
TUGboat, Volume 21 (2000), No. 2 113

Font Forum

Thai fonts

Werner Lemberg

Abstract

This article describes how the Thai script works and
how to implement the necessary ligatures for TEX
using afm2tfm.

1 Some Historic Information

The Thai script has been derived, similar to al-
most all other southern asian scripts not directly
influenced by China, from an ancient version of
Indic Sanskrit, Brahmi. Over the years, the original
letters have been adapted to the peculiarities of the
Thai language, one example would be superscripted
digits used for tone marks.

Regarding computers, Thailand followed other
principles than those of India in the standardization
of the script despite many similarities; all base let-
ters are consonants with an inherent vowel (usually
an a), and for the special case of Thai, an inherent
tone. Vowel and tone can be modified by attaching
other letters to the base consonant— before and
after the base consonant, but also above and below.
The Indic standard (ISCII) uses the logical order
to store text, which means that the vowel always
comes after the consonant even if it appears before
the consonant graphically (such vowels are called
independent vowels). Contrary to India’s logical
order, Thailand defines its industrial standard TIS-

620 in that independent vowels must be stored in
visual order. Unicode [8] follows TIS-620 in the
processing of the Thai script.

In the following, linguistic aspects will be com-
pletely ignored, referring to graphical features only.

2 The Structure of Thai Letter Clusters

Since letter clusters are stored in visual order the
graphical display of Thai is simplified to base letters,
possibly with diacritical signs above and below— no
need to reorder vowels. There are five possibilities
how diacritical signs can be positioned in Thai.

1. base consonant + vowel above:

´ + Õ = Ṍ
2. base consonant + tone mark:

» + è = »�
3. base consonant + vowel above + tone mark:



114 TUGboat, Volume 21 (2000), No. 2

» + Õ + è = »��
4. base consonant + vowel below:

Ë + Ù = ËÙ
5. base consonant + vowel below + tone mark:

¯ + Ù + è = ¯ý�
TIS-620 mandates that tone marks come last,

but users sometimes ignore this. It is the duty of
input methods for Thai to normalize incorrect input.
Below, the standardized form is always expected.

It can already be seen in the above examples
that diacritical signs change its positions horizon-
tally and vertically dependent on the shape of the
base glyph resp. whether another diacritical sign is
used.

There are more peculiarities of the Thai script.

1. The vowel sara am Ó will be split into the
characters nikhahit í and sara aa Ò if it is
appended to a consonant. The character í
interacts with the preceding character.

¡ + Ó = ¡ + í + Ò = ¡íÒ
¡ + è + Ó = ¡ + í + è + Ò = ¡íèÒ

If necessary, nikhahit and the tone mark must
exchange its positions.

2. The two consonants yo ying ­ and tho than °
drop its lower part if combined with a lower
vowel.

­ + Ù =�Ù
° + Ù = �Ù

3. If sara aa Ò follows the independent vowel ru Ä
or lu Æ (those two letters are used for Sanskrit),
it will be replaced by the sign lakkhangyao å.

Ä + Ò = Äå
Æ + Ò = Æå

3 Glyph Classes

To describe the necessary ligatures it is convenient
to categorize Thai letters into various graphical
glyph classes, ignoring all linguistical aspects. In
the author’s opinion, even incorrect or unrealistic
combinations should be displayed in an optically
pleasing way if possible.

basenormal Normal base glyphs without
special features.

basedesc Base glyphs with descender.

basedesclike As described above, glyphs of
this class consist of two parts, omitting
the lower one if combined with a lower
vowel.

baseasc Base glyphs with an ascender on
the right side.

baseindic The two independent vowels ru Ä
and lu Æ.

basesign The sign lakkhangyao å.
basesara am The vowel sara am Ó.
basesara aa The vowel sara aa Ò.
lower Diacritical vowels below.

uppervowel Diacritical vowels above.

uppersign The sign nikhahit í.
top Tone marks.

Now the glyph variant forms.

basedescless The glyphs of class basedesclike

without the lower part.

lower low The glyphs of class lower shifted
downwards.

uppervowel left The glyphs of class
uppervowel shifted to the left.

uppersign left
The glyphs of class upper sign

shifted to the left.

top left The glyphs of class top shifted to
the left.

top low The glyphs of class top shifted
downwards.

top low-left The glyphs of class top shifted
to the left and downwards.

