
fpTEX: A teTEX-based Distribution for Windows

Fabrice Popineau
Supélec
2 rue E. Belin
F-57070 Metz
France
fabrice.popineau@supelec.fr

http://www.ese-metz.fr/~popineau

Abstract

This paper deals with the ins and outs of porting the widely used teTEX distribu-
tion to the Windows environment. The choices made and difficulties experienced
are related, a brief description of this huge distribution is given and the future
work is sketched out.

Motivation

Context. More and more people need to use some
sort of Microsoft environment, perhaps because of
office suite or the like, or because of management
staff decisions. Some of the greatest pieces of soft-
ware have been developed on UNIX (or other oper-
ating system) well before the general availability of
Windows. Thus, software such as TEX should be
available on Microsoft operating systems, natively
ported, and compatible with implementations on
other operating systems. TEX by itself is largely
platform independent but achieving complete com-
patibility for an entire distribution is better.

The Web2C TEX distribution is one of the great-
est TEX implementations and has support for porta-
bility. Moreover, Web2C is the base of the widely
used teTEX distribution for UNIX. Now that UNIX

and Windows can easily share files across the net-
work, thanks to tools such as Samba, it is most de-
sirable to have not a teTEX-like TEX distribution
for Windows, but the actual teTEX distribution for
Windows.

Free TEX for Windows. In the fall of 1997, when
I began to port Web2C to Win32, one main TEX dis-
tribution was available to Windows users: emTEX.
This is still a great TEX environment but it was de-
signed for MS-DOS first and then for OS/2. So, when
Windows became 32-bit-aware,1 those MS-DOS ap-
plications could not benefit from the new 32-bit flat
mode, or at least not optimally. The so-called DOS-
extenders were not as smart2 as they are today.

1 In fact, even if Windows 9x can run 32-bit mode appli-
cations, only the Windows NT incarnation of Windows is a
true 32-bit environment; see section about the previewer

2 For example, support for long filenames was not avail-
able at first.

Some of the nicest features of emTEX, such as its
dvipm previewer, were not available to Windows users.
Moreover, emTEX’s author, Eberhard Mattes, never
released his sources.

At the same time, MiKTEX began to mature.
Christian Schenk, author of MiKTEX, has followed
a different way. He has designed a completely new
Win32-oriented TEX distribution. Looking at his
work, I questioned the usefulness of porting Web2C
to Win32, but there were some reasons to do so:

Compatibility. Having a Windows TEX distribu-
tion based on exactly the same files as the UNIX

one means you can share resources. For exam-
ple, you can not only share texmf trees across
the network but also configuration and format
files.

Portability. Most of the ongoing developments
around TEX are done with UNIX Web2C (see
pdfTEX or ε-TEX). Being able to share source
files means less efforts to compile a new release.
There is another consequence: on several occa-
sions, it has proven to be useful to compile the
source code on something really different from
UNIX. Errors that do not show up on one plat-
form may do so on another one.

Usability. Lots of people are familiar with teTEX
under UNIX. Having the very same distribution
under Windows is a plus.

The plan. The porting tasks can be divided as fol-
lows. Note, however, that the job was not formally
planned at all since it had to be done using mostly
spare time. So the project has followed a circu-
lar technique, with some issues only being resolved
quite recently. Below is a very short description of
the next sections.

290 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

fpTEX: A teTEX-based Distribution for Windows

Command-line programs. The first goal was to
have a tex.exe running under the Win32 API

(Application Programming Interface), the set of
functions that implement the kpathsea library.

Compilation environment. teTEX uses a power-
ful tool called autoconf. This tool relies heavily
on having a UNIX shell and lots of UNIX utili-
ties such as sed, grep, awk, and so on. Clearly,
this is not something easy to find and run under
Windows.

Shell issues. Moreover, the source distribution uses
some shell scripts at run-time. It is not wise
to suppose that the end-user will have a UNIX

shell on a Windows machine.
Operating system-specific. Some issues like find-

ing a replacement for file links or naming files
on the network have been solved recently. The
question of using the registry is also mentioned.

Previewer. No TEX distribution would be com-
plete without a DVI previewer. So the port of
xdvi was contemplated.

Installation. This is the trickiest part. Binary dis-
tributions were not common under UNIX but
they are under Windows, and the installation
process is very different.

Configuration. The process of configuring Web2C
is very simple because it consists mainly of edit-
ing text files or setting up environment vari-
ables. The teTEX distribution introduces a smart
tool to administer the system, and this task can
be rendered in a Windows-oriented way as well.

