld,
AuthorId+)>

<!ELEMENT Release ANY>

(

s

<!ELEMENT ShortDescription (#PCDATA)>
<!ATTLIST ShortDescription

xml:lang NMTOKEN
<!ELEMENT LongDescription
<!ATTLIST LongDescription
xml :lang NMTOKEN
<!-- Licenseld and Author
already defined -->

‘en’>
(#PCDATA) >

en’>
Id are

<1ELEMENT Location (#PCDATA)>

<!ATTLIST Location
kind (ctan|func)

<!ELEMENT Installation
(WhileBuild,
WhileBuiltCustx*,
OnTarget,
OnTargetCust*)>
<!'ATTLIST Installation
bindir CDATA "."
libdir CDATA "."
incdir CDATA "."
docdir CDATA "."
stydir CDATA "."
bstdir CDATA "."
bibdir CDATA "."
tfmdir CDATA "."
mfdir CDATA "."
mapdir CDATA "."
istdir CDATA ".">
<!ELEMENT WhileBuild
(mkdir |
docfilel
binfilel
libfilel
bstfilel
bibfilel
styfilel

"ctan">

174 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

tfmdilel
mffilel
mapfile]
istfilel
mktexlsr|
format)+>
<!ELEMENT WhileBuildCust ANY>
<!ELEMENT OnTarget
(mkdir |
docfile]|
binfilel
libfilel
bstfilel
bibfilel
styfilel
tfmdile|
mffilel
mapfile]
istfilel
mktexlsr|
format)+>
<!ELEMENT OnTargetCust ANY>

<!ELEMENT mkdir ANY>
<!ELEMENT docfile ANY>
<!ELEMENT binfile ANY>
<!ELEMENT libfile ANY>
<!ELEMENT bstfile ANY>
<!ELEMENT bibfile ANY>
<!ELEMENT styfile ANY>
<!ELEMENT tfmfile ANY>
<!ELEMENT mffile ANY>
<!ELEMENT mapfile ANY>
<!ELEMENT istfile ANY>
<!ELEMENT mktexlsr EMPTY>
<!ATTLIST mktexlsr
mandatory (yex|no) '"no">
<!ELEMENT format EMPTY>
<!ATTLIST format
name CDATA #REQUIRED>
<!ELEMENT UnInstallation
(WhileBuild,
WhileBuiltCust*,
OnTarget,
OnTargetCust*)>

<!ELEMENT FileList
(docfile|cfgfile|fileldir)*>

<!ELEMENT cfgfile ANY>

<!ELEMENT file ANY>

<!ELEMENT dir ANY>

<!ELEMENT Methods ANY>

The description language chosen for FDNTEX

<!ELEMENT Dependencies

(BuildDep|

Dep |

Conflict)+>
<!ELEMENT BuildDep EMPTY>
<!'ATTLIST BuildDep

name IDREF #REQUIRED>
<!ELEMENT Dep EMPTY>
<!'ATTLIST Dep

name IDREF #REQUIRED

level CDATA "10">
<!ELEMENT Conflict EMPTY>
<!'ATTLIST Conflict

name IDREF #REQUIRED>

<!ELEMENT Methodes EMPTY>
<r--

FileList

Methods
-—>

<!ELEMENT Provides EMPTY>
<!ATTLIST Provides
Name ID #REQUIRED>

Acknowledgments

FDNTEX, and thus this paper, is not the pure out-
come of my ideas of what should constitute a bet-
ter distribution of TEX, it’s also the result of long
talks with friends of mine, like Rémy Card and
Olivier Gutknecht; and with people more involved
in the TEX world and in writing distributions of
TEX like Sebastian Rahtz who suggested the use
of XML as a description language, Simon Cozens
who gave me the idea of a high level language, Fab-
rice Popineau who worked with S. Rahtz on the sys-
tem used in TEXlive, Taco Hoekwater who proposed
great ideas for dependencies that have not been ma-
tured enough (at least by me) to be discussed in
this paper, Robin Fairbairns who gave us good ad-
vice during the discussions about TPM, and proba-
bly others that I forgot.

Special thanks to Sylvia Pédron who spent a
lot of hours helping me to improve my English and
proof reading this paper.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 175

Unicode and math, a combination whose time has come — Finally!

Barbara Beeton
American Mathematical Society

bnbQams . org

Abstract

To technical publishers looking at ways to provide mathematical content in elec-
tronic form (Web pages, e-books, etc.), fonts are seen as an “f-word”. Without
an adequate complement of symbols and alphabetic type styles available for di-
rect presentation of mathematical expressions, the possibilities are limited to
such workarounds as .gif and .pdf files, either of which limits the flexibility of
presentation.

The STIX project (Scientific and Technical Information eXchange), repre-
senting a consortium of scientific and technical publishers and scientific societies,
has been trying to do something about filling this gap. Starting with a com-
prehensive list of symbols used in technical publishing, drawn from the fonts of
consortium members and from other sources like the public entity sets for SGML
as listed in the ISO Technical Report 9573-13, a proposal was made to the Unicode
Technical Committee to add more math symbols and variant alphabets to Uni-
code. Negotiations have been underway since mid-1997 (the wheels of standards
organizations grind exceedingly slowly), but things are beginning to happen.

This paper will share the latest information on the progress of additional
math symbols in Unicode, and the plans for making fonts of these symbols freely

available to anyone who needs them.

Introduction

The composition of mathematics has never been
straightforward; it has always required special fonts
above and beyond the alphabetic complement re-
quired for text. Even if an author makes an effort
to describe mathematical concepts and relationships
in words, there comes a point where symbols become
necessary for both clarity and conciseness. In some
fields (for example, symbolic logic), the use of nota-
tion has expanded to such a degree that it is nearly
impossible to express concepts clearly in ordinary
words; symbols convey the desired meaning much
more directly. The situation might be compared
to that of two literate Chinese from different areas
meeting, and communicating by writing rather than
in their different spoken dialects. There is some-
times just no reasonable substitute for a common
writing system.

Although symbols form a large and important
part of written mathematics, mainly indicating op-
erations, relations, and other similar concepts, al-
phabets are also co-opted from their role of rep-
resenting ordinary language to provide the nota-
tion for mathematical constants, variables and func-

176

tions— the things operated on. The number of dif-
ferent alphabets used in some documents appears
to be limited only by what is available or by the
capacity of the typesetting system (manual, mecha-
nized or electronic). Only numerals seem to denote
more or less the same kinds of concepts in both ordi-
nary prose and mathematical notation. Needless to
say, font foundries have never been overly eager to
provide an unlimited supply of new symbol shapes
of arcane design and often intricate production re-
quirements.

Complicating this situation is the fact that the
audience for typeset mathematics is relatively small.
If the number of mathematicians clamoring for com-
petently printed material in their subject were any-
where near the number of readers of novels or sports
magazines, or if these mathematicians had budgets
matching those of major advertising agencies, font
foundries could muster much greater interest in do-
ing this sort of work.

Terminology

When one looks at a printed page, one sees that it
is constructed from many small elements. There are
letters, digits, punctuation, symbols, dingbats, ...

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Unicode and math, a combination whose time has come — Finally!

One might think to refer to all of these as characters.
The dictionary [9] definition of character is, in part,

character ... 1. A sign or token placed
upon an object as an indication of some spe-
cial fact, as ownership or origin; a mark,
brand, or stamp. 2. Hence: a a graphic
symbol of any sort; esp., a graphic symbol
employed in recording language, as a letter.
b Writing; printing. c ...
Clear enough? Well, not quite.
In standardese, a term can have only one mean-
ing. The basic ISO! definition [5] is
character A member of a set of elements
used for the organisation, control, or repre-
sentation of data.

Thus the term character cannot be used in an ISO
standard with any other meaning.
Another relevant term is code; from the same
dictionary [9]:
code ... 3. A system of signals for commu-
nication by telegraph, flags, etc. (...); also, a
system of words or other symbols arbitrarily
used to represent words; as, a secret code.

This is the term adopted to identify the system by
which data is stored in a computer memory, and the
individual elements are known as coded characters,
or characters for short. Different computer coding
systems use different bit patterns to represent the
same character; for example, the letter A would have
a different code in ASCII, BCD, EBCDIC, ISO 646,
ISO 8859-1, etc., but in each of these systems, A
is still considered the same character. If it is in a
context that might (in print) be represented in italic
or boldface, that makes no difference; the same code
is used for all.

But an A in a font or on a printed page is not
(by this system) a character, and an italic A is differ-
ent from a boldface A, and so on. The term adopted
in standardese [3] for such an element is glyph:

glyph A recognizable abstract graphic sym-

bol which is independent of any specific de-

sign.
Thus it is clear that one code may represent many
different glyphs. The reverse is also true: while the
word “file” is spelled with four letters, and coded as
four characters, when printed with a font that has
ligatures, only three glyphs are used.

The association between characters and glyphs
is referred to as mapping. What is important here
is that in neither direction is the mapping between
a coded character and a glyph one-to-one; it may

! International Organization for Standardization

be one-to-many, or many-to-one. While this is not
only adequate, but even admirable, when dealing
with text, for mathematics it can introduce serious
ambiguity.

Codes

The alphanumeric soup of standardized codes has
already been mentioned. Consider the history of
codes used for computer input.

Although quite a few different models of digital
computer architecture have been devised, very few
have been based on a wider range of possibilities for
the smallest element other than zero and one—on
and off. (This provides the rationale for naming the
bit, “binary digit”.) Different combinations of bits,
in strings of predefined length, designate characters.
The number of bits in such a string is the limiting
factor in how many characters can comprise a code.

Very early codes contained six bits— 64 char-
acters, just enough for a single-case (latin) alphabet,
ten digits, five arithmetical operators (+, -, *, / and
=), the punctuation required to format real num-
bers and accounting data, and a number of control
codes to support interaction with a Teletype ma-
chine. The following symbol complement, a variant
of the BCD code, was available on a punched paper
tape device used in the 1970s at AMS; symbols in
the second row had to be preceded by an upshift and
followed by a downshift, as they were piggy-backed
onto other characters.

s, —/ x# &S
;=0 (C) <>

This was sufficient to support Fortran, Cobol, and
other antique programming languages, but not a di-
rect visual representation of mathematical expres-
sions.

ASCII, in its original form, had seven bits and
128 characters, which could accommodate a lower-
case alphabet and more symbols. (This is the code
under which TEX was first implemented.) 1SO 646 is
the “international” version of ASCII. A key princi-
ple was— and is— that once a character gets into a
code, it is never removed, so the current 8-bit ASCII
is backward compatible with the 7-bit version, at
least insofar as what can be encoded.

Other codes have been promulgated by manu-
facturers, national standards bodies, and the ISO.
Until the mid-1980s, these codes were used almost
exclusively to support processing of programming
languages and natural languages. Whatever sym-
bols were included were necessary to specify pro-
gramming operations, not the symbolic representa-
tion of scientific disciplines, and typically, except for

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 177

Barbara Beeton

the few symbols and punctuation characters that
were already present in six-bit codes, symbolic char-
acters were typically segregated in programming
language—specific codes such as the one for APL.

Some language codes already exceeded the typ-
ical eight-bit capacity of 256 elements. It is impossi-
ble, for example, to fit in all the accented and vari-
ant letters of the alphabet needed to represent all
the languages based on the latin alphabet. And
codes for Japanese and Chinese had to accommo-
date the nearly 10,000 characters used to publish
newspapers, or, preferably, the 50,000 characters or
more found in literary works.

The development of a multi-byte code, ISO
10646 (originally a two-byte code), undertook to
combine in a single code all existing national
and commercial codes. Computer manufacturers
and other commercial organizations dependent on
computer technology became dissatisfied with the
progress of the ISO working group responsible for
standardizing codes, and, in 1988, formed the Uni-
code Consortium for the purpose of creating a uni-
fied international code standard on which new multi-
national computer technology could be based. The
ISO old guard was joined or replaced by the Unicode
members, and since 1991 Unicode and ISO 10646
have been parallel.

The content and structure of Unicode

In the Unicode 2.0 manual [7], the section Design
goals identifies some of the gaps in coverage by ex-
isting codes.

When the Unicode project began in 1988,
groups most affected by the lack of a con-
sistent international character standard in-
cluded the publishers of scientific and math-
ematical software, newspaper and book pub-
lishers, bibliographic information services,
and academic researchers. The explo-
sive growth of the Internet has added to the
demand for a character set standard that can
be used all over the world.

The first iteration of Unicode included “char-
acters from all major international standards pub-
lished before December 31, 1990”. One of these
was the SGML standard [2], which contained a size-
able list of mathematical and technical symbols in
its original Annex A (this list was later moved to a
technical report [4]). Other sources included “bib-
liographic standards used in libraries ..., the most
prominent national standards, and various industry
standards in very common use”.

In the Unicode 3.0 manual [8], only one refer-
ence can be unambiguously associated with math
symbols: ISO 6862, Information and documenta-
tion — Mathematics character set for bibliographic
information interchange (no explicit references are
shown in the Unicode 2.0 manual). Many of the
symbols listed in the annex to the SGML standard
don’t appear in Unicode. More about this later.

There are several design principles especially
relevant to the designation of math symbols as char-
acters [8]:

e The Unicode Standard encodes characters, not

glyphs.

e Characters have well-defined semantics.

e The Unicode Standard encodes plain text.
The implication is that the meaning of each char-
acter is distinct, so that the representation when
interchanged or typeset will be unambiguous. More
about this later as well.

Unicode is organized into segments of 65,536
characters called planes. The first of these, plane
0, is the basic multilingual plane (BMP). Within
this plane, characters with common characteristics
are grouped into blocks, usually of 256 characters.
The first full block is equivalent to Latin 1, with the
first half comprising 7-bit ASCII. The code for any
character assigned to the BMP can be represented by
16 bits, a two-byte, or two-octet code. The formal
representation of such a code is “U4zzzz”, where
zzzz is a string of four hexadecimal digits.

Within the BMP, these blocks are occupied by
symbols:

U+2000-206F: General punctuation
U+2070-209F: Subscripts and superscripts
U+420A0-20CF: Currency symbols
U+20D0-20FF: Combining diacritical marks
for symbols

e U+2100-214F: Letterlike symbols

e U+2150-218F: Number forms

e U+2190-21FF: Arrows

e U+2200-22FF: Mathematical Operators

e U+2300-23FF: Miscellaneous technical (in
Unicode 2.0, U4-2380-23FF are unassigned,
reserved for later additions)

e U+2400-243F: Control pictures

e U+42440-245F: Optical Character Recognition
o U+2460-24FF: Enclosed alphanumerics

e U+2500-257F: Box drawing

o U+42580-259F: Block elements

e U+25A0-25FF: Geometric shapes

e U+42600-267F: Miscellaneous symbols

178 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Unicode and math, a combination whose time has come — Finally!

e U+2700-27BF: Dingbats

e U+27C0-27FF: (unassigned)

e U+2800-28FF: Braille patterns (added in
Unicode 3.0)

e U+42900-2DFF: (unassigned)

Symbols that were part of earlier codes are kept with
those codes in other blocks; if a code already existed,
the character was not duplicated.

A segment of the BMP has been set aside for
private use, where characters may be assigned which
are not formally included in Unicode but for which
an agreement exists between sending and receiving
users.

Up to now, most character assignments are in
the BMP, with the intention that they be easily ac-
cessed. However, for less frequently occurring char-
acters, work has begun to populate Plane 1. This is
another area with relevance that will become obvi-
ous later.

Identifying symbols required for math
typesetting

Early in 1997, a group of scientific and technical
societies and publishers banded together under the
name STIPub— Scientific and Technical Informa-
tion Publishers —to address matters of common in-
terest. The founding members of this group were

e American Chemical Society
e American Mathematical Society

American Institute of Physics

American Physical Society

Elsevier Science, Inc.

Institute of Electrical and Electronic Engineers

One topic of growing concern to the STIPub
members was how best to move into the Internet
age, to make use of the World Wide Web as an ad-
junct, if not the new centerpiece, of their publishing
efforts. A major obstacle facing Web publication
was—and is— the pitifully inadequate symbol set
available with HTML, and its lack of support for the
two-dimensional positioning of mathematical nota-
tion. Several attempts at providing some support
for this material had been brushed aside as succes-
sive releases of the HTML Recommendation? added
features to improve the visual presentation and con-
trol of document layout.

It was understood that a future version of most
browsers would include “Unicode support”. Al-
though it is unclear exactly what is meant by this,
an obvious course of action was to make certain that

2 A Recommendation is the World Wide Web Consor-
tium’s (W3C) equivalent of an international standard.

Unicode coverage for math and technical notation is
complete.

A working group for Scientific and Technical
Information eXchange (STIX) was formed with the
charter to identify the required symbol complement
and get the missing elements incorporated into Uni-
code. A first step was to collect from the STIX par-
ticipants and other sources lists of symbols currently
in use, and to reduce this to two subcollections: sym-
bols already in Unicode and symbols not in Uni-
code. Information was gathered from the following
sources, in addition to the STIX members:

e the entity sets of ISO TR 9573-13 [4];
electronic files were provided by the editor,
Anders Berglund.

e fonts designed to be used with TEX:
Computer Modern, AMSFonts, Lucida New
Math, lasysym, St. Mary Road, wasysym

e Wolfram Research (Mathematica)

e Justin Ziegler’s WTEX 3 project report [10]

e Taco Hoekwater (for Kluwer Academic
Publishers)

e Jorg Knappen (for Springer Verlag)

e Paul Topping, Design Science, Inc.
(MathType)

e the ISO Z language standard (ISO CD 13568)

e various requests for specific symbols identified
through AMS technical support and the
newsgroup comp.text.tex

More than 2200 distinct symbols were identified.

The next step was to determine which were al-
ready included in Unicode. As already mentioned,
not all symbols are located in the blocks designated
for symbols; some have codes in other blocks, in-
cluding Latin 1, Greek, and even among the CJK?
symbols and punctuation. About half of the sym-
bols in the collection were found in the Unicode 2.0
manual [7]; the remainder were assigned provisional
identifiers in the Unicode private use area, and a
table was constructed, listing the following for each
symbol:

e its ID

e a possible cross-reference to an ID for another
symbol of similar shape or meaning

e the AFII* glyph identifier

e the entity name, TEX code, or other identifying
information for each contributor

e a brief description

3 Chinese, Japanese and Korean
4 Association for Font Information Interchange

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 179

Barbara Beeton

[[[axo][2xa |[1x2 | 1x3 | 1xa |[1x5 |[1x6 | 1x7 |[1x8 | [|[3x0 | 3x1 [3x2][3x3][3x4 | 3x5 |[3x6 |[3x7 |[3x8 | 3x9 |

ol | =N~ | T =]=c lo=|= 2|2 <¢|<|2|c|&|n
:13>—*.f°*»<—+Lul>%:1&::;2»?53;5
:2<1— -----)\waeh—SgT:zi?#igﬁéiggm
:3—»TJJ*9+ﬂ'=‘TJ,:3ﬂ—E%3§=£2§?gLD
:44—»=L><L_>’IT—~:> jaégg%é;’%ikﬁ
5 — (X 3|l =& zf?;’%_f{:?g;ﬂ
:ei—n—<;x;(>%f—|‘=+€ iﬁ%;{{}%f@d;a
:7(=I)—><R.)\—‘I—l=:_>) ié;i%%#é;D
:s.=>—«><afi=s :séé;ﬁ_ﬁ:#-g;’;égg
:9t»—}(a11=»e€ :95,}—%?:>“§ Zlz|e
j;«—x¢uﬁ1tg j$é§2>< £ 55
im—»x@t'—yn igg%;ﬁ =2
?mﬁxoﬁlz j%a‘;éﬁb £ G| E
of « [=[x [=]1]7 o7]z2]z]z]e AP1E
E—-}’\%T’v—‘: i;s:;g e &« | g | =<
:F{'"/N‘i_\'” :FE;§ F | 2=

Figure 1: First (arrows) and third (binary relations) of seven symbol tables in the December 1998

version of the Unicode math proposal

This completed the first half of the project. The
second, more difficult, half remained — putting the
request into a form that would be acceptable to the
Unicode Technical Committee (UTC).

Preparing the Unicode proposal

It is a UTC requirement that any request for encod-
ing must be accompanied by a sample image of the
requested character. This posed some problems. For
many of the symbols to be submitted, no fonts were
available. We solved that problem in a rudimentary
way by creating GIF images at a very low resolu-
tion; for symbols we did have in fonts, this was ac-
complished using latex2html, and for others, bitmaps
were created by hand and packaged as GIFs. The
resulting images, packaged in HTML tables, were
rough but recognizable. For the initial version of

180

the proposal, the order of symbols in the tables was
the same as that in our master list, by reference ID;
the full collection of tables and text —about 70 files
in all —was sent to the UTC in March 1998.

The arrangement of symbols was semi-random,
and individual symbols were hard to find, so at the
UTC’s request, the proposal was reorganized and the
first revision delivered in December 1998. Figure 1
shows two of the seven tables in this first revision.

Once the symbols were rearranged, the pres-
ence of similar shapes— considered by the UTC to
be possible duplicates — became obvious.

The UTC takes its job seriously [8, p. 17]:

The Unicode Standard avoids duplicate en-
coding of characters by unifying them within
scripts across languages; characters that are
equivalent in form are given a single code.

TUGDboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Unicode and math, a combination whose time has come — Finally!

Common letters, punctuation marks, sym-
bols, and diacritics are given one code each,
regardless of language, . ..

With respect to math symbols, this means that
if two symbols look very much alike, unless there
is very strong documentation to support the con-
tention that they have different meanings, only one
will be assigned a code. Thus, for example, < and <
might be considered equivalent —if they had not al-
ready both been accepted into Unicode. Some UTC
members feel that the original inclusion of such pairs
was a mistake, and they are determined not to re-
peat it. Knowledge of that fact guided the organiza-
tion of the math proposal, and helped to determine
what kind of documentation would be needed.

The first rearrangement of the symbols was into
groups that roughly coincided with existing Unicode
blocks: arrows, “traditional” math symbols, geo-
metric shapes, etc. The “traditional” symbols were
classified further into groups that corresponded to
their functions: large operators, binary operators,
binary relations, delimiters, etc. After some pre-
liminary discussions with a member of the UTC, we
decided to structure our proposal in blocks corre-
sponding to these functional groups, with the sym-
bols arranged in the same general order as similar
ones already present in Unicode.

We were also advised to eliminate any “dupli-
cates” of existing characters, but since slight vari-
ations do often have different meanings in mathe-
matical exposition, we decided to keep everything
for the first round, and refine on the basis of spe-
cific directives from the UTC. However, we did at
this stage identify symbols with similar shapes, and
possibly equivalent meanings, and flagged them in
our master list to indicate the need for additional
documentation.

The UTC requested at the outset that symbols
used not in math, but in fields such as chemistry, as-
tronomy, engineering and phonetics, be omitted, to
be requested separately by representatives of those
disciplines. This change was made, eliminating more
than a hundred symbols.

In the first round of the proposal, we included
three alphabets — blackboard bold, script and frak-
tur—as well as a list of alphabets required for
mathematical exposition. Some additional alpha-
betic inclusions were letters that occur in an unusual
orientation (e.g., 4) and variant forms of several
Greek letters (including e, the straight-backed ep-
silon) which were missing from the Unicode comple-
ment. Although we felt that the case for including
these alphabets was strong, opposition from mem-

bers of the UTC was stronger; in the next iteration,
the alphabets were removed to a separate proposal.

Refining the proposal

Adjusting the content of the list of symbols to make
it acceptable to the UTC took several iterations over
the course of two years. Attendance at the meetings
where the proposal was discussed proved to be es-
sential, given the scope of the project. Two UTC
members were assigned to help refine the proposal,
cast it in the form required by the ISO working group
(WG2) in charge of character coding standards, and
prepare the text that will appear in the published
Unicode manual.

The first task was to overcome the reluctance
of some members of the UTC to believe that there
could actually be more than a thousand math and
technical symbols not already in Unicode. The re-
organized proposal, generally following the ordering
of symbols already present, clarified the situation by
making it relatively easy to compare the new mate-
rial to the existing Unicode.

Quite a few symbols consisted of a base sym-
bol plus a cancellation. This could be a long or
short slash or vertical stroke, a backwards slash, or
a double vertical stroke. Although two lengths of
the forward slash and vertical stroke appear in Uni-
code among the combining diacritics, it was decided
that the longer versions would be designated as the
proper cancellation markers for math, leaving the
actual shape of the cancelled symbol as a font issue.

Special attention was paid to symbols that look
similar, that differ for example in the number

Several decisions were made in order to mim-
imize the number of codes to be assigned. These
were the most important:

e Any symbols cancelled by a vertical or slanted
stroke should be constructed from a base sym-
bol and a combining diacritic; this eliminated
the entire cancelled alphabet used by physicists.

e A “variant selector” (VS) would be provided to
allow for shape variants that ordinarily repre-
sent personal preference or house style and not
differences in meaning. Except where needed
to provide a base character for cancellation, in
which case a code would be assigned, only the
most common variant of such a symbol would
be assigned, and the specified variant repre-
sented by the code for the base symbol plus the
VS. A list of such variants appears in figure 2.

Documentation for the symbols that were most
likely to be controversial was sought in published
material. A request for citations was presented on

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 181

Barbara Beeton

kk

*k

k3%

*k

2268
2269

22DA
22DB
2272
2273
2A9D
2A9E
2AAC
2AAD

228A
228B
2ACB

2ACC

2A3B
2A3C

2295
2297
229C

2225
2225

222A
2229
2293
2294

Notes:

Symbol variants defined using a Variation Selector (VS)

Barbara Beeton, for STIPUB
7 February 2000

S + VS — £ less-than and not double equal - with vertical stroke

= + VS — 2 greater-than and not double equal - with vertical stroke

; + VS — § less-than above slanted equal above greater-than

% + VS — 2 greater-than above slanted equal above less-than

< + VS — < less-than or similar - following the slant of the lower leg

2 + VS — = greater-than or similar - following the slant of the lower leg

= + VS — = similar - following the slant of the upper leg - or less-than

= + VS — = gsimilar - following the slant of the upper leg - or greater-than

< + VS — < smaller than or slanted equal

> + VS — = larger than or slanted equal

C + VS — ¢ subset not equals - variant with stroke through bottom members

2 + VS — D superset not equals - variant with stroke through bottom members

% + VS — & subset not two-line equals - variant with stroke through bottom
members

; + VS — 2 superset not two-line equals - variant with stroke through bottom
members

— + VS — | interior product - tall variant with narrow foot

« + VS — | righthand interior product - tall variant with narrow foot

VS — @ circled plus with white rim
VS —) circled times with white rim

+ o+ o+

O R D

VS — & equal sign inside and touching a circle

| + VS — // slanted parallel

| + VS + 20E5 \ — J slanted parallel with reverse slash
U + VS — U union with serifs

N + VS — N intersection with serifs

M + VS — I square intersection with serifs

LI + VS — LI square union with serifs

** The shape is incorrect, owing to unavailability of a suitable font; the correct shape will be
provided as soon as possible. The associated text correctly describes the desired shape.

182

Figure 2: Symbols constructed using the Variant Selector

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Unicode and math, a combination whose time has come — Finally!

the AMS Web site during the summer and early fall
of 1998. Although the response was not as great
as hoped for, some useful references were obtained.
The ideal citation contained several similar-appear-
ing symbols on a single page, in context, preferably
with definitions of one or more of the symbols in
the text. More than a hundred pages of such exam-
ples were copied, annotated, assigned reference IDs,
indexed, and provided to the two UTC members re-
sponsible for advancing the symbols proposal. This
mass of data proved its worth more than once, when
it was possible to cite a particular sample in answer
to a challenge.

Late in 1999, the content of the symbols pro-
posal was agreed, codes were assigned, and a final
version of the proposal was prepared for the spring
2000 meeting of WG2. The proposal forwarded to
WG2 places material into the following blocks:

e U+2000-206F: General punctuation (9 new
codes)

e U+20D0-20FF: Combining diacritical marks
for symbols (4 codes)

e U+42100-214F: Letterlike symbols (16 codes)

o U+42190-21FF: Arrows (12 codes)

e U+2200-22FF: Mathematical operators (14
codes)

e U+2300-23FF: Miscellaneous technical (26
codes)

e U+2400-243F: Control pictures

o U+25A0-25FF: Geometric shapes (8 codes)

e U+2900-297F: Supplemental arrows (new; 128
codes)

o U+2980-29FF: Miscellaneous math symbols
(new; 114 codes)

e U+2A00-2AFF: Supplemental math operators
(new; 246 codes)

In addition, a few characters were added to other
areas; in all, 584 new codes have been assigned.

After much discussion, the proposition was re-
luctantly accepted that the same letter from differ-
ent alphabets has different meanings within a sin-
gle document, and thus these different alphabets
deserve to be coded for use only in mathematical
notation. The example used to clinch the argument
was the contrast between these two formulas:

H = /d7(5E2 + pnH?)

H = /dT(€E2 + pH?)

The first is the Hamiltonian formula well known
in physics; the second is an unremarkable integral
equation.

These alphabets are needed for proper compo-
sition of mathematics:

o lightface upright Latin, Greek and digits

e boldface upright Latin, Greek and digits

e lightface italic Latin, Greek and digits

e boldface italic Latin, Greek and digits

e script

e fraktur

e bold fraktur

e open-face (blackboard bold) including digits

e lightface upright sans serif Latin and digits

o lightface italic sans serif Latin

e boldface upright sans serif Latin, Greek, and
digits

e boldface italic sans serif Latin and Greek

e monospace Latin and digits

Except for the lightface upright letters and dig-
its, which are to be encoded using the base Uni-
codes (ASCII for the Latin letters and digits), the
alphanumerics are to be placed in a tightly packed
block (U+D400-D7FF) in plane 1, so that they can
be used for math (most likely via entity names in
MathML), but will be very difficult to access for
other purposes.

The math alphanumerics block has been incor-
porated into a larger proposal for plane 1, and its
schedule is slightly behind that of the symbols pro-
posal. A “final” version is now in preparation, and
will be forwarded to WG2 for their fall meeting.

Assuming that the required three ISO ballots
are favorable, the new codes should be a formal part
of Unicode and ISO 10646 by

Commissioning a font

Late in 1999, even before the fate of the Uni-
code math proposals was known, STIPub issued a
Request for Proposal to a number of font suppli-
ers. This RFP requested bids for creating a set of
fonts compatible with Times and incorporating all
the symbols and alphabets identified by the STIX
project, suitable both for use in Web browsers and in
print. The resulting font set is to be “made available
for general use under license, but free of charge, with
the aim of easing and fostering the uninhibited flow,
exchange, and linking of scientific information.” [6]

Proposals were received from four potential sup-
pliers, and comments from a fifth, which refrained
from proposing because of a prior commitments. As
of this writing, a probable supplier has been chosen,
and negotiations are proceeding toward a contract.

More details will be available on this topic at
the time of the Oxford TUG meeting.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 183

Barbara Beeton

Remaining

The Unicode manual contains extensive text de-
scribing the proper use of the character codes, as
a guide to programmers. Particular attention is
paid to processing of context dependencies, combin-
ing codes and the like. Since mathematical notation
will be realized in a document as a combination of
coding and markup, and not all mathematical sym-
bols are interpreted in the same way, instructions
are needed. The creation of a technical report is an
open action item on the Unicode docket; the text of
this report will ultimately be incorporated into the
Unicode manual.

The symbols from chemistry, astronomy, engi-
neering and phonetics that were excluded by request
of the UTC have been left for consideration by the
organizations that submitted them.

Mathematical notation is not static. Authors
continually devise new symbols and ascribe new
meanings to existing ones. The complement of sym-
bols requested from Unicode was frozen in mid-1998;
a few additions were made only to achieve consis-
tency in the base set of symbols affected by com-
bining codes, namely the VS and negation marker.
About 50 additional symbols used in math, physics
and theoretical computer science have been identi-
fied since then. Documentation must be completed
for these, and the formal request presented to the
UTC for their addition.

The glyph complement was frozen somewhat
later than the Unicode complement, but this too
remains to be addressed.

It has not been determined how these, or fur-
ther additions, are to be handled. Nonetheless, I
am still actively collecting citations for new nota-
tion, and welcome contributions.

Acknowledgments

Three UTC members were involved heavily in ad-
vancing this project: Murray Sargent of Microsoft,
formerly a practicing physicist; Ken Whistler of
Sybase, the UTC archivist and general editor of Uni-
code 3.0; and Asmus Freytag, the UTC font special-
ist, who is responsible for typesetting the Unicode
manuals and ISO 10646. Their knowledge and expe-
rience of character code standards has proved invalu-
able, and the project’s success owes much to their
thoughtful assistance. Ken in particular is able to
explain in non-expert terms the UTC’s requirements
and the historical background affecting specific de-
cisions. From the other direction, he can quickly
assess the evidence for support of an item and, if
convinced that it has sufficient merit, can convince

the rest of the committee that it should be included.
Thus, for the math proposal, the strategy was to
provide sufficient evidence for a symbol to convince
Ken, and then let him persuade the committee using
arguments they would find convincing.

The contributors to the symbol collection were
always willing to provide additional information.
Neil Soiffer of Wolfram Research attended sev-
eral UTC meetings to explain the uses of several
“letter-like symbols” that have special significance
in Mathematica®.

Patrick Ion, co-chair of the W3C MathML work-
ing group, took my place at several UTC meetings
when questions were expected that would best be
answered by a practicing mathematician, such as,
“Do you know for a fact that [some particular sym-
bol] is used, and are you sure it isn’t the same as
[some other symbol]?” His presence and his answers
successfully conveyed the importance of this project
to the mathematical community.

Thanks to all for their efforts.

For more information

The history of the STIX project is recorded at the
Web site http://www.ams.org/STIX/.

References

[1] Association for Font Information Interchange,
International Glyph Register, Volume 1:
Alphabetic scripts and symbols, Rochester,
1993.

[2] International Organization for
Standardization, ISO 8879:1986, Information
Processing — Text and office systems —
Standard Generalized Markup Language
(SGML), Geneva, 1986.

[3] International Organization for
Standardization, ISO 9541:1991,
Information Technology — Font Information
Interchange — Part 1: Architecture, Geneva,
1991.

[4] International Organization for
Standardization, ISO 9573-13:1991,
Information Technology — SGML Support
Facilities — Techniques for using SGML —
Part 13: Public entity sets for mathematics
and science, Geneva, 1991.

[5] International Organization for
Standardization, ISO 10646-1:1993,
Information Technology — Universal
Multiple-Octet Coded Character Set (UCS) —
Part 1: Architecture and Basic Multilingual
Plane, Geneva, 1992.

184 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Unicode and math, a combination whose time has come — Finally!

[6] “STIPUB Request for Proposals for Scientific [9] Webster’s New Collegiate Dictionary, G. & C.
and Technical Fonts for the STIX Project”, Merriam, Springfield, MA, 1959.
November 16, 1999 (unpublished). [10] Justin Ziegler, Technical Report on Math

[7] The Unicode Consortium, The Unicode Font Encodings, available from CTAN
Standard, Version 2.0, Addison-Wesley (http://www.tug.org/tex-archive/info/
Developers Press, Reading, MA, 1996. 1tx3pub/13d007. tex and supporting files in

[8] The Unicode Consortium, The Unicode the same directory), 1994.

Standard, Version 3.0, Addison Wesley
Longman, Inc., Reading, MA, 2000.

Barbara Beeton

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 185

Some experience in converting LH Fonts from METAFONT to Typel format

Alexander Berdnikov

Institute of Analytical Instrumentation
Rizsky pr. 26

198103 St. Petersburg, Russia
berd@ianin.spb.su

Yury Yarmola

Institute of Analytical Instrumentation
Rizsky pr. 26

198103 St. Petersburg, Russia
yar@legion.ru

Olga Lapko

Institute of Analytical Instrumentation
Rizsky pr. 26

198103 St. Petersburg, Russia
olga@mir.msk.su

Andrew Janishewsky

Institute of Analytical Instrumentation
Rizsky pr. 26

198103 St. Petersburg, Russia
JAW@pPO0.£209.n5030.z2.fidonet.org

Abstract

This paper decribes the long-term project of CyrTEX (Association of Cyrillic TEX
Users Group) to convert Cyrillic LH fonts from METAFONT format into Typel
format, which is more suitable for modern typography.

Sasha Berdnikov

186 TUGDboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

-

Typesetting TEX documents containing computer code

Wiodek Bzyl

matwb@univ.gda.pl

Abstract

I would like to present a preprocessor driven by grammars able to automatically
mark-up pieces of computer code immersed in TEX documents. By computer
code I mean any language for which a context free grammar exists, which YACC
will accept. These include almost any computer language. But my tool could
use any such grammar to automatically mark-up text written in the language

defined by it.

Introduction

One of the most difficult tasks in technical
typesetting is to get computer programs to look right.
[...] No automatic system can hope to find the best
breaks in programs, since an understanding of the
semantics will indicate that certain breaks make the
program clearer and reveal its symmetries better.

— D. E. KNUTH, Digital Typography

Computer books and journals do not look as beau-
tiful as they used to. It is not their content that
is unsatisfactory, rather the typography is strange.
The example below illustrates that. It is a re-
ally disgusting piece of typography taken from the
Polish translation of an English book.

Program JavaScript przedstawiony w listingu 6.2
stanowi przyklad zastosowania cookie.

//

// Here are our standard Cookie routines

//

// SetCookieEZ - Quickly sets a cookie
// which which will last until the user
// shuts down his browser

function SetCookieEZ(name, value) {
document . cookie=name+"="+escape(value);

[/
// GetCookie - Returns the value of the

// specified cookie or null if the

// cookie doesn’t exist

It seems that typesetters think that a typewriter
is the best tool to prepare readable and clear
programs. This situation reminds us of an old
Polish proverb: “The shoemaker does not wear
shoes”. Why? Because it is inexplicable that the
typesetter does not typeset programs. Why do

they use verbatim mode of typesetting—a kind of
‘ASCII typography’? Do they have nothing better?
Although typography is well developed, that of
computer code lags far behind. However, there are
rules for typographic formatting of computer code.
Developing excellent computer code typography was
pioneered by two people: Peter Naur and Myrtle
Kellington, who set the standards that were adopted
by many computer journals [8, 6]. But it seems
that they are no longer used at all.

Editor’s mote: What does the citation 6 in the
above paragraph signify? —it’s a citation of Knuth

In the next section I will try to analyze why,
and what makes code typesetting so difficult. In
the following one, I will present my idea of a
prettyprinting tool, which combines Knuth’s [3] and
Oppen’s [9] approaches. One example is worth a
thousand words, so the last section presents two
longer examples typeset by my tool.

The term ‘prettyprinting’, which goes back
to 1975 book Programming Proverbs by Henry
Ledgard, is nowadays used instead of ‘code typeset-
ting’.

Prettyprinting HOWTO

Obviously ASCII typography is what programmers
are familiar with and see most often. Look at
something less ugly.

The following code uses the extended features of
BC to implement a simple program for calculating
checkbook balances.

print "Check book program!\n";

print " Exit by a O transaction.\n\n";
print "Initial balance? ";
bal = read();

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 187

Witodek Bzyl

bal /= 1;

print "\n";

while (1) {
"current balance = "; bal
"transaction? "; trans = read()
if (trans == 0) break;
bal -= trans
bal /=1

Although the structure of the code is clearly
laid out, the beginner will have problems with
recognizing the elements which are predefined part
of the language. Adding some typography to this
example solves this problem and makes the program
clearer.

The following code uses the extended features of
BC to implement a simple program for calculating
checkbook balances.

print "Check book program!\n";

print " Exit by a O transaction.\n\n";
print "Initial balance? ",
bal = read();
bal /=1;
print "\n";
while (1) {
"current balance = "; bal

"transaction? "; {rans = read()
if (trans = 0) break;
bal —= trans
bal /=1
}

A simply bit of typography makes the differ-
ence. So the question is: why is it not used? Adding
typography means adding mark-up to the source
code. This makes the source for the example look
like

The following code uses the extended
features of |\acro{BC}| to implement a
simple program for calculating checkbook
balances.
\startPP [BC]
\PPK{print}\PPbreakspace \PPS{"Check\ book\
\PPK{print}\PPbreakspace \PPS{"\ \ Exit\ by
\PPK{print}\PPbreakspace \PPS{"Initial\ bal
\PPV{bal}\PPequal \PPK{read}\PPbraceleft \P
\PPV{bal}\PPslasheq \PPN{1}\PPsemicolon \PP
\PPK{print}\PPbreakspace \PPS{"\\n"}\PPsemi
\PPK{while}\PPspace \PPbraceleft \PPN{1}\PP
\PPS{"current\ balance\ =\ "}\PPsemicolon
\PPS{"transaction?\ "}\PPsemicolon \PPspa
\PPK{if}\PPspace \PPbraceleft \PPV{trans}
\PPV{bal}\PPminuseq \PPV{trans}\PPforce

\PPV{bal}\PPslasheq \PPN{1}\PPforce
\PPbackspace \PPparenright
\stopPP [BC]

We can see that it is not that simple. Markup
requires consistency and time which people do not
have, whereas computers have both. So, why
not use computers? —it seems possible, because
computer languages, unlike natural languages, are
unambiguously described by grammars. So we
can try to use grammars to control the process
of marking-up code. For example, in C or PERL,
one grammar rule for statement says that statement
is build of the opening brace ‘{’ followed by a
statement_list and the closing brace ‘}’, which could
be concisely written as:

statement — “{~ statement_list "}~

Now, assume that we want to typeset braces on
separate lines with statement_list typeset indented
between them

{

statement_list

}

This could be done in the following way: after
recognizing the statement components, we typeset
the opening brace followed by the newline; next we
typeset indented each statement from the statement
list; next we typeset the newline followed by the
closing brace.

Editor’s note: Propose above paragraph be re-
placed, to save enough space that the paper
doesn’t run to 6pp; wording would be (note that
the operations described also appear later on):
This could be done very simply once the syntactic
element has been recognized.

However, prettyprinting is not that simple, be-
cause programmers use both syntax and semantics
to make their programs clearer and more readable.
This makes the task of building a wholly automatic
prettyprinting tool impossible. Fortunately, the
conflicts between syntax and semantics are suffi-
ciently rare that it is acceptable to require the user
to override syntax-based decisions when necessary.

Building a tool

Many people have tried to formalize and implement
the idea of prettyprinting. William McKeeman [11]
was the first to present a prettyprinting algorithm.
Oppen [9] came up with the idea of using the orig-
inal grammars to control the marking-up process.

188 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

-

Knuth’s [3, 12] approach is based on his so-called
‘format primitives’ listed below.

indent indent the next line one more notch
outdent indent the next line one less notch
optbreak optional line break

backspace backspace one notch

breakspace optional break or space

force force line break
bigforce force line break and

a little extra vertical space
noindent no indentation

Spacing in expressions is inherited from the TEX
mathematical mode.

Knuth does not use the original PASCAL or C
grammars to derive prettyprinting grammars. For
each language, a specially designed and optimized
context sensitive grammar is created. These gram-
mars do not describe reference languages, which
means that some pieces of correct code would
not be prettyprinted and incorrect code would be
prettyprinted. Markup is done by manually built
parsers. Using parsers for building prettyprinters
is a double-edged sword: comments are lost during
parsing, and while prettyprinting they have to be
put back. Knuth’s tools recover comments too.

The main difficulty with Knuth’s approach lies
in creating prettyprinting grammars. So far only
two such nontrivial grammars have been created.
It took 10 years for the prettyprinting C grammar
to evolve. Therefore, T think that the Oppen’s
idea of enhancing the original grammars is easier to
implement.

For example, look at the rule for statement
above and assume, that we want to typeset state-
ment list indented within braces. The following rule
will do:

statement — “{~ indent force statement_list
force backspace “}° outdent force

This reads as follows: print the opening brace {
and prepare to indent following lines; next break
the line with force and typeset statement_list; now,
break the line again with force, backspace and print
the closing brace }; finally, remove with outdent the
indentation for the following lines and force the line
break again.

Combining the ideas above I designed a pret-
typrinting tool named pp which works as a prepro-
cessor for TEX.

‘ prettyprinting macros ‘

Typesetting TEX documents containing computer code

It is also possible to typeset code verbatim—
simply typesetting as it used to be.

‘ verbatim macros ‘

[foo tex |(tec){ foo]

Examples

There are many computer languages in use nowa-
days. Some of them I use on a day to day basis,
some I use occasionally, some I want to look at, and
still others are used by my colleagues. Therefore
I want my tool to be able to learn as many lan-
guages as possible. The current version knows how
to typeset only two languages: EBNF—extended
Backus-Naur formalism and BC—the language of
the binary calculator (a tool available on every
UNIX system), because it is still being developed.

Someone said “One picture is worth one thou-
sand of words,” so I want to end up with two pieces
of prettyprinted code. Because there is no general
agreement how to typeset computer documents, as
opposed to mathematical ones, some readers may
like these examples and others not. Moreover,
mathematicians, have a well developed notation
which is supported by suitable fonts. This may
explain why these examples are not as clear and
readable as they could be.

Source: Ken Arnold, James Gosling.
”The Java Programming Language.”
Addison Wesley Longman, Inc. 1996.

Consider the two groups of productions:

FieldDeclaration — {FieldModifiers}x Type
VariableDeclarators

FieldModifiers — FieldModifier
| FieldModifiers FieldModifier

FieldModifier — keywords common for field and
method
| transient | volatile

b

and:

MethodHeader — {MethodModifiers}x
ResultType MethodDeclarator { Throws}x

MethodModifiers — MethodModifier
| MethodModifiers MethodModifier

b

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 189

Witodek Bzyl

MethodModifier — keywords common for field }
and method
| abstract | native | synchronized
; define [(z) {

Define the logarithm function.

where common keywords consists of: public, pro- auto e, f, i, m, n, v, 2z

tected, private, final, static. » Return something for the special case.
if (z < 0) return ((1 — 10" scale)/1)

Source: Philip A. Nelson. » Precondition z to make .5 < z < 2.0.

LIBMATH.B. z = scale; scale = 6 + scale;

The arbitrary precision math library for the BC f=2;1=0;

calculator. » For large numbers.

while (z > 2) {
fx=2; x = sqrt(x);
}

» For small numbers.

To compute exponential we use the fact that e* =
(e*/2)2. When z is small enough, we use the series:
e =1+z+2%/20+23/3 +....

scale = 20; while (z <.5) {
define e(z) { [x=2; z = sqri(z);
auto a, d, e, f, i, m, n, v, z }
» a — holds z¥ of z¥ /3! » Set up the loop.
» d — holds y! v=n=(z-1)/(z+1)
» ¢ — is the value z¥/y! m=mn*n
» v — is the sum of the e’s » Sum the series.
» f — number of times z was divided by 2. while (z <2) {
» m — is 1 if x was minus. e=(nx=m)/i
» ¢ — iteration count. if (e=0) {
» n — the scale to compute the sum. v=Ffxv
» z — orignal scale. scale = z
» Check the sign of z. return (v/1)
if (z < 0) { }
m=1,z=—x vt=e
} }
» Precondition z. }
z = scale; The sin function uses the standard series:
n=06+z+ .44 sin(z) =2 —23/3!+ 2% /5! — 27 /7! + . ..
scale = scale(z) + 1;
while (z > 1) { define s(z) {
f4=1;2 /=2; scale += 1; auto e, i, m, n, s, v, 2
} » Precondition z.
» Initialize the variables. z = scale
scale = n; scale = 1.1 x z + 2;
v=1+z v=a(l)
a=1z if (z <0) {
d=1 m = 1;
for (i =2; 1; i++) { T = -1
e=(ax=2z)/(d*x=1) }
if (e=0) { scale =0
if (f > 0) while (f—) v =10 * v; n=(x/v+2)/4
scale = z r=x—4*xnx*xv
if (m) return (1/v); if(n%2) 2=—x
return (v/1); » Do the loop.
} scale = z + 2;
v+=e vV=€e==
} S=—I*x

190 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

-

Typesetting TEX documents containing computer code

for (i=3;1;i+=2) {
ex=s/(i*(i—1))
if (e=0) { }
scale = z » Initialize the series.
if (m) return (—v/1); v=n=uz;
return (v/1); §=—2 %I
» Calculate the series.
v4=e for (i=3;1;i+=2) {
1 e=(nx=3s)/i
} if (e=0) {
scale = z;
return ((f * a + v)/m);

while (z > .2) {
fH=Lz=(x —.2)/(1 + z * .2);

For arctan we use the formula: arctan(z)

o |l

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

» e is the value of the current term in the
series.

» v is the accumulated value of the series.

» mis 1 or —1 depending on z (—z — —1);

» results are divided by m.

» ¢ is the denominator value for series element.

» n is the numerator value for the series
element.

» sis —x - x.

» 2z is the saved user’s scale.

2]

arctan(c) + arctan((z — ¢)/(1 4 xc)) for small ¢ (0. }
here). For x < 0.2, use the series: arctan(z) = v 4= e
r—23/34+2%/5—aT)T+.... }
define a(z) { }
auto a, e, f, i, m, n, s, v, z
» a is the value of a (0.2) if it is needed. References
> / is the value to multiply by a in the return. [1] Blashek, Giinter and Johannes Sametinger.

“User-Adaptable prettyprinting.” Software —
Practice & Experience 19 (July 1989).
Gértner, Felix. 1998. The PretzelBook.
Available online as part of the PRETZEL
distribution, in directory “gaertner/pretzel
at www.iti.informatik.th-darmstadt.de
Knuth, Donald E. 1983. “The WEB

System of Structured Documentation.”
Computer Science Report 980. Stanford
University. Available online as part of the

m =1 .) WEB distribution, in file

.’ Negative z7 ~“web/doc/webman.tex at ftp.dante.de.

if (z < 0)1 { [4] Knuth, Donald E. “Literate Programming”,
m=-1;z=—u

}

» Special case and for fast answers
if(z=1) {
if (scale < 25) return
(.7853981633974483096156608 /m)

}
if (z=.2) {
if (scale < 25) return
(.1973955598498807583700497 /m,)
}

» Save the scale.

z = scale;

» Note: a and f are known to be zero due to
being auto vars. Calculate arctan of a
known number.

if (z > .2) {

scale = z + 5; a = a(.2);

}

» Precondition x.

scale = z + 3;

[10]

The Computer Journal 27 (1984). pp. 97-111.
Knuth, Donald E. 1986. “How to read

a WEB.” Appeared in Computers &
Typesetting, Volume B. Addison-Wesley.
Knuth, Donald E. 1992. Literate
Programming. Center for the Study of
Language and Information Leleand Stanford
Junior University.

Knuth, Donald E. 1999. Digital Typography.
Center for the Study of Language and
Information Leleand Stanford Junior
University.

Naur, Peter [ed.] et al. “Report on

the algorithmic language ALGOL 60.”
Communications of the ACM 3 (May 1960).
pp. 299-314.

Oppen, Derek C. “Prettyprinting.” ACM
Transactions on Programming Languages &
Systems 2 (1980). pp. 465-483.

Ramsey, Norman. 1988. “A SPIDER

user’s guide.” Technical Report, Princeton

191

Witodek Bzyl

University. Available online as part [12] Knuth, Donald E. and Silvio Levy. 1990.

of the SPIDER distribution, in file “The CWEB System of Structured

“web/spiderweb/doc/spiderwebman. tex at Documentation.” Computer Science

ftp.dante.de. Report 1336. Stanford University. Available
[11] McKeeman, William. “Algorithm 268.” online as part of the CWEB distribution,

Communications of the ACM 8 (1965). in file “web/c_cpp/cweb/cwebman.tex at

pp- 667-668. ftp.dante.de.

Wiodek Bzyl

192 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

XMLTEX: A non validating (and not 100% conforming) namespace aware

XML parser implemented in TEX

David Carlisle
NAG Ltd

Jordan Hill Road
Oxford
davidc@nag.co.uk

Abstract

XMLTEX implements a non validating parser for documents matching the W3C

XML Namespaces Recommendation.

Introduction

XMLTEX may be used simply to parse a file (expand-
ing entity references and normalising namespace dec-
larations) in which case it records a trace of the parse
on the terminal. However, in normal use, the infor-
mation from the parse is used to trigger TEX type-
setting code. Declarations (in TEX syntax) are pro-
vided as part of XMLTEX to associate TEX code with
the start and end of each XML element, attributes,
processing instructions, and with unicode character
data.

Installation

The XMLTEX parser itself does not require BTEX. It
may be loaded into initex to produce a format ca-
pable of parsing XML files. However such a format
would have no convenient commands for typeset-
ting, and so normally XMLTEX will be used on top
of an existing format, normally ITEX. In this sec-
tion we assume that the document to be processed
is called document .xml.

Using XMLTEX as an input to the BTEX com-
mand ETEX requires a document in TEX syntax,
not XML. To process document.xml, first produce
a two line file called document.tex of the following
form:

\def\xmlfile{document.xml}
\input xmltex.tex

No other commands should appear in this file!

The document may then be processed with the
command: latex document, or some equivalent pro-
cedure in the user’s TEX environment.

Using XMLTEX as a TEX format built on BTEX
Some users may prefer to set up XMLTEX as a format
in its own right. This may speed things up slightly
(as xmltex.tex need not be read each time) but
more importantly perhaps it allows the XML file to

be processed directly without needing to make the
.tex wrapper.

To make a format, some command such as the
following is used, depending on the user’s TEX sys-
tem.

initex &latex xmltex
initex \&latex xmltex
tex -ini &latex xmltex
tex -ini \&latex xmltex

This will produce a format file xmltex.fmt. It
is then possible to make an xmltex command by
copying the way the latex command is defined in
terms of latex.fmt. Depending on the TEX system,
this might be a symbolic link, or a shell script, or
batch file, or a configuration option in a setup menu.

Making an XMLTEX format ‘from scratch’ It
may be convenient, for some, to build an XMLTEX
format as above, starting from the IXTEX format.
However, other users may prefer to work with an
initex with no existing format file. Even for those
who wish to use standard IXTEX it may be preferable
to make a TEX input file that first inputs latex.1ltx
then xmltex.tex. In particular this permits dif-
ferent hyphenation and language customisation for
XMLTEX than for ITEX. Many of the features of
the language support in BTEX are related to modi-
fying the input syntax to be more convenient. Such
changes are not needed in XMLTEX as the input syn-
tax is always XML. Some language files may change
the meaning of such characters as < which would
break the XMLTEX parser. Also, rather than us-
ing latex.ltx one can in principle use a modified
docstrip install file and produce a ‘cut down’ IMTEX
that omits features that are not going to be used in
XMLTEX.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 193

Dayvid Carlisle

Unfortunately the support for this method of
building XMLTEX (and access to non-English hyphen-
ation generally) is not fully designed and totally un-
documented.

Using XMLTEX

XMLTEX by default ‘knows’ nothing about any par-
ticular type of XML file, and so needs to load exter-
nal files containing specific information. This sec-
tion describes how the information in the XML file
determines which files will be loaded.

1. If the file begins with a Byte Order Mark, the
default encoding is set to UTF-16. Otherwise
the default encoding is UTF-8.

