TUGDboat, Volume 20 (1999), No. 3

Editorial Overview

Vancouver in August

This year’s annual meeting (my first since 1995 in
Florida) had the papers, the attendees, the locale,
and the weather all vying for my attention. Every
day. It was a fantastic site: that West Coast mourn-
fulness that comes of rain on huge fir trees for the
opening few days and then brilliant sunshine for the
rest of the week, making the color contrasts outside
more like a paintbox than a conference site!

And then there were the papers! Oh yes. Alpha-
bet-soup time, folks. We have more \acros than
ever, it seems: XML, MathML, EPS, DVIPDF, PDF,
HTML, CD-ROM ... The editor’s supposed to find
the first instance of use in a paper and insist that a
definition be provided for those items which are new
or very jargon-ish. I tried ... Fortunately, most au-
thors already took care of that step; and where they
didn’t, well, if the paper wasn’t the first one to men-
tion it, then I left it. Because I'm going to assume
that not only will you be reading all these papers
but you’ll also be reading them in order! Of course!

Well ... ok, then ... how about reading all
the abstracts at least? After all, that’s why we put
’em into all these proceedings articles—sometimes
it’s the only way for those of you who couldn’t be
there to get a handle on just where things stand
vis-a-vis new developments and interesting projects
that often seem to wait till the meeting to be un-
veiled. Granted, that’s not where you’ll find all the
acronyms defined but it’s a start.

But before you plunge into the abstracts—or
the full-blown articles— stay a moment and find out
what else went on in Vancouver. Oh my ... we did
get up to some fun and games. And I have a sus-
picion that next year’s meeting, given some of its
organisers, will yield even more surprises and en-
joyment for all in attendance. So, if you can, save
up your money, your travel points, your vacation
days, and plan on being in Oxford next year in mid-
August: the 13th to the 16th. It’ll be great! For
more details, see p.154 or visit the website: tug2000.
tug.org ... not “tug00” ;-))

1 Fun and games

As many of you know from visiting the pre-confer-
ence website, submissions for a Poetry Contest were
being solicited already long before the start of the
conference. However, by the time Wednesday morn-
ing of August the 18th had rolled around, the num-

155

ber of submissions was still rather ... euh ... low.
So Sebastian stood up and exhorted us, challenged
us (while we were between speakers) to do something
about it.

It took about half an hour but then there was a
steady stream of quiet little walks to Sebastian’s end
of the hall, a quick smile, a piece of paper changed
hands ... and then the speaker’s eyes could return
to the matter at hand. And thus a Poetry Reading
in the Rose Garden was organised for that evening,
and the results were unparalleled! You may have
heard tales of “inspired” readings—it’s all true! Un-
fortunately, all we can reproduce here are the words.
The website has all the poems, all the pictures, and
all the prizes.

There was further mirth and enjoyment at do-
ing non-TEX things on the evening of the Banquet,
when door prizes were awarded via an apparently
random picking of name tags out of a hat. But—
how ‘random’ is it to see most of these going to the
same table ... where many of the TEX3 team were
sitting, in fact? I ask you ...

Then it was time to select the Best Paper. The
job was pushed onto me—so I promptly turned
around to ask six other people for their suggestions.
Results? A tie! It was with great pleasure that I
could annouce that Don Story and Jean-luc Doumont
were the joint winners; judging from the applause,
this was the overwhelming view of the audience as
well. Congratulations, gentlemen.

2 Recognition

Recognition in a volunteer community can some-
times take a long time to come around. It’s not that
the awareness or the gratitude aren’t there—they
are, in spades — but formal recognition is something
that requires an occasion, a gathering, and, of course,
someone to instigate it. How this latter came about
for the Vancouver meeting is someone else’s story to
tell; what I can tell you is that Barbara Beeton’s
20 years on TUG’s board of directors (a steering
committee in the early days) and Don Arseneau’s
many years of support to the entire TEX comunity
via packages and answers on comp.text.tex are in-
deed in the category of long-standing contributions
that were formally recognised this past August.

Tuesday afternoon saw Michael Downes of the
AMS speak of Don Arseneau’s place in our directo-
ries and our code, and then he presented the man
from TRIUMF with a specially commissioned draw-
ing by Duane Bibby. The website has more: Michael’s
tribute, a list of Don’s packages, and Duane’s draw-
ing. Visit it—and then count how many packages
you ve used over the years.

156

On Wednesday evening, at the end of the Po-
etry Readings, Mimi Jett, TUG’s President, had the
pleasure of bringing our attention to the fact that
Barbara Beeton, in yet another of her many roles,
had now been a board member and board meeting
attendee for 20 years. A bottle of vodka (courtesy
of Irina Makhovaya of MIR Publishers) was proba-
bly the best possible choice to celebrate this fact —
strong drink for strong work! Pictures and details
at the website pages.

Ohhhh, Barbara ... You may want to look at
p- 313 ... vodka on paper just won’t work, so I
have something else for you—and our readers— to
remember this 20th year of board-dom.

3 The editorial thing

It’s been quite a while since I've been editor. This
year’s crop of authors and papers has been a true
pleasure to harvest. Not that they’ve sat back and
taken everything I've dished out ... but that they’ve
been very good to work with, in order to end up with
text both they and I can live with. I'm far more
intrusive an editor than most (certainly more than
Barbara— but that’s also a function of the time that
she simply does not have available to her) and yet
the authors have been very kind in both accepting —
and politely declining— editorial changes.

It’s only by the fifth or sixth article that I really
hit my stride— which means I have to go back and
redo the earlier papers. That’s normal. Then come
the last few papers and it’s almost too much to finish

. and I didn’t. Six papers had to wait till after the
conference for my editorial sledge and in the interim,
yet more second thoughts and doubts about edito-
rial stances which had changed —and then needed
to be carried back into previously edited files. So it’s
been a year, more or less, since Anita’s invitation to
be proceedings editor; I don’t think that’s normal —
too long—Dbut it’s a lot of pages, I tell myself. Per-
haps a team approach for the actual editing wouldn’t
be a bad idea on projects of this size.

3.1 Reviewers

Just as regular submissions to TUGboat are refer-
eed, a review process for conference papers also ex-
ists. This is crucial when the editor is only aware of
a small fraction of what’s going on in the TEX com-
munity — and knows even less of the details: I need
this review process even more than the authors! The
reviewers were thus able to bring additional infor-
mation and other possibilities to the authors, who
in turn made very good use of the suggestions. I
was also fortunate in that only one or two authors
had to be asked to review another presenter’s pa-

TUGboat, Volume 20 (1999), No. 3

per; 21 reviewers delivered comments on 23 papers.
The authors’ work you will find further on in these
proceedings, the reviewers’ names you will find here:

Don Arseneau, Thierry Bouche, David Carlisle,
Don DeLand, Michael Doob, Victor Eijkhout,
Robin Fairbairns, Jeremy Gibbons, Denis
Girou, Michel Goossens, Eitan Gurari, Kathy
Hargreaves, Neal Holtz, Dag Langmyhr,

Pierre MacKay, Bernd Raichle, Peter Schmitt,
Michael Sofka, Phil Taylor, Ron Whitney, and
Mark Wicks.

I would like to thank each of you for having been so
generous in offering your time, thoughts, and ener-
gies to yet another volunteer activity for TUGboat
and for the TEX community. I am very grateful for
all the added assistance in treating these papers.

3.2 New trademarks

At meetings such as this, there are always new items
being presented, some of which are trademarked.
Here are two new trademarks to note:

W3C (World Wide Web Consortium)
MathType

For regular issues, the list of trademarks can be
found on the verso of the title page. Proceedings
issues have other stuff on that page, so I reproduce
here what we normally cover:

Many trademarked names appear in the pages of
TUGDboat. If there is any question about whether
a name is or is not a trademark, prudence dic-
tates that it should be treated as if it is. The
following list of trademarks which appear in this
issue may not be complete:

MS/DOS is a trademark of Microsoft Corp.

METAFONT is a trademark of Addison-Wesley

Inc.

PCTEX is a registered trademark of Personal

TEX, Inc.

PostScript is a trademark of Adobe Systems,

Inc.

techexplorer is a trademark of IBM Research.

TEX and ApMS-TEX are trademarks of the
American Mathematical Society.
Textures is a trademark of Blue Sky Research.

UNIX is a registered trademark of X/Open
Co. Ltd.

4 The organising thing

Conferences always have organisers— yet more vol-
unteers! This year co-chairs Stephanie Hogue and
Anita Hoover, along with their committee members,
were responsible for the program, local arrangements
(for which we also thank the University of British

TUGDboat, Volume 20 (1999), No. 3

Columbia Conference Centre’s Sarah Johnston), pre-
print printing, courses, vendor participation, and
publicity:

Don DeLand, Sue DeMeritt, Wendy McKay,
Patricia Monohon, Cheryl Ponchin, and Heidi
Sestrich.

4.1 Corporate participation

Vendors were active in several ways: display tables
outside the meeting room, demonstrations during
the meeting, donations of products as door prizes;
some also gave papers that yielded detailed intro-
ductions and descriptions of some of the new soft-
ware that’s out there. We therefore thank the fol-
lowing vendors for their participation at TUG’99:

Birkh&auser-Boston, Blue Sky Research
(Warren Leach), 4TEX CD (Eric Frambach),
IBM (Mimi Jett), Kinch Computing (Richard
Kinch), MIR Publishing (Irina Makhovaya),
Personal TEX Inc. (courtesy of Anita Hoover),
Springer-Verlag, Y&Y, and Zephyr software
(courtesy of Ross Moore).

I hope this list is complete!
5 TUGY99 Website:

It’s been just over a year since Anita Hoover, co-
chair of the conference committee and technical ed-
itor of these proceedings, asked if I’d like to be pro-
ceedings editor for TUG'99 —she’d make sure all
files were present, process them and confirm that
they did indeed run; I would take care of the con-
tents. It took several months before abstracts start-
ed coming my way for editing before being posted
to the Web. A few months after that and the pa-
pers began arriving but it wasn’t too hard to keep
up. I’d done this before, I knew the routine: Set
up my charts, cajole reviewers into lending us some
of their time and knowledge, edit hardcopies, in-
put the edits, exchange the files with authors a few
times ... and occasionally a few more times ... the
usual stuff.

Then something new: Ross offered to convert
his paper into PDF format as a demonstration of
what TEX on the Web was all about. Sounded fine.
Except, somehow that one paper became all the
papers; and that job became one that “grew like
Topsy”, as they say. And the site has continued to
grow after the conference, as you all know from the
e-mailed notice about the Bulletin being available;
initially password-protected in order to allow TUG
members first access, the site is now open to all.

And like Topsy, the initial request for a few lines
on how the “webification” work had gone became a

.../tug99/bulletin/. ..

157

full-fledged article; we’ll have to put it into the next
issue of TUGboat!!

However, I would be remiss if I didn’t talk a bit
about the work that Ross Moore and Wendy McKay
have done both pre- and post-conference —it’s gone
far beyond anything I’d have thought possible.

The website became, in a sense, a demonstra-
tion of what many conference papers would be talk-
ing about: the migration and integration of TEX
source files onto the Web, retaining as much as possi-
ble of the original typography and reducing recoding
as much as possible. The entire operation was ren-
dered all the more difficult as none of us had planned
for it —the source files had therefore to be treated
individually, carefully examined for author-specific
macros, conversions to IXTEX made (it was all being
done using latex2html), and then after the confer-
ence, Ross went back into the files to insert links to
Web references which had been cited.

As of this writing (December 28, 1999), the
TUG’99 website has had 241 visitors—now surely
we can do better than that in showing some interest
in Topsy! Visit the site and then, for those of you
who are editors, blanch at the prospect of having to
deal with a whole new medium of presentation! Me,
I’ve recovered from blanching ... but let next year’s
editor(s) be warned ;-))

As mentioned, Ross has written up a blow-by-
blow account of the webification process, which we
will carry in a future issue of TUGboat. His trials
and tribulations are those of any first-time effort:
things can only go better next time around! While
it is perhaps obvious to those of you who have al-
ready been involved in paper/web publishing, pre-
planning is essential to keep everyone’s sanity within
the bounds of ‘normal’. T feel almost like I was be-
ing left behind, in some ways, as not only the pa-
pers, but Ross and Wendy’s work, was moving well
beyond my sphere of activity and experience. It’s
exciting—and I've had some novel uses added to
my repertoire these past weeks as Mimi Burbank
(our long-suffering production manager) and I have
worked to check all the little bits and pieces of text
and items that seem to come to mind only at the
very end —and it’s a bit intimidating. T’ll have to
spend some time thinking about just how far into
the “web-thing” I want to venture ... but it’s been
a heck of an experience, I can tell you!

I Note that all papers at the website are the preprint ver-
sions; the electronic versions of the papers found in these
TUGboat pages will be slightly different, and of course sev-
eral papers will have a “Post-Conference Update”.

158

5.1 Map of TUG meetings and members

Something else that Ross and Wendy worked on is
a massive map showing where all the TUG’99 at-
tendees had come from! The map is best viewed
on the web—it just doesn’t come across as well in
print. It also shows where all past meetings have
taken place (see also p. 314). So if you want to see a
demonstration of some of the techniques described
in their paper, go to /preprintmap/node2.html in
the Bulletin webpages. The first image is a .gif
file but if you have the capacity, download the .pdf
version (833K).

5.2 The ‘TEX Friendly Zone’

One more thing (their energy is boundless!) Wendy
has also put up a “TEX Friendly Zone” logo, a nifty
new Bibby drawing that’s available for download
and printing. Here’s what it’s all about:

The TEX Friendly Zone (TFZ) logo is another
one of Duane Bibby’s? beautiful drawings of
the TEX lion.

Permission is granted to print the TFZ
image and post it in your office or any place
where TEX Friendly people work!

You are also encouraged to get new members
to join TUG and enjoy the camaraderie of
TUGees who willingly share their knowledge
and expertise to make the typesetting world a
better place!

5.3 Photos and Images

And then there are the photos. We have to thank
Warren Leach of Blue Sky for such fantastic images,
both still and in QuickTime video, and also Kirin
Bahm and Jean-luc Doumont. Digital cameras are
what yielded the wonderful results on-screen. On
the other hand, for print, scanned pictures from a
good still camera are still a better route (it’s all a
question of image resolution).

My efforts, on the other hand, with an old de-
fective camera, were less than stellar ... I’d highly
recommend that next year’s organisers enlist the aid
of digital-camera owners to capture images if there
are any plans for web publication of pictures. Again,
these images are all at the website. There are lots
more photos (and in color, of course). Information
on how the photos were taken is also available.