4 Context Patterns

Using the glyph classes defined in the last section
it is easy to describe the context patterns for base
glyphs with diacritical signs. Surprisingly, these
patterns are quite systematic. Patterns in table 1
which are marked with an asterisk do nothing and
are listed for completeness only. As mentioned
above, these patterns cover more combinations as
existing in the Thai script.

Table 2 covers the ligatures of the character sara
am Ó. Finally, table 3 describes the letters specific
to Sanskrit.

5 Intermezzo 1

A small introduction into the exotic variants of
TEX’s ligature mechanism which probably many
users haven’t seen before. Additionally, the doc-
umentation in the METAFONTbook is very sparse.
In the following examples METAFONT’s notation is
used.



TUGboat, Volume 21 (2000), No. 2 115

base lower → base lower *

base upper → base upper *

base top → base toplow

base lower top → base lower toplow

base upper top → base upper top *

basedesc lower → basedesc lower low

basedesc upper → basedesc upper *

basedesc top → basedesc toplow

basedesc lower top → basedesc lower low toplow

basedesc upper top → basedesc upper top *

basedesclike lower → basedescless

basedesclike upper → basedesclike upper *

basedesclike top → basedesclike toplow

basedesclike lower top → basedescless lower toplow

basedesclike upper top → basedesclike upper top *

baseasc lower → baseasc lower *

baseasc upper → baseasc upper left

baseasc top → baseasc toplow-left

baseasc lower top → baseasc lower toplow-left

baseasc upper top → baseasc upper left topleft

Table 1: Context patterns for diacritical signs. Here, base refers to the union of the subclasses normal ,
indic, sign, sara am, and sara aa of base; upper is the union of the subclasses vowel and sign of upper .

base basesara am → base upper sign basesara aa

baseasc basesara am → baseasc upper sign left
basesara aa

base top basesara am → base upper sign top basesara aa

baseasc top basesara am → baseasc upper sign left
topleft basesara aa

Table 2: Context patterns for sara am Ó. Here, base denotes the union of subclasses normal , desc, and
desclike of base.

baseindic basesara aa → baseindic basesign

Table 3: Context patterns for ru Ä and lu Æ.



116 TUGboat, Volume 21 (2000), No. 2

The usual ligature action of two glyphs a and b

is the replacement of both glyphs with another
glyph c.

a b =: c

Another possibility is to retain the left or the
right original glyph (before resp. after the ligature)
or both.

a b |=: c a b =:| c a b |=:| c

The first rule creates ac, the second cb, and the
last acb. In all three cases, the current point after
appying the ligature rule is still at the first glyph
of the replaced glyphs, and TEX simply restarts
there to check ligatures (and kernings). A classical
example is

f f i → ff i → ffi

To advance the current point to the right, ap-
pend either > or >> (the latter is only possible if you
retain both input glyphs). Here are the remaining
four ligature rules.

a b |=:> c a b =:|> c

a b |=:|> c a b |=:|>> c

For Thai ligatures, the most often needed rule
is |=: (i.e., retain the left glyph and stay at the same
position before applying the next ligature rule).
Note that using |=:> instead is not a good idea since
this would prohibit kerning between the left glyph
and the ligature.

6 Ligature Rules

As just explained, TEX can only handle context
patterns of length 2, whereas Thai needs patterns of
length 3. It was an interesting challenge to find out
whether the problem can be solved with TEX’s some-
what restricted ligature rules — the gentle reader is
invited to find a solution by herself! There won’t
be any difficulties in understanding ligatures after-
wards.

The tables 4, 5, and 6 use the same conventions
as tables 1, 2, and 3, respectively. The current point
isn’t increased in any of the rules.

Most of the ligature rules can be derived easily
by handling the patterns sequentially (quite similar
to logic puzzles found in various magazines), but at
the end there remain two patterns which apparently
contradict.

base lower top → base lower toplow

baseasc lower top → baseasc lower toplow-left

After applying ligature rules for the first two
glyph classes it is necessary to handle the con-
text ‘lower top’, but depending on the previous
glyph class top must be replaced with topleft and
toplow-left , respectively. With a context pattern

length of 3 this would be easy to solve, but TEX
doesn’t have this feature. What to do?