2. If (after an optional BOM) the document be-
gins with an XML declaration that specifies an
encoding, this encoding will be used, otherwise
the default encoding will be used. A file with
name of the form encoding.xmt will be loaded
that maps the requested encoding to Unicode
positions. (It is an error if this file does not
exist for the requested encoding.)

3. If the document has a DOCTYPE declaration
that includes a local subset then this will be
parsed. If any external DTD entity is referenced
(by declaring and then referencing a parameter
entity) then the SYSTEM and PUBLIC identi-
fiers of this entity will be looked up in a cata-
logue (to be described below). If either identi-
fier is known in the catalogue the corresponding
XMLTEX package (often with .xmt extension)
will be loaded.

4. After any local subset has been processed, if
the DOCTYPE specifies an external entity, the
PUBLIC and/or SYSTEM identifiers of the ex-
ternal DTD file will be similarly looked up, and
a corresponding XMLTEX file loaded if known.

5. As each element is processed, it may be ‘known’
to XMLTEX by virtue of one of the packages
loaded, or it may be unknown. If it is unknown
then if it is in a declared namespace, the name-
space URI (not the prefix) is looked up in the
XMLTEX catalogue. If the catalogue specifies an
XMLTEX package for this namespace it will be
loaded. If the element is not in a namespace,
then the element name will be looked up in the
catalogue.

6. If after all these steps the element is still un-
known then depending on the configuration set-
ting either a warning or an error will be dis-
played. (Currently only warning implemented.)

The XMLTEX Catalogue As has already been ex-
plained, XMLTEX requires a mapping between PUB-
LIC and SYSTEM identifiers, namespace URI, and
element names, to files of TEX code. This mapping
is implemented by the following commands:
\NAMESPACE{ URI}{xmt-file}

\PUBLIC{FPI}{file}

\SYSTEM{ URI}{file}

\NAME{ element-name}{xmt-file}
\XMLNS{element-name}{ URI}

As described above, if the first argument of one
of these commands matches the string specified in
the XML source file, the corresponding TEX com-
mands in the file specified in the second argument
are loaded. The PUBLIC and SYSTEM catalogue
entries may also be used to control which XML files
should be input in response to external entity refer-
ences. The \XMLNS command is rather different; if
an element in the null namespace does not have any
definition attatched to it, this declaration forces the
default namespace to the given URI. The catalogue
lookup is then repeated. This allows for example
documents beginning <html> to be coerced into the
XHTML namespace.

These commands may be placed in a configu-
ration file, either xmltex.cfg, in which case they
apply to all documents, or in a configuration file
‘\jobname.cfg’ (e.g., document.cfg in the exam-
ple in section ‘Using XMLTEX’, above) in which case
the commands just apply to the specified document.

Configuring XMLTEX In addition to the ‘cata-
logue’ commands described earlier there are other
commands that may be placed in the configuration
files.

e \xmltraceonly

This stops XMLTEX from trying to typeset the
document. The external files specified in the
catalogue are still loaded, so that the trace may
report any elements for which no code is de-
fined, but no actual typesetting takes place. In
the event of unknown errors it is always worth
using XMLTEX in this mode to isolate any prob-
lems.

It may be noted that if an XMLTEX format is
built just using initex without any typesetting
commands, the resulting format should still be
able to parse any XML file if xmltex.cfg just
specifies \xmltraceonly and \jobname.cfg is
empty.

e \xmltraceoff
By default XMLTEX provides a trace of its XML
parse, displaying each element begin and end.

194 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

XMLTEX: A non validating namespace aware XML parser implemented in TEX

This command in xmltex.cfgor \ jobname.cfg
will stop the trace being produced.

e \inputonce{zmi-file}
The catalogue entries specify that certain files
should be loaded if XML constructs are met. Al-
ternatively the files may just always be loaded.
The system will ignore any later requests to
load. This is especially useful if an XMLTEX
format is being made.

e \UnicodeCharacter{hez-or-dec}{tex-code}
The first argument specifies a unicode charac-
ter number, in the same format as used for
XML character entities, namely either a decimal
number, or an upper case Hex number preceded
by a lower case ‘x’.

The second argument specifies arbitrary TEX
code to be used when typesetting this character.
Any code in the XML range may be specified
(i.e., up to x10FFFF). Although codes in the
‘ASCII’ range, below 128, may be specified, the
definitions supplied for such characters will not
by default be used. The definition will however
be stored and used if the character is activated
using the command described below.

e \ActivateASCII{hex-or-dec}
The argument to this command should be a
number less than 128. If a character is acti-
vated by this command in a configuration file
then any special typesetting instructions speci-
fied for the character will be executed whenever
the character appears as character data.

Some ASCII characters are activated by de-
fault. The list is essentially those characters
with special meanings to either TEX or XML.

If a format is being made, there are essentially
two copies of xmltex.cfg that may play a role. The
configuration file input when the format is made will
control catalogue entries and packages built into the
format. A possibly different xmltex.cfg may be
used in the input path of ‘normal’ TEX, this will
then be used for additional information loaded each
run.

In either case, a separate configuration file spe-
cific to the given XML document may also be used
(which is loaded immediately after xmltex.cfg).

Stopping xmltex

XMLTEX should stop after the end of the document
element has been processed. If something goes wrong
one may be offered TEX’s * prompt from which one
might choose to exit with <?7xmltex stop?>.

XMLTEX package files

XMLTEX package files are the link between the XML
markup and TEX typesetting code. They are written
in TEX (rather than XML) syntax and may load di-
rectly or indirectly other files, including BTEX class
and package files. For example a file loaded for
a particular document type may directly execute
\LoadClass{article}, or alternatively it may cause
some XML element in the document to execute
\documentclass{article}. In either case the doc-
ument will suffer the dubious benefit of being for-
matted according to the style implemented in the
standard article class. Beware though that the pack-
age files may be loaded at strange times, the first
time a given namespace is declared in a document,
and so the code should be written to work if loaded
inside a local group.

Characters in XMLTEX package files have their
normal IMTEX meanings except that line endings are
ignored so that there is no need to add a % to the
end of lines in macro code. Unlike IMTEX .£d file
conventions, other white space is not ignored.

The available commands are:

e \FileEncoding{encoding}
This is the analogue for TEX syntax files of the
encoding specification in the XML or text dec-
laration of XML files. If it is not specified the
file will be assumed to be in UTF-8.

e \DeclareNamespace{prefizr}{ URI}
This declares a prefix to be used in this file
for referring to elements in the specified name-
space. If the prefix is empty then this declares
the default namespace (otherwise, unprefixed
element names refer to elements that are not in
a namespace).

Note that the elements in the XML document
instance may use a different prefix, or no prefix
at all to access this namespace. In order to re-
solve these different prefixes for the same name-
space, each time a namespace is encountered for
the first time (either by \DeclareNamespace in
a preloaded package, or in a namespace decla-
ration in the XML instance) then it is allocated
a new number and any further namespace dec-
laration for the same URI just locally associates
a prefix with this number. It is these numbers
that are displayed when the XML trace of the
parse of the document is shown, and also if any
element is written out to an external file it will
have a normalised numerical prefix whichever
prefix it originally had. (Numeric prefixes are
not legal XML, but this is an advantage, as it

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 195

Dayvid Carlisle

ensures these internal forms can not clash with
any prefix actually used in the document.)
Three namespaces are predeclared. The null
namespace (0), the XML namespace http://
www.w3.o0rg/1998/xml (1) which is predeclared
with prefix xml as specified in the Namespace
Recommendation, and the XMLTEX name-
space http://www.dcarlisle.demon.co.uk/
xmltex (2) which is not given a default prefix,
but may be used to have XML syntax for some
internal commands (eg to have .aux files fully
in XML, currently they are a hybrid mixture of
some TEX and some XML syntax).
\XMLelement{element-gname}{attribute-spect
{begin-code}{end-code}
This is similar to a KTEX \newenvironment
command. It declares the code to execute at
the start and end of each instance of this ele-
ment type. This code will be executed in a local
group (like a WTEX environment). The second
argument declares a list of attributes and their
default values using the \XMLattribute com-
mand whose description follows.
\XMLelement{element-gname}{attribute-spect
{\xmlgrab}{end-code}
A special case of the above command (which
may be better made into a separate declara-
tion) is to make the start-code just be the com-
mand \xmlgrab. In this case the end-code has
access to the element content (in XML syntax)
as #1. This content isn’t literally the same as
the original document, namespaces, white space
and attribute quote symbols will all have been
normalised.
\XMLattribute{attribute-gname}{command-
name}{default}
This command may only be used in the ar-

If a TEX token such as \relax is used as the
default the element code may distinguish the
case that the attribute is not used in the docu-
ment.
\XMLnamespaceattribute{prefir}{attribute-
gname}{ command-name}{default}

This command is similar to \XMLattribute but
is used at the top level of the package file, not in
the argument to \XMLelement. It is equivalent
to specifying the attribute in every element in
the namespace specified by the first argument.
As usual the prefix (which may be to denote
the default namespace) refers to the namespace
declarations in the XMLTEX package: the pre-
fixes used in the document may be different.
\XMLentity{name}{code}

Declare an (internal parsed) entity, this is equiv-
alent to a <!ENTITY]]> declaration, except that
the replacement text is specified in TEX syntax.

\XMLname{name}{command-name}

Declare the TEX command to hold the (nor-
malised, internal form) of the XML name given
in the first argument. This allows the code
specified in \XMLelement to refer to XML el-
ement names without knowing the encodings
or namespace prefixes used in the document.
Of particular use might be to compare such a
name with \ifx\XML@parent which will allow
element code to take different actions depend-
ing on the parent of the current element.
\XMLstring{command-name}<>XML Data</>
This saves the XML fragment as the TEX com-
mand given in the first argument. It may be
particularly useful for redefining ‘fixed strings’
that are generated by IXTEX document classes
to use any special typesetting rules specified for
individual characters.

gument to \XMLelement. The first argument
specifies the name of an attribute (using any XML processing
namespace prefixes current for this package file,
which need not be the same as the prefixes used
in the document). The second argument gives
a TEX command name that will be used to ac-

XMLTEX tries as far as possible to be a fully conform-
ing non validating parser. It fails in the following
respects.

e Error reporting is virtually non existent. Names

cess the value of this attribute in the begin and
end code for the element. (Note using TEX syn-
tax here provides a name independednt of the
namespace declarations that are in scope when
this code is executed). The third argument pro-
vides a default value that wil be used if the
attribute is not used on an instance of this ele-
ment.

The special token \inherit will cause the
command to have a value set in an ancestor el-
ement if this element does not specify any value.

are not checked against the list of allowed char-
acters, and various other constraints are not en-
forced.

A non validating parser is not forced to read
external DTD entities (and this one does not).
It is obliged to read the local subset and pro-
cess entity definitions and attribute declara-
tions. Entity declarations are reasonably well
handled: External parameter entities are han-
dled as above, loading a corresponding XMLTEX

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

XMLTEX: A non validating namespace aware XML parser implemented in TEX

file if known. External entities are similarly pro-
cessed, inputting the XML file, a difference in
this case is that if the entity is not found in
the catalogue, the SYSTEM identifier will be
used directly to \input as often this is a local
file reference. Internal parsed entities and pa-
rameter entities are essentially treated as TEX
macros, and nonparsed entities are saved along
with their NDATA type, for use presumably by
\includegraphics.

Any default attributes specified in the local
subset are saved and added to the correspond-
ing element befor any processing is triggered.
Note that this defaulting, unlike the defaults
specified with \XMLattribute are ‘namespace
unaware’ and only apply to elements using the
same expanded name. The element from th
esame namespace but represented with a differ-
ent prefix will not have these defaults applied.

e Support for encodings depends on having an en-
coding mapping file. Any 8-bit encoding that
matches Unicode for the first 127 positions may
be used by making a trivial mapping file. (The
one for latinl looks over complicated as it pro-
grams a loop rather than having 127 declara-
tions saying that latinl and Unicode are iden-
tical in this range).

UTF-8 is supported, but support for UTF-
16 is minimal. Currently only latin-1 values
work: (In this range UTF-16 is just latin-1 with
a null byte inserted after (or before, depend-
ing on endedness) each latin-1 byte. The UTF-
16 implementation just ignores this null byte
then processes as for latin-1. Probably the first
few 8-bit pages could be similarly supported by
making the low ASCII control characters acti-
vate UTF-16 processing but this will never be
satisfactory using a standard TEX. Hopefully a
setup for a 16bit TEX such as Omega will cor-
rect this.

Accessing TEX

In theory one should be able to control the document
simply by suitable code specified by \XMLelement
and friends, but sometimes it may be necessary to
‘tweak’ the output by placing commands directly in
the source.

Two mechanisms are availalable to do this.

e Using the XMLTEX namespace. The XMLTEX
namespace conatins a small (currently empty)
set of useful TEX constructs that are accessed
by XML syntax. For example if XMLTEX pro-
vides a mechanism for having XML (rather than

KTEX) syntax toc files, it will need an ana-
logue of \contentsline which might be an el-
ement accessed by <xmltex:contentsline>...
where the XMLTEX prefix is declared on this or
a parent element to be xmlns:xmltex="http:
//www.dcarlisle.demon.co.uk/xmltex".

As the XMLTEX namespace is declared but
currently empty, a more useful variant of this
might be:

e Declare a personal namespace for TEX tweaks,
and load a suitable package file that attatches
TEX code to the elements in this namespace (or
at least specify the correspondence between the
namespace and the package using \NAMESPACE).
For instance, <clearpage xmlns="/my/tex/
tweak"/> will force a page break if, at suitable
points, the document contains:

\NAMESPACE{/my/tex/tweak}{tweak.xmt}
and

\DeclareNamespace{twk}{/my/tex/tweak}
\XMLelement{twk:clearpage}{\clearpage}

e A second different mechanism is available, to
use XML processing instructions. A Process-
ing Instruction of the form: ?xmltex TEX com-
mands 7> will execute the TEX commands.

Bugs
None, of course.
Don’t Read Past This Point

Thus section discusses some of the more experimen-
tal features of XMLTEX that may get a cleaner syntax
(or be removed, as a bad idea) in later releases, and
also describes some of the internal interfaces (which
are also subject to change)

Input Encodings and States At any point while
processing a document, XMLTEX is in one of two
states: texr or xml.

States In the xml state, < and & are the only
two characters that trigger special markup codes.
Other characters, such as !, >, =, ...; may be used in
certain XML constructs as markup but unless some
code has been triggered by < they are treated sim-
ply as character data. All characters above 127 are
‘active’ to TEX and are used to translate the input
encoding to UTF-8. All internal character handling
is based on UTF-8, as described below. Some char-
acters in the ASCII range, below 127 are also ac-
tive by default (mainly punctuation characters used
in XML constructs, such as the ones listed above).
Some or all of the others may be activated using
the \ActivateASCII command, which allows special

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 197

Dayvid Carlisle

typesetting rules to be activated for the characters,
at some cost in processing speed.

In the tex state, characters in the ASCII range
have their usual TEX meanings, so letters are ‘cat-
code 11’ and may be used in TEX control sequences,
\ is the escape character, & the table cell separa-
tor, etc. Characters above 127 have the meanings
current for the current encoding just as for the zml
state, probably this means that they are unusable
in TEX code, except for the special case of refer-
ring to XML element names in the first argument to
\XMLelement and releated commands.

Encodings Whenever a new (XML or TEX)
file is input by the XMLTEX system the encoding is
first switched to UTF-8. At the end of the input the
encoding is returned to whatever was the current en-
coding. The encoding current while the file is read is
determined by the encoding pseudo-attribute on the
XML or text declaration in the case of XML files, or
by the \FileEncoding command for TEX files. Note
that the encoding mechanism only is triggered by
XMLTEX file includes. Once an XMLTEX package file
is loaded it may include other TEX files by \input
or \includepackage these input command swill be
transparent to the XMLTEX encoding system. The
vast majority of TEX macro packages only use ASCII
characters so this should not be a problem.

Note that if the \includepackage occurs di-
rectly in the XMLTEX package file, the TEX code
will be included with a known encoding, the one
specified in the XMLTEX package, or UTF-8. If how-
ever the \includepackage is included in code spec-
ified by \XMLelement, then it will be executed with
whatever encoding is current in the document at the
point that element is reached. Before XMLTEX ex-
ecutes the code for that element it will switch to
the tex state, thus normalising the ASCII characters
but characters above 127 will not have predefined
definitions in this case.

Internally eveything is stored as UTF-8. So
.aux and .toc files will be in UTF-8 even if the
document (or parts of the document) used different
encodings.

To specify a new encoding, if it is an 8 bit en-
coding that matches ASCII in the printable ASCII
range, then one just needs to produce a file with
name encoding.xmt (in lowercase, on case sensi-
tive systems) this should consist of a series of
\InputCharacter commands, giving the input char-
acter slot and the equivalent Unicode. If an encod-
ing is specified in this manner character data will
be converted to UTF-8 by expansion and so liga-
tures and inter letter kerns will be preserved. (Con-
versely if characters are accessed by character refer-

ences, Ӓ then TEX arithmetic is used to de-
code the information and ligature information will
be lost. For some large character sets, especially
for Asian languages, these mechanisms will proba-
bly not prove to be sufficient. Alternative mecha-
nisms are being investigated, but in the short term
it may be necessary to always use UTF-8 if the input
encoding is not strictly a ine byte extension of the
ASCII code page.

XMLTEX Package Commands And TEX com-
mand may be used in an XMLTEX package, although
the user should be aware that the file may be input
into a local group, at the point in a document that
a particular namespace is first used, for example.
There are however some specific commands designed
to be used in the begin or end code of \XMLElement.

e \ignorespaces
This is similar to the TEX primitive of the same
name, but redefined to work more naturally in
this context.

e \obeyspaces
Obey consecutive space characters, rather than
treating consecutive runs as a single space. (A
command of this name, but not this definition
is in plain TEX.)

e \obeylines
Obey end of line characters, rather than treat-
ing then as a space, force a line break. (A com-
mand of this name, but not this definition exists
in plain TEX.)

e \xmltexfirstchild#1\@
If the start-code for an element is specified as
\xmlgrab then the end-code may use #1 in or-
der to execute the element content. However,
the entire content is not always needed, and the
construction \xmltexfirstchild\#1\@ (with
currently unpleasant syntax) will just evaluate
the first child element of the content, discarding
the remaining elements.

e \xmltextwochildren\csa\csb#l

If it is known that the content will be exactly
two child elements (e.g., a MathML frac or sub
element) then this command may be used. The
command executes the TEX code \csa{child-
1X}\csb{child-2} So either two TEX commands
may be supplied, one will be applied to each
child, or the second argument may be {} in
which case the first argument may be a TEX
command that takes two arguments. For ex-
ample the code for MathML frac might be

\XMLelement{m:mfrac}
{

198 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

XMLTEX: A non validating namespace aware XML parser implemented in TEX

{\xmlgrab}
{\xmltextwochildren\frac{}#1}

e \xmltexthreechildren\csa\csb\csc#1l

As above, but more so.

\xmltexforall\csa{#1}

The TEX command \csa is executed repeatedly,
taking as argument each time one child from
the content ‘#1’ of the current element. The
command name \xml@name is set to the (nor-
malised, internal) name of each child element
before \csa is executed.
\NDATAEntity\csa\csb\attvalue

If the XML parser encounters an internal or ex-
ternal entity reference it expands it without ex-
ecuting any special hook that may be defined
in an XMLTEX package. However NDATA en-
tites are never directly encountered in an entity
reference. They may only be used as an at-
tribute value. If \attvalue is a TEX command
holding the value of an attribute, as declared in
\XMLattribute then \NDATAEntity\csa\csb

\attvalue applies the two TEX commands \csa
and \csb to the notation type and the value, in
a way analogous to \xmltextwochildren, so
for example the XML version of manual docu-
ment, from which this paper is derived, speci-
fies:

<INOTATION URL SYSTEM "" >

<!ENTITY 1lppl SYSTEM
"http://www.latex-project.org/lppl.txt"
NDATA URL>

and this is handled by the following XMLTEX
code

\XMLelement{xptr}
{\XMLattribute{doc}{\xptrdoc}{}}
{\NDATAEntity\xptrdoc\@gobble\url}
{3

which saves the attribute value in \xptrdoc and
then discards the notation name (URL) and ap-
plies the command \url to typeset the supplied
URL.

David Carlisle

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 199

Abstract: Developing Interactive, Web-based Courseware

Donald W. DeLand and Greg Faron

Integre Technical Publishing Co.
4015-B Carlisle N.E.
Albuquerque, NM 87107 U.S.A.
don@integretechpub.com

Abstract

This paper describes our company’s ongoing efforts to adapt mathematics text-
books for online delivery. We show how the textbooks, written primarily in I TEX,
have been adapted for web delivery using IBM’s techexplorer browser plug-in, and
enhanced using an extensive set of interactive Java applets. To complement these
textbooks, we are developing an online study, homework, and testing system for
mathematics that combines techexplorer, PHP (a free, open-source hypertext pre-
processor), mySQL (an open-source database application), and application links
to computer algebra systems. Our ultimate goal is to provide a comprehensive
environment for delivering math courseware online.

Don

DeLand

200 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

The amsrefs ITEX package and the amsxport BIBTEX style

Michael Downes
American Mathematical Society
mjd@ams.org

Introduction

When the bibliography entries in a ITEX document
are written in amsrefs form, they have rich internal
structure and high-level markup close to what is tra-
ditionally found in BIBTEX database files. Among
other things, this raises the information quality of
the IMTEX document if it is intended to serve as (or
to yield via automatic translation) a self-contained
archival version. Using amsrefs markup also means
that the style of the bibliography can be specified
completely in a B'TEX documentclass file, instead of
being handled partly by ITEX and partly by the
BIBTEX style file, in two different style languages,
each of them more idiosyncratic than the other.

It has always been possible to write short bibli-
ographies by hand without going through BIBTEX,
but those who do so usually put in as many ad hoc
formatting commands as BIBTEX would. An author
who uses the amsrefs package when writing a bib-
liography by hand will be better off if it becomes
necessary at some later time to change the style
of the bibliography: the interior structural markup
means that the same information can be reformat-
ted in different ways by simple changes in the INTEX
setup rather than by explicitly changing formatting
commands in each item.

Some of the sources that I consulted during the
design of the amsrefs package are given in the bib-
liography. The bibliographies of [1] and [7] are rec-
ommended. The chief goal of my design efforts was
to find a way of representing and citing bibliogra-
phy entries at a level of markup abstract enough
to support automatic formatting for a wide range of
known bibliography styles without any change in the
data; the secondary goal was to find a syntax for this
representation that was natural in a IMTEX context
and as easy as possible for authors to use. What I
ended up with was a design that would leave any ex-
perienced TEXnician aghast at the implementation
difficulties. Fortunately, however, many of the hard-
est bits could be dealt with using known methods;
for example, Donald Arseneau’s cite package estab-
lished long ago that sorting and compressing lists of
cite numbers is not horrendously impossible to do
in TEX, and the technique used in amsrefs for com-

bining multiple author names is adapted from some
code of mine written a while back for the amsart
documentclass.

Contents of a bibliography entry

Bibliography entries are done with a \bib command,
not \bibitem, and look like this:

\bib{BW}{article}{

author={Bertram, A.},
author={Wentworth, R.},
title={Gromov invariants for holomorphic

maps on Riemann surfaces},
date={1996},

journal={jams},

volume={9},

number={2},
pages={529\ndash 571},

}

This will be recognizable as very similar to the
data format used in BIBTEX database files. There
are, however, some key differences. If you use the
amsxport BIBTEX style and export from a BIBTEX
database, the differences will be automatically at-
tended to, but if you write a short bibliography by
hand, you should bear in mind the following points:

braces Always use braces to enclose the value of
each field, never quotes (BIBTEX allows both
quotes and braces).

repeated fields Certain fields can be repeated
(and should be, where applicable). As shown in
this example, when there is more than one au-
thor, each author name is given separately. The
task of combining the names as needed for the cur-
rent publication is handled by IATEX. The fields
that are defined to be repeatable by the amsrefs
package are author, editor, isbn, review, and
translator.

inverted names It is recommended to give author
and editor names uniformly in Last, First order.
This is the form that provides the most flexibil-
ity with the least extra markup. When printed,
the names will be automatically uninverted in
whatever manner is specified by the bibliography
style in use. (Some styles have the first author’s

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 201

Michael Downes

name inverted and the remaining names not in-
verted.) For suffixes such as III or Jr., write
Smith, John Q., III or Smith, John Q., Jr.
as the inverted form. For Chinese names and oth-
ers where the surname comes first, if you write
Last First without a comma the parts will never
be transposed.

abbreviations In certain fields abbreviations may
be used. In the example above the journal name
jams will be expanded by ITEX to J. Amer. Math.
Soc. Abbreviations for journals and publishers
can be defined with two commands provided for
this purpose:
\DefineJournal takes four arguments: the ab-
breviation, the ISSN, a short form of the journal
name, and the full journal name. For example,

\DefineJournal{mpcps}
{0305-0041}
{Math. Proc. Cambridge Philos. Soc.}
{Mathematical Proceedings of the
Cambridge Philosophical Society}

For \DefinePublisher the four arguments are:
abbreviation, short form, full publisher name, and
location, e.g.,

\DefinePublisher{ucp}
{Univ. Chicago Press}
{University of Chicago Press}
{Chicago}

Beware of variation among the books of a single
publisher in the cities of publication.

If the amsrefs package is invoked with the jpa
option, it will automatically load an auxiliary
package amsjpa that contains \DefineJournal
and \DefinePublisher statements for more than
a hundred of the journals and publishers men-
tioned most often in AMS bibliographies. To get
a different set of abbreviations, you can put your
own definitions in a .sty file and load them with
\usepackage.

capitalization Proper nouns do not need to be
written with extra braces: it is sufficient to write
Riemann instead of {R}iemann or {Riemann} (as
required by BIBTEX). Do not capitalize words
that are not proper nouns (unless you’re writ-
ing in German, of course). Capitalization for
English-language titles will be applied automat-
ically where specified by the bibliography style.
See Capitalization of English titles, below.

ndash Using \ndash instead of -- for en-dashes is
recommended. (And \mdash instead of ---, for
that matter.) See the remarks on textcmds in
the Auxiliary Packages section.

date It is recommended to use a date field to give
the year of publication; although year is also ac-
cepted, date is more general. If the date includes
a month or month and day, using month numbers
in ISO 8601 form is recommended, e.g., 1987-12 (or
1987-12-30 if a day is present). This allows month
names to be printed in full or abbreviated (or left
as numeric), at the behest of the current bibliog-
raphy style, without changing the contents of the
bibliography. For “Winter”, “Spring”, “Summer”,
“Fall”, either use month numbers of 13, 14, 15, 16
(respectively), or just put in the text before the
year:

date={Summer 1987},

The first mandatory argument of \bib is the
citation key to be used with \cite. Like \bibitem,
\bib also takes an optional argument to be used as
the item label in the bibliography and as the printed
output of the \cite command.

The second mandatory argument of \bib is
the entry type. The recognized entry types are
just about the same as the ones commonly recog-
nized in BIBTEX style files, except that phdthesis
and mastersthesis are subsumed under a single
thesis category. By default an entry of this type is
treated as a master’s thesis; to indicate some other
kind, one can write, e.g., type={Ph.D. thesis} or
type={Diplomarbeit}. As a special case the abbre-
viations type={phd} and type={masters} are also
recognized.

Restricted key-value scanning

Although the fields within a \bib command are given
in standard WTEX key-value notation, the parser
used to scan the keys and their values is not the
standard one from KTEX’s keyval package but one
written especially for the amsrefs package in order
to provide some refinements in the error checking.
It is embodied as a separate package, rkeyval.

Missing commas If a comma is missing in a \bib
command, you get an error message that tells you
exactly what the problem is and where. With the
standard key-value parsing provided by IXTEX this
would not happen — a missing comma would lead to
one erroneous value and one lost value without any
warning to the user. For example, consider what
happens with

\rotatebox [x=9pt y=9pt]{180}{UPSIDE DOWN}

This results in a value for x of “9pt y”, while the
second 9pt is discarded and y retains its default
value. Consequently the rotated box is positioned
incorrectly and a spurious letter y is printed on the

202 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

The amsrefs IXTEX package and the amsxport BIBTEX style

page when KTEX attempts to use the value of x.
And there is no warning message to alert the user
that something went wrong.

To be sure, when key-value notation is used for
options that specify how some material should be
printed, the values tend to be short and simple, they
are normally written without braces, and missing
commas are not all that frequent. But when the
values contain textual material, and each key-value
pair is given in braces on a separate line, missing
comma errors are very easy to make and occur quite
often in practice. It was the sinking feeling of this
realization that drove me in the end to write an al-
ternative parser, with great reluctance, after using
the standard parser for nearly the whole develop-
ment period of the amsrefs package.

Mandatory use of braces for values Requiring
braces all the time is better for key-value pairs if
the values are printable text. Because, of course,
braces are the only completely reliable way to avoid
the problems that afflict delimited arguments if any
kind of nesting is involved or if the argument may
legitimately contain the delimiter string.

If the braces are inadvertently left out, the error
message looks like this (more or less):

! Package rkeyval Error:
Missing open brace for key value.

1.10 year=1985,

?

In most cases KTEX will be able to carry on after
such an error and produce something close to the
intended output.

Capitalization of English titles

The capitalization recommended for English titles is
sentence case: all lowercase except for proper nouns
(i.e., the same as is normally used anyway for all
other languages with a Latin-1 character set). Initial
caps can be applied on demand to a title written in
this form, as explained in the discussion of \bibspec
below.

The capitalization done by amsrefs succeeds
rather well in following the rules given in the Chicago
Manual of Style, as paraphrased here:

Capitalize each word except for articles, coor-
dinate conjunctions, and prepositions, or the
word to in infinitives. Do capitalize pronouns
and subordinate conjunctions. Always capi-
talize the first and last word of the title and
the first and last word of any subtitles that
it may contain. In a hyphenated compound,

capitalize the second (or any later) word only
if it is a noun or proper adjective, or it has
equal force with the first word.

If some word is capitalized that should not be capi-
talized, putting braces around the word will prevent
that. But I think it will be very seldom necessary in
practice; in a test of some two hundred titles taken
at random from AMS journal articles, all of the titles
were capitalized correctly, even the ones containing
more difficult fragments such as hyphenated com-
pounds, math formulas, or \, and ~ for inter-word
spaces.

Citations

The amsrefs package offers three primary citing
commands: \cite, \citelist, \cites. Features
include:

e sorting and range compression for numeric cite
keys (like the excellent cite package)

e support for author-year citation schemes, with
some additional commands \ycite, \ocite,
\citeauthor, etc.

e back-reference capabilities (similar to those of
the backref package that comes with hyperref)

The \cite command works just about the
way the KTEX book says it should, except that
it supports an additional optional argument mech-
anism that avoids a pitfall associated with the
standard optional argument syntax. Instead of
\cite[Chapter 2]{xyz}, one writes

\cite{xyz}*{Chapter 2}

Using this * notation instead of the usual square
brackets prevents the unexpected error messages
that novice users meet if they incautiously attempt
to use a \cite command with the square brackets
inside another pair of optional argument brackets,
for example,

\begin{thm} [\cite[Theorem 4.9]{xyz}]

The \citelist command takes one argument,
which is simply a list of \cite commands, optionally
separated by spaces.! Each \cite command may
have its own optional argument.

\citelist{\cite{keyl}
\cite{key2}*{Chapter 2} \cite{key3}}
The \cites command is a straightforward vari-

ant of the \citelist command that can be used
when none of the individual \cite commands have

1 No commas or other inter-cite punctuation should be
written between the \cite commands because that will all be
supplied automatically and attempts to write it in by hand
will only interfere.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 203

Michael Downes

an optional argument. Then one can give the list
of cite keys without including a \cite command for
each one:

\cites{keyl,key2,...}

Use of multiple cite keys with \cite is deprecated,
even though it must be supported for backward com-
patibility. Using \cites or \citelist is better be-
cause it clears up the semantically dubious old treat-
ment of the optional argument.

Author-year citation schemes

In author-year citation schemes three main citing
forms are required to cover the cases that in other
schemes require only one form. The first form is used
when the citation serves as a parenthetical annota-
tion —i.e., it could be omitted without harming the
grammatical structure of the sentence containing it.
For example:

The question first arose in systems theory
(Rupp and Young, 1977).

The second form is like the first but is used when the
author name is already present as a natural part of
the sentence, and the cite therefore ought to supply
only the year:

Rupp and Young (1977) have investigated . ..

The third form is used when the citation serves as
a direct object or other inomissible noun-like ob-
ject within its sentence. For instance, dropping the
citation from the following sentence leaves a gram-
matically incomplete remainder:

... for further details, see Rupp and Young
(1977).

The logic of requiring three forms is perhaps
most clearly seen if we envision replacing the author-
year citations by numerical citations. The type of
text replaced by [14] is different in each case:

. arose in systems theory [14].
Rupp and Young [14] have investigated . ..
... for further details, see [14].

We delegate \cite to produce the primary par-
enthetical form (Author, Year) and provide \ycite
(“year cite”) and \ocite (“object cite”) as the other
forms. Plural forms \ycites and \ocites are also
provided in parallel with \cites. And \citeauthor
can be used to produce the list of author names with-
out the year.

These correspond with command names from
some other commonly used author-year packages as
follows:

amsrefs harvard natbib
\cite, \cites \cite \citep
\ycite, \ycites \citeyear \cite
\ocite, \ocites \citeasnoun \citet
\citeauthor (none) \citeauthor
\citeauthory (none) \citet

Some people like to use \citet or \citeasnoun
when the author name serves as the subject of a sen-
tence. This seems to me a questionable blurring of
the boundary between the essential text of the sen-
tence and the bibliography pointer. But just in case
I am mistaken (though you may gasp in disbelief at
the thought), T have provided \citeauthory{xyz}
as an abbreviation for

\citeauthor{xyz} \ycite{xyz}

Le., the command name is \citeauthor+\ycite
with the redundant second cite dropped.?

When an author-year scheme is in use, parens
are normally added by \cite, \citelist and their
variants — unless the character immediately follow-
ing the command’s argument is a closing paren. This
simple rule of thumb suffices for almost all cases.

Starred forms \cite* and \ocitex print the
full list of author names instead of an abbreviated
list, when an (Author, Year) style of citation is in
use. For other citation schemes they produce the
same output as the unstarred forms. Some citation
styles require the first cite to use the full list and sub-
sequent ones to use the abbreviated version. With
proper setup this can be done automatically, so that
the starred forms of these commands should seldom
be necessary in practice.

Bibliography style setup

With the amsrefs package all style changes can be
done with IXTEX. You don’t need to understand
BIBTEX’s unnamed bst language. And because ev-
erything is handled from the ETEX side, the bib-
liography style for a given document class can be
specified completely in the class file instead of partly
there and partly in a .bst file.

The overall style of the bibliography list is dic-
tated by a biblist environment; it takes an op-
tional argument which may contain overrides of list
parameters and other style specs. This makes it easy
to modify the style slightly for a particular docu-
ment. Documentclasses that load the amsrefs pack-
age should supply their own definition of biblist,
and doing so normally means that they can leave
thebibliography environment unchanged, because

2 Why not simply call it \aycite, you may ask? Well, I
could hardly pass up the opportunity to get all six vowels in
a single command name, could I?

204 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

The amsrefs IXTEX package and the amsxport BIBTEX style

amsrefs makes it a simple wrapper function that
calls biblist:

\renewenvironment{thebibliographyl} [1]{%
\bibsection
\biblist[\resetbiblist{#1}1%

H%

\endbiblist

}

where \bibsection is normally defined as

\newcommand{\bibsection}{%
\section*{\bibnamel}}/,

When defining \bibsection, the amsrefs package
uses \chapter if it is defined, otherwise \section.
Of course you can always redefine \bibsection your-
self if need be.

The interior formatting within entries is spec-
ified by \bibspec commands, one for each entry
type. To illustrate, let’s look at an example style
spec for entries of type article:

\bibspec{article}{%
+{}{\PrintAuthors} {author}

+{,H{ \textit} {title}
+{L,H} {journal}
+{}{ \textbf} {volume}

+{}{ \parenthesize} {date}

+{L,H 1} {pages}
+{,H X {note}

+{. 2 {transition}
+HH 2 {review}

It should be pretty obvious that each line speci-
fies the formatting for a particular field. The funda-
mental model here is that after reading the data for a
particular \bib command, BTEX steps through the
style spec and for each field listed, prints the field
with the given formatting if and only if the field has
a nonempty value. The + character at the beginning
of each field spec must be followed by three argu-
ments: the punctuation to be added if the field is
nonempty; space and/or other material to be added
after the punctuation; and the field name. It is per-
missible for the second part to end with a command
that takes an argument, such as \textbf, in which
case it will receive the field’s value as its argument.
By defining a suitable command and using it here
you can place material after the field contents as well
as before; \parenthesize is an example of this.

The reason that the punctuation and the fol-
lowing space are specified separately is that between
them there is a crucial boundary for line breaks. If
you put a \linebreak command at the end of a
field value, the break point will actually be carried
onward to a suitable point after the next bit of punc-

tuation (whose actual value may vary depending on
which of the following fields is the first to turn up
with a nonempty value).

The meaning of the \parenthesize command,
supplied by amsrefs, should be obvious. The mean-
ing of the \PrintAuthors command is a different
story. But I don’t think it is all that hard to under-
stand. If we have two or three author names which
were given separately, and we need to combine them
into a conventional name list using commas and the
word “and”, then it would be nice if we had a com-
mand which could take a list of names and Do The
Right Thing. And that is just what \PrintAuthors
is.

The rkeyval package allows keys to be defined
as additive: if the key occurs more than once, each
successive value will be concatenated to the previ-
ous value, along with a prefix. The setup done by
amsrefs for the author field is

\DefineAdditiveKey{bib}{author}{\name}
This means that if two names are given, as in

author={Bertram, A.},
author={Wentworth, R.},

then the final value of the author field seen when
IXTEX processes the style spec will be

\name{Bertram, A.}\name{Wentworth, R.}

The transition field in our bibspec example
is a dummy field to be used when punctuation or
other material must be added at a certain point in
the bibliography without regard to the emptiness or
non-emptiness of the fields after it. The transition
field always tests as non-empty but has no printed
content. So when you use it you always get the
indicated punctuation and space at the indicated
point in the list of fields. If it were the last thing in
this bibspec example, it could serve just to put in
the final period that is always wanted. But in AMS
bibliographies, if a Mathematical Reviews reference
is given, it is conventionally printed after the final
period. Using the transition field as shown here
ensures that the final period will be always printed,
even when the review field is empty.

Miscellaneous commands provided by the
amsrefs package Most of the following commands
are helper commands for use in \bibspec state-
ments. The others are intended for use in bibliogra-
phy data.

\parenthesize This command adds parentheses
around its argument. It is useful in \bibspec
statements because there is no special provision
for adding material after the field value.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 205

Michael Downes

\bibquotes This command is much like \paren-
thesize but it adds quotes around its argu-
ment and it has one other important difference:
there are special arrangements to print the closing
quote after a following comma or similar punc-
tuation (unless the amsrefs package is invoked
with the logical-quotes option, in which case
\bibquotes puts the closing quote immediately
after the quoted material).

\voltext The normal definition of this command is
vol.” to supply the text that precedes a volume
number.

\editiontext This command produces ed. follow-
ing an edition number. See \PrintEdition for
more information.

\pptext This command is similar in spirit to
\voltext but more complicated in its implemen-
tation. It takes one argument which is expected
to contain one or more page numbers or a range
of page numbers. The argument is printed with a
prefix of “p.” if it seems to be a single page num-
ber, otherwise with a prefix of “pp.”.

\tsup, \tsub, \tprime These are for text sub-
scripts and superscripts, with \tprime producing
a superscript prime symbol. Unlike the standard
\textsuperscript and \textsubscript func-
tions provided by IXTEX, these do not use math
mode at all.?

\nopunct This command causes following punctua-
tion to be omitted if it is added with the internal
function \@addpunct (which is used throughout
the \bibspec handling when appending a non-
empty field).

\PrintAuthors This is a relatively complicated
function that tests a list of author names in or-
der to decide whether \sameauthors or \aulist
should be called.

\aulist This takes a list of author names in the
form

\name{Jones, Sam}\name{Smith, John}...

and prints them in standard series form with the
names uninverted, e.g., “Sam Jones and John
Smith”, or “Sam Jones, John Smith, and James
Taylor”.

\UninvertedNames This is a lower-level function
called by \aulist. For documentation see
amsrefs.dtx.

\sameauthors This is a function of one argument.
If you use the default set of \bibspecs from

3 There is one drawback: If you don’t want to get the
prime symbol for \tprime from the cmsy font, you will need
to redefine \tprime in some suitable way.

amsrefs, \sameauthors is applied to the author
name for a given \bib command if it matches ex-
actly the author name of the preceding \bib com-
mand. Change the definition of \sameauthors if
you don’t want to get a bysame dash.

\bysame This is a horizontal rule of length 3 em.
The default definition of \sameauthors prints
\bysame instead of the author names.

\PrintEditorsA This is similar to \aulist but
adds (ed.) following the editor name (or (eds.)
if applicable).

\PrintEditorsB This is like \PrintEditorsA but
puts parentheses around the entire list of editor
names.

\Plural, \SingularPlural These are helper func-
tions for use with \UninvertedNames that allow
you to conditionally print singular or plural forms
such as (ed.) or (eds.) depending on the number
of names in the current name list. The definition
of \PrintEditorsA reads, in part,

(ed\Pluralq{s}.)

\ReviewList This is similar to \aulist but is used
for printing (possibly multiple) MR numbers given
in the review field.

\inicap This command applies initial capitaliza-
tion to its argument.

\EnglishInitialCaps This command will call
\inicap if and only if the language of the cur-
rent reference is English. If English is the default
language, you need to specify

language={German},
(for example) for non-English references to ensure
that nothing will be initial-capped.

\BibField This is for more complicated program-
ming tasks such as may be necessary for some bib-
specs. It takes one argument, a field name, and
yields the contents of that field for the current
\bib entry.

\IfEmptyBibField If one writes
\IfEmptyBibField{isbn}{A}{B}
then the commands in A will be executed if the
isbn field is empty, otherwise the commands in B.
\PrintEdition If a bibliography entry has
edition={2}
and the bib-spec used \PrintEdition to handle
this field, then the edition information will be
printed as “2nd ed.” —that is, the number is con-

verted to cardinal form and “ed.” is added (taken
from \editiontext).

206 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

The amsrefs IXTEX package and the amsxport BIBTEX style

\CardinalNumeric This provides the conversion to
cardinal number form used by \PrintEdition.
\PrintDate, \PrintYear These functions convert
a date in canonical form (ISO 8601) to the form re-
quired by the current bibliography style. You can
get your preferred date form by redefining these
functions or by changing your \bibspec state-
ments to use another function of your own devis-
ing. The original definition of \PrintDate adds
parens (as for the year of a journal article in nor-
mal AMS style), whereas the \PrintYear function
simply prints the year without any additional ma-
terial (as for a book’s year of publication in normal

AMS style).

\SerialName When a journal abbreviation is used
as the content of the journal field, \SerialName
will be called with three arguments from the re-
sults of the abbreviation lookup: ISSN number,
short form, and long form. The default definition
of \SerialName prints the short form; by chang-
ing the definition suitably you can arrange to get
the long form instead.

\PublisherName This is like \SerialName but gets
short form, long form, and city as its arguments;
the default again is to print the short form.

\mdash, \ndash These are short forms for
\textemdash and \textendash, recommended
instead of the more usual --- and -- notation.
From the textcmds package.

\cite, \cites, \citelist, \ycite, \ocite, etc.
See the section on Citations.

Fields recognized by the \bib command

The following fields are supported out of the box by
the amsrefs package. It should be emphasized that
this list is not cast in stone. Additional fields can
be supported by defining them with commands from
the rkeyval package and modifying your \bibspec
statements to take them into account.

address issn series
archive journal setup
author label status
booktitle language subtitle
conference note title
date number translator
doi organization type
edition pages volume
editor part xid
eprint place xref

ios publisher year
isbn review

For some of these a few explanatory remarks are in
order.

archive The archive that holds the eprint listed in
the eprint field.

author This field can be repeated. Multiple author
names will be concatenated into a single field
value. Names should be given in Last, First
order.

date This is a generalization of the year and month
fields. Its value should be written in ISO 8601
format, e.g., 1987-06-05; but the day and month
are omissible, so this can be used instead of the
year field.

doi Digital Object Identifier

edition For books. If the value of this field is a
simple number, \bib will convert it to cardinal
form and add “ed.”.

editor Like author; can be repeated.

eprint Electronic preprint information such as for
www.arXiv.org.

ios Institution, organization, or school. Replaces

three different BIBTEX field names.
isbn International Standard Book Number. Can be
repeated.

issn International Standard Serial Number.

language Language of the work. The default lan-
guage is English; however, this can be changed
for an entire bibliography by redefining the fol-
lowing variable:

\renewcommand{\biblanguagedefault}{French}

The language name should be the printed form,
not Babel-style language names, since in princi-
ple this field could contain more complicated re-
marks such as “Russian, with French abstract”.

organization The BIBTEX documentation says that
institution should be used for technical re-
ports and organization for other entry types,
whereas school should be used for theses. Hav-
ing three different field names for these strikes
me as overkill, so I introduced ios as a substi-
tute. But organization is retained as a syn-
onym, for the sake of those who don’t like overly
cryptic short names.

part This is for a long journal article that is pub-
lished in separate parts.

place A synonym for address. Or to put it an-
other way, address is supported as a BIBTEX-
compatible synonym for place.

review A review number or similar pointer, e.g., for
Mathematical Reviews or Zentralblatt. Can be
repeated.

setup This is a special field that can be used to
give arbitrary commands to be executed at the

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 207

www.arXiv.org

Michael Downes

beginning of the current \bib entry, after all
the fields have been read. The idea is that one
can alter the formatting of an individual entry
through this field, to handle special cases.
status Typically used for notes such as “to appear”
or “in preparation” with journal articles.
subtitle Typically used with a multipart journal
article to give a subtitle for each part.
translator Like author; can be repeated.
url Universal Resource Locator.

xid This is used by a cross-referenced item to pass
its identity to child entries that refer to it.

Miscellaneous features

Here are some miscellaneous features that might be
of interest.

e Duplicate \bib keys are identified on the first
ETEX run and the line number is given. (With
\bibitem you don’t get a warning until the pro-
cessing of the .aux file at the beginning of the
second BTEX run, nor any line number.)

e When a cite key is undefined, the cite command
prints the key, not question marks.

Package options

The amsrefs package supports the following op-
tions. The options that are listed together are mutu-
ally exclusive. The options whose name begins with
a star are relevant only for BIBTEX use and when
any such option is changed, the effects will not take
hold until after the next BIBTEX run.

? Information about the amsrefs package. If you
use the jpa option as well, the most obvious effect
of this option is that all the available journal and
publisher abbreviations are shown on screen (and
in the IXTEX log).

traditional-quotes, logical-quotes This op-
tion changes the action of the \bibquotes
command. When a field is appended after a
quoted field, the closing quote is moved if neces-
sary to fall after a comma or similar punctuation
instead of before. If the logical-quotes option
is chosen, ending quotes are not moved.

sorted-cites, non-sorted-cites Relevant only
when numeric cites are in use. Lists of two or
more cites are sorted into numerical order.

compressed-cites, non-compressed-cites
Relevant only when numeric cites are in use.
Three or more consecutive cite numbers will be
converted to range notation (using \ndash).

short-journal-names, full-journal-names
These options only work for journals that are

specified via abbreviations. Otherwise, of course,
you have either the full journal name or the
short-form journal name in your data and that’s
all you’ve got.

short-month-names, full-month-names This
should be fairly easy to guess.

initials Convert authors’ first and middle names
to initials.

jpa Load the standard AMS journal and publisher
abbreviations package.

backrefs Print back-reference page numbers in the
bibliography.

numeric, alphabetic, author-year This option
specifies the printed format to be used for cites.

xsorted, *citation-order This option is passed
on to BIBTEX (the amsxport style) and indicates
that when producing the .bbl file the entries
should be sorted or left in order of first citation,
respectively. (The default is sorted.)

Auxiliary packages

The following components of the amsrefs package
are written in package form for reasons of modular-
ity or to facilitate using them elsewhere.

textcmds This package provides \mdash, \ndash
and other commands to replace the TEX notations
for ligatures that are “ligatures of convenience”
rather than of esthetics—in effect, all the stan-
dard ligature combinations that consist of punc-
tuation characters rather than letters. The fact
that the ligatures of convenience lead to quite a
bit of trouble in font substitutions and document
conversion suggests that they are fundamentally
flawed as a markup device. If you still like the
convenience of typing two or three hyphens to get
a dash instead of some longer sequence, my sug-
gestion is to use the capabilities of your text edi-
tor to automatically convert -- to \ndash as you
write. You will find a copy of the Emacs setup
that T use for this purpose in the dtx file for the
textcmds package.

inicap This package provides the basic \inicap
function which is called by \EnglishInitial-
Caps.

rkeyval This package provides the more restrictive
key-value parser used in processing the contents
of a \bib command.

ifoption This package provides a way of testing the
presence or absence of particular options:

\IfOption{jpal{
\RequirePackage{amsjpa} [2000/02/02]
H?

208 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

The amsrefs IXTEX package and the amsxport BIBTEX style

The \@ifpackagewith test that is already pro-
vided by KTEX returns false for options that were
only switched on with \ExecuteOptions, but not
mentioned explicitly in the \usepackage call.

In order for \IfOption to work properly the op-
tions must be declared with \DeclareExclusive-
Options or \DeclareBooleanOption and pro-
cessed with an additional statement \Process-—
ExclusiveOptions; see the package documenta-
tion for further information.

amsjpa This package simply contains a number of
abbreviation definitions for the journals and pub-
lishers that are most frequently mentioned in AMS
bibliographies.

BibTEX exporting — amsxport style

There are four chief functions of BIBTEX: select-
ing items required by a particular document from a
database, sorting them, discarding unwanted fields,
and applying BTEX formatting. If the formatting
is handled instead entirely on the IXTEX side, and
if the author uses editor facilities such as the fine
Emacs RefTEX package to handle selecting and sort-
ing, it is a short step to wonder if BIBTEX might
be approaching superfluity. Since my work on the
amsxport BIBTEX style involved a certain amount
of beating my head against various limitations of
BiBTEX, I am indeed inclined to advocate abandon-
ing it. (For example, there are only global variables
(easy to clobber something inadvertently), and an
extraordinarily low ceiling on the number of them;
there’s no way to get the actual ASCII length of a
string (text.length$ counts {\foo} as one charac-
ter, not six)?*; and there is no way to call up a given
cite individually, e.g., to examine a crossref’d item.)
If you convert your existing .bib files to amsrefs
format (using the amsxport style) you will never
again have to worry about adding braces for proper
nouns or extra braces around accented letters when
adding material to your database. And if you let
RefTEX build your bibliography incrementally while
you write, you can get all your cites resolved on the
first I TEX run, not the fourth.

For most users of the amsrefs package it will
remain necessary, however, to use BIBTEX at least
on occasion to convert .bib file data to amsrefs
form with the amsxport filter. Therefore it will be
of interest to mention a few of its features.

e The supported fields are the standard BiBTEX
fields plus the additional fields that amsrefs
supports (see the list above).

4 Well, you can write a loop to chop off one character at a
time until the remainder is empty, and I did so, but the fact
that I had to do so is the limitation.

e When sorting names, the amsxport style sorts
“von Something” under “Something”, not un-
der “von”.

e Options can be passed to the bst file; separate
bst files are not needed to handle such varia-
tions as sorting or not sorting. For example,
the *citation-order option of the amsrefs
package works by writing \bibcite{[citation
-order]} to the .aux file: cite keys that begin
with a [character are specially interpreted as
options by the amsxport style.

e In preamble strings, ~~M is recognized as an es-
cape sequence to put in newlines at good places.
With a BIBTEX style that doesn’t provide this
feature (meaning every one except amsxport,
at the present time, to the best of my knowl-
edge), all of the text strings that you supply
with @preamble{...} get mushed into a sin-
gle “paragraph” by BIBTEX; there is no good
way that I know of to ensure that a real new-
line gets written to the .bbl file at any given
point. (The bad way: put in percent characters
or other junk to fill up 72-character lines.)

Availability

A Dbeta version of the package is currently available
at ftp://ftp.ams.org/pub/tex/.

References

[1] Pedro J. Aphalo, A proposal for citation com-
mands in EMTEX3, TUGboat 18/4 (December
1997), 297-302.

[2] Nelson Beebe, xbtxbst.doc,
math.utah.edu/pub/tex/bibtex/

[3] Chicago Manual of Style, 13th edition, 1982,
University of Chicago Press.

[4] Dana Jacobsen, bp, a Perl Bibliography
Package (version 0.2.97 beta, 19 Decem-
ber 1996), http://www.ecst.csuchico.edu/
“jacobsd/bib/bp/index.html

[5] Michael Piotrowski, Jens Klocker, and Jorg
Knappen, [Is IBMEX2: markup sufficient for
scientific articles? EuroTEX’99 Proceedings
(Giessen, Augsburg, 1999), ISBN 1438-9959.

[6] David Rhead, The “operational requirement” for
support of bibliographies, TUGboat 14/4 (De-
cember 1993), 425-433.

[7] Reinhard Wonneberger and Frank Mittelbach,
BIBTEX reconsidered, TUGboat 12/1 (March
1991), 111-124.

http://www.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 209

ftp://ftp.ams.org/pub/tex/
http://www.math.utah.edu/pub/tex/bibtex/
http://www.math.utah.edu/pub/tex/bibtex/
http://www.ecst.csuchico.edu/~jacobsd/bib/bp/index.html
http://www.ecst.csuchico.edu/~jacobsd/bib/bp/index.html

Line breaking and page breaking

Jonathan Fine

203 Coldhams Lane

Cambridge, CB1 3HY

United Kingdom
fine@active-tex.demon.co.uk
http://www.active-tex.demon.co.uk

Abstract

In their seminal paper of 1981, Knuth and Plass described how to apply the
method of discrete dynamic programming to the problem of breaking a paragraph

into lines.

This paper outlines how the same method can be applied to the

problem of page make up, or in other words breaking paragraphs into pages. One
of the key ideas is that there must be interaction between the line breaking and
page breaking routines. It is shown that TEX can, with one important limitation,

fully support such interaction.

This article also shows how TEX can, by using a custom paragraph shape
and a special horizontal list, suppress hyphenation of the last word on a page.

Introduction

For many years the conventional wisdom has been
that TEX is good at breaking lines into paragraphs
(and setting mathematics and tables), but that it
is not at all good at page make-up. There is some
measure of truth in this statement. However, it is
the author’s view that almost all of the deficiencies
arise not from TEX the program, but from the macro
packages and other tools used with it.

The main problem considered in this article is
that of suppressing hyphenation on the last word of
a page. Traditionally, this has been avoided wher-
ever possible, for it breaks the reader’s concentra-
tion, to have to go to the next page (rather than the
next line) to complete a hyphenated word. The so-
lution proposed involves constructing a special hor-
izontal list, and an unusual paragraph shape.