2 “This year the familiar and much loved TEX Lion was
brought back to enhance and illustrate our activities in a
unique way. Duane Bibby produced several wonderful TEX
Lion art works for the TEXLive4 CD, TUG’99, TUG2000, the
Special Recognition Award, and the TFZ logo. We are happy
to have found him again, and we thank him very much for
doing these very special drawings — as only he can — at quite
short notice.” [footnote in original — Ed.]

TUGboat, Volume 20 (1999), No. 3

The full story on the Grimm Exhibition is also
available from the website, along with some of the
posters (again, in glorious color). If you have the
bandwidth and the space, try to look at the .pdf
versions of these posters—it’s a wonderful show just
watching them ‘develop’, layering the colors and the
shapes ...

6 Production notes

There are actually two “productions” involved in
creating this year’s proceedings: the usual one for
print copy, and the first-time (for us) of e-versions
of the preprints.

Abstracts were solicited last fall, and, after I'd
edited them, the texts were posted to the website —
the “webbing” began early on.

To help with their articles, macros and user
guides were made available to authors (again, from
the TUG website). As the work progressed, I made
notes on both my hardcopies of the guides on points
where we might improve or add things, particularly
to the guide for plain TEX.

We had 23 papers submitted, 7 in plain TEX,
16 in BTEX; two papers were not submitted by the
deadline, and a third was withdrawn. Both flavours
of TEX presented me with plenty of new coding styles,
package options, and just really good examples of
how to do things. As well, a good number of papers
used BIBTEX, something which I learned to use—
and then control ... a little! In short, editing our
proceedings may start with the words but it often
progresses deep into TEX itself —lots to learn in very
short order.

Authors dropped off their files at a designated
ftp site, and then Anita Hoover, the technical editor,
tested them at her site to ensure all files had been
supplied before moving them to SCRI.?

I approached potential reviewers to read and
comment on each paper, and as mentioned earlier,
these people did a terrific job. I appreciated their
willingness to help, and I believe the authors appre-
ciated finding a willing and knowledgeable audience
to check their work.

Once authors had addressed reviewer issues,
their revised files were again processed to ensure
they still ran, and Anita then generated .ps files
for me to pick up, print here, and begin editing.* I

3 The Supercomputer Computations Research Institute
at Florida State University, where all TUGboat production
takes place.

4 As SCRI has to be complete in its collection of fonts,
packages, and utilities, there’s no point to my duplicating
that environment at my site. Eventually, though, as the edit-
ing cycle progressed, I did process the bulk of the files here
in order to deal with final line-, column-, and page-breaks.

TUGDboat, Volume 20 (1999), No. 3

prefer to edit first on hardcopy, mainly so I can see
all the pages at once, and also backtrack now and
then ;-)) before changing the files, which were pro-
cessed as necessary during this time to ensure that
edits weren’t generating errors. Then began the ex-
change of files with the authors: the editorial dance,
as it were. Again, all went very smoothly, and so
here we have a largish issue of TUGboat which rep-
resents the written record of most of what went on
at this year’s annual meeting in Vancouver, supple-
mented this time by a good selection of images and
additional texts on the conference website. That is,
what we didn’t have room for, or what is not suit-
able for print (i.e., images, especially color ones),
you’ll find up on the Web.

I hope you enjoy reading— whether on paper or
on screen — about the work that’s currently engag-
ing the TEX community as it does indeed work its
way onto the Web, tangled and tortured though that
route may seem at times. And throughout, I think
you will find a renewed and invigorated sense of be-
ing on the forefront of developments that affect not
just the math community but all of us. Recycling
source files after our hard-won battles with the code,
and seeing them emerge on the other side, perhaps
even in colour (if we’ve done that pre-planning!),
means our work is going to enjoy a very long life no
matter what the medium.

6.1 Some final thank-yous

All of the above efforts are for naught unless they
make it to paper. And all the paper copies are for
naught unless they’re properly accompanied by the
easily forgotten elements to an issue: the calendar,
the titlepage, the covers, the table of contents, and
the final sequencing and assignment of page numbers
to all the elements.

Ensuring that we don’t forget any files, we have
Barbara, who checks and calmly corrects what has
already been checked, and who has seen to it that
this editorial has also been checked and edited.

Ensuring that we don’t forget any printed
pages, we have Mimi Burbank, who has looked at all
my nicely formatted final files and then made sug-
gestions for improvements to many, has seen to the

Nevertheless, the grunt work is done at SCRI, and for that
we are always grateful to Mimi and the people at that site.

159

inclusion of poems throughout the issue, and then
has stood by the printer, in sickness and in health
(the printer’s, I mean!), to ensure that the pages are
all there and that the whole package is shipped off
to the printer (the company, I mean!).

As I said near the beginning, recognition re-
quires an occasion and someone to instigate it. That
is as true for the launching of a conference effort as
it is for safe delivery of its printed proceedings. And
so I must close by thanking these two women for
their work in seeing these pages through their fi-
nal days and hours of production, after the editorial
work had been completed. Thank you. As always.

7 Where to find things on the TUG’99
website

Start off at tug.org/tug99/bulletin, the TUG99
Post-Conference Bulletin, and read the warnings
about this being a photo-intensive and colorful site.
Scroll down to Click here ... and take a coffee
along for the trip. Color monitor recommended.
Also, please note that the password restriction (in
place to allow TUG members first dibs) has now been
lifted.

introduction /frontpage

papers (index) /preprintmap/nodel.html

poetry /poems

awards /award
/otherawards.html

The Apocalypse /grimm

photos (index) /photoalbum

world map /preprintmap/node2.html

TFZ logo /tfz

TUG2000 tug2000.tug.org

And one final place to visit:
/photoalbum/nodel5.html

A real cutie!

¢ Christina Thiele
15 Wiltshire Circle
Nepean K2J 4K9, Ontario Canada
cthiele@ccs.carleton.ca

TUG 99 Program

TUG 99 Program
TEX Online — Untangling the Web and TEX

Monday, August 16, 1999
TEX and Math on the Web

Stephen A. Fulling
“TEX and the Web in the Higher Education of the Future: Dreams and Difficulties”

Patrick D.F. Ion
“MathML: A Key to Math on the Web”

Doug Lovell
“TEXML: Typesetting XML with TEX”

— Break—

Paul R. Topping
“Using MathType to Create TEX and MathML Equations”

Workshop: “BETEX to XML/MathML”, Fitan Gurari and Sebastian Rahtz
— Lunch —

Chris Rowley
“Models and Languages for Formatted Documents”

D.P. Story
“AcroTEX: Acrobat and TEX Team Up”

— Break —
Panel Discussion: “TEX and Math on the Web”, Stephen A. Fulling (moderator)
Workshop: “Using IXTEX to Create Quality Interactive PDF Documents for the WWW”, D.P. Story

Tuesday, August 17, 1999
Customizing Document Layout

Jean-luc Doumont
“Doing it my way: A Lone TgXer in the Real World”

Peter Flynn
“The vulcan Package: A Repair Patch for IMTEX”

Vendor Presentations
— Break—

David Carlisle, Frank Mittelbach and Chris Rowley
“New Interfaces for M TEX Class Design: Parts I and II”

— Lunch—

Workshop: “Writing Class Files: First Steps”, Michael Doob
— Break—

Workshop: “Converting a BTEX 2.09 Style to a IWTEX 2¢ Class”, Anita Z. Hoover

TUG Business Meeting

160 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Wednesday, August 18, 1999
TEX in Publishing
Kaveh Bazargan
“Multi-Use Documents: The Role of the Publisher”

Frederick H. Bartlett
“Very like a nail: Typesetting SGML with TEX”

Harry Payne
“Making a Book from Contributed Papers: Print and Web Versions”
— Break —
Robert L. Kruse
“Managing Large Projects with PrélgX: A Preprocessor for TEX”

Arthur Ogawa
“Database Publishing with JAVA and TEX”

Paul A. Mailhot
“Implementing Dynamic Cross-Referencing and PDF with PréTEX”

— Lunch —
Hu Wang
“A Web-Based Submission System for Meeting Abstracts”
Petr Sojka
“Hyphenation on Demand”
Jonathan Fine
“Active TEX and the DOT Input Syntax”
— Break—

Panel Discussion: “TEX in Publishing”, Kaveh Bazargan (moderator)

Thursday, August 19, 1999

Fonts, Graphics, and New Developments

Jean-luc Doumont
“Drawing Effective (and Beautiful) Graphs with TEX”

Wendy McKay and Ross Moore
“Convenient Labelling of Graphics, the WARMreader Way”

— Break—

Sergey Lesenko and Laurent Siebenmann

“Viewing DVI Files with Acrobat Reader —DVIPDF Gives Birth to AcroDVI”

Alan Hoenig
“MathKit: Alternatives to Computer Modern Mathematics”

Vendor Presentations

— Lunch —

F. Popineau

“tpTEX: A teTEX-Based Distribution for Windows”
Jeffrey MEArthur

“Managing TEX Software Development Projects”

Timothy Murphy
“JAVA and TEX”

— Break—
Panel Discussion: “The Future of WTEX”, Arthur Ogawa (moderator)

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

TUG 99 Program

161

Stephen A. Fulling

KEYNOTE:

TEX and the Web in the Higher Education of the Future:
Dreams and Difficulties

Stephen A. Fulling
Mathematics Department,
Texas A&M University,
College Station, Texas,
77843-3368 USA
fulling@math.tamu.edu

Abstract

New technology provides an opportunity to move mathematical and technical
education out of the lecture-homework-test mold into modes that do more
to develop students’ communication skills, teamwork, attention to quality,
and overall responsible, mature behavior. In practice, however, severe and
presumably unnecessary obstacles are encountered, mostly connected with the
difficulty of transmitting mathematical notation electronically.

As I document from personal experience, these obstacles are bad enough for
an instructor providing information to students over the Web, and worse when
students themselves are expected to communicate mathematically. I describe a
partially successful scheme for carrying out peer review of homework papers over
e-mail and the Web, resulting in a student-written solutions manual, and I offer
a wish list of technical improvements.

In memory of Norman Naugle and James Boone

There are two kinds of people, classified by their
reactions to new technology. People of the first type
say, “Now we can do new things— things that were
impossible before.” The other people say, “Now,
finally, for the first time, we can do the old things
right!” Tim Berners-Lee, who made this
conference possible and necessary by creating the
World Wide Web, surely belongs to the first camp.
Donald Knuth, with his injunction to go forth
and create beautiful books, is perhaps the most
successful exemplar of the second mode of thinking.
The advance of computer technology is having
profound effects —actual or projected —on under-
graduate education. Most of the discussion takes
place in the first mode: laboratories with computer
algebra systems, pedagogical Java applets, distance
education to reach new audiences, greater attention
to numerical methods in the content of courses, etc.
Personally, I feel more capable of contributing in
the second mode, using the computer, the Internet,
and the Web, mainly as marvelous communication
tools that address the discontents of modern mass
higher education. Here I shall describe two efforts
in this direction, with emphasis on the frustrations I

162

encountered because our two most marvelous tools,
TEX and the World Wide Web, do not communicate
well with each other.

I am not a computer professional. I'm a
university teacher of mathematics, trying to make
significant contributions to that art while striving
to keep a research career alive. This gives me
little time to write my own software, and not even
enough time or facilities to find and evaluate all the
software that already exists. It is a great honor
and responsibility to be scheduled as the leadoff
speaker of this Annual Meeting. The professionals
should regard me as something like Dilbert’s Boss
(Adams, 1996, for example): I will present you with
a list of technical demands; some of them may be
ridiculously impractical; the rest are those you must
implement to keep academic customers happy in
the next decade. Your job is to distinguish between
the two categories and to take action on the good
half. I am making an effort not to dwell on any
existing partial solutions that I may be aware of,
because I know that my information is incomplete;
it is up to the providers of those solutions to speak
for themselves.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

Keynote: TEX and the Web in the Higher Education of the Future

What I want for myself yesterday
(or at least tomorrow)

Let’s start with the obstacles facing an instructor
who wishes to make text material with significant
mathematical content available to students over
the Web.

For two academic years (from 1996 to 1998) I
was one of two calculus teachers in an experimental
freshman engineering program integrating calculus,
physics, English, chemistry, and two introductory
engineering courses into a unified curriculum. (This
is a product of the Foundation Coalition, a con-
sortium of universities and colleges supported by
the National Science Foundation.) To meet the
demands of a complete physics sequence in the
freshman year, it was necessary to revise the tradi-
tional calculus syllabus by moving large quantities
of multivariable material from the third semester
into the first two. No textbook on the market does
that! Therefore, I wrote some textbook fragments
covering vectors, multiple integrals, Taylor series,
and a few other topics, at the level and from the
point of view needed. (See the URLs listed at the
end of this article.)

As a long-time user of TEX, my first inclination
was to write everything in TEX and post the
resulting Masterpieces of the Publishing Art onto
the Web. But that smelled too much of using
the computer monitor as a bulky imitation of a
printed page. In particular, hypertext features
would not be available. Also, the screens would not
have the look and feel to which my Generation X
audience is accustomed — possibly a serious tactical
error in winning their confidence and engaging their
enthusiasm. I went to the opposite extreme: I
wrote the documents in HTML, in the hypertext
and bulleted-list style. ~Whenever possible, the
mathematical expressions were written in HTML.
Whenever 1 just couldn’t stomach the results, or a
passage was particularly heavy in formulas, I wrote
a patch of TEX and linked the .dvi file to the
higher-level HTML page. (Since not every browser
the students were likely to use was configured to
handle .dvi files, PDF versions had to be supplied as
well.) The results still have a somewhat amateurish
appearance because the TEX (and the graphics)
are not properly integrated into the HTML pages.
(With considerably more work and self-education I
could have done better, but I did not have the time
or the expertise.)

But the world shouldn’t be like this!

1. NON-NEGOTIABLE DEMAND: It must be possi-
ble to place all standard mathematical symbols

on an HTML page, including the Greek letters,
integral signs, square roots, built-up fractions,
etc., with confidence that they will be displayed
properly by every standard browser. (“Stan-
dard” may need to be redefined but the new
standard must be implemented!)

2. The screen appearance of the mathematical ex-
pressions must be of “typeset quality”. NOTE:
this does not necessarily mandate Computer
Modern fonts. Indeed, one of the obstacles
to widespread acceptance of TEX on the Web
is that the CM fonts were designed for high-
resolution devices, and the more slanted ones,
especially, are barely readable on screen except
at very large magnifications. Some compro-
mise in the design of the math fonts may be
necessary and acceptable.