Future work. There are many points that can be
enhanced and some will be done in the very near
future.

However, if tasks such as editing a text file, set-
ting environment variables or unpacking an archive
are usual in the UNIX world, they are not usual any-
more in the Windows, world where end-users expect
automatic or point-and-click things to happen. So
the installation and configuration parts are very spe-
cific to Windows.

The contents of the distribution

Before discussing the porting issues, here is a brief
outline of what is in the distribution:

• Web2C base distribution: TEX, METAFONT,
METAPOST, DVIware and fontware tools

• each TEX extension or package that is found in
teTEX:

– ε-TEX, pdfTEX, Ω (Omega)
– dvipsk and dviljk to print DVI files

– gsftopk and ps2pk to rasterize Type 1
fonts to PK files

– mktex* support programs for generating
missing font files and fmtutil for building
formats

• a DVI file viewer based on xdvi, but adapted to
Windows

• packages found on the TEX-Live CD such as:
– dvipdfm, to convert DVI files to PDF

– tex4ht and tth, to convert TEX files to
HTML

– extra tools to deal with either DVI files,
PostScript files or fonts.

• extra packages found only on the Win32 section
of the TEX-Live CD:

– ttf2pk and ttfdumpwill handle TTF fonts
– hbf2gf will handle East-Asian fonts
– gzip and jpeg2ps, which can be handy

• the teTEX texmf tree, which is not the least
important part!

Command-line programs

The process. The Web2C distribution integrates
all TEX-related tools around one main library called
kpathsea. It was devised by Karl Berry to face
the growing number of environment variables needed
to set up a complete TEX distribution. Instead of
setting environment variables, the path values and
many other constants are looked for in a configu-
ration file. This guarantees extensibility and is far
easier to maintain.

The second point is the process of compiling
TEX itself. The Web2C distribution owes its name
from the Web → C translator that converts the orig-
inal Web code to C programs. Basically, the follow-
ing tools were needed:
• a C compiler targetting the Win32 API and,

if possible, supporting the standard C library
functions;

• some UNIX tools such as sed, grep and awk;
• the Perl language, which has proven to be useful

to put glue between many parts of the building
process, due to the lack of a shell with real pro-
gramming capabilities under Windows.

Choosing a compiler. The availability of GCC —
or rather of a native Win32 GCC — under Windows
is quite recent. Moreover, GCC in its Cygwin3 incar-
nation has some drawbacks under Windows:

3 Most of the GNU tools have been ported to Win32 by
Cygnus Software and their port is under the GNU Public
Licence. See http://sourceware.cygnus.com/cygwin/.

TUGboat, Volume 20 (1999), No. 3 —Proceedings of the 1999 Annual Meeting 291

Fabrice Popineau

• Every program is linked to a DLL (Dynamically
Linked Library) that emulates UNIX calls; this
slows down somewhat programs doing intensive
file system calls,4 for example.

• At the time I began the Web2C port, this DLL

was not stable at all.
• Benchmarks on the same computer using GCC

under Linux and the Microsoft compiler under
NT have shown up to 20% less time on the same
runs in favor of the Microsoft compiler.5

Thus, the Microsoft compiler was chosen. The gen-
eral philosophy was to stick to the Win32 API as
much as possible and avoid any layer to handle the
translation, which might alter performance.

Many of the auxiliary tools needed for the build
process were available either through the GNU-
Win32 Cygnus project or from previous ports to MS-

DOS; however, almost none of them were available
natively ported to Win32. While I was at porting
kpathsea and Web2C to Win32, I also adapted the
tools I needed to Win32. This resulted in an archive
of UNIX tools, many compiled by myself and the
others gathered from the net. This archive is avail-
able in the same directory as fpTEX, in the CTAN

archives.

Compiling tex.exe. The kpathsea library already
had support at the source level for other platforms
than UNIX, namely Amiga and VMS. So the path
was already laid out. Fortunately, kpathsea already
encapsulated almost all system calls needed for TEX.
This was a great feature of the TEX source code, to
precisely identify system dependencies.
Disks. The Windows environment knows about de-

vice names attached to disks whereas the direc-
tory tree structure under UNIX hides them.

Paths. The path separator is not the same but, for-
tunately, the Win32 API support ’\’ and ’/’
path separators.

Links. There are no hard or symbolic links under
Windows.

Permissions. The permissions on files for UNIX

and Windows are handled in a completely dif-
ferent way.