Don Knuth’s view of TEX’s line-breaking algo-
rithm is well expressed by this passage from The

TEXbook (page 94):

The remainder of this chapter explains the
details precisely, for people who want to ap-
ply TEX in nonstandard ways. TEX’s line-
breaking algorithm has proved to be general
enough to handle a surprising variety of dif-
ferent applications; this, in fact, is probably
the most interesting aspect of the whole TEX
system. However, every paragraph from now
on until the end of the chapter is prefaced by
at least one dangerous bend sign, so you may

want to learn the following material in easy
stages instead of all at once.

and twelve pages of technical details follow. Not all
of it used here. The article by Knuth and Plass [4]
and Plass’ thesis [10] are also well worth consulting.

From ASCII to dvi

It will help to have an overview of the process by
which TEX converts its input file into typeset pages.
In general terms the process is the same for all macro
packages, but at each stage each package can use in
different ways the capabilities offered by TEX the
program.

Here we divide the process into seven stages,
namely ASCII, tokens, macros, horizontal list, lines,
vertical list and pages.

This section concludes with a discussion of the
look-ahead problem, whose solution is an important
part of the line-breaking algorithm. The same prob-
lem arises in page make-up, and it is the present lack
of a solution that has given rise to the view that TEX
is not good at page make-up.

ASCII This is the input stream, a text file marked
up in some syntax, formal or informal. The input
file might contain macro definitions and parameter
settings, as well as the text to be typeset. For ex-
ample, with INTEX the body size is a parameter to
the \documentclass command.

Strictly speaking, the input stream need not be
ASCII. TgX is capable of reading 8-bit input files.

210 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

We use ASCII as a convenient shorthand for the in-
put text file.

Tokens Internally, TEX deals with tokens. Cate-
gory codes control the translation of input charac-
ters into tokens.

Traditionally, the ASCII character ‘a’ is given
category code letter, which means that when read
it become the token ‘the letter a’. The same goes
for the other letters. Digits and punctuation are
given category other, and so the digit 7 become ‘the
character 7’ when read.

Certain other symbols, such as {, } and \, have
special category codes. It is this that gives TEX its
familiar ‘backslash and braces’ input syntax. How-
ever, this syntax is not built into TEX the program.

Internally the only tokens that TEX has are
character tokens (of various categories), and con-
trol sequences. (A control symbol is a control se-
quence whose name is a single character, usually a
non-letter.) The traditional category codes cause
the ‘eyes of TEX’ to convert the sequence of charac-
ters \wibble to the control sequence whose name is,
well, wibble. This is done by TEX the program, as
part of the process that turns ASCII characters into
tokens.

In Active TEX, every input ASCII character is
an active character. An active character is rather
like a control sequence, in that it has a meaning, and
this meaning can be changed at any time. However,
its ‘name’ is the active character ‘x’, or whatever it
is. In plain TEX, the ‘~’ character is active.

Active TEX does not use the ‘eyes’ of TEX the
program to form control sequences. Instead, it uses
macros and the \csname primitive to form control
sequences out of the active characters that it receives
from the eyes of TEX. This means that it never has
to change category codes, in order to achieve special
effects, such as verbatim typesetting.

Macros The internal tokens of TEX (or more ex-
actly their meanings) can be divided into two classes,
namely the expandable and the unexpandable. Most
expandable tokens are macros, and most of the prim-
itive commands of TEX are unexpandable. How-
ever, some primitive commands, such as \ifx, the
other conditional commands and \csname, are ex-
pandable.

Unexpandable commands do something (in the
stomach of TEX the program), while expandable com-
mands and macros control what it is that is done.
In plain TEX the ‘~’ character, which is active, is de-
fined to be a macro that places a penalty and some

Line breaking and page breaking

glue on the horizontal list.
breakable interword space.

This produces an un-

Horizontal list TEX would not be able to typeset
without commands that placed items on the hori-
zontal list. The internal token ‘the letter a’ (ob-
tained say by reading an ‘a’ from the input ASCII
file) will place a ‘character box’ that is the charac-
ter ‘a’ in the current font onto the current horizon-
tal list. (This is only in horizontal mode. In math
mode it does something else.) The internal token
‘the character 9’ behaves in the same way.

There are other items that can go on the hor-
izontal list. For this article, we need to know only
about glue, penalties and discretionary penalties.
Glue is potentially stretchable and shrinkable inter-
word space, while penalties record the undesirability
of making a line break at this point.

Discretionary hyphens are hyphens that are op-
tional. The line breaking algorithm can break lines
at discretionary hyphens. If the break is taken at a
discretionary hyphen, the hyphen appears, and oth-
erwise nothing appears. Discretionary hyphens can
be placed onto the horizontal list either explicitly,
via the execution of a primitive command, or im-
plicitly, as a result of the hyphenation algorithm.

Lines TgX’s line breaking algorithm turns a hori-
zontal list into a sequence of lines. It does this by
choosing a sequence of break points in the horizontal
list. Most of the time, any glue and penalty items
after a chosen break point are discarded. This allows
the interword glue to disappear at line breaks.

Normally, TEX breaks the paragraph into lines
using the current value of the \hsize. However, the
\parshape parameter allows the width (and offset)
of each line to be specified individually.

Vertical list After the paragraph has been broken
into lines, TEX places the lines onto the current ver-
tical list. Often, this vertical list is the main vertical
list, also known as ‘the current page’. Each line of
the paragraph is a box (in fact a horizontal box).
As well as boxes, a vertical list can contain (verti-
cal) glue and (vertical) penalties. A vertical list can
also contain other items, such as insertions, that do
not concern us here.

The line breaking algorithm places (vertical)
glue between the lines, so that the baseline to base-
line distance between the lines is uniform (unless
the lines contain exceptionally tall or deep set mat-
ter). It also inserts (vertical) penalties between the
lines, to aid in the page breaking process. The
\clubpenalty is the extra penalty for a page break
immediately after the first line of a paragraph. The

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 211

Jonathan Fine

\widowpenalty is the extra penalty for a page break
immediately before the last line of a paragraph.

Pages Whenever something is placed on the main
vertical list, TEX the program checks to see if it has
accumulated enough to break off from it the cur-
rent page. If it has, then TEX chooses the best of
the available break points on the main vertical list.
It then calls a special token list, the \output rou-
tine, to add page numbers and the like to the broken
off portion, and to ship it out to the dvi file. The
\output routine is part of the macro package.

The dvi file This is the output file produced by
TEX the program. As well as recording the place-
ment of every character and every rule on the page,
it can contain what are known as \special com-
mands. Programs that process dvi files can read
the specials, and use them as parameters to their
actions. For example, a special might request the
placement of a graphic.

The look-ahead problem TgX’s line breaking al-
gorithm ‘looks-ahead’ to the end of the paragraph
before it makes any decisions as to where the first
(or any other) line break occurs. Each line break
is, so to speak, considered not by itself but in the
context of the other line breaks.

The page breaking algorithm does not perform
such a look-ahead. Each page break is considered in
isolation, without regard for its consequences later
in the document.

At the end of a paragraph, the line-breaking
algorithm is called, and it produces lines of text.
These lines are then placed on, say, the main vertical
list. If enough material has accumulated, the page-
breaking algorithm cuts off enough material for one
page, and the output routine is called.

Thus, from the end of the paragraph to the call-
ing of the output routine, everything is under the
control of TEX the program. During this time nei-
ther the user nor the macro programmer has any op-
portunity to influence TEX’s behaviour, other than
through the values of parameters and the contents
of the horizontal and vertical lists.

TEX’s page-breaking algorithm clearly is defi-
cient for complex work. One needs to be able look
ahead, when there is floating matter to be placed.
Multiple column layout is particularly complicated.
There are two aspects to the problem. The first is
that an improved algorithm requires more than the
information local to the current page. The second
is what it does with this information.

This article concentrates on making informa-
tion available to an improved page-breaking algo-

rithm, but has little to say on the internals of such
an algorithm. As in the line-breaking algorithm,
the page-breaking algorithm selects one sequence of
possibilities from the many presented to it

The line-breaking algorithm has look-ahead. Its
context is the current paragraph. To avoid hyphen-
ating the last word on the last line of a page, the
algorithm needs to know where that last line will fall
(unless it suppresses all hyphenation, and so is done
with the problem). Therefore, the page-breaking al-
gorithm will have to feed information back to the
line-breaking algorithm.

Once the location of the page break is known,
this information can be fed to the line-breaking al-
gorithm (in the form of a custom paragraph shape).
Provided a suitable horizontal list is constructed, the
algorithm will suppress hyphenation at the required
point. How this is done will be shown later in this
article.

Discrete dynamic programming

The purpose of this section is to describe those parts
of TEX’s line-breaking algorithm that are specially
relevant to this article. This has two aspects. The
first is those features that are relevant to suppres-
sion of hyphenation of the last word on some spec-
ified line of a paragraph. The second is those fea-
tures that help us to understand what can be done
for global optimisation of page breaks, and for es-
tablishing communication between the line-breaking
and page-breaking algorithms.

In our simplified model, a horizontal list con-
tains character boxes, glue, penalties and discre-
tionary hyphens. Glue and penalties are what are
known as discardable items. They can disappear at
a line break. The other items are non-discardable.
They will never disappear.

A legal breakpoint is any (finite) penalty, any
discretionary hyphen, and any glue item, provided
the glue is immediately preceded by something that
is non-discardable. For any sequence of breakpoints,
there is quantity called the total demerits, that de-
pends on both the chosen breakpoints and on pa-
rameters that can be set by the macro programmer.

For example, when breaking at a penalty, the
amount of the penalty is part of the sum that is
the total demerits. Similarly, the \hyphenpenalty
and \exhyphenpenalty parameters are the contri-
butions made by discretionary and explicit hyphens
respectively. If the line had been set loose or tight
(shorter or longer than its optimum width) then a
badness for the line contributes to the total demer-
its.

212 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Of all the possible sequences of breakpoints for
a given paragraph, TEX chooses one that has the
smallest possible value for the total demerits. It does
not choose the breakpoints line by line, or in other
words locally. The breakpoints are chosen with a
view to the whole paragraph, or in other words glob-
ally.

The way in which it does this is interesting,
because in general there are so many possible se-
quences of breakpoints, that it is impossible for them
to be considered individually. The method used
is known as discrete dynamic programming. This
method allows the last line of a paragraph to ‘com-
municate’ with the first. (It is communication not
in the sense of sending a message, but in the sense
of being part a common larger whole.)

To save time, TEX tries first to make the para-
graph without using any hyphenation. The param-
eters \pretolerance and \tolerance are limits on
how bad a line can be respectively before and after
hyphenation. For simplicity, we will assume that
hyphenation is alway tried, say because the pretol-
erance is zero.

A sequence of breakpoints is said to be feasi-
ble if no line has badness exceeding the tolerance.
The line-breaking algorithm considers only feasible
sequences of break points. For formal reasons, the
end of the paragraph is considered to be a break-
point. It is, after all, the end of a line.

The formula the algorithm uses to compute the
total demerits has the following useful property. Sup-
pose an optimal sequence of breakpoints is selected,
and say lines 5 to 9 are of the horizontal list are con-
sidered in isolation from the remainder of the hori-
zontal list. The optimal sequence of breakpoints for
the whole paragraph, when restricted to the isolated
lines, is also optimal for the line-breaking problem
represented by the isolated problem. This is called
the property of locality. It is a property of the for-
mula for total demerits.

Discrete dynamic programming, as applied to
line-breaking, consists of the following. Start at the
beginning of the paragraph. Calculate the feasi-
ble breakpoints for the end of the first line. From
these breakpoints calculate the feasible breakpoints
for the end of the second line. We now prune the list
of feasible sequences of breakpoints. If two or more
sequences end the second line at the same point,
keep only the best one. (If several are joint first,
keep only one.) For each of the remaining two-line
breakpoint sequences, compute all the feasible ex-
tensions to three-line sequences, and prune as be-
fore.

Line breaking and page breaking

As this process continues, so the number of both
feasible and locally optimal sequences will in general
grow. However, the growth will not be too rapid.
Consider the spread in the location of the breakpoint
that is the end of, say, the nth line. If the first n
lines contain as little set matter as is possible, then
we get one location in the horizontal list. If they
contain as much as is possible, we get another. This
is the spread. It is roughly linear in n. The number
of breakpoints in this spread is the number of locally
optimal breakpoints that the algorithm must carry
along to the n + 1 stage.

This analysis limits the running time to of the
order of n?. However, we can do better. When
the spread gets large, it will cover the the length
of a whole line, and so some of the calculations for
n + 2 will have been done as part of n + 1. This
also shows why using a custom paragraph shape is
computationally expensive. There is no longer such
a sharing of computations between lines.

The line-breaking and the page-breaking algo-
rithms have a certain amount in common. This is

how Don Knuth puts it in The TEXbook (page 100):

TEX breaks lists of lines into pages by com-
puting badness ratings and penalties, more
or less as it does when breaking paragraphs
into lines. But pages are made up one at a
time and removed from TEX’s memory; there
is no looking ahead to see how one page break
will affect the next one. In other words, TEX
uses a special method to find the optimum
breakpoints for the lines in an entire para-
graph, but it doesn’t attempt to find the op-
timum breakpoints for the pages in an en-
tire document. The computer doesn’t have
enough high-speed memory capacity to re-
member the contents of several pages, so TEX
simply chooses each page break as best it can,
by a process of “local” rather than “global”
optimisation.

The situation is not impossible though. In Ap-
pendix D (page 400) Don Knuth writes:

An output routine can also write notes on a
file, based on what occurs in a manuscript. A
two-pass system can be devised where TEX
simply gathers information during the first
pass; the actual typesetting can be done dur-
ing the second pass, using \read to recover
information that was written during the first.

Provided sufficient information can be gathered
in the first pass, it can then be presented to TEX’s
line-breaking algorithm, or some other program, so
that an optimal choice can be made from amongst

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 213

Jonathan Fine

those which are feasible. The second pass can then
do the actual typesetting.

Avoiding ‘last-word’ hyphenation

In this section we explain how a suitable horizon-
tal list and paragraph shape specification taken to-
gether will cause the line-breaking algorithm to sup-
press hyphenation of the word at the end of some
specified line.

The basic idea is quite simple. Hyphenation
places matter on the next line. Indeed, this is the
very purpose of hyphenation. However, if the next
line is not long enough to hold even the smallest
fragment of a word, then the word at the end of the
previous line will not be hyphenated. (It is possi-
ble for a very long word to be hyphenated two or
more times. Each hyphenation point is a legitimate
breakpoint.)

The sixth line has zero width. This pre-
vents hyphenation of the word at the e-
nd of the fifth line. This is because whe-
n a word is hyphenated, part of the wor-
d is placed on the next line. (This is the

very purpose of hyphenation.) A specia-
1 sequence of items of glue and penalti-
es is placed between words. This allow-
s the interword glue to span the zero-w-
idth line.

Figure 1: Example of suppressed hyphenation

We can achieve this effect on say the fifth line
by making the width of the sixth line equal to zero.
This however creates a problem. If we use ordinary
glue between words, then between any two words
there will be only one breakpoint, namely the glue
that was between the words. For some word to be
allowed to occur at the end of the fifth line, it must
be followed by a special piece of ‘glue’, that is capa-
ble of spanning the zero width sixth line.

Recall that in our simplified model (which is
all we need), breaks can occur at penalties, at dis-
cretionary hyphens, and at glue that is preceded by
something that is not discardable. To go further, we
need to understand exactly what happens at a line
break.

According to The TEXbook (page 97):

When a line break actually does occur,
TEX removes all discardable items that
follow the break, until coming to something
non-discardable, or until coming to another
chosen breakpoint. For example, a sequence

of glue and penalty items will vanish as
a unit, if no boxes intervene, unless the
optimum breakpoint sequence includes one
or more of the penalties.

In other words, most of the time discardable
items are discarded, but any (finite) penalties are
allowed to be part of the breakpoint sequence, if that
is what the algorithm decided to do. In other words,
when moving on to the next feasible breakpoint, it
has something of a free choice in the discarding of
discardables.

Therefore, each piece of ‘glue’ between words
will have to contain two legitimate break points, as
well as an ordinary piece of interword glue. The way
to get this is to place two penalties of zero, followed
by the ordinary interword glue. (The penalty for
breaking at glue preceded by a non-discardable, such
as a word, is zero. Thus, in ordinary cases we get
the same behaviour as before.)

Something similar arises in ordinary practice.
Sometimes a line is deliberately left short, say be-
cause the next word is too long to fit on the line,
and it cannot be hyphenated. The standard way
to achieve this is to insert \hfil \break in the line.
The \break is just a shorthand for a penalty of zero,
and the \hfil is glue that stretches to fill the line.
When the line has zero width, no glue is required to
fill it.

In August 1999, the author posted to the news-
group comp.text.tex example code that suppressed
hyphenation. A lively debate followed, but not until
the author came to write this article did he discover,
to his shock and horror, that the code he posted last
summer did not work in many cases. In the first ver-
sion of this paper, his solution had an unnecessary
but harmless zero-width piece of glue between the
two penalties. This was not noticed until after the
paper had been refereed. Clearly, some of us have
something to learn about penalties and glue.

The echowords environment

Figure 1 shows the result of applying the methods
of the previous section. So that there are many hy-
phens, a discretionary hyphen has been placed be-
tween adjacent letters of a word. The spaces be-
tween words contribute, as described in the previ-
ous section, two penalties of zero and an ordinary
interword space. Although it is clearly possible to
construct such a horizontal list by hand, doing so is
laborious and prone to error.

Instead, the author has used Active TEX to sim-
plify the form of the example’s input. In fact the
author wrote

214 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

\begin{hyphdemo}{5}

The sixth line has zero width.
[...]

zero-width line.
\end{hyphdemo}

and it is the purpose of this section and the next to
describe the macros that were used.

By way of an example, this section contains the
complete source for a INTEX environment that echoes
its content to the console, word by word. Here a
word is a maximal sequence of visible characters.
White space separates words. The next section gives
the listing for the hyphdemo environment.

In the header of the source for this article the
author wrote:

\RequirePackage{atcode} [2000/07/22]
\RequirePackage{atlatex}[2000/07/22]

and this loads two Active TEX macro packages.

The first of these packages defines a program-
ming environment in which it much easier to write
macros that make extensive use of active characters.
It has other advantages, which make it useful even
when writing macros that have no special features.
One uses the command \@code to enter the environ-
ment, and 1] to exit it. Later in this section there
will be examples of the input syntax and program-
ming style for the package.

The first section also define macros for mak-
ing all ASCII characters active, and giving them
standard meanings. More exactly, the active char-
acter ‘a’ is a macro whose expansion is the con-
trol sequence \active:1lcletter followed be the ac-
tive character ‘a’. This apparent recursion is very
useful, for it allows each active character to know
its own identity. By letting the prefix control se-
quence \active:lcletter be \string, for exam-
ple, a character can be made to typeset itself.

The second of these packages defines a new com-
mand, \active:latex, that makes it possible for
TEX macro programmers to access the facilities of
Active TEX. The hyphdemo environment above is
coded using this command, within an \@code pro-
gramming environment.

First we enter the atcode environment. What
follows is the most general way, for it does not as-
sume that the ASCII character @ has category code
letter. There must be a space before the @, and no
space after the code.

\csname Q@code\endcsname
Now all ASCII characters are active, and we are
in the atcode environment. Here, control sequences

do not need to be prefixed by a backslash. You can
use a backslash as a prefix, but it is neater to omit

Line breaking and page breaking

the backslash whenever possible. Strings, however,
have to be enclosed in double quote marks. Here is
an example. (This semi-colon is not syntactic sugar.
It tells atcode that it is safe to release the tokens it
has been accumulating. Semi-colons within braces,
however, are syntactic sugar. The same goes for
commas.)

message { "Hello world" } ;

Next we set up a shorthand feature. This allows
us to type .digit instead of active:digit, and so
on. From now on we will drop the backslash before
control sequence names, in both text and in atcode
source. We will also drop the active: prefix. Thus,
active:latex is .latex.

def active:prefix { "active" } ;

The macro get.word parses the.word from the
input stream, and calls do.word to process it. It
depends on init.get.word, whose value will be set
by the calling context. It also relies on some system
macros that have not yet been described. In the
atcode environment white space is ignored, unless it
is part of a string or the like.

def get.word
{
begingroup ; aftergroup do.word ;
init.get.word ;
.suspend.white.space ;
let .suspend .end.xdef ;
xdef the.word { iffalse } fi ;

Here is the definition of the echowords environ-
ment. It provides an example of the .latex com-
mand. The]] closes the atcode environment. All
is as it was before except that the macro get.word
and the environment echowords have been defined.

newenvironment { "echowords" }
{
begingroup ;
let .lcletter get.word ;
let .ucletter get.word ;
let .digit get.word ;
(default) ; let .symbol get.word ;
let .rs relax ; let .re relax ;
let .re-sp relax ;
let ! relax ; let |D09 relax ;
let init.get.word .string.visible ;
def do.word
{ message { the.word } } ;
.latex ; // must come last
}
{ endgroup } ;

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 215

Jonathan Fine

11 %% now back to the usual catcodes

We will now explain what is going on. First, the
.latex command. This command opens a group, in
which all ASCII characters are active. It looks for a
line that begins with the (active) characters \end{.
When it finds this, it closes the all-active group, and
pretends that it had read the \end{ with KTEX’s
normal category codes. Thus, the first and last of
the input lines

\begin{echowords}

These words are echoed,
one by omne.
\end{echowords}

are processed by the begin and end commands of
the echowords environment. The two lines in the
middle are read and processed with all characters
active, and with the values set by the environment.

We simplify slightly. To avoid needlessly filling
TEX’s macro processor (the mouth) with a long list
of tokens, this looking for the \end{ is done on a
line by line basis. However, this makes no difference
in practice.

The first three assignment commands tell Ac-
tive TEX how to process letters (upper- and lower-
case) and digits. Symbols are rather different. Most
if not all of the time, all lowercase letters are dealt
with by the same rules. The same goes for upper-
case letters, and for digits. It often happens, how-
ever, that each symbol has a specific meaning. For
example, in the atcode environment, each symbol
has a distinct meaning of its own.

For this reason, Active TEX uses the concept of
symbol sets. Within its realm, it ‘owns’ all the ac-
tive symbols. (This is done in a way that does not
interfere with their use outside of its realm.) Instead
of directly assigning a value to a symbol, one selects
a symbol set, perhaps of one’s own creation. The
owner of a symbol set is free to change the meaning
of symbols in that set. For as long as that symbol set
is selected, for almost all practical purposes chang-
ing the meaning of a symbol in a set is the same
as changing the meaning of the active symbol itself.
However, when a different symbol set is selected, the
meaning of all the symbols changes to those of the
newly selected set.

Parentheses, as above, are used to select a sym-
bol set. The (default) symbol set is part of the
atcode package, and in it every symbol expands to
the control sequence .symbol, followed the active
symbol itself. Thus the line of code:

(default) ; let .symbol get.word ;

causes all symbols to call get.word. In short, all
visible characters are to call the get.word command
we just defined.

The .latex command ‘owns’ the active end-of-
line character. Only when one knows for sure that
it is safe to do so, should one change its meaning.
It is used by .latex to inspect the next line for the
\end{ characters.

At the start and end of each non-blank input
line, .latex generates .rs and .re events. Blank
input lines generate the .rs-re event. These events
are control sequences, whose values can be set by
the macro programmer. Here we are setting them
to do nothing. (One can think of the visible char-
acters as similarly being events, but this time with
parameters.)

We have now initialised all the ASCII characters
except for space and tab. The next line sets them
both to relax. (The construction |ABC generates
a character whose category code is hexadecimal A,
and whose character code is hexadecimal BC. Thus,
[DO9 is active tab.)

The low-level events (reading a character from
the input stream) have now been dealt with. They
create higher level events, namely the initialisation
of the parsing of a word, and the processing of the
word once parsed. The .string.visible macro is
a low-level system macro that causes all visible char-
acters to behave as if they were characters of cate-
gory code other. This system macro by-passes the
symbol set mechanism. It runs quicker, but must be
used with care.

We are almost done. There are some commands
in get.word that need explanation. The command
.suspend.white.space cause the active form of the
white space characters (space, tab and end-of-line)
to expand to .suspend followed by the active white
space character. This should only be done within a
group, which is closed by white space. The parsing
of a word is exactly such a context.

Finally, the atlatex package contains a helper
macro that is very useful for closing a ‘flying xdef’.
Here is its definition.

def .end.xdef
{ iffalse { fi ; } ; endgroup } ;

To conclude, we reconsider the get . word macro.

def get.word
{
begingroup ; aftergroup do.word ;
init.get.word ;
.suspend.white.space ;
let .suspend .end.xdef ;
xdef the.word { iffalse } fi ;

216 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

It opens a group. After the group, we call
do.word. The variable part of the initialisation rou-
tine, namely init.get.word is defined to make all
visible characters ‘other’. Thus, when the xdef which
closes the macro executes, it simply accumulates vis-
ible characters in the.word. (The iffalse is a hack
that allows a macro to ‘contain’ unbalanced braces.)
The two suspend commands cause white space to
close the xdef, and thereby trigger the processing
of the word.

The reader may find it instructive to run these
macros with tracingall on, and examine the re-
sulting log file.

The hyphdemo environment

Our next example is more substantial. The sup-
pression of hyphenation on the last line of a page
requires the construction of a fairly special horizon-
tal list. Here is the sequence of penalties and glue
that is to be placed between words. (We use hd as a
two letter prefix for ‘hyphenation demonstration’.)
But first we enter the atcode environment.

\csname Q@code\endcsname
def hd:iwspace

{

unskip ;

penalty "O " ; penalty "O "

~ ; // ordinary interword space
b

The unskip is in case we get two spaces in a
row. This is not rigorous, but in the context it is
good enough. Then we put down two penalties,
which allows hd:iwspace to span a blank line. Fi-
nally, we put down an ordinary piece of interword
glue. In Active TEX, ~ produces an ordinary space
character.

So that we get lots of hyphens, we will place a
discretionary hyphen between adjacent letters in a
word. To do this, we use a variant of the get.word
command. This macro applies string to the first
character in the word. Each subsequent character
is then responsible for putting down a discretionary
hyphen before stringing itself. To avoid hyphen-
ating just before punctuation at the end of a word,
symbols do not insert a discretionary hyphen.

def hd:get.word { get.word ; string } ;
def hd:init.get.word
{

def .lcletter { \- ; string } ;

let .ucletter .lcletter ;

let .digit .lcletter ;

let .symbol string ;

Line breaking and page breaking

The hyphdemo environment takes a single pa-
rameter, namely the number of the line, at the end of
which hyphenation is to be suppressed. This param-
eter controls the construction of a custom parshape,
which will be coded later. If the parameter is zero,
no suppression is offered.

The parameters encourage hyphenation. The
large value of the line penalty is to stop the line-
breaking from making the lines very loose, just so it
can get the reward (negative penalty) for the addi-
tional hyphen.

newvenvironment { "hyphdemo" } [1]
{
par ;
begingroup ;
hyphenpenalty "-100" ;
doublehyphendemerits "0 " ;
linepenalty "200 " ;
leftskip "2pc " ;
rightskip leftskip ;
hd:set.parshape { #1 } ;

let .lcletter hd:get.word ;
let .ucletter .lcletter ;
let .digit .lcletter ;
(default) ; let .symbol .lcletter ;
let ! hd:iwspace ;
let |DO9 ! ; let .re ! ;
let init.get.word hd:init.get.word ;
def .re-sp { par } ;
def do.word { the.word } ;
.latex ; // don’t forget this
}
{ par ; endgroup }

The remainder of the definition of this environ-
ment sets up the conditions for the parsing and pro-
cessing of words, in much the same way as in the
previous section. Note that let do.word the.word
would be very wrong. This would cause the macro
to continually process the value of the.word that
was current at the start of the environment.

The difficult part of setting the parameters is to
feed the parameters to TEX’s parshape primitive. It
takes 2n + 1 parameters, where n is the number of
lines, whose width we are specifying. These are TEX
number and dimension parameters, and not macro
or token parameters. We use aftergroup accumula-
tion to build up this list. Scratch counters are used
to hold the values of parameters whose values have
to be calculated.

def hd:set.parshape #1
{

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 217

Jonathan Fine

count@ #1~ ;
ifcase count@ ,
else
advance count@ tw@ ;
dimen z@ leftskip ;
advance dimen z@ rightskip ;
def temp { z@ ; hsize } ;
begingroup ;
aftergroup parshape ;
aftergroup count@ ;
count@ #1~ ;
loop ; ifnum count@ > zQ@ ,
aftergroup temp ;
advance count@ m@ne ;
repeat ;
endgroup ;
// accumulated tokens released here
z@ ; dimen z@ ; // =zero-width line
temp ; // remaining lines normal
fi
X

Some words of explanation. If the parameter is
zero, we do nothing, otherwise we store in scratch
registers the number of lines in the parshape, and
the sum of the leftskip and the rightskip (the
actual width of a ‘zero-width’ line). We then store in
temp the specification for a normal line. A process
of ‘aftergroup accumulation’ is then used to build
up the parshape along with its parameters. (The
@code environment uses the same method to gain
its power. The asterisks problem in Appendix D of
The TgXbook (page 373) is a simpler example of
this.)

Outside the group, count@ is n+ 2, the number
of lines in the paragraph shape. Inside the group
it is set to m, which is the number of lines before
the zero width line. (Grouping ensures that the two
values do not interfere with each other.) The loop
accumulates n temp tokens. At the end of the group,
the accumulated aftergroup tokens re-appear. The
zero-width line and the final temp complete the para-
graph specification.

All that remains now is to close the atcode en-
vironment.

1]

Flexible paragraphs

Sometimes it is helpful, for purposes of page make-
up, to set a paragraph slightly longer or shorter
than is optimal. For this purpose TEX provides the
looseness parameter. Negative values of looseness
can be thought of as tightness. If the looseness is 1,
then TEX will try to make the paragraph one line

longer than it would otherwise. Traditionally, in
the TEX world, looseness is applied by hand, when
fine-tuning the document for publication.

Let us consider now how it might be done auto-
matically. Ahead of time, we will not know how long
we will want the paragraph to be. Nor will we know
where the paragraph appears on the page, and thus
which custom paragraph shape to use. Therefore,
we shall consider all possibilities.

We might find, for example, that a given para-
graph can be set using 9, 10 or 11 lines. We might
also find that when 9 lines are used, we can suppress
hyphenation at the line breaks 4, 6, 7 and 8. (We
are lucky if we can suppress hyphenation early on in
a paragraph.)

The following table represents this data about
9-line versions of the paragraph. Each line gives
a way of breaking the paragraph, and the number
pointed to by the arrow is the total demerits for the
optimal way of so breaking the paragraph. Simi-
lar tables can be constructed for the 10 and 11 line
versions of the paragraph. Such a report, on the
flexibility of all paragraphs in the document, will
be the input for the global optimisation algorithm
considered in the next section.

4+5->3489
6+3->2748
7+2->2956
9->2413

The reader may object that to prepare such a
report, even by computer, will take a long time.
This may be true, but the situation is not hopeless.
First, if the document is in its final form, this report
need be prepared only once. The page-breaking al-
gorithm, by design, requires no knowledge of the
document, other than this report.

Second, even if the document is not in its final
form, changes are likely to be confined to a small
proportion of its paragraphs. Matters can be con-
figured, provided macros have been written with this
in mind, so that fresh report data need only be gen-
erated for the paragraphs that have changed. This is
probably something that could be done in real time
on the entry-level hardware available today.

What is true is that much more time will be
spent on trial paragraph breaking, to generate the
report, as is spent on breaking the paragraphs for
the final triumphant globally optimised version. The
same is true, however, of the line-breaking algo-
rithm.

Indeed, the two are yet more similar than this.
Discrete dynamic programming depends on the prin-
ciple of local optimality, which is a property of the

218 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

formula for total demerits. One consequence of this
property is the following. If an optimal sequence of
breakpoints takes in the feasible breakpoints A and
B, then over the range A to B this sequence is also
optimal for this local form of the problem.

Now suppose A is ‘sufficiently distant’ from the
start of the paragraph, and that B is ‘sufficiently
distant’ from A. Here, ‘sufficiently distant’ means
that there is a feasible (but not necessarily optimal)
sequence of breakpoints linking the two points. If
enough set matter of random width intervenes be-
tween the two points, the concept has its intuitive
meaning. In these circumstances the line-breaking
algorithm will find an optimal sequence of break-
points between A and B. It will do this whether
or not this is part of the finally chosen optimal se-
quence.

Thus, the line-breaking algorithm finds not only
the best breaking for the whole paragraph, but also
for a great many portions of the paragraph. In the
same way, any worthwhile discrete dynamic pro-
gramming solution to the problem of global opti-
misation will consider most or all possible feasible
ways of breaking the paragraphs that constitute the
document. The strength of Knuth and Plass’s al-
gorithm is not that it runs quickly in abstract, but
that the running time is roughly linear, rather than
quadratic, in the size of the problem. Because of
linearity, in time hardware will be able to catch up,
even if the problems are large.

Global optimisation

This section describes briefly how a report on para-
graph, as in the previous section, can be used as the
input for a global optimisation process. For simplic-
ity, we assume that we are setting straight text on
a grid, and that hyphenation is to be suppressed on
the last word of each page. We also assume that no
paragraph is longer than a page, or in other words,
that it cannot span two page breaks.

First, it is convenient to recast each paragraph’s
report into the following form. We give the possi-
bilities in order first of the number of lines before
the potential page boundary, and then in order of
the number after. Thus, a fragment of paragraph’s
report might look like the following. (The values for
total demerits are fictional, and are chosen to make
the rest of the exposition clearer. The right hand
column will be explained later.)

4+5->4050 ; wibble 4050, O ;
4+6->4060 ; wibble 4060, 1 ;
4+7->4070 ; wibble 4070, 2 ;
; wobble ;
5+4->5040 ; wibble 5040, O ;

Line breaking and page breaking

5+5->5050 ; wibble 5050, 1 ;

Given such a sequence of paragraph reports,
and the requirement that there be, say, exactly 12
lines on each page, there is an associated optimi-
sation problem. First, for each paragraph report
choose one of its entries. Call this a selection (of
paragraphs). Write the selection in the form

BG)+B)+@d+7)+(B+2)+10+...

and say that the selection is feasible if, when sum-
ming from left to right, successive exact multiples
of 12 are reached during the progress of the sum.
The above selection is feasible (as far as it goes).
For every feasible selection, define the grand total
demerits to be the sum of demerits associated with
the terms of the form (a+0b). Thus, the (4+7) terms
contributes 4070 to the grand total demerits.

The optimisation problem is to find a feasible
selection that minimises the grand-total demerits.
This is one way (there are many others) of defining
a global optimisation for the line and page breaks
of a document. If such a problem is to be solved
using discrete dynamic programming, the global op-
timisation data might take a more elaborate form,
but the general structure will be the same. (The
interested reader might wish to look at how TEX’s
line-breaking algorithm supplies demerits for adja-
cent lines whose looseness is visually incompatible.
It is done by providing each partial problem with a
context.)

It is both interesting and fortunate that the
global problem, as described above, can be solved
using TEX’s line-breaking algorithm. It is a mat-
ter of ‘putting the book on its side’, and thinking of
each line as a ‘word’ in a paragraph. The problem is
to construct a suitable list of boxes, glue and penal-
ties. So that we can get nice diagrams, we will let
one pica represent one line.

Discardable items can vanish at line breaks, and
with trickery this allows the problem to be solved.
Consider for example the sequence of horizontal list
items,

penalty "4070 "
kern "-2pc " ;
noalign {7} ;

kern "2pc H

Kerns are discardable items. If the line break
is taken at the penalty, the first kern will be dis-
carded. The noalign is non-discardable, and it pre-
vents the second kern from being discarded. Thus,
if the penalty is not a break-point, the kerns can-
cel, but if the penalty is a break point, it effectively
inserts a kern of two pica.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 219

Jonathan Fine

Denote such a sequence of horizontal list items
by wibble 4070, 2;, and let wobble represent a
kern by one pica. This procedure translates the
sequence of paragraph reports into a horizontal list.
When the line-breaking algorithm is applied to this
list, with a hsize of twelve pica, the result is a global
optimisation of the line and page breaks. If we are
not typesetting on a grid, then some ‘interword glue’
(representing interline glue) should be added to the
above construction.

As mentioned earlier, the line-breaking algo-
rithm introduce penalties between the lines, in order
to help TEX’s page-breaking algorithm. These pre-
vent, or discourage, page breaks just after the first
line of a paragraph, and just before the last line.
In the algorithm described here, the potential page
break is part of the paragraph’s specification. The
club penalty thus becomes an extra demerit charged
for paragraph specifications of the form (1+n), and
similarly the widow penalty applies to (n + 1).

Although there are some difficulties of a tech-
nical nature in implementing such a solution, there
is a more fundamental problem. In 1989 [6], when
Don Knuth released version 3 of TEX, he introduced
several new primitives. One of them, the \badness,
records the badness of the box that was most re-
cently constructed. Thus, this quantity is made
available to the macro programmer. Sadly, he did
not at the same time introduce \totaldemerits,
and so there is no ready access to this quantity.

Summary and conclusions

When Don Knuth announced [8] in 1990 that his
work on developing TEX had come to an end, he
pointed out that improved macro packages could
be added on the input side, and improved device
drivers added on the output side. This article shows
that ten years after the event, there is still plenty of
room for improvement on the macro package side.
(However, the lack of a \totaldemerits command
is unfortunate.)

The problem of suppressing hyphenation at the
end of a page is relatively simple, particularly if a
macro package such as Active TEX is used to con-
struct the horizontal list. What has not been dis-
cussed is how to rearrange the resulting sequence of
lines, so that the blank amongst them can be dis-
carded. In abstract this is not difficult, but in the
context of an existing macro package one may find
assumptions being made that are inconsistent with
this goal.

The problem of page make-up is much harder,
particularly where there are multiple columns and
floating material. TEX was not designed to do such

work, although it can readily typeset the paragraphs
that will go into the pages. As in shown in the pre-
vious section, it is possible to use the line-breaking
algorithm to solve simple page make-up problems.
For more complicated problems, an external pro-
gram might be more suitable.

TEX is not good at complicated page makeup,
but that is no reason to ‘improve’ it. Complicated
page make-up was never a design goal of TEX. In-
stead, TEX can be used to feed paragraphs and para-
graph reports to an external make-up program. Such
can be thought of as an improved device driver, in
the same way as Active TEX is intended to be an
improved macro package.

Postscript

Prior to the TUG 2000 meeting I sent an earlier
version of this paper to Don Knuth, and invited his
comments. He told me that I should cite and read
Michael Plass’s thesis [10]. The citing is done, and
I hope soon to read this work. He also says that he
cannot add \totaldemerits, as that would mean
changing TEX and suggests instead that I approach
the authors of extensions to TEX.

In his essay on the errors of TEX, [7] Don Knuth
wrote:

Of course I don’t mean to imply that all prob-
lems of computational typography have been
solved. Far from it! There are still countless
important issues to be studied, relating espe-
cially to the many classes of documents that
go far beyond what I ever intended TEX to
handle.

I hope that this article shows that a few judi-
cious extensions to TEX will produce a new system
that can handle well many new classes of documents,
and that even TEX can make a fair attempt at doing
the job. What seems to be required, above all, is an
understanding of the problem, and the development
of suitable algorithms. From then on, the program-
ming of the extensions should be straightforward.

The article by Frank Mittelbach in these pro-
ceedings addresses a different aspect of the page
makeup problem. His concern is with placement of
floats. Combining his work with mine, even at the
level of algorithms, is already a challenge. When it
comes to implementation, the widespread use of ac-
tive space characters is likely to present A TEX with
many problems. Assumptions about category codes
are built into its input syntax.

So much for output. On the input side the pa-
pers by David Carlisle and by Pedro Palao Gostanza
in these proceedings have significant overlap with

220 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

this paper. I am delighted that others are taking
steps in the direction of making all characters active.
However, we now have three incompatible systems
of values for the meaning of active letters and digits.

Active TEX provides a powerful and effective
programming environment, especially for defining
active characters. Without such a device, the pro-
grammer has to resort to ad hoc tricks, time and
time again. For example, of the 1,936 lines of xml-
tex (v0.07), exactly 194 contain the string catcode.
By contrast, of the 6,361 lines of my sgmlbase pack-
age (v0.00), exactly 23 contain the string catcode.
Perhaps if Carlisle had used Active TEX, his work
would have been easier.

For this area to flourish, standards are required.
Without standards, incompatible versions of the ba-
sic macros will be re-invented. Application program-
mers will then have to work harder, to cope with this
unhelpful diversity. There is also be the danger of
schisms within the community.

To understand this, imagine what life would be
like if there we used incompatible mechanisms for
register allocation (\newcount and the like). In The
TEXbook (page 346), Don Knuth addressed pre-
cisely this problem:

Allocation of registers. The second major
part of the plain.tex file provides a founda-
tion on which systems of independently de-
veloped macros can coexist peacefully with-
out interfering in their usage of registers.

We need the same for active characters. The
packages atcode.sty and atlatex.sty have been
written to be a fixed point that opens this area to
the plain and IATEX macro programmer. They differ
only in a small but significant detail (colon instead
of prefix is used to segment the name space) from
the version announced at TUG 1999.

Line breaking and page breaking

I offer these packages to the community, and
hope for the rapid and widespread adoption of a
standard for the use of active characters. I would
of course prefer that my own macros were the stan-
dard, but more important both to me and to the
community as a whole, I believe, is that a standard
acceptable to all is adopted.

References

[1] David P. Carlisle, zmlitex: A non validating (and
not 100% conforming) namespace aware XML
parser implemented in TEX, these proceedings

[2] Jonathan Fine, Active TEX and the DOT input
syntax, TUGboat, 20, (1999), 248-254

[3] Pedro Palao Gostanza, Fast scanners and self-
parsing in TEX, these proceedings

[4] Donald E. Knuth, Michael F. Plass, Breaking
paragraphs into lines, Software — Practice and
Ezperience, 11 (1981), 1119-1184.

[5] Donald E. Knuth, The TgXbook, Addison-
Wesley (1984).

6] , The new versions of TEX and META-
FONT, TUGboat, 10 (3) (1989), 325-328
[7] , The Errors of TEX, Software — Practice

and Ezxperience, 19 (1989), 605-685; reprinted
with additions and corrections as Chapter 10 of
Literate Programming.

8] —, The future of TEX and METAFONT,
TUGboat, 11 (4) (1990), 489.

[9] Frank Mittelbach, Formatting documents with
floats, these proceedings

[10] Michael F. Plass, Optimal Pagination Tech-
niques for Automatic Typesetting Systems,
Ph.D. thesis, Stanford University (1981). Pub-
lished also as Xerox Palo Alto Research Center
report ISL-81-1

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 221

PassiveTEX: from XML to PDF

Michel Goossens

CERN, IT Division, CH-1211 Geneve 23, Switzerland

michel.goossens@cern.ch

Sebastian Rahtz

Oxford University Computing Services, Oxford, United Kingdom

sebastian.rahtz@oucs.ox.ac.uk

Abstract

This article introduces PassiveTEX, a library of TEX macros based on xmltex,
that processes XML documents containing XSL formatting objects and generates
PDF or DVI output. We show examples of typesetting XML sources marked up
using the TEI, DocBook, and MathML DTDs.

Introduction

New information becomes available on the Inter-
net every day, and increasingly material is becoming
available in XML. However, when one wants to print
the information on the screen one is faced with sev-
eral shortcomings, the more important being the low
typographic quality of the result or the problem of
how to serialize a ‘tree’ of pages onto a linear output
medium. In this article we explain how a source doc-
ument marked up in XML can be typeset nicely by
a two-step procedure that combines a transforma-
tion of the XML source into XSL formatting objects
and the direct interpretation of these XML objects
with Sebastian Rahtz’ PassiveTEX, a variant of TEX
based on David Carlisle’s xmltex [4].

The choice of TEX as the typesetting engine is
justified by the fact that TEX handles mathematics
in a natural way, can manage several languages si-
multaneously (hyphenation, typographic rules, mul-
tiple encodings and alphabets, right-left typesetting,
etc.), and has a good model for marking up com-
plex tabular information. Moreover, TEX can easily
handle very long documents, such as large software
manuals, or bills for hundreds of thousands of tele-
phone subscribers.

In the first part of this article we use as an ex-
ample some literary texts, including poems by the
French poet Paul Verlaine and the Russian poet
Alexander Blok, marked up according to the TEI
DTD (Text Encoding Initiative [3], Lite version). In
the second part we show an example of a more tech-
nical document, including a couple of simple math
formulae, using the DocBook [14] and MathML [17]
DTDs.

The present article was prepared in XML us-
ing TEI markup. It was not actually typeset with
PassiveTEX, but transformed into IXTEX with an
XSLT transformation stylesheet and typeset using
the 1tugproc ITEX class file.

XSL formatting objects

The Eztensible Stylesheet Language (XSL) is a lan-
guage for describing page designs. For any given
class of arbitrarily structured XML documents or
data files, an XSL stylesheet allows you to express
how the content contained in the XML should be
presented. The stylesheet indicates how source ele-
ments should be styled, laid out, and paginated in
some presentation form. In this article we only ad-
dress issues related to high quality typesetting (using
TEX). Our XML examples can be transformed into
other representations (see [7] for more discussion),
in particular HTML, and XSL stylesheets targeting
HTML are available for both the TEI [12] and Doc-
Book [15] markup schemes.

An XSL processor reads an XML source docu-
ment together with an XSL stylesheet, and produces
the presentation of the given XML content according
to the instructions in the stylesheet. The prepara-
tion of the presentation form proceeds in two steps.
First, a result tree is constructed from the XML in-
put source tree (tree transformation step). Second,
the result tree is interpreted to produce the format-
ted results (formatting step), that can be presented
on output media such as a computer screen, a WAP
display, on paper, in speech, etc.

The result tree can be very different from the
structure of the source tree, since parts from the

222 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

input can be deleted from the result tree, while sup-
plementary information (e.g., table of contents) can
be generated. The tree transformation step also has
to add the information necessary to format the re-
sult tree.

The nodes of the result tree are formatting ob-
jects, whose semantics are expressed in terms of a
catalog of formatting object classes defined in the
XSL Specification [24]. They denote typographic ab-
stractions such as page, paragraph, table, list, etc.
Fine control over the presentation of these abstrac-
tions is provided by a set of formatting properties,
such as those controlling alignments, color, fonts,
spacing, writing-mode, hyphenation etc. XSL offers
a rich range of formatting objects as one of its aims is
to cover the semantic functionality of both the Doc-
ument Style Semantics and Specification Language
(DSSSL) [10] and Cascading Stylesheets (CSS) [16]
models as completely as possible.

PassiveTEX: implement XSL using TEX

In the previous section we explained how an input
XML document can be transformed into a new XML
document containing a result tree of XSL format-
ting objects. How do we go about rendering those
objects with a real typesetting engine, and getting
high-quality printout? One way is to use TEX it-
self. PassiveTEX is a library of TEX macros which
can typeset the XSL formatting objects. In particu-
lar, PassiveTEX combined with the pdfTEX variant
of TEX generates high-quality PDF files in a single
operation. PassiveTEX allows one to choose TEX as
the formatter of choice for XML, while hiding the
details of its operation from the user.

PassiveTEX derives from and builds on xmltex
[4], a TEX package by David Carlisle, providing the
core XML parser and UTF8 handler. Ideas and TEX
code are also inherited from earlier work by Sebas-
tian Rahtz on his JadeTEX package, which imple-
mented the output of the Jade DSSSL processor’s
TEX backend, and already used a catalogue of Uni-

code/TEX mappings.

Issues in using TEX Since PassiveTEX is based
on TEX one can rapidly develop and test new high
level code, knowing that TEX will take care of
the typesetting details. Moreover, TEX is a well-
understood, robust, and free page formatter, where
good support for fonts, graphics inclusion, hyper-
links, etc., is already available. One can also profit
from TEX’s mature handling of language issues, in-
cluding hyphenation, and its high-quality math ren-
dering. Moreover, pdfTEX allows direct generation
of high-quality PDF.

PassiveTEX: from XML to PDF

There are, however, some drawbacks associated
with using TEX as typesetting engine. Firstly, we are
constrained to use TEX’s page makeup model, and
have to force the XSL formatting objects to fit that
model, which is not always straightforward. More-
over, since PassiveTEX is actually layered over BTEX
it is too easy to allow things to fall through and take
IMTEX defaults.

On a more practical level, TEX macro writing
is obscure and difficult and thus the system is not
transparent for most programmers. And, last but
not least, TEX is large and monolithic, and unsuited
to embedding in other applications.

Users of the system with a TEX background
can find it confusing to understand that TEX no
longer does all the work, which is now split betwen
the stylesheet and the formatter; the four important
points to remember are:

e No explicit use is made of IXTEX’s high-level
constructs, in particular there are no sections,
lists, cross-references, bibliographies, etc.

e all vertical and horizontal space is explicit in
the specification;

e page and line breaking is left to TEX: the rest
is up to the stylesheet;

e XSL formatting objects use XML syntax, so that
the underlying character set is Unicode. By de-
fault, entities are mapped to their Unicode po-
sition.

PassiveTEX will switch to using the Unicode-
based TEX variant soon (Omega [8]), to handle non-
Latin material more naturally.

Two extensions are needed for practical use.
The first is support of MathML; this is largely in
place (it is simply passed through as-is by an XSL
stylesheet), but needs some tuning. In particu-
lar, the intricacies of equation numbers remain to
be dealt with properly. Second, we need to sup-
port Scalable Vector Graphics (SVG) [21] XML code
somehow (e.g., by direct interpretation, translation
into MetaPost [9], or pre-processing). Moreover,
SVG fragments need to be recognized directly to per-
form in-line graphical functions (e.g., setting text at
an angle). No work at all has been done on this.

Support for XSL formatting objects Not all
parts of the XSL specification are fully supported.
The XSL formatting objects which are implemented
fairly well cover the page specifications, blocks, in-
line sequences, lists, graphics inclusion, floats, font
properties, and links. Not so well implemented at
present are all the table properties, and object mar-
gins, borders, and padding. In order to properly im-
plement these, we have to put every paragraph into

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 223

Michel Goossens and Sebastian Rahtz

an explicit TEX box ‘just in case’, and this becomes
slow and clumsy. Tables, too, are treated rather dif-
ferently in XSL, with many properties assigned at
the cell level.

Parts of the specification that are not yet im-
plemented at all include bidi handling, backgrounds,
aural properties, and a large number of assorted
properties.

A small example The set of XSL stylesheets for
the TEI DTD (tei-fo [12]) specify how the various
XML elements can be transformed into XSL format-
ting objects (see Section 7.6.6 of [7] for a more de-
tailed discussion). Without further comments, the
following code example shows the transformations
for a paragraph (p element, lines 1 to 6) and em-
phasized material (emph element, lines 7 to 11).

1 <xsl:template match="p">

2 <fo:block indent-start="10pt"

3 space-before="12pt">

4 <xsl:apply-templates/>

5 </fo:block>

</xsl:template>

<xsl:template match="emph">

<fo:inline-sequence font-style="italic">

<xsl:apply-templates/>

10 </fo:inline-sequence>

11 </xsl:template>

A few words about xmltex As PassiveTEX uses
xmltex to read and interpret the XML source it is
appropriate to say a few words about it. xmltex
is a non validating (and not 100% conforming)
namespace-aware XML parser implemented in TEX.
xmltex reads the encoding declaration and tries to
implement it; in particular it handles UTF8. It reads
the DTD subset and expands entities properly, it
uses namespaces to load modules of TEX code to
process elements (for instance for MathML, see the
following example). xmltex offers limited access to
child and parent elements to guide the interpreta-
tion process.

The workhorse of an xmltex package file is the
\XMLelement command, whose four parameters in-
dicate how TEX will handle a given element, its
attributes and its content. The following example
shows how a few simple elements of the MathML
namespace are handled.

1 \DeclareNamespace{m}
{http://wuw.w3.0rg/1998/Math/MathML}

2
3

4 \XMLelement{m:math}
5 {}

6 {\begin{equation}}
7 {\end{equation}}

8
9

\XMLelement{m:mn}
1w {}
11 {\xmlgrab}

12 {\mathrm{#1}}

14 \XMLelement{m:msqrt}

15 {}

16 {\xmlgrab}

17 {\sqrt{#1}}

Lines 1 and 2 declare the prefix m to be used for re-
ferring to elements in the given namespace. Lines
4 to 7 declare that the start and end tag of a math
element are transformed into the opening and clos-
ing of an equation environment. Lines 9 to 12 de-
fine how a MathML mn (number) element is typeset.
Its contents are stored (grabbed, see line 11) and
then injected as parameter of a \mathrm to be type-
set in roman. Similarly, lines 14 to 17 show how
a square root (msqrt) element and its content are
transformed into ¥TEX’s \sqrt and its argument.

To fine-tune the output, xmltex supports pro-
cessing instructions to manipulate TEX formatting
directly.

The biggest problem at present in using xmltex
to write PassiveTEX is that it uses TEX grouping
to make sure each element is handled in the right
namespace. Because TEX does not allow for nested
grouping, each element is caught in a group; while
\aftergroup can help a bit, this is the first hurdle
for anyone trying to extend the package.

An example of TEI markup typeset with
PassiveTEX

In this section we use an XML source file that con-
tains a collection of literature of the French poet
Paul Verlaine, the Russian poet Alexander Blok, the
English novelist Thomas Hardy, and the Finnish au-
thor Aleksis Kivi. It is marked up according to the
TEI Lite DTD. The master file poemstei-utf8 fol-
lows:

1 <?xml version="1.0" encoding="UTF-8"7>

2 <!DOCTYPE TEI.2 SYSTEM "teixlite.dtd" [

3 <!ENTITY dash "‐">

4 <!ENTITY mdash "—">

5 <!ENTITY oelig "œ">

6 <!ENTITY Verlaine SYSTEM "Verlainetei-utf8.xml">
7 <!ENTITY Blok SYSTEM "Bloktei-utf8.xml">
8 <!ENTITY Hardy SYSTEM "beyes.xml">

9 <!ENTITY Kihlaus SYSTEM "kihlaus.xml">

10 1>

11 <TEI.2>

12 <teiHeader type="text" status="new">

13 <fileDesc>

14 <titleStmt>

15 <title>Various languages and scripts</title>
16 <author>Collected by Michel Goossens</author>
17 <respStmt>

18 <resp>Transcription in TEI.2 markup</resp>

19 <name>Michel Goossens</name></respStmt>

20 </titleStmt>

21 <publicationStmt>

22 <distributor>Distributed by mg</distributor>

224 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

23 </publicationStmt>

24 </fileDesc>

25 <profileDesc>

26 <langUsage default="N0O">

27 <language id="EN">English</language>
28 <language id="FI">Finnish</language>
29 <language id="FR">French</language>
30 <language id="RU">Russian</language>
31 </langUsage>

32 </profileDesc>

33 </teiHeader>

34 <text>

35 <front>

36 <titlePage>

37 <docTitle>

38 <titlePart>Languages and scripts</titlePart>
39 </docTitle>

40 <docAuthor>Collected by Michel Goossens</docAuthor>
41 <docDate>July 2000</docDate>

42 </titlePage>

43 </front>

144 <body>

45 &Verlaine;

46 &Blok;

47 &Hardy;

48 &Kihlaus;

49 </body>

50 </text>

51 </TEI.2>

This XML source document uses the UTF8 en-
coding, since we want to mix various alphabets (in
this case Latin and Cyrillic). UTFS8 is a Unicode-
based encoding [13] that can encode each charac-
ter in Unicode’s base plane and its sixteen extended
planes (allowing for more than one million charac-
ters) with at most three bytes. Documents that
only contain ASCII can be coded using one byte
per character. Parts of the XML source of the for-
eign language documents (Verlainetei-utf8.xml,
defined on line 6 and input on line 45; and also
Bloktei-utf8.xml defined on line 7 and input on
line 46) are shown in Figure 1.

