
350 TUGboat, Volume 20 (1999), No. 4

Software & Tools

The Paper Path: XML to paper using
TEXML

Brian E. Travis

Abstract

So, you’ve gotten your valuable information assets de-
scribed in terms of XML schemas (either DTD or some
other form of schema), and you’ve taken the painful
step of converting your information from word processors

and typesetting files into XML that adheres to your new
schema. Now what?

This article describes a path that has many pieces
that must fit together exactly. That’s the down-side.
The up-side, however, is a very powerful XML-to-paper
path that will not cost you a penny, and runs on any
platform that runs Java.

−− ∗ −−

So, you’ve gotten your valuable information assets
described in terms of XML schemas (either DTD

or some other form of schema), and you’ve taken
the painful step of converting your information from
word processors and typesetting files into XML that
adheres to your new schema. Now what?

This article describes a path that has many
pieces that must fit together exactly. That’s the
down-side. The up-side, however, is a very powerful
XML-to-paper path that will not cost you a penny,
and runs on any platform that runs Java.

As part of the information analysis phase of
your project, you probably went through the task
of looking for information hidden in your existing
documents. This meant taking text that was in
italic, for example, and tagging it as an emphasized
phrase, foreign term, bibliographic reference, or le-
gal citation. Your new XML-tagged content is rich in
self-describing information objects, but contains no
information about how to format those objects. For
example, indicating to a formatting engine that a
string of text is to be rendered in an italic font causes
something to happen. That is, the formatting engine
changes the font characteristics for the duration of
the italicized phrase. However, tell a formatting
engine to render something in “foreign phrase”, and
it will probably have a problem.

That is because there is an important piece
missing. Sure, we know it is a phrase expressed in
a language other than the default language being
used in the current document, but we don’t have
information about how it is to be rendered on paper.
We need some kind of mapping to translate from
“foreign phrase” to “italic”. What’s more, we may
even need to do more processing on the object. For
example, we might want to collect all foreign phrases
in the document, along with their translations in
an appendix. We have even more opportunities for
further processing when rendering the information
in electronic form. For example, when creating an
HTML rendering of the document, we may want our
foreign phrase to be underlined and linked to a pop-
up window with the translation. Or, we may want
to build a system that causes a speech synthesizer
to speak the word in its native tongue.

TUGboat, Volume 20 (1999), No. 4 351

This is only one example of processing a single
element in many different ways based on the desires
for information delivery.

So, how do we make the leap from “foreign
phrase” to an italicized string of text with the
translation collected in an appendix? Add to that
the other several dozen elements that need to be
translated into some kind of deliverable.

Pagination Nation

The first thing to consider when putting information
on paper is the page itself. This process is called
“pagination”. Everything in your content must
be rendered somehow on a two-dimensional frame
bounded by the physics of the real world. A page
contains a body area where the rendered text sits,
plus a margin area where navigational information
goes.

In the body of a page, there are blocks of
text that have been rendered using centuries-old
techniques. First, each line is set with text until
it reaches an acceptable length, at which point the
line is ended and the next word starts a new line.
If the word doesn’t reach the acceptable range, and
the next word causes the right margin to be overrun,
the last word must be broken at a place that follows
the rules of hyphenation.

Another task of the pagination program is
making sure each line ends at the same place. This
is called “justification”, and is preferred by some
designers to make the page look symmetrical. This
requires the typesetter to calculate the space left
over at the end of a line, divide it by the number of
spaces between words of that line, and add this new
increment to each space.

These two processes are lumped together in the
typesetting lingo as “hyphenation and justification”,
or “H&J”. H&J is a basic requisite of any typesetting
program, and all programs, from free to $100K+
systems provide this service. Higher-end typesetters
will also do a sophisticated analysis of the page after
it is set in memory. One thing such typesetters
look for is spaces between words that line up from
one line to the next. Putting too many of these
spaces in a row vertically causes an effect known as
“rivers”, that might be distracting to the reader.
Another check these high-end devices perform is
hyphenation analysis. Some page designers don’t
like to see more than two hyphenated lines in a
row. In order to avoid this, the typesetter may
need to reset the page many different times, using
different word- and character-spacing values in order
to eliminate multiple hyphens. Speaking of hyphens,
some typesetters check to make sure there is no
hyphenation between pages or columns. This is

something my third-grade grammar teacher, Miss
Blankenship, would not tolerate.