Some of the problems met were specific to Windows
9x, where standard C library calls are available but
buggy. For example:
• system() is meant to run external commands

but fails to return their exit code— it always
returns true.

4 The kpathsea library can do lots of stat calls on a huge
texmf tree.

5 This was GCC 2.7.1 versus VC++ 5.0; the situation may
have changed today.

• popen() is available only for command-line pro-
grams but fails for graphical programs (the pre-
viewer uses this call!).

• stat() fails to recognize directories if their name
has a trailing / .

All these problems have workarounds using the Win32
calls instead of the standard C calls.

Compilation environment

In order to make the build process safer and closer
to what happens under UNIX, a number of decisions
had to be made.

Makefiles. Every UNIX Makefile comes in a gener-
ic shape, Makefile.in, that needs to be instantiated
by the complex process of autoconf. The UNIX

Makefile.in is assembled and processed by the m4
macro processor to generate the actual Makefile
that will fit your own configuration. Moreover, those
Makefile use many UNIX constructs (shell or other
tools). So they are not usable as-is under Windows,
where the process is somewhat different.

The Windows Makefile is built by hand from
the UNIX Makefile.in. All common parts are stored
in a special place. An initial configure.pl Perl
script allows one to:
• configure the common parts with options like

root of the destination directory, root of the
source tree, and so on;

• ensure through the configuration that only the
files generated by the current build will be re-
ferred to; that is, no external kpathsea.dll
will interfere, no external pdftex.exe or texmf
will be referred to when generating documenta-
tion or file formats;

• save and restore each of the Makefile files in a
safe place.

Source code configuration. The same Perl script
also undertakes the translation process of every
config.in or c-auto.in configuration file into their
definitive form. Since there is only one target oper-
ating system, there is no need to guess if the fea-
tures are supported — just consult a table of fea-
tures. Thus, doing this ensures better compatibility
with the original source code.

Overall build process. The overall build process
is done by another build.pl Perl script. This script
delegates to the different Makefile and can be asked
to:
• clean up the source tree at different levels
• rebuild dependencies
• build and/or install the whole release

292 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

fpTEX: A teTEX-based Distribution for Windows

• use different compilation modes, such as debug
or release, statically or dynamically linked exe-
cutables

• prepare for specific tasks, such as profiling or
using advanced debugging and checking tools
such as BoundsChecker

• install everything from scratch, including in-
stalling the latest teTEX texmf tree
Up to now, the build process is not clean enough,

but nonetheless the source tree has been used suc-
cessfully by people with no previous knowledge.
Cleaning up the Win32 part of the source tree would
allow more people to access it and contributions
from the net could be expected.

Shell issues

The Web2C distribution may ask for font generation
at run-time. This is done through the kpathsea
library calling an external command when it fails to
find some needed font.

Because of the complex and evolving nature of
this process—how many versions of those make-
texpk scripts have been devised?— the generation
of fonts has traditionally been handled by shell scripts.

The shell requirement needed to be removed un-
der Win32 and the Perl alternative, despite some
drawbacks, was considered:
• Perl provides greater portability across such dif-

ferent operating systems as UNIX and Windows;
• Perl is not widespread enough under Windows

and under UNIX, which means you can easily
find it but not every single user will have it or
want it;

• Perl has quite a large disk space footprint.
Had UNIX users been ready to switch from shell

scripts to Perl scripts for this task, things might have
been different but that was not the case. So the only
risk-free and simple solution from the user point of
view was to code the shell scripts in C. Given the
complexity, the C version of the scripts required sev-
eral rewritings before becoming reliable enough. But
now, they do behave like their original shell counter-
parts. And the C version of these scripts can even be
used under UNIX. The several mktex* shell scripts
are provided as one DLL, with several stubs,6 follow-
ing the same philosophy as for the TEX engines—
see next section. This means that kpathsea could
be linked with this mktex.dll and could avoid cre-
ating a new process to generate a new font file.

6 A stub is a small executable program linked to some DLL

and whose only function is to set up some parameters before
calling the DLL. This way, the same large DLL can be called
in different ways by using only small executable programs.

Operating system-specific

Two main features have been added and one has
been avoided.

No file links under Windows. The Web2C dis-
tribution uses file links under UNIX for linking pro-
grams under different names. The problem is that
you can have several format files generated by one
engine. For example, latex.fmt and plain.fmt are
both run with the tex.exe engine. Under UNIX, the
tex engine maybe linked under the names latex
and plain, and the name under which the engine is
linked determines which file format is loaded.

