
A Web-Based Submission System for Meeting Abstracts

Hu Wang
American Institute of Physics
1NO1
2 Huntington Quadrangle
Melville, NY 11747
hwang@aip.org

Abstract

As one of the services provided to AIP’s Member Societies, we publish program
books and abstract books for meetings sponsored by the societies. In this paper,
we describe a Web-based client-server abstract submission system. It uses HTML

forms to gather and validate user input of abstracts and related information, pro-
vide on-line proof before officially submitting, and store the input in LATEX files
and a database. From the publishing production’s point of view, the major bene-
fit of such a system is the greatly improved quality of well-structured submissions,
which makes it possible to streamline the whole production cycle. Some possibil-
ities with its integration into a database publishing system are briefly discussed
afterwards.

Introduction

The American Institute of Physics (AIP) publishes
program books and abstract books for some of its
member societies’ meetings. The last few years have
seen many changes in the ways some societies’ meet-
ing abstracts are submitted and published.

At the beginning, hardcopy abstracts prepared
in various text formatting software were mailed in
and published with the cut-and-paste method. It
was non-digital, inefficient, and the resulting quality
of finished products was understandably poor.

Then, with the popularity of LATEX in scien-
tific communities and the widespread availability of
email, came email-based electronic submissions. Au-
thors would download an appropriate LATEX tem-
plate file that included predefined tags (LATEX com-
mands and environments), fill it out, and email it to
a designated address. A program would collect the
submissions and save them as individual LATEX files.

The email approach had the potential advan-
tages that all files were standardized, well tagged,
and the publishing process could be highly auto-
mated. Unfortunately, since there are still many
authors who are not familiar with or do not have
LATEX, many submissions had to be manually cor-
rected for syntax errors by the production staff, which
was time consuming and sometimes impractical. This
often led to syntactically invalid submissions, which
in turn prohibited auto-processing. Another draw-
back was that the process was not interactive. As
for authors, those without LATEX could not proof-

read their abstracts, and figures could not be easily
submitted with the abstracts.

We needed to develop a system that could take
advantage of the potential strength of the email-
based method while avoiding its shortcomings, name-
ly, the non-interactiveness and lack of control on the
quality of submissions.

A Web-based system

As the World Wide Web spreads around the world
(for some society meetings, over one third of the
contributed papers come from abroad), it lends itself
naturally to a solution of our problems.

We have developed an automated, Web-based,
client-server meeting abstract submission system
with the following features:
• interactive user interfaces via HTML forms
• on-line LATEX help info
• choice of LATEX or non-LATEX entry methods
• uploading figures with abstracts
• on-line proof viewing and syntax validation
• editable abstracts
• easy integration with publishing phases

Regardless of the input method chosen by the
authors, each submission results in a well-tagged
LATEX file that is free of syntax errors, a valid HTML

file into which the input data is injected, and up-
dated database records.

LATEX is used as the ultimate file format for
the abstract collecting phase for two reasons: it fits

TUGboat, Volume 20 (1999), No. 3 —Proceedings of the 1999 Annual Meeting 237

Hu Wang

well with our existing production systems and it is
a widely accepted standard for publishing scientific
and technical documents. In fact, the on-line proof
is produced by LATEX, along with dvips, and some
PostScript-to-gif conversion program.

System requirements

Client: Internet connection and a conventional Web
browser.
Server: Web server, LATEX, dvips, Image Alchemy
or ps2gif, GhostScript, and CGI scripts.

In the following section, we describe the imple-
mentation of this system.

Implementation

A user accesses the system by using a Web browser
to connect to a designated URL and entering the
meeting password included in the calls for paper dis-
tributed to the society members.

Once logged in, the user indicates whether he
or she is entering a new abstract or wishes to edit a
previously submitted abstract by clicking on the ap-
propriate radio button. The former choice prompts
the author to indicate, via radio buttons, the total
number of mailing addresses needed for all the au-
thors of the abstract and the total number of figures
(up to 2) in the abstract. An appropriate template
is then displayed for the user to fill out. The latter
choice requires the user to enter the abstract num-
ber and the PIN that were both assigned and emailed
to the author by the system when the abstract was
initially submitted. In this case, their filled-out tem-
plate will be shown for editing. Authors who forget
their abstracts numbers and PINs can query the sys-
tem and the results will be emailed back to them.