The context ‘base lower top’ must be distin-
guished from ‘baseasc lower top’, i.e., two different
lower classes are needed depending on the previous
character since TEX is not able to forward informa-
tion from one ligature cycle to the next. The idea is
now to create an ‘alias class’, a class which behaves
identically to the original one. The glyphs in this
alias class are the same, but different glyph indices
resp. glyph names are assigned to it. A closer look
to table 4 shows that lower left isn’t a typo but the
alias class of lower .

7 Intermezzo 2

afm2tfm [6] uses two encoding vectors to create
metrics files for TEX. The first maps from the Type 1
font to the raw font (converting glyph names to
glyph indices):

/ps_to_raw [ ... /bar ... /bar ... ] def

The second encoding vector used for the virtual
font (which will contain the ligatures) maps from
glyph indices back to glyph names, so we can finally
assign different glyph names to identical glyphs:

/raw_to_vf [ ... /bar1 ... /bar ... ] def

bar1 and bar now both access the same glyph.
Unfortunately, afm2tfm can only use glyph

names for the virtual font which are already in the
base font, so some manual work is needed to over-
come this restriction. It is planned to reimplement
Thai ligatures using the fontinst package [2] which
doesn’t have this problem.

8 The Implementation

After solving the problem theoretically now the
practical implementation. Only some interesting
details are shown. Since it is not possible in afm2tfm

to collect glyphs in classes the number of all ligature
rules is quite big (464 in total). The file thai.enc,
part of the CJK package [3], contains the complete
solution. It also contains detailed installation in-
structions how to use afm2tfm.

All glyph names follow the Adobe Glyph List
(AGL) [1]. There are no predefined Adobe glyph
names for Thai, so the prefix ‘uni’ with attached
Unicode value will be used for all glyphs which
are encoded in Unicode. Example: The letter ko
kai ¡ gets the name uni0E01. Glyph variants are
identified by a postfix. Example: The left-shifted
glyph variant of the vowel sara uee × is called
uni0E37.left.

The following listing describes some of the lig-
atures, explaining its function.



TUGboat, Volume 21 (2000), No. 2 117

base top → base toplow

basedesc lower → basedesc lower low

basedesc top → basedesc toplow

basedesclike lower → basedescless lower

basedesclike top → basedesclike toplow

baseasc lower → baseasc lower left

baseasc upper → baseasc upper left

baseasc top → baseasc toplow-left

lower top → lower toplow

lower low top → lower low toplow

upper left top → upper left topleft

lower left top → lower left toplow-left

Table 4: Ligature rules for diacritical marks.

base basesara am → base upper sign basesara am

baseasc basesara am → baseasc upper sign left
basesara am

upper sign basesara am → upper sign basesara aa

upper sign left
basesara am → upper sign left

basesara aa

toplow basesara am → toplow top basesara am

toplow top → upper sign top

top basesara am → top basesara aa

toplow-left basesara am → toplow-left topleft basesara am

toplow-left topleft → upper sign left
topleft

topleft basesara am → topleft basesara aa

Table 5: Ligature rules for sara am Ó.

baseindic basesara aa → baseindic basesign

Table 6: Ligature rule for ru Ä and lu Æ.



118 TUGboat, Volume 21 (2000), No. 2

• Rule: base top → base toplow

This rule needs 225 ligatures (45 base glyphs
× 5 tone marks); this is almost 50% of all rules.

% LIGKERN uni0E01 uni0E48 |=: uni0E48.low ;

% LIGKERN uni0E02 uni0E48 |=: uni0E48.low ;

...

% LIGKERN uni0E01 uni0E49 |=: uni0E49.low ;

% LIGKERN uni0E02 uni0E49 |=: uni0E49.low ;

...

% LIGKERN uni0E41 uni0E4C |=: uni0E4C.low ;

% LIGKERN uni0E46 uni0E4C |=: uni0E4C.low ;

• Rule: basedesclike lower → basedescless lower

Here the left glyph will be replaced.

% LIGKERN uni0E0D uni0E38 =:| uni0E0D.descless ;

% LIGKERN uni0E10 uni0E38 =:| uni0E10.descless ;

...