To typeset this document we first transform the
XML into XSL formatting objects using an XSLT
stylesheet, as explained previously. Then, this in-
termediate XML file is handled by xmltex and Pas-
siveTEX. In what follows we use James Clark’s xt
XSLT processor ([5], see also Section 7.6.4 of [7]),
but any conforming XSLT processor should be able
to handle these transformations.

xt infile.xml style.xsl fotex.xml
latex fotex.tex

The file style.xsl is an XSL stylesheet that
contains the XSLT transformations needed to trans-
form the input XML file infile.xml into XSL for-
matting objects. The resulting intermediate XML
document fotex.xml can be interpreted by appli-
cations that can render XSL formatting objects. In
our case we use PassiveTEX.

PassiveTEX: from XML to PDF

Below we show part of the beginning of the
XML file fotex.xml that corresponds to the first
page of the collection of poems of Verlaine trans-
formed using Sebastian Rahtz’ TEI XSL stylesheets
[12].

<fo:flow flow-name="xsl-region-body"
font-family="Times Roman"
font-size="10pt">

<fo:block text-align="center" space-after="8pt">
<fo:block font-size="16pt">
<fo:inline font-weight="bold">
Poems in various languages and scripts
</fo:inline>
</fo:block>
<fo:block font-size="14pt">
<fo:inline font-style="italic">
Collected by Michel Goossens</fo:inline>
</fo:block>
<fo:block font-size="14pt">
July 2000
</fo:block>
19 </fo:block>

© 0 N o U A W N e

e e e
L B N S =Y

21 <fo:block keep-with-next.within-page="always"
22 id="N115"

23 text-align="start"

24 font-size="14pt"

25 text-indent="-3em"

26 font-weight="bold"

27 space-after="3pt"

28 space-before.optimum="9pt">

29 1. Paul Verlaine, F\"etes galantes (1869)

30 </fo:block>

32 <fo:block keep-with-next.within-page="always"
33 id="N128"

34 text-align="start"

35 font-size="12pt"

36 font-weight="bold"

37 space-after="2pt"

38 space-before.optimum="4pt"
39 text-indent="-3em">

40 1.1. <fo:inline font-style="italic">

41 Clair de lune</fo:inline>
42 </fo:block>

44 <fo:block text-align="start"

45 space-before.optimum="4pt"
46 space-after.optimum="4pt">
a7 <fo:block space-before.optimum="Opt"
48 space-after.optimum="0pt">
49 Votre \"ame est un paysage choisi
50 </fo:block>

52 </fo:block>
53 e
54 </fo flow>

At the beginning of the file (not shown) the
various page masters are defined (margins, height,
width, etc.), and the static page information (run-
ning headers, footers) is initialized. Then, the con-
struction of formatted output pages starts. We show
what happens at the start of page 1 (compare with

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 225

Michel Goossens and Sebastian Rahtz

<?xml version="1.0" encoding="UTF-8"7>

<divl lang="FR">

<head>Paul Verlaine, Fétes galantes (1869)</head>
<!-
<div2>

<head><hi rend="ital">Clair de lune</hi></head>

<!- ->
<lg type="stanza" org="uniform" sample="complete" part="N">
9 <1>Votre ame est un paysage choisi</1>

W N U WN R

10 <1>Que vont charmant masques et bergamasques,</1>

11 <1>Jouant du luth, et dansant, et quasi</1>

12 <1>Tristes sous leurs déguisements fantasques. </1>

13 </1g>

14 e

16 </div2>

16 <!- ->
17 <div2>

18 <head><hi rend="ital">Les indolents</hi></head>

19 <lg type="stanza" org="uniform" sample="complete" part="N">
20 <1>Bah ! malgré les destins jaloux,</1>

21 <1>Mourons ensemble, voulez-vous 7</1>

22 <1>‐ La proposition est rare.</1>

23 </1g>

24 e

25 </div2>

26 <!- ->
27 <div2>

28 <head><hi rend="ital">Colloque sentimental</hi></head>

29 <lg type="stanza" org="uniform" sample="complete" part="N">
30 <1>Dans le vieux parc solitaire et glacé,</1>

31 <1>Deux formes ont tout & l’heure passé.</1>

32 </1g>

33 <1g>

34 <1>Leurs yeux sont morts et leurs lévres sont molles,</1>
35 <1>Et 1l’on entend a peine leurs paroles.</1>

36 </1g>

37 e

38 </div2>

39 </divi>

W NS WN R

<?xml version="1.0" encoding="UTF-8"7>

<divl lang="RU">

<head>Anexcaunp Bmox, CTuxm o mpekpaceoil mame (1901-1902)</head>
<!- ->
<div2>

<head>«0Tzsix Hampacer. [lopora kpyTa...» (28 mekabpz 1901)</head>
<lg type="stanza" org="uniform" sample="complete" part="M">

<1>0tmmux Hampaces. [lopora kpyra.</1>
<1>Beuep mpexpacex. CTydy B Bopora.</l1>
</1g><lg>
<1> JlombHEMy CTYKy 4YyXma u cTpora,</l>
<1>Tu paccHIaems KpyroM xeMuyra.</l>
</1lg>
</div2>
<!-
<div2>
<head>«{l Bhmen. MeZmeHHO CXOAMUIH...»

(C.-Nerepbypr, 25 suBaps 1901)</head>
<lg type="stanza" org="uniform" sample="complete" part="M">
<1>4 Bmmes. MemmenHo cxozuiu</1>

<1>Ha 3eMimo CyMepKM 3mMh.</1>

<1>MunyBumMx nHeil Miampe 6bn</1>

<1>Mlpyman NOBEPYMBO M3 TBHMH...</1>

</1g>

</div2>

<!- ->
<div2>

<head>«BeTep mpuHec m3famka...» (29 amBapa 1901)</head>

<lg type="stanza" org="uniform" sample="complete" part="M">
<1>Berep mpmHec uazjanka</1>

<1>Mlecrn BeceHHe# HaMex,</1>

<1>Tme-To cBeTmO U rnyGoKo</1>

<1>He6a OTKpHICH KJIOYOK.</1>

</lg>

</div2>

</divi>

Figure 1: Partial input source of French (left) and Russian (right) documents

the output shown in the upper left corner of Fig-
ure 3). The fo:flow element contains the material
that has to be typeset and cut into individual pages
by the typesetting engine. We see that the default
document font is Times Roman at 10 pt.

Lines 6 to 19 typeset a block of centered mate-
rial. In particular, lines 7-11 take care of the doc-
ument title that is typeset in 16 point bold, lines
12-15 correspond to the author’s name typeset in
14 point italic, while lines 16-18 typeset the date
in 14 point roman. All this information is obtained
from the content of the titlepage element of the
XML master source file poemstei-utf8, shown pre-
viously (lines 36-42).

The remaining text is in the external files
Verlainetei-utf8.xml (entity reference on line 46
of poemstei-utf8, which contains the poems of
Paul Verlaine in French, a fragment of which is seen
in the left half of Figure 1), and Bloktei-utf8.xml
(entity reference on line 47 of poemstei-utf8, which
contains the poems of Alexander Blok in Russian, a
fragment of which is seen in the right half of Fig-
ure 1).

The author and the title of the collection of po-
ems (specified as the content of the head element of
a divl element on line 3 in Figure 1) are handled

226

on lines 21 to 30 in the formatting objects output,
where a block for the first level title is created. Note
that the section number (1. on line 29) is generated
by the XSLT application. Similarly, the title of an
individual poem (specified as the content of the head
element of a div2 element in Figure 1, e.g., on line
6) is handled on lines 32 to 42. Once more, the
number (1.1 on line 40) is generated automatically.
Then, the stanza and the lines inside the stanza of
the poem (the 1g and 1 elements in Figure 1) are
treated. For instance, the stanza on lines 8-13 in
Figure 1 corresponds to the block on lines 44-52 in
the formatting objects output, in particular the in-
put line 8 becomes the block 47-50. More details
about the various XSL formatting objects and their
attributes can be found in the XSLT Recommenda-
tion [24].

The second stage of the process (typesetting
the XSL formatting objects with A TEX) uses xmltex
that is called by running ITEX on the intermediate
file fotex.tex containing the following three lines:

1 \def\xmlfile{fotex.xml}

2 \input xmltex.tex
3 \end{document}

Line 1 specifies the file that has to be interpreted
by zxmltex, before it takes control on line 2. The

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

result of treating the file poemstei-utf8.xml with
the two-step procedure outlined is shown in Fig-
ure 2. Figure 3 shows, for comparison, the result of
typesetting the same XML source file directly with
xmltex, where we had to define for each XML ele-
ment and its attributes how it should be rendered
by IXTEX.

Besides PassiveTEX, FOP [2], originally devel-
opped by James Tauber, and presently supported by
the Apache Project, is another application, written
in Java, that transforms XSL formatting objects into
PDF. Because it uses Java, it is very portable, but it
does not yet handle many aspects of fine typography
as well as TEX. Commercial products targeting the
same task of producing excellent typographic out-
put from XSL formatting objects have also been an-
nounced (RenderX, ArborText’s Epic), but are not
yet available.

DocBook markup and some words about
mathematics

Up to now we have discussed a document marked
up according to the Text Encoding Initiative (TEI)
schema. In this section we show that other XML
markup schemes can also be used, in particular,
DocBook [14] which we will combine with MathML
[17], W3C’s XML DTD for mathematics.

DocBook is an XML (originally SGML) DTD
which is especially well-suited for marking up tech-
nical documents. It is used extensively for preparing
software reference guides and computer equipment
manuals.

The DocBook DTD or schema contains hun-
dreds of elements to mark up clearly and explicitly
the different components of an electronic document
(book, article, reference guide, etc.), not only dis-
playing its hierarchical structure but also indicat-
ing the semantic meaning of the various elements.
The structure of the DTD is optimized to allow for
customization, thus making it relatively straightfor-
ward to add or eliminate certain elements or at-
tributes, to change the content model for certain
structural groups, or to restrict the value that given
attributes can take.

An example of DocBook markup We are not
going to cover the DocBook vocabulary in any detail
(see Walsh’s book [14] or his DocBook Web page).
We shall only consider an example where we used
the DocBook markup schema. A file dbxmml.xml,
whose first part is reproduced below, contains var-
ious elements of the DocBook vocabulary. It will
allow us to test the typesetting paradigm based on
PassiveTEX outlined for the TEI schema previously.

PassiveTEX: from XML to PDF

<?xml version="1.0" encoding="IS0-8859-1"7>

<!DOCTYPE article SYSTEM

"/usr/local/share/docbookxml/4.11/docbookx.dtd"

L

<!ENTITY LaTeX "LaTeX">

<!ENTITY TeX "TeX">

<!ENTITY PTeX '"PassiveTeX">

<!ENTITY xmltex
"<application>xmltex</application>">

10 <!ENTITY % equation.content "(math+)">

11 <!ENTITY % inlineequation.content "(math+)">

12 <!ENTITY % mathml

© 0 N o U A W N e

13 SYSTEM "mathmldtd/mathml2.dtd">

14 <!ATTLIST math xmlns CDATA #FIXED

15 "http://www.w3.org/1998/Math/MathML">
16 <!-- load MathML -->

17 Jmathml;

18 1>

19 <article>
20 <articleinfo>
21 <title>A Docbook document featuring a

22 few formulae</title>
23 <author><forename>Michel</forename>
24 <surname>Goossens</surname>

25 </author>

26 <pubdate>Wednesday, 18 July 2000</pubdate>

27 <abstract>

28 <para>

29 This XML document is marked up according the
30 DocBook schema It shows a few elements of the
31 DocBook vocabulary, as well as a couple of

32 examples of mathematical expressions where

33 we used MathML markup.

34 </para>

35 </abstract>

36 </articleinfo>

37 <section>

38 <title>The Docbook model</title>

39 <para>

140 DocBook <xref role="bib" linkend="docbook"

41 endterm="docbookab"/> is an XML model

42 <xref role="bib" linkend="rec-xml"

43 endterm="rec-xmlab"/> for marking up technical
44 documents. It is particularly well-suited for
45 software reference guides and computer

46 equipment manuals.

a7 </para>

The DTD internal subset (lines 4-18) contain
the general entity definitions of LaTeX, PassiveTeX,
TeX, and xmltex (lines 5 to 9), and on lines
10 and 11 parameter entity definitions specifying
the content models for the equation.content and
inlineequation.content elements, that can con-
tain one or more math elements. Lines 12-13 define
the mathml parameter entity that defines the system
file containing the MathML DTD, which is loaded on
line 17. Line 14 specifies the namespace of the math
element. The remaining lines have markup using
the DocBook vocabulary, and their meaning should
be rather straightforward to understand.

An example of MathML presentation markup
[17] follows.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 227

Michel Goossens and Sebastian Rahtz

“e)nddjuiuiow Jaqwaldas Auuns e uo sadojs Apoom pue sjjiy
InRy BXUINY B|INny edulidiw enniy — “ele| uppreAegaisbuipinow Bunealial ayl usamiaq 9as am an|q ayi se
yo exjuiny uiswiia edueelAsAy uliu ‘ewnes el snexpas|g—aduels|p uwnine se an|q ‘anjq a1am saka asay
Ipnnw 1snn exjol ajrewnny ef asuyey ‘esiey el sjrewn "PaAAI] BYS 18U} 118y} 300| 0} A/eSSadau Jou Sem
-ny Apenwyad ens eduo elis awyl eNIF LYYONEIPY JO |[e JO uoew|gns B uaas Sem way) uj ‘saka sy
-aj1oeU ‘esueOe Isesjjad UeH “ejj0ArRy esuejee@eM JBUL 13010 PIp NOA ‘Janamoy Jay ul lulod suo
esFeWs|aleA Uey IARY BRLISY aW|0Y "esueeysiu eure uald ‘uaayy Jo Ape| GunoA ueqin

-dges ueewsjressslsed ueeisapnn isadni ef usajjel s UBUI SSSUSNOIOSUOD [BID0S Ul UO I8yun) Ou sem ays
uey nyeseAd essewes ennw ‘s||9310nA uaser) esuadiHeMl J0 usslaUIU o 8fe aU) Je pue 'Uay palapel} iou pey

Ugy mIay uojjw “Uey resasised Ui “luieisaw o UBW BIP! J0 01813 Lib.isioieU—usWaINal Ul B)) Jay
UOJOA3| UINOY ‘ISnou Byia] eisen edejieA IddI4BFPNI PeU 8US "SaA9SWaL] S)Iewsl sy Jo Sssuspnid
. . noese 8y} ul Ing ‘(pawloy A|90Jeds pue ysipliyo sem
£eISe INisiuuon| ejieAe) gjjiN — "sjanawy
Uo s ennw esseed usyaiw edisieleuy IYYONSYUEY Lofob_mccwE pawLo)-||am e Jo 1088 Bupeod
N YUURE N ﬁm ul Jou pareulblio ‘10IndopBUI Ue AQ Sluaweaul| Jay
“esuepiniexsiu uaiddees ‘BlioYy fpms jeusyew e Bunuaaid o semod Bulwieyd siyl
Hewiad uisesielsapa llressaised ‘liesaalsed IddASGARL 1oy yim BUISISAUOD USUM SBINJES} I8 JO SOURISGNS
Jliseleue ueelaue Wioy 8y} 89S 10U PIP NOA 10B} JO J8lewW e Sy 'paulq
-gjrewinny 1sadnJ esuenyan| uewel SLUBISaW B [YYONWD SIUSWS[S [eNPIAIPUI 83 Ul UBY) JBYTel J[aS)i uoreu
“essinRId 10SI19S UNIN . 1AuBNERd 1UBUENA) NSEAYRAIIWOD BU) Ul Ae| ‘1anamoy ‘Aires asoym ‘sreinaied Bul
1Ku uajo uas ejreed unxyd ussppEsUE Uewe) euESISIUI AI9A JO UONBUIGWOD By} Sem ays ‘Alleuosiad
brel Jellay e|lis ‘auLSSsyoN| Blee) LeelenpAL| enuifIOISIU JaY JO SSOUBISWNIIID 3U) PBLIYEM OUM BSOUL 0}
1qexinL ‘suuasyosijondoine Ueews|n LYoy us|o siueAlU0 UMOUY sem ‘s jo sinoy Buideaio auj Aq payipow
U Jnules uo unu erewnc sof ‘ens ‘eejue ean uopu PUE ‘AI9sioaid aiow ainjeu oYL 8BNS By} Jedu
nsaAufl iledey Lereery, ‘eje|l usjie 1us|LeIsaLd en KBl suonows asoym IB B sem NodUBMS BpLyIT
ellene) g|[e) ero3-uslouaH Mol uneld - IddASO0r ApIel sewoy,
cuspnaxuol Kq ‘safzg ampg JO vd v woay g
dewe) uey iseddan| eisiw fe) IsyAu|IA ‘issiestedeliny
ISserypiuonl saiw oxinL ‘ueAs3-usfousH eA IYYONAT

snopyry Keid s,JATY] SISYOIV WoOL] P

1]

c

c

"HOEL MHOJII AI9HhASE
exorreren ooHudu dorog
"HOW I9HAd L0 HIresery|

‘Juey) Jaylel o1pey 00| SeM pue ‘ade) OMOQAILI M OHWAL ‘0¥QOJ

-Ins 1o Buiuuibaq ou pey jey) ‘eniq Apeys pue Aisiw v *I9HO JIGHIIEIHE MBI J

SUBSS009 [8YdIN AQ Pa1a8||0D

‘nd£Q OMHWHE HIreMeL] |
I9HO98 HONEHIQ XedomAd g
‘udAee1r HOHHOTEdQ HOLE
MOhOIN KOIrd3LO BOOH
0MOQAILI ¥ OILLED OL-JY. |
MOWEBH HOHHIO8 MHOJ] |
exoIreren ooHudn dorog

(1061
Bdeans g7) «exrreren doundn dordg» ¢

*{I9HD MIrRERIOE NLOOHROE ||
uIuroxd mIdowAs orrnae ey
IIHUQAILI €M THOJII ATITed O |
jMI190 Q198X UOHT XMIIhAL Q)
*QHUQAIL g 9LO0HROd KITugod] |
‘UWRJIRII LI B UWUXUL nu
***9HO98 0 Wod1o8 O UIrdl |
‘MWBROITI BE MIre1od ¥ Mirmud] |
*IIW9L €M ognhdogor urrmudy|
MI19Q 19BN HOHY XUIMEKHUA
‘TaNnEe MIdOWAD oIrwos B
UITHITOXD OHHOIA[A "IN |

(1061 Bdeans gz ‘adLodardy1-))
HI70XD OHHIIIIJA] “1rMmIdd K» 7

¢erdanro erodog ¢ eirnxes wado]
m..mﬁzmd\v—\. XeLeMBE BH BHOW UM 19],

‘wdeH HITHLBNBEEDQ HOHIE LUITBE
*1BIAI I9HOEE SI9HIIOMOIIOM 209

*9OUILIKRE WOIIHEWAd BH)O QUHU)
*qo198 o1AHdA€RL & BOLUWad.Lo Irouky|

*9091 ¥ 1ovd0dg EWer doHded)]
909e0d HOHAOEA BH MOHOM UIIIKEY]

¢ewe)) eHgade]] ereIMareod Ol)
‘ewadol odee BH IBIMKITOI OLY]

“BILIOL BIOXE A BHUEL KeHORd)]
“errdowes dee u ‘oorad wada],

“eIARNOX WOIAdY amoemaooed 191,
“e10d1o U BINKAR AMALD AWOHAIOY]

‘erodos g Ank1) ‘Hooedyodur donog
“e1Ady v10dOY! ‘HOORAIRH X1TLO)

(1061 BdgEMY 87)
«eLAdN v10odoY *HAdRdUEH X19TLO)» *T°T

(Z061-1061) dwer Hondedxadu
0 UXHL) “orq drHedRIY g

i salreziq sjuewe s9| j 1y iy jH
‘How asinbxa aun Jauinofe,g
J0} a|qeldxaul,| Juaing

‘SaUe|ly SurenjAs xnap ap ulo| UON
SISSe Xnap e ‘sugwiioq 13
S12.11 e|-110S 92 anb uaiq IS

« j BIWSS SNOA UO(IS ‘SNOU-SUOSIE) STe\
t10,p zajred 19 ‘zawre,u snoA and
J102Ud XNaIW Z3||ied SNOA ‘INSISUOA -

¢ 9|qUIBSUd SUOINOW ‘Z3NOA SNOA IS
‘JuswigInsse ‘a|qeyooidal

juewy ‘sres au of ‘auezig -

j urezig uewe [9nb j IH i 1H i 1H -
"SUOJgWRIYQ SO SUBp BWW0D
SuOJINOW 2UO0Q *UO(1S3 dIel 37 -

‘arel 1se uonisodold e -
¢ SNOA-ZB|NOA ‘9|qUIBSUd SUOINON
‘xnojel sunsap sa| albjew i yeg

spuagopur So7 71

‘salglew sa| Iwred sayaAs nea,p si1al spuelb sa
‘nea,p s)al sa| aseixs,p Jajo|bues 13

SalgJe Sa| suep Xneas|o Sa| Jangl e} INd

‘neaq 1o a)s1} aun| ap Jrejd swled ny

‘aun| ap Jre|d Ne ajgw as uosueyd Ind| 13
Inayuoq Ina| e 811049 ap Jre,| sed Juo,u sj|
‘aunuoddo alA e| 18 Jnanburea Jnowe;]
INauIW apow 3| NS JUBIUBYD US N0

‘sanbse)jue} sjuawasIinBap sina| SNos SaISH |
1senb 18 ‘Juesuep 19 ‘Y| np wenop
‘sanbseweblaq 10 sanbsew juewleyd JuoA and
1s10yd abesAed un 1sa awe 3110\

aunj ap 1o “1°'1

(6981)
sojuees $939,] ‘AUIB[IdA [Ned ‘T

0ooz Ainc
SUass005) Y21\ £q pa1o2)j0)
s3drLIos pue
sagengue] SnoLIeA UI IN)RINI]

ing

XSL formatt

, using

Figure 2: Typesetting a collection of literature marked up according to the TEI

objects
228

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

PassiveTEX: from XML to PDF

Literature in various languages and scripts

Collected by Michel Goossens
July 2000 2 Asexcanp Biok, Cruxu o npexpacuoii same (1901-1902)

2.1 «Orgpix manpacen. [lopora kpyTa...» (28 exabps 1901)

1 Paul Verlaine, Fétes galantes (1869) ” Qoo by,

1.1 Clair de lune

Votre Ame est un paysage choisi Tepes nwicox, u 3aps 3sepra.
Que vont charmant masques et bergamasdques, Kpacra
Jouant du luth, et dansant, et quasi

Tristes sous leurs déguisements fantasques.

Ko nopi

Tout en chantant sur le mode mineur
L'amour vainqueur ef
Tis n'ont pas Lair de cro
Et leur chanson se mele au clair de lune,

Kynon expestires n aasypiyio noice.
Cumie orara pyssmes

rimcn.

Bre KooK ILe 30
Saumer vecuoll Gezsarary

Au calme clair de lune triste et beau,
Qui fait réver les oiseaux dans les arbres T 2
Et sangloter d'extase les jets d’eau, Tepext
Les grands jets d’eau sveltes parmi les marbres.

? Bopora ornepaa?

2.2 «SI sommen. Meamenno cxomumt...» (C.-Tlerep6ypr, 25 supaps 1901)

12 Les indolents i e
Bah ! malgré les destins jaloux, I ———— .
Mourons ensemble, voulez-vous ? Tipuusn fovepiibo

La proposition est rare. Tpnuran o o 3 weam
1 nesm ¢ serpos
- Le rare est bon. Donc mourons M rnxinm s men L
Comme dans les Décamérons. Tlposiys serwocrs o sayGue
~Hi! Hi! Hi| quel amant bizarre | [—
[———

Ha 3e3smio cyMepk cxomun

, je ne sais. Amant
iy M sesmoct sexasam cun

urément
Si vous voulez, mourons ensemble ?

2.3 «Berep npunec m3pamka...> (29 smraps 1901)
— Monsieur, vous raillez mieux encor SR rp—
Que vous n’aimez, et parlez dor ; Tecu &
Mais taisons-nous, si bon vous semble ! »

a
ex,

Si bien que ce soir-1a Tircis
Et Doriméne, & deux assis

Non loin de deux sylvains hilares,
Pesiun 3we3mbie o

Eurent linexpiable tort Potixo, zeso n ray6oro
Dajourner une exquise mort Tasan cxpymos o
Hi | hi! hi! les amants bizarres ! o ‘

3 From A Pair Of Blue Eyes, by Thomas Hardy

Elfride Swancourt was a girl whose emotions lay very near the surface. Their nature more
and as modified by the erecping hours of time, was known only to those who watched

combination of very interesting particulars, wh howey
 than in the individual elements combined. As e of fa

in the on s
nce of her features when conversing with her; and this charming

did not see the forr
power of preventing a material study of her lineaments by an interlocutor, originated not in the
formed manner (for her childish and scarcely formed), but in

monstrari gigito of idle men had not flattered her
1o further on in social consciousness than an urban

One point in her, however, you did notice: that was her
of all of her; it was not necessary to look further: ther

! s weze blue; blue as autumn distance bl
mouldings of hills and woody
that had no beginuing or surf

4 From Aleksis Kivi’s play Kihlaus

EENOKKI Vai Herrojen-Ex Tuliko mies juonikkaak japaiscksi, villityksi, tai mista
kieppasi han taman rohkeuden?

he age of nineteen or twenty she was
of fificen.
. Tn them was scen a sublimation

he blue we see between the retreating
s on a sunny September morning, A misty and shady blue,
, and was looked into rather than at.

JOOSEPPI Preivin kirjoitti Hertojen Eeva 12
Lyhyesti tahdon tieta anta:

alla mestarillent cilen illalla: Kraatari Aapeli

Tulks
jjamkaikkisen pillun

EENOKKI Ja mestaris tAmin luettuansa rupesi tuumailemaan ankarasti?

JOOSEPPI Pastoeraili, pasteeraili edestakaisin permannolla, raappien niskatukkaansa,

EENOKKI Kiheliaitsiph michen padssa; mutta sith on ihmettcle. — Milla tavalla hnonnistul

eraili hn,
n ja rupesi

JOOSEPPI Yalliph vasta leikki nousi. Kovin levoton oli mestarini. Milloin pa

‘milloin heitti han itsens taasen vuoteelle, mutta samassa pyhrahiti hin
uudestaan pasteerailemaan raappien aina niskaansa. Kolme kertaa ki
paatansa kaivolla, Han pelkasi aivoansa, nactte.

n valelemassa

EENOKKI Eiki ihme; silla onpa sita pehmitetty. Tuumaile ja harkitse, harkitse ja tuumaile
joka wusi mundi, leikkaus ja sauma, niin kysytaanpa viimein kuinka on paavarkin laita.
Mautta miclinpa kuulla kuinka kivi lopulta,

Lo B N M

©

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Figure 3: Typesetting a collection of literature marked up according to the TEI, using xmltex

<section> 35 </mfenced>
<title>A MathML example</title> 36 </mrow>

<para> 37 <mtext>.</mtext>

A MathML formula can be typeset inline, as here 38 </math>

<inlineequation> 39 </informalequation>

<math><mi>E</mi><mo>=</mo><mi>m</mi>
<msup><mi>c</mi><mn>2</mn></msup></math>

On lines 58 we use the inlineequation ele-

</inlineequation>, Einstein’s famous equation. ment, which contains a mathematical equation to
</para> be displayed inline, whereas line 19 to 39 show an
informalequation element, that contains mathe-

<para>
A mathematical equation can also be typeset in

matical material (a matrix equation) to be type-

display mode using DocBook’s set in display mode. The typeset result (with Pas-
<sgmltag class="element">informalequation</sgmltag> siveTEX, see below) is shown following the heading

element, as is shown in the following example

containing a matrix: .
</para> Figure 4.

<informalequation>

A MathML example in the lower left hand image of

The DocBook example and PassiveTEX We

<math> use the same two-step procedure (transform the
<mrow> XML file into XSL formatting objects and then type-

<mi>A</mi>
<mo>=</mo>

set with PassiveTEX as outlined previously in the

<mfenced open="[" close="]"> context of the TEI) here with DocBook. For the
<mtable><!-- table or matrix --> transformation of the XML DocBook markup into
<mtr> <!-- row in a table --> XSL formatting objects we use XSL stylesheets de-

<mtd><mi>x</mi></mtd><!-- table -->
<mtd><mi>y</mi></mtd><!-- entry -->

veloped by Norman Walsh [15]. We customized the

</mtr> stylesheet somewhat to handle the mathematics and
<mtr> add templates for a few elements. The customized

<mtd><mi>z</mi></mtd>
<mtd><mi>w</mi></mtd>

stylesheet foplus.xsl follows.

</mtr> 1 <?7xml version=’1.0’7>
</mtable> 2 <xsl:stylesheet
3 xmlns:xsl="http://wuw.w3.org/1999/XSL/Transform"

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 229

Michel Goossens and Sebastian Rahtz

4 version="1.0"
5 xmlns:fo="http://www.w3.org/1999/XSL/Format"

6 xmlns:m="http://www.w3.org/1998/Math/MathML">
7

8 <xsl:import

9 href="/usr/local/share/xsl/1.15/docbook.xsl"/>
10

11 V== skokokokokooksk ok ok ok sk ok ok ok sk sk ok ok sk sk sk ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok
12 customisations of Norm’s XSL FO stylesheets
13 sorokskokkokok sk kR ok sk ok sk sk skokskok sk ok ok sk kiR skskkskkskok sk ok kR —— >

15 <xsl:template match="m:math">

16 <xsl:copy>

17 <xsl:apply-templates mode="math"/>
18 </xsl:copy>

19 </xsl:template>

21 <xsl:template mode="math"

22 match="* | @+ | comment() |

23 processing-instruction() |[text () ">

24 <xsl:copy>

25 <xsl:apply-templates mode="math"

26 select="* | @x |

27 processing-instruction() | text()"/>

28 </xsl:copy>
20 </xsl:template>

31 <xsl:template

32 match="informalequation|inlineequation">
33 <xsl:element name="{name(.)}">
34 <xsl:apply-templates/>

35 </xsl:element>
36 </xsl:template>

38 <xsl:template match="programlisting" priority="4">

=N

39 <fo:block wrap-option="no-wrap"

40 whitespace-treatment="preserve"
41 font-family="monospace"

42 font-size="9pt"

43 space-before.optimum="4pt"

44 space-after.optimum="4pt"

45 text-align="start"

46 >

a7 <xsl:apply-templates/>

48 </fo:block>
49 </xsl:template>

51 </xsl:stylesheet>

Lines 3, 5 and 6 define the prefixes of the various
namespaces referenced: XSLT instructions (xsl),
XSL formatting objects (fo), and MathML elements
(m), respectively. On lines 89 we import Nor-
man Walsh’s XSL stylesheet docbook.xsl, which is
part of his DocBook distribution. It transforms ele-
ments in the DocBook namespace into XSL format-
ting objects. The xsl:import XSL element must
be placed at the beginning of the stylesheet if tem-
plate definitions further down in the stylesheet are
to take precedence over those defined in the im-
ported stylesheet docbook.xsl. Lines 31 to 36
specify that the elements informalequation and
inlineequation themselves and their contents are
to be copied through. Similarly (lines 21-29), the

MathML element m:math and the whole tree struc-
ture it supports have to be copied unchanged to the
result tree. This means that the MathML elements
must be dealt with by the application that interprets
the XSL formatting objects (in our case PassiveTEX
and xmltex). Finally, lines 38 to 49 show how we de-
fine the characteristics of the programlisting ele-
ment that is used to represent verbatim material and
is to be typeset as-is (similar to WTEX’s verbatim
environnement).

The two-step procedure to typeset the XML
source file dbxmml.xml uses the following com-
mands:

xt dbxmml.xml foplus.xsl fotex.xml
latex fotex.tex

The first line transforms the DocBook markup into
XSL formatting objects, that are then handled (as
well as passed through MathML markup) by Pas-
siveTEX (and xmltex) referenced on the second line.
Figure 4 shows the result of typesetting the complete
DocBook example document with PassiveTEX.

XML and PassiveTEX at the heart of the
Internet

Different ways of using an XML document in the
context of an electronic document repository are
shown in Figure 5. At the top right we represent the
XML document with its defining vocabulary (DTD
or XML Schema [18], [19] and [20]). This docu-
ment, which is encoded in Unicode, can be viewed,
searched, indexed, edited, validated without prob-
lems by any of a series of XML-aware applications
anywhere on the Internet. The XML document can
be typeset using TEX or its Unicode-aware variant
Omega [8]. Three methods are shown: (A) uses di-
rect interpretation by xmltex, an example of which
was shown in Figure 2, (B) uses XSL formatting ob-
jects and PassiveTEX, as described in the present
article, (C) transforms the XML source into a BTEX
file. This procedure was used for typesetting the
present article so that the resulting ITEX document
could be included in proceedings of TUG 2000 Con-
ference.

Alternatively the XML source can be trans-
formed into HTML for viewing with present-day
browsers (X2H via XSLT, see [7] for a detailed
discussion). In the (near) future, once browsers
can handle XML directly, we can probably skip
the HTML intermediate format and let CSS [16]
(possibly via XSLT) style the XML file directly for
display on the Web. Figure 5 also contains ar-
rows going from left (TEX) to right (XML/HTML,

230 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

PassiveTEX: from XML to PDF

Presentation markup

. Thepresentation part of MathML discribes the spacial layout of the different elements of a mathematical
A Docbook document featurlng a few formulae expression. MathML presenation markup has about thirty elements, that form the basis of a mathematical $yntax
Michel Goossens using classical visual layout model. Some fifty attributes provide precise control on the exact positioning offthe

Wednesday, 18 July 2000 various components of the math expression.

Abstract . .
List of presentation elements

This XML document is marked up according the the DocBook schema It shows a few elements of the Do¢Book

vocabulary, as well as a couple of of expressions where we used MathML markup.* Token elements

mi identifier

mn number
The Docbook model mo operator, fence, separator
DocBook ??? proposes an XML model ??? for marking up technical documents. It is particularly well-suited for meext text
software reference guides and computer equipment manuals. mspace/ space

ms string literal
Docbook contains hundreds of elements to markup up clearly and explicitly the different components of ap mchar non-Ascii character reference
electronic document (book, article, reference guide, etc.), not only displaying its hierarchical structure but|also mglyph add new glyph to MathML

indicating the semantical meaning of the various elements. The structure of the DTD is optimized to allow for
customization, thus making it relatively straightforward to add or certain elements or 0« General layout schemata
change the content model for certain structural groups, or to restrict the value that given attributes can take.

mrow group any number of sub-expressions horizontally
Norman Walsh developed a set of XSL stylesheets to transform XML documents marked up using the DocBook ¢, form a fraction from two sub-expressions
E;E :;!g;is‘ll'glcl;igtr ;(jl;;lj:)rmamng objects. The latter can be interpreted by PassiveTeX and xmitex to obthin msart form a square root sign (radical without an index)
: mroot form a radical with specified index
mstyle style change
. merror enclose a syntax error message from a preprocessor
MathML and mathematics mpadded adjust space around content
MathML ??? is a W3C recommendation whose aim is to encode mathematical material for teaching and mphantom make content '"V'S'P‘e but preserve its size
scientific communication at all levels. mfenced surround content with a pair of fences
menclose enclose content with a stretching symbol such as a long division sign
MathML consists of two parts: presentation (notation) et contents (meaning). MathML permits the convergion
of mathematical i ion into various repi ions and output formats, including graphical displays| ¢ Script and limit schemata
speech synthesizers, computer algebra programs, other mathematics typesetting languages, such as TeK, plain
text, printers (PostScript), braille, etc. msub attach a subscript to a base
msup attach a superscript to a base
MathML has support for efficiently browsing long and complex mathematical expressoins and offers an msubsup attach a subscript-superscript pair to a base
extension mechanism. MathML code is human readable, easy to generate and process by software applications, munder attach an underscript to a base
and well suited for editing (even though MathML syntax might appear unnecessarily verbose and complex to the .
human reader). mover attach an overscript to a base
munderover attach an underscript-overscript pair to a base
The W3C MathMI Working Group is actively preparing the second version of the MathML Specification, which mmultiscripts attach prescripts and tensor indices to a base

is planned to be released in the second half of 2000. Two public initiatives that allow the display of MathML X
code direcly and that are under active development are W3C's Amaya and Mozilla. Commercial programs, $uch Tables and matrices
as IBM's techexplorer (a plugin for Netscape or Microsoft's Internet Explorer) or Design Science Webeq (fising

the Java applet technology) can display MathML formulae in present day browsers. Several computer algebra ~ ™table row ?" atable or malr?x with a label or equation number
programs, e.g., Mathematica, or editors using e.g., mathtype, offer a user-friendly interface to enter, prodjice or ~ mtr row in a table or matrix
read mathematics material marked up in MathML. mtd one entry in a table or matrix

calculus and vector calculus int, diff, partialdiff, lowlimit, uplimit, bvar, degree,

maligngroup/andmalignmark/ alignment markers
divergence (MathML 2.0), grad (MathML 2.0), curl (MathML 2.0),

« Enlivening expressions laplacian (MathML 2.0).
) bind b theory of sets set, list, union, intersect, in, notin, subset, prsubset,
maction ind actions to a sub-expression notsubset, notprsubset, setdiff, card (MathML 2.0).
sequences and series sum, product, limit, tendsto.

elementary classical functionexp, 1n, log, sin, cos, tan, sec, csc, cot, sinh, cosh, tanh, sech,
A MathML example csch, coth, arcsin, arccos, arctan, arccosh, arccot, arccoth,
arccsc, arccsch, arcsec, arcsech, arcsinh, arctanh.

A MathML formula can be typeset inline, as hetE = mc? , Einstein's famous equation. statistics mean, sdev, variance, median, mode, moment.

inear algebra vector,matrix, matrixrow,determinant, transpose, selector,

[Igebi d 1

element, as is shown in the following example containing a matrix: vectorproduct (MathML 2.0), scalarproduct (MathML 2.0),
vy outerproduct (MathML 2.0).

A= [z ow . semantic mapping element annotation, semantics, annotation-xml.

A mathematical equation can also be typeset in display mode using DocBooksrmalequation

constant and symbol element (all MathML 2.0jntegers, reals, rationals, naturalnumbers,
complexes, primes, exponentiale, imaginaryi, notanumber,
true, false, emptyset, pi, eulergamma, infinity.

Note the two attributes open and close ontifenced element to specify the style of the braces to be used.,
The MathML Specification ??? contains a detailed list of all possible attributes associated to each preserttation

element.
The matrix example given in the preceding section in its presentation markup form if recoded here using cgntent
markup.

Content markup
<reln>

The meaning of mathematical symbols (e.g., sums, products, integrals) exists independently of their renderinga/ >
Moreover the presentation markup of an expression is not necessarily sufficient to evaluate its value and |isesigra</ci>
calculations. Therefore, MathML definesnrent markup to explicitly encode the underlying mathematical <matrix>

structure of an expressoin. <m§tr1erW>))
<cisx</cis<cisy</ci>

Itis impossible to cover all of mathematics, so MathML proposes only a relatively small number of <4:2::§;3‘”>
< >

commonplace mathematical constructs, chosen carefully to be sufficient in a large number of applicationg. In...; ;. _ i e /cis
addition, it provides axtension mechanism for associating semantics with new notational constructs, thus </matrixrows
allowing these to be encoded even when they are not in MathML content element base collection. </matrix>

</reln>
MathML's basic set of content elements was chosen to allow for simple coding of most of the formulas usgd in

secondary education, through the first year of university. The subject areas targeted are arithmetic, algebfa, logic
and relations, calculus and vector calculus, set theory, sequences and series, elementary classical functipns, and
statistics linear algebra. Using this basic sets more complex constructs can be built.

Bibliographic references

The list of the content elements of MathML follows.

token elements cn, ci, csymbol (MathML 2.0). [XML98] World Wide Web Consortium, Tim Bray, Jean Paoli, and Michael Sperberg-McQueen.
basic content elements apply, reln (deprecated), fn (deprecated for externally Extensible Markup Language (XML) 1.0 [http:/fww y w3.0rg/TR/REC-xml/]. See also the
defined functions), interval, inverse, sep, condition, | annotatedversion of the XML [http:/www.xml Lhtm]..

declare, lambda, compose, ident. § .
) . . [WALSH99] Norman Walsh and Leonard Muelnemocbook. The Definitive Guide.. O'Reilly & Associates,
arithmetic, algebra and logic quotient, exp, factorial, divide, max and min, minus, plus, [|nc. Copyright © 1999. 1-56592-580-7. You can also consult the
power, rem, times, root, ged, and, or, xor, not, implies, forall, | gnjine version of the DocBook reference guide [http://www.oasis-open.org/docbook/.html] and download the
exists, abs, conjugate, arg (MathML 2.0), real (MathML 2.0), | pochook DTD and XSL stylesheets [http:/nwalsh.com/docbook/index.html]..
imaginary (MathML 2.0), 1cm (MathML 2.0).
relations eq,neq, gt, 1t, geq, leq, equivalent (MathML 2.0),approx (MathML | [MATHML99] World Wide Web Consortium, Patrick lon, and Robert Miner.
2.0).

Mathematical Markup Language (MathML[tm]) 1.01 Specification [http:/Awvww.w3.0rg/TR/REC-MathML/]. .

Figure 4: Typeset result of an article marked up according to the DocBook schema

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 231

http://www.w3.org/TR/REC-xml/
http://www.xml.com/axml/axml.html
http://www.oasis-open.org/docbook/.html
http://nwalsh.com/docbook/index.html
http://www.w3.org/TR/REC-MathML/

Michel Goossens and Sebastian Rahtz

xmltex (direct interpretation)

X2L (via XSL)

Y
A) C) B)

LaTeX

macros, styles

X2H (via XSL)

TeX

multimedia

audio-video Internet

Figure 5: XML as the central part of a document strategy for the Web

232 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

browsers). They indicate programs to transform ex-
isting IATEX source documents into XML (using one
or more standard DTDs) to store the information for
archiving purposes. The vertical ellipse in the cen-
tre represents other editing tools, such as Adobe’s
FrameMaker [1] and Corel’s WordPerfect [6], that
allow or are expected to allow import/export of
XML documents. Thus, XML genuinely becomes
the central element in a global strategy for man-
aging electronic documents by allowing information
to be stored, saved, shared, and used by different
applications on all computer platforms. PassiveTEX
can be truly considered as a much-needed comple-
ment to XML for bringing typographic excellence to
the Web, just as Knuth with TEX introduced the
same excellence to the emerging electronic printing
industry a generation ago.

References

[1] Adobe. FrameMaker 6.0. http://www.adobe.
com/products/framemaker.

[2] Apache XML Project. FOP, XSL Formatting
Object Processor in Java. http://xml.
apache.org/fop/

[3] Lou Burnard and C.M. Sperberg-McQueen.
TEI Guidelines for Electronic Text Encoding
and Interchange. http://etext.lib.
virginia.edu/tei.html

[4] David Carlisle. zmltez A non validating
(and not 100% conforming) namespace aware
XML parser implemented in TEX. Can be
downloaded from CTAN in the directory
macros/xmltex/.

[5] James Clark. xt, an implementation in
Java of XSL Transformations. http:
//www.jclark.com/xml/xt .html

[6] Corel. WordPerfect Office 2000. http:
//www.corel.com/0ffice2000 (Microsoft
Windows) and http://linux.corel.com/
products/wpo2000_linux (Linux).

[7] Michel Goossens and Sebastian Rahtz. The
KTEX Web Companion. Addison-Wesley,
Reading, 1999.

[8] Yannis Haralambous and John Plaice. The
latest developments in Omega. TUGBoat,
17 (2), pages 181-183, June 1996. (See also
http://www.gutenberg.eu.org/omega/).

[9] John Hobby. A user’s manual for MetaPost.
Computer Science Technical Report 162,
AT&T Bell Laboratories, 1992.

PassiveTEX: from XML to PDF

[10] International Organization for
Standardization. Information
Technology—Processing
Languages—Document Style Semantics
and Specification Language (DSSSL). First
edition, 1996 International Standard ISO/IEC
10179:1996.

[11] Sebastian Rahtz. Passive TEX http:
//users.ox.ac.uk/"rahtz/passivetex/

[12] Sebastian Rahtz. XSL stylesheets for TEI
XML. http://users.ox.ac.uk/ " rahtz/tei/

[13] The Unicode Consortium. The Unicode
Standard, Version 3.0. Addison-Wesley,
Reading, 2000.

[14] Norman Walsh and Leonard Muelner.
DocBook. The Definitive Guide. O'Reilly &
Associates, Inc., Sebastopol, USA, 1999. See
also http://nwalsh.com/docbook/index.
html.

[15] Norman Walsh. XSL DocBook Stylesheets.
http://nwalsh.com/docbook/xsl/index.
html

[16] World Wide Web Consortium. Hakon Wium
Lie, Bert Bos, Chris Lilley and Ian Jacobs
(editors). Cascading Style Sheets, level 2.
http://www.w3.org/TR/REC-CSS2.

[17] World Wide Web Consortium. Patrick Ion
and Robert Miner (editors). Mathematical
Markup Language (MathML[tm]) 1.01
Specification. http://www.w3.org/TR/
REC-MathML/.

[18] World Wide Web Consortium, David C.
Fallside (editor). XML Schema Part 0:
Primer (W3C Working Draft). http:
//www.w3.org/TR/xmlschema-0.

[19] World Wide Web Consortium, Henry S.
Thompson, David Beech, Murray Maloney,
Noah Mendelsohn (editors). XML Schema
Part 1: Structures (W3C Working Draft).
http://www.w3.org/TR/xmlschema-1.

[20] World Wide Web Consortium, Paul V. Biron,
Ashok Malhotra (editors). XML Schema
Part 2: Datatypes (W3C Working Draft).
http://www.w3.org/TR/xmlschema-2.

[21] World Wide Web Consortium, Jon Ferraiolo
(editor). Scalable Vector Graphics (SVG)
1.0 Specification (W3C Working Draft).
http://www.w3.org/TR/SVG.

[22] World Wide Web Consortium. Tim Bray,
Jean Paoli, and C. M. Sperberg-McQueen

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 233

Michel Goossens and Sebastian Rahtz

(editors). Extensible Markup Language (XML)
1.0. http://www.w3.org/TR/REC-xml. An
annotated version of the specification is at
http://www.xml.com/axml/axml.html.

[23] World Wide Web Consortium, James Clark
(editor). XSL Transformations (XSLT),
Version 1.0 (W8C' Recommendation 16
November 1999). http://wuw.w3.org/TR/
xslt.

[24] World Wide Web Consortium, Stephen Deach
(editor). Eztensible Stylesheet Language
(XSL), Version 1.0 (W3C Working Draft).
http://www.w3.org/TR/WD-xs1.

Michel Goossens Sebastian Rahtz

234 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Fast scanners and self-parsing in TEX

Pedro Palao Gostanza
Universidad Complutense de Madrid
Edificio de CC. Matemaéticas,
Ciudad Universitaria s/n,

Madrid 28040,

Spain

ecceso@sip.ucm.es

Abstract

In this paper we will explain how to build fast scanners for regular languages in
TEX. The resulting scanners can be composed with different parsers if they are
written as self parsers. This parsing technique allows us to choose the syntactic
rigour: from loose parsers with almost no syntax checks, good for pretty-printers,
to the strict parser needed to write a compiler.

Introduction

It is customary to embed little languages in TEX;
KTEX picture environment, Xy=pic [9] and TESIA [2]
are illustrative examples. TEX can process these
languages in a reasonable fast manner because their
syntaxes are chosen with TEX’s abilities in mind;
for instance, arguments are surrounded with braces
or delimited with fixed characters. Also, programs
written with these little languages are usually short.

Sometimes, TEX has to process programs writ-
ten in bigger languages, or in languages designed
without paying attention to TEX. Pretty-printing
structured programming languages is the ubiquitous
example [6, 11], but we also meet the same problems
when trying to typeset HTML directly or when do-
ing some Cronopio [3] activities like executing pro-
grams written in high level languages [5] within TEX.
Programs to cope with these problems are written
around a slow character by character processing en-
gine. The \FIND macro ([4, 10]), possible in a modi-
fied or subtle variant, is the kernel of this processing
engine. This is the method adopted in Doumont’s
pretty-printer [6] and Woliriski’s scanners [11]. Slow
processing is particularly striking here because pro-
grams in these languages can be really long.

We became interested in this problem several
years ago, while doing just another Pascal pretty-
printer [7]. Since we found no trick to build a
fast scanner, we simply put the burden on the
user who was forced to write a backslash before
every identifier. In this way, every identifier was a
control word and we could take advantage of TEX’s
scanner. Obviously, this was a poor design decision.
Fortunately, one year ago we found a trick to write

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

fast scanners in TEX; to our knowledge, it seems to
be an unused TEXnique.

The idea to make a fast scanner in TEX is
not to check every character. But, since a scanner
must see every character, the implementation must
use burst like processing: the scanner checks some
characters, but TEX internal machinery eats the
rest. In this way, the final complexity will be a small
constant (due to TEX internals) multiplying a linear
factor, plus a big constant (due to scanner checks)
multiplying a sub-linear factor. We will call every
scanner that works without checking every character
in its input a fast scanner.

Our trick to make a fast scanner is based on
active characters and \edef. We will illustrate
it with Pascal in the next section. The scanner
engine is spread along all the active characters;
each character knows how to keep the scanner alive.
This organization, where every token knows what
to do, and there is no centralized set of processing
macros, is what we call self-parsing. Self-parsing
can be used to build scanners and parsers. Its
two main advantages are: firstly, it allows to split
scanners and parsers like in a traditional compiler,
and secondly, the syntactic rigour can be chosen.
The first advantage allows us to write a definitive
Pascal scanner that can be used to feed a pretty-
printer parser, a compiler parser, etc. The second
allows us to write a strict parser for a compiler and
a loose parser for a pretty-printer with this same
technique. Of course, each parser will have to be
developed from scratch.

To illustrate all these ideas we will use, as a
running example, a small Pascal subset that we

235

Pedro Palao Gostanza,

Program ::= program Id ; Block .

Block ::= Decls begin Stats end

Decls ::= (empty) | Vars Decls

Vars ::= var SeqVar SegsVar

SeqsVar ::= (empty) | SeqVar SeqsVar

SeqVar :=1Ids : Id ;

Ids ::= Id IdsExt

IdsExt ::= (empty) | , Ids

Stats ::= Stat StatsExt

StatsExt ::= (empty) | ; Stat StatsExt

Stat ::= 1d := Expr
| Id OptArgs | if Expr then Stat Else
| while Expr do Stat | begin Stats end

Else ::= (empty) | else Stat
OptArgs = (empty) | (Args)
Args ::= Expr ArgsExt
ArgsExt ::= (empty) | , Args
Expr ::= Rel

Rel ::= Term RelExt

RelExt ::= (empty) | = Term | <> Term
| < Term | <= Term | > Term | >= Term

Term ::= Factor TermExt

TermExt ::= (empty)
| + Factor TermExt | - Factor TermExt

Factor ::= Atom FactorExt

FactorExt ::= (empty) | * Atom FactorExt
| div Atom FactorExt | mod Atom FactorExt

Atom :=1Int | Id | (Expr) | - Atom

Id ::= Letter LettersOrDigits

LetterOrDigits ::= (empty) | Letter LetterOrDigits
| Digit LettersOrDigits

Int ::= Digit Digits

Digits ::= (empty) | Digit Digits

Digit :=0 | --- | 9

Letters :=a |

Figure 1: Mini-Pascal syntax

will call ‘mini-Pascal.” Its syntax can be found in
Figure 1.

The rest of this paper is organized as follows.
In the next section, we explain how to write a fast
scanner for mini-Pascal. Although its main idea can
be reused, each language has its own tricks that
speed the scanner even more; part of this section
is devoted to explore useful tricks for Pascal and
other structured programming languages. Next we
will devote two sections to building a pretty-printer

and a compiler for mini-Pascal. Both parsers work
on top of the same scanner. Since pretty-printing is
a widely studied area, the goal of our pretty-printer
is not how to pretty-print a programming language
but how to build a loose self-parser. Obviously,
the goal of the compiler is how to built a strict
self-parser. The section ‘Other uses’ reviews other
projects where we have used fast scanners and self-
parsers. Finally, we conclude and suggest some
future work.

A Pascal scanner

By far, identifiers and keywords account for most
of the characters in a Pascal program. Letters are
used exclusively for this purpose.! Digits can also
appear in identifiers, but do so rather seldom; they
almost exclusively appear in numbers. Every other
character, apart from white space, is seldom used.
White space has a strange occurrence pattern: every
line starts with a long white sequence (just after
an end of line), and then single spaces split other
tokens.

In order to get really good sub-linear behavior,
a scanner should operate checking no character in
any identifier (including keywords), and no space in
every start-of-line white sequence.

The scanner will change each Pascal token into
a TEX control word: the identifier Foo to \Id{Foo},
the number 123 to \Int{123}, the keyword begin
to \Begin, := to \Assign, etc.

Every character but roman letters will be ac-
tive; that is, ,, ., :, ;, (), +, -, *, = <, > 0,
..., 9, and blanks are active characters. Forget for
a moment digits and symbols composed with more
than one active character, like <>. So, every identi-
fier is composed only with letters (non-active char-
acters) and is surrounded with active characters. To
catch these identifiers without an explicit character-
by-character analysis, it is enough to start a capture
at the end of each active character and to finish this
capture at the beginning of each active character.
The macro \catchId starts the capture:

\def\catchId{\edef\mayId{\iffalse}\fi}

This macro store every following characters in \mayId,
while expanding active characters. To finish this
capture an active: character uses

\def\endId{\iffalse{\else}\fi}

This capture does not always success; for example,
there can be two active characters one after the
other. Since every character that cannot take part in
an identifier is active, the capture will be successful
if and only if \mayId is not \empty.