I think that anyone who has tried to type
mathematics in HTML, even when all the necessary
characters and features (such as superscripts and
subscripts) are available—or who has looked at the
syntax of MathML —will agree with the following
requirement:

3. It must be possible for the author to create
mathematical expressions by typing raw math-
mode TEX code into the HTML (or XML) file
(inside some SGML-type wrapper, of course).

You’ll note that what I'm calling for here is
“encapsulated TEX” (Murphy, 1991). Indeed, for
many purposes I am perfectly happy with the text
of an HTML document as browsers display it on the
screen and PostScript printers print it out. It is the
mathematical expressions that are unacceptable at
present. Moreover, the new MathML language in
its raw form is not writable or readable by human
beings —it would be like writing a text document
directly in PostScript. A human-oriented language
is needed for input to MathML. But we have such
a language—it is TEX! The problem is to get the
rest of the world to recognize it as the preexisting
standard that it is.

This leads back to a question that I'm sure
many of you wanted to ask earlier: Why don’t I
use a program like latex2html? In part, that is a
personal prejudice; my natural language is plain,
with an accumulation of personal macros, and I
would need to translate my files into I#TEX to use
such programs. But I refuse to make that effort
because, in any event, I can’t accept the results as
a permanent solution:

4. The mathematical expressions must resize

properly when the user changes the font size in
the browser.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 163

Stephen A. Fulling

5. The mathematics must reside in the HTML file,
not in dozens of auxiliary files.

6. The system must not rely on an engine located
on a remote third-party machine. (This seems
to rule out MINSE, for example.)

So, that is what I want for myself. And I want
it yesterday — because the curriculum pilot project
is now over. As usually happens, something much
less ambitious was mainstreamed by my institution;
the course materials produced for the experimental
classes remain on the hard disk, as a monument to

. something.

What I want for my students today
(or at least next year)

I frequently teach courses for engineering and sci-
ence majors in their last two undergraduate years,
covering topics in mathematics such as linear al-
gebra and Fourier series. I have concluded that,
even at this advanced level, our standard teaching
practices do very little to develop habits of mature,
independent, professional behavior. This is not the
place for a harangue on pedagogical philosophy.
(See references under “Homework review” below.)
Suffice it to say that we stand at a crossroads:
Educators can use computers to restore literacy, or
to drive the last nails into its coffin. Freedom from
paper is not the same thing as the death of the
alphabet.

One of my attempts to address this situation
is a drastic change in the handling of homework
assignments. Instead of requiring every student to
turn in every exercise on the list, I assign each stu-
dent only one or two problems per week. But these
problems must be taken seriously: The instruction
is to produce a carefully written, complete, formal
solution, comparable to a worked-out example in a
textbook. The class, collectively, solves most of the
problems, thereby producing a “solutions manual”.
This is a class project, their legacy to the students
of future semesters. All the papers turned in on
one exercise are given to a team of two or three
students for peer review. Subject to quality control
by the paid grader and myself, they write a brief
critique of each paper and choose the best one for
“publication”. The criteria for evaluating papers
include presentation as well as correct content; in
descending order of importance, they are:

— mathematical correctness
— completeness
— organization
— pedagogical effectiveness

sentence structure and punctuation
— brevity and style

— grammar and spelling

neatness

After several years of working purely with pa-
per, this system moved to e-mail in 1996. 1 expected
that keeping the reviewers’ reports electronic would
cause a huge increase in efficiency, and for me it did;
however, I soon faced a revolt from the students,
who said they were spending too much time on key-
board busywork instead of learning math, and from
the grader, who found the chaotic e-mail files harder
to work with than paper. Then a miracle happened:
a student in the class, Justin M. Sadowski, showed
up in my office with a C++ program to automate
the mailing of reports. This program operates on
the departmental UNIX systems where our students
have accounts. A menu guides the student reviewer
to type in the account names of the student authors,
and the program spawns sessions of the pico editor
to write the reviews and a summary report to the
instructor into template files. At the end it mails
the messages to the authors, grader, and me.

Students are strongly urged to make their
homework solutions visible on the Web as well
as on paper. The long-range goal is an on-line
solutions manual, recreated each semester by a new
class. But since these are courses in mathematics,
not computer usage, the system must run on the
students’ preexisting computer skills, which vary
widely. At present I estimate that about:

— 50% of the papers are still hand-written

— 20% come from a word processor but are not
Web-displayed

— 20% appear on-line, either in ASCII text or in
HTML, the latter usually converted either from
Microsoft Word, or from Maple (which all our
students learn as freshmen)

— 10% are written in TEX

These divisions are moving up (in the higher-tech
direction) every year.

Why don’t more students use TEX? Well, one
of my students wrote:

I'spend enough time trying to get my programs
to compile. I don’t want to have to debug my
[homework] papers!!

They are not necessarily encouraged by their senior
mentors, either. Although TEX has become the
indispensable standard in academic mathematics
and physics, the situation is different in engineering,
where most of my students come from. Two years
ago in a discussion at a conference on engineering

164 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

Keynote: TEX and the Web in the Higher Education of the Future

education I suggested that we encourage the use of
TEX, and the reaction of an engineering professor
was, “Surely you're not still using that old thing!”
He couldn’t believe that mathematicians hadn’t all
switched to Microsoft Word. The fact that most
Web users still can’t even read TEX output is
another indication that we have a problem:

7. A plug-in or helper application to display
.dvi files should be standard with every Web
browser.

A look at the mathematical documents created
by my students and, even more, a look at the
reports they have written on their peers’ work,
shows that serious problems remain. The students
face the same obstacles listed earlier in putting
mathematical expressions on the Web or into their
printed papers, compounded by their inexperience.
So, let us extend the list of demands:

8. It must be possible for students to produce
decent mathematical documents, both in print
and on the Web.

Universal participation requires that:

9. The system must be platform-independent.
(At the very least, it must exist in both UNIX
and Windows versions, which communicate
flawlessly with each other.)

10. The cost to students (in required software
purchases) must be minimal.

11. The time spent in learning software syntax
must be minimized.

These last two problems will be alleviated if the
students use the software throughout their under-
graduate careers, not just in one course taught
by an eccentric professor. Unfortunately, “it is
a characteristic of those in the [college teaching]
professions to resist change unless it is change that
they tried to start.”!

How can we minimize software learning time?
Does it mean giving up TEX? On the contrary, I
return to the notion of encapsulated TEX. I believe
that most of TEX’s reputation for being hard to
learn and to use is related to high-level document
formatting. Most people first try out TEX on a small
document, such as a job résumé or a letter, that
would be trivial to type as a pure ASCII file where
the typist has direct control over the placement of
every character: the beginner soon discovers that

! The original quotation (Childs, et al., 1995,
p. 303) refers to the programming professions, but
one of the authors has assured me that the theorem
has broader validity.

heroic measures are necessary to override TEX’s

default behavior of reformatting paragraphs and

discarding all the redundant white space. But all
that is really necessary for most purposes is the
math mode of TEX.

12. We must create an environment that makes
it worthwhile for every student to learn basic
TEX math mode syntax. (Learning to create
complete TEX documents, however, may be left
as the student’s option.) Instructional material
for TEX beginners should be reorganized to
reflect this priority.

TEX math syntax is a very efficient and logical way
of typing in mathematical expressions, far superior
to raw SGML-type languages. Hunt-and-peck menu
systems are arguably easier to learn, but in the long
run excruciatingly slow to use. The TEX community
simply hasn’t succeeded in getting this message out
to the rest of the world.

In those fields where TEX has become the
standard method of producing serious documents,
its basic math syntax (“pidgin-TEX”) has also
become a rough-and-ready way of incorporating
math into e-mail and other informal pure-ASCII
communications. This is another major reason
why all students should learn this part of TEX.
My student reviewers are supposed to provide
constructive criticism of their peers’ papers and to
describe in their top-level reports the most serious
and systematic mathematical errors they observed.
Very often, what they write is something like “You
made a mistake in part (¢),” leaving the author and
me wondering what the mistake is. A big part of the
problem is the difficulty of discussing mathematics
with any specificity in an ASCII text message. More
generally,

13. All students (from the freshman year on) must
be enabled to discuss mathematics easily with
their teachers and with fellow students, in e-
mail, list servers, chat rooms, etc. Pidgin-TEX
should be promoted as a medium for this.

Of course, a more sophisticated system that made it
possible for the students to annotate one another’s
documents with electronic sticky-notes would be
even better.

Conclusions

From my standpoint as a university teacher, the
overwhelming issue right now is how to present
decently typeset mathematics on the Web. Presum-
ably, in the near future this means: (1) tools for
turning TEX input into MathML output, and (2)

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 165

Stephen A. Fulling

assuring universal availability (on college campuses,
at least) of browsers that can handle MathML.

Students should be able to create decent math-
ematical documents of their own and also to discuss
mathematics in e-mail, etc. TEX math mode pro-
vides a suitable language for the latter if we promote
it adequately.

The academic scientific community laid the
golden eggs for the exploding computer and soft-
ware industries. In that light, the lingering difficulty
of including mathematical notation in Web presen-
tations and in electronic mail amounts to a scandal.
It is up to the TEX Users Group to:

e solicit its membership’s contributions, at all
technical levels, toward solving this problem

e exert pressure on commercial developers (and
on agencies such as the W3 Consortium) to
steer developments in directions that meet
these needs?

e continually keep its membership and the rest
of the academic community informed of what
options are or will be available

e keep TEX in the mainstream of electronic
communications, so that the rest of the world
does not come to regard it as a relic of the '80s

Some links in lieu of references

Mathematics in the Foundation Coalition
(FC). A detailed report on the FC freshman
calculus program at Texas A&M University is at
http://www.math.tamu.edu/"fulling/fc/
A summary of its goals and practices appears as
http://www.math.tamu.edu/
“barrow/aseepaper.html
The Web pages for students to read in place of
textbook sections can be reached directly as
http://wuw.math.tamu.edu/
“fulling/coalweb/zzz.htm

where zxz = vectors, cenmon, diffs, or taylor,
for instance; all are accessible from the course
syllabus pages within the report.

Homework review. The home pages for my
sections of Mathematics 311 are at

http://calclab.math.tamu.edu/
“fulling/m311/

Instructions for the students are

2 T reiterate that I have avoided positive remarks
on various products because they would inevitably
have been incomplete and unfair.

http://calclab.math.tamu.edu/
“fulling/m311/s99/handout.dvi

for class procedures, and

http://calclab.math.tamu.edu/
“fulling/m311/s99/instruct.txt
for operating Sadowski’s homework review genera-
tor. Samples of the resulting student reports and
solutions can be seen at

http://calclab.math.tamu.edu/
“fulling/hwk/311s99/s012.html

and similar URLs (all accessible from the course
home pages). The rationale for the peer review
system is described in

http://calclab.math.tamu.edu/
“fulling/iawpaper.ps
(written at an early stage when all the communica-
tion was still on paper). These ideas were heavily
influenced by the collections in Connolly and Vilardi
(1989) and Sterrett (1990).

General issues. Primarily to introduce students to
TEX and to the problems of mathematical electronic
communication, I have set up three sets of links:

http://calclab.math.tamu.edu/
“fulling/zzxx.html

where xxr = webmath, webtex, and viewers.

webmath lists on-line references on the problem
of putting mathematical notation into Web pages
and e-mail, with links to proposed solutions, includ-
ing MINSE, TTH, Techexplorer, and latex2html.

webtex provides information about TEX, in-
cluding its derivatives with (allegedly) simpler input
interfaces, such as StarTex and Scientific Word. It
has links to CTAN and TUG’s home page.

viewers deals with viewers for .dvi files, which
people who do not aspire to write TEX themselves
nevertheless need to read TEX documents placed
on-line in the most compact and convenient format.

References

Adams, S. The Dilbert Principle. Harper—Collins,
New York, 1996.

Childs, B., D. Dunn, and W. Lively. Teaching CS/1
courses in a literate manner. TUGboat, 16(3),
300-309 (1995).

Connolly, P. and T. Vilardi, eds. Writing to Learn
Mathematics and Science. Teachers College Press,
New York, 1989.

Murphy, T. PostScript, QuickDraw, TgX. TUG-
boat, 12(1), 64-65 (1991).

Sterrett, A., ed. Using Writing to Teach Mathemat-
ics (MAA Notes No. 16). Mathematical Associa-
tion of America, Washington, 1990.

166 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

MathML: A Key to Math on the Web

Patrick D.F. Ion
Mathematical Reviews

P. O. Box 8604

Ann Arbor, MI 48107, USA
ionQ@ams.org

Abstract

As the Web gains in importance and as the needs of mathematical formalism on
the Web are beginning to be met by MathML, it is an opportune time to reflect
on the design decisions made by the W3C Math Working Group that resulted in
the verbose markup language for transport of math on the Web that MathML
turns out to be. The TEX community need not be frightened by the advent of
MathML but may learn to work in the Web environment it provides.

The presentation will describe some of the key aspects of MathML and ex-
plain how it has begun to be used (by August 1999 the support for MathML may
be expected to be much greater in a practical sense than it is now). Expected
future developments and roles will be commented upon.

Introduction

The Math Working Group! of the World Wide Web
Consortium? certainly believes that MathML, Math
Markup Language (Ion and Miner, eds., 1997), is a
key to math on the Web. It is a protocol for trans-
ferring mathematical knowledge, and for building
tools to manipulate it, which shows great promise.
There are already several implementations and tools
based on MathML. Maybe its greatest strength is
that MathML is a specification which is open to view
and has been adopted as a Recommendation by the
World Wide Web Consortium (W3C).

This contribution will discuss some of the con-
text in which MathML has been developed; some of
the design decisions that went into it will be illus-
trated in the live presentation.

History

In 1897, at the First International Congress of Math-
ematicians in Ziirich (Rudio, 1898) there were not
many talks.® Striking among their titles is “Uber
Pasigraphie, ihren gegenwartigen Zustand und die

pasigraphische Bewegung in Italien”.*

L http://www.w3c.org/Math, co-chairs: Angel L. Diaz
(1998-2000), Patrick D. F. Ton (1997-2000), Robert L. Miner
(1997-1998).

2 http://www.w3c.org.