There are no file links under Windows 7 and
all you can do is simply copying the tex.exe engine
to latex.exe and so on— at the expense of disk
space. Given the number of engines, some of them
being quite large, it is important to overcome the
problem of file links.

Fortunately, for executable programs, there is a
natural way of doing something similar to file links
using the Win32. The trick is to build a DLL with
all the engine code and to have a small stub linked to
the DLL. This way, the DLL is shared and the stub
can be copied without using too much disk space.
For example:
03/17/99 08:44a 16,384 pdfinitex.exe

03/17/99 08:44a 16,384 pdflatex.exe

03/17/99 08:44a 389,120 pdftex.dll

03/17/99 08:44a 16,384 pdftex.exe

03/17/99 08:44a 16,384 pdfvirtex.exe

There are four stubs linked to the same DLL. Should
you create a new format file called frpdflatex.fmt,
for example, you only need to copy pdftex.exe to
frpdflatex.exe and the new format file will be
loaded automatically by calling the new command,
which has a very small footprint on disk.

There are other potential advantages:
1. upgrading to a new version of pdfTEX could be

done by only upgrading pdftex.dll;
2. clever TEX shells could drive TEX engines di-

rectly by talking to the DLL and not use the
command line.

Accessing files on the network. Under Win-
dows, you can access files shared on the network by
using UNC names. UNC refers to Universal Nam-
ing Code, a syntax introduced by Microsoft to re-
fer to shared resources— files or devices— available
through the network. The kpathsea library is thus
made aware of UNC names, means you can make

7 Shortcuts are not file links but rather redirections, avail-
able only through the Windows shell environment, not from
the command line.

TUGboat, Volume 20 (1999), No. 3 —Proceedings of the 1999 Annual Meeting 293

Fabrice Popineau

$TEXMF point to \\TeXServer\TeXmf or ask dvips
to print on \\TeXServer\printer.

The registry. Under Windows, every program ac-
cesses the registry to retrieve its parameters and all
required information. The registry is a database,
shared across the network which encompasses the
environment.

So the question arises: should the port of Web2C
to Windows use the registry? The answer is no.
The main reason is that it is not recommended that
end-users modify the registry by hand —there is too
much potential danger for their system. So storing
the configuration into the registry would prevent
users to easily change the way their tools behave.
Temporarily setting environment variables is a quick
way to modify kpathsea behavior and a very useful
feature which it would have been unwise to remove.
Users can fiddle with their configuration parameters
exactly in the same way they would under UNIX: by
either editing the texmf.cnf file or overriding pa-
rameters in the environment. It is always a matter
of getting the best of both worlds.

Previewer

Motivation. It was not at first my intention to
devise one. DVI format is not a modern format any-
more. Even if it fulfills everybody’s needs, it does
not mean it will last. The new pdfTEX extension
has demonstrated that DVI is not mandatory for a
TEX system. Thus, devising a previewer for Win32
is not a simple task. Spending lots of time on a tool
that might turn quickly into something obsolete is
not very appealing.

But no TEX distribution would be complete with-
out a DVI previewer: many TEX users stick to the
good old (plain- or LATEX-generated) DVI format be-
fore any kind of PostScript conversion.

We still might argue that Ghostscript provides
an accurate view of what will be printed, but the
process of TEX → dvips→ Ghostscript is somewhat
slow and heavy for many documents.

So I ended up in looking at the xdvi source code.
As I had no previous experience of Win32 graphics
programming nor of X-Window graphics program-
ming, so this was another reason for doing the pre-
viewer.

Porting graphics application. If we omit the
interface, xdvi uses only a few primitives from X-
Window: it only needs to draw bitmaps for glyphs
and rectangles for rules. So the decision was made
to adapt to Win32 everything that could be (the
page reading and drawing mechanism, for example)
and to rewrite the user interface part.

All but two of the C source files have been
patched to compile under Win32 and the missing
graphic primitives have been added. As well, a new
user interface has been devised following the sam-
ples provided by Microsoft with their Win32 System
Development Kit.

Some issues have been raised— and solved!—
by the redisplay mechanism. The main problem
with the redisplay was where it should happen: in
memory or directly onto the display surface? The
former was easier but had one major drawback: at
a scale factor of 1 and 600dpi, an A4 color page
would be huge (about 34Mb). So, on a second try,
the redisplay was changed to draw directly onto the
screen. In fact, both solutions are still in the source
code but only one is activated.