1 Not exactly: e and E are used in floating point literal
numbers.

236 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

\def\empty{}
\def\flush{\ifx\mayId\empty\else
\expandafter\Id\expandafter{\mayId}\fi}
These three macros are all a white space must do:
\def\blank{\endId\flush\catchId}

This is also needed at the beginning and the end of
the scanner
\def\beginScanner{\activeChars\defActive
\catchId}
\def\endScanner{\endId\flush}
Other active characters will produce, in addition, its
own Pascal token:

\def+{\endId\flush\Plus\catchId}
\def.{\endId\flush\Dot\catchId}

Of course, some identifiers are keywords, which
introduces two problems. First, it is necessary to
check every identifier in order to test whether it is a
keyword or a regular identifier. Several TEXniques
to implement sets may be used, for example:

e For each keyword k there is a control word
\kw@k trivially defined (but not \relax). Check-
ing whether an identifier is a keyword is simple
and fast:

\def\ifIsNotKW#1{\expandafter\ifx

\csname kw@#1\endcsname\relax}

But each new identifier introduces a new entry
in TEX control sequences table. Since TEX
never deletes entries from this table, we can
exhaust TEX limited hash memory.

e All keywords can be stored in a macro:

\def\kws{|begin|end|if|...|whilel|}
Checking an identifier is tricky and long

\def\ifIsNotKW#1{\def\aux
##1 | #1 | ##2\relax{\ifx\relax##2\relax}/
\expandafter\aux\kws#1|\relax}

but it works in a constant amount of memory.

Since we want to build fast scanners, the first
technique is preferable.

The second problem arising with keywords con-
cerns capitalization. Pascal is case insensitive, so we
should be capable of recognizing an identifier or key-
word without regard to its capitalization. This can
be easily solved invoking a \lowercase over those
characters stored in \mayId. Since some parsers care
about capitalization, but others do not, it is better
to change the identifier Foo into \Id{foo}{Foo} in-
stead of only to \Id{Foo}.

Part of the speed has already been achieved.
The other acceleration source is to deal with spaces
at the beginning of lines. The trick is to recover
the original category codes of spaces at end of lines.

Fast scanners and self-parsing in TEX

Then we look for the next TEX token so that TEX
eats all the intermediate spaces.

\def\eoln{\endId\flush\catcode‘\ =10 \eolnB}
\def\eolnB#1{\catcode‘\ =\active\catchId#1}

Category code 9 (ignored character) also works.

To consider numbers and composed symbols,
an state needs to be added to the scanner; we will
call it ‘scanner state’ because, latter in the paper,
some other states will come into play. The scanner
state due to numbers is a macro \mayInt where
its digits will be stored. Composed symbols need
two macros: \maySym and \symCode. \symCode is a
number that uniquely determines what characters
are in the current symbol; it is 0 if there is no
character, or a non-zero integer for each of the three
characters that can start composed symbols:

\chardef\noCode=0
\chardef\colonCode=1
\chardef\lessCode=2
\chardef\greaterCode=3

\maySym stores which token will be generated if there
is no character extending the current symbol. For
instance, a colon does not generate a \Colon token
directly; instead, it is stored, so that, if there is
an equal immediately after it, an \Assign will be
generated.

\def : {\endId\flush
\gdef\maySym{\Colon}\glet\symCode\colonCode
\catchId}

But what if there is an identifier followed by an
space; the \Id token will be generated before the
\Colon; it is even possible that the \Colon get
lost. The solution is simple: \flush must not only
take care of captured identifiers but also of delayed
symbols and stored numbers.

\def\flush{\flushSym\flushInt\flushId}
\def\genSym{\maySym\glet\symCode\noCode}
\def\flushSym{\ifnum\symCode=\noCode
\else\genSym\fi}
\def\genInt{\expandafter\Int\expandafter
{\mayInt}\glet\mayInt\empty}
\def\flushInt{\ifx\mayInt\empty\else\genInt\fi}
\def\genId{\expandafter\Id\expandafter{\mayId}}
\def\flushId{\ifx\mayId\empty\else\genId\fi}

Characters that can be in the second place of a com-
posed symbol cannot simply \flush; they should
flush integers and identifiers, but can only flush de-
layed symbols if there is something intertwined:
\def\flushInter{’,

\ifx\mayInt\empty\else\flushSym\genInt\fi

\ifx\mayId\empty\else\flushSym\genId\fi}
The definition of ‘>’ is illustrative because it can be
the first and the second character in a composed
symbol:

\def>{\endId\flushInter
\ifnum\symCode=\1lessCode

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 237

Pedro Palao Gostanza,

\glet\symCode\noCode \NotEqual
\else\flushSym\gdef\maySym{\Greaterl}/,

\glet\symCode\greaterCode
\fi\catchId}

Digits do important work to keep the scanner
alive, but they do not need to flush because a
character will follow that will cause flushing. The
main digit task is to know whether it is part of a
number or an identifier.

\def\digit#1{\endId
\ifx\mayInt\empty
\ifx\mayId\empty \gdef\mayInt{#1}\catchId
\else \catchId\mayId#1\fi
\else\ifx\mayId\empty
\xdef\mayInt{\mayInt#1}\catchId
\else\errmessage{An identifier cannot
start with digits}\catchId

\fi\fi}

This completes our fast scanner. But a little
problem remains. Sometimes, the program we want
to parse is not embedded in the document sources,
but stored in a separate file. Invoking \input inside
an scanner context (\beginScanner\endScanner)
has no use because backslash will loose its usual
meaning inside this context. The usual roundabout

\expandafter\beginScanner\input p.pas \endScanner

does not work either (read \@@input instead of
\input if thinking in BTEX) because the last active
character in p.pas launches a \catchId that will
be closed in \endScanner after the end-of-file, i.e.,
the last active character starts a definition that will
be closed pass the end of the file. Since TEX does
not allow a definition to span across files, we will
get the error “File ended while scanning definition
of \mayId.” Fortunately, TEX appends an end-of-
line character to the last line of every file, if absent;
so the last character in every file processed with
TEX is an end-of-line. We are going to put on
EOLN character the burden of crossing the end-of-
file boundary before to launch \catchId. Of course,
if not at the end of a file, an EOLN should behave as
before. The cheapest manner to cross the end-of-line
boundary is with \futurelet:

\def\eoln{\endId\flush\catcode‘\ =9

\futurelet\aux\eolnB}
\def\eolnB{\catcode‘\ =\active\catchId}

Incidentally, \futurelet makes leading spaces (ig-
nored characters) in the next line disappear.

A Pascal pretty-printing

Now, we have our scanner ready. Let us use it to
build a pretty-printer. The pretty-printer is respon-
sible for choosing a correct definition for the tokens
that the scanner generates. These definitions can-
not look forward following tokens because the scan-
ner may not have produced them yet and because

there can be TEX control words (that remain to be
evaluated) before the next token. So the pretty-
printer must conform to the self-parsing technique.
Of course, each token can change the pretty-printer
state, in order to produce a visible effect, to prepare
the environment for the next tokens, and to commu-
nicate to future tokens its previous occurrence.

Self-parsing is such a natural technique to use
in a pretty-printer that it has been discovered and
used in several pretty-printers before (at least in [6]
and in [7]). But it has never been used in a
pure manner, neither recognized as a useful general
parsing technique. So, our emphasis will be to
explain how self-parsing can be used to build a loose
parser. Pretty-printer output will be very simple,
just the raw style in [7]: every statement in a line;
keywords are in bold face; identifiers are in italics;
every expression, assignment and procedure call is
typeset in TEX math mode. The formatted program
to compute z™, for x = 3 and n = 9, follows:

program power;

var z, n: integer;
zl, nl, pow: integer;
begin
T 3;
n«—9;
Tl —
nl « n;
pow +— 1;
while n7 > 1 do begin
if n7 mod 2 =1 then pow «— pow X zI;
xl «— x1 X z1;
nl «— ni div 2
end;
write(pow)

end.

To keep the pretty-printer alive, every token
must do some work. Some, like parenthesis, do a
really simple work, without bothering about where
it is used.

\def\OpenPar{ (}
Others, like assignments, do a simple work too, but

require that other tokens have already opened a
math mode.

\def\Assign{\leftarrow}

An assignment in an incorrect place will cause a
“Missing $ inserted” error; this is a syntactic check
with a bad error message.

Identifiers behave differently if placed at the
beginning of an statement or inside an expression.
In the first case, they must open a math mode; in the
second case, they only have to write themselves. The
best agreement is to use a \ifinsideexpr condition

\let\ifinsideexpr\ifmmode

238 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

\def\openExpr{\ifinsideexpr\else$\fi}
\def\closeExpr{\ifinsideexpr$\fi}
\def\Id#1{\openExpr\hbox{\it#1}}

If a token can appear after an expression it should
ensure that the expression is closed; for example:

\def\Semicolon{\closeExpr;\par}

But not every semicolon behaves in this way;
the semicolon after the program name must indent
following constructions a bit. There are three
techniques to solve this problem:

Conditions technique in which we have a global
condition \ifafterprogram, which the defini-
tion of \Program sets true. Other definitions
set it false; since there is only one semicolon af-
ter a program name, the definition of semicolon
is the best place to set it false.

Redefinition technique in which we have one
definition for each possible behaviour. Other
tokens redefine \Semicolon according to the
expected behaviour in an immediate future.

Steps technique in which we have a number, a
step holder, that records the syntactic construc-
tion where the present token occurs. Each to-
ken can adjust its behaviour according to the
value in the step holder, and change it as nec-
essary.

These three techniques are equivalent, but depend-
ing on the problem one is easier than the others.
As the syntactic checks become stricter, one should
move from the first to the third. These three tech-
niques can be used simultaneously; for instance, in
the above fast scanner we have mixed conditions and
steps in order to build symbols composed with more
than one character.

Usually a stack is needed in order to store values
(before changing a condition, making a redefinition
or assigning to the step holder) that will be restored
when a nested construction ends. For a pretty-
printer, TEX grouping is enough, but for stricter
parsers it is better to maintain an explicit stack.

The following macros illustrate a pretty-printer
built with redefinition technique.

\def\Program{{\bf program}\
\let\Begin\BeginBlock
\let\Semicolon\SemicolonProgram}

\def\SemicolonProgram{\closeExpr;\par\indent
\let\Semicolon\SemicolonBlock}

\def\SemicolonBlock{\closeExpr;\par}

\def\BeginBlock{\par\outdent
{\bf begin}\par\indent
\let\Begin\BeginStat}

\def\BeginStat{\ {bf begin}\par\indent}

Fast scanners and self-parsing in TEX

A Pascal compiler

Implementing a pretty-printer with self-parsing is an
easy task, easier than doing it with a classical and
strict parser. So, we wonder how the effort needed to
write a self-parser evolves when increasing syntactic
checks. We thought that the best test was to write
a mini-Pascal compiler.

We envisaged the following organization. To
compile a program, it must be surrounded with the
pair \beginPC/\endPC. A program called power, for
instance, will be translated to a TEX macro called
\power, that comprises an instruction sequence for
a virtual stack machine. Whenever this macro is
called, its instructions get executed, and everything
written (with write) appears inserted in the text.

Since a compiler needs to ensure a complete
syntactic conformance, we will use the step tech-
nique to produce its parser. But which are the
correct steps? This question has already been an-
swered: classical parsing techniques, like LL and LR,
rewrite a context free grammar as an automaton.
This automaton states are the steps we were look-
ing for.

Here we will work out how to build an LL self-
parser because it is simpler than LR parsing and
Pascal has an (almost) LL grammar. Nevertheless,
the main idea and many details can be reused in an
LR self-parser.

The construction of an LL self-parser for a
given grammar has been automated with a simple
program (written in Haskell [8]) called parTEX.
Here we are explaining how to do by hand what
this program already does alone. This program
expects an LL grammar annotated with semantic
actions and semantic checks. Figure 2 shows the
production for mini-Pascal statements. Semantic
actions are surrounded with braces and semantic
checks are also preceded with a question mark. Both
semantic actions and checks use several auxiliary
macros that read and modify the compiler state; an
explanation of their implementation and behaviour
is beyond the scope of this paper, but their names
are chosen to evoke its meaning (sequences without
spaces or end-of-lines are just one macro call with its
arguments). Semantic actions (checks) immediately
following a terminal that carries information, like an
14, get this information through parameters. So, in
the semantic actions (checks) following Id, #1 is the
identifier down-cased string and #2 (not used) is the
identifier string.

Then, following [1], we add state numbers be-
tween every symbol that appears in each production
right hand side. The state numbers for the produc-
tion in Figure 2 (without semantic actions) are:

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 239

Pedro Palao Gostanza,

Stat ::=
Id 7{\isVarQ{#1}}
{\memDir{#1}\aMemDir
\emitCode{\1lit{\aMemDir}}}
":=" Expr {\emitCode{\putl}}
| Id {\def\procToCall{#1} \noa=0 }

OptArgs {\iftrue \isProcQ\procToCall\noa
\procDir\procToCall\noa\aProcDir
\emitCode{\call{\aProcDir}}}

\else \errmessage{No procedure
"\procToCall" with \number\noa\space
arguments}\fi}

| "if" Expr {\newLabell\labelse \newLabel\labend
\emitCode{\jzero{\number\labelse}}}
"then" {\bgroup}

Stat {\egroup \emitCode{\jump{\number\labend}}/

\emitCode{\label{\number\labelsel}}}
Else {\emitCode{\label{\number\labend}}}
| "while" {\newLabel\loopL \newLabel\endloopL
\emitCode{\label{\number\loopL}}}
Expr {\addCode{\jzero{\number\endloopL}}}
"do" {\bgroup}
Stat {\egroup \addCode{\jump{\number\loopLl}}
\emitCode{\label{\number\endloopL}}}
| "begin" Stats "end"

Figure 2: Statement production

Stat ::=

Id 42 ":=" 43 Expr 44

Id 45 ArgsOpt 46

"if" 48 Expr 49 "then" 50 Stat 51 Else 52
"while" 54 Expr 55 "do" 56 Stat 57
"begin" 59 Stats 60 "end" 61

There is an obvious map between semantic ac-
tions (checks) and automaton states: every seman-
tic action (check) occurs in an automaton state and
an automaton state may have one semantic action
(check). The semantic action (check) occurring in
state n is stored in macro \sa@n (\sc@n). This
macro has as many parameters as information bun-
dles carried by the token preceding the semantic ac-
tion. For example:

\defx{sc@42}#1#2{\isVarQ{#1}}
\defx{sa@42}#1#2{\memDir{#1}\aMemDir
\emitCode{\lit{\aMemDir}}}

\defx{sa@49}{\newLabel\labelse \newLabel\labend

\emitCode{\jzero{\number\labelse}}}

We will call these macros through
\def\semaction#i{\csname sa@#1\endcsame}

Due to the behaviour of \csname, an action can
be called even if it does not exist. To exploit this
circumstance, those states after a token that carries

information but has no semantic action will have an
explicit empty action with enough parameters.

A semantic action is executed when entering its
state. A semantic check is executed before entering
its state; if it returns true, its state will be entered;
if it returns false, another possible next state will be
tried.

Traditional parsers encode the automaton and
semantic actions in a table. A loop uses the current
automaton state and the next token to index this
table, to perform some action, and to change to the
next automaton state, and a stack is needed to store
return states when entering a non-terminal. In a
self-parsing implementation the current automaton
state and the stack are in the global parser state:
\state and \stack. The table becomes code; the
action performed in the loop when looking at the
token \Tok in state n is stored in the macro \Tok@n.
Therefore, token \Tok behaviour is

\csname Tok@\state\endcsname

Since most entries in the table are just errors,
memory can be saved not defining them. Checks
for errors can be factored in the following macro:

\def\exe#1{\expandafter\let\expandadfter
\aux\csname #1@\state\endcsname
\ifx\aux\relax

\errmessage{Unexpected token "#1"}\fi
\aux}

So, the definition of \Tok can be simplified to
\def\Tok{\exe{Tok}}

Changing to another state, and pushing and pop-
ping states from the stack will be abstracted with
\toState, \pushState and \popState. These
macros are the best place to call semantic actions.

\def\toState#1{\def\state{#1}\semantic{#1}}

With all these helper macros, encoding the
automaton table with a set of macros is a simple
but boring task. For example, a while in state 53
only have to change to state 54

\defx{while@53}{\toState{54}}

But while can appear in other states; for example,
nested inside another while, that is, after a do
(state 56); in this case, it must push state 57 in
the stack, change to state 54

\defx{while@56}{\pushState{57}{54}}

When nested while parsing ends, the state 57 will
be restored from the stack and its semantic action
executed so that the last instructions of the outer
loop were generated. In a self-parser, tokens that
may appear after a while statement are responsible
for doing this. For example, end may appear after
every statement type:
\defx{end@44}{\popState\exe{end}}

\defx{end@46}{\popState\exe{end}}
\defx{end@51}{\toState{52}\exe{end}}

240 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

\defx{end@52}{\popState\exe{end}}
\defx{end@57}{\popState\exe{end}}
\defx{end@60}{\toState{61}}

Notice, that end keeps rescheduling itself until
reaching state 60.

Encoding entries in the automaton table that
need a semantic check to be disambiguated is a
bit more complex. For example, Id may occur in
state 56, just after a do; changing to state 42 or 45
depends on the semantic check in state 42:

\defx{Ide56}#1#2{/,

\iftrue\semcheck{42}{#1}{#2}/,

\toState{42}{#1}{#2}\else
\toState{45}{#1}{#2}\£fi}

As can be seen, there is nothing radically new
in this code. The classical parser engine with a
monolithic table is split into a lot of little macros.
Deciding what to do next does not rely on the parser
lookahead but each token checks the correctness of
its present occurrence, changes to the next state
and invokes a semantic action. Therefore, TEX is a
nice source language for a compiler-compiler. Before
implementing parTEX, we checked all these ideas by
hand; having done this boring work, we are eager
to use it wherever possible. So now, we will input
again the program pretty-printed on page 238, this
time surrounded with \beginPC/\endPC, just here,
only with the intention to execute \power to ensure
that 3° = 19683.

Other uses

We have used these TEXniques in other projects.
AGL is a small graphic library that our stu-
dents (and we) write and improve year after year. It
is written with the literate paradigm, using noweb.
Moreover, there is a separate document “getting
started and reference”. In order to keep the ref-
erence up to date, and to allow concurrent devel-
opment, the description of each element (function,
type, constant, etc.) is embedded in the implemen-
tation; typesetting the implementation produces an
up to date file to be input in the reference. To en-
sure full agreement and to save some typing, there
is no place in a description to put its definition (the
head of a function, the structure of a type, etc.);
instead, while processing the reference, TEX opens
source code files (built with tangle (notangle)) and
looks for the definition of each described identifier.
A fast scanner splits Pascal programs into tokens;
then a search engine, organized like a self-parser,
stores the tokens constituting each requested defini-
tion in a macro; finally, when typesetting an element
description, these tokens feed a pretty-printer. So,
the same scanner is composed both with a search

Fast scanners and self-parsing in TEX

engine and a pretty-printer. TEX process hundreds
definitions in a few seconds, thanks to the fast scan-
ner.

EXercita is a hierarchical, human-readable database

of exercises. Every exercise has, in addition to the
wording of the exercise itself, an author (or source),
its objective and difficulty, and several solutions.
A set of macros helps in extracting exercises to
be included in a document. The macros to search
databases use a self-parser.

HIXML (HTML in TEX) is a work in progress
to make TEX capable of type setting HTML directly.
Almost all the processing work comes from HTML
tags. It is important to do it as fast as possible be-
cause, although hand written HTML has few tags
with few parameters, machine generated HTML has
large numbers of tags with lots of (usually unneces-
sary) parameters. The simple syntax of HTML tags
makes really ease to write a fast scanner. With the
arrival of CSS a lot of new parsing capabilities are
needed.

Conclusions

Fast scanners are clearly fast. We have only col-
lected simple figures. For example, in my old In-
tel 80486, more than 1000 lines of Pascal code are
scanned in 5.4 seconds, and pretty-printed in 4.6 sec-
onds more. TEX typesets this same code (thinking
that it is plain text) in 1.7 seconds and needs 0.9
seconds to process a file that only loads the scan-
ner and the pretty-printer —so, parsing and pretty
printing is only one order of magnitude slower. In
general, it is astonishing to see TEX working so fast
in every project were we have tried a fast scanner.

Self-parsing is a nice TEXnique to organize
reusable parsers. It also allows an adaptable syntac-
tic rigour. Its main drawback is the effort to build
a strict self-parser by hand. Fortunately, parTEX
removes this burden. Fast scanners, being an ap-
plication of self-parser, should inherit this complex-
ity; but writing a fast-scanner generator for TEX is
a daunting task because each language has its own
tricks. Fortunately, writing a fast scanner by hand
is affordable because the lexical part of a program-
ming language is simpler than its syntax. In addi-
tion, each processing kind needs a new parser, but
the same scanner can be used once and for all.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D.
Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[2] Henry Baragar and Gail E. Harris. An example
of a special purpose input language to BTEX. In

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 241

Pedro Palao Gostanza,

242

Proceedings of the TUG Annual Meeting, 1994.
Julio Cortazar.
Famas.
Jonathan Fine. The \CASE and \FIND macros.
TUGBoat, 1(14):35-39, 1993.

Andrew Marc Greene. BAS[X—an interpreter
written in TEX. In Proceedings of the TUG
Annual Meeting, 1994.

Jean luc Doumont. Pascal pretty-printing:
an example of “preprocessing with TEX”. In
Proceedings of the TUG Annual Meeting, 1994.
Pedro Gostanza
Nunez Garcia. %ﬁg : Formating pascal

using TEX. In Furo1gX, 1995.

Historias de Cronopios y

Palao and Manuel

8]

[9]
[10]

[11]

Simon Peyton Jones, John Hughes, Lennart
Augustsson, Dave Barton, Brian Boutel, War-
ren Burton, Joseph Fasel, Kevin Hammond,
Ralf Hinze, Paul Hudack, Thomas Johnsson,
Mark Jones, John Launchbury, Erik Meijer,
John Peterson, Alastair Reid, Colin Runciman,
and Philip Wadler. Haskell 98. a non-strict,
purely functional language. 1999.

Kristoffer H. Rose. Xy=pic user’s guide. 1998.
C.G. van der Laan. \FIFO and \LIFO sign the
BLUes. TUGBoat, 1(14):54-60, 1993.

Marcin Wolinski. Pretprin—a I#TEX 2¢ package
for pretty-printing texts in formal languages. In
Proceedings of the TUG Annual Meeting, 1998.

Pedro Palao Gostanza

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

A Device-Independent DVI Interpreter Library for Various Output Devices

Hirotsugu Kakugawa

Faculty of Engineering, Hiroshima University
1-4-1 Kagamiyama, Higashi Hiroshima,
Hiroshima, 739-8527 JAPAN
h.kakugawa@computer.org
http://kakugawa.aial .hiroshima-u.ac.jp/

Abstract

In this paper, we describe DVIlib, which is a device-independent DVI interpreter
library written in C developed by the author. Since DVIlib is completely indepen-
dent from specific output devices, new printer drivers and previewers (DVIware)
can easily be developed. DVIIib is a set of functions to read and render DVT files.

To render a page, DVIlib generates a bitmap for each character in a page and
calls a callback function to draw a bitmap on a device. Therefore, what a pro-
grammer must do to make a new DVIware program is to write device-dependent
routines (initialization and drawing a bitmap on a device). Since DVIlib adopts
VFlib as a font module, many font file formats are available, including PK, GF,
VF, and Type 1. Thus, any DVIware that adopts DVIlib supports many font file

formats.

We developed a program to convert from DVI to bitmap, printer drivers, and
previewers for the X Window System. These programs are easily developed by

adopting DVIlib.

Introduction

Since TEX is a de facto standard of typesetting soft-
ware, a set of software for handling the typeset result
(a DVl file) plays an important role to print and view
documents in TEX. Such software is called DVIware.
In this paper, we introduce a new framework
to build a set of DVIware, such as printer drivers
and previewers. Many kind of printer drivers and
previewers are required for the following reasons:

e Different printers adopt different printer de-
scription languages (escape sequences) to rep-
resent images to be printed,

e Different previewer programs are required for
each window and desktop environment, or

e Novice users and expert users may require dif-
ferent user interfaces.

Although an interpreter for a DVI file itself is
simple, development of a new DVIware program is
not an easy task, since it requires complex inter-
nal modules for handling font files and the ‘special’
DVI instruction, for example, figures in Encapsu-
lated PostScript (EPS), changes of text colors, and
scaling texts. In addition, we expect that the pre-
view image on a window system and the printed
image by printer are the same, except for device
resolutions.

Most parts of program code for previewers and
printer drivers are the same, and therefore, develop-
ing previewers and printer drivers individually is not
adequate. In [1], Beebe proposed a set of functions
written in C that can be used as ‘parts’ to form a
DVIware program. To develop a new printer driver
or previewer, such functions are lexically included in
a DVIware program; only the device-dependent rou-
tine needs to be developed. Since the same ‘core’
of DVIware (e.g., a DVI interpreter and a font mod-
ule) is shared among various DVIware, each DVIware
program has the same output and functionality, ex-
cept for resolutions of output devices.

In this paper, we introduce a new framework
to develop a family of DVIware. We developed a
device-independent DVI interpreter library written
in C named DVIlib. Different from the approach
by Beebe [1], DVIlib provides a set of functions
to be called by DVIware. Since DVIlib is com-
pletely independent from specific output devices,
new printer drivers and previewers can easily be de-
veloped. DVIlib has following features:

e drawing EPS figures,
e handling change of text colors,

e scaling boxes, and

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 243

Hirotsugu Kakugawa

e support for various font file formats (GF, PK,
virtual fonts, Type 1, etc.) by adopting VFlib
as a font module [5].

Currently, xdvi, dvips, and ghostscript are widely
used. Although a combination of them is a strong
set of software for handling TEX DVI files, we may be
bothered configuring this software (e.g., font defini-
tions) consistently to obtain the same output. This
problem often occurs when we use localized (e.g.,
Japanese) versions of this software.

DVIware which adopts DVIlib shares the same
DVI interpreter and font rasterizer module. In ad-
dition, the same configuration file can be shared by
previewers and printer drivers. Therefore, what we
get on paper from a printer is exactly the same as
what we see on a CRT screen (except for device res-
olution).

This paper is organized as follows. First we
explain how we can use DVIlib to develop printer
drivers and previewers. Then, the internal struc-
ture of DVIIlib is explained. Next, we explain the
supported features of the ‘special’ DVI instruction.
Then, we introduce several printer drivers and pre-
viewers using DVIlib. Finally, we give concluding
remarks.

Structure

In this section, we explain the structure of DVIlib.
(See Figure 1.)

DVIlib is a library which is linked against an
application program. It offers a set of functions to
render a DVI file.

It uses VFlib [5] to obtain glyphs of charac-
ters in various font formats (GF, PK, Type 1 and
Virtual Font, and more). VFlib uses a file named
“vflibcap” as a font database. In this file, we can
describe a font definition; for example, a Type 1
font is used for cmr10.600pk, or a PK font is used
for cmbx10.600pk.

DVIlib has an interface to ghostscript, which is
a PostScript interpreter, to render figures in EPS
format.

DVIlib defines several callbacks to draw a page.
Fundamental callbacks are (1) drawing a given bit-
map on a page, and (2) drawing a rectangle on a
page. DVIlib internally obtains glyphs of characters
and converts EPS files to images. Thus, an applica-
tion program can draw characters and EPS figures
by simply implementing a callback to draw a bitmap
on a page.

Features and specification of DVIlib are de-
scribed in detail in the next section.

Using DVIlib

DVIlib provides a set of functions to obtain a page
image from a DVI file. DVIware using DVIlib must
obey the following framework to handle DVT files.

1. Initialize DVIlib by calling a function named
DVI_INITQ).

2. Call a function named DVI_CREATE(), with a
DVI file name as an argument, to create a DVI
object. A DVI object contains various informa-
tion about a given DVI file.

3. Call a function named DVI_DRAW_PAGE(). Ar-
guments for this function include a set of call-
back functions and a page number to draw.

In DVIlib, an output device is abstracted by
a structure DVI_DEVICE which is a data structure
for callback functions and device-dependent param-
eters. It contains the following members, for exam-
ple:

e resolution of a device,

e a pointer to a function to draw a bitmap on a
page. (This callback is used to draw glyphs of
characters and EPS figures.)

e a pointer to a function to draw a rectangle on
a page,

e pointers to functions to draw a graymap and
pixmap on a page. (If one of these callbacks is
defined, it is used to draw EPS figures. Oth-
erwise, a callback to draw a bitmap is used to
draw EPS figures.)

e a pointer to a function to print error messages,
e a pointer to a function to change text colors,

e a pointer to a function to change background
colors.

Since we can create multiple DVI objects inde-
pendently and simultaneously in a single application
program, for example, we can create a previewer
that opens and displays multiple DVI files at the
same time.

Now we explain details of three important func-
tions.

DVI_INIT(char *vflibcap, char *params)

— Initialization function for DVIlib. The first argu-
ment vflibeap is the path name of a font database
file called “vflibcap”. It is used by VFlib (a font
library) to resolve fonts used in DVI files. In a
vflibcap, variables can be used to customize its
contents at run time. For example, output device
resolution is parameterized by a variable. VFIib has
a feature to define values of variables when its ini-
tialization function is called. The second argument

244 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

A Device-Independent DVI Interpreter Library for Various Output Devices

An Application Software

(Printer Driver / Previewer)

page draw request

device
dependent
routines
callback Device

(put bitmap, draw rectangle, etc.)

()
DVIlib libdvilib.a
a DVI interpreter -
‘special’ handler
font manager
scale/rotatej EPS | color change
. J
glypj;:) :Z;zf :;; i T glyph PostScript file iT image
DVI Files

VFlib 1ibvFlib.a
(afont library)

ghostscript

! !

Font Files Font Definition
GF PK Typel vflibcap
Virtual Font TFM etc.

Figure 1: The structure of DVIware based on DVIlib

params is used to pass variables value of VFlib for
runtime customization.

If null pointers are given for these parameters,
default values are used, i.e., the default vflibcap
file is used and no variable value customization.

DVI_CREATE(DVI_DEVICE dev, char *file,
DVI_PROPERTY prop)

— This function creates a DVI object for a given
DVI file file. The first argument dev is a set of
callback functions.

The third argument prop is used to control
the behavior of a DVI interpreter. Features of
a DVI interpreter are characterized as properties,
and they can be enabled or disabled. Data type
DVI_PROPERTY is used to describe a set of proper-
ties to be enabled. DVIlib has a set of functions to
operate a data of this data type.

The following features of a DVI interpreter are
controlled by the third argument of DVI_CREATE.

e Delay opening fonts until they are necessary.
This property is effective for previewers to dis-
play the first page quickly, since not all fonts
need to be opened to draw the first page.

e Invoke the ghostscript program immediately
when a DVI object is created. Standard be-
havior is to invoke ghostscript when a DVI in-
terpreter encounters the first EPS figure. This
property is effective for previewers to display
the first EPS figure quickly, since ghostscript
may finish its initialization before the first EPS
figure in a DVI file is encountered.

e Skip execution of the ‘special’ DVI instructions.
For example, drawing EPS figures can be ig-
nored.

e Print a list of fonts in a DVI file.
DVIlib has a function to change DVI properties

after a DVI object is created. It can used in a pre-
viewer, for example, to control the behavior of a DVI
interpreter interactively.

(Although there are other features to be controlled,
they are omitted here.)

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 245

Hirotsugu Kakugawa

DVI_DRAW_PAGE(DVI dwvi, DVI_DEVICE dew,

int page, double shrink)

— A function DVI_DRAW_PAGE() plays an important
role in DVIlib. When it is called, it invokes a DVI
instruction interpreter for a given page of a DVI file.
The fourth parameter shrink is the shrink factor;
obtained bitmaps and their positions are automati-
cally shrunk by DVIlib.

Whenever a DVI interpreter encounters a
SET_CHAR, SET_z, or PUT_x DVI instruction?, it ob-
tains a glyph by calling a function to obtain the
glyph of a character in VFlib [5]. Then, the call-
back function to draw a bitmap is invoked with the
obtained glyph and its position on a page as argu-
ments.

When it encounters a SET_RULE or PUT_RULE
DVI instruction?, it invokes a callback function to
draw a rectangle with position, width and height of
a rectangle.

Support for the ‘special’ DVI instructions are
described later.

Callback functions

In this section, we describe callback functions. Fun-
damental callback functions are (1) drawing a bitmap,
and (2) drawing a rectangle. Although many other
callbacks can be defined, we explain only important
callbacks here.

dev_put_bitmap(DVI_DEVICE dev, DVI dwvi,
DVI_BITMAP bm, int font_<d, long k,

long code_point, long z, long y)

— This callback function draws a bitmap bm. Its
position is z and y. Other arguments are supple-
mentary information, such as font number and char-
acter code, for example.

dev_put_rectangle (DVI_DEVICE dew, DVI dw<,

long z, long y, long w, long h)

— This callback function draws a rectangle of width
w and height h on a page. Its position is ¢ and y.

DVIlib defines other useful callbacks.

dev_put_graymap(DVI_DEVICE dev, DVI dv<,
DVI_GRAYMAP gm, int font_<id, long k,

long code_point, long z, long y)

— This callback is used to draw EPS figures in
grayscale, if defined. If this callback is not defined,
dev_put_bitmap is used to display EPS figures.

1 These are DVI instructions to draw a character on a

page.
2 These are DVI instructions to draw a rectangle on a

page.

246

dev_put_pixmap_rgb(DVI_DEVICE dev, DVI dv<,
DVI_PIXMAP_RGB pm, int font_<d, long k,
long code_point, long =, long y)

— This callback is used to draw EPS figures in
color, if defined. It this callback is not defined,
dev_put_graymap or dev_put_bitmap is used to
display EPS figures.

dev_color_rgb(DVI_DEVICE dev, DVI dvsi,

int f, double 7, double g, double b)

— Change text colors. Parameters r, g, b repre-
sents intensities of red, green, and blue.

dev_message_error (DVI_DEVICE,DVI,charx*,...)
— Print an error message. This callback can be
used to display an error message on a message dialog
window, for example.

Skelton of a DVIware

Following is the outline of a simple printer driver
program with DVIlib:

#include <dvi-2.5.h>

int main()

{
int p;
DVI_DEVICE dev;

/* Initialize DVIlib */
DVI_INIT(NULL, NULL);

/* Make a set of callback functions */
dev = DVI_DEVICE_ALLOCQ);

dev->h_dpi = 300; /* 300 dpi */
dev->v_dpi = 300; /* 300 dpi */
dev->put_rectangle = dev_put_rectangle;
dev->put_bitmap = dev_put_bitmap;

/* Create a DVI object */
DVI = DVI_CREATE(dev, file, NULL);

for (p = 1; p < dvi->npage; p++t){
/* Clear page buffer */
page_clear();
/* Invoke a DVI interpreter */
DVI_DRAW_PAGE(dvi, dev, p, 1.0);
/* Send page buffer to a printer */
page_send_printer();

}

return O;

}

void

dev_put_bitmap(DVI_DEVICE dev, DVI DVI,
DVI_BITMAP bm, int font_id, long k,
long code_point, long x, long y)

{

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

A Device-Independent DVI Interpreter Library for Various Output Devices

/* Put a bitmap ‘bm’ at <x, y>. */
}

void

dev_put_rectangle(DVI_DEVICE dev, DVI DVI,
long x, long y, long w, long h)

{
/* Draw a rectangle of width ‘w’ and */
/* height ‘h’ at position <x, y>. */

Similarly, previewers can be built easily by
adding a user interface to change pages to be dis-
played by pushing buttons by mouse, for example.

Support for the ‘Special’ DVI Instruction

When an interpreter encounters the ‘special’ DVI
instruction, it invokes a handling routine according
to a parameter string of the instruction.

e A figure in EPS.
Pass the EPS file to ghostscript to render. Out-
put of ghostscript is a bitmap; call a callback
function to draw the bitmap. If a callback
to draw a graymap (pixmap) is defined, PGM
(PPM) format is selected as an output format
of ghostscript. (Otherwise, PGM format is se-
lected.) Then, a callback is invoked to place the
obtained image.

e Change of text or background colors.
If callbacks to change text and background col-
ors are defined, they are invoked with RGB val-
ues for new color.

e Change of scaling factors.

This feature is offered by graphics.sty and
graphicx.sty packages (\scalebox and
\resizebox commands). These macro pack-
ages generate embedded PostScript code as
a parameter of the ‘special’ DVI instruction.
DVIlib parses embedded PostScript code (by
simple pattern matching) and generates scaled
glyphs of characters and rectangles.

Currently, change of rotation angles is not
supported.

By this software architecture of DVIlib, ev-
ery DVIware program can support EPS figures and
scaled text and rectangles.

Multilingual Issues

John Plaice and Yannis Haralambous propose €2 as
a multilingual extension of TEX [8]. They propose
QFM (Q font metric), which is an extended version
of TFM. pTEX also defines the extended font metric
JFM (Japanese font metric). Since VFlib supports
QFM, JFM, and QVF(Q virtual font), DVIware

based on DVIlib can display and print DVI files by
Q and pTEX. (Currently, level-0 QFM is supported
by VFlib, but level-1 is not.)

In the Japanese community, a variant of TEX
named pTEX is widely used. pTEX supports Japanese
characters and vertical writing directionality [2]. For
supporting vertical writing, pTEX defines new byte
code to change the writing directionality in the DVI
instruction set, and a new register in the DVI vir-
tual machine to hold the current writing direction-
ality. DVIlib supports the extended specification
of pTEX. This extension is encapsulated inside of
DVIlib; DVIware based on DVIIib is not aware of
this extension. Thus, all DVIware based on DVIlib
can make use of such an extension.

DVIware with DVIlib

We developed several DVIware programs that adopt
DVIlib.
o xgdvi
A previewer on X Window System with GTK+
1.2 toolkit. This software has a fancy GUI for
novice users.

e spawxll
A simple previewer on X Window System.

e dvi2rpd|
A printer driver for Ricoh RPDL printers.
e dvi2escpage
A printer driver for Epson ESC/Page printers.
e dvi2img
A converter program to generate a PGM image
file from a DVI file.

e dvifontlist
A utility program to print a list of fonts used in
a DVI file.

e dvispecials
A utility program to print a list of ‘special’ DVI
instructions in a DVI file.

xgdvi is implemented about 6000 lines of C code.
It supports displaying color EPS figures. Since com-
plex routines for DVI interpretation, handling EPS
figures and font files are managed in DVIlib, most of
the code of xgdvi is for the fancy GUI. A screen shot
of xgdvi is shown in Figure 2. It supports multiple
buffers: multiple DVI files can be opened simulta-
neously and they are switched without opening DVI
files again.

dvifontlist and dvispecials are implemented by
making use of DVI proporties; a DVI file is opened
by disabling character rendering and enabling print-
ing DVI file information. These programs are imple-
mented in about 350 lines of C code.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 247

Hirotsugu Kakugawa

[®] xgdvi [®] xgdvi: Print Document
Reload | __ =] Printer Salection
& A Deviee Independent DV Interpreter Lil
Cpen File PostScript Print (dvips)] I
Sl An Application Software device
{Printer Driver / Previewer) depe_nc‘n‘:m rPrint Commands
Print... routines Print Document Print Current Page
Paper... i
s reques i .
= PR s miﬁ'ff:,-,,,w,‘ dnnw re. [Print Job Control Commands
Zoom In Y | Show Print Jobs Cancel Print Jobs
Zoarm Cut ;
DVIllib 1ibdvilib.a (Print Command Message
First Page 2 DVl interpreter [
#—u—g—] B dvips: | End of document before first specified page
Prev Page “special® handler \E[‘JI’: stdin: empty input file
font manager oag
il scaleiotate | EPS | color cha Listing print jobs
Last Page | A Runmlng. g
g,wj;;’ :’:;fw":, ! ehph passcryefle | | inage BDD;?E” nes
Go T
VFlib 1iovrlib.a ghostscript Vi
1001 (a font library) |
1002 7 Clear Message
1004 | T |
1005 Font Files Font Definition
1006 GF PK Typel vlihoap Close
1007 Virusl Font TFM etc.
Figure 1: The structure of DVIiware based on DVIlb
If null pointers are given for these parameters, play the first page quickly, since not all fonts
default values are wsed, ie., default viibcap Ale is must be opened to draw the first page.
used and no variable value customization s Tavoks Gh cript program i diately when
- DVI_CREATE(DVI DEVICE dev, char #file, a DVI ohject is created. Standard behavior is
e j DVI_PROPERTY prop) to invoke Ghostscript when an DV interpreter
- This function creates a DVI object for a given encounters the first EPS figure. This property
Exit DV file The first argument dev is a set of is effective for previewers to display the first
£ calibacl fuoetions FPS fianre onickle since (Ghactarrint mas fnish
thme.v‘kakugawafres.flex.fpaper.v‘PRO.JECTSAugZDUDIpaperfdvi\ib.dw (7 pages)

mule@aten.aial.hiroshima-u.ac.jp &

Figure 2: Screen shot of xgdvi

We developed another previewer spwx11? on the
X Window System with minimum factionality, as a
challange. It is implemented by only 140 lines of C
code; the program consists of the interface to DVIlib
and the X Window System to draw bitmaps and
rectangles. Although this program does not support
an anti-aliased display, it does support displaying
EPS figures and various font file formats. spawx11
is a previewer on X Window System with an anti-
aliasing display feature.

Typically, a printer driver can be implemented
in about 500 lines of C code (if it does not support
various printer description languages).

Conclusion

In this paper, we introduced DVIlib which is a
device-independent DVI interpreter. Since it adopts
VFlib for its font module, fonts in various font file
formats can be available. We also developed several
printer drivers and previewers that adopt DVIlib.
By adopting DVIlib, we can develop a simple
printer driver within a day. When we develop a

3 spwx11 stands for “the Simplest Previewer in the World
for X11”.

248

previewer, we can concentrate on our efforts for a
fancy GUI. Since all DVIware shares the same DVI
engine, the printed result is exactly the same as what
we see on a display.

Currently, the following features are not imple-
mented, for example.

e support for HyperTEX,

e full support for embedded PostScript literals
(e.g., support for PSTricks packages),

e rotation of figures and texts (e.g., the \rotatebox
command of graphics and graphicx packages).

DVIIlib is written in C and about 6400 lines of
code, half of which is for handling the ‘special’ DVI
instruction. (VFlib, a font module of DVIlib, is writ-
ten in C and about 33000 lines of code.)

DVIlib is a part of the TeX-Guy package which is
a collection of DVIlib and DVIware based on DVIlib
(including xgdvi and spwx11). DVIlib and VFlib are
free software and distributed under the terms of the
Library GNU Public License. DVIware such as xgdvi
is also free software and distributed under the terms
of the GNU Public License.

These programs have been tested on
FreeBSD 3.2, Solaris 2.5.1; it is not difficult to

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

A Device-Independent DVI Interpreter Library for Various Output Devices

port them to other Unix-like systems such as
Linux. Visit our web pages: http://TypeHack.
aial.hiroshima-u.ac.jp/TeX-Guy/ and http:
//TypeHack.aial.hiroshima-u.ac.jp/VF1lib/

for further information and download.

References

[1] Nelson H. F. Beebe. DVIxxx. Available on CTAN
as /dviware/beebe/.

[2] ASCIT Coop. pTeX web page. http://www.
ascii.co.jp/pb/ptex/. Publishing TeX for
Japanese, with vertical writing.

[3] Roger D. Hersch, editor. Visual and Technical
Aspect of Type. Cambridge University Press,
1993.

Hirotsugu Kakugawa

[4] Hirotsugu Kakugawa. The web page of
VFlib. http://TypeHack.aial.hiroshima-u.
ac.jp/VFlib/.

[5] Hirotsugu Kakugawa. VFlib — a general font
library that supports multiple font formats. In
Proceedings of the 10th FEuropean TEX conference
(BEuroTEX 98), pages 221-222 March 1998.

[6] Donald E. Knuth. The TgX book. Addison-
Wesley, 1986.

[7] Donald E. Knuth. TEX: the Program. Addison-
Wesley, 1986.

[8] John Plaice and Yannis Haralambous. The
Omega project home page. http://wuw.
gutenberg.eu.org/omega/.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 249

“Russian style” with ITEX and babel:
what does it look like and how does it work

M. Y. Kolodin, O. V. Eterevksy, O. G. Lapko, and I. A. Makhovaya
St.Petersburg, Moscow, Russia

myke@mail.ru

http://myke.webjump.com/tex/

Abstract

General and scientific typesetting in Russia has many specific features that should
be supported by (IA)TEX. Personal habits, local peculiarities and national tradi-
tions and standards are involved, as well as (I2)TEX possibilities and limitations.
The unified TEX implementation, stand-alone or based on babel, is needed to
meet all the requirements. These peculiarities and implementation are discussed
interdependently in the paper.

Olga Lapko

250 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Mixing TEX & PostScript : The GEX Model

Alex Kostin & Michael Vulis
MicroPress, Inc.

68-30 Harrow Street

Forest Hills, New York, 11375, USA
Phone: 1 (718) 575 1818

Fax: 1 (718) 575 8038

support@micropress-inc.com
http://www.micropress-inc.com

Abstract

VTEX is a (commercial) extended version of TEX, sold by MicroPress, Inc. Free
versions of VIEX have recently been made available, that work under OS/2 and
Linux. This paper describes GEX, a fast fully-integrated PostScript interpreter
which functions as part of the VIEX code-generator.

GgX offers one-pass compilation of text (TEX) and graphics and thus easy in-
corporations of graphics files (.eps) and inline PostScript code (PStricks, PSfrag)
within a document. While it is this graphics support which is of primary interest
to the end users, the presence of the PostScript interpreter within TEX and its
ability to provide feedback to TEX raises interesting questions about mixing text

and graphics in general and leads to new graphics-oriented packages.
This article serves as a short introduction to GEX, seeking to explain the
design issues behind GEX and the extensions which now become possible.
Unless specified otherwise, this article describes the functionality in the free-
ware version of the VITEX compiler, as available on CTAN sites in systems/vtex.

What did GEX come from?

During the early work on the VIEX PDF backend
circa 1998 it became apparent that the only way the
backend can handle PStricks graphics is by incorpo-
rating a limited PostScript interpreter. GEX (which
stands for Graphics EXtensions and is to be pro-
nounced g-e-ks) arose primarily from the author’s
misguided optimism about the amount of work re-
quired. By the time GEX fully supported PStricks,
the code amounted to more than 20,000 lines of C++
code, supported almost the entire PostScript lan-
guage, and even went beyond it. GEX has become
powerful enough to handle not only PostScript files
(.eps) but also the common inline PostScript graph-
ics packages (PStricks, PSfrag, XYpic, or Seminar).
In addition, it has become possible to design new
macro packages with GEX in mind.

While the .eps file and inline PostScript in-
clusion is the main attraction to the end user, this
article has very little to say about it. This is because
from the end-user standpoint, using GEX amounts
to using standard and familiar commands like
\includegraphics or \begin{pspicture} and see-
ing the results appear as expected in the output. In-

stead, we will concentrate on the design issues and
the extensions.

What is GEX 7

GEX is a graphics counterpart to TEX. The basic
design assumes that TEX is responsible for handling
of the text; GEX is responsible for processing the
graphics components of the document. Both TEX
and GEX contribute to the output; since the over-
all handling of the document is TEX’s responsibility,
TEX has overall control.

Usually, but not always, GEX functions within
the TEX \shipout routine and accepts responsibili-
ties which would otherwise be given to a DVI driver.
In more interesting cases, GEX functions during the
TEX formatting phase; when so doing, it is capable
of returning information to TEX and thus influenc-
ing TEX formatting.

Since GEX may exercise subtle influence on TEX
(load fonts, or change TEX registers), GEX is op-
tional in VTEX implementations: the default oper-
ation of the program is with GEX off; it is enabled
by a command-line switch.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 251

Alex Kostin & Michael Vulis

Of the four primary output modes of the VIEX
compiler (DVI, HTML, PDF, PostScript), GEX is
currently supported with two: PDF and PostScript.
The majority of GEX-related activities are identical
in these two modes. Where a behavioral difference
is desired, a macro writer can use the \OpMode count
primitive (with magic values of 0,1,2 and 10 for DVI,
PDF, PS, and HTML output modes).

In PDF mode, GEX is basically a PS—PDF com-
piler; in the PS mode, it is a PS—PS compiler which
reinterprets input PostScript and produces output
similar to what would be produced by printing PDF
to PostScript, albeit faster, often tighter and cleaner.
(One of the benefits of this in comparison with DVI—
PS drivers is the combination of the fonts and other
resources that are often repeated in included .eps
files.)

While GEX is a PostScript language interpreter,
it is not 100% PostScript; there are subtle design
differences, that while not impeding the ability of
GEX to process standard PostScript code, allow new
applications.

The basic design paradigms

During the design of GEX it has become apparent
that a number of extensions will be needed to be
added to TEX to support the extra functionality.
In all cases, the basic approach was to try to keep
the TEX syntax as close to the standard as possible,
and avoid introducing additional keywords. Most of
the TEX language extensions! are merely \specials
which are understood and resolved by the \shipout
code in VITEX. Thus, VIEX syntax would not have
new words like \pdfimage or \pdfoutline; these
would be backend \specials. In practice, we did
end up with adding some primitives, but these were
primarily new count and skip registers.

In designing the syntax of the \specials them-
selves, an attempt has been made to avoid depen-
dency on the PDF output mode. This makes them
either applicable or at least safely ignorable in other
operation modes of VIEX (DVI, HTML), not just
in the PDF and PostScript modes, where GEX is
fully operational. Thus, VIEX’s \special never
uses PDF-specific code. While a direct write to the
output is supported (with \special{!=...}, anal-
ogous to \pdfliteral{...} in pdfTEX), it is gen-
erally discouraged.

Finally, wherever possible, the \specials are
screened from the user, mostly by means of extend-
ing the graphicx package.

1 There are also PostScript language extensions in play.

How does it work

The basic model of TEX-GEX interaction is the two
\specials:

e \special{pS: } with the argument con-
taining valid PostScript code

e \special{ps: } with the argument be-
ing a name of PostScript file to include

When the backend sees one of these \specials, it
passes it to GEX for compilation. (In PDF mode,
with GEX off, it is simply thrown out; with GEX on,
it is compiled. In PostScript mode, with GEX off,
the parameter is pasted to the PostScript output, as
in traditional DVI—PS drivers; with GEX on, it is
re-compiled).

Prior to giving control over to GEX, VTEX up-
dates the information in PostScript’s graphics state
(setting the coordinates for the current point, for
example). Upon the return from TEX, the relevant
parts of the PostScript graphics state are given back
to TEX.

Because of the need to support inline PostScript
packages the information about the current font is
also shared between TEX and GgX. For example,
passing

\special{pS: currentfont setfont}

to the PostScript interpreter is entirely legal (and is
done by PStricks); but the design implication is that
GEgX is aware of the currently used TEX font and can
access it by itself. Access may mean actually loading
the font and executing the instructions in the font
file; this would happen, for example, if one writes

\special{pS: gsave currentfont 2
scalefont setfont 0.5 0 O setrgbcolor
[4 1] O setdash (Test stroke) false
charpath stroke grestore}

A

/Al Yl |
: . [AYa P A AN A
which yleldS J,L v 13wl (y/lé&(v

Observe that here we use gsave/grestore to
screen TEX (and subsequent PostScript fragments)
from the color and dash changes done in GgX.

Design implications: the font machinery is
to be shared between TEX and GEX; GEX should be
able to load TEX fonts and operate on them.

Solution: Provide all conceivably useful TEX
fonts in Type 1. Extend GgX with command(s) for
loading a font given its TEX name and point size
(the .settexfont PostScript extension which loads
the current TEX font into PostScript at the current
size, as well as the . loadfont extension which allows
GEX to select any TEX font by its name. The second
extension is of use for MetaPost; see below.).

252 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Unresolved issues: The ability to pass fonts
to GEX is currently unsupported on TrueType or
CID fonts (used in CJK PDF generation). Thus, no
font effects are currently possible on Asian fonts?.

Error handling

Unlike in TEX, error correction of PostScript code is
hardly possible. Errors are therefore converted into
TEX-style errors, followed by PostScript-style stack
dumps.

For example, passing the following code to GEX

\special{pS: 1 2 movetoo}
results in

! PS interpreter error, code=21
(Undefined name [movetoo]).

(This assumes, of course, that the movetoo name
has not been previously defined.) GEX errors are
usually fatal; while the TEX portion of the docu-
ment can be compiled through the end, PostScript
compilation is abandoned on the first error. Only
with several common errors, like font unavailabil-
ity, or leaving junk entries on the operand stack (as
explained below), will GEX continue.

Interesting cases

While the above model is sufficient for most cases,
there are unusual situations which arise in specific
cases.

Typesetting text on a curve which is the ac-
tivity of the pst-path component of PStricks pro-
vides one difficulty. In PStricks, this is implemented
by redefining the show operator. In conventional
PStricks, the expectation is that the redefined show
should hack the code which originated in TEX, but
now, after TEX+—DVI and DVI—PS conversions, the
code has become PostScript. In the VIEX case, we
want PStricks to work within the TEX \output rou-
tine, where there is no PostScript code to hack.

Solution: The VTEX backend senses the re-
definitions of PostScript text output operators like
show; if it detects that show has been changed it
temporary switches to PostScript generating mode;
then passes the output to GEX for recompiling.

A similar situation arises when a TEX macro
package “cuts out” a piece of PostScript code for
reuse or discarding. Both PStricks and PSfrag do
it by inserting a definition around PostScript code

generated by TEX:

/something {
<ps code>

2 see http://www.micropress-inc.com/CJK for additional

information on CJK/PDF support.

Mixing TEX & PostScript : The GEX Model

} def

Design implications: The TEX backend must
sense when GEX is in such a “definition” mode, and
switch to PostScript generation if needed. In the
above example, upon processing

\special{pS: /something {}

GEX returns back an indicator that it did not fully
handle the operator; only after

\special{pS: } def }

will the TEX backend be allowed to return to normal
processing.

Transfer handling

(int) .enabletransfer A problem which arises
with some . eps images is the use of the settransfer
PostScript and related operators. The problem is
that these operators are used for both device-depen-
dent and device-independent color manipulations.
The first usage is more common and is essentially
for minor color adjustments. In such situations the
best strategy for producing device-independent PDF
files is to disregard the transfer altogether. This is
the default behaviour of GEX (and of the Acrobat
Distiller).

However, in some (fortunately, rare) .eps files
the same operators are used to effect major device-
independent adjustments. An example of such an
adjustment would be to invert a black-and-white
picture; this can be done with the

{ 1 exch sub } settransfer

PostScript code snippet. Disregarding this code will
produce an inverted image. Thus, both Acrobat Dis-
tiller and GEX allow the user to change their be-
haviour. In the case of Distiller, the override is a
global Job option which will apply to all parts of a
document; GEX allows you to override only the han-
dling of an individual image. This is accomplished
with the extension operator

.enabletransfer

With an argument of zero, .enabletransfer dis-
ables processing of settransfer code; a non-zero
argument enables settransfer processing. Figure 1
is an example of a small .eps file that uses transfer
code.

MetaPost support

While GEX can handle MetaPost-generated files, it
is important to state that MetaPost outputs invalid
EPS files. Rather than use the standard fonts or
embed fonts into the EPS, MetaPost merely includes
declarations like

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 253

Alex Kostin & Michael Vulis

Figure 1: To the left the figure included with default settings, on the right the figure after enabling

settransfer.