3 I thank R. Keith Dennis for showing me his copy of the
proceedings in 1997.

4 “Pasigraphy, its present state and the pasigraphic move-
ment in Italy” (Schroder, 1898). Pasigraphy is an artificial in-

The presenter, Ernst Schroder, an algebraist
and logician from Karlsruhe® began his talk by say-
ing that if there were any topic that really belonged
at an International Conference of Mathematicians,
then it was pasigraphy. He was sure that pasigra-
phy would take its rightful place on the agenda of all
succeeding such conferences. Perhaps it is needless
to say it did not.

Schréoder then went on to disagree with the dis-
tinguished chair of the session, G. Peano,’ by saying
that he did not think that Leibniz’s problem of pro-
viding an algebra universalis, a symbolic calculus for
mathematics, had been solved. Peano (1858-1932)
had just begun to publish, in 1894, his four-volume
treatise intended to provide just that. It is here,
in fact, that Peano’s axioms for the natural num-
bers are to be found, along with axiomatizations and
highly symbolic representations for much of arith-
metic, algebra, geometry and calculus.

Schroder offered some of his own considerations
on the topic of universal symbolics for math as part
of logic. He favored a system, near that of C.S.
Peirce (1867), using eighteen special symbols.

It is clear that the progress of science in general,
and mathematics in particular, depends on there
being a representation of its findings external to

ternational language using characters (as mathematical sym-
bols) instead of words to express ideas.

5 Perhaps best known today from the so-called Schréder-
Bernstein theorem.

6 The Ttalian mathematician who can be considered leader
of the pasigraphic movement in Italy.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 167

Patrick D.F. Ion

individuals. In this way the evolving knowledge can
be shared. The standard reference work on the his-
tory of mathematical notation is by Florian Cajori
(1928/29).

The ontology of mathematics has changed over
the centuries, so what the objects of mathematics
are is by no means a given. Very roughly speaking,
and seen from the present day, for the early Greeks
math was geometry. Then came along a revolution
started by Descartes who put forward a successful
algebraic form of geometry through the introduction
of coordinates. Throughout this time what num-
bers were was really not up for discussion although
there were, for instance, differences drawn between
rational and irrational numbers, and later between
algebraic and transcendental numbers. At the end
of the last century and the beginning of this, a new
view held that all math had to be founded upon set
theory and logic. And now that is seen as not all
that satisfactory, so that categories, toposes, or the
new developments of mathematical logic are viewed
as fundamental.”

These remarks have been made because there
is an obvious sense in which the W3C Math Work-
ing Group is just trying to create a modern form of
universal symbolic language. It is not intrinsically
an easy task.

The W3C — World Wide Web Consortium

The advantage of MathML mentioned above, that
it is a public specification and a recommendation
adopted by the W3C, stems from the sort of organ-
isation the W3C is.

The W3C is a consortium of some 340 or so
organizational members,® mostly commercial enti-
ties. They include big computer and software com-
panies—such as IBM, Hewlett-Packard, Sun, Mi-
crosoft and Netscape, as well as smaller ones— and
others from, for instance, the big aircraft or electric-
ity industries— Boeing and Electricité de France, to
name two. In general, the W3C is an organization
joined by those who wish to understand and influ-
ence the development of the protocols and mecha-
nisms that control the functioning of the Web. The
W3C Director is Tim Berners-Lee, generally recog-
nized as the inventor of the Web. The W3C is fully
international in scope, with main offices in Cam-
bridge, Massachusetts, USA (MITLCS), in Grenoble,
France (INRIA) and in Tokyo, Japan (Keio U); it re-
ceives additional support from both DARPA and the
European Commission.

7 See the potted history in, say, a book by Godement
(1998).
8 http://www.w3.org/Consortium/Member/List

The W3C forms working groups (WG) to study
and produce recommendations on subjects concern-
ing the Web. These range from HTML, HyperText
Markup Language (Raggett and Jacobs, eds., 1998),
the basic markup language for the Web, to PICS, the
Protocol for Internet Content Specification (World
Wide Web Consortium, 1997), which allows people
to control access to pages based on content ratings.
A list of all the concerns of the W3C is available at
their main Web site mentioned above.

Particularly relevant to the present subject are
the working groups centered around XML, an acro-
nym from eXtensible Markup Language (Bray et al.,
1998) and XSL/CSS (eXtensible Style Language and
Cascading Style Sheets (Deach, 1999; Bos and Lie,
eds., 1999; Bos et al., 1998).

Members of the W3C may request representa-
tion on any WG of interest to them (one represen-
tative and possibly one alternate at most on a WG,
together entitled to one vote in deliberations) and
there may be invited experts from outside the W3C
in a WG, as deemed appropriate. The W3C tries to
work by consensus as much as possible. The lim-
itations on voting are there so that problems will
be sorted out on technical merit rather than being
subject to gross commercial pressures. There are
guidelines and procedures, including voting if nec-
essary, developed by the WG that deals with that
aspect of the W3C.

SGML, HTML and XML

The specification for which the W3C is best known
is HTML, presently at version 4.0. This was intro-
duced by Berners-Lee along with the linking and
transfer protocols of HT'TP, Hypertext Transfer pro-
tocol (Fielding etal., 1998). In the beginning this
was a language developed for a specific purpose,
and not necessarily consonant with any other stan-
dards. However, it was realised that a few changes
to HTML would make it a markup language obey-
ing the principles of SGML, Standard Generalized
Markup Language (International Standards Orga-
nization, 1986; van Herwijnen, 1994). SGML is an
ISO international standard that describes a way of
writing down document markup. It provides a very
general framework, both verbose and complicated to
use. There has been a lobby for some years trying
to push SGML standardization as a highly desirable
means for publishing production, which facilitates
document re-use amongst other things.

However, the difficulties in using SGML stan-
dards in practice meant that it was unthinkable that
those standards be taken straight over to the Web.
True, SGML adoption would have provided a great

168 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

wealth of possibilities for Web publishing. But a
Web browser would essentially incorporate a full
SGML parser and, worse still, it would have to deal
with the DSSSL, Document Style Semantics and
Specification Language (10179:1996(E), 1996) for ac-
tual display.

To use SGML strictly, every document should
be parsed against an explicit DTD (Document Type
Definition) to be sure that it is a correct instance of
some general class of documents and markup. This
would require a level of rigor in SGML Web page
programming in clear conflict with the use, and use-
fulness, of the Web. An SGML Web, it was feared,
would rapidly age. Pages might not be produced
because it would be too difficult to provide the level
of correctness required for complex SGML browsers
to function; also, standards would be difficult to ob-
serve in writing pages and in writing software, and
the increase of entropy toward a chaotic breakdown
of the Web would be rapid. Thus a cut-down, or
simplified, version of SGML began to be developed
for use with the World Wide Web, under the aegis
of the W3C.

XML is a restricted form of SGML as a spec-
ification for markup languages. The most obvious
thing unchanged is the tagging structure. As in
SGML, elements of the document are marked up
with tags, to form phrases like <footag>element
content<footag/> An element need not have any
explicit content, in which case it is of the form
<bartag />. There is a simple syntactic difference
from SGML: XML elements which are not containers
have tags ending with the tokens />. Then again,
in XML, markup has to be complete; it is not al-
lowed, as it can be in an SGML markup specifica-
tion, to shorten the markup by leaving out those
end tags which can be inferred as necessary because
some overall containing element has finished. For
instance, paragraphs have to ended explicitly with
a </p> and cannot be assumed to have done so just
because another one has started with a <p>.

The next important matter for the Web is that
the language design is intended to allow the process-
ing, at least to some reasonable level, of pages with-
out a declared DTD. An XML document can be well
formed without being an instance of some DTD, al-
though being well formed essentially means it would
be possible to construct a DTD which has the doc-
ument as a valid instance. So a browser which can
parse XML can be allowed to process a free-form
page, if XML syntax is respected.

There are many other technical differences from
SGML which allow XML parsers to be much easier

MathML: A Key to Math on the Web

to. Many simplifications have come out of years of
experience with SGML.

Again of great importance, perhaps more than
its technical quality, is that XML is a Recommenda-
tion of the W3C. The corporate members of W3C
will support its place on the Web. Browsers are
being made with with XML support (e.g., by both
Microsoft and Netscape). Tools, such as editors, are
being produced to enable XML document creation.
Associated specifications such as XSL and CSS for
formatting (for an overview, see W3C Style, 1999),
a DOM, Document Object Model (Apparao etal.,
1998) for the Web, the RDF, Resource Description
Framework (Lassila and Swick, eds., 1999) model
for providing metadata,’ as well as specifications for
name spaces, linking, database queries and many
other ancillary developments are underway at the
W3C, using XML. The fundamental HTML is be-
ing redone as XHTML (W3C HTMLWorking Group,
1999).

The W3C Math Working Group

It has been rather paradoxical that the mathemati-
cal formulae of science have been so difficult to rep-
resent on the Web. Tim Berners-Lee, after all, was
a scientist at CERN, a massive international center
of physics in Geneva, when he came up with what
became HTML and the Web.

In May 1997, the W3C chartered a Math Work-
ing Group to consider how to facilitate math on
the Web. Originally called the HTML-Math WG,
it contained representatives of diverse backgrounds.
There were people from computer corporations and
from publishing, computer algebra people'® and in-
vited experts from organizations not members!! of
the W3C.

Dave Raggett, the Math WG’s W3C staff con-
tact and author of the HTML 3.2 reference specifica-
tion, was himself an early proponent of adding some
math capabilities to HTML. In fact, there was some
confusion over math support following HTML 3.2
(Raggett, 1997). Books appeared with sections ex-
plaining simple extensions to HTML for math that
were little more than suggestions how something
might be done. The extensions were not in any
Recommendation accepted by the W3C. Recommen-
dations are issued only after a long careful review
process, including a period of six weeks during which

9 Also of importance to math on the Web, especially in
education, and for which there is an interest group.

10 1BM, Hewlett-Packard, Adobe, Elsevier Science, Wol-
fram Research, Maplesoft, SoftQuad, ...

11 American Mathematical Society, Geometry Center,
Stilo Technologies, (and later Design Science), ...

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 169

Patrick D.F. Ion

W3C members may vote for or against acceptance.
They normally follow several working drafts, which
are made available for public comment. It is a very
open process. If there is enough support from the
W3C members then a draft is put forward as a Rec-
ommendation. The math suggestions were dropped
because the matter needed more careful considera-
tion. But this shows the level of interest which was
latent in the community.

The Math WG’s original far-reaching objectives
were listed as follows:

1. is suitable for teaching and scientific communi-
cation;

2. is easy to learn and to edit by hand for ba-
sic math notation, such as arithmetic, polyno-
mials and rational functions, trigonometric ex-
pressions, univariate calculus, sequences and se-
ries, and simple matrices;

3. is well suited to template and other math edit-
ing techniques;

4. insofar as possible, allows conversion to and
from other math formats, both presentational
and semantic, such as TEX and computer al-
gebra systems. Output formats may include
graphical displays, speech synthesizers, comp-
uter algebra systems input, other math layout
languages such as TEX, plain text displays (e.g.,
VT100 emulators), and print media, including
braille. It is recognized that conversion to and
from other notational systems or media may
lose information in the process;

5. allows the passing of information intended for
specific renderers;

6. supportes efficient browsing for lengthy expres-
sions;

7. provides for extensibility, for example, through
contexts, macros, new rendering schemas or new
symbols; some extensions may necessitate the
use of new renderers.

The above goals were endorsed by an earlier group
meeting in October 1996 at the Boston W3C. Plainly
they have not all been accomplished yet but much
progress has been made. Point 2, ease of learning
and hand editing, at least, cannot be achieved di-
rectly with a satisfactorily general and expressive
markup language.

Many ideas were considered early on by the
WG. TgX is clearly important for communication of
mathematics nowadays. Why not just extend HTML
with a TEX-like syntax? That turned out not to be
simple at all. Finally, after much discussion, the WG
decided that it would develop a markup language
which accorded with XML. The reason is that it

was realized that general acceptance of a new math
specification would happen only if it embedded eas-
ily into the technology of the internet, which was
coming to be dominated by XML and its relatives.

MathML 1.0 is written as an XML application,
one of the first at more than a toy level. The Math
WG wanted to come up with something that re-
ally met the goal of facilitating the use of math on
the Web.

Many on the WG had considerable experience
with TEX and could consider it as a natural para-
digm for a math language for the Web. IBM too,
drawing on its extensive experience with Scratch-
pad and then Axiom, could have itself proposed a
language for math. Similarly, Wolfram Research
had Mathematica, a very rich language for express-
ing math in ASCII characters suitable for easy Web
transmission.

But there are disadvantages to such foundations
for math on the Web. A specification to be gener-
ally used for math communication should be pub-
licly developed and not proprietary. Math is almost
entirely treated as public property: one cannot, in
principle, patent mathematical facts. Agreement is
needed from a broad spectrum of interested parties
that the language provided is expressive enough for
their purposes, for instance, from several symbolic
algebra systems. Finally, a specification is more
likely to be deployed if those who will use it have
been involved in its development. It is also more
likely to be realistic if people who will implement it
have contributed to its development.

So the Math WG decided to fall in line with
the evolving standards of the Web. This was a deci-
sion with many implications for our later work and
not that easy to take. The primary goal was to cre-
ate something that would be powerful, usable and
adopted. And this aim has continued to drive the
WG throughout.

Input considerations

Next the WG set about making an XML application.
This had the unfortunate corollary that the markup
developed would not directly meet the need for an
easy input syntax for math on Web pages, not even
for simple math.

After heavy discussion, it was eventually real-
ized that the question of input styles was not one
that could be solved initially. There are too many
different communities of users of mathematical
formulas to satisfy them all. Making a lower-level
language, which input mechanisms could write, would
encourage development of tools which could be of
real help to the many not served by something as

170 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

complicated as TEX or WTEX sources. The keyboard
input could be accepted by applications tailored to
the needs of their user communities — high school,
research scientists, computer algebra users, ... In
fact, if a symbolic algebra system, or, for instance,
Microsoft Word aided by a template input system,
can write out MathML markup for equations, then
their users do not have to learn a new input envi-
ronment.

Several tools are already under development.
The makers of Mathematica and Maple have pledged
their intentions to support MathML in due course,
and Design Science has already announced that its
template editor, MathType 4.0, will write out Math-
ML (Topping, 1999). IBM’s techexplorer (Sutor and
Dooley, 1998) already accepts and writes out some
MathML in its currently released version.