Once the body area of a page is set, certain
navigational features are placed on the page. The
most common is the page number. The typesetter
must keep track of the page number, and provide
an incremental indicator on each page. This is more
difficult than it looks, once you consider the many
different ways pages can be numbered.

Running headers and running footers provide
further navigational aids to the reader, and give the
document designer a place to show off. Running
headers usually provide some kind of indication of
the title of the chapter, and maybe even the name
of the document. Another type of running head
is called a “dictionary header”. This is a header
that changes depending on the contents of the page
itself. The dictionary header is used in dictionaries,
encyclopedias, and telephone books where the left
header indicates the first entry on the page and
the right header indicates the last entry on the
page. This processing can be time-consuming, but
leads to a better product to which consumers are
accustomed.

All of these formatting conventions have been
developed over a thousand years of page creation.
We all grew up learning to navigate our way around
a page, so these conventions should be followed to
provide your users with a familiar interface.

DSSSL and XSL

First, a little background. All of the techniques
described above are oriented toward the delivery
of information on paper. However, your XML

documents are probably tagged according to each
element’s meaning, not whether it should be itali-
cized or placed in a dictionary header. We need to
map the structure to a page layout. This requires
a lot of decisions, which can be expressed in the
language of the typesetting system.

Each typesetting system, however, has a dif-
ferent way of expressing such information. An ISO

standard called DSSSL (Document Style Semantic
Specification Language) was designed to normalize
all of the rich formatting capabilities into a single
syntax. The goal was to create a non-typesetter-
specific formatting language that could be trans-
lated to any typesetter’s code. The benefits of this
approach are twofold: first, a designer needn’t know
the syntax specifics of a particular typesetting sys-
tem to create pages using that typesetter. Second,
creating stylesheets in a non-vendor-specific syntax
allows a company to change their typesetters at will,
without the costly process of converting from one
syntax to another.

352 TUGboat, Volume 20 (1999), No. 4

DSSSL took ten years to create, and was finally
ratified as an international standard just about the
time that XML was gaining momentum. DSSSL is
based on SGML, and was never really implemented
because software vendors were looking at XML as
a replacement for SGML. The need for a vendor-
neutral typesetting system was still there, however,
so the DSSSL folks started work on a specification
called XSL, the Extensible Stylesheet Language.
XSL was intended to achieve the same goals as
DSSSL, except it was expressed in XML syntax.

XSL uses a transformation process, which con-
verts your XML document into another XML doc-
ument expressed as a set of “formatting objects”.
These formatting objects have element names like
“block” and “character”, with attribute values like
“bold”, and “green”. This formatting object XML

document is exposed to the second XSL step, which
translates the formatting object document into the
codes of a particular typesetter.

This model assures that a designer need only
be concerned with a single way of formatting a
page (the formatting object model), and leaves
the intricacies of the typesetter to each typesetter
vendor. The biggest problem with XSL is that it is
very difficult to express the full range of formatting
options in a single, generic specification. The DSSSL

people took ten years to do it.
XSL is still being developed, but has spawned

another specification called “XSLT” (see Bob
DuCharme’s “XML Linking and Styling: Standards
Status Report”, <TAG> August, 1999). XSLT is
only the first half of the XSL process. XSLT is
designed to provide a generic tree-to-tree transfor-
mation of one document structure to another. Orig-
inally, as I mentioned, this resulting structure was
the one defined by the formatting object schema.
However, XSLT has been generalized to a point
where it can create any arbitrary XML structure,
and even non-XML structures. XSLT is truly a
generic XML processing language.

TEX and LATEX

Now that we have a way of getting our XML doc-
uments into some other form, how do we produce
pages? Simple, use a pagination program. There
are many different pagination systems available
for virtually any price you want to pay. In the
1980s, a computer science professor named Donald
Knuth at Stanford University was working on a
set of textbooks to describe The Art of Computer
Programming. Knuth needed a more sophisticated
way of paginating his document than the current
state-of-the-art paginators were able to do. At that

time, scholarly works were being formatted using
a rudimentary typesetting system called “troff”.
Knuth was a student of the art of typesetting, and
felt that a computer could be taught most of the
mechanics of expressing that art. So, he embarked
on an effort called TEX, which he describes in his
book The TEXbook.