/cmrl10 /cmr10 def

and expects post-processing to find and substitute
the fonts. Instead of such post-postprocessing, GEX
ignores (i.e., processes and discards the result) this
declaration, but requires either explicit loading of
needed fonts via the .loadfont extension

\special{pS: /cmr10 .loadfont}

(using one such command for each required font) or
by enabling of the autoloading feature via the
.autofontload extension

\special{pS: 1 .autofontload}

(string) .loadfont loads the font by its TEX
TFM name into the GEX font machinery and makes
it available to findfont and related operators.

(int) .autofontload If the integer argument is
non-zero, GEX will query the TEX font configuration
files when the findfont operator cannot resolve a
font name. The default is not to load fonts implicitly
and substitute Helvetica.?

These commands must be issued before a Meta-
Post-generated file is actually included.

EPS-specific problems

In the process of testing GEX over many hundreds of
“real-life” .eps files, some common problems have
been discovered. While these are technically bugs in
.eps, they are common enough so workarounds had
to be provided.

The majority of the .eps related workarounds
(as well as many new options) have been incorpo-

3 One of the subtle differences between GEX and Post-
Script is substituting Helvetica rather than Courier for fonts
that are not available; in the author’s opinion Courier is not
a font to be used for any purpose.

rated as new keys to the \includegraphics com-
mand; this provides for an easy end-user interface?.

Leaving entries on the PostScript operand stack
is surprisingly common misbehavior which we have
seen in files generated by many applications. If the
.eps file is sound otherwise, it will be processed cor-
rectly; but an error may occur in handling the Post-
Script code that comes after.

Because of the common nature of this error
(and especially because it causes the error message
to point not to the culprit, but some later PostScript
code), this GEX error is reported TEX-style:

! junk on PostScript stack, 4 items

7 h

The PostScript code you just executed
has left some junk on the operand stack.
I’m taking it off; cross your fingers
and pray that this is all to it.

The fix required from the user is to add 4 pops
at the end of the .eps image.

Degenerate matrices Near-degenerate matrix
transforms often cause serious problems with the
Acrobat’s 16-bit computational limit. One can show
that the problem is not solvable correctly in general,
and Adobe Acrobat Distiller would fail on degener-
ate transforms.
The example file

% lwid.ps
0 0 moveto
gsave 100 200 lineto 2 3 scale

1 0 0 setrgbcolor stroke grestore
gsave 200 100 lineto 0.5 0.3 scale

0 1 0 setrgbcolor stroke grestore

4 Special thanks to DC for providing the ability to define
custom keys in graphicx.

254 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

AR
N

9]
O

%
e,

Figure 2: Fragment of a sample gears.eps
included with \includegraphics{gears.eps}

M A~

gsave 200 200 lineto O O 1 setrgbcolor
[0.18672 -0.565306 0.87384 -2.64563 0 0]
setmatrix
stroke grestore

showpage

should produce three lines from the origin. Distiller,
however, will miss the middle line. GEX, on the
other hand, will produce correct output:

/o

Near-degenerate matrices are not a perverted aber-
ration: they tend to be generated by common soft-
ware, such as CorelDraw. The particular set of num-
bers in the source above came from a Corel example.

While GEX does the work correctly in most
cases (the precision limit in PDF guarantees that no
PS—PDF conversion can work correctly in all cases):
some distortion of the line widths is possible and is
not avoidable.

Level 1 strokeadjust Some graphics applications
(for example, Freehand) output Level 1 PostScript
code which fits the coordinates to an integer grid.
This code, if executed literally, will produce rather
disastrous results with GEX. Figure 2 shows one of
the “real-life” examples.

The nature of the problem is a bug (or feature)
in the Freehand adjustment code which does not

Mixing TEX & PostScript : The GEX Model

m

Figure 3: Same as Fig. 2 included with
\includegraphics[innerscale=4]{gears.eps}

bother to check for the device matrix and assumes
that it corresponds to the output pixel resolution
of 300 dpi or higher (which would imply a device
matrix [4 0 0 4.. ..]). However, the GEX device
matrix is chosen to be an identity, to avoid extra
rounding by TEX’s < GEX'’s coordinate translation.
This causes extremely coarse coordinate rounding
(72dpi) in the default case.

GgX’s workaround to this problem consists of
\specials that switches the device matrix to an ap-
propriate one; this is incapsulated in the

innerscale=

option to the \includegraphics.
The corrected picture on Fig. 3 was processed
with innerscale=4.

Level 1 / 2 differences While PostScript Level 2
is supposed to be a superset of Level 1, it is wrong
to conclude that PostScript graphics displayed cor-
rectly on a Level 1 interpreter will appear the same
way (or at all) on a Level 2 interpreter. It is all
too common for .eps files to actually check the in-
terpreter version and then execute totally different
code, depending on the version found.

Both images came from the same PowerPoint-
produced .eps file. Since in this case the end user
might prefer the Level 1 appearance (but in some
other .eps, perhaps in the same document, Level 2
may be required), GEX provides an ability to switch
between Level 1 and Level 2 dynamically. On the
lower level, this is done by the

N .setlanguagelevel

extension operator. Alternatively, the user might
prefer to use the gexlevel option provided for the
\includegraphics command and enter

\includegraphics [gexlevel=N]{paths.eps}

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 255

Alex Kostin & Michael Vulis

ag0ce%S=0algSe00
05872, ob 05 ge

/

Figure 4: Level 1 appearance

g

Saee

s

Figure 5: Level 2 appearance

Feedback to TEX

Since both TEX and GEX operate at the same time,
it is possible to make them share information. While
passing information from TEX to PostScript is triv-
ial and has been done for ages (by putting them in-
side the PostScript language \special, in the case
of VIEX, \special{pS:..}), getting information
back from PostScript is new.

In GgX this is accomplished by PostScript syn-
tax extensions that allow access to TEX \toks reg-
isters within GEX. The three new operators are:

e (int) (string) .tkread — (int) (string)

where the (int) parameter should be between
0 and 65535 and designate a TEX token reg-
ister; the (string) parameter is the receiving
string. In the output, the integer value is the
new length of the string; the string contains the
contents of the \toks register.

5 Not a typo; the VIEX compiler has larger limits than
other versions of TEX and \toks10000 is legitimate.

Control sequence tokens are converted to spaces
during .tkread; they are counted as one char-
acter for .tklength.

During .tkread a rangeerror may occur if the
\toks register contains more characters than
can be placed into the receiving string; one can
use the .tklength operator to find out how big
the receiving string should be before allocating
it.
e (int) .tklength — (int)

where the (int) parameter should be between 0
and 65535 and designate a TEX token register;
the output integer is the length of the contents
of the TEX \toks register.

e (boolean) (int) (string) .tkurite —

where the (boolean) argument determines if the
data should be appended to the \toks contents
(true) or overwrite it (false); the (int) param-
eter is between 0 and 65535 and designates a
TEX token register; the contents of the (string)
parameter will be globally placed into the spec-
ified \toks register.

Token strings produced by .tkwrite contain
only tokens with TEX \catcode 12 (other).

The interface is deliberately kept very general;
It is assumed that a TEX macro writer would unpack
the \toks string as desired.

Here is how one can try to use GEX to generate
a few random numbers:

\def\rand{%
\special{pS: false 100 rand
10 string cvs .tkwritel}¥
\the\toks100
}

The numbers are = \rand, \rand, \rand.

The numbers are = 16807, 282475249,
1622650073.

Immediate execution

While the syntax above provides a way to deliver
information from GEX to TEX, the information will
arrive too late to be of much use. This is because
\specials are executed during the page building
(\shipout), when it is too late to use the returned
data. For this reason, the example as written above
will actually not work as specified.

While it is possible to overcome the problem
with usual TEX multi-pass tools (the .aux file), we
chose to instead enhance TEX with the

\immediate\special{...}

256 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

form. The semantics here are identical to those
when the \immediate command as used with the
file operations which are already in TEX.

Besides making the example above work, the
immediate form of \special proves very handy in
a number of other cases, for instance:

e setting the background color for a page
e defining a PostScript header file
e thumb generation specials (PDF mode)

These actually cause difficulties for VIEX: a DVI
driver can scan a page ahead to see if such \specials
are present, but the one-pass nature of VIEX com-
pilation requires them to be processed before the
\shipout gets under way; the immediate form solves
exactly this.

Creating objects in immediate mode

The GEX feedback can be used for many purposes,
some of which can be accomplished by TEX means (if
barely) and some which cannot be. One reason is be-
cause PostScript is a better computational language
than TEX, and the \immediate form of \special
makes it fully available to TEX. trig.sty, for ex-
ample, is one casualty of this approach.

More interestingly, PostScript is more aware
than TEX of the nature of the graphics objects that
are in the document. For example, it is possible to
use GEX to compute the exact locations of the ex-
tremes in a graph and then pass these locations back
to TEX for placing of tags.

To allow development of this type of applica-
tions, we provide some additional machinery:

e It is allowed to have GEX compile and gener-
ate code for graphics objects in the \immediate
mode; this code, however, is written to a mem-
ory stream.

e A memory stream can be frozen and closed with
the \special{ice} command (naturally, an-
other \immediate); when a stream is closed,
its handle is provided in the \pdflaststream
register.

e As graphics are drawn, the placement of the
TEX tags can be computed as well, and reported
to TEX via \toks.

e A stream is placed into the output page with
the \special{!stream ...} command. Here
we do not use the \immediate form, since the
graphics should be emitted and properly placed
during the usual \shipout.

Note: Code emitted prior to the \shipout
cannot go to the output page right away since the
formatting of the output page is not yet known.

Mixing TEX & PostScript : The GEX Model

Thus, such code is emitted relative to the (0,0) ori-
gin; during the actual \shipout the code is shifted
to the position of the \special{!streamn. ..} com-
mand.

The technique outlined above has been success-
fully utilized in several new macro packages, includ-
ing vfplot. They, however, use the extensible na-
ture of GEX as well, and it would be prudent to
explain this first.

Extending GEX

While in principle PostScript has as much compu-
tational power as a conventional programming lan-
guage, writing computations in PostScript is much
more time consuming than in, for example, C or Pas-
cal. (Complex PostScript code may also take a long
time to be interpreted.) The .extend operator in
GEX seeks to add the extra power of conventional
programming to GEX. In essence, a user can imple-
ment extra computational (or drawing) abilities in a
compiled dynamic library (DLL for Windows/OS2,
SO for Unix/Linux), then have these abilities avail-
able as new PostScript operators.
We call such addon DLLs GEX plugins.

Syntactically, one writes

(pluginname) .extend

where pluginname refers to the name of a DLL (Win-
dows/08S2) or a shared library (Linux/Unix) which
contains the implementation of new extension oper-
ators. Upon encountering the above line, GEX will
e look for the requested plugin module
e ensure that its version matches the version of
the GEX interpreter

e find out which new operators are implemented
in the library, add their names to the PostScript
namespace, and record the location of their im-
plementation code.

Upon encountering a new operator, GEX calls the
implementation code in the plugin.

GEX API

The GEX Application Programming Interface (API)
represents PostScript internal operators as callback
functions. For example, where a PostScript program
would execute

10 20 moveto
a GEX plugin written in C shall do
GeXi->moveto(10,20);

The C/C++ API is specified in the gexi.h header
file; it generally parallels PostScript drawing opera-
tors.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 257

Alex Kostin & Michael Vulis

Rather than list the entire API here, we shall
outline its principles:

e GEX API functions call the GEX kernel and are
generally equivalent to PostScript operators.

e GEX API functions return 0 on success, and
the PostScript error number on failure; it is the
plugin’s responsibility to handle the errors.

e GEX API functions cover most PostScript draw-
ing abilities, but not text output. This is be-
cause plugins are not intended to do text for-
matting; this task should be passed over to TEX.

e The GEX API includes functions for working
with the PostScript operand stack.

e An exception to the above is the show() func-
tion which is provided for the purposes of de-
bugging only.

e Just like GEX itself, plugins can talk to TEX;
this is done with the tkwrite (), tkread (), and
tklength() functions.

For example, an extension operator square can
be defined to draw a 10x10 square with C code like
this:
int square(GEXI GeXi) {

double x,y;

if (GeXi->currentpoint (&x,&y) !=0)
return error_nocurrentpoint;

GeXi->lineto(x+10,y);

GeXi->lineto(x+10,y+10);

GeXi->lineto(x,y+10);

GeXi->setrgbcolor(1,0,0);

GeXi->closepath(Q);

GeXi->fill();

return 0; //success

}
This example is, of course, useless: it is so simple
that the task can be accomplished much easier in
PostScript. However, the benefits of C programming
become clear in more complicated cases.

PieChart

The first GEX plugin was the PieChart plugin. The
implementation consists of

e piechart. [d11]so], the extension library.

e piechart.sty, a matching ITEX 2¢ style, to

shield the interface details from the end user.

The code below shows how the end user may be
using the plugin; a TEXnically minded person might
also want to examine the sources which are available
together with the GEX API description.

%% Define some colors
\definecolor{lightyell}{rgb}{1,1,0.75}

IMTEX 2e
Plain TEX
AmSTEX
TEX 2.09
Other

7088

Figure 6: Shares of TEX dialects

\definecolor{peach}{cmyk}{0,0.50,0.70,0}
\definecolor{orange}{cmyk}{0,0.61,0.87,03}
\definecolor{navyblu}{cmyk}{0.94,0.54,0,0}

\begin{center}

Shares of \TeX\ dialects:\par
\fbox{\begin{PieChart}[rt]{1.8in}
\PieSlice{lightyell}{65}{\LaTeX\ 2e}
\PieSlice{green}{20}{Plain \TeX}
\PieSlice{navyblu}{10}{AmS\TeX}
\PieSlice{yellow}{4}{\LaTeX\ 2.09}
\PieSlice{orange}{1}{0ther}
\end{PieChart}}

\end{center}

hto

A sample PieChart produced by this extension is
shown in Figure 6.

Vchart

While PieChart is simple enough that it can be im-
plemented in TEX/inline PostScript, its descendant,
Vchart, breaks the barrier.

The Vchart package implements several formats
of business graphs. Like PieChart, it is a combina-
tion of a plugin and a macro package.

To structure the user input, Vchart provides
several environments. One defines the colors:

\definecolor{c1}{rgb}{.565,.592,1}
\definecolor{c2}{rgb}{.565,.184,.373%}
\definecolor{c3}{rgb}{1,1,.753}

the headers:

\begin{header}{sides}
\entry[fillcolor=cl]{West}
\entry[fillcolor=c2]{East}
\entry[fillcolor=c3]{South}
\end{header}

\begin{header}{ABCD}
\entry{AFX\entry{B}\entry{C}\entry{D}

258 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

\end{header}
and the data:

\begin{datatable}{example}
20.4 & 27.4 & 90 & 20.4 \\
30.6 & 38.6 & 35.6 & 31.6 \\
45.9 & 46.9 & 45 & 43.9 \\
\end{datatable}

and applies the \DrawGraph command.
The first graph in the series below has been
produced with

\colorbox{grbkcolor}{%
\DrawGraph{graphdata=example,
graphtype=column,width=100pt,
height=70pt,rowheader=sides,
colheader=ABCD}}

The other graphs differ only in the graphtype=
setting. The separation of data from the actual com-
mand allows to produce different charts from the
same values.

Viplot

The most powerful GEX plugin designed so far is Vf-
plot. The name stands for the Visual Function Plot;
Viplot converts functions given as formulas into the
plots within the document. Unlike the facilities of-
fered by standard plotting tools (MathCad or Mat-
Lab), Viplot was specifically designed with TEX in
mind; the plots it produces are visually compatible
with the TEX document (plots use the document
fonts and TEX-formatted text).

Like the plugins mentioned above, Vfplot comes
with a comprehensive macro package (viplot.sty
for WTEX 2¢ and vEplot.tex for Plain TEX) which
screens the plugin details from the end user.

Samples of inputs to Viplot and its outputs are
shown in figures 8, 9, and 10.

Viplot and PSfrag

In principle, plots similar to Viplot’s can be also be
achieved using a standalone math plotting system
(like MatLab) in conjunction with the PSfrag pack-
age. The basic advantage of Viplot is that the plot
is an integral part of the TEX document; it can be
changed by changing the plot code within a TEX
file directly, or employing the Visual plot editor (see
below). PSfrag, on the other hand, is essentially a
write-once format, which requires a separate pro-
gram for making the plot and additional manual
work in setting the substitution tags.

However, PSfrag also has an advantage of being
more portable; Viplot (and plugins in general) are
VTEX-specific.

Mixing TEX & PostScript : The GEX Model

Graph Type/type Result

100

90
Column graph/ 20
graphtype=column &0

"

30

20

10

0

A B C D

Bar graph/ °
graphtype=bar c

0 10 20 30 40 50 60 70 80 90 100

dots and lines/
graphtype=dots

Radar graph type/
graphtype=radar

100
80
60
40
20

Figure 7: Sample Vchart output. Notice that
Vchart does not have a piechart type of graph;
but a pie, after all, is just a degenerate doughnut.

Doughnut graph type
graphtype=doughnut

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 259

Alex Kostin & Michael Vulis

\begin{plot}[legend=rt] {x-axis=MyAxisl,y-axis=MyAxis2,plotfill=CoorFillO}

\function[linetype=MyLinel]

[minlimit=-3.14,maxlimit=3.14,level=0,hatching=FunHatch,fill=FunFill]

{x/2+sin(x)+cos(x"2)

| x in [-5,5]}{$+{x\over 2}+\sin x+\cos x"2$}

—+% +sinz + cosz?

2

Figure 9: Viplot drawing: Color Map

\end{plot}
10.0
5.0
0.0
-5.0
-10.0
=27 -7
\begin{plot}{

x-axis=SineXAxis, % use a predefined axis

y-axis=SineYAxis,
gapsfill=Sunset2 Y use a predefined
% gradient stretch
}

\function[linetype=MyLine]{sin(t)}{}

\end{plot}

1.0 : SERD
o B e
06 |

0.0 : : : ‘

Figure 8: Viplot drawing: 1D Plot

We, therefore, support exporting Vfplot envi-
ronments into .eps/.inc file pairs; the .eps file
contains the plot itself, while an .inc file contains

a PSfrag wrapper for it.

Viplot Visual Frontend

While it entirely possible to create Viplot input “by-
hand”, the number of possible parameters is so large
that a Visual frontend becomes useful. Such a fron-
tend currently exists under Windows only; its func-

tionality includes abilities to

e edit plot environments within TEX documents.

e visually manipulate all possible options of such

environments:
HicroPress Yisual Function Plot- Fro x|
FEile Help
& Frame Paraneter | [[vep =
Fill style Expression abs(105-)+2°5in6)
& Legend Detault
Line st/e T
Fill style =
5 Axes =
Frame line style
Fill style Fast preview
= Kands
Line style I~ Auto redraw
Gridline style Blat
Ticks
Y s
Levels
) Funclion <abs {1 D)+ 2sin> Change
Functions { datatables Clear
& Funclion Date. ‘ e
- e description
Define the analytical o o Help
be calculated | Wity [B5in Height [11in ¥ Campress Eont = 1

e instant preview of the plot:

260 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Mixing TEX & PostScript : The GEX Model

\begin{plot3d}{x-axis=AxX,y-axis=AxY,
z-axis=AxZ,isolines=false}

\function[x-numpoints=60,y-numpoints=60,
uppersidefill=MyFill3,
lowersidefill=MyFill2,lineoff]

{ (1-x)"2+100%(y-x*x)"2 | x in [-1.5,1.5];
y in [-0.5,1.5]}

\end{plot3d}

103

102

10

Z-axis

1071

—2
1077 5

s b

Figure 10: VFPlot drawing: 3D Plot. The Rosenbrock function, z = (1 — x)? 4+ 100(y — 22)?

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 261

Alex Kostin & Michael Vulis

[_[O]x]

M MicroPress Plot - fast preview

Ele ¥iew Help

EFSIETE [

100

80

6.0

40

20

0.0

as well as somewhat slower full plot. (The in-
stant preview does not expand TEX notation).

e export plots in many bitmapped formats.

e export plots as .eps, or .eps together with a
PSfrag header (.inc).

Image processing

One important place where GEX differs from ordi-
nary PostScript is the image handling. In “normal”
PostScript, image is a primitive operator. By de-
fault, it is the case in GEX as well; however, image
is implemented as a combination of two new exten-
sion operators:

Jloadimage does the unpacking and produces an
image object on the operand stack.

.produceimage emits the image object to the out-
put stream.

Thus, one can define

/image {.loadimage .produceimage} def

without changing the way image operates.
Similarly, imagemask and colorimage use

Jloadimagemask for the unpacking of the
imagemask data

Joadcolorimage for the unpacking of the
colorimage data

and are internally defined as

/imagemask{ .loadimagemask
.produceimage} def

/colorimage{ .loadcolorimage
.produceimage} def

By itself, this adds nothing. However, it opens a
door for inserting a new operator between the two
components of image:

/image {.loadimage myfilter
.produceimage} def

Such an operator can manipulate the image data in
memory.

A filtering operator as defined above cannot be
written in PostScript — there is no image data type
in the PostScript language; and from the point of
view of the PostScript processor, image is just an
int. A curious user can see this by trying
/image {.loadimage pstack

.produceimage} def
However, image filters can be easily implemented via
plugins.

Two plugins have been developed to perform
image manipulations:

TransBit can alter the color model of the image.
One of the applications is to convert color (RGB or
CMYK) images to grayscale for printing purposes.
TransBit functionality also covers the brightness and
the contrast of the image.

Degrade downsamples the image; this can be used
to decrease (often, greatly) the size of the resulting
output file.

Both plugins take additional parameters. For ex-
ample, if we want to brighten an image by 10 units,
we would issue
\special{pS: (transbit) .extend}
\special{pS: save}

\special{pS: /image {.loadimage
(toBright 10) transbit
.produceimage } def
\includegraphics{mypic.eps}
\special{pS: restore}
The save/restore pair is needed to restore the
original definition of image.
The functionality of both plugins has been in-
corporated in the \includegraphics command, so
the end user will merely write

\includegraphics[brightness=10]{mypic.eps}
Note: The graphicx package automatically

loads the required plugins upon seeing keys that are
implemented in plugins.

Non-PostScript images

Although the above functionality applies to images
stored within PostScript code (like the ones pro-
duced by jpeg2ps), we can easily extend it to the
bitmapped image files.

The idea here is to be able to load image files
into the GEX/PostScript environment; this is done
with the .readimage extension operator. This op-
erator takes a string argument with the image file
name and converts it to an image object on the Post-
Script operand stack; such an object can be followed

262 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

up by a .produceimage or by imaging filter(s), and
then by a .produceimage.

The end-user interface is again trivial. For ex-
ample:

\includegraphics[colorspace=grayscale 16]
{picture.gif}

will load the picture.gif file into GEX, and convert

it to a 16-color (4-bits) grayscale using the TransBit

plugin.

TransBit example

The examples in this and subsequent sections show
the same image, macaw. jpg, processed with differ-
ent \includegraphics keys. The original picture
appears in the middle of the first example. Trans-
Bit related keys are brightness, contrast, and
colorspace; these keys force the image processing
via .readimage, followed by a plugin application.
Sample code
\includegraphics [width=1.3in,
contrast=-0.3]{macaw. jpg}
\includegraphics[width=1.3in,
contrast=0]{macaw. jpg}
\includegraphics[width=1.3in,
contrast=+0.3]{macaw. jpg}

results in

contrast=-0.3

contrast=0

contrast=+0.3

Color model conversion would be, in particular,
of use when the document is to be eventually printed
on paper. For example, type
\includegraphics [width=1.3in,

colorspace=bw]{macaw. jpg}
\includegraphics [width=1.3in,

Mixing TEX & PostScript : The GEX Model

colorspace=grayscale 16]{macaw.jpg}
\includegraphics[width=1.3in,
colorspace=grayscale 256]{macaw.jpg}
to produce

colorspace=bw

colorspace =
grayscale 16

colorspace =
grayscale 256

Color space conversion to grayscale also often
substantially reduces the size of the output.

Degrade example

The Degrade plugin is triggered by the degrade key
of \includegraphics; degrade=1 corresponds to no
downsampling.
\includegraphics [width=1.3in]{macaw. jpg}
\includegraphics[width=1.3in,
degrade=0.6] {macaw. jpg}
\includegraphics[width=1.3in,
degrade=0.4]{macaw. jpg}

\includegraphics[width=1.3in,
degrade=0.3]{macaw.jpg}

\includegraphics[width=1.3in,
degrade=0.2]{macaw. jpg}

\includegraphics[width=1.3in,
degrade=0.1]{macaw. jpg}

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 263

Alex Kostin & Michael Vulis

degrade=0.6

degrade=0.4

degrade=0.3

degrade=0.2

degrade=0.1

The transformations given above usually result
in a drastic decrease of the size of the output. A
minimal TEX source file which consists of a solo
\includegraphics with different degrade= coeffi-
cients will result in PDF files of decreasing sizes:

Coeft. File Size

Uncompressed | Flate-Compressed
1.0 1,278,158 1,029,377
0.6 459,780 392,863
0.4 204,804 181,256
0.3 115,908 104,714
0.2 51,970 47,932
0.1 13,952 13,242

Note: Downsampling can also be accomplished
by means of the Discrete Cosine Transform; this
is triggered by the dct and dctquality keys for
\includegraphics. For photo-quality images this
often leads to better results.

Color stack issues

The color package offers two distinct ways to main-
tain color: rely on the color stack in the backend
(usually, a DVI driver), or— when such a stack is
not available —emulate it within TEX.

As turns out, with GEX neither approach is
fully adequate. The color stack within TEX is gen-
erally incapable of preventing color leaks from one
page to another; but full use of the backend color
stack is not possible since GEX already implements
the full PostScript graphics state stack (GSS). While
the GSS saves colors, it also saves the current point.
This breaks some of the PStricks sub-packages, such
as pst-text or pst-path.

The workaround used in GEX is to support both
TEX and backend color stack approaches:

e vtex.def provides a macro \if@colorstack;
when true, the color style uses the GSS stack;
when false, color emulates the color stack
with TEX means.

e By default, \if@colorstack is true; the driver
color stack is used.

e Environments like pspicture are redefined to
set \if@colorstack to false; this assures that
PStricks are not broken.

Credits & Acknowledgements

The VIEX/GEX system itself was written by Michael
Vulis. Most of the supporting macro packages were
written by Alex Kostin. Vchart was written by Kir-
ill Lebedev. Other plugins quoted in the article have
their respective authors.

The authors wish to express thanks to

e Walter Schmidt and Taco Hoekwater for extra-
ordinary efforts in making the freeware versions
of VTEX possible.

e Denis Girou and Timothy van Zandt for coop-
eration and help in cleaning bugs in PStricks
and Seminar which made their use with GEX
possible.

e David Carlisle for providing an extendable ver-
sion of the Graphics package which makes a nat-
ural interface to GEX features possible.

e Heiko Oberdiek for outstanding efforts in mak-
ing sure that Hyperref manages all the multiple
modes of VIEX.

e Many end users who discovered and reported
bugs in GEX — thank you all — and please send
more.

264 TUGDboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Abstract: The AsTEX Assistant and Navigator

Michel Lavaud

Département des Sciences pour 'Ingénieur, CNRS
F-91405 Orsay Cedex France
Michel.Lavaud@univ-orleans.fr

Abstract

The Assistant AsTEX is a program to aid the use of TEX under Windows 95/
98/NT. It permits the entry of commands or collections of commands in any
Windows editor via use of toolbar buttons rather than entering at the keyboard.

The Navigateur AsTEX allows navigation in dvi, ps, or pdf documents by
clicking on elements provided in a navigation window.

It provides an interface independent of the program used to visualise the
document. The programs that work with this standard include Dviwin, Dview,
GSview and Acrobat Reader.

Michel Lavaud

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

265

ETEX And The Personal Database

Bernice Sacks Lipkin
9913 Belhaven Road
Bethesda MD 20817
USA

bslipkin@erols.com

Abstract

Ignoring fixed-size and coded field formats, text databases can be viewed as either
ASCII-delimited or ID-prepended. ASCII-delimited databases reserve a particular
symbol as record delimiter, and another symbol as field delimiter. ID-prepended
databases mark the start of each new field with stylized text unique to that field
type. Personal means that the record can take any form the database owner
desires, from the rigidly-structured, where the informational fields are in the
same order in each and every record in the database, to the totally unstructured
records of ordinary documents.

TADS is a set of integrated programs that manipulate the text in a personal
database. Using TADS, field-specific INXTEX instructions can be made an intrinsic
part of an ASCII-delimited database from its inception. To create a bibliographic
data base and incorporate items from the database into manuscript text requires
that the writer do two tasks:

1. Using TADS, the writer creates a customized data entry program that will
prompt for keyboard input to create the field order he wants; e.g., author, title,
journal, etc.. The data entry program writes a skeleton IXTEX file, complete with
skeleton commands, one per field. These macro names, which also prepend the
fields in each database record, define font size and shape.

2. In writing a document for publication, the writer alludes to citations in
the document, using whatever phrases he can recall. The allusions are written
within brackets; for example, Smith et al <smith*199?*tadpole*> suggested. . .
Under a script that stacks TADS program modules with the appropriate options,
these allusions are extracted from the document, and serve as wildcard match
words to pull out records in the derivative database. Records are automatically
sorted by number or by Name-Year and the numbers (or Name-Year) substituted
for the allusions in the document. Fields can be rearranged or omitted in the
bibliography; and the accompanying WTEX field macros can be redefined for the
font and style requirements of the particular journal.

Introduction

This paper presents some of the ideas that are ex-
plicated more fully in a monograph in preparation
on human-aided computer manipulation of biblio-
graphic databases.

TADS! is a set of gofer utilities for text process-
ing. It has no artificial intelligence, no understand-
ing of the meaningfulness of the text that it finds
and manipulates. At the other extreme, in contrast
to data mining, it doesn’t pull out patterns statisti-
cally. It does recognize features of the text. It can
pick out vowels or digits or all the letters of the al-
phabet or all the alphanumerics. It knows the start

of a field from the rest of the field and where fields
are located on disk. It can match words exactly or
find a word in the field or do wildcard matching.
With these simple skills, it does text substitution

1. TADS is an acronym for Text Analysis, Description and
Synthesis. It is the latest reincarnation of a set of text manip-
ulation and string processing programs. Variations of many
of these programs were first written in the 1970s in Sail; the
system was called MaText. A later version called TXT was
written for the Microsoft C compiler and a DOS-Windows en-
vironment. It is documented in String Processing and Text
Manipulation in C, which came with a copy of the source code
for many of the functions on floppy. The book is currently
being revised for a Linux-Unix environment. The programs
now work with any size record.

266 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

and sorts records alphabetically or by class. There’s
even a job called lazyboy sort, where the machine fig-
ures out subclasses by examining the text. It com-
presses records vertically and links files horizontally.
It makes statistical tables by tallying frequencies of
linked words. It has no preconceived ideas about
how to terminate a record or a field; you tell it the
record delimiter, and if the record has more than
one field, the field delimiter. It does insist that you
reserve these marks — usually punctuation marks —
as delimiters; that is, you can’t use them in the body
of the text.

TADS works with the text you give it, what-
ever it is. It works with your personal database,
one that you design. If the input is a flat relational
database — where the number of fields in each record
is the same, the types of information in the sequence
of fields are the same and fields are not subdivided —
it can treat the fields as columns, and do all the find
and retrieve tasks we expect from a search engine
operating on a highly-structured simple database.
But it is just as happy if it is directed to operate on
a semi-structured database, where the first fields are
predictable, and the later fields are unstructured —
clinical notes for example. It can handle hierarchi-
cal fields, which include subfields or even subsub-
fields, a format that truly keeps data that belong to-
gether together. TADS treats ordinary manuscripts
as records, if you declare the period as record delim-
iter. To partition a sentence, declare the comma as
field delimiter. Obviously, not as many operations
can be done on unstructured fields. But you can,
for example, treat an entire book as a single record
and extract all the test phrase that are bracketted
by <> or [] or () or whatever.

In Figure 1, the first example is a flat database
record, one where each field contains a single item
of information. The second keeps all the data on
jobs in one field. It is an example of a hierarchi-
cal database, where the field is subdivided into sub-
fields, and the subfields are partitioned into subsub-
fields. The number of subfields usually vary from
record to record. Subsubfields are generally rigidly
structured because they are usually designed to pro-
vide quantitative results dependent on information
that is ordered in time or in some other dimension.

Adding an unstructured Notes field to the first
record would not affect its processing but would con-
tribute to its functionality. It could act as a re-
minder of the times the consultant was used. The
field could also be made private for evaluations and
assessments by filtering the Notes field out before
the file could be examined publically.

IXTEX And The Personal Database

TADS searches are fast, but not as fast as google
or dogpile. Much of what it does is done by com-
mercial database managers. It does, however, have
some nice features. It can handle any size record,
any size field. It operates just on the fields you want
processed. Any and all databases can be read and
modified by you whenever you wish. (Of course, if
you change a file that is searched by way of a TADS-
created index, you will have to—or TADS will have
to—redo the index.) The original database is al-
ways readonly, but TADS can send records that were
modified to one file, records that were unaffected to
another, eventually creating a genealogical tree that,
properly manipulated, does the equivalent of AND,
OR and NOT booleans.

When the programs were applied to databases
with relatively simple structure—Ilists of biblio-
graphic citations—1I ran into a practical problem
that was not large and interesting but small and an-
noying: the impossibility of picking a font format
that would need no revision. For efficiency, markup
instructions are usually embedded directly into the
database text from the start. This can, however,
produce problems downstream. What if one jour-
nal wants Volume numbers bolded, another wants
them italicized, the next slanted. Redoing font in-
structions can be laborious, especially if you need
to change the markup instruction in only one or two
specific fields in every record, whenever you must
use a different font. Alternatively, it is possible to
maintain a database in unformatted text, adding ex-
act instructions as needed. But this suffers from the
same need to revamp much of the text.

More recently, I've started working with the ID-
prepended format. An ideal example is an item from
a MEDLINE download, such as the one shown in Fig-
ure 2. (I've omitted the Abstract field.) Keys to the
article are listed individually in the Mesh Heading
(MH) fields. The download format is stylized. Field
names are two-letter, followed by two spaces, a hy-
phen and a space. What is a single hierarchical field
in an ASCII-delimited record is split into individual
fields. Field order is always the same. The Universal
Identifier (UI) is always first. It is always followed by
the author(s), the title, the language, and so forth.

Look at the figure. It is obvious that if you
prepend a backslash to the field ID, substitute a left
brace for the “ - 7 and add a right brace at the end
of the field, you have a KTEX macro command with
its text argument, a different macro command for
each type of field. Naturally, you must define this
new command, flesh out the font size and shape.
By defining a macro for each type of field in the
preamble, you can control the print characteristics

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 267

of the individual fields.

Bernice Sacks Lipkin

Flat field. The record delimiter is !. The field
delimiter is /. They can not be used in the
body of the record. Notice that the end of
the final field is not a diphthong; i.e., it termi-
nates with the record delimiter, not the field
and record delimiters.

Hierarchical field. The field delimiter is /, the
subfield delimiter is % and the subsubfield de-
limiter is $. Two fields are shown: one simple,
one hierarchical. John Smith may have held
any number of positions, but each position sub-
field has a fixed number of subsubfields, three
in this example —title, university and starting
date.

Figure 1: Two types of database fields.

ConsultantFile0027/1994/
Smith, John M./electrical
engineering/Ph.D., U
Calif./99 First Street,
Lakeview 11111 WI!

John M. Smith, Ph.D./
Ph.D.$U. of Calif.$1957%
PostDoc$Yale$1959%

Asst Prof$Yale$1963Y

Assoc Prof$Wisconsin$1967%
Prof$Wisconsin$1971/

This doesn’t solve all the

jobs that turn a database record festooned with tags

problems of modifying print appearance on the fly.
But it helps.

The notion of tagging a record with a com-
bined command name and field identifier when it
is added to the database can be applied to ASCII-
delimited records. The format I’'m currently explor-
ing is transitional; it has characteristics of both the
ASCII-delimited and the ID-prepended formats. It
still relies on a record delimiter, the ~, and field de-
limiters, the /, to isolate and partition the record.
This is an example after it was keyed in under a
data entry program designed specifically for these
field types and the fields rearranged.

\ACNUM{DemoFile01}/\NAMEYEAR{Eisthen, 1992}/
\AUTHOR{Eisthen, H.L.2}/\YEAR{1992}/\TITLE{Phylo-
geny of the Vomeronasal System and of Receptor
Cell Types in the Olfactory and Vomeronasal Epi-
thelia of Vertebratesl}/\PAGES{1-21}/\JOURNAL{Mi-
crosc. Res. Tech.}/\VOLUME{23}/\ISSUE{1}/ / /
/ / /\NOTES{93004928}~

A database is stored in ASCII with prepended
IDs, which are actually IATEX macro command
names. The end of a field in the current version
is redundant: it has both a right bracket that we
need for IHTEX anyways plus a field delimiter. In
some files, I've eliminated the field delimiter alto-
gether, using the } both for BTEX syntax and field
delimiter. But I won’t do this in a general way un-
til I've convinced myself that there’s no interference
with TADS in general, or at least in the major rami-
fications and combinatorics of using its modules in a
sequence to get a particular result. The current for-
mat clearly does not interfere with the programming

268

and extraneous information into a well-behaved ref-
erence suitable for publication.

At this point, you are probably thinking BIBTEX.
BIBTEX is indigenous to BTEX. It has a multitude
of formats, is easy to use and does much of its work
transparently. TADS was not designed as a biblio-
graphic database manager. It has little terminology
specific to bibliography. In fact, it has little termi-
nology. Labeling fields is a major innovation. But it
remains a set of general programs, each with multi-
ple options, that leaves it up to you to work out the
correct sequence of programs and the appropriate
options to do a particular task. Once a database is
created and a map for obtaining the desired result
is drawn —e.g., run dork task 3 with these options,
then run addtext task 4 with these options, and so
forth—it is simple enough to run the job from a
script.

One such job is integrating a canonical bibliog-
raphy and manuscript for a particular journal. To
run the programs that do this, you first need to do
two things:

Acquire a database.
To use TADS, you must add at least a record
delimiter or, better still, a record delimiter
and field delimiters, to each record in the file.
That’s it. TADS will extract a list of citations
from a database, alphabetize it, number it, and
substitute the numbers in the manuscript. But
there are advantages to building in IATEX macro
names from the start. This paper describes a
program that writes a data entry program to
supervise the creation of a database from text

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

IXTEX And The Personal Database

UIr -
AU -
TI -
LA -
MH -
MH -
MH -
MH -
MH -
MH -
MH -
MH -
MH -
MH -
MH -
MH -
MH -
MH -
MH -
MH -
RN -
RN -
RN -
PT -
PT -
PT -
DA -
DP -
Is -
TA -
PG -
SB -
SB -
cYy -
IP -
Vi -
JC -
AA -
EM -

PMID-
PID -
S0 -

20002969

Keverne EB

The vomeronasal organ.

Eng

Action Potentials

Afferent Pathways

Animal

Behavior, Animal
Chemoreceptors/chemistry/*physiology
Female

GTP-Binding Proteins/metabolism
Human

Hypothalamus/physiology

Male

Neurons, Afferent/*physiology
Olfactory Bulb/physiology
Pheromones/physiology

Receptors, Cell Surface/chemistry/genetics/*physiology
Signal Transduction

Vomeronasal Organ/anatomy & histology/innervation/*physiology
EC 3.6.1.- (GTP-Binding Proteins)

0 (Pheromones)

0 (Receptors, Cell Surface)

JOURNAL ARTICLE

REVIEW

REVIEW, TUTORIAL

19991105

1999 Oct 22

0036-8075

Science

716-20

M

X

UNITED STATES

5440

286

uJ7

Author

200001

Sub-Department of Animal Behaviour, University of Cambridge,
Madingley, Cambridge CB3 8AA, UK. ebk1O@cus.cam.ac.uk
56

0010531049

7933

Science 1999 Oct 22;286(5440):716-20

Figure 2: An Item from a MEDLINE Download.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

269

Bernice Sacks Lipkin

entered from the keyboard. It treats the keyed-
in text as arguments to BTEX commands. You
can, instead, add macro commands to an exist-
ing database or to one you download from the
Net or get from a scanned image.

Add allusions to the manuscript.

As you write your manuscript, you tuck snips
of information about particular references in-
side brackets. The program extracts these al-
lusions, bounces them against the bibliographic
database, extracts the matched records, orders
them by accession number or Name-Year, and
substitutes the order tags for the allusions in
the manuscript.

Using TADS, this is the sequence of tasks that
results in a database:

1. Write a file of instruction records. We will call it
Lbiblio.ins, but you name it as you like. Each
instructional record provides the directives to
control the entry of a single field in what will
eventually be a single database record.

2. Run Lquegen. It will use the information in
Lbiblio.ins, together with your answers to its
online questions, to write you a customized data
entry program. We will call the source code
for the data entry program Lbiblio.c. You can
run Lquegen as often as you like, using different
instructional files to develop different styles of
database.

3. Compile Lbiblio.c. You don’t have to be a pro-
grammer. A Make file is provided.

4. Run Lbiblio. It has sufficient flexibility to cre-
ate databases for different scientific disciplines,
each with its own control file, each of which has
the format given it by Lquegen. Actually, if you
know C, you can go into the source code and
make some minor adjustments to change the
format.

5. Lbiblio needs to know where to send the pro-
cessed text. Suppose we call this file Lbib.db.
The first time you run Lbiblio to create records
for Lbib.db, it ships the start of a IWTEX file with
a set of commands, one per field, to Lbib.db.
The macro name for a field is based on the
prompt for that field.

6. Each time you run Lbiblio, it will store the val-
ues for the options you choose in the control file,
the TRL file, whose name you specify. In this
example, it’s called Lbib.trl. The TRL file writ-
ten the previous run stores the correct starting
accession number for the current run. And it
keeps a log of each run.

Lbiblio.ins, a file of instructions

Prompts and macro names are specified by giv-
ing Lquegen an Instruction File Lbiblio.ins that de-
scribes the prompt features of the database entry
program as a set of records. Each field that is part
of the record structure in the eventual database re-
quires a separate record in Lbiblio.ins. If there will
be 10 fields in each database record, you need to
write 10 records. Figure 3 has an example of an
instruction file; it has 13 fields in each record.

The delimiters in Lbiblio.ins must be the same
as the ones you will use for the final database. We
use ‘7’ as the record delimiter and ¢/’ as field delim-
iter. Notice that the record is terminated by ‘7, not

(/“"

Each Instruction File record must have 5 fields.
You need not fill in all the fields. A field may be
empty, but it must end in a delimiter.

1. FIELD NAME. This must be a single word.
When the data entry program is run, this will
be the main prompt. The field name will also
be the field’s ITEX macro command name, so
only alphabetic characters are acceptable. I've
used upper case on the field names, but there’s
no particular reason to do so.

2. EXTRA. This is optional extra prompt text. It
helps conformity, if different people are typing
in the data. It can remind them about punc-
tuation and/or word order. It is reproduced as
written, tabs, spaces, whatever.

3. DEFAULT ANSWER: If you just press ENTER,
this will be the default text. The default answer
is copied to the database as written. You can
override it by typing in text. If you want no
text in the field in some record, type a space
and then press ENTER.

4. SUBFIELD: Is this field to be subfielded?
YES/NO.
5. AND: Is this subfielded field to be ANDed?

YES/NO.

The last two fields require explanation. The
database(s) that will be created will be structured
so that each field is the argument of a specific WTEX
command, which operates on the whole field. To
make small changes on the text, the less informa-
tion you store in a field, the better. In Lbiblio.ins,
notice that VOLUME and ISSUE, which usually are
neighbors in a citation, are in separate fields. Unfor-
tunately, we don’t usually write individual authors
and editors in separate fields; and most of the mi-
crovariation in print appearance between journals is
precisely in these two fields. Using subfielding and
\AND is an attempt to solve one problem: does the

270 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

IXTEX And The Personal Database

AUTHOR/ : [FirstField] (SUBFIELD.) ex:Brown, A.//YES/YES~

YEAR///NO/ NO~

TITLE/: Title of article, NOT of the book//N0O/ NO~

PAGES/: Separate with hyphen. Ex: 164-169//N0O/NO~

JOURNAL/: Name of Book-Journal. Default:’Tech Manual X234L’/
Tech Manual 234L/NO/NO~

VOLUME/: ’3’ is the default/3/NO/N0O~

ISSUE/: TM234L-0ZN-X34523 is the default/TM234L-0ZN-X34523/N0/NO~

ISBN///NO/NO™

PUBLISHER///NO/NO~

EDITOR/: (SUBFIELD.) Name of editor. ex: A.B. Smith//YES/YES~
CITY/: city where book was published//NO/NO~

BPAGES/: number of pages in book//NO/N0~
NOTES/ keywords, code words//YES/NO~

Figure 3: A File of Prompting Instructions

journal want an and before the last author or an ‘&’
or nothing?

A subfielded field is divided into subfields, just
as the record is divided into fields. Each subfield is
terminated by a character you reserve as subfield de-
limiter. Notice that, in the example, the AUTHOR,
EDITOR and NOTES fields are subfielded. When
Lbiblio, the data entry program, prompts for text
in a subfielded field, it repeats the prompt over and
over again, until you press ENTER with no previ-
ous text. Subfielding has different uses — separating
authors to facilitate indexing, separating titles and
subtitles—but its usefulness here is that, with re-
cycling, the program knows when you’ve typed the
last author.

YES in Field 5 requests that the program insert
an \AND before the last subfield in the field (\AND is a
command we define; the user may redefine it later).
It can only be used with subfielded fields. (In this
example, it isn’t used in NOTES.)

Lquegen interprets the records in Lbiblio.ins
and writes out its understanding in a file called, in
this case, Lbiblio.ins.decode. In a Linux-Unix envi-
ronment, you can pause while running Lquegen, read
Lbiblio.ins.decode and compare it to what you wrote
in Lbiblio.ins. This is its analysis for fields 1 and 6
in our example design.

Record [1]:
FieldID = AUTHOR

extra = :[FirstField] (SUBFIELD.) ex:Brown, A.

defaultans = (null)
subfld = YES
AND = YES

Record [6]:
FieldID = VOLUME

extra = : ’3’ is the default

defaultans = 3
subfld = NO
AND = NO

Lquegen, a program that writes programs

Choosing delimiters Conflict between different
programming systems that operate on a database
is almost unavoidable. There is no set of symbols
that are exclusively and universally reserved for pro-
gram instructions, with non-intersecting subsets for
the different programming languages. What is text
in one language is a directive in another. It is a
happiness-making happenstance when the sequenc-
ing of programs is such that while the text is be-
ing manipulated by one programming language, it
is transparent to the others, until it is their turn.
But it takes careful planning to avoid difficulties.
Particularly in choosing delimiters.

First, you don’t want to use a character com-
monly used in the text itself. This lets out the
comma and maybe the colon and semicolon. In-
visible characters are poor choices. Second, the pro-
gram reserves control-X, control-Y, { and }. All
other control characters are OK if IXTEX, your ma-
chine, compiler and/or script don’t reserve them.
Records from the database will be formatted by
ITEX, so %, \, & and # are very bad choices. Avoid
$, ~ and backspace, which are used in IXTEX math
mode.

Good delimiters for a database that will be
KTEX-processed are: /, *, @, ¢ (octal 140), | (which
prints as a dash), > and " (single and double quotes).
The characters = and + are OK if you don’t bring in
arithmetic values.

Adding ID fields It is useful to have a perma-
nent identifier (ID) to tag each of the records in the

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 271

Bernice Sacks Lipkin

database that Lbiblio will prompt you to construct.
Lquegen can add two fields at the end of the fields
designed by the Instruction File (see the example
in the Section on Database Record Format). They
can be transferred to the top of the record by ge-
nio:rearrange, a TADS program that rearranges and
outputs the fields you specify.

An accession number field.
This is an easy way to provide an ID for each
record. The first record in the file is 1, the sec-
ond 2 and so forth. Because you may eventually
be merging several data files, it is a good idea
to have the ID also indicate the source of the
record or some other name that tells you in-
stantly where the record came from. You can
tell Lquegen what text should precede the acces-
sion number when it asks for Leading Charac-
ters; e.g., Molbiol2000: or ClinStudyAA. This
is a permanent tag for the record. It is not
the accession number that is eventually given
to records used by any particular manuscript.
You may, if you wish, make all the accession
numbers the same size. If you say you want
a minimum width of 6, say, the program will
pad each accession number with zeros to make
it 6-digit wide. (You can write a lot of records
before you overflow a 6-digit width.) If you use
the default, the program won’t pad the number.
It will use the actual length.

A Name-Year ID field.

The program can construct an ID field using
the name of the senior author and the year of
the publication. You will need to tell it the
fields where these items of information are to
be found. Actually, Lquegen only knows that
it is to use the text of the first field up to the
comma by default; or up to whatever size you
stipulate. It uses all the text of the second field.
Case can be set for the name: set all letters up-
percase, set all letters lowercase, or leave case
as is.

The style of the ID will depend in part on
the text you tell the program to insert between
the two items; e.g., Smith2000, Smith:2000,
Smith,2000, Smith, 2000, Smith:-2000. Or you
can put a large piece of fixed text between the
name and year. And, if you wish, you can select
a width, so that the name is chopped or padded
to conform.

You can also vary the appearance of the records
when they are finally ensconced in the database file.
You can start each field on a separate line, if you
wish. And you can set line width. If the text you

type in has no space (at least 1 complete word)
within the requested line width, the program will
add a hyphen to the end of the line prior to out-
putting it, and will alert you to the hyphen by caus-
ing the bell to ring.

Lbiblio, a data entry program

By the time you type in the last answer, Lquegen
has written you the C source code for a data entry
program called, in this example, Lbiblio. You com-
pile it by running a make file that comes with the
program:

make FILE=Lbiblio

Once compiled, Lbiblio is immediately ready to act
as a prompter for text data that you enter through
the keyboard and to do housekeeping chores such as
adding BTEX macro names and record/field delim-
iters.

Initializing the data entry program The pro-
gram needs some specific information before it can
start its work. These values can be declared as a set
of options on the command line when Lbiblio is run.
The minus sign is the signal that the next letter is
an option. There is no space between the option and
the value. Options are separated by spaces. There
is no input file.

OPTION VALUE MEANING
-h YES or NO Want extra information?
-0 (filename) The output database file
-q integer Starting accession number
-t (filename) The Control-Log (TRL) file

-h Is initialization help wanted?
If the answer is YES, the program provides
short essays at the start of the run. The de-
fault is NO.

-0 The name of the output file.

If the file doesn’t exist, the program will cre-
ate it, otherwise it will append to the file; it
never overwrites existing text. So it is possi-
ble to come back time and again to the same
file to add references. Or you can use the same
program, if it is general enough, as most bib-
liographic records are, for databases from dif-
ference scientific disciplines, each in a separate
database file. There is no default. If the pro-
gram is creating an output file, it prepends a
IXTEX skeleton file, which includes one macro
in the preamble for each field in a record. The
macro definitions can be modified to meet the
font requirements of any particular journal or
document structure. The skeleton ITEX file is
shown in Figure 4.

272 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

-q The next accession number.
It is assumed you will be adding to the database.
To anticipate, it is a convenience that you can
direct the program to get the value from the
control file. But you can also write it on the
command line.

-t The name of the TRL file.
Whenever the program is run, it writes the cur-
rent values of the options to the TRL file, so that
it can read them the next run. The program
also records other data: how many records were
created, the date and time, and characteristics
of the data entry program: line width, accession
number width, the file delimiters, which fields
are subfielded, and so forth.

There are various ways to start the program.
If you just write the name of the program on the
command line, you will be in Interactive mode. This
is the simplest way to jumpstart the program, but it
takes the most time. If you use the command line,
the options can be written in any order.

Interactively. Just type the name of the program;
ie.,

Lbiblio

The program will query you for the values of the
options. The very first time you run the pro-
gram, there is no Control File, so you need to
name it interactively. If there is no file with the
name of the database, the program will create
it. And any time you want to start a brand new
database with a new TRL file, run the program
interactively.

From the command line. Type the options di-
rectly on the command line; for example,

Lbiblio -hn -ogmolbiol.db -q40 -tmolbiol.trl

means you don’t want extra explanation, the
database file is called gmolbiol.db, the TRL file is
called molbiol.trl and the first record you write
this run will have 40 as its accession number. If
there is no file with the name of the database,
the program will create it.

From the Control File. Type the name of the
control file option on the command line as the
only option; for example,

Lbiblio -tmolbiol.trl

will use the values stored in molbiol.trl the pre-
vious run. The accession number will be cor-
rect, because at the end of a session, the pro-
gram writes the starting accession number for
the next session to the TRL file. The TRL file

IXTEX And The Personal Database

also maintains a permanent record of the pre-
vious data entry sessions that involve the data
entry program, the database and the TRL file.

You can call some of the values from the TRL
file and override other TRL file values by giving the
parameters new values on the command line; for ex-
ample,

Lbiblio -tmolbiol.trl -hy

requests that all the previous options, those stored
in molbiol.trl, be used, except this time, you’d like
some help.

You can maintain several databases on different
subjects, each with its own database file and its own
TRL file.

What the data entry program does

* prompts for the necessary information for the
field, using the prompt text from the Instruc-
tion File

* writes the predefined default answer for the field
(if there is one) to the database, if you press
ENTER. You can override the default answer
by writing in other text. To get an empty field
in a field that has a default answer, type a space
and then press ENTER.

* adds the specified record and field delimiters to
each record.

* ignores any record and field delimiters typed in
the body of the record

* adds the subfield delimiter to subfielded fields.
It adds the \AND command to subfielded fields,
if that was requested.

* writes out the full record to the database file
with the specified line width

* writes out the record as a paragraph or writes
each field to a separate line

* appends a stylized and padded Accession Num-
ber field to the record, if this was requested
in Lquegen. This permanent accession number
should not be confused with the numberings
that will be given to records in the file that
contains the citation list for a particular manu-
script.

* appends a Name-Year ID field to the record,
using the name of the senior author and the year
of publication, if this was requested in Lquegen.