Conversion of legacy documents

The WG chose a layered approach to facilitating
math on the Web. Once an expressive transport pro-
tocol is agreed upon then developers can set about
making their own compatible tools. In particular,
one can make converters of legacy documents into
editions using MathML, especially converters of ma-
terial encoded in TEX. Conversion will never be
completely automatic but there are several efforts
underway to provide converters. For instance, two
talks here will discuss the problems (Gurarie and
Rahtz, 1999; Lovell, 1999), and the American Math-
ematical Society, Society for Industrial and Applied
Mathematics and the Geometry Center have funded
an on-going project to produce an appropriate tool
to deal with the legacy from their TEX publishing
systems.

A very simple example

One of the first formulas to try in a new math system
is a quadratic equation. Looking closely at that can
show quite a lot. So consider a slightly interesting
equation'? and its encoding:

22 — 79241061 =0 . (1)
\begin{equation}
X2 - 79 x + 1061 = O\ .
\end{equation}

The KTEX is certainly simple. The equation num-
ber can be considered to have been provided by some
extra-mathematical mechanism. The MathML cod-
ing of this display seems verbose by contrast:

12 This quadratic has the nice property of delivering prime
numbers for integer values of z from 0 to 79; see Mollin (1997).

MathML: A Key to Math on the Web

MathML presentation coding for equation (1)
<math mode="display">
<mrow>
<mrow>
<msup> <mi>x</mi> <mn>2</mn> </msup>
<mo>-</mo>
<mrow>
<mn>79</mn>
<mo>⁢</mo>
<mi>x</mi>
</mrow>
<mo>+</mo>
<mn>1061</mn>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mrow>
</math>

First, note that the punctuational period is not en-
coded here; this is intentional. The period, and its
space away from the equation, should be part of the
overall document, not part of the math. MathML
is for the math and not for the rest of the docu-
ment; TEX is a system that can handle both but
then tends to mix contexts, as here. TEX is also mis-
used when math mode is employed for special non-
mathematical layouts, just as HTML table mecha-
nisms are employed to do math. People should be
inventive but there is more to the semantics of the
situation than just the displayed form.'3

A mathematical expression is enclosed within
top-level tagging with <math>. Almost all the tag
names are lowercase; XML is case-sensitive and so a
choice was made for MathML. That this piece is to
be a “display” as opposed to “in-line” is expressed
by the value of an attribute of the math element, its
mode. The values for attributes must be specified,
and in quotes, in valid XML.

We see that each leaf of this parse tree, derived
from the expression for a quadratic equation, is ex-
plicitly labelled as to its element type. All elements
are explicitly tagged at start and finish. For math
the tagging of conventionally begins with an m but
that is really only a sop to mnemonics so that the
specification is easier to create. <mo>, <mi> and <mn>
mean math operator, identifier and number, respec-
tively; identifiers are the sort of thing conventionally
set in math italic (variables and so on); exactly what
numbers are could be a problem but essentially we

13 The period which follows the element tagged with <math
mode="display"> is in the text of the document. The pre-
ferred placement of it should be expressed in the accompany-
ing style sheet. How that is done I have not said and using
this method depends on style sheets being well implemented.
There is the fallback solution of including punctuation as text
insertions in math, as is common with TEX.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 171

Patrick D.F. Ion

are thinking of digit strings in some ordinary script.
<mrow> provides a grouping construction, which al-
lows an infix notation for operations; the operator
here is made explicit with the non-printing character
entity ⁢, which is useful for speech
rendering and line-breaking with continuation signs.
<msup> denotes a special element whose children will
be treated differently: the second is a superscript to
the first. Of course, the parse tree (fragment), and
thus the expression, is represented by the sequence
of tokens read in the ordinary manner with conden-
sation of the white space; the pretty-printing is for
this exposition.

All this markup provides enough information as
input to a screen renderer, or even to a composition
system, that it should be able to present the equa-
tion correctly. There are many other elements with
specialized functions. Let us look at the quadratic

formula
—b+ Vb% —4dac
T e)

which might be used to find roots of equation (1).
MathML presentation coding for equation (2)

<math mode="display">
<mrow>
<mi>x</mi> <mo>=</mo>
<mfrac>
<mrow>
<mrow> <mo>-</mo> <mi>b</mi> </mrow>
<mo>±</mo>
<msqrt>
<mrow>
<msup> <mi>b</mi> <mn>2</mn> </msup>
<mo>-</mo>
<mrow> <mn>4</mn>
<mo>⁢</mo> <mi>a</mi>
<mo>⁢</mo> <mi>c</mi>
</mrow>
</mrow>
</msqrt>
</mrow>
<mrow>
<mn>2</mn>
<mo>⁢</mo> <mi>a</mi>
</mrow>
</mfrac>
</mrow>
</math>

Here we see new items: the fraction builder <mfrac>,
the square root <msqrt>, a new character entity
± (which is the plus or minus sign), and
⁢ again. To render <mfrac> and
<msqrt> a routine has to do some geometry, adjust-
ing lengths of lines to cover subexpressions and pro-
viding an appropriate size for the initial part of the

square root sign. MathML provides many schemas
for placement of symbols in their conventional math-
ematical relationships; it even extends TEX with,
for instance, built-in constructions of pre-super- and
pre-subscripts.

The entity ± suggests that a ren-
derer will have to have a whole series of fonts avail-
able to it containing representations of the charac-
ters—and there will be many of them if the whole
of mathematical usage is to be supported.

The Math WG works with the STIX Project set
up by the STIPUB group of publishers'* to identify
those characters in use in scientific publishing. It is
hoped that arrangements will be made to find places
for them in Unicode (Consortium, 1996); the Uni-
code Technical Committee is considering proposals
in this vein. Fonts, preferably publicly and freely
available, are then the next priority; STIPUB intends
to support their creation, and other people, particu-
larly Taco Hoekwater, are beginning to produce the
fonts already.

Presentation and content markup

The last considerations of the previous section bring
us back to the ideas mentioned at the start about
the significance of signs and the semantics of formu-
las. So far we have seen Presentation markup con-
cerned with capturing the two-dimensional layout of
formulas. MathML, because of the strong interests
of some of the Math WG members in symbolic com-
putation, attempts to provide a markup language
in which more of the semantics of math can be ex-
pressed; this is called Content markup. Thus the
corresponding Content markup for the two expres-
sions above is different (see the next column).

We see that equation (1) as a whole has been
identified as an equality relationship by the surround-
ing element <reln> and its first empty child element
<eq />. It is an equality between the result of a
function application, shown by <apply> and a num-
ber, identified as such by <cn>. The Content number
element <cn> has to be distinguished from the <mn>
we have already met; assumptions about it may be
made which may be useful to mathematics process-
ing systems. The type of function being applied is
shown by <plus />; it applies to a sequence of ele-
ments, two <apply>s and a number. The functions

14 STIPUB stands for “Scientific and Technical Informa-
tion Publishers,” a committee whose members include repre-
sentatives from several learned societies and publishers. They
meet from time to time to consider matters of mutual inter-
est. STIX stands for the working group they set up to consider
“Scientific and Technical Information eXchange” insofar as it
concerns the characters that should be in Unicode and a set
of fonts adequate to display them; see www.ams.org/stix/.

172 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

applied are <power/> and <minus/>, which are, re-
spectively, binary and unary functions.

MathML content coding for equation (1)
<math mode="display">
<reln>
<eq />
<apply>
<plus />
<apply>
<power />
<ci>x</ci>
<cn>2</cn>
</apply>
<apply>
<minus />
<apply>
<times />
<cn>79</cn>
<ci>x</ci>
</apply>
<ci>x</ci>
</apply>
<cn>1061</cn>
</apply>
<cn>0</cn>
</reln>
</math>

This alternative way of marking up the expression
is intended to assist computer algebra systems and
search engines looking for mathematical expressions
given the semantics. Content markup does not nec-
essarily bring with it an immediately clear visually
rendered form; at the very least, transformation rules
need to be supplied to produce an appropriate Pre-
sentation markup. MathML has made provision for
the addition of assertions about preferred presenta-
tion of Content markup and about the content se-
mantics of Presentation markup. They can be used
together but it is naturally not that easy to combine
the two.

For the quadratic formula we have something
similar: a relationship of equality between results
of a cascade of function applications (see the next
column). The entity ± occurs again but
this time made into a function label by being the
content of an <fn> element. Otherwise, the only new
items are function labels: <divide />, <times />.

In an attempt to allow the capture of much of
the semantics of elementary math, some 75 or so
Content elements are provided in MathML. This
number may change during the revision of Math-
ML to version 2.0, which the present Math WG is
undertaking. There remains discussion as to how
best to capture content semantics and how much
to include. In fact, the next version has to include

MathML: A Key to Math on the Web

extension mechanisms, for presentation and content
markup, and for symbols. so the users may extend
the language to cover what was not thought of. The
watchword thus far has been what is known in the
US as K-14 math education.'®

MathML content coding for equation (2)

<math mode="display">
<reln>
<eq />
<ci>x</ci>
<apply>
<divide />
<apply>
<fn><mo>&PlusMinus ;</mo></fn>
<apply>
<minus />
<ci>b</ci>
</apply>
<apply>
<root />
<apply>
<minus />
<apply>
<power />
<ci>b</ci>
<cn>2</cn>
</apply>
<apply>
<times />
<cn>4</cn>
<ci>a</ci>
<ci>c</ci>
</apply>
</apply>
<cn>2</cn>
</apply>
</apply>
<apply>
<times />
<cn>2</cn>
<ci>a</ci>
</apply>
</apply>
</reln>
</math>

Conclusion

Looking at these simple examples only scratches the
surface of a markup language with about 150 prim-
itive elements and ten times that many identified
primitive character entities. The devil is in the

15 K-14 means two college years beyond Kindergarten
through grade 12 in the US educational system. This is not
an exact range specified by any educational norms. The final
level may correspond in Europe to matters covered in lycée,
Gymnasium or college, say.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 173

Patrick D.F. Ion

details, as usual. Examples of formulas can be dis-
cussed much faster when speaking in front of over-
heads than on the printed page.

The WG is issuing a corrected version, Math-
ML 1.01, in July 1999 and will provide a major revi-
sion and extension, MathML 2.0, by February 2000.
Better integration with all the new standards from
W3C will be part of version 2.0 and extensibility
issues will be further addressed.

In the meantime, the promising new develop-
ment is that the largest browser companies are be-
ginning to implement MathML rendering in an es-
sentially native way. Up to the present the best dis-
play of MathML with a browser has been with the
Java plug-in WebEQ (which also has an associated
equation editor), or with the W3C’s testbed browser
Amaya. The Math WG is also working on providing
a test suite to verify compliance with the specifica-
tion issued and to help those who build tools using
MathML. There is a great deal of activity of Math-
ML development in process.

Acknowledgements

The activity of a W3C Working Group is very much
a collaborative one. Aside from the numerous peo-
ple who have expressed their views on how math
should be on the Web, I would like very much to
thank all the members of the W3C Math WG —
Stephen Buswell, David Carlisle, Stéphane Dalmas,
Stan Devitt, Ben Hinkle, Angel Diaz, Sam Dooley,
Stephen Hunt, Roger Hunter, Doug Lovell, Robert
Miner, Barry MacKichan, Ivor Philips, Nico Pop-
pelier, T.V. Raman, Dave Raggett, Murray Sargent
IIT, Neil Soiffer, Paul Topping, Stephen Watt, the
current members, and the past members, Stephen
Glim, Brenda Hunt, Arnaud Le Hors, Bruce Smith,
Robert Sutor, Ron Whitney, Lauren Wood, Ka-Ping
Yee, Ralph Youngen, for the pleasure and stimu-
lation of working with them. Together they have
achieved something very worthwhile.

In addition, we are all very grateful to Barbara
Beeton for her stalwart efforts in trying to get the
characters of math into Unicode, and thus onto the
Web. And I am grateful to the American Mathema-
tical Society for supporting my efforts here, and to
the THES for superlative conditions during a long
visit there.

References

Apparao, V., S. Byrne, M. Champion, S. Isaacs,
I. Jacobs, A. L. Hors, G. Nicol, J. Ro-
bie, R. Sutor, C. Wilson, and L. Wood,
eds. “Document Object Model (DOM) Level 1

Specification”. Technical report, World Wide
Web Consortium, http://www.w3c.org/TR/
REC-DOM-Level-1-19981001, 1998. The latest
version of DOMI is available at http://www.
w3c.org/TR/REC-DOM-Level-1.

Bos, B., H. W. Lie, C. Lilley, and I. Jacobs,
eds. “CSS, level 2 Recommendation”. Techni-
cal report, World Wide Web Consortium, http:
//www.w3c.org/TR/REC-CSS2-19990512, 1998.
The latest version of CSS2 is available at http:
//www.w3c.org/TR/REC-CSS2.

Bos, B. and H. W. Lie, eds. “CSS, level 1
Recommendation”. Technical report, World
Wide Web Consortium, http://www.w3c.org/
TR/REC-CSS1-19990111, 1999. The latest ver-
sion of CSS1 is available at http://www.w3c.
org/TR/REC-CSS1.

Bray, T., J. Paoli, and C.M. Sperberg-McQueen,
eds. “Extensible Markup Language (XML) 1.0.”.
1998. The latest version of XML is available at
http://www.w3c.org/TR/REC-xml.

Cajori, Florian. A History of Mathematical Nota-
tion. Open Court Publishing, La Salle, Illinois,
1928/29. 2 vols. Reprinted (Cajori, 1993).

Cajori, Florian. A History of Mathematical Nota-
tion. Dover, New York, 1993. 2 vols. printed to-
gether.

Deach, Stephen, ed. “Extensible Stylesheet Lan-
guage (XSL) Specification”. Technical report,
World Wide Web Consortium, http://www.
w3c.org/TR/1999/WD-xs1-19990421/, 1999.
The latest version of the XSL Working Draft is
available at http://www.w3c.org/TR/WD-xsl.

DSSSL. Document Style Semantics and Specification
Language (DSSSL). ISO/IEC 10179:1996(E),
1996. Available at ftp://ftp.ornl.gov/pub/
sgml/WG8/DSSSL/.

Fielding, R., J. Gettys, J. Mogul, H. F. Nielsen,
T. Berners-Lee, et al.. “HTTP Version 1.1”. Tech-
nical report, Internet Engineering Task Force
(IETF), 1998.

Godement, Roger. Analyse Mathématique 1.
Springer, Berlin, Heidelberg and New York etc.,
1998.

Gurarie, Eitan and S. Rahtz. “WTEX to XML/Math-
ML (Workshop)”. TUGboat 20(3), 1999. (See
elsewhere in these Proceedings.).