Knuth used TEX to typeset his seminal multi-
volume set of computer science textbooks, which
has become the bible of computer science academia.
Knuth also made the source of his new typesetting
language available to the world to use and improve
upon long before the concept of “open source”
grabbed headlines. It didn’t take long before TEX
became the syntax used to create scholarly and
technical journals. The TEX mathematical syntax
is very powerful, and is used to create technical pa-
pers with an accuracy unrivaled by any commercial
typesetting system.

TEX is a very powerful typesetting language,
with what I think is the best H&J logic available
anywhere at any price. TEX produces beautiful
pages and, because of the many add-ons that people
have created over the years, has great flexibility.

Of course, you need to pay for this power and
flexibility. The cost is learning the terse syntax and
understanding all of the different settings and the
way pages are created.

One of the most successful add-ons to TEX is a
package called LATEX, which provides an easier-to-
use interface to the powerful TEX language. While
TEX has commands for setting the font style to bold
and left-justifying paragraphs, LATEX has directives
that allow you to indicate the title of a document,
or the body of a section. For example, LATEX
uses the \section and \subsection commands
to indicate where such breaks are made. What
happens, however, if you call your structural objects
“chapter”, or “lesson plan” or “appendix”? And
what if your structure doesn’t map directly to those
hard-coded into the LATEX spec? If this is the case,
you need an intermediary translation to indicate the
complex structure-to-structure translation.

Alphabet Soup

IBM, through an effort called AlphaWorks, is work-
ing on a number of projects to support XML and
related standards. The AlphaWorks site makes
available an XML parser, written in Java. On top of
this, they provide, under their Lotus brand name,
a product called LotusXSL. LotusXSL is an XSL

processor that uses the transformation part of XSL

(XSLT) to transform one type of XML to another.

TUGboat, Volume 20 (1999), No. 4 353

Figure 1: Paper chase: XML to Paper using
XML, XSL and TEX

Lotus engineers have created an XML schema
that is designed to express the structure of a paper
document in terms of the LATEX markup language.
They have also created a processor to read this XML

document and transform it to LATEX codes.
The path I am describing has many pieces that

must fit together exactly. That’s the down-side. The
up-side, however, is a very powerful XML-to-paper
path that will not cost you a penny, and runs on any
platform that runs Java.

The map is shown in Figure 1.
The XML document describes our information

in terms of the information itself, not in terms of
some eventual delivery platform. Therefore, we need
to run a transformation step that translates this into
some kind of format that can be interpreted as a two-
dimensional, static form to be rendered to paper.

Translating directly to TEX is difficult because
of the complexity of the TEX typesetting language.
One of the problems is that TEX uses the “<” and
“&” characters to mean certain things. These char-
acters are sacred to the XML parser, and shouldn’t
be used because they might end up being interpreted
as markup characters.

One solution, then, is to transform our XML

document, which describes our information struc-
ture, into another XML document that describes the
desired formatting characteristics of the information
contained therein.

The TEXML system does this by defining an
XML document that provides the full capabilities of
the TEX typesetting language. Actually, the TEXML

system creates documents that can be expressed in
LATEX, the TEX add-on that is used to provide a
high-level interface to TEX.

Structure to Pages

There are many steps involved. In this article, we
will follow a fairly simple document through the
steps required to go from XML to paper.
1. Create a directory to contain all pro-

grams and data.
Select some directory anywhere on your ma-
chine. I will describe all processes in relation
to that root. You should be able to move the
contents of the directory anywhere using the
relative paths explained here.

2. Load the IBM4J parser.
Go to http://www.alphaworks.ibm.com/tech/
XML4J and download IBM’s parser written in
Java. The examples in this article use version
2.0.15 of IBM’s parser. Extract the files to the
xml4j_2_0_15 directory under the directory set
above. If you are using a different version,
you might need to change some environment
variables and batch-file commands.