Template. One of the key components of the sys-
tem is the Web template. The elements from this
HTML form are captured for insertion into the data-
base and are also tagged for the LATEX file that
results from completing and submitting the tem-
plate form.

To accommodate users who are unfamiliar with
or do not need LATEX, the top of the template has
two radio buttons labeled “Straight Text” (i.e. non-
LATEX) and “LATEX”, respectively, for choosing the
method of entry. With the former method, no LATEX
commands are recognized because everything en-
tered will be treated literally, which means it is im-
possible to choose fonts or set math expressions.
The usual LATEX commands are allowed with the
LATEX entry method —except for \thanks, \footnote,
\begin{center} and the like.

The template has hyperlinks to sample inputs
for both entry methods, and to LATEX help on how to
input symbols and mathematical expressions. When
clicked, these links open separate windows for easy
reference.

The following form elements are used in the
template:

• radio buttons for choosing the entry method
• presenting author’s name
• corresponding author’s name, address, country,

phone, email address, fax
• title and short title
• author’s name and address
• <textarea> for abstract body
• file selection fields for uploading figures (if any)
• figure caption (if any)
• topics of paper
• requested presentation method
• hidden fields

Hidden fields are for passing state variables informa-
tion from one invocation of a CGI script to the next.
They are embedded in the template to identify the
client session, to indicate if it’s a new or previously
submitted abstract, as well as the number of figures
and author groups in the abstract.

CGI scripts. Processing of submitted forms is han-
dled by CGI scripts, which are programs communi-
cating (via the Web server) with clients. The essen-
tial scripts are those that deal with filled templates
and proof screens. They perform the following tasks
sequentially:

1. Validate the form and figures (PostScript or Tiff
only, if any). This checks if any required input
fields are empty, if illegal input is found (e.g.
no TEX or LATEX commands are allowed in the
Straight Text entry method, \thanks is not al-
lowed in either method, and so on.), and if the
uploaded figure is a valid PostScript file (the
PostScript language interpreter Ghostscript is
used for this purpose) or a Tiff file.

Any input that fails to pass the validation
will cause an appropriate error message to be
displayed.

Here, JavaScript, which is faster on the client
side, can be used for form validation also.

2. Build a temporary LATEX file and process it. If
there is no syntax error, run dvips and Alchemy
to generate the gif image and display the im-
age to the user for proof. If there are syntax
errors, extract the error message from the log

238 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

A Web-Based Submission System for Meeting Abstracts

file, display it, and ask the user to go back to
the template screen and fix the LATEX error.

We choose the gif format for proofing because
it is accessible without requiring browser plug-
ins or help applications. Of course, the PDF

format may be used for proofing, which requires
the Adobe Acrobat Reader for viewing.

In order to show the user the dynamically
generated gif, we must prevent browser caching
from displaying the old gif. This can be done by
proper HTTP headers such as ‘Cache-Control:
no-cache’ or ‘Cache-Control: no-store’. The gif
file for a typical abstract is about 20Kb in size.

Building LATEX files via the Straight Text meth-
od warrants a little note here, as whatever the
user has entered will be treated as literal. The
CGI script must handle the following TEX spe-
cial characters carefully to properly escape them:

$ % & _ { } ~ ^ \ < > |

For example, author’s input < should be con-
verted to $<$ in the LATEX file; otherwise, un-
expected output will result even though LATEX
does not complain.

It’s rather straightforward to build LATEX files
with the LATEX entry method — just insert the
author input data into the arguments of appro-
priate LATEX control sequences. Not surpris-
ingly, the LATEX file’s tags correspond nicely
to the template’s elements. For instance, these
tags are used:

• \pauthor

• \cauthor

• \caddress

• \cphone

• \cemailaddr

• \cfax

• \title

• \author

• \authaddress

• \begin{abstract}

• \caption

• \category

• \pmethod

Let us now demonstrate the relationship be-
tween author input in each entry method and
the resulting LATEX file.