Ion, Patrick D.F. and R. L. Miner, eds. “Math-
ematical Markup Language (MathML) 1.0
Specification”. Technical report, World Wide
Web Consortium, http://www.w3c.org/TR/
REC-MathML-19970430, 1997. The latest ver-
sion of MathML is available at http://wuw.w3c.
org/TR/REC-MathML.

174 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

ISO 8879:1986. Information Processing — Text and
Office Systems — Standard Generalized Markup
Language (SGML). International Standards
Organization, ftp://ftp.ornl.gov/pub/sgml/
WG8/DSSSL/, 1986. Consult http://www.iso.
ch/cate/d16387.html for information about
the standard.

Lassila, O. and R. Swick, eds. “Resource De-
scription Framework (RDF) Model and Syn-
tax Specification”. Technical report, World
Wide Web Consortium, http://www.w3c.org/
TR/REC-rdf-syntax-19990222, 1999. The lat-
est version of RDF is available at http://www.
w3c.org/TR/REC-rdf-syntax.

Lovell, Doug. “TEXML brings TEX to Web Future”.
TUGboat 20(3), 1999. (See elsewhere in these
Proceedings.).

Mollin, R.A. “Prime-producing quadratics”. Amer.
Math. Monthly 104(6), 529-544, 1997. MR
98h:11113.

Peirce, C.S. “Description of a Notation for the Logic
of Relatives”. Memoirs Acad. of Arts and Sci-
ences (Cambridge and Boston; N.S.) IX, 317-
378, 1867.

PICS. “Platform for Internet Content Selection
(PICS)”. http://www.w3c.org, 1997. For more
information see http://www.w3.org/PICS/.

Raggett, D., A. Le Hors and I. Jacobs, eds.
“HyperText Markup Language (HTML) 4.0
Specification”. Technical report, World Wide
Web Consortium, http://www.w3c.org/TR/
REC-htm140-19980424, 1998. The latest version
of HTML 4.0 is available at http://www.w3c.
org/TR/REC-htm140.

Raggett, D., ed. “HTML 3.2 Reference Specifica-
tion”. Technical report, World Wide Web Con-
sortium, http://www.w3c.org/TR/REC-htm132,
1997. The latest version, HTML 4.0, is available
at http://www.w3c.org/TR/REC-html140.

MathML: A Key to Math on the Web

Rudio, Ferdinand, 1856-1929., editor. Verhandlun-
gen des ersten internationalen Mathematiker-
Kongresses in Ziirich vom 9. bis 11. August 1897
(Congrés International des Mathématiciens;
International Congress of Mathematicians),
Leipzig. B.G. Teubner, 1898.

Schroder, (Friedrich Wilhelm Karl) Ernst, 1841-
1902. “Uber Pasigraphie, ihren gegenwartigen
Zustand und die pasigraphische Bewegung in
Italien”. In Verhandlungen des ersten interna-
tionalen Mathematiker-Kongresses, pages 147—
162. 1898.

Sutor, Robert S. and S. S. Dooley. “TEX and
KTEX on the Web via IBM techexplorer”. TUG-
boat 19(2), 157-161, 1998.

Topping, Paul R. “Using MathType to Create TEX
and MathML Equations”. TUGboat 20(3), 1999.
(See elsewhere in these Proceedings.).

Unicode. The Unicode Standard: Version 2.0.
The Unicode Consortium, 1996. The specifi-
cation also takes into consideration the corri-
genda at http://www.unicode.org/unicode/
uni2errata/bidi.htm. For more information,
consult the Unicode Consortium’s home page at
http://wuw.unicode.org/.

van Herwijnen, Eric. Practical SGML. Kluwer Aca-
demic Publishers Group, Norwell and Dordrecht,
1994.

W3C HTML Working Group. “XHTML 1.0: The Ex-
tensible HyperText Markup Language; A Refor-
mulation of HTML 4.0 in XML 1.0”. Technical
report, World Wide Web Consortium, http://
www.w3.0rg/TR/1999/xhtm11-19990505, 1999.
This is a Working Draft; the latest version of
XHTML is available at http://www.w3c.org/
TR/xhtml1.

W3C Style. “Home page of the W3C Style Ac-
tivity”. http://www.w3.org/Style/Activity ,
1999. This includes XSL and CSS work.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 175

TEXML: Typesetting XML with TEX

Douglas Lovell

IBM Research

P.O. Box 704

Yorktown Heights, NY 10598
dcl@us.ibm.com

Abstract

XML, eXtensible Markup Language, is a simplified subset of SGML, which is fast
becoming a standard for content management on the internet.

TEXML is an XML vocabulary for TEX. A processor written in the Java
programming language translates TEXML-conforming XML into TEX. The pro-
cessor provides a document formatting solution for XML that leverages the rich
knowledge and capability built over many years in TEX.

This describes the TEXML document format and the processor, TEXMLatte,
that produces TEX source from TEXML markup.

XML: The future of the Web

The World Wide Web is moving toward a future in
which XML, not HTML, is the primary medium for
storing and delivering documents and data.

HTML is presentation markup for browsers. To-
gether with Cascading Style Sheets (CSS) it specifies
the type sizes and fonts, and layout of a document.

XML is a standard for defining and sharing data
on the Web, including Web content. Users of XML
may define vocabularies—sets of tags or element
names, such as “title,” “section,” “citation” and
attributes such as “id” —to identify elements and
structures in a document. With XML, organiza-
tions can develop markup which captures the struc-
tural and semantic properties of their documents
and data. Instead of writing, <H1>Typesetting
XML</H1> we can write, <title>Typesetting XML
</title>.

Trade organizations, companies, and scientific
or educational institutions may define and share XML
vocabularies to freely exchange data with specific
meaning. MathML (W3C, 1998), the vocabulary for
writing and exchanging mathematical formulas and
expressions, is one example.

In the commercial world, XML is a key technol-
ogy for the widespread implementation of rapid, ac-
curate, meaningful, automatic transactions and data
exchange on the internet.

What is XSL?

XSL, eXtensible Stylesheet Language, is a W3C draft
recommendation (XSLWorking Group W3C, 1998)
which began life as an XML vocabulary for type-

transformation
for presentation

T DSSSL

markup
standard

SGML
HTML—— l

content
vocabulary

XH%ML/XML\XiL

Figure 1: XML heritage

setting. XSL is influenced by the DSSSL standard
(ISO/1IEC, 1996).

DSSSL is an ISO standard for typesetting SGML.
The XSL effort began as a means for transforming
XML markup into standard presentation markup,
just as DSSSL did for SGML. A goal for XSL was to
write a shorter, more perspicuous standard in the
spirit of XML. Some of the key people who worked
on DSSSL are key people working on XSL.

XSL does two things for XML:

1. It provides a language for specifying transfor-
mations from one XML vocabulary into another.
The XSL specification calls this “Tree Construc-
tion.”

2. It defines a set of XML elements, called “format-
ting objects”, for encoding a typeset document
specification in XML.

Figure 1 diagrams the heritage of XML and XSL
from SGML and DSSSL. HTML is an SGML vo-
cabulary which is migrating to an XML vocabulary,
XHTML. XML is a content markup standard with
ancestry in SGML. XSL is a formatting and transfor-
mation standard for XML with ancestry in DSSSL.

176 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

<?xml version=’1.0’7>
<artist>

TEXML: Typesetting XML with TEX

<id>Weston</id>
<fullName>Edward Weston</fullName>
<lastName>Weston</lastName>
<firstName>Edward</firstName>
<birthYear>1886</birthYear>
<deathYear>1958</deathYear>
<portrait>Weston. jpg</portrait>
<bio>Weston was a photographer who pioneered the modern use of photography
as an art form in the United States.</bio>
<longQuotel>0One does not think during creative work, any more than one thinks
when driving a car. But one has a background of years - learning,
unlearning, success, failure, dreaming, thinking, experience, all

this - then the moment of creation, the focusing of all into the

moment. So I can make ’without thought,’ fifteen carefully

considered negatives, one every fifteen minutes, given material

with as many possibilities. But there is all the eyes have seen in

this life to influence me.</longQuotel>

<shortQuotel>My own eyes are no more than scouts on a preliminary search,
for the camera’s eye may entirely change my idea.</shortQuotel>
<shortQuote2>Ultimately success or failure in photographing people depends
on the photographer’s ability to understand his fellow man.</shortQuote2>

<soundQuote>Weston.wav</soundQuote>
</artist>

Figure 2: XML markup describing an artist

Figure 2 shows a sample of some XML markup
describing an artist, taken from an application for
an art museum. For more about XML see IBM /XML
(1999) and W3C (1999).

What is TEXML?

TEXML is an XML vocabulary for representing TEX
source. It is a medium for transforming any XML
data into a document which can be typeset with
the TEX program. TEXML represents the TEX com-
mands, control symbols, and \specials as XML el-
ements. Figure 3 shows the markup of Figure 2 rep-
resented in TEXML.

The potential for TEX and XML

XML makes TEX a potential universal typesetting
back-end for markup in a way it never achieved for
SGML. There is an opportunity for TEX to marry
itself to XML, the future of the WWW, and become
a predominant technology for typesetting.

TEX has many advantages. It has an estab-
lished, stable implementation and user base. It has
a rich body of knowledge and experience captured
in its macro packages and styles. It can typeset just
about anything.

The missing piece is a small implementation of
TEX in the Java programming language which can
be plugged into a browser or executed on a server;
however, much of KTEX can be displayed by IBM
techexplorer (Sutor and Diaz, 1998).

The enabling technologies now available are TEX-
ML and XSL, with platform-specific implementations
of TEX or with the IBM techexplorer plug-in for an
HTML browser.

XSL Tree Construction. The transformation part
of XSL has been moving rapidly toward completion
as a W3C recommendation. There are many imple-
mentations of the XSL transformation rules. In the
process, people have found uses for XSL transforms
far beyond producing typeset documents.

There are numerous web servers busily trans-
forming XML into HTML using XSL style sheets. Mi-
crosoft is supplying the transform as a dynamic link
library in their operating system. The Microsoft In-
ternet Explorer Web browser (v.5) can accept XML
data, apply an associated XSL transform, and dis-
play the result. Organizations use XSL style sheets
to transform electronic data from another organiza-
tion into a form suitable for internal use.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 177

Douglas Lovell

<TeXML>
<cmd name="documentclass">
<parm>article</parm>
</cmd>
<cmd name="title">
<parm>Edward Weston</parm>
</cmd>
<env name="document'">
<cmd name="maketitle"/>
<cmd name="sectionx">
<parm>Some biographical information</parm>
</cmd>
Edward Weston
was born in
1886.
Weston
lived until
1958.
<cmd name="par"/>
Weston was a photographer who pioneered the modern use of photography
as an art form in the United States.
<cmd name="sectionx">
<parm>Some short quotes from Weston</parm>
</cmd>
<env name="enumerate">
<cmd name="item"/>
‘‘My own eyes are no more than scouts on a preliminary search,
for the camera’s eye may entirely change my idea.’’
<cmd name="item"/>
‘‘Ultimately success or failure in photographing people depends
on the photographer’s ability to understand his fellow man.’’
</env>
<cmd name="sectionx">
<parm>A longer quote</parm>
</cmd>
<env name="quote">
‘‘One does not think during creative work, any more than one thinks
when driving a car. But one has a background of years - learning,
unlearning, success, failure, dreaming, thinking, experience, all
this - then the moment of creation, the focusing of all into the
moment. So I can make ’without thought,’ fifteen carefully
considered negatives, one every fifteen minutes, given material
with as many possibilities. But there is all the eyes have seen in
this life to influence me.’’
</env>
</env>
</TeXML>

Figure 3: TEXML markup derived from the XML of Figure 2

178 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

TEXML: Typesetting XML with TEX

<?xml version="1.0"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xs1">

<xsl:template match="artist">
<TeXML>
<cmd name="documentclass"><parm>article</parm></cmd>
<cmd name="title">
<parm><xsl:apply-templates select="fullName"/></parm>
</cmd>
<env name="document">
<cmd name="maketitle"/>
<cmd name="sectionx">
<parm>Some biographical information</parm>
</cmd>
<xsl:apply-templates select="birthYear"/>
<xsl:apply-templates select="deathYear"/>
<cmd name="par"/>
<xsl:apply-templates select="bio"/>
<cmd name="sectionx">
<parm>Some short quotes from
<xsl:apply-templates select="lastName"/>
</parm>
</cmd>
<env name="enumerate'">
<cmd name="item"/>
¢‘<xsl:apply-templates select="shortQuotel"/>’’
<cmd name="item"/>
¢‘<xsl:apply-templates select="shortQuote2"/>’’
</env>
<cmd name="sectionx">
<parm>A longer quote</parm>
</cmd>
<env name="quote">
¢‘<xsl:apply-templates select="longQuotel"/>’’
</env>
</env>
</TeXML>
</xsl:template>

<xsl:template match="birthYear">
<xsl:apply-templates select="//fullName"/>
was born in

<xsl:apply-templates/>.

</xsl:template>

<xsl:template match="deathYear">
<xsl:apply-templates select="//lastName"/>
lived until

<xsl:apply-templates/>.

</xsl:template>

</xsl:stylesheet>

Figure 4: XSL markup to transform XML for an artist into TEXML

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 179

Douglas Lovell

<?xml version=’1.0’7>

<!--x DTD

for translation to TeX *—->

<!ENTITY % content "#PCDATA|cmd|env|ctrl|spec">

<!ELEMENT TeXML (%content;)*>

<!ELEMENT cmd (opt|parm)*>

<VATTLIST cmd name CDATA #REQUIRED>
<!ELEMENT opt (#PCDATA|cmd|ctrl|spec)*>
<!ELEMENT parm (#PCDATA|cmd|ctrl|spec)*>
<!ELEMENT env (Y%content;)x*>

<VATTLIST env name CDATA #REQUIRED>

<VATTLIST
<VATTLIST

<!ELEMENT
<VATTLIST

<!ELEMENT

<!ELEMENT

env begin CDATA #IMPLIED>
env end CDATA #IMPLIED>

ctrl EMPTY>
ctrl ch CDATA #REQUIRED>

group (%content;)x*>

spec EMPTY>

<!ATTLIST spec cat (escl|bgleglmshift|align|parm|sup|sub|comment|tilde) #REQUIRED>

Figure 5: The DTD for TEXML

XSL has thus become an important tool for XML
transformation. It is on the verge of becoming a de
facto standard for XML transformations.

Figure 4 shows an XSL stylesheet that will trans-
form the artist XML example in Figure 2 into the
TEXML example in Figure 3.