3. Load the Lotus XSL processor.
Go to http://www.alphaworks.ibm.com/tech/
LotusXSL and download the Lotus XSL proces-
sor. The examples in this article use version
0.18.5 of the XSL processor. Extract the files
to the lotusxsl_0_18_5 directory under the
directory set above. If you are using a different
version, you might need to change some envi-
ronment variables and batch-file commands.

4. Load the TEXML Processor.
Go to http://www.alphaworks.ibm.com/tech/
texml and download the IBM TEXML proces-
sor. The examples in this article use version 1.4
of the TEXML processor. Extract the files to
the TeXML_V1R4 directory under the directory
set above. If you are using a different version,
you might need to change some environment
variables and batch-file commands.

5. Load a TEX Processor.
There are many excellent TEX processors avail-
able for free or by commercial license. Check
the TEX Users Group at http://www.tug.org
for a list of pointers to sites with TEX implemen-
tations. I used the MiKTEX implementation for
this article, which can be found at http://www.
miktex.de/. Most TEX implementations come
with the TEX processor, which will also read
LATEX files. A TEX processor creates a device-
independent (DVI) output file. Most implemen-
tations also come with a program for converting
the DVI to printable forms, like PostScript. The
batch files in this article assume that tex, latex,
and dvi2ps are in the system path, and that

354 TUGboat, Volume 20 (1999), No. 4

there is a program registered to view DVI files.
You might need to change some environment
variables and batch-file commands.

6. Select an XML document as a source.
Create or find an XML document that is suit-
able to transformation. XSL provides a power-
ful engine to transform from any XML structure
to any other. For this example, we picked
a straightforward example. Ours is shown in
Figure 2.

<?xml version="1.0"?>

<bill-o-rights>

<section>

<title>Amendment I (1791)</title>

<para>Congress <emph>shall make no law</emph>

respecting an establishment of religion, or

prohibiting the free exercise thereof; or

abridging the freedom of speech, or of the

press; or the right of the people peaceably

to assemble, and to petition the government

for a redress of grievances.</para>

</section>

<section>

<title>Amendment II (1791)</title>

<para>A well regulated militia, <emph>being

... {rest of bill of rights here} ...

others</emph> retained by the people.

</para>

</section>

<section>

<title>Amendment X (1791)</title>

<para>The powers not delegated to the United

States by the Constitution, nor prohibited by

it to the states, <emph>are reserved to the

states respectively, or to the people</emph>.

</para>

</section>

</bill-o-rights>

Figure 2: XML document to be processed

7. Write an XSL style sheet.
This document is processed using an XSL style-
sheet that transforms it into an XML document
adhering to the TEXML schema. Instead of
using TEX directly, this system uses LATEX,
because it has a higher-level interface. LATEX
requires the creation of environments (env),
commands (cmd), and parameters (parm). The
XSL stylesheet identifies elements in the input
XML document and outputs an XML document
that consists of these env, cmd, and parm
elements, plus some others to create the output

<?xml version="1.0"?>

<xsl:stylesheet

version="1.0"

xmlns:xsl="http://www.w3.org/XSL/Transform/1.0">

<xsl:output method="xml" indent="yes"

encoding="UTF-8" xml-declaration="yes"/>

<xsl:template match="/">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="bill-o-rights">

<TeXML>

<cmd name="documentclass">

<parm>article</parm>

</cmd>

<cmd name="title">

<parm>U.S. Bill of Rights</parm>

</cmd>

<env name="document">

<cmd name="date">

<parm>1791</parm>

</cmd>

<cmd name="maketitle"/>

<xsl:apply-templates/>

</env>

</TeXML>

</xsl:template>

<xsl:template match="section">

<cmd name="section*">

<parm>

<xsl:value-of select="title"/>

</parm>

</cmd>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="section/title"/>

<xsl:template match="para">

<xsl:apply-templates/>

<cmd name="par"/>

</xsl:template>

<xsl:template match="emph">

<cmd name="emph">

<parm>

<xsl:apply-templates/>

</parm>

</cmd>

</xsl:template>

</xsl:stylesheet>

Figure 3: XSL Stylesheet to create TEXML

output

TUGboat, Volume 20 (1999), No. 4 355

<DIR> {\LotusXSL}_0_18_5

<DIR> TeXML_V1R4

<DIR> xml4j_2_0_15

4,486 bill-o-rights.xml

1,356 BOR2TeXML.xsl

285 xml2tex.bat

Figure 4: Directory structure

java -cp xml4j_2_0_15\xml4j.jar;