* writes a ITEX header to the top of a newly-
created database. The header includes a com-
mand macro definition for each field in the
record, where the macro name for that field is
the user-specified prompt in the first field of
Lbiblio.ins. And it prepends the same macro

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 273

Bernice Sacks Lipkin

\documentclass[10pt,letterpaper]{article}
\usepackage{alltt}

\usepackage{multicol}

\usepackage [dvips]{graphicx}
\usepackage{color}
\usepackage{boxedminipage}
\usepackage{pandora}

#PAGE/PARA LENGTHS

\flushbottom

\parindent=0pc
\setlength{\baselineskip}{14pt}
\setlength{\parskip}{13pt}

%PAGE STYLE
\setlength{\textheight}{7.4in}
\setlength{\textwidth}{5.5in}
\setlength{\oddsidemargin}{1in}
\setlength{\evensidemargin}{1lin}
%HEADERS/FOOTERS
\pagenumbering{arabic}
\setcounter{page}{1}
\pagestyle{myheadings}
\markboth{}{Demo Bibliographic Database}

\newcommand{\etal}[1] [et al.]l{\textit{#1}}
\newcommand{\AND} [1] [and]{\textup{#1}}
\newcommand{\AUTHOR} [1] {\textup{#1}}
\newcommand{\YEAR} [1] {\textup{#1}}
\newcommand{\TITLE} [1] {\textup{#1}}
\newcommand{\PAGES} [1] {\textup{#1}}
\newcommand{\JOURNAL} [1] {\textup{#1}}
\newcommand{\VOLUME} [1] {\textup{#1}}
\newcommand{\ISSUE} [1] {\textup{#1}}
\newcommand{\ISBN} [1] {\textup{#1}}
\newcommand{\EDITOR} [1] {\textup{#1}}
\newcommand{\CITY} [1]{\textup{#1}}
\newcommand{\PUBLISHER} [1]{\textup{#1}}
\newcommand{\BPAGES} [1] {\textup{#1}}
\newcommand{\NOTES} [1] {\textup{#1}}
\newcommand{\ACNUM} [1]{\textup{#1}}
\newcommand{\NAMEYEAR} [1] {\textup{#1}}

%ATTENTION: Before you process the file
/%through Latex, make sure there is an
%\end{document} after the last reference.
%Remove any \end{document} in the body of
%the file.

\begin{document}

Figure 4: The Top of the Database File.

name to the start of that field in each citation
in the database. See Figure 4.

What the data entry program does not do
Aside from adding the \AND command, the program
does not modify the text you key in. On the other

hand, as you key in text, you can use your own
macros to reduce typing time and errors: macro
names for long journal names, an alias for an au-
thor with a long and difficult name. As an example,
I've included a \etal command (see Figure 4), be-
cause it is usually italicized. And it is inconvenient
to format it after the fact.

In general, unless you write for a single journal,
it’s almost impossible to write a canonical style for
names. One strategy is to adopt a style that works
fairly well for the journals in which you publish.
LastName-Initial is more common than LastName-
FullFirstName, so it’s fairly safe to use that style.
It doesn’t, of course, prevent the need for small
polishings: one journal wants last name, just ini-
tials; another wants last name, followed by initials
with periods. I use periods, because they are eas-
ier to erase than to add. Science uses an Initials-
LastName format, which makes alphabetizing on
the field difficult. You can, however, alphabetize
on the NameYear field. If you publish often in
both in a Science-style journal and in one that uses
LastName-Initial, it might be worthwhile keying in
author fields in both versions. Depending on where
you send the article, you will use one or the other
field in the final List of References.

If you plan on making microadjustments to the
AUTHOR field in Emacs or some other text proces-
sor, it is a good idea to customize your data entry
program to write each field in the record to a new
line. You then search on the command name.

What you can do in response to a prompt

Create the citation fields, one by one. In
our example, once the program is initialized, it will
ask a series of questions for each citation, where
a citation can be a reprint, a book or a technical
publication. The typed responses will be confined
to separate fields. Answers may be of any length,
including zero length; i.e., the field can be empty,
but the program will add a field or record delimiter.
Depending on the Instruction File, a field can be
simple; i.e., the prompt is displayed and you type in
text. Then the prompt for the next field is displayed.
Alternatively, a hierarchical field prompt can be dis-
played, where the prompt is repeated again and
again, each time defining another subfield. To stop
a subfield and/or a field, don’t type any text— just
press ENTER.

Jump between fields in the record. You
can jump between fields in the record by typing "Y
(control-Y). "Y+6 or "Y6 will jump forward 6 fields.
"Y-2 will jump back 2 fields. You can not jump out
of a record. If you jump forward some large number,

274 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

you will land in the last field of the record. If you
jump backward some large number, you will end up
in the first field of the record. It is not advisable
to jump from a subfielded field; it can mess up the
record.

Jumping forward to the last field is useful when,
as in the example database template, you’ve essen-
tially completed the citation for an article and want
to skip the BOOK questions. You can’t jump past
the record, because the program does its housekeep-
ing in the final field of the record, including chopping
a clumped record into lines of the width specified in
Lquegen.

Jumping back repeats previous prompts. When
the program jumps back, it does not erase the inter-
mediate fields. It just starts prompting from what-
ever field it has jumped to. If used judiciously, this
feature lets you recycle a cluster of fields. It is a
way of creating ID-prepended fields, such as those
in the MEDLINE download in Figure 2. However,
the record is no longer well-structured as an ASCII-
delimited file.

Stop the program. Type "X to stop the pro-
gram. It will stop immediately. The best place to
stop the program is at the prompt to the first field,
so that the previous record has been completely pro-
cessed. If you stop in the middle of a record, you will
lose some text, and the record will be incomplete.

Database Record Format Next is an example
of two database records that were keyed in under
the control of Lbiblio, which was itself created using
the example instruction set. The first has a sin-
gle author and no subfields; the second one has a
subfielded AUTHOR field. Notice that the fields be-
tween the ISSUE and NOTES fields are blank. They
don’t apply to a journal article, so you would want
to skip to NOTES. The number in the NOTES field
was taken from the MEDLINE ID for the article.
NOTES is also a good place to store the authors’
first names, for the few times some publication will
request full first names. And it can be utilized as a
depository for keywords that can later be used for
cross-indexing citations and sorting them by subject
matter. The NOTES field can also serve to indicate
the physical location of the reprint, editorial com-
ments, and so forth. The two last fields were added
by the program. Records are stored as shown. For
publication, fields will be extracted, rearranged and
beautified, using available TADS routines.

\AUTHOR{ Eisthen, H.L. }/ \YEAR{ 1992 }/
\TITLE{ Phylogeny of the Vomeronasal System
and of Receptor Cell Types in the Olfactory

IXTEX And The Personal Database

and Vomeronasal Epithelia of Vertebrates }/

\PAGES{ 1-21 }/
\JOURNAL{ Microsc.
\VOLUME{ 23 }/
\ISSUE{ 1}/ / / / / /

\NOTES{ 93004928 }/

\ACNUM{DemoFile01}/

\NAMEYEAR{Eisthen, 1992} ~

\AUTHOR{ Freitag, J. @ Ludwig, G. @ Andreini,
I. @ Rossler, P. @ \AND Breer, H. }/

\YEAR{ 1998 }/ \TITLE{ Olfactory Receptors in
Aquatic and Terrestrial Vertebrates }/

\PAGES{ 635-650 }/
\JOURNAL{ J. Comp.
\VOLUME{ 183 }/

\ISSUE{&}/ / / / / /

\NOTES{ 99056834 }/ \ACNUM{DemoFile04}
/\NAMEYEAR{Freitag, 1998}~

Res. Tech. }/

Physiol. }/

Writing The Manuscript

This is a short manuscript that illustrates the tech-
nique for writing allusions, using ordinary wildcard
syntax: a 7 allows any single letter in the ? posi-
tion; a * allows any amount of text or no text to
intervene between the two neighboring text phrases.
The spelling error in the last line is deliberate.

Phylogeny of vertebrate pheromonic sensory
systems is complicated by the proximity and
similarity of the adjacent but distinct olfactory
system [@7?7sthen*vertebrate*olfactory]. The
presence of sex pheromone systems in gold-
fish and the anatomic analogies of distinct
olfactory systems [@Dulka*sex*pheromone]
clearly establish both the antiquity and
the complex olfactory/brain relationships
that seems to characterize most if not
all vertebrates [@?7?sthen*microsc]|, [evolu-
tion@vertebrate@olfact]. The hypothesis that
the Class Il receptors are specialized for recog-
nizing volatile odorants is questionable since
some fish, e.g. Latimeria, possess both classes
[Freitag*aquatic*vertebrate]. The presence or
absence of an accessory olfactory bulb is not
in and of itself sufficient to affirm or deny
a functional vomeronasal system in a given
species [@bhatnag?r*diversity*mammalian],
[bhatnag?r*bats*phylogenetic]. Attempts to
infer the form of the earliest vertebrate phero-
nomic structures by comparative anatomy of
hagfish and lamprey are made difficult in that

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 275

Bernice Sacks Lipkin

the necessary physiologic data on these forms
are not available [sennsory biology].”

All the text phrases must be found in the ci-
tation for a match, so an allusion is intrinsically a
boolean AND. A difficulty with this technique is
that the text phrases that make up any wildcard
match word must be sequential. This is fine only
if you remember the exact field sequence. So there
is an alternate wildcard format: an @ prepends the
word. The @ syntax tells the machine to match
each phrase in the allusion from the beginning of
the field.

I've elected to use square brackets, but any
bracket pair will do to delimit the allusions. An
option in dork:keepbracketedtext leaves the empty
brackets in the manuscript, when it strips the text
from the brackets. So the square-bracket format is
good for Name-Year tags.

For a number tag, I'd still use the square
bracket but I would write ([(text)]), and use
the option that deletes the text brackets; the
square bracket would be deleted, not the parens.
([@?7sthen*vertebrate*olfactory]) might eventually
be written as (6).

If an entire manuscript is to be searched for
allusions, add a single, unique record delimiter at the
end. The file can now be described to the program as
a single-fielded single record. Size is not critical for
journal articles. But one could encounter problems
if you were to treat an entire book as a single record.
However, I’ve dummied up a 7 megabyte record by
repeating a real book several times. No problems
were encountered.

Linking Database and Manuscript

Various TADS modules come into play. This is the
general plan. Recall that the input file is always con-
sidered read only. Any modifications are reflected in
the file where the processed records are shipped.

Using dork:keepbracketedtext, the allusions are
stripped out and reappear in some output file, one
per line,

The allusions become a list of wildcard match-
words that finder compares to records in a single
database or in a database that is a virtual merge of
records from several databases.

What constitutes a good allusion? The answer
is tautological: a good allusion is one that is suffi-
cient to attract the reference you want and only the
reference you want. In practice, these are some of
the types of errors that are encountered when the
Citation Allusion (CA) in the Manuscript (MSS) is
pitted against the Citations List (CL) in the source
database.

. The citation is multiply listed in CL.

. The citation is not listed in CL.

. The citation is incorrectly written in CL.
. The CA is incorrectly spelled in MSS.

. The CA informational items are incorrectly con-
catenated.

U = W N~

6. The CA is inaccurate and retrieves no citation
from CL.

7. The CA is so general it retrieves multiple cita-
tions.

8. There are multiple CAs to the same reference.

Depending on the circumstances, the citation is
not retrieved or unrequested citations are retrieved
or a correct citation is repeated.

You can increase the probability of accurate
retrieval by utilizing B TEX macro names. Instead of
writing ©199?*green*pheromone*goldfish, you would
write ©@\date*1997*\author?green*\title{phero-
mone*goldfish. But some people object to doing this
while in the throes of creative writing.

The next step—checking the allusions agains
the retrieved citations—is crucial. And it requires
your participation. finder ships copies of the ci-
tations it matches to a file. The key, i.e., the al-
lusion that identified the bibliographic reference is
prepended as a field to the citation.

If the number of citations extracted equals the
number of CAs, it may mean we have no error. On
the other hand, sources of error could balance out so
that the number of CAs equals the number of cita-
tions. So we can not rely on counting the number of
citations and simply comparing this to the number
of CAs.

TADS can present the original list of allusions
and the list of citations in ways that facilitate com-
parison of the lists. genio:rearrange will split off the
allusions field to a separate file, so the original list
of allusions and the allusions prepended to the re-
trieved citations can be compared. alp sorts lists
alphabetically; using any of the fields as key. squish
eliminates duplicates. Spelling errors may have to
be corrected ‘by hand’. When you are sure the cor-
rected allusions and citations correspond in a one-
to-one fashion, hand the text back to TADS. The
program tags the final list of retrieved citations in
an orderly sequence. You make two separate choices:

1. You chose between listing the references by first
appearance in the manuscript or in alphabeti-
cal order. The same choice applies if you list
references by chapter in a book.

2. In either case, you choose whether to number
the records sequentially or by Name-Year ID.

276 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

The order tag—accession number or Name-
Year ID — is substituted for the allusions in the man-
uscript. This is done in four steps.

1. The citations can be left in the order in which
they appear in the manuscript. Or they can be
alphabetized using alp. If they are alphabet-
ized, it is usually by author field or by Name-
Year ID.

2. If ordering is by Name-Year ID, the order was
done in the previous step. You will, however,
need to add a final letter to the ID, if there is
more than one publication by the senior author
for that year. Alternatively, addtezt:acnum can
add an accession number to each record. The
accession number becomes the first field in the
expanded record.

3. genio:rearrange creates a derivative database of
records, each with two fields: the allusion and
the accession number (or Name-Year). The al-
lusion and number are now considered a sub-
stitution pair. The entire file of records has
become a list of substitution pairs.

4. addtext:sbstitute brings in the file of substitu-
tion pairs and substitutes accession numbers or
Name-Year IDs for allusions in the manuscript.

The List of Citations needs to be dressed up
for publication. genio:rearrange extracts particular
fields in each record in the order you specify. Case
can be modified on a per field basis. Revamping
the macro definitions in the preamble will take care
of the general appearance of the font. A beautify
program addtext:mssformat substitutes commas for
(sub)field delimiters, periods for record delimiters.

Bernice Sacks Lipkin

IXTEX And The Personal Database

Currently, this step usually calls for some small ad-
justments in the text —such as adding or removing
commas and periods in the AUTHOR field, adjust-
ments that are not easy to make globally. I work
in Emacs, using the macro name to get to the right
field per record and make changes locally — chang-
ing case, deleting periods and transposing words,
using Emacs commands. Writing the fields in the
records on separate lines simplifies the work consid-
erably.

The list of references is appended to the manu-
script, \end{document?} is inserted, and the manu-
script is ready.

Conclusion

In dealing with a database you have designed your-
self, there are non-trivial advantages to prepending
a field name that is also a ITEX macro:

1. A prompting program instills style conformity
in the records of the database and reduces tran-
scription errors.

2. You can design a canonical record style across
multiple databases.

3. You can manipulate font size and shape by field
by redefining the field macro in the preamble.

4. You can use field names as part of a wild-
card search of the database to reduce errors
in matching an allusion to the correct (read
wanted) record in the database.

5. To effect small text changes while in a text edi-
tor such as Emacs, you can get to the right field
by searching on the field name.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 277

Formatting documents with floats
A new algorithm for ETEX 2:*

Frank Mittelbach
XTEX3 Project
frank.mittelbach@latex-project.org

Abstract

This paper describes an approach to placement of floats in multicolumn docu-

ments.

The current version of ITEX was originally written for single-column doc-
uments and extended to support two-column documents by essentially building
each column independently from the other. As a result the current system shows
severe limitations in two column mode, such as the fact that spanning floats are
always deferred to at least the next page or that numbering between column floats
and spanning floats can get out of sequence.

The new algorithm is intended to overcome these limitations and at the same
time extend the supported class of document layouts to multiple columns with
floats spanning an arbitrary number of columns.

Editor’s note

This paper describes facilities offered by the au-
thor’s new algorithm for use with ITEX; it there-
fore seemed appropriate that the paper itself should
be typeset using an implementation of it, and the
author was enthusiastic in support of the plan.

With some help from members of the TEX
Team, we have managed to typeset all but the present
page of the paper using a version of KTEX that in-
corporates a prototype implementation of the new
algorithm.

While customising the algorithm to produce the
standard layout that readers of TUGboat have come
to expect, the paper also exhibits the following ca-
pabilities of the new algorithm:

e Alignment of text lines throughout the article
on an invisible grid.

e Support for spanning bottom floats; examples
are on pages 285 and 288.

e Restriction of float placement.

The float placement restrictions selected for this
article are as follows: floats have to appear after
their call-outs, can only occupy bottom areas, and
are not allowed there if footnotes are present in the
column. This accounts, for example, for the place-
ment of figure 1, which was moved from the second
column of page 280 to the bottom of the first column
of page 281.

In the lingua of the algorithm the exact speci-
fication used was:

float-callout-constraint = after,
float-callout-span-constraint

= flexible,
bottom-float-footnote-constraint

= forbidden,
max-float-num = 2,
area-list = {b12,b11,b21},

These settings are admittedly rather bizarre and
were solemnly chosen by the author for illustration
purposes.

In order to illustrate clearly the effect of the
page layout grid alignment used throughout, on page
279 a grid of lines is superimposed; we hope this
does not detract too much from your enjoyment in
reading the article.

In general it should be noted that the TUG-
boat layout isn’t really suited to be typeset using
an underlying grid; headings at the top of the col-
umn need to drop to avoid a large gap between the
heading and the following text (see page 279) and
of course with a flush bottom setting you will get
widows and orphans since there is no stretchability
on the page.

This title page has been set using the standard
(released) TEX output routine because the proto-
type implementation does not at present support
switching the number of columns in the middle of
the page.

278 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Introduction

Formatting documents with floats

The document source model

grows comblnatorlally in the number of ﬂoatb and ar-
eas which can receive them. If we have n floats wait-

placementb is given by

Htrials — (" ’ m) _ormlt

n!m!

objects into the btream but it would be pObblble to
provide them as separate objects.) Floatmg objects

An example would be
marginal notes as implemented by \marginpar

in I‘;NIE}(2€~

line in the margin.

e ODbjects where the call-out and the placement

assuming that the order of floats has to be preserved

e., if the call-out of float f; is before the call-out of
f; in the text stream then the float f; will be placed
earlier than float f; where “earlier” is a defined rela-
tion of float areas

are required to fall onto the same column/page/
spread, e.g., footnotes.

e Objects where there is a defined relation between
call-out and object placement, e.g., “not in an

earlier column”, or “on the same page or later”,
etc. These are the traditional floats.

distributed among 12 areas (which corresponds to a

three column page with float areas at the top and
bottom allowing for partial spans) then we have to

Float objects in the last group are typed where the
type is defined by the logical content of the object,

tions would be unacceptable and discardable btralght
away, after some initial test, the resulting running
time of the algorithm Would clearly be beyond any

con&dered galley materlal is the equlvalent of one
page/spread of textual material ignoring the addi-
tional size taken up by embedded float objects).

them would require trlal typesettlng the whole page,
then the case of 646646 trials would still take roughly
10 minutes to form a decision.)

as early as pObblble without violating deﬁned con-
straints.

Thus it is important. to find algorithms with com-

lexity that is at Worqt linear in both the number of

D
T

The document layout model

areas, even if thlb means that in a few cases a rela-
tively good layout will not be found. It is even better

1ﬁcat10n of a page grld on which 1t will align text
columns and other elements. This will allow (if suit-

TEX code is not. stralqh‘rforward since some activi-

ties are very much faster than others. For example,
performing a test by using a reasonable number of
macro expansions and register assignments may be

Columns The page layouts which are supported by
the new algorithm support an arbitrary number of

The algorithm we have implemented fulfills the
requirement of being (essentially) linear in the num-
ber of floats and the number of float areas.

1 On the current page lines are drawn to highlight the grid.
Note that headings, lists, and other “display” objects are not
aligned

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 279

Frank Mittelbach

width can be changed at forced page breaks such as
the start of chapters.

Balanced columns Balancing columns (as done by
the multicol package) is planned but not imple-
mented. The major problem in that area is the han-
dling of column floats during the balancing process.

Float areas Float objects are distributed into float
areas which are rectangular in shape. Float areas
span one or more text columns; their horizontal size
is therefore given by the following formula (where ¢
is the number of columns spanned):

(area-width) = cx ({col-width)+ (col-sep)) —(col-sep)
The naming conventions for float areas is as follows:
(identifier)(start-column){span-count).

The (identifier) is a single letter denoting the type of
area, e.g., t for top, b for bottom. The (span-count)
is a single digit denoting the number of columns to
span. The (start-column) is a single digit? denot-
ing the start column of the area. Thus t23 is a
top area starting at column two and spanning three
columns, i.e., two, three and four. A restriction due
to the naming scheme is that currently no more than
9 columns are possible.?

Only a subset of the float areas is allowed to be
populated on a page. In essence the new algorithm
does not support placements that result in “splitting”
the text of a column due to a float (other than col-
umn “here” floats).? This means that population of
some float areas must be prevented, namely those
satisfying these conditions when pcs (where p = pos,
¢ = column, s = span) has just been populated:

pijwithi<c<i+j<c+s
or
pij with i < c+ s <i+ j < (number-of-columns)

The first formula describes the areas which partly
overlap from the left, the second formula describes
those that partly overlap from the right. Areas which
are sub- or super-areas, e.g., t13 and t22, do not af-
fect each other. The above restriction is necessary to

2 With a bit of care in the code this could be extended to
allow more than one digit.

3 The scheme is different from the original one used, where
t23 would have denoted an area starting at column two and
spanning until column three.

4 Perhaps this restriction will be lifted one day.

prevent situations like the one shown in figure 1 on
the facing page, i.e., where the float area t32 (rep-
resented as b’s) would result in splitting the fourth
column into two independent text areas.

The possibilities, as well as the restrictions, are
equal for both top and bottom areas. This means
that the new scheme in particular supports spanning
bottom areas.

Float pages and columns Float pages, i.e., pages
consisting only of floats, will be supported as well as
float columns.

Float types The type of float influences the format-
ting, e.g., where the caption is placed in relation to
the float body, how it is formatted, what kind of fixed
strings are added, etc. It also restricts the placement
algorithm in respect to which float areas can be pop-
ulated as explained below.

Margins The marginal areas can receive marginal
notes which are aligned with the corresponding text
line. In documents with more than two columns
marginal notes are currently not supported though
one could envision allowing them even there. If
marginals have to compete for space the later
marginal will be moved downwards if there is enough
space on the page, otherwise the line containing the
marginal will be moved to the next column/page.®

An alternative usage of the margin is to place
footnotes into it. A prototype version of this is pro-
vided already, see section “Footnotes” on the next
page.

Another potential use of the margin areas is to
use them (or parts thereof) as float areas in their own
right. The problem with this would be that these
float areas would have a horizontal width which is
different from the column width, thus allowing only
a limited class of floats to appear therein.

Another potential extension would be to al-
low float areas that border on a margin to use the
marginal space as part of the float area, thereby al-
lowing the filling of such an area with floats which
are wider than the nominal float area. A special case
of this, the placement of the caption in the margin
beside the float body, is already provided by choosing
a suitable caption formatting instance.

5 This is not yet implemented — right now they overprint
each other.

280 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Footnotes Footnotes can be regarded as a special
type of floats. They are objects which are associ-
ated with lines of text (their call-out) but in contrast
to normal floats such as “figures” or “tables” their
placement constraints are stronger, e.g., they typi-
cally have to appear at the bottom of the column
which contains their call-outs, or at least they have
to appear on the same page as their call-outs.

In its current version, the model supports foot-
notes beneath the call-out column (normal behavior);
all footnotes in the last column (as with the ftnright
package for two-column mode); all footnotes in the
outer (or inner) margin.

Without an extension to the page makeup al-
gorithm (but instead with a suitable redefinition of
the footnote commands) they could be processed as
marginal notes or alternatively as “end-notes”.

Headers and footers The header and footer ar-
eas may use data received from individual columns.
An extended version of TEX’s mark mechanism is
made available which allows the definition of arbitrar-
ily many independent classes of marks. Within each
mark class information about the top mark (i.e., the
mark active at the top of the column), the first mark
and the last mark is made available for retrieval.

This allows the production of correct running
headers and footers for various types of applications
such as dictionaries, manuals, etc.

The processing model

Float placement concepts To build a page or
spread the algorithm first assembles enough textual
material to be able to fill the page without placing
any floats. During this process all floats that have
their call-outs within the assembled galley are col-
lected. They form, together with unplaced floats
from previous pages, an ordered trial list of floats.

aaaaaaaaaaa 444
aaaaaaaaaaa 444
aaaaaaaaaaa 444
111 222

111 222 bbbbbbb
111 222 bbbbbbb
111 222 bbbbbbb
111 222

111 222 333 444
111 222 333 444
111 222 333 444

Figure 1: Overlapping float areas

Formatting documents with floats

The allowed float areas on the page under con-
struction are totally ordered as well.

The algorithm proceeds by taking the first float
from the trial list and trying to place it into the first
float area from the area list. It then checks if all
constraints (see below) are met and if not the algo-
rithm will try to place the float into the next area
until either all constraints are met or the areas in
the float area list are exhausted. A trial that does
not fail means that this distribution of floats becomes
the best solution so far and all further trials will be
based on adding to this solution (no backtracking). If
the algorithm fails to place the float into any area it
means that the float will be deferred to a later page.

As floats are added to areas, the constraints for
further trials are changed. There are several reasons
for this: on one hand, the call-out positions of various
floats move since the float will occupy space on the
page; on the other hand, placing a float in some area
might result in disallowing the placement of other
floats in the same or in other areas.

Float pages and columns At the moment there
is only rudimentary support for float pages available:
at the start of each page the algorithm will try to
form a float page out of all floats that have been
deferred from previous pages. However there is no
layout control available to define the conditions under
which such a trial will succeed.

Float storage Float bodies are typeset into boxes
at the point of ‘call-out’, as with the figure and
table environments in the standard BTEX; it may
also be possible to specify at the call-out point a log-
ical pointer to a float whose typesetting is specified
elsewhere (e.g., an external file).

However, text sub-elements such as the caption,
etc. (e.g., from \caption), are not typeset at this
stage but are stored as token lists; this allows for
trying different possible layout specifications, e.g., for
its measure, during the float-positioning trials. At
present this is confined to at most a single caption
element per float.

Caption processing When a float is placed into an
area the caption is trial formatted and mounted onto
the float body. This process can take into account
various information about the float positioning trial,
such as the area to format it into, the fact that it
formats onto a verso or recto page, etc. It might try
several possibilities before making a decision, e.g., if

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 281

Frank Mittelbach

one formatting of the float results in violating some
constraint(s) it might try a different formatting at
this point.

Flushing floats It is possible to mark points in the
source document as boundaries beyond which floats
whose call-outs are prior to the boundary cannot
pass. In other words a “flush point” directs the algo-
rithm to place all affected floats into areas which are
“before” the flush point.

If due to other constraints the float could not
be placed in such an area the algorithm first retries
all potential areas using a less rigid set of constraints
(for example, restrictions on the number of allowed
floats per area are dropped) and if this still doesn’t
enable the algorithm to place the float properly it will
as a last resort move the flush point to a later col-
umn, which means breaking the column text before
the flush point.

Flushing of floats can be done either for all floats
or on a per float type basis, e.g., it is possible to flush
only floats of type “figure”.

A flush point can be given an additional at-
tribute which controls the “fuzziness” used by the
algorithm. By default the flush point algorithm uses
strict flushing as described above. The attribute
column modifies the algorithm’s behaviour by en-
abling a float to move past the flush point as long
as it will be placed on the same column. Similarly
the attribute values page and spread will enforce
that the float will not be deferred further than the
current page or the current spread. This way it can
be guaranteed that a float is always visible from its
call-out.

Float sequence classes Float sequence classes are
collections of float types; each float type belongs to
exactly one float sequence class. Within each se-
quence class the call-out order in the document is
always preserved by the float placement algorithm,
e.g., if ¢1,¢9,...,c, are the call-outs of all floats of
a float sequence class then the corresponding floats
will be placed such that f; will be placed before f;
whenever ¢ < j. Thus by putting all float types into a
single float sequence class all floats are placed in the
order of their call-outs. At the other extreme, if each
float type has its own sequence class® then floats from
one type might move before floats of other types even

6 This is the IATEX 2¢ default.

though the corresponding call-outs are in a different
order.

Float and call-out relations The algorithm also
keeps track of the relation between an individual float
and its call-out. This allows one to define constraints
which guide the algorithm during the float placement
phase. It is always permissible to place a float “af-
ter” its call-out, e.g., in a later column/page. At the
moment the following constraints can be specified:

none which means that the relation between call-out
and float placement is not relevant for placing
floats.

page which means that the float can be placed any-
where on the page with the call-out (it is visible
from the call-out).

column which means that the float can be placed
before the call-out as long as it is placed in the
same column.

after which means that the float has to be placed
strictly after the call-out.

When extending the algorithm to directly support
spreads the above list is going to be extended by an
option that allows floats to move backwards on the
whole spread.

Spanning float and call-out relations For floats
that span two or more columns there are several pos-
sibilities to interpret the spatial relationship between
call-out and float areas. For example, if a float, whose
call-out is in the second column, has been placed into
area b12, is this float “before” or “after” its call-out?
The answer to this question depends on whether we
consider the float being placed into the first or the
second column, both of which are valid interpreta-
tions.

At the moment the following behaviour can be
specified:

strict which means that the leftmost column
spanned by the float is regarded as the column
in which the float was placed.

flexible which means that the rightmost column
spanned by the float is regarded as the column
in which the float was placed.

These settings are only relevant if the main float/call-
out relations are set to column or after.

Float and footnote relations It is possible to di-
rect the algorithm to check on each column if there

282 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

are footnotes, and if so to prevent it from placing
floats in the bottom area. In theory it might be possi-
ble that a forbidden constellation might resolve itself
once the algorithm has added further floats, e.g., it
could be the case that by adding additional floats the
offending footnote gets moved to a different column.
However, checking for this would mean potentially
large backtracking so the algorithm uses a conserva-
tive approach and simply considers a trial as failed if
footnotes and bottom areas collide.

It is planned to allow a designer the choice of
specifying where the footnotes should be placed in
relation to any bottom floats (if the combination is
allowed). Right now this is not implemented and col-
umn footnotes will always appear below the text col-
umn, i.e., above any bottom floats.

Area statuses For each area the algorithm keeps
track of whether or not it is closed for individual float
types, e.g., is not accepting any more floats of type
“figure” or closed for all types. The status of an area
can change due to floats being placed into other areas
(this might, for example, close earlier areas, or areas
that overlap) or it can change due to the fact that
the area became too full in some way (e.g., a size
constraint or a number of floats constraint).

Some of these constraints can be “relaxed” in
certain situations, e.g., if the algorithm is directed to
flush out remaining floats prior to a certain point in
the galley it will drop constraints related to number
of floats per area or size restrictions. However, if an
area was closed due to a different float being placed
into some other area, this area will stay closed in all
circumstances to ensure proper sequential placement
of floats and to ensure that overlapping areas that
are forbidden as explained in section “Float areas”
on page 280 will not receive floats at the same time.

Area constraints The algorithm offers several pos-
sibilities for the designer to specify how and under
what circumstances a float is allowed to be added to
a certain area on the page.

As explained above all areas on a page are tried
in a specific order. This order can be specified and
changed for specific parts of the document. Areas
that are closed for the current type will be bypassed
as well as areas which do not span the right number
of columns to fit the horizontal size of the float. If
these initial tests succeed the float may still fail to
be placed into a certain area if it doesn’t fulfill the
following set of constraints:

Formatting documents with floats

e There is an upper limit on the total number of
floats that can be placed on an individual page.

e FEach area has an upper limit of floats that can
go into it.

e After placing the float the remaining space in
the text column must be larger than a specified
value.

All such constraints are customizable.

Additional constraints will probably be imple-
mented once there has been some experience of what
controls are actually needed to allow the specification
for a reasonable number of layouts.

For example, KTEX 2¢ allows the designer to re-
strict the maximum size of an area, but should one
provide this or should there be a constraint on the
size of all stacked areas? Or should there be both?

To “Here” or not to “Here” INTEX 2¢ allows the
user to control the placement of an individual float
by specifying one or more areas into which the float
would be allowed to move using single letters. As a
special notation an h would denote a so-called “here”
float. Its advertised semantics is to try placing the
float “at the position in the text where the environ-
ment appears” [1, p. 197]. If this is not feasible
ETEX 2¢ would try the remaining allowed possibili-
ties on the next page, thus a float with an ht specifi-
cation would either appear within the text or at the
top of the next or a later page.”

In many cases people however prefer a “here”
which always means “here”. The latter form is imple-
mented in some add-on packages for IMTEX 2¢, how-
ever usually at the cost of allowing floats to appear
out of order.

The new model supports only the absolute
“here” form for floats; however, correct ordering of
floats in the output is guaranteed (if the tag gener-
ating the here float issues flushing of floats for the
current type). If there is not enough space to place
the float in a column, the float plus the preceding
text line® is moved to the next column/page.

Grid layout To produce layouts with elements
placed on an underlying grid (typically with grid

7 In two-column mode this can in fact result in a placement
on the top of the second column even though the call-out po-
sition finally falls into the middle of that column.

8 More precisely the column is broken at the last breakpoint
preceding the current position which is normally one line above
but could be more (or less).

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 283

Frank Mittelbach

points vertically separated by \baselineskip) the
algorithm assumes that certain parts of the text col-
umn, e.g., normal text, will automatically align on
the grid as long as the first line is positioned on the
grid. A further assumption is that such parts of the
column do not contain stretchable amounts of ver-
tical glue so that they are not subject to stretching
or shrinking if the material is adjusted to fit a given
size.

Given these assumptions, the algorithm proceeds
by ensuring that the space taken up by floats (includ-
ing their separating white spaces) is always of a size
such that the remaining space for the text part of
the columns allows for an integral number of grid
lines. This is achieved by stretching or shrinking
the space separating the areas from the text appro-
priately while building the page as explained in sec-
tion “Float placement concepts” on page 281.

Within the text column there are typically a
number of “display objects” such as headings, equa-
tions, quotations, lists, etc., which should not be
aligned on the grid. Instead, typically the text be-
fore and after is supposed to lie on the grid.® This
is supported by allowing to mark lines of text (or
more generally points in the galley) to “snap to the
nearest grid point”. One can think of the implemen-
tation working by taking the column material up to
the marked line and putting it into a vertical box of
the size of the nearest possible grid point. By this ap-
proach stretchable glue around such a display object
will allow the text line that should snap to the grid to
move into the correct position. This box is then given
back to the page builder to assemble more material
for the column. In this way the preceding part of the
column becomes rigid; thus a later request for snap-
ping to the grid will only stretch or shrink material
further down the column.

A prototype implementation that makes most
standard IATEX objects, like headings, displays, etc.,
support grid design is available with the package
xo-grid. It is used for typesetting this document.

User control

Column and page breaks Breaking of columns
and pages can be controlled from the source doc-
ument by placing special tags into it. The
\columnbreak command ends the current column

9 In some cases, depending on the design, parts of the struc-
ture might be supposed to aligned as well.

after the current line (if used in horizontal mode).
Similarly the \pagebreak command ends the current
page.1®

Manual float flushing The flush float functional-
ity is available within the source document via the
command \flushfloats. This command takes two
optional arguments which, if present, denote the float
type to flush (by default all) and the “fuzziness” of
the flush (by default strict). Other allowed values
for the fuzziness are column, page, or spread. If a
type is specified for flushing, effectively all types with
the same float sequence class are flushed to preserve
the ordering.

Specifying preferred areas At the time of writ-
ing, the document source interface for specifying
the group of areas into which a float is allowed to
move is not yet decided. One could envision keep-
ing the original IATEX interface to float environments
with optional argument. In that case something
like [t] could be internally interpreted as “any top
area that exists” and translated into a list such as
t12 t11 t21. But other interfaces are conceivable
as well.

Manually position all floats Any algorithm that
automatically places all floats may fail to produce
adequate results in some situations. In IXTEX 2¢ the
user was offered only the optional arguments of the
float environments and by this method and by mov-
ing floats slightly in the source document one was
finally able to change the formatting as needed.

This was a time-consuming and error-prone
manual task and any slight change in the source doc-
ument text was likely to result in making this work
obsolete.

To improve on this situation the new algorithm
can be directed to write out a file containing all of its
float!! selections (an example is shown in table 2 on
the facing page). By simple drag and drop the user
can produce alterations to this selection. If such a
modified file is stored as \jobname.fpc then the al-
gorithm will use these selections without attempting
to apply any of its internal rules. Thus the formatting

10° At the moment these commands force a break; there is
no possibility, as in I4TEX 2¢, only to suggest that the current
point is a good or bad break.

11 Floats in this context mean “traditional” floats, not foot-
notes or marginpars.

284 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

will happen exactly as specified.!?

Beside moving floats between float areas it will
be possible to move floats in and out of the special
area called hhh which represents a list of all “here”
floats on the page. If a float is moved into the “here”
area it means that it will be positioned as a here float
at the point of its call-out.

As an extension to this method we are experi-
menting with restricting the manual control only to
parts of the document, e.g., allowing the user to man-
ually fix a single chapter but have the algorithm de-
termine the remainder. We also plan to integrate
column length control in this way, so that it becomes
easily possible to run a page or double-spread long
or short by specifying this externally rather than via
tags in the source document.

Tracing the algorithm’s behavior In contrast to
the ITEX 2¢ output routine, which is a black box
as far as the user is concerned, the new algorithm
tries hard to make its decision process comprehensi-
ble. Table 3 shows a sample output produced by it. It
shows for each float which areas have been tried, why
they were rejected, etc. There is also an option which
produces about 1000 times as much information but
the latter is probably useful only for debugging the
system in case there are errors in the code.

12 If the floats are stored within the source document at the
point of their call-outs, the algorithm will be able to position a
float only if it has already encountered the float in the source
document. This means that one can move a float arbitrarily
forward but only to a limited extent before its call-out position.
If the floats are stored externally to the source document this
restriction does not apply.

Formatting documents with floats

Manually aligning text in grid layout If the al-
gorithm produces grid layout it automatically aligns
certain text lines on the underlying grid. For
manual control this functionality is also provided
with the command \TextAlignGrid which will align
the current text line on the grid. By issuing a
\IgnoreAlignToGrid command grid alignment will
be temporarily disabled, while \ObeyAlignToGrid
will reestablish automatic grid processing.

Layout Specification

In the class file the designer is given control over
the algorithm’s behavior in all the aspects described
above (and several more).

The layout specifications are done through the
new template and instance concept, see [2]. Addi-

Table 2: An example fpl file

Page: 1 (1)
Area: t13
Float:
Area: b21
Float:
Area: t31
Float:

4 (figure 4) []
2 (figure 2) [mylab:figi]
3 (figure 3) [mylab:fig2]

Area: hhh
Float: 11 (table 1) []
Page: 2 (2)
Area: ti13
Float: 8 (figure 8) []
Area: t22
Float: 5 (figure 5) []
Area: bl1l
Float: 6 (figure 6) [mylab:fig3]
Area: b31
Float: 7 (figure 7) [mylab:fig4]

Table 3: Progress output of the algorithm

STATS: floats waiting = 2 on page 13

Float: \bxQE
area trial: bl2
area trial: bill

Float: \bx@F
area trial: bl2
area trial: bill
area trial: b21

{6} {table} (floats)

-> accepted
{6} {table} (floats)

{5} {Statistics from the algorithm}
-> failed: span count bl2 /=1

{6} {Running times of the algorithm}
-> failed: span count bl12 /=1

-> failed: bll float num reached (1)

-> failed: area below flush point (2=2, b21)

-> failed: --> retry with relaxed conditions

area trial: bl2
area trial: bill
STATS: trials =7

-> accepted

-> failed: span count bl12 /=1

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 285

Frank Mittelbach

tional information such as experimental code, fur-
ther documentation, etc., can be found on the KTEX
project web site at:

http://www.latex-project.org

In contrast to the algorithm itself, which in its
basic functionality now seems to be stable and reli-
able, the design interface is far more experimental.
Thus the example declarations given below represent
only the current state of thought (or of implementa-
tion) and are likely to be modified at any moment.

Float type declarations Float types are declared
using the command \DeclareFloatType which takes
two arguments: the name of the type which is de-
clared and in the second argument a list of key/value
pairs which describe the properties of the float type,
e.g.,

\DeclareFloatType{figure}

{

sequence-class-id = floats,
toc-extension = lof,
caption-text = \figurename,
numbered-boolean = true,
numbered-id = figure,

numbered-within-id = section,

numbered-action
\thesection.\arabic{figure},

body-decls =,

}

The sequence-class-id key defines to which float
sequence class the type belongs to. If it is absent
a sequence class with the same name as the type is
assumed. The sequence class will be automatically
initialized if not referenced before.

The toc-extension key defines the extension to
be used to write the caption to when generating “List
of floats” listings. By using the same extension with
different types it is possible to generate combined list-
ings, such as “List of tables and figures”.

The caption-text key defines the fixed text to
be used as part of the caption text together with the
float number if present, e.g., Figure. This informa-
tion is passed to the caption formatting template so
the actual formatting is defined there.

The numbered-boolean defines whether or not
floats of this type are numbered.

The numbered-id key defines the name of the
counter to use when numbering floats. If absent a
counter with the same name as the type is assumed.

By using the same counter with different types it is
possible to use a single numbering scheme—in that
case the sequence-class-id for these types should
probably be identical as well to avoid strange num-
bering sequences within the document.

The numbered-within-id key defines the name
of the “within” counter, i.e., the counter which if
stepped resets the numbering. If the value is empty
or not set the float type is numbered in a single se-
quence throughout the document.

The numbered-action key defines the represen-
tation of the float number, as used in the caption
and by the \ref, \1label mechanism. The default is
\arabic{(counter)}.

The body-decls key can hold formatting in-
structions that should apply to the float body. They
can assume a normalized formatting environment al-
ready set up by the algorithm.

The declaration of a new float type automati-
cally defines the necessary user document environ-
ments.

Float area declarations Any float area that is go-
ing to be used at some stage by the algorithm needs
to be declared beforehand. This is done through the
\DeclareFloatArea command which takes two ar-
guments: the name of the area (which has to follow
the conventions explained in section “Float areas” on
page 280) and a list of key/value pairs describing the
characteristics of the area.

\DeclareFloatArea{t22}

{
class-close-list = {t11,b11},
all-close-list = {t12,t32},
max-float-num = 2,

}

As of today an area is characterized through the
maximum number of floats it is allowed to receive
(max-float-num) and through two lists which tell the
algorithm which other areas are affected by adding a
float to the current area. The list class-close-list
enumerates all areas which are not allowed to re-
ceive additional floats of the same sequence class as
the float that has been placed into the current area,
while the list all-close-1list contains the informa-
tion about all areas that are to be completely closed
the moment a float is received in the current area.
The class-close-list key is primarily in-
tended to specify a partial order on the areas to en-
sure that floats are not getting out of sequence in the

286 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

output. For example, the above declaration says: if a
float is placed into area t22, i.e., a top area starting at
column two and spanning two columns, then the sin-
gle column areas t11 and b11 (i.e., those of the first
column) are closed for floats of the same class. How-
ever, assuming this example is part of a declaration
for a four column layout which could have areas like
t14 or t13, there is nothing said about closing those
areas. Thus in this particular layout a float spanning
three or four columns would still be allowed to go on
top.

On the other hand the all-close-1list key is
available to ensure more visual constraints, e.g, “if
t12 gets filled we don’t want to have b12 filled as
well, we only want 22 in this case.” In addition it
is needed to implement the restriction about overlap-
ping float areas as described in section “Float areas”
on page 280, e.g., in the example declaration t12 and
t32 are closed since they partly overlap with t22.13

Footnote formatting declarations The format-
ting of footnotes is specified by declaring instance(s)
of type footnotesetup. At the moment three tem-
plates are available though they should be considered
only as prototypes: the template std produces con-
ventional footnotes below each column, the template
ftnright collects all footnotes and typesets them in
the rightmost column, and the margin template col-
lects and typesets them in the right outer margin.

The keys of the above templates provide only
a rudimentary flexibility (to say it positively); in a
production version all of them would need a large
number of extensions. As an example,

\DeclarelInstance{footnotesetup}

{mainmatter}{std}

{

text-sep = 14pt plus 3pt,
max-height = 8in,

}

would declare the named instance mainmatter that
provides footnotes below columns with a separation
of 14pt+ and a maximum height for footnotes per
column being 8in.

Instances like this can then be used in the decla-
ration for a particular page layout as explained below.

13 As mentioned before, this restriction might be lifted in
a later version of the algorithm; as long as it is required one
could alternatively add those areas behind the scenes to avoid
runtime problems.

Formatting documents with floats

Alternatively one could use unnamed instances there
using the \UseTemplate method.

Page setup declarations At the heart of the layout
declaration are instances of the type pagesetup2.!4

An example setup showing all currently available
keys is given in table 4 on the following page.

Column specification The first four keys
(column-num, column-width, column-height, and
column-sep) describe the column structure of the
page layout being defined, i.e., in this case a two-
column layout.

Float constraint specification The following
four keys define the standard constraints for the al-
gorithm when placing floats: max-float-num is the
maximum number of floats that can go on a nor-
mal page; float-callout-constraint defines what
kind of relations between float and call-out are al-
lowed (possible values are explained on page 282);
float-callout-span-constraint handles the in-
terpretation of spanning floats and is explained on
page 282; and bottom-float-footnote-constraint
defines whether or not bottom floats are allowed in
case of footnotes.

The last three constraints are replaced by
flush-float-callout-constraint, flush-float-
callout-span-constraint, and flush-bottom-
float-footnote-constraint in case flushing can’t
be done without relaxing the conditions (max-float-
num is disregarded in that case automatically).

Float area specification The key area-list
defines all float areas that are allowed in this page
layout as well as defining the order in which the ar-
eas are tried when placing floats. The keys defer-
class-close-list and defer-all-close-1list de-
fine the “closing actions” for the special area which
receives the floats that could not be placed. E.g., if
a float of a certain class can’t be placed then all ar-
eas listed in defer-class-close-1list will be closed
for this class of floats. In other words the two keys
are comparable to the ones available for area decla-
rations.

Thus these keys together with the keys from the
area declarations are most important to guarantee a
sensible order of floats on the formatted page.

In an earlier implementation of the algorithm a
simpler scheme was used: there was a single area
list which was shortened whenever a float couldn’t be

14 The number 2 has historical reasons and will vanish at
some point in the future.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 287

Frank Mittelbach

placed into it thereby confining the remaining floats
to this restricted selection. This works fine as long
as there are mainly single column floats since in this
case the area can be reasonably ordered into a single
sequence. However the moment spanning floats are
supported the situation gets less straightforward. Is
it allowed to place a later float into t12 if there is
already a float in the area t117

It is quite likely that the current controls will
turn out to be too crude. This will be seen once a
suitable number of layouts have been produced under
this scheme (or couldn’t be produced because they
turned out to be unspecifiable).

There needs to be space between floats in an area
and areas need to be separated from each other, as
well as from the column text. For this we have the
following keys: float-float-sep is the separation
between two floats in an area, float-area-sepis the
separation between two vertically adjacent areas, and
float-text-sep finally is the separation between a
float area and the column text.!> The separation
between inline floats and surrounding text is given

15 A possible extension would be to allow ornamental ma-
terial in place of white space.

by float-inline-sep.

Grid specification To produce a grid based
design the grid-point-sep needs to be given a pos-
itive dimension. This defines the distance between
grid points on which the algorithm aligns column
text, inline floats, etc.'6

To align column text at a grid point the algo-
rithm will extend the float-text-sep space. Al-
ternatively, if the nearest grid point can be reached
by shrinking that space (assuming its specification
contains a minus component) the algorithm will use
that grid point instead. In a similar fashion the space
around an inline float will be determined by the value
of float-inline-sep.

Footnote, etc., specification Finally the
key footnote-setup receives an instance of a
footnotesetup template, thereby defining how foot-
notes are handled and presented.

What is clearly missing here is handling of other
page elements such as running headers and footers,

16 Setting this parameter is not sufficient: to make grid set-
ting possible several other parameters need to be set to suitable
values as well, e.g., the distance between baselines should be
compatible and the column height needs to be a multiple of
this value.

Table 4: Example declaration for the pagesetup2 template showing all currently available keys

\DeclareInstance{pagesetup2}{mainmatter}{std}

{

% column specification

column-num = 2,
column-width = 220pt,
column-height = 610pt,
column-sep = 20pt,

% float constraint specification
max-float-num = 3,
float-callout-constraint = after,
float-callout-span-constraint = strict,
bottom-float-footnote-constraint = forbidden,
flush-float-callout-constraint = page,
flush-float-callout-span-constraint = flexible,

flush-bottom-float-footnote-constraint = none,

% area specification
area-list
defer-class-close-list
defer-all-close-list
float-float-sep
float-text-sep
float-area-sep
float-inline-sep

% grid specification

grid-point-sep

footnote etc specification

footnote-setup

}

==

= {t12,t11,b11,b12,t21,b21},
= {t12,t11,b11,b12,t21,b21},

= 15pt,
= 30pt minus 8pt,
= 15pt,
= 6pt minus 2pt,
= 12pt,

= mainmatter,

288 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

the folio, etc. This will be added soon.

Float formatting declarations For the attach-
ment of captions to floats there exists a prototype
interface using templates of the type buildfloat.
At the time of writing, available templates are
centeredbelow, centeredabove, and bottomright,
which center the caption below or above the float
body or place it to the right of it, aligned with the
bottom of the float body. All of them would need
to be generalized for a production system to become
more flexible.

When trial-formatting a float the algorithm
checks for the existence of a number of buildfloat
instances and uses the first one that exists to build
the float. More precisely it first checks if an instance
with the name (area)-(type) exists, then it looks for
(area), then for (type), and finally, if none of them
exists, for an instance with the name default. So
at least the latter instance has to be declared by the
class.

\DeclareInstance{buildfloat}{default}
{centeredbelow}{}

\DeclarelInstance{buildfloat}{table}
{centeredabove}{}

\DeclareInstance{buildfloat}{t31}
{bottomright}{}

\DeclarelInstance{buildfloat}{t22}
{bottomright}{}

The example declaration above defines the placement
of captions above tables and below for all other types,
with the exception of the areas t31 and t22 where
the captions are set to the side.

Performance of the algorithm

To test the performance of the algorithm we prepared
a somewhat ridiculous test file containing three types
of floats (“figures”, “tables”, and “algorithms”) with
a total number of 47 floats. The chosen layout had 3
columns and 11 potential float areas. Figure captions
have been placed below the float while with tables
and algorithms the caption was placed on top. The
exception was the top areas adjacent to the outer
margin: floats placed there got their captions placed
to the right and partly into the margin. Footnotes
were collected for all columns and placed in the outer
margin.

Floats had to strictly follow their call-out and
a maximum of ten floats was allowed per page, i.e.,

Formatting documents with floats

roughly three per column.

Since the document contained many floats early
on (24 on page one) and the first of these was espe-
cially constructed to be not placeable the first time
around, the algorithm had to work hard to place all
the dangling floats. Table 5 shows some statistics as
produced by the algorithm on the number of trials
necessary (the highest number was 397 for 37 floats;
by comparison, equation (1) on page 279 would give
22595200368 which would probably take a bit longer
to evaluate). Note that on the third page the algo-
rithm was able to produce a float page; on all other
pages the float page trial was unsuccessful.

Table 6 on the following page shows the running
times needed to produce the final document of 13
pages when the algorithm is used with different trac-
ing settings. The test machines were a Pentium 111
650 machine and an older laptop with a 486 proces-
sor. In both cases TEX was run straight from a TEX
Live 4 CD.

These times show that the algorithm has an ac-
ceptable time performance since even on a 486 the
average time to produce a page is roughly 2 seconds.

Outlook

While the current algorithm performs well there are

Table 5: Statistics from the algorithm

STATS: floats waiting = 24 on page 1

STATS: trials = 286

STATS: floats waiting = 19 on page 2 (float page)
STATS: trials = 159

STATS: floats waiting = 37 on page 2

STATS: trials = 397

STATS: floats waiting = 19 on page 3 (float page)
STATS: trials = 166

STATS: floats waiting = 7 on page 4 (float page)
STATS: trials = 41

STATS: floats waiting = 20 on page 4

STATS: trials = 204

STATS: floats waiting = 5 on page 5 (float page)
STATS: trials = 27

STATS: floats waiting = 12 on page 5

STATS: trials = 108

STATS: floats waiting = O on page 6 (float page)
STATS: trials = 0

STATS: floats waiting = 6 on page 6

STATS: trials = 57

STATS: floats waiting = 6 on page 12 (float page)
STATS: trials = 26

STATS: floats waiting = 6 on page 12

STATS: trials = 37

STATS: floats waiting = O on page 13

STATS: trials = 0

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 289

Frank Mittelbach

several areas in which its functionality could and
probably should be extended. The most important
points are given in the following list.

290

Balancing of partial pages, comparable to the
way the multicol package works, should be im-
plemented to allow for layouts where, for exam-
ple, a heading should span across all columns.
We intend to provide more control over the
marginal areas, allowing for marginal floats as
well as other objects in the margin, properly in-
teracting with each other.

Without much effort the algorithm could be ex-
tended to properly support double-spreads so
this should be added some time soon.

Once the algorithm has decided which floats
to place onto a page one could add a post-
processing step in which the placement could be
reconsidered according to different rules. For ex-
ample, if the call-out relation is page then floats
will tend to be placed in the left-hand columns.
This is fine as long as there are many floats to
process but on a page with only a few floats one
might want to redistribute them differently once
it is clear which floats could go onto the page.
Since it is known beforehand how many floats are
actively waiting to be placed, one could use a dif-
ferent algorithm that tries all possible combina-
tions as long as there are only a limited number
of floats to be placed. The boundary at which
the algorithm changes behavior could be made
customizable so that people with faster machines
(or more patience) could have the search for op-
timum running for as many floats as they like.

Table 6: Running times of the algorithm

Pur (650MHz) 486DX4 (75MHz)

no tracing
real 0m1.533s 0m27.633s
user 0m1.460s 0m26.940s
sys 0m0.050s 0mO0.690s

progress information

real 0m3.116s 0m36.885s
user 0m1.740s 0m34.470s
sys 0m0.080s 0m2.420s

full tracing

real 0m7.833s 1m?22.480s
user 0m?2.720s 1m7.890s
sys 0m0.280s 0m12.360s

[1] Leslie Lamport.

References

MEX: A Document Prepara-
tion System. Addison-Wesley, Reading, Massa-
chusetts, second edition, 1994.

[2] Frank Mittelbach, David Carlisle, and Chris Row-

ley. New interfaces for W TEX class design. TUG-
boat, 20(3):214-216, September 1999.

Frank Mittelbach

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Abstract: The Penrose notation: a IXTEX challenge

Timothy Murphy

tim@maths.tcd.ie

Abstract

Over 30 years ago, Roger Penrose — Oxford mathematician and AI scourge —
invented a notation for tensors, which has become a kind of secret language
among a coterie of aficionados.

This notation lies somewhere between the classic index notation of relativists
and the functorial notation of multilinear algebraists. By general consensus,
Penrose’ notation avoids the complexity of the first and the chilling abstraction
of the second, providing a concrete model for tensor algebra and calculus of great
pedagogical value.

The aim of this talk is to describe the Penrose notation—and it should
be emphasized at the outset that there are absolutely no mathematical ‘prereq-
uisites’ to understanding this description—and to present a IXTEX package for
incorporating the notation into mathematical documents.

This package is far from perfect; indeed it is its very imperfection which
encourages the author to place it before this audience, in the hope (and trust)
that its collective TEXpertise will suggest improvements in the package, or even
an entirely new approach.

Many mathematicians down the centuries have developed their own private
languages, necessarily restricted to their notebooks by the exigencies of metal
type. It is interesting to speculate on the influence of the press in ironing out id-
iosyncrasies of thought, in the same way that it ironed out variations in grammar
and spelling.