XSL Formatting Objects. The formatting ob-
jects (FO) part of XSL is progressing more slowly.
The specification of FO elements and the structure of
those elements is far behind the transformation part
as of this writing (March, 1999). This means that,
while there is a “standard” way to transform XML
into HTML, there is presently no standard way to
produce typeset output from XML. TEXML was de-
veloped partly out of impatience to fill this gap left
by the lagging FO effort. It marries the transforma-
tion function of XSL with the typesetting function
of TEX. It provides a means for typesetting XML
documents.

How to use TEXML
TEXML consists of two parts. The first part is the

document type declaration (DTD), which defines XML

that is valid TEXML. The second part is the trans-

lator program TEXMLatte, written in the Java pro-
gramming language. TEXMLatte reads a valid TEX-
ML file and writes a proper TEX file. The TEXML
DTD appears as Figure 5.

The basic template for a TEXML document is:

<?xml version="1.0"7>
<TeXML>

. your content here ...
</TeXML>

The following sections describe how the DTD
and TEXMLatte interact, and how to code TEX in
TEXML.

Encoding commands. The TEXML <cmd> ele-
ment encodes TEX commands.

1. To write a command with no parameters, such
as \par, write <cmd name="par"/>.

2. To add parameters to a command, add <parm>
children® to the <cmd> element. TEXMLatte
places <parm> children within TEX groups, that
is, curly braces.

1 XML elements embedded within an enclosing element
are often referred to as that element’s “children,” e.g.
<parent><child/></parent>.

180 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

TEXML TEX
% \%{}
& \&{}
{ \{
} \}
| 1
\ \backslash
$ \${}
\#{}
- _{}
) \char ‘\"{}
N \char ‘\"{}
< $<3
> $3

Figure 6: Characters escaped by TEXMLatte

3. To add options to a command, add <opt> chil-
dren to the <cmd> element. TEXMLatte places
<opt> children within square braces, as ITEX
style options.

As an example, the TEX code
\documentclass[12pt]{letter}
will look like this in XML:

<cmd name="documentclass">
<opt>12pt</opt>
<parm>letter</parm>
</cmd>

The TEXML DTD allows free-form text, com-
mands, control symbols, and \specials as children
of <parm> and <opt> elements. It does not al-
low <parm> or <opt> elements to nest, except as
children of a nested <cmd>. It does not allow envi-
ronments within a <parm> or an <opt>.

Encoding control symbols. The <ctrl> element
encodes a control symbol, such as <ctrl ch=" "/>
for a control space. Use the <cmd> element to en-
code control words.

Encoding specials. TEXMLatte “escapes” any
and all TEX \specials which occur in the XML
source. This means that backslashes, percent signs,
dollar signs, and the like are properly escaped by the
time they get to TEX. The writer of XML will not
intend those characters to be special. Figure 6 gives
a full list of the characters escaped by TEXMLatte,
along with their replacement text.

Use the <spec> element to encode any TEX
\specials when you really want them to occur as
\specials in the TEX file output by TEXMLatte.

The <spec> element is always empty; that is,
it never has anything within it. Encode the category

TEXML: Typesetting XML with TEX

description ch attribute | output
escape character | esc \
begin group bg {
end group eg }
math shift mshift $
alignment tab align &
parameter parm #
superscript sup B
subscript sub _
tilde tilde -
comment comment %

Figure 7: <spec> “ch” attribute values

of the special from Figure 7 in the required “ch”
attribute (e.g. <spec ch="bg"/>). The translator
will output the character indicated in the table. It
is possible to foil this by changing the category of
the character output by the translator, so beware.

End-of-line characters (TEX category 5) are treat-
ed as space by XML. TEXMLatte substitutes a space
(TEX category 10) character for the end-of-line char-
acter. There is no way to encode the end-of-line
character in TEXML. Paragraph breaks must be
coded with <cmd name="par"/>.

There is no need to encode the ignored charac-
ter (TEX category 9). If it is to be ignored, there
is no reason to put it in. The same is true of the
invalid character (TEX category 15).

Encoding environments. The element <env> is
a convenience for expressing I4TEX environments.
To have TEXMLatte output:

\begin{document}

\end{document}
we write in TEXML:

<env name="document">

</env>
The <env> element is not strictly required. It is
supplied because it correctly captures in XML the
spirit of an environment: it opens a context which
is later closed. It is also much more convenient to
use than the alternative method, using the <cmd>
element:

<cmd name="begin">

<parm>document</parm>
</cmd>

<cmd name="end">
<parm>document</parm>
</cmd>

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 181

Douglas Lovell

TEXMLatte supplies the default values, “begin”
for the begin attribute, and “end” for the end at-
tribute of an <env>. If you have an environment
which uses a different convention for the begin and
end commands you will specify the “begin” and “end”
attributes. For example, the following produces an
environment that begins with \s{t} and ends with

\e{t}.

<env name="t" begin="s" end="e">
ET phone home!
</env>

Any TEXML content may appear within an environ-
ment.

Encoding groups. The <group> element is a con-
venience for encoding groups.

TEXMLatte will supply an open brace at the
beginning, and a close brace at the end of the group.
The TgX scrap, {\it italics} may appear as
<group><cmd name="it"/>italics</group>.

This is much easier to write than

<spec cat="bg"/>
<cmd name="it"/>
italics

<spec cat="eg"/>

There is some technical advantage as well as
convenience. The <group> element allows the XML
parser to catch any missing close brace by the ab-
sence of the close group (</group>). XML cannot
detect a missing <spec cat="eg"/>.

Any TEXML content may appear within a group.

Conclusion

XML is taking the world by storm. IBM is com-
mitted to making XML a viable and widely adopted
standard for engaging in electronic commerce and
publishing on the internet.

IBM’s TEXML provides an immediate solution
for typesetting any XML content. It positions TEX
as a potential typesetting back-end for internet pub-
lishing and electronic commerce applications.

Figure 8 displays the TEX resulting from pro-
cessing the XML of Figure 3 with TEXMLatte.

A How to get TEXML

TEXML is available for download from the IBM Al-
phaWorks website:
http://wuw.alphaworks.ibm.com
Look for TeXML. You will find full source, instruc-
tions, and examples at the site.
You will need the following in addition to the
files provided there:

An XSL implementation. We have used the Lo-
tus implementation, which you may download
from the IBM AlphaWorks web site. Look for
LotusXSL. You will find references to more im-
plementations at the W3C XSL website:

http://www.w3.org/Style/XSL/

A JAVA run-time implementation. You will find
these at the JavaSoft website:

http://www. javasoft.com
Look for Java runtime under products.

An XML parser. TEXMLatte uses the XML4J
parser available from the IBM AlphaWorks web
site. Look for xm14j.

A BTEX implementation. You will find referen-
ces to these at the TEX Users Group website:
http://www.tug.org/

References

IBM/XML. “IBM Answers your XML Questions”.
1999. See http://www.ibm.com/xml/.

ISO/IEC. “Information technology — Processing
languages— Document Style Semantics and
Specification Language (DSSSL)”. International
Standard ISO/IEC 10179:1996(E), International
Standards Organization, 1996. See http:
//www.oasis-open.org/cover/dsssl.html.

W3C. “Extensible Markup Language (XML) Ac-
tivity”. 1999. See http://www.w3.org/XML/
Activity.html.

W3C, MathML Working Group. “Mathemati-
cal Markup Language (MathML) 1.0”. W3C
Recommendation REC-MathML-19980407,
W3C, 1998. See http://www.w3.org/TR/
REC-MathML-1980407 .html.

XSL Working Group W3C. “Extensible
sheet Language (XSL) Version 1.07. W3C
Working Draft WD-xsl-19981216, W3C,
1998. See http://www.w3.org/TR/1998/
WD-xs1-19981216.html.

Sutor, Robert S. and A. L. Diaz. “IBM techexplor-
er: Scientific Publishing for the Internet”. In
Proceedings of the FuroTpX’98 Conference, St.
Malo, France, volume 28/29, pages 295-308.
1998. Also avail. at:
http://www.gutenberg.eu.org/pub/
GUTenberg/publications/publis.html.

Style-

182 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

TEXML: Typesetting XML with TEX

\documentclass{article}
\title{Edward Weston}
\begin{document}

\maketitle

\section*{Some biographical information}
Edward Weston

was born in

1886.

Weston

lived until

1958.

\par

Weston was a photographer who pioneered the modern use of photography
as an art form in the United States.
\section*{Some short quotes from Weston}
\begin{enumerate}

\item

‘‘My own eyes are no more than scouts on a preliminary search,

for the camera’s eye may entirely change my idea.’’

\item

‘‘Ultimately success or failure in photographing people depends

on the photographer’s ability to understand his fellow man.’’
\end{enumerate}

\section*{A longer quote}
\begin{quote}

‘‘One does not think during creative work, any more than one thinks
when driving a car. But one has a background of years - learning,
unlearning, success, failure, dreaming, thinking, experience, all
this - then the moment of creation, the focusing of all into the
moment. So I can make ’without thought,’ fifteen carefully
considered negatives, one every fifteen minutes, given material
with as many possibilities. But there is all the eyes have seen in
this life to influence me.’’

\end{quote}
\end{document}

Figure 8: The TEX produced by TEXMLatte using the XML of Figure 3

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

183

Using MathType to Create TEX and MathML Equations

Paul Topping
Design Science, Inc.
4028 Broadway

Long Beach, CA 90803
USA
pault@mathtype.com
www.mathtype.com

Abstract

MathType 4.0 is the latest release of Design Science’s interactive mathematical
equation editing software package, the full-featured version of the Equation Editor
applet that comes with Microsoft Word. Its completely re-architected translation
system should be of particular interest to the TEX and MathML communities.
MathType can be used as an aid to learning TEX, as a simpler interface for en-
tering equations into a TEX authoring system, or as part of a document conversion
scheme for journal and book publishers.

After the introduction, a simple translation example is given to show how
its Translator Definition Language (TDL) is used to convert a MathType equa-
tion to TEX. This is followed by an introduction to MathML and MathType’s
MathML translators are discussed. Finally, some of the possibilities for creating
translators for special purposes is mentioned, along with discussion on how Math-
Type’s translation facilities can be used as component of a more comprehensive

document conversion process.

Introduction

MathType is an interactive tool for authoring math-
ematical material. It runs on Microsoft Windows
and Apple Macintosh systems (a Linux implemen-
tation is under consideration). Readers may also
be familiar with MathType’s junior version, Equa-
tion Editor, as it is supplied as part of many personal
computer software products, such as Microsoft Word
and Corel WordPerfect.

Unlike TEX, MathType does not process entire
documents. Rather, it is used in conjunction with
other products, such as word processors, page layout
programs, presentation programs, web/HTML edi-
tors, spreadsheets, graphing software, and virtually
any other kind of application that allows insertion
of a graphical object into its documents. MathType
equations can even be inserted into database fields
with most modern database systems!

MathType has a simple but powerful direct-
manipulation interface for creating standard math-
ematical notation. Instead of entering a computer
language, such as TEX, the MathType user combines
simple typing with the insertion of “templates”. For
example, inserting a fraction template results in a
fraction bar with empty slots above and below for

184

e Fomd Shie oe Brvkewrwer Help
Ti- FRy- -|--=IJ.-
[l 3 K] Wik
.i-:.-l-;lf'l'

oty 1o B | Agps

ol |

i
2
]
-
=
ML

=
=

| lm [|apEate]
wls|r]s u[n'|-|i-]|ll'"::r-'l|-:+|-.u|
T e

140 41 T

—b+ Vb= 4ac
2d

Fisgkaca: Tl irmmgral = ris s Lol (Do =L W)

Figure 1: The MathType Window

the numerator and denominator. The contents of
each slot are filled in by the user by more typing
and inserting of templates. The displayed equation
is reformatted as the user types and spacing is added
automatically (although spacing may be explicitly
overridden). Some find this interface to be simpler
than direct TEX input as there are no keywords to

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Using MathType to Create TEX and MathML Equations

remember and, most importantly, no possibility of
syntax errors.

One common complaint heard from TEX users
upon first seeing MathType’s user interface is that
one must use the mouse for everything. Whereas
mouse support is an important part of MathType’s
user interface (as with virtually all Windows and
Mac applications), MathType 4.0 has keyboard meth-
ods for performing all of its commands. Also, users
may assign keystrokes to commands in any kind of
mnemonic scheme they care to invent. The ability to
assign a keystroke to an arbitrary math expression
is analogous to TEX’s macro facility.

Although a thorough examination of MathType
is beyond the scope of this paper, here are some of
its most important features:

e Any national language characters that the host
operating system allows may be inserted into
math, including Asian characters.

e MathType’s internal representation of charac-
ters is Unicode,! extended via its Private Use
area to cover more of the characters that ap-
pear in mathematical notation. We call this
MTCode. A user-extendable database of math
font-to-MTCode mappings is used to relate char-
acters entered to knowledge used in line format-
ting, as well as translation.

e A basic set of mathematical fonts (Roman,
Greek, italics, Fraktur, blackboard bold, and
many mathematical symbols) is included. Math-
Type can also make use of any PostScript Type 1
or TrueType font available via the operating
system.

e MathType also includes a translation system for
converting mathematics entered in its editing
window to virtually any text-based language.
This translation system is the chief subject of
this paper. In particular, it includes translators
for several flavors of TEX and MathML.

MathType’s translation facilities

MathType has had a TEX translator for many years
that allows the user to copy all or part of an ex-
pression onto the clipboard in the TEX language,
ready to be pasted into a document. However, un-
til version 4.0, it had two important limitations: it
could only generate plain TEX and the user had no
control over the TEX fragments generated for par-
ticular symbols and templates. MathType 4.0 fea-
tures a complete re-design of the translator mecha-
nism. The translation of a MathType expression is

I Unicode is a standard for encoding characters. See www.
unicode.org for information.

controlled by a translator definition file, a text file
containing a simple translation rule language that
allows a fragment of the target language to be asso-
ciated with each of MathType’s many symbols and
templates. Although the chief motivation for its de-
velopment was TEX translation, it can also be used
to convert MathType equations to other languages,
such as MathML and those specified by the math
parts of various SGML-based document languages.

MathType is supplied with translator definition
files for plain TEX, AMS-TEX, BTEX, AAS-BTEX,
and four MathML variations. These can be cus-
tomized for specific applications or translators for
other mathematical languages can be written by start-
ing from scratch. Also, commands are available in
Microsoft Word that will allow a Word document
containing MathType (or Equation Editor) equations
to be converted to TEX or any other language sup-
ported by a translator. MathType’s translation fa-
cilities can be used as an aid to learning TEX, as a
simpler interface for entering equations into a TEX
authoring system, or as part of a document conver-
sion scheme for journal and book publishers.