The Straight Text method. In this sample,
the user faces a screen with the prompt “Title”
on the left and a blank box. The title text is
input literally, like this:

Title: Straight Text Mode #$% Title

which will be converted into the following in the
resulting LATEX file:

\title{Straight Text Mode \#\$\% Title}

Notice that the literal input of the special char-
acters #$% has been correctly converted with
the addition of backslashes.

The LATEX method. By selecting this method,
authors can directly input LATEX code. In this
sample, the author is facing a similar screen,
with “Presenting Author” as the prompt to the
left of the boxed area for the name:

First name: P\’al Last name: Kn\"oll
will result in this statement in the LATEX file:

\pauthor{P\’al}{Kn\"oll}

3. Build a temporary HTML file into which the
user-input data is inserted. This file will be
needed if the user wants to edit a previously
submitted abstract later on.

Here, care is needed too. First, every " char-
acter entered by the user must be replaced in
the resulting HTML file by the entitized ver-
sion, i.e. by " so that it does not inter-
fere with the HTML form’s element value de-
limiter ". Second, any scrolling list element in
the template must be placed in the HTML file
and a SELECTED attribute inserted inside the
<option> that has been selected by the user.

For instance, the previous example of enter-
ing the presenting author name would yield the
following lines in the HTML file:

First name:<input name=p_fname
type=text value="P\’al">

Last name:<input name=p_lname
type=text value="Kn\"oll">

Please note, when displaying an HTML file, the
browser replaces all entity references such as
the above one with the corresponding charac-
ters. Therefore, the CGI script that processes
the submitted form does not need to de-entitize
any form data.

4. Insert relevant information into the database.
This may be needed later for searching, report-
ing, mailing label printing, etc.

After the LATEX source file is error-free and
a proof of its output is displayed, the user may
decide to finally submit it to the system or may
go back to the template to massage it further

TUGboat, Volume 20 (1999), No. 3 —Proceedings of the 1999 Annual Meeting 239

Hu Wang

and then go through the proof and final sub-
mission cycle again.

5. Final submit. For a new submission, assign a
new sequential abstract number; for a re-sub-
mission, extract its abstract number from the
corresponding hidden field. In either case, re-
name the source file, the HTML file, and any
figure files to the abstract number with proper
extensions, email the abstract number and a
randomly generated PIN to the corresponding
email address, and insert or update the database
records accordingly.

Conclusions

This system offers many benefits to both users and
the production staff.

Users’ benefits. Self-evident HTML form templates,
choice of entry methods, easy figure handling, LATEX
syntax validation (this could be a mixed bag for
LATEX newbies because the error messages may be
too cryptic for them), on-line proof viewing, and
editing previously submitted abstracts.

Production benefits. Since the rigorous valida-
tion processes shift more responsibilities to the users,
the abstract submission quality is greatly improved.
The production staff now start the game with stan-
dardized, well-structured data, which makes it pos-
sible for the subsequent events to be highly auto-
mated. In fact, this system can be expanded into a

comprehensive database publishing system for hand-
ing the following conferences-related tasks:
• During the period of collecting abstract submis-

sions, set up a cron job for the conference coor-
dinator to print out abstracts and accompany-
ing figures received the previous day, to gener-
ate a sort-by-category and sort-by-presenting-
author list of abstracts received so far.

• For program committee use: abstract database
search for various fields.

• Insert into the database the program commit-
tee’s decisions of acceptance and rejection, as
well as the meeting sessions information (such
as the session name, schedule, location, chair-
person, invited talks, contributed talks, posters,
time slot for each presentation, etc.).

• Generate letters of acceptance and rejection, as
well as mailing labels.

• Generate program books and abstract books.
• Searchable on-line program listing and viewing.

Acknowledgements

Several people at the AIP were involved in this project:
Don Lang, Chris Hamlin, and Kevin McGrath. My
thanks to all of them— especially Chris Hamlin, from
whom I have learned many TEXniques.

I would also like to thank the TUG99 review-
ers and the Proceedings editor, Christina Thiele, for
their constructive suggestions and comments.

240 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