• Rule: base basesara am →

base upper sign basesara am

The context pattern

a b → a c d

has to be transformed to the following for TEX
(as shown in table 5):

a b → a c b

c b → c d

The first ligature is of interest:

% LIGKERN uni0E01 uni0E33 |=:| uni0E4D ;

% LIGKERN uni0E02 uni0E33 |=:| uni0E4D ;

...

9 The Font Encoding

The real encoding of the virtual font is irrele-
vant for ligature rules because glyph names have
been used exclusively. Nevertheless, it has practi-
cal advantages to use TIS-620 as a font encoding
also, filling unused positions with glyph variants
(this is similar to the Unicode++ font encoding of
Ω [5]). Especially users of Plain TEX will benefit
if input and output encoding are identical. Care
must be taken in LATEX documents to avoid the
use of \uppercase and \lowercase commands so
that Thai letters aren’t modified due to incorrect
\lccode and \uccode values.

Table 7 shows the used encoding of the Thai
glyphs.

10 Problems

From a typographical point of view, all problems are
solved. To believe that it is now possible to simply
enter Thai for getting correct output is an error,
though. Two serious obstacles must be mastered
first: finding word breaks and insertion of inter-
character glue.

Words in Thai are not separated with spaces,
and they aren’t hyphenated either.1 A space, usu-
ally much bigger than a space for the Latin script,
has a similar function to an em-dash or to a semi-
colon; its primary use is to structure a sentence.

Correct recognition of words in Thai is a very
complex problem which can be solved without errors
by sentence analysis only. The CJK package uses a
relatively simple algorithm developed by Vuthichai
Ampornaramveth ÇØ²ÔªÑÂ ÍÑÁ¾ÃÍÃ�ÒÁàÇ·Â� which basi-
cally searches for the longest words in a dictionary
(this is implemented as a Lisp package for Emacs—
it is assumed that the next major version of Emacs
will contain this module directly). Due to missing
context analysis it can’t guarantee error-free results
in all cases.

Another complication is that Thai tends to
very long words, making the search for good break
points in justified paragraphs difficult. A legitimate
solution is to moderately apply some intercharacter
glue (cf. figure 1). An even better solution would
be the use of Multiple Master fonts or similar fonts
to enable small variations of the typeface. Newer
versions of pdfTEX have experimental support for
stretching and squeezing of fonts [7].

11 Thai Support In The CJK Package

The results presented in this paper will be part
of the next version of the CJK package (daily
snapshots of the development archive are avail-
able from ftp://ftp.ffii.org/pub/cjk/devel/

cjk-current.tar.gz). Included are (in addition to
thai.enc and other auxiliary files) encoding, met-
rics, and font definition files for the freely available
Thai font families DBThai and Norasi [4]. The
latter uses glyphs created by Yannis Haralamous
and Tereza Tranaka and are still under development;
all Thai examples in this article have been typeset
with it.

Intercharacter glue and word break points will
be inserted automatically by the Emacs interface
cjk-enc. This package could be considered as a
generalized inputenc package which is able to handle
multiple character sets in Emacs simultaneously,
and which does correct translation to LATEX trans-
parently to the user.

12 Acknowledgements

Most of the development work on Thai ligatures
has been done during a two-week research visit in
Tsukuba (Japan) on invitation of the Electrotechni-
cal Laboratory (ETL).

1 For narrow-column printing, hyphenation is used, but it

isn’t considered as good typography.



TUGboat, Volume 21 (2000), No. 2 119

0 1 2 3 4 5 6 7

20 Ø Ù Ú � � � � �
21 � � � � � î �
22 � � � � � � �
23 � � � � � �
24 ¡ ¢ £ ¤ ¥ ¦ §
25 ¨ © ª « ¬ ­ ® ¯
26 ° ± ² ³ ´ µ ¶ ·
27 ¸ ¹ º » ¼ ½ ¾ ¿
30 À Á Â Ã Ä Å Æ Ç
31 È É Ê Ë Ì Í Î Ï
32 Ð Ñ Ò Ó Ô Õ Ö ×
33 Ø Ù Ú ‘ ’ “ ” ß
34 à á â ã ä å æ ç
35 è é ê ë ì í î ï
36 ð ñ ò ó ô õ ö ÷
37 ø ù ú û ü ý þ

Table 7: The Thai encoding of the CJK package. Range 241–373 (0xA1–0xFB) without 333–336
(0xDB–0xDE) is TIS-620, the rest are glyph variants. 241–316 are consonants. 320–332, 340–344, and
347 are vowels. 337 is the Thai currency symbol, Baht. 350–353 are tone marks. 360–371 are the digits 0
to 9. The alias class to lower (at position 330-332), lower left , is at position 330–332.