This is also the same reason for Windvi not dis-
playing PostScript inclusions at a scale factor of 1:
Ghostscript is told to allocate the whole page be-
cause it can be asked to display raw PostScript code.
So this time, Ghostscript would require the 34Mb
page. It does work under Windows NT — albeit very
slowly— but it is too heavy for Windows 9x.

This was also the opportunity to fully under-
stand where Windows 9x and Windows NT are dif-
ferent. They share the same API but they behave
in very different ways. For example, the first data
structures I built and that used to work under Win-
dows NT assigned one bitmap handle per glyph used
in the DVI file. It was even pretty fast but the same
program running under Windows 9x was slow and
eventually crashed. Looking at the resources, all the
graphics resources were used. How to explain such
different behavior? In fact, the Windows 9x GDI—
the kernel part that implements graphics services—
allocates all the graphic objects in a few 64K stacks.
The one dedicated to bitmap headers was quickly
filled in when the DVI file was using even a low num-
ber of fonts.

Features. The features of Windvi are almost the
same as those of xdvi. I have tried to mimic the
behavior of xdvi whenever possible and, at the same
time, to add Windows behavior via status bars, tool
bars and tooltips. The most important features of
Windvi include:
• monochrome or grey-scale bitmaps (anti-alias-

ing) for fonts
• easy navigation through the DVI file

– page by page
– with different increments (by 5 or 10 pages

at a time)
– go to home, end, or any page within the

document

294 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

fpTEX: A teTEX-based Distribution for Windows

Figure 1: Windvi featuring magnifying glass and Hyper-TEX links

• different shrink factors to zoom page in and out
• magnifying glass to show the page at the pixel

level
• compatible with xdvi keystrokes
• use of .vf fonts
• display .pk and .gf font files
• automatic generation of missing .pk files, even

for Type 1 fonts
• tracking DVI file changes and automatic reopen-

ing
• understanding of Ω extended DVI files
• drag-and-drop file from the Windows shell ex-

plorer
• external commands through \specials
• color support (à la dvips)
• real-time logging of background font generation
• visualization of PostScript inclusions
• support of Hyper-TEX specials
• printing.

The main features not found in xdvi are color
support and printing. The latter was again the op-
portunity to test different behaviors between Win-
dows 9x and Windows NT —quite painful to debug.
In fact, printing is something not at all easily done
because there are many ways to handle it:

1. Print through the generic Windows printer driv-
er, but PostScript specials will not be printed.

2. Ask dvips to convert the .dvi file to PostScript,
and then either send the file directly to the
printer, if it can handle it, or else call Ghost-
script to do the job.

3. Build a bitmap with the page, PostScript spe-
cials included, and do banding (because the page
would be huge) and send the bitmap to the
printer.

Currently the first and third options are implement-
ed but the third one uses lots of Windows 9x re-
sources.

TUGboat, Volume 20 (1999), No. 3 —Proceedings of the 1999 Annual Meeting 295

Fabrice Popineau

Last, the fact that Windvi is quite close to a
port of xdvi was rewarding when it came to imple-
menting the Hyper-TEX feature, which relies on the
use of the libwww library, maintained by the W3C

consortium. Fortunately, this library is available for
UNIX and Windows. The net result was that adding
this Hyper-TEX feature to Windvi took only a cou-
ple of hours to have a first workable result that al-
lows navigation inside the document and referenc-
ing external programs. However, it turned out that,
under Windows, this library is not mandatory at all
because the shell can be called to open URLs, so it
is not needed anymore.

Installation

Packaging TEX. Maintaining a texmf tree is a job
that is very well done by Thomas Esser for teTEX
and by Sebastian Rahtz for the TEX-Live CD. Given
such a tree, I wanted to find a way to automatically
group files by packages.

As has been pointed out in electronic discus-
sion lists,8 there is a lack of a standard procedure
to install TEX packages. So there is no way to get a
source texmf tree and build it, logging where every
single file has been installed. So I wrote a few Perl
scripts to reverse-engineer the build process, keeping
the following goals in mind:

• Have three levels of completion: basic, recom-
mended and full ; given a package, these levels
are guessed by heuristics from the lists files,
devised by Sebastian Rahtz and to be found on
the TEX-Live CD.

• Build a two-level structure targetted for Install-
Shield us (see next section); this structure is
based on components (e.g. latex, omega, . . .)
and subcomponents (e.g. latex\graphics).

• Group files as much as possible; for example,
to group fonts files, style files, source and docu-
mentation files for one package. This was done
by implementing some kind of rule-based sys-
tem in Perl, along with some other ad-hoc rules.