lotusxsl_0_18_5\lotusxsl.jar

com.lotus.xsl.Process -in

%1.xml -xsl %2.xsl -out %1.texml

java -cp TeXML_v1r4\TeXML.jar;

xml4j_2_0_15\xml4j.jar

com.ibm.texml.TeXMLatte

%1.texml %1.tex

latex %1

dvips %1

start %1.dvi

Figure 5: Commands to run all processes

document. The LATEX language is described
by the inventor, Leslie Lamport, in his book,
LATEX: A Documentation Preparation System
User’s Guide and Reference Manual.
Our XSL stylesheet is shown in Figure 3.
The output from the XSL transform is an

XML document that expresses the contents
of the document as a series of environments,
commands, and parameters, along with the text
that is to be displayed according to the param-
eters. A program called TEXMLatte processes
this XML document and creates a TEX input
file. This TEX file is processed by the TEX
processor, which creates a DVI file. The DVI

file is transformed into a PostScript document
with the DVI2PS program, and voila!, you’ve
got paper!

8. Process your files.
As we have seen above, several processes need
to be executed to go from your XML to paper
using the TEX path. You should create a batch
file or shell script that executes each one in
turn to make the process automated. Using
the directory structure shown in Figure 4, your
commands look like those shown in Figure 5.
Notice that all of the paths are relative to the

directory that contains directory structures for
each component. Notice, also, that I have in-
cluded the jarfiles directly in the java call using
the -cp (classpath) command-line argument.
If you have these in your CLASSPATH environ-

<figure>
<verbatim>
<?xml version="1.0" encoding="UTF-8"?>
<TeXML>
<cmd name="documentclass">
<parm>article</parm>

</cmd>
<cmd name="title">
<parm>U.S. Bill of Rights</parm>

</cmd>
<env name="document">
<cmd name="date">
<parm>1791</parm>

</cmd>
<cmd name="maketitle"/>
<cmd name="section*">
<parm>Amendment I (1791)</parm>

</cmd>
Congress
<cmd name="emph">
<parm>shall make no law</parm>

</cmd>
respecting an establishment of
religion, or prohibiting the free
exercise thereof; or abridging the
freedom of speech, or of the press;
or the right of the people peaceably
to assemble, and to petition the
government for a redress of grievances.
<cmd name="par"/>
<cmd name="section*">
<parm>Amendment II (1791)</parm>

</cmd>
A well regulated militia,
<cmd name="emph">
<parm>being necessary to the security
of a free state</parm>

</cmd>
, the right of the people to keep and
bear arms, shall not be infringed.
<cmd name="par"/>
...

</env>
</TeXML>

Figure 6: TEXML document

ment variable, you don’t need to indicate them
here.

9. Check the output.
When the XSL stylesheet shown here is run
against the XML document shown, it produces
the TEXML file shown in Figure 6. When
this document is processed with the TEXMLatte

356 TUGboat, Volume 20 (1999), No. 4

\def\TeXMLmath#1{\ifmmode#1{}\else$#1{}$\fi}

\def\TeXMLnomath#1{\ifmmode\hbox{#1{}}\else#1{}\fi}

\documentclass{article}

\title{U.S. Bill of Rights}

\begin{document}

\date{1791}

\maketitle

\section*{Amendment I (1791)}

Congress \emph{shall make no law} respecting an

establishment of religion, or prohibiting the

free exercise thereof; or abridging the freedom

of speech, or of the press; or the right of the

people peaceably to assemble, and to petition

the government for a redress of grievances.\par

\section*{Amendment II (1791)} A well regulated

militia, \emph{being necessary to the security

of a free state}, the right of the people to

keep and bear arms, shall not be infringed.

\par

...

\end{document}

Figure 7: LATEX document

Figure 8: The final document (shown in YAP DVI

Viewer)

program, the result is a LATEX file shown in
Figure 7. After the LATEX file is processed with
TEX, it can be viewed using a DVI viewer, as
shown in Figure 8. <end/>

� Brian E. Travis
btravis@architag.com