But the digital press opens up a new possibility: these once secret languages
may enter the universal realm of mathematical discourse. The one-dimensional
age ushered in by Gutenberg may be at an end.

Notations like this are much more than diagrams. They hold the meaning
of the document, and enter into the mathematical syntax. In our case, the first
step is to express the Penrose notation in BNF form, or its fashionable equivalent,
XML,

Timothy Murphy

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

291

A Perl port of the mathsPIC graphics package

Dedicated to the fond memory of Mikhail Syropoulos, my beloved brother.
— Apostolos Syropoulos

Apostolos Syropoulos
Department of Civil Engineering
Democritus University of Thrace
Xanthi, Greece
apostolo@obelix.ee.duth.gr

Richard W. D. Nickalls
Department of Anaesthesia
City Hospital, Nottingham, UK
dicknickalls@compuserve.com

Abstract

This article describes the authors’ experience of porting the mathsPIC graphics
package to Perl. The motivation for using Perl is described, as well as the reasons
for developing it using the Noweb literate programming system. Finally, a simple

example is presented.

Introduction

This article is a short work in progress report of our
porting of the graphics package mathsPIC (CTAN/
graphics/pictex/mathspic/) to standard Perl; a
project designed to make it available for a wide
range of platforms.

MathsPIC (Nickalls, 1999) is a filter program
for use with the excellent PICTEX drawing engine'.
MathsPIC differs from other graphics packages in
that it provides an environment for manipulating
named points, which greatly facilitates the drawing
of geometrical figures. It also accommodates relative
addressing, scalar variables, and file input for data
points and other commands. MathsPIC was origi-
nally written in PowerBASIC 3.5, a commercial ver-
sion of BASIC available only for MS-DOS systems.

However the original MS-DOS version of
mathsPIC does have certain limitations; for example,
it is unable to parse mathematical functions. Fur-
thermore, maths libraries for PowerBASIC are all
commercial. Consequently, in order to significantly
extend mathsPIC, the authors felt it was necessary to
reimplement it in a systems programming language
consistent with the philosophy ‘write once, run ev-
erywhere’, namely Perl.

1 The original P[CTEX files have been significantly im-
proved and made memory-efficient by Andreas Schrell—see
pictexwd.sty (CTAN/graphics/pictex/addon/)

This reimplementation of mathsPIC started in
January 2000, and has been conducted as a collabo-
rative project over the internet, by the authors. The
authors used different platforms during the develop-
ment (Perl 5.6 on a Solaris x86 machine, and djgpp
Perl 5.005 on an MS-DOS machine).

Probably the most difficult aspects were main-
taining a consistent syntax, and downwards compat-
ibility. We decided to maintain case-insensitivity for
command names, as this was found to be particu-
larly useful in promoting readability. The log file
(.mlg file) was structured to mirror the usual TEX
and KTEX log files in order to allow tools which
process these files to work similarly with mathsPIC.
This was also an appropriate time to revise and im-
prove the syntax of the language. So, for exam-
ple, the original variable command format, e.g.,
variable(x){b,advance(4)}, has been improved
to allow an algebraic syntax, e.g., var x=b+4, as well
as allowing several variables to be defined using one
command, e.g., var y=3*(j-2), j27=r/3, p4=AB.

Why Perl?

Perl is a high-level scripting programming language
with an eclectic heritage designed by Larry Wall. It
is an interpreted language which has been ported
to most operating systems, and so is a particularly
good choice for the implementation of programs

292 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

A Perl port of the mathsPIC graphics package

In this section we define a few global variables. More specifically:
variablesver si on_nunber contains the current version number

of the program, variabl&conmandLi neAr gs contains the command
line arguments. These two variables are used iprth@ _header s
subroutine. Variablgéconmand will contain the whole current input line
. Hashu@oi nt Tabl e is used to store point names and related
information. Hashwvar Tabl e is used to store mathsPIC variable
names and related information. Variabte _error s is incremented
whenever the program encounters an error in the input file.
Variablessxuni t s, $yuni t s andsuni t s are related to thgaper
command. In particular, varialdeni t s is used to parse the unit

part of theuni t part of thepaper command. Variablédef aul t synbol

is used to set the point shape. Variai#e holds the value of the pi constant

<Defi ne gl obal vari abl es>=

$versi on_nunber = "0.0 Sept enber

1, 2000";

$commandLi neArgs = join(" ", GARGQV) ;

$command = ;
$curr_in file ="";
keys(%oi nt Tabl e) = O;
keys(%/ar Tabl e) = 0;
$no_errors = 0;
$xunits = "1pt";
$yunits = "1pt";

$units = "pt|pc|in|bp|cn midd|cc|sp”

I
$def aul t synbol = "$\bull et ¥
$PI = atan2(1,1)*4

Used above.

Figure 1: Literate (woven) extract from mathsPIC source

likely to be used on many different operating sys-
tems. Its design has been largely influenced by the
C programming language, but also by other tools
and languages, for example, SED, AWK, and the
Unix shell. Perl’s process, file, and text manipu-
lation facilities make it particularly well-suited for
tasks involving quick prototyping, system utilities,
software tools, system management tasks, database
access, graphical programming, networking, and
world wide web programming. Finally, and impor-
tantly, Perl is in the public domain, and so there are
no commercial restrictions.

Literate programming

The Perl mathsPIC program was developed through-
out using so-called ‘literate program’ methodology
(Knuth, 1992; Syropoulos, 1999; Hatzigeorgiu and
Syropoulos, 1998), in conjunction with Norman

Ramsey’s freely available Noweb literate program-
ming tool (Ramsey, 1994).

Noweb was chosen partly because it is language-
independent, but also because it can generate the
weaved file in variety of formats, e.g., plain TEX,
ITEX, HTML and nroff. Noweb allows programs
to be built up of named chunks in any order with
documentation interleaved, and has powerful index-
ing and cross-referencing facilities. Furthermore,
Noweb’s pipeline makes it easy to extend, and dif-
ferent stages of the pipeline can can be implemented
in different programming languages (Ramsey, 1994).
Noweb uses its notangle and noweave tools to ex-
tract code and documentation as required. Figure 1
shows a formatted code chunk of the resulting liter-
ate program.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 293

Apostolos Syropoulos and Richard W. D. Nickalls

Example

By way of example we show the mathsPIC script
file (fig2.m) which produced Figure 2, and also
the associated output KTEX file (fig2.mt) gener-
ated by mathsPIC. Note the use of pictexwd.sty
(CTAN/graphics/pictex/addon/).

60 T fffffffffffffffffff ‘
| | Triangle, pentagon B \

50 4 | and three circles ‘
\ \

\ \

40 [
\ \

\ \

30 4 |
\ \

20 - }
\ \

10 { }
\ \
O+ ---~-—~9-~7-—~7-~-1——|
0 10 20 30 40 50 60 70

Figure 2: Example diagram (mathsPIC source in
text)

%% mathsPIC script file (fig2.m)

%% Figure 2

\documentclass [adpaper]{article}

\usepackage{pictexwd}

\begin{document}

\beginpicture

\setdashes

paper{units(mm) ,xrange(0,70),yrange(0,60),
axes (LBT*Rx*) ,ticks(10,10)}

\setsolid

point (A){10,10} %% anchor point

point (B){A, polar (50,50 deg)}

point (C){A, polar(50,0 deg)}

point (J){pointonline(AB,30)}

point (K) {perpendicular(J,AC)}

drawRightangle (JKC,3)

drawLines (AB,AC, JK)

drawIncircle (AJK)

drawExcircle (AJK, JK)

\setplotsymbol ({\large .3})

\setdots

drawCircumcircle (AJK)

point (I){IncircleCenter (AJK)} [\odot]

point (E) {ExcircleCenter (AJK, JK) } [\odot,1.2]

point (P1){perpendicular(E,AC)}
var r = EP1 %% radius of excircle
var d = 360/5 %) angle for pentagon

var al=-90,a2=al+d,a3=a2+d,a4=a3+d,ab=ad+d

point (P2){E, polar(r,a2)}

point (P3){E, polar(r,a3)}

point (P4){E, polar(r,ad)}

point (P5){E, polar(r,ab)}

drawPoints (ABCJKIEP1P2P3P4P5)

\setplotsymbol ({\tiny .})

\setdashes

drawLine (P1P2P3P4P5P1,EP1,EP2)

\setsolid

drawAnglearc{angle (P2EP1) ,radius(9),
internal,clockwise}

\newcommand{\figtitle}{%

\ \begin{minipage}{30mm}’

\ Triangle, pentagon and three circles

\ \end{minipagel}’

AN ¥4

text (\fbox{\figtitle}){20,52}

variable(s){5}

text ($A%){A, polar(s,230 deg)}

text (B) {B, polar(s,50 deg)}

text (C){C, polar(s,0 deg)}

text (J){J, polar(s,90 deg)}

text (K){K, polar(s,270 deg)}

text (E){E, polar(s,0 deg)}

text (72){E, polar(5.5,-54 deg)?}

text (I){I, shift(3, 0)}

text (P_1){P1, polar(s,al)}

text ($P_28) {P2, polar(s,a2)}

text (P_3){P3, polar(s,ald)}

\endpicture

\end{document}

The axes and bounding box used while con-
structing the figure are shown here in order to make
it easier to understand the mathsPIC script file and
the output WTEX file (fig2.mt). They are easily
removed simply by commenting out the axes and
ticks options from the mathsPIC paper command.

Note that in addition to mathsPIC commands
(not prefixed with a backslash), the script file can
also contain PICTEX, TEX and ITEX commands,
since mathsPIC processes the input file according to
the following rules.

e mathsPIC commands are converted into their
equivalent P[CTEX commands. The mathsPIC
commands are also copied verbatim but com-
mented out—this makes the output file easier
to understand.

e Lines having a leading backslash followed by
one or more spaces (e.g., \,) are copied verba-
tim except for the leading backslash.

294 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

e Lines having a leading backslash followed by
a non-space character (e.g., \setdashes) are
copied verbatim.

Note that the output IWTEX file (fig2.mt) also con-
tains some additional information (e.g., coordinates
of derived points, radius of circles etc.) which is
usually included at the end of the original mathsPIC
command, but sometimes as a separate line. Once
the figure is finished, the output file can be gener-
ated without any comment lines simply by using the
-c command-line switch during the final mathsPIC
runm.

References

Hatzigeorgiu, N and A. Syropoulos. “Literate Pro-
gramming and the ‘Spaniel’ Method”. SIGPLAN
Notices 33(12), 52-56, 1998.

%% mathsPIC output file (fig2.mt)
%% Figure 2
\documentclass[ad4paper]{article}
\usepackage{pictexwd}
\begin{document}

\beginpicture

\setdashes

A Perl port of the mathsPIC graphics package

Knuth, D E. Literate programming. Number 27 in
CSLI Lecture Notes. Center for the Study of Lan-
guage and Information, 1992. Co-published by
Cambridge University Press.

Nickalls, R W D. “MathsPIC: a filter program for use
with P[CTEX”. In Proceedings of EuroTpX’99,
pages 192-210, Heidelberg, Germany. 1999. A
slightly updated version of this paper was pub-
lished (in English) in the Greek TEX Friends’
journal Eutopon, No. 3 (October 1999), pp. 33—
49.

Ramsey, N. “Literate programming simplified”.
IEEE Software 11(5), 97-105, 1994.

Syropoulos, A. “Literate programming: the other
side of the coin”. RAM Magazine (129), 248-253,
1999. In Greek.

%% paper{units(mm) ,xrange(0,70),yrange(0,60) ,axes(LBT*R*),ticks(10,10)3}

\setcoordinatesystem units < imm, 1mm>

\setplotarea x from O to 70, y from O to
\axis left ticks numbered from O to 60 by
\axis right /

\axis top /

\axis bottom ticks numbered from O to 70 by

\setsolid

%% point(A){10,10} (10 , 10)
%% point (B){A,polar(50,50deg)}
%% point (C){A,polar(50,0deg)}
%% point (J){pointonline(AB,30)}
%% point (K){perpendicular(J,AC)}
%% drawRightangle (JKC,3)

(60, 10)

60
10 /

10 /

%% anchor point
(42.13938 , 48.30222)

(29.28363 , 32.98133)
(29.28363 , 10)

\plot 32.28363 10 32.28363 13 /

\plot 29.28363 13 32.28363 13 /

%% drawLines (AB,AC, JK)

\plot 10 10 42.13938 48.30222 / %% AB

\putrule from 10 10 to 60 10 %% AC

\putrule from 29.28363 32.98133 to 29.28363 10 %% JK

%% drawIncircle(AJK)

%% Incircle centre = 23.15115 , 16.13248 ; Radius = 6.132483

\circulararc 360 degrees from 29.28363
%% drawExcircle(AJK, JK)
%% Excircle centre = 46.13249 , 26.84886 ;

16.13248 center at 23.15115

Radius =

16.13248

16.84886

\circulararc 360 degrees from 62.98135 26.84886 center at 46.13249 26.84886

\setplotsymbol ({\large .3})
\setdots
%% drawCircumcircle (AJK)

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 295

Apostolos Syropoulos and Richard W. D. Nickalls

%% circumcircle centre = 19.64182 , 21.49067 ; Radius = 15

\circulararc 360 degrees from 34.64181 21.49067 center at 19.64182 21.49067
%% point (I){IncircleCenter (AJK)}[\odot] (23.15115 , 16.13248)

%% point (E){ExcircleCenter (AJK,JK)}[\odot,1.2] (46.13249 , 26.84886)

%% point (P1){perpendicular(E,AC)} (46.13249 , 10)

%% var r = EP1 (16.84886) %% radius of excircle

%% var d = 360/5 (72) %) angle of pentagon (deg)
%% var al=-90, a2=al+d, a3=a2+d, a4=a3+d, ab=a4d+d
%% al = -90

hh a2 = -18

%h a3 = b4

%h ad = 126

%% ab = 198

%% point (P2){E,polar(r,a2)} (62.1567 , 21.64227)
%% point (P3){E,polar(r,a3)} (56.036 , 40.47987)
%% point (P4){E,polar(r,ad)} (36.22898 , 40.47987)
%% point (P5){E,polar(r,a5)} (30.10827 , 21.64227)
%% drawPoints (ABCJKIEP1P2P3P4P5)

\put {\bullet} at 10 10 %) A

\put {\bullet} at 42.13938 48.30222 %% B

\put {\bullet} at 60 10 %% C

\put {\bullet} at 29.28363 32.98133 %% J

\put {\bullet} at 29.28363 10 %% K

\put {\odot} at 23.15115 16.13248 %% I

\put {\odot} at 46.13249 26.84886 % E

\put {\bullet} at 46.13249 10 %% P1

\put {\bullet} at 62.1567 21.64227 %% P2

\put {\bullet} at 56.036 40.47987 %% P3

\put {\bullet} at 36.22898 40.47987 7/, P4

\put {\bullet} at 30.10827 21.64227 %% P5
\setplotsymbol ({\tiny .})

\setdashes

%% drawline (P1P2P3P4P5P1,EP1,EP2)

\plot 46.13249 10 62.1567 21.64227 / %% P1P2

\plot 62.1567 21.64227 56.036 40.47987 / %% P2P3
\putrule from 56.036 40.47987 to 36.22898 40.47987 %) P3P4
\plot 36.22898 40.47987 30.10827 21.64227 / %% P4P5
\plot 30.10827 21.64227 46.13249 10 / %% P5P1

\putrule from 46.13249 25.64886 to 46.13249 10 %% EP1
\plot 47 .27376 26.47803 62.1567 21.64227 / %%k EP2
\setsolid

%% drawAnglearc{angle(P2EP1),radius(9),internal,clockwise}
\circulararc -72 degrees from 54.692 24.0677 center at 46.13249 26.84886
\newcommand{\figtitle}{%
\begin{minipage}{30mm}Y%
Triangle, pentagon and three circles}
\end{minipagel}’,
Yh
%% text (\fbox{\figtitle}){20,52}
\put {\fbox{\figtitle}} at 20 52
%% variable(s){5} (5)
%% text (A){A,polar(s,230deg)}
\put {A} at 6.786062 6.169777
%% text (B){B,polar(s,50deg)}

296 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

\put {B} at 45.35332 52.13245
%% text (C){C,polar(s,0deg)}

\put {C} at 65 10

%h text(J){J,polar(s,90deg)}
\put {J} at 29.28363 37.98133
%% text (K) {K,polar(s,270deg)}
\put {K} at 29.28363 5

%% text (E){E,polar(s,0deg)}

\put {E} at 51.13249 26.84886
%h text(72){E,polar(5.5,-54deg)}
\put {72} at 49.36531 22.39926
%t text (I){I,shift(3,0)}

\put {I} at 26.15115 16.13248
%% text(P_1){P1,polar(s,al)}
\put {P_1} at 46.13249 5

%% text (P_2){P2,polar(s,a2)}
\put {P_2} at 66.91198 20.09719
%% text (P_3){P3,polar(s,al3)}
\put {P_3} at 58.97492 44.52495
\endpicture

\end{document}

A Perl port of the mathsPIC graphics package

Richard W.D. Nickalls and Apostolos Syropoulos

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 297

Chess macros for chess games and puzzles

Marina Yu. Nikulina

St. Petersburg Technical University
St. Petersburg, Russia
marishka@ptslab.ioffe.rssi.ru

Alexander S. Berdnikov
Institute of Analytical Instrumentation
St. Petersburg, Russia
berd@ianin.spb.su

Abstract

The macro package UCHESS.STY described here generalizes the well known chess
macros CHESS.STY by Piet Tutelaers [1], BDFCHESS.STY by Frank Hassel [2] and

the less known CHESS.STY by Tomasz Przechlewski [9].

It adapts international

(European) chess notation for other languages (primarily for Russian) as it is
required by modern IXTEX. It also allows the User to annotate non-classical chess
games — hexagonal chesses, 2-chess, etc. Special care is taken to allow the User
to represent various chess puzzles with non-standard chess rules.

Introduction

The well known and available on CTAN chess macros
CHESS.STY (by Piet Tutelaers) and BDFCHESS.STY
(by Frank Hassel) are excellent but do not work
well with the Russian language without manual
correction of the original macros. Moreover, if the
BABEL package (versions 3.6 and 3.7) is used, neither
CHESS.STY nor BDFCHESS.STY can recoghize the
presence of BABEL and hence cannot support multi-
language chess notation as they should. The other
reason to issue a new macro set is that CHESS.STY
and BDFCHESS.STY only deal with the classical chess
game —such things as non-standard figures and
non-standard chess boards are not supported.

The new macro package UCHESS.STY outlined
here should correct these gaps. It follows the scheme
suggested in CHESS.STY and BDFCHESS.STY and is
more an extension of the ideas suggested in these
packages than an original macro package. It in-
cludes support of multilingual chess notation in a
more robust way (including support of the Russian
notation). It supports multiple chess boards and po-
sitions simultaneously and contains special macros
which simplify the presentation of chess problems. It
also has special commands which help to represent
non-standard chess puzzles with unusual boards and
rules. It is based on an extended chess font which
permits representation of chess and checkers on non-
standard boards and with non-standard figures (like

the hexagonal chess [10] and Q-chess [7] games), and
will draw the arrows showing moves, etc.

Problems with foreign language support

One of the most powerful features of CHESS.STY by
Piet Tutelaers is the support of chess notation for
foreign languages. But since that part of KTEX
changed greatly since CHESS.STY was released, the
feature has steadily transformed itself to a weak
point of the package. Let us consider this effect in
more detail.

First, the support of foreign languages in
CHESS.STY is entirely based on BABEL. DBut it
recognizes the presence of BABEL by the existence
of the macro \babel@core@loaded — which is ob-
solete since BABEL 3.6a (1996/11/02), as explained
in the BABEL manual. As a result CHESS.STY
loads english.sty even if BABEL is already loaded.
(And if by chance it reads the obsolete version of
english.sty included among other files with the
bundle with CHESS.STY, the result may be rather
strange.)

Second, the CHESS.STY support of foreign lan-
guages analyzes the current BABEL language each
time you switch to chess mode and unconditionally
redefines the chess notation as specified by this
language. So it is impossible without extensive
language switching to have chess notation in English
while the main text is in German, French, Dutch or
Russian. Moreover, if the corresponding language is

298 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

not supported by CHESS.STY at all (the current ver-
sion 1.2 recognizes only english, french, german
and dutch as valid languages), you'll see that your
chess notation disappears without any warning or
error message—so you must switch language to
some known one before each chess fragment. (This
defect is partially corrected in BDFCHESS.STY —
namely, you can specify one language for chess nota-
tion and another language for the main text. But if
the language selected for chess notation is not sup-
ported by CHESS.STY, you’ll still find all your chess
figures dissappearing from your document without
any warning.)

You can correct this defect by adding the sup-
port of the desired language in CHESS.STY directly.
But if you would like to do this, you’ll need to
correct the original file or to redefine its internal
macro \select@pieces —both operations are not
too difficult for TEX experts (especially taking into
account the that the procedure is described in the
documentation supplementary to CHESS.STY). But
for the ordinary user it is not so clear how to do it,
and there is no ready-to-use intrinsic mechanism for
adding a new language in CHESS.STY with modest
effort and in a standard way. (And the strange
behaviour of CHESS.STY is quite annoying for an or-
dinary user because he/she cannot understand what
happens and what is wrong with the document.)

Finally, CHESS.STY supports foreign language
notation in the assumption that in any language
one-letter notation is used. This is true for English,
French, German, Dutch, Italian, etc., but in Russian
it is not so: two-letter notation is used to distinguish
King (‘Kp’) from kNight (‘K’). Taking into account
that for the Russian language there is no unified
input encoding (different platforms uses different
encodings for Russian letters) the problem how to
support Russian chess notation in a unified way
becomes even more difficult.

Foreign language support in UCHESS.STY

The support of foreign language notation is the main
component which is different in UCHESS.STY and
CHESS.STY (to be honest, correct support of Russian
chess notation was the main reason to substitute
CHESS.STY by UCHESS.STY). You may control the
language used for chess notation independently of
the language used for the main text by the com-
mand \chesslanguage. And although your chess
language is synchronized with the main text if you
specify the chess language as babel, synchronization
is not obligatory.

The procedure for adding new languages into
UCHESS.STY is modified as well. First, when a

Chess macros for chess games and puzzles

special language is required for chess notation, the
package checks that a characteristic macro com-
mand based on the language name already exists.
If the command does not exist, a warning message
is issued and the chess notation is switched to En-
glish (the default notation built-in for UCHESS.STY).
Second, if you need to add a new language for
UCHESS.STY, you just define the necessary macro
command —this is enough to extend the set of
languages supported by UCHESS.STY —you do not
need to change anything thing inside the original
UCHESS.STY commands. Finally, when you load
the package UCHESS.STY by the IATEX 2¢ command
\usepackage, you can define the list of supported
languages as its options—for each unknown op-
tion name the file name.cld is loaded (.cld stands
for chess language definition). (UCHESS.STY also
checks that the macro with the desired name is
really defined in this file. For all main languages
the corresponding .cld-files are included with the
package UCHESS.STY.)

But the problem with the Russian language and
its numerous encodings still remains. To solve it
we added an additional (optional) parameter which
helps the language switching macro to select the ap-
propriate input encoding. Additionally, to simplify
the user’s work on defining the language switching
macro there are standard commands which help to
define one-letter and two-letter abbreviations for
chess figures. And if by chance the language switch-
ing mechanism misbehaves (as it does for CHESS.STY
where the chess figures just disappear from your text
if there are no standard chess abbreviations for your
language), the user can always use macro commands
with fixed names.

The UCHESS.STY support of other languages
also allows the user to switch flexibly between al-
phanumeric notation and the ‘figurine’ notation in
the document without major changes to the input
file (where the alphanumeric notation is in agree-
ment with your language). Special precautions
are performed to adapt other special symbols used
by chess notation properly when the language is
switched as well (for example, the symbols used
for international Chess Informant notation and the
notation traditionally used in Russia, Poland, etc.,
differ widely as concerns the symbols used for check,
checkmate, stalemate, etc.).

Non-standard chess games

Chess board for 4 players and its rules It is
nice that there is the support of the classical chess
game in IATEX, but today the non-standard chess
games are becoming more and more popular [8, 7].

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 299

Marina Yu. Nikulina and Alexander S. Berdnikov

While it is necessary to keep chess figures of four
colors for the chess game for 4 players [8], it is
possible to overcome the restriction of typical black-
and-white typography by rotating the corresponding
chess figures by 90°, 180° and 270°. The fonts
described in [3] enable us to generate the rotated
fonts without any problems but it is questionable
whether that it is necessary to support such an
exotic chess game inside UCHESS.STY. Maybe it will
be done someday —if somebody really needs it.

-chess board and its rules While the chess
game for 4 players [8] seems to be just a private
joke for home entertainment, Q-chess [7] is a more
serious game, and its support by KTEX is a desirable
feature. Support of the Q-chess board requires two
additional figures (wizard and champion), a non-
standard chess-board with 104 fields (10 x 10 plus
four separate corner squares) and support of non-
usual moves and field notation in the way that
is already done for the classical chess game in
CHESS.STY. Additional figures are included in our
new chess font [3], and the extended chess notation
is supported when you mark your chess board as an
Q)-game by a special option.

Hexagonal chess boards and their rules In
addition to the -chess board there are (at least)
two hexagonal chess boards [10] with chess rules
of their own. These boards are composed from
hexagonal fields colored in three colors (white, gray
and black), and although standard chess figures are
used, the initial positions and the rules how to
move the figures over the board are far from being
standard. As for 2-chess the support of hexagonal
chess games is included in UCHESS.STY although
serious modifications of the internal representations
used for chess boards in CHESS.STY were necessary.

Chess problems The classical chess game is di-
vided into two relatively independent branches.
There is the chess game itself where two people
fight for victory, and there is the solution of spe-
cially prepared chess problems. (Actually there is
a third branch as well—the computer chess game
and computer chess analysis — but these are not too
different from the other two branches as concerns
chess typesetting.)

While the support of an ordinary chess game is
done in CHESS.STY in a user-friendly manner, and
while BDFCHESS.STY supports playing chess games
by post in the same way, the support of chess type-
setting for chess problems is not so flexible. To assist
the user working in this specific field UCHESS.STY
contains the support of several boards and posi-
tions simultaneously, storing and copying the board

content, transformation of boards, adding/removing
individual chess pieces, etc. There are also special
chess environments used to typeset the main stream
of the solution, its side streams and the alternative
variants — see section ‘Additional environments’ for
more details.

Puzzles, fairy chess games, checkers, etc.
Apart from classical chess games and chess problems
there are so-called unusual (fairy) chess games and
problems —i.e., with non-standard rules, boards,
figures, etc. While the typesetting of chess diagrams
with non-standard rules is more or less covered by
macros designed for ordinary chess diagrams, this
is not the case when we deal with non-standard (for
example, non-rectangular) chess boards and unusual
chess figures.

Macros from UCHESS.STY extend the flexibility
of defining non-standard rectangular and hexagonal
chess boards. In CHESS.STY each field may be black
or white, occupied by a chess figure or not, but in
UCHESS.STY two more variants are included:

e empty field which is outside the board (drawn
as an empty square),

e empty field which is a hole inside the board
(drawn as a square filled by solid black color).

While neither field can be occupied by a figure, they
are drawn in a different style for a clear reason: it
is not reasonable to fill with black the entire region
outside the non-rectangular board, and it is difficult
to distinguish the hole inside non-rectangular board
from the white field if it is just empty without an
additional marker.

The other aspect essential for fairy chesses is
the existence of non-standard figures. While there
are no strict rules how to represent these figures
graphically (the Q-chess game is an exception [7]),
it is more or less clear that they should be different
from the ordinary chess figures. To satisfy the
needs of this group of users, UCHESS.STY supports
additional pictograms (crosses, bullets) to represent
unusual chess figures, and a big bold circle which can
modify the meaning of an ordinary chess figure if it is
necessary. And in addition to these chess-like figures
it is necessary to note, that checkers and checker-
like board games can be considered as fairy chess
games as well —so it is natural to include support
of checkers in UCHESS.STY also.

Finally, it is necessary sometimes to draw mark-
ers, borders, arrows, etc., over chess boards (partic-
ularly for child-level chess textbooks). A separate
font enables us to draw arrows, etc., over the chess
board in the same way as in the picture environment,
and it is possible to add plain borders and to make

300 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

bold boundaries between the square and hexagonal
cells of the board.

Extended chess encoding

As a result of our attempt to cover all these con-
tradictory requirements, a special chess font (or,
more strictly, chess encoding) was developed. It
includes all classical chess figures (black and white)
and some special-purpose figures (wizard, champion,
checker, double-checker, crosses and bullets) are
also added. Non-symmetrical figures exist in two
variants, straight and mirrored (hopefully there are
just two figures of that kind, knight and wizard) —
because, for example, it is recommended to use the
horse with the head rotated to the left when it
represents the knight on chess board, and to the
right when it represents the knight in chess text [2].

Editor’s note: Surely the figures don’t exist as
a text character, but rather as some sort of character
code. .. We've already been told that in Russian
notation there is a two-letter representations.

Each figure exists as a text character, as the
figure placed over a black or over a white square
field, and as the figure placed over a white, black or
gray hexagonal field. (In fact, there is no separate
figure to be placed over a white hexagonal field —
it is enough to have the figure placed over a white
square and a simple TEX macro. But the difference
between ‘text figures’ and figures placed over white
square fields is essential —see [3] for more details.)
In addition there are the empty square and hexago-
nal fields of corresponding color, the fields filled by
a solid black color, the lines used to surround the
square field or the hexagonal field by a frame (or
to make the solid frame around the whole board),
and the solid circle used to modify the meaning of a
chess figure.

The final chess encoding and the details of new
chess fonts are described in [3].

Chess Informant notation

Aside from chess figures there are many special
symbols used to annotate real chess games in an
abbreviated manner. The most famous is the in-
ternational Chess Informant system, but there are
also other symbols locally accepted in national chess
publications. Since these symbols can be used in
text only, there is no reason to put them in the
same font as ordinary chess figures. Moreover,
these symbols should be visually compatible with
the ordinary Computer Modern text and, hence,
change their style as the style of the main text is
changed. KTEX 2 has a sophisticated but user-
friendly NFSS-system which controls such behaviour

Chess macros for chess games and puzzles

nearly automatically. All what we need to do is to
fix the list of necessary symbols and the font en-
coding, to create the fonts for all necessary variants
(size/shape/series/family) and, finally, to prepare
corresponding .def- and .fd-files and define macros.

Since this part of UCHESS.STY is under prepara-
tion now, it does not contain symbol fonts which are
compatible with Computer Modern and European
Modern and the representation of the notation of
Chess Informant to a full extent, but there are defi-
nite plans to extend the support of the international
chess notation to the level where Chess Informant
notation and national notations are fully supported
as well. (It is worth noting that sometimes Chess In-
formant notation and national notations are differ-
ent —as a result the language-switching commands
should control this difference as well.)

Arrows, borders, etc.

Chess figures and chess symbols described in sec-
tions ‘Extended chess encoding’ and ‘Chess Infor-
mant notation’ are enough for almost all profes-
sional chess typesetting. But what about textbooks?
Quite often it is necessary to draw the arrows show-
ing the moves of particular figures, to emphasize
some fields by special markers, to draw a special
border around a chess diagram, to mark explicitly
the boundary between two chess fields, etc.—and
there are no such elements in our fonts nor macro
commands at our disposal!

But this just means that such elements and such
macros should be added. Hopefully, there is a good
predecessor for this—mnamely, the IXTEX picture
environment based on restricted LR-mode which
enables construction of arbitrary two-dimensional
mosaics from discrete elements by explicit speci-
fication of individual two-dimensional coordinates.
Our environment allows the user to annotate by
arrows, markers, borders, bounding lines, etc., for
textbook chess diagrams that are organized in the
same manner.

Although just now there is no special font with
arrows, etc., available to UCHESS.STY for that pur-
pose (and, consequently, there are no macros to
draw arrows over the chess board), we have plans
to add the necessary extensions.

Multiple chess boards

An essential extension of CHESS.STY is the support
of multiple chess boards inside the same document.
The board is identified by its name, and by default
the board current is used. The board contains the
description of the current position, the flags showing
the state of the game (white or black side is to make

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 301

Marina Yu. Nikulina and Alexander S. Berdnikov

the move, is it possible to castle, etc.) and a special
flag identifying the rules of the game. The board
can be of non-standard size (square or rectangular)
and, besides ordinary fields, can contain special
fields —namely, empty fields which are outside the
board and are displayed as empty white squares
(hexagons), and null fields which are displayed as
black squares (hexagons) and represent the holes
inside the standard board. It is possible to make
a copy of the current content of a board with a
new name, to correct the content of the board
in a silent mode without actually typesetting the
moves, to change a board’s state manually, etc. The
boards obey standard TEX rules about block nesting
which enables the user to play the game variants
and to investigate side game branches without any
problems and special precautions.

Additional environments

Is it true that now we have everything we need
for accurate chess typesetting? Not at all—we
need specialized environments to mark up chess-
oriented text fragments and to mark up logically
different chess-oriented material as well. A very
good example can be found in the documentation
of CHESS.STY —namely, the case where the main
stream of the annotated chess game is typed in bold
while the alternative variants of the chess game are
typed as ordinary text. While these environments
for logical mark-up are outside the main style cre-
ated by Piet Tutelaers, they are an intrinsic compo-
nent of our package UCHESS.STY.

Acknowledgements

We express our warmest thanks to our colleagues
from other countries— their careful attention sup-
ports our activity in TEX even in such unfavourable
conditions as they are in modern Russia.

Special thanks are to Bogustaw Jackowski and
Tomasz Przechlewski for valuable consultations, lit-

erature references and ready-to-use chess fonts and
chess macros used when we worked on UCHESS.STY.

Alexander Berdnikov would like to thank sep-
arately Dr. A. Compagner from Delft University of
Technology for his long-term friendship and patient
attention as a teacher —not necessarily relating to
some TEX or KTEX joint works.

References

[1] Piet Tutelaers. A font and style for typesetting
chess using IMTEX or TEX. Machine-readable
document (supplement to CHESS.STY), 1992.

[2] Frank Hassel. A IATEX style for management of
correspondence chess games. Machine-readable
document (supplement to BDFCHESS.STY),
1993.

[3] Marina Nikulina, Alexander Berdnikov. Chess
fonts for chess games and puzzles.—in these
Proceedings.

Editor’s mote: This paper was not in fact
presented, and will not appear in the proceed-
ings. Please supply an alternative description.

[4] Zalman Rubinstein. Chess printing via META-
FONT and TgX. TUGboat, 10, pp. 170-172
(July 1989).

[5] David Tofsted. An improved chess font. TUG-
boat, 11, pp. 542-544 (November 1990).

[6] Jan Eric Larson. A chess font for TEX. TUG-
boat, 10, pp. 351-352 (November 1989).

[7] ©2-Chess Home page: www.omegachess.com

[8] Chess game for 4 players: www.4playerchess.
com

[9] Tomasz Przechlewski, CHESS.STY, private com-
munication.

[10] Wojciech Pijanowski. Gry w ktére gralem. “Po-
morze”, Bydgoszcz, 1989.

[11] E. 4. T'uk. 3anuMaresbHble MATEMATUYECKUE
urpsl. “3uanne’, Mocksa, 1987.

302 TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

Abstract: Omega version 2

John Plaice

School of Computer Science
UNSW

Sydney NSW 2052
Australia
plaice@cse.unsw.edu.au

Yannis Haralambous
187, rue Nationale
F-59800 Lille

Freance
yannis@fluxus-virus.com

Abstract

We present the latest developments of the Omega system: multidirectional type-
setting, a new accentuation algorithm, the use of external binary translation pro-
cesses, enhanced XML/MathML generation, etc. We will also give an overview of
developments by various Omega users around the world, for different languages
and scripts.

John Plaice

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

303

The NS project: from conception to birth*

Philip Taylor
RHBNC, University of London, United Kingdom
p.taylor@exchl.rhbnc.ac.uk

Jiti Zlatuska
Masaryk University, Brno, Czech Republic
zlatuska@muni.cz

Introduction

It is an enormous pleasure and privilege to be able
to present this paper on N778 at a TUG conference
in Oxford. For almost ten years, N'7S has slowly
been evolving from a concept to a reality, and I am
delighted to be able to report that A/7S is virtually
complete. The fact that we have reached this point
is due almost entirely to the efforts of one man: my
co-presenter, Karel Skoupy. Karel has work tire-
lessly on this project, and without his efforts I have
no hesitation in saying that we would not be pre-
senting N'TS as a success story today.

Let me start by presenting an overview of to-
day’s talk and presentation; We will attempt to cover
seven separate areas, including (of course) the manda-
tory questions and answers at the end. The seven
areas to be covered are:

Phil Taylor

* The present authors would like to record their grateful
thanks to all members of the N'7S and e-TEX teams, past
and present, without whom neither this paper nor N7S itself
could have ever come to fruition. A further debt of gratitude
is owed to GUT, in whose Cahiers GUTenberg an earlier ver-
sion of this article first appeared. And, most importantly of
all, we would like to thank the sponsors of the N’7S project.
both private and corporate, without whose financial support
the project could never have succeeded.

304

A brief history of N78
TEX, e-TEX & NTS8 compared

The choice of Java as the language of imple-
mentation

e An overview of the classes, object and methods
of NT8

e A summary of the status quo

e A demonstration of N'7S, and comparison with

TEX

e Questions & answers

and you will soon realize that my expertise lies very
much in the earlier areas; the implementation de-
tails of NS are very much Karel’s area, and I will
defer to him whenever any explanation of a detailed
implementation issue is called for.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting

306 TUGboat, Volume 21 (2000), No. 3
Calendar
2000 Jun 6-8 Society for Scholarly Publishing,
23" annual meeting, San Francisco,
Nov 13— Gutenberg exhibit, including working California. For information, visit
Jan 6 replica of his original printing press, http://www.sspnet.org.
Lou%sv%lle Free Public Library, Jun 13-17 ACH/ALLC 2001: Joint International
Louisville, Kentucky. Conference of the Association for
Computers and the Humanities, and
2001 Association for Literary and Linguistic
Computing, New York University, New
Feb 28 DANTE 2001. 24th meeting York. For information, visit http://

Mar 3 Fachhochschule Rosenheim, www.nyu.edu/its/humanities/ach_allc2001/.
Germany. For information, visit Jul 6 The Best of the Best: A traveling
http://wuw.dante.de/dante2001/. Aug 18 juried exhibition of books by members

Mar 2628 XML World Europe, Amsterdam, of the Quild of Book Workers.
Netherlands. For information, visit Columbia College Chicago Center for
http://www. xmlworld.org/. Book and Paper Arts, Chicago, Illinois.

i li http:
Apr 1— The Best of the Best: A traveling juried Sites and dates are listed at p://

Jun 15 exhibition of books by members of the

Guild of Book Workers. Ohio State
University Library, Athens, Ohio.
Sites and dates are listed at http://
palimpsest.stanford.edu/byorg/gbw.

Apr 9-13 Seybold Boston, Boston,

Apr 29—

Massachusetts. For information, visit
http://www.key3media.com/
seyboldseminars/boston2001/.

BachoTgEX 2001, 9" annual meeting of

May 2 the Polish TEX Users’ Group

May 14—

Jun 4-8

(GUST), “Contemporary publishing
TEXnology”, Bachotek, Brodnica Lake
District, Poland. For information, visit
http://www.gust.org.pl/BachoTeX/.

17 Congres GUTenberg 2001, “Le document
au XXlIe Siecle”, Metz, France.
For information, visit http://

Www.gutenberg.eu.org/manif/gut2001/.

Rare Book School Summer Session,
University of Virginia, Charlottesville,
Virginia. A series of one-week
courses on topics concerning rare
books, manuscripts, the history of
books and printing, and special
collections. For information, visit
http://www.virginia.edu/oldbooks.

palimpsest.stanford.edu/byorg/gbw.

Jul 13-15 TypeCon 2001, Rochester, New York.
For information, visit
http://www.typecon2001. com.

Jul 16 - Rare Book School Summer Session,

Aug 10 University of Virginia, Charlottesville,
Virginia. A series of one-week
courses on topics concerning rare
books, manuscripts, the history of
books and printing, and special
collections. For information, visit
http://www.virginia.edu/oldbooks.

TUG 2001

University of Delaware, Newark, Delaware.

For information, visit http://www.tug.org/tug2001/.

Aug 6-10 Intermediate/Advanced IATEX training
class.

Aug 12-16 The 22" annual meeting of the TEX
Users Group, “2001: A TEX Odyssey”.

Aug 12-17 Extreme Markup Languages 2001:
“There’s Nothing so Practical as a
Good Theory”, Montréal, Canada.
For information, visit
http://www.gca.org.

Status as of 1 December 2000

For additional information on TUG-sponsored events listed above, contact the TUG office
(4+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

Additional type-related events and news items are listed in the Sans Serif Web pages,

at http://www.quixote.com/serif/sans.

TUGhboat, Volume 21 (2000), No. 3

Aug 12-17

Sep 8

Sep 10—
Oct 26

Sep 17-20

SIGGRAPH 2001, Los Angeles,
California. For information, visit
http://www.siggraph.org/s2001/.

WDA’2001: First International Workshop
on Web Document Analysis, Seattle,
Washington. For information, visit
http://www.csc.liv.ac.uk/ " wda2001.
The Best of the Best: A traveling
juried exhibition of books by

members of the Guild of Book
Workers. Dartmouth College,
Hanover, New Hampshire. Sites and
dates are listed at http://
palimpsest.stanford.edu/byorg/gbw.
XML World 2001, San Francisco,
California. For information, visit

Sep 23-27

Sep 29

Oct 2426

Nov 9-10

307

EuroTEX 2001, “TEX and Meta: the
Good, the Bad and the Ugly Bits”,
Kerkrade, Netherlands. For information,
visit http://www.ntg.nl/eurotex/.

29th Annual General Meeting of the
Danish TEX Users Group (DK-TUG),
Arhus, Denmark. For information, visit
http://sunsite.dk/dk-tug/.

4" Tnternational Conference

on The Electronic Document,

Toulouse, France. For information, visit
http://www.irit.fr/CIDE2001/.

ASM Symposium on Document
Engineering, Atlanta, Georgia.

For information, visit
http://www.documentengineering.org.

http://www.xmlworld.org/.

Institutional
Members

American Mathematical Society,
Providence, Rhode Island

Center for Computing Services,
Bowie, Maryland

CNRS - IDRIS,
Orsay, France

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

CSTUG, Praha, Czech Republic

Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

Hong Kong University of

Science and Technology,
Department of Computer Science,
Hong Kong, China

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

ICC Corporation,
Portland, Oregon

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

Towa State University,
Computation Center,
Ames, Towa

Kluwer Academic Publishers,
Dordrecht, The Netherlands

KTH Royal Institute of
Technology, Stockholm, Sweden

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

Max Planck Institut
fiir Mathematik,
Bonn, Germany

National Institute for Child
& Human Development,
Bethesda, Maryland

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag Heidelberg,
Heidelberg, Germany

Springer-Verlag New York, Inc.,
New York, New York

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University of Canterbury,
Computer Services Centre,
Christchurch, New Zealand

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Universitat Koblenz—Landau,
Fachbereich Informatik,
Koblenz, Germany

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Universita degli Studi di Trieste,
Trieste, Italy

Vanderbilt University,
Nashuille, Tennessee

Vrije Universiteit,
Amsterdam, The Netherlands

Miscellaneous Photos*

EmE ograEy B Ay) e pmy

Robin Fairbairns

Start of the Banquet Tea Break with Kim Roberts centre stage

TUG Board members: (L—R) Phil Taylor, Don De-
Land, Robin Laakso (TUG Business Manager, seated),
A view down Parks Road Susan DeMeritt, Judy Johnson, Barbara Beeton,

and Kaja Christiansen.

* These photos and others scattered throughout the issue
are only a few of the photos kindly donated by Alan Wetmore;
more may be viewed on the TUG web site at http://www.tug.
org/tug2000/Photos/index.html.

TUGboat, Volume 21 (2000), No. 3— Proceedings of the 2000 Annual Meeting 305

308

TUGboat, Volume 21 (2000), No. 3

Participants at the 21st Annual TUG Meeting
August 12-16, 2000, Wadham College, Oxford, UK

Benjamin Bayart
(France)

Kaveh Bazargan
Focal Image Ltd (UK)

Nelson Beebe
University of Utah (USA)

Barbara Beeton
American Mathematical Society

(USA)

Duncan Bennett
MRC Biostatistics Unit (UK)

Alexander Berdnikov
Institute of Analytical
Instrumentation (Russia)

Berend de Boer
(Netherlands)

Thierry Bouche
Université de Grenoble I (France)

Johannes Braams
TEXniek (Netherlands)

Klaus Braune
Universitét Karlsruhe (Germany)

Wilodzimierz Bzyl
University of Gdansk (Poland)

David Carlisle
NAG/IATEX3 (UK)

Lance Carnes
Personal TEX, Inc. (USA)

Ed Cashin
University of Georgia (USA)

Kaja Christiansen
Aarhus University (Denmark)

Steve Daniels
The Open University (UK)

Donald DeLand
Integre Technical Publishing (USA)

Susan DeMeritt
IDA/CCR La Jolla (USA)

Christine Detig
Net & Publication Consultance
(Germany)

Michael Downes
American Mathematical Society

(USA)

Gontran Ervynck
K.U. Leuven Campus Kortryk
(Belgium)

Robin Fairbairns
University of Cambridge Computer
Laboratory (UK)

Emilio Faro Rivas

Escuela de Telecomunicaciones
(Spain)

Alexey V. Filippov

Institute of Fine Mechanics and
Optics (Russia)
Jonathan Fine

(UK)

Peter Flynn
University College, Cork (Ireland)

Andrew Ford
Ford & Mason Ltd (UK)

James Foster
University of Sussex (UK)

Erik Frambach
(The Netherlands)

‘Walter Gander
Comlab, University of Oxford (UK)

Jeremy Gibbons
Comlab, University of Oxford (UK)

Gurpreet Gill
Lindsay Ross International Limited
(UK)

Peter Giunta
Massachusetts Institute of Technology
(USA)

Rosa Maria Gomez Flores
STAR AG (Switzerland)

Michel Goossens
CERN (Switzerland)

Steve Grathwohl
Duke University Press (USA)

Hans Hagen
PRAGMA Advanced Document
Engineering (Netherlands)

Jay Hammond

QMW, University of London
(England)

Han Thé Thénh

Masaryk University (Czech Republic)
Ahmed Hindawi

Hindawi Publishing Corporation
(Egypt)

Rick Hobbs
Institute of Public Administration
(Saudi Arabia)

Alan Hoenig
Knowledge Equity, Inc. (USA)

Mimi Jett
IBM (USA)

Judy Johnson
Personal TEX, Inc. (USA)

Tom Kacvinsky
American Mathematical Society
(USA)

Hirotsugu Kakugawa
(Japan)

NG Kalivas
Westminster School (UK)

Anders Killstrom
Uppsala University (Sweden)

Jonathan Kew
SIL Intl (UK)

Thomas Koch
Dante e.V. (Germany)

Reinhard Kotucha
(Germany)

Johannes Kuester
typoma (Germany)

Robin Laakso
TEX Users Group (USA)

Klaus Lagally
(Germany)

Olga Lapko
Mir Publishers (Russia)

Michel Lavaud
CNRS (France)

Jenny Levine
Duke University Press (USA)

Bernice Lipkin
(USA)

Irina Makhovaia
Mir Publishers (Russia)

Wendy McKay
California Institute of Technology
(USA)

Lothar Meyer-Lerbs
(Germany)

Bruce Miller
NIST (USA)

TUGDboat, Volume 21 (2000), No. 3

Galina V. Mitina
All-Russia Institute of Plant
Protection (Russia)

Frank Mittelbach
IATEX3 Project (Germany)

Eddie Mizzi
The Geometric Press (UK)

Patricia Monohon
University of California, San Francisco
(USA)

Bacem Moussa
Knowledge Equity, Inc. (USA)

Timothy Murphy
School of Mathematics, Trinity
College (Ireland)

P. Narayanaswami
Memorial University of Newfoundland
(Canada)

Winfried Neugebauer
(Germany)

Dick Nickalls
Nottingham University (UK)

Marina Yu. Nikulina
St. Petersburg Technical University
(Russia)

Heiko Oberdiek
Universitat Freiburg (Germany)

Stephen Oliver
University of Manitoba and Atomic
Energy Canada Ltd (Canada)

Pedro Palao Gostanza
Universidad Complutense de Madrid
(Spain)

Simon Pepping

Elsevier Science (Netherlands)

Eoin Phillips

Dublin Institute for Advanced Studies
(Ireland)

Karel Piska
Institute of Physics, Academy of
Sciences (Czech Republic)

John Plaice
The University of New South Wales
(Australia)

Fabrice Popineau
SUPELEC (France)

Lorna Priest
SIL Intl (USA)

Sebastian Rahtz

Oxford University Computing Services
(UK)

David Reynolds

Dublin City University (Ireland)

David Rhead
University of Nottingham (UK)

William Richter
Texas Life Insurance Company (USA)

Kim Roberts
HK Typesetting Ltd (UK)

Volker Schaa
Dante e.V. (Germany)

Andreas Scherer
(Germany)

Martin Schréder
TEX Merchandising (Germany)

Joachim Schrod
Net & Publication Consultance
(Germany)

Heidi Sestrich
Carnegie Mellon University (USA)

Alex Sheldrake
Inter.Act Systems UK Ltd (UK)

Karel Skoupy
NTS developer (Czech Republic)

Michael Sofka
Rensselaer Polytechnic Institute

(USA)

309

Friedhelm Sowa
Universitét Diisseldorf (Germany)

Vytas Statulevicius
VTeX (Lithuania)

Apostolos Syropoulos
Democritus University of Thrace
(Greece)

Philip Taylor
Royal Holloway and Bedford
New College (UK)

Sigitas Tolusis
VTeX (Lithuania)

Paul Topping
Design Science, Inc. (USA)

Ulrik Vieth
(Germany)

Michael Vulis
MicroPress Inc. (USA)

Pawel Walczak
University of L4dz (Poland)

Zofia Walczak
University of Lédz (Poland)

John Was

(UK)

Alan Wetmore

Army Research Laboratory (USA)

Michael Wiedmann
(Germany)

Mark Wilber
Knowledge Equity, Inc. (USA)

Dominik Wujastyk
Wellcome Library, Wellcome Trust
(UK)

De-Wei Yin
AEA Technology Engineering
Software Ltd (Canada)

Hypermedia Browser v3

www.software.ibm.com/techexplorer

Live Web Math with Interactivity

A
el

n: IR

M7 terms

fixy = é:l(—l)kﬂ(%)sm(kx), n=1

= sm(x)—%sin(Zx){»%sin(Bx)

—%sm(4x)+" +%—sm(?x)

techexplorer is a plug-in for
Web browsers that allows
users to have live, interactive
mathematics on an HTML or
XML page. The Intro Edition
is a free IATEX or MathML
reader. The Pro Edition

includes advanced features
for truly interactive
mathematical collaboration
and publishing.

© International Business Machines 2000®

IBM Research announces
techexplorer 3, released in
conjunction with the MathML
International Conference 2000.
Special new features include:
Interoperability with Mathematica
4.1 from Wolfram Research, Inc.;
A Macintosh version for both the
Professional and Introductory
Editions; ActiveX allows
techexplorer to interactively work
within many Windows
applications, including Microsoft
IE, Word, and Powerpoint;
Support for W3C DOM and
MathML standards allows
interactivity with applets,
multi-media resources,
animations, and many other
applications.

Write. .. create. . . collaborate. ..
techexplorer makes your browser
a scientific publishing
environment. View ATEX and
MathML files; create interactive
documents with Java applets,
video or audio clips, animations,
and graphics.

IBM, the IBM logo, are registered trademarks, and techexplorer
Hypermedia Browser is a trademark of IBM Corp.
Windows, NT, Microsoft Word, Excel and Powerpoint are registered

trademarks of Microsoft Corp.

Macintosh is a registered trademark of Apple Computer, Inc.
Mathematica is a registered trademark of Wolfram Research, Inc.

NEW FEATURES:
Macintosh platform
Mathematica™ connectivity
ActiveX control
DOM API
IATEX-2-techexplorer filter

KEY FEATURES:

MathML rendering and
conversion

IATEX viewing and editing

ActiveX control

DOM API functionality and
support

Create pop-up and pull-down
menus

In-line video and auto-play
audio

AMS symbol fonts

Expression editor

Interact with many tools and
applications

Java and JavaScript

BROWSERS:
Netscape, MS Internet
Explorer, Opera

PLATFORMS:
Pro: Windows 95/98/NT,
Macintosh OS 8.6/9
Intro: Windows, Mac, Linux,
AlX, Solaris

$29.95 from ibm.com

introducing

TEXTURES 2.0

W I T H

S Y NCHIRONIUCTITY

AGAIN THE MACINTOSH DELIVERS A NEW TEX WITH A REVOLUTION IN HUMAN INTERFACE.

As computer power has advanced, the
Macintosh has consistently been the leader
in the human and humane connection to
technology, and Textures has consistently
led in bringing ease of use to TEX users.

First with Textures 1.0, the first truly

With Synchronicity, your TEX input documents
are reliably and automatically cross-linked,
correlated, or “synchronized” with the finished
TEX typeset pages. Every piece of the finished
product is tied directly to the source code from
which it was generated, and vice-versa. To go
from TEX input directly and exactly to the

corresponding typeset characters, just click.

integrated TEX system. Then with Lightning
Textures, the first truly interactive TEX
system. Now, with Textures 2.0 and
Synchronicity, Blue Sky Research again
delivers a striking advance in TEX

interactivity and productivity.

It’s that simple: just click, and Textures will take
you instantly and precisely to the corresponding
location. And it goes both ways: just click on
any typeset character, and Textures will take you
directly to the TEX code that produced it. No
matter how many input files you have, no
matter what macros you use, Synchronicity will

take you there, instantly and dependably.

Improve YOUR performance:

G E T

BLUE SKY RESEARCH
317 SW ALDER STREET

PORTLAND, OR 97204 USA

%l?—;%%

S Y NCHIRONTIUCTITY

800 622 8398

503 222 9571

WWW.BLUESKY.COM

	Introduction
	Contents of a bibliography entry
	Restricted key-value scanning
	Missing commas
	Mandatory use of braces for values

	Capitalization of English titles
	Citations
	Author-year citation schemes
	Bibliography style setup
	Miscellaneous commands provided by the amsrefs package

	Fields recognized by the `bib command
	Miscellaneous features
	Package options
	Auxiliary packages
	BibTeX exporting---amsxport style
	Availability
	1. Paul Verlaine, Fêtes galantes (1869)
	1.1. Clair de lune
	1.2. Les indolents

	2. , e (1901-1902)
	2.1. «» (28 1901)
	2.2. «» (.-, 25 1901)
	2.3. « ...» (29 1901)

	3. From A Pair Of Blue Eyes, by Thomas Hardy
	4. From Aleksis Kivi's play Kihlaus