• Give a description for each sub-component; this
was done using the Web description of TEX
packages assembled by Graham Williams.

The result is not perfect, especially for the TEX-Live
CD, with its huge number of packages. Notably,
the automatic detection of descriptions is flaky—
some of them being false, but this is harmless— and
the recommended installation installs far too many
packages, which means that the levels attributed to
packages have been underestimated.

8 See the dedicated mailing list on tug.org.

The installer. There is a product dedicated to
building installers for Windows that is widely known
and used in the Windows world, called InstallShield.
Given a tree structure of components to which are
associated file groups and a few setup schemes, it
will build a nice looking installer.

But things are not so easy when it comes to
installing a huge distribution. While InstallShield
handles many common installation cases well, TEX
is quite special because of the large number of files.
This provides the opportunity to experiment with
bugs and any limitations in InstallShield. Even
though it is being used for the current release of
fpTEX and the TEX-Live CD, it will probably be
abandoned and replaced by a dedicated installer.

All in all, even if the installer is not perfect or
flexible enough, it is useful enough to install from
the TEX-Live 4 CD. The latest version of the in-
staller used on fpTEX even makes it possible to add
packages on top of an existing installation. And fi-
nally, it has been useful to use InstallShield to sort
out all the problems related to installation; even if
it is not used for future versions, the specifications
are still there.

Windows integration. Most environments dedi-
cated to TEX in one way or another will support
fpTEX. Amongst them, we can cite WinEdt, 4TEX
and XEmacs.

Configuration

Assuming a recommended installation, there is little
to configure. But, as pointed out in the introduc-
tion, Windows users expect dialog boxes not text
files to be edited. This has lead me to devise a
dialog box-based tool targetted at fpTEX configu-
ration. The texconfig.exe tool allows the user to
access most of the configuration files in a point-and-
click way.

Moreover, the standard Windows menus are pro-
vided with shortcuts to command-line tools (to re-
build formats or file database) and to local web
pages (to access the documentation).

Future work

Some of the above-mentioned components will be
enhanced in the near future.

Previewer. Even if the DVI format is old nowa-
days, many people are still using it so I will enhance
Windvi in the following ways:
• Type 1 and TTF font support
• other graphics files format support
• graphical transformations for glyphs and rules

under Windows NT

296 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

fpTEX: A teTEX-based Distribution for Windows

Figure 2: texconfig.exe tool editing pdfTEX related paths

• two-page spread mode

• forward and inverse search; that is, from the
editor to the DVI file or from the DVI file to the
editor

• cut-and-paste to other applications

Installation. The dedicated installer is being work-
ed on. It will handle installations of both fpTEX
and TEX-Live. The fpTEX files will be distributed
as .zip files and if they are not present, the installer
will try to download them from the net.

Configuration. The texconfig.exe program is
not yet available. Its interface needs to be discussed
because it is difficult to be simple and powerful at
the same time. Many users want to tweak the con-
figuration whereas, to make this thing really simple,
we should hide most of the configuration parame-
ters.

Availability

The whole package is available from CTAN, in the
systems/win32/fptex directory. More information
is available from www.ese-metz.fr/~popineau/
fptex, the home of fpTEX. The TEX Users Group is
kindly hosting a dedicated mailing-list, fptex@tug.

org, to which you can subscribe by sending a request
to majordomo@tug.org.

Acknowledgements

All this work relies heavily on the work done by Karl
Berry, Thomas Esser, Sebastian Rahtz and Olaf We-
ber on the UNIX distributions Web2C, teTEX and
TEX-Live.

Obviously, the numerous authors of all the pack-
ages present in fpTEX— programs or TEX style files —
are thanked too for having shared their work.

References

Berry, Karl and O. Weber. “The Web2C distribution
of TEX”. http://tug.org/web2c, 1999.

Esser, Thomas. “The teTEX distribution of TEX”.
http://tug.org/pub/teTeX, 1999.

Gurari, Eitan M. “A demonstration of TEX4ht”.
http://www.cis.ohio-state.edu/~gurari/
tug97/tug97-h.html, 1997.

Popineau, F. “Rapidité et souplesse avec le moteur
Web2c-7”. Cahiers GUTenberg 26, 96–108, 1997.

Popineau, F. “Windvi User’s Manual”. MAPS 20,
146 – 149, 1998.

van Dobbelsteen, G. “DVIview: A new previewer”.
MAPS 20, 120–124, 1998.

TUGboat, Volume 20 (1999), No. 3 —Proceedings of the 1999 Annual Meeting 297