120 TUGboat, Volume 21 (2000), No. 2

ÃÒÂ¡ÒÃ FAQ ¹ÕéÊÃ�Ò§¢Öé¹à¾×èÍÊÃØ»¤Ó¶ÒÁ·Õè¶ÒÁ¡Ñ¹º�ÍÂ¤ÃÑé§áÅÐ¤Ó
µÍº¤Ó¶ÒÁã¹ÃÙ»áºº·ÕÊÐ´Ç¡. â¤Ã§ÊÃ�Ò§¢Í§ÃÒÂ¡ÒÃ FAQ ¹Õéà»ÅÕèÂ¹ä
»ÁÒ¡µÑé§áµ�ÃØ�¹·ÕèáÅ�Ç. Ù́ÃÒÂÅÐàÍÕÂ´ÊÓËÃÑºâ¤Ã§ÊÃ�Ò§ãËÁ�ä �́¨Ò¡ª�Ç§
“â¤Ã§ÊÃ�Ò§áÅÐÇÔ¸Õ¡ÒÃÍ�Ò¹ FAQ.”

ÃÒÂ¡ÒÃ FAQ ¹ÕéÊÃ�Ò§¢Öé¹à¾×èÍÊÃØ»¤Ó¶ÒÁ·Õè¶ÒÁ¡Ñ¹º�ÍÂ¤ÃÑé§áÅÐ¤Ó
µÍº¤Ó¶ÒÁã¹ÃÙ»áºº·ÕÊÐ´Ç¡. â¤Ã§ÊÃ�Ò§¢Í§ÃÒÂ¡ÒÃ FAQ ¹Õéà»ÅÕèÂ¹ä
»ÁÒ¡µÑé§áµ�ÃØ�¹·ÕèáÅ�Ç. Ù́ÃÒÂÅÐàÍÕÂ´ÊÓËÃÑºâ¤Ã§ÊÃ�Ò§ãËÁ�ä �́¨Ò¡ª�Ç§
“â¤Ã§ÊÃ�Ò§áÅÐÇÔ¸Õ¡ÒÃÍ�Ò¹ FAQ.”

Figure 1: The same text, with and without intercharacter glue. To suppress warnings and error messages
for the above variant, \tolerance had to be set to 8000 and \badness to 10000. \baselinestretch has
the value 1.2.

References

[1] The Adobe Glyph List. http:

//partners.adobe.com/asn/developer/

typeforum/unicodegn.html.

[2] Allan Jeffrey et al. The fontinst package.
Available from CTAN and its mirrors, e.g.
ftp://ftp.dante.de/pub/tex/fonts/

utilities/fontinst.

[3] Werner Lemberg. The CJK package.
http://cjk.ffii.org.

[4] Surapant Meknavin and Theppitak
Karoonboonyanan. The thailatex package. ftp:
//opensource.thai.net/pub/linux-tle/

updates/SOURCES/thailatex-0.2.1.tar.gz.
The implementation for Thai in this package
is incompatible to the one described in this
article. For this reason, the Babel module of
the CJK package is called ‘thaicjk’ and not
‘thai’.

[5] John Plaice and Yannis Haralambous. The
Ω system. http://www.gutenberg.eu.org/

omega. Almost all modern TEX distributions
contain support for Ω.

[6] Tomas Rokicki. The afm2tfm program. Part
of the dvips package which is available from
virtually all TEX distributions.

[7] Han The Thanh. pdfTEX. ftp:

//ftp.cstug.cz/pub/tex/local/cstug/

thanh/pdftex/latest. pdfTEX is, similar
to Ω, already part of most modern TEX
distributions. The given URL specifies the
primary address of pdfTEX since it still in
development, sometimes with incompatible
changes.

[8] The Unicode Standard. http:

//www.unicode.org.

⋄ Werner Lemberg

Kl. Beurhausstr. 1

44137 Dortmund

wl@gnu.org