The MTCode character encoding

Although the designers of Unicode have attempted
to include many mathematical characters, their at-
tempt falls somewhat short. In fairness to them,
incorporating all the characters of the many natu-
ral languages in use in the world must have been an
overwhelming task.

There is an attempt by some in the mathemat-
ical community to get the Unicode Consortium to
add the missing mathematical characters to a future
version of Unicode. If and when they are successful,
we will probably adopt it to replace MTCode.

MathType uses each character’s MTCode value
as a key into a database of character information
that, for each character, includes a human-readable
description, an indicator of its role in mathematical
notation (e.g. variable, binary operator), and infor-
mation used in the process of choosing an appropri-
ate font to render it on screen and printer. Most
importantly, a character’s MTCode value is an in-
dex into tables of translation strings in MathType’s
translation system.

We will use the terms MTCode and Unicode
interchangeably in the remainder of this paper.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 185

Paul Topping

The translation system from a user’s
perspective

The basic scenario for using MathType to aid in the
creation of a TEX document is to run it simultane-
ously with your favorite TEX editor. The process is
this:
e whenever an equation is needed, the MathType
window is brought to the front;

e the equation is created in the MathType win-
dow;

e the equation is selected and copied to the clip-
board, a process which invokes the previously
selected translator;

e the TEX editor is brought to the front;

e the TEX code for the equation is pasted into the
document.

Editing to correct mistakes is performed by re-
versing this process, pasting the TEX code (along
with a comment containing a compressed form of
MathType’s internal representation) back into a
MathType window, and then repeating the above
process once the corrections have been made.

At the beginning of such a document creation
and editing session, the user must select one of Math-
Type’s translators. This is done via the Translators
dialog, which presents a list of all the translators
present on the user’s system in the MathType trans-
lators directory (Fig. 2).

Translators
Cancel |
Help |

T1anglator: ITeX - Plain Tek j

Flease choose the type of data that wil be placed
on the Clipboard by the Cut and Copy commands:

" Equation object [windows OLE graphic)

—{* Translation to other language [text] :

Description: Plain Tex tranzlator +1.00 by Design Science, Inc.

File: Plain Tex.tdl

[Include translator name in kranslatior:

[Include MathType data in tranzlation

Figure 2: The Translators dialog

Anatomy of a translator

Each translator is defined by a text file written in
a simple language called TDL (Translator Definition
Language). A translator has a simple structure:
e The first line defines the short name for the
translator which appears in the list presented

to the user in the Translators dialog (see Fig. 2)
and a longer description which appears in the
dialog once the translator is chosen from the
list. The description might include the author’s
name and affiliation as well as the version num-
ber of the translator.
e a set of matching rules of the form
(thing to match) = (translation string) ;

MathType equations (just like TEX ones) are
represented internally as a tree. Let’s take the fol-
lowing equation as an example:

a+b

c
MathType sees this equation as:

eqn (root)
slot (main)
character (y)
character (=)
template (fraction)
slot (numerator)
character (a)
character (+)
character (b)
slot (denominator)
character (c)

The translation process begins by applying the
display equation rule,? to the root of the MathType
expression:

eqn = "\[@n#On\]@n";

The characters between quotation marks are pro-
cessed from left to right. Most of the characters in
the eqn rule are simply placed in the output trans-
lation stream. The @n sequence outputs a newline.
The @ character, called the escape character, is used
to insert special characters into the output stream.
The default escape character is $, but is redefined
in the TEX translators to @ for convenience.

The # in the eqn rule causes the translator to
look for a rule that will be used to translate the
equation’s main slot. After applying this transla-
tion (we'll get to that next) and inserting its output
into the translation stream, the rest of the eqn trans-
lation string is output and the translation process is
complete.

Let’s go back to see how the # in the eqn rule
is processed. This is done with the rule:

slot/t = "#";

This rule works just like the eqn rule but is even
simpler. The /t option is used to signal that this

2 The translation rules used in our example are simplified
somewhat for the purpose of this paper.

186 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

// display equation

Using MathType to Create TEX and MathML Equations

rule is to be used for the top-most slot in the equa-
tion only. Other slot rules enclose the translation
of their contents in {}, the TEX notation for group-
ing. Now, each item in the main slot is processed.
The rules for y and = are also very simple:

char/0x0079 = "y";
char/0x003D = " = ";

// Latin small letter y
// Equals sign

Here is where Unicode comes into play. MathType
knows the Unicode value for y is 79 (in hexadecimal
notation). It uses this knowledge to find the char
rule that specifies how y is to be translated.

The fraction is handled by a template rule:

frac = "\frac{#1}{#2}"; // fraction

The #s in this rule are followed by numerals that
specify the slot’s index in the template; 1 for the
numerator, 2 for the denominator. These two slots
are processed much like the main slot, except they
use the more general slot rule:

slot = "{#}";

So, the complete translation of our simple ex-
ample is:

\ [

y = \frac{a+b}{c}
\]

MathML

The MathML specification was written by the W3C
Math Working Group.? In April 1998, it was raised
to Recommendation status by the W3C. MathML
has as its main goals:

e encode mathematical material suitable for teach-
ing and scientific communication at all levels

e encode both mathematical notation and math-
ematical meaning

MathML is intended to be used to both present math-
ematical notation and to serve as as a medium of
exchange between scientific and mathematical soft-
ware. Toward that end, MathML defines a set of
XML elements and attributes (together called mark-
up) that fall into two categories: presentation mark-
up and content markup. Presentation markup is in-
tended to describe mathematical expressions from a
two-dimensional layout point of view, whereas con-
tent markup is intended to capture the meaning of
the mathematics.

MathType provides four MathML translators
(why there are four will be explained shortly) that

3 See http://www.w3.org/Math/ for the specification and
other information on MathML.

can convert its equations into MathML’s presenta-
tion markup. For example, translating the following
expression into MathML:

—b+ Vb2 — 4dac
2a

results in:

<math displaystyle=’true’>

<mrow>
<mfrac>
<mrow>
<mo>-</mo>
<mi>b</mi><mo>±</mo>
<msqrt>
<mrow>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
<mo>-</mo>
<mn>4</mn><mi>a</mi><mi>c</mi>
</mrow>
</msqrt>
</mrow>
<mrow>
<mn>2</mn><mi>a</mi>
</mrow>
</mfrac>
</mrow>
</math>

The first reaction of most TEX users is a gasp
at how verbose MathML is. Please bear in mind
that MathML is not intended to be authored directly
by humans but with tools like MathType. MathML
inherits its verbosity from XML. This “disadvan-
tage” is far outweighed by the advantages gained
with XML structure with its support in browsers,
editors, and other tools. In the future, we hope
to see MathML become the language of choice for
exchanging mathematics between mathematical ap-
plications. Its eventual integration with browsers
should make it tremendously useful in teaching.

Unfortunately, it may be a little while before
MathML achieves its promise. Until we are able to
properly display MathML in the popular browsers,
such as Microsoft’s Internet Explorer and Netscape’s
Navigator, we will have to rely on various browser
“plug-ins”, such as IBM’s techexplorer.* and Geome-
try Technologies’ WebEQ.® These work but are con-
strained by various font issues, sizing problems, and
lack baseline alignment for in-line math. The W3C'’s

4 For information, see http://www.software.ibm.com/
network/techexplorer/
5 See http://www.webeq.com/.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 187

Paul Topping

Math Working Group has made browser integration
one of its highest priorities.

In order to work with the various MathML
browser plug-ins, we have had to create several ver-
sions of our MathML translator, one for each. They
differ only in the “wrapper” code they place around
the generated MathML in order to invoke the
plug-in and pass the MathML code to it. When true
browser integration is possible, we will only need a
single MathML translator.

Experimenting with MathType’s translators

Because of their simple and open structure, Math-
Type’s translators can be easily modified or new ones
written from scratch. Some possibilities include:

e creating a new translator for the mathematics
portion of an SGML document standard (DTD)

e changing an existing TEX translator to make
use of some macro package or the author’s own
preferred macros

e using the Unicode capability of MathType’s
translators to take advantage of the various TEX
adaptations for non-Ennglish languages

Document conversion

MathType’s translation facilities can also be incor-
porated into the process of converting entire docu-
ments to TEX or any other language supported by
one of its translators. MathType has a programmatic
interface beside its more familiar graphical user in-
terface. This interface is via functions in a Windows
DLL (Dynamically Linked Library). As MathType is
often used with Microsoft Word, we have provided
functionality that can be accessed using commands
on a “MathType” menu within the Word application
itself. One of these is a Convert Equations command
that can be used to convert all the MathType and
Equation Editor equations in a document to any one
of the languages for which a MathType translator is
available. Although this does not result in a fully
translated Word document, the most difficult part,
converting equations, has been achieved.

MathType’s Word support is written in that
product’s Visual Basic language. The source code is
accessible and may be used as the basis for your own
conversion scheme.

Conclusions

MathType 4.0, with its new translation features, can
be used in a variety of ways:

e as an interactive front-end to TEX authoring

e as an aid to learning TEX

e to experiment with the new MathML standard

e with the development of custom translators, it
can be used to generate virtually any text-based
math language

It is our hope that TEX users will want to add it to
their arsenal of useful tools.

TEX musings

Musings from the Bard

Oh, what a tangled web is TEX,

or so it seems at the outset;

for highest quality, the best to look,

Oh why did T choose to typeset my own book!

For Macintosh users the skies are quite blue,

with Barry to help you and Ben Salzburg too.
With Art, Ross, and Uwe ready to assist,

just send a short email to Gary Gray’s (Textures)
list.

If shareware type software is more to your taste,
your super-fast Power-Mac need not go to waste.
There’s CMac- and Direct-TEX to lessen the sorrow,
and that great program OzTEX, by Andrew Trevor-
TOW.

For Unix-like platforms the software’s all free,

with a teTEX installation from the TEX-Live CD,
which collects all the pieces and orders all parts,
Thanks to Thomas Esser, Kaja, and Sebastian Rahtz.

Leslie Lamport created IXTEX nearly fifteen years
ago.

It evolved into 2-epsilon by a process rather slow.
Improvements are numerous; results you can see.
Thanks to Carlisle, Mittelbach and Rowley,

It’ll be even better with release IATEX3.

For PostScript Typel fonts exquisitely drawn,

The expert is Berthold, whose surname is Horn.

Where the yin meets the yang in the great cosmic

goo,

Don’t get this name mixed-up with Louis Vosloo.
—Ross Moore

188 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Models and Languages for Formatted Documents

Chris Rowley

The Open University
527 Finchley Road
London NW3 7BG
United Kingdom
C.A.Rowley@Qopen.ac.uk

Abstract

The largest change that has come to the world of document formatting since
TEX’s DVI language was designed is the need to support documents destined for
multiple uses, e.g., for interactive reading on screen and for paper output. It is
time to investigate what is needed, both now and in the immediate future, from
a device-independent description language for formatted documents.

This paper does not provide a complete such investigation. Instead, it out-
lines what is required from a language that can describe the “device independent”
properties of the “formatted form” of the currently imaginable range of docu-

ments.

The important and innovative concept identified here is the complete

integration of three central formatting aspects of on-screen documents: text,
graphics and the mechanics of interaction.

Introduction

Motivation. There is currently a need for a stan-
dardised but flexible and comprehensive language
that will enable the description of all aspects of
formatted documents that are the output of high-
quality document formatters such as the growing
number based on TEX (and its derivatives); this
would also then be available for the output of all the
superior XML /XSL-based formatting software that,
we are assured by those who control the world, will
soon decorate our desk-tops.

Many aspects of formatted documents, such as
graphics and colour, were deliberately excluded by
TEX’s designers but the largest change that has come
to the world of document formatting since TEX’s DVI
language was designed is the need to support doc-
uments that are designed (to high standards) for
multiple uses, e.g., for interactive reading on screen
and for paper output. Many people now have ex-
perience of using TEX as the typesetting engine for
such documents, producing as the multi-use output
form a ‘PDF document’. This could be either by use
of pdfTEX or by producing PostScript and then con-
verting this to PDF (the acronym PDF here refers to
Adobe’s Portable Document Format). The power of
combining the programmability of TEX with a thor-
ough knowledge of the capabilities of PDF viewers
and Java programs have been brilliantly illustrated
by Hans Hagen.

There probably also exist other necessary ex-
tensions to the currently used models for format-
ted documents that are not supported well by any
current such language. Thus it is time to investi-
gate what is needed, both now and in the imme-
diate future, from a device-independent description
language for formatted documents. In order to illus-
trate and crystallise these ideas, it is useful to con-
sider how these needs are met by the current version
of PDF or by other languages such as the Scalable
Vector Graphics language. This would lead to a far
longer paper detailing the achievements and failings
of the current version of PDF and the relevance to
this subject of the current thinking on SVG but here
I have confined myself to occasional comments on
pertinent aspects of these languages.

Background. About a year ago I was bold enough
to state:

By August 1999 I hope, with a bit of help
from my friends, to have further analysed the
models and concepts that need to be sup-
ported by a language for describing multi-use
documents, and how well PDF provides such
support.

Well, I got a lot of help, mostly from the PDF discus-
sion list [8] and particularly from Sebastian Rahtz
and Hans Hagen who, being privy to Adobe’s fu-
ture plans and hence in their thrall, could often only
answer with the phrase “but I could not possibly

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 189

Chris Rowley

comment”, even about things that are already de-
scribed in the literature —such is the way of com-
merce.

The result is this short paper outlining what
is required from a language that can describe the
“device independent” properties of the “formatted
form” of the currently imaginable range of docu-
ments. The discussion here tries to be general but
it is heavily influenced by the currently popular re-
sources in this area: DVI [4], PDF [2, 3] (and hence
PostScript [1]), together with some, such as the Scal-
able Vector Graphics (SVG) Specification [5], that
are currently under development.

I am very much aware that the current version
of this paper lacks a lot of explanation and exam-
ples; and that it contains little about practical ways
to take these ideas forward and relate them to other
activity in this area. However, it does contain at
least one significant new idea: the complete integra-
tion of three central formatting aspects of on-screen
documents: text, graphics and the mechanics of in-
teraction; this will lead to a more comprehensible
and systematic treatment of all aspects of multi-use
formatted documents.

Preamble. Ishall assume that the reader has some
familiarity with the DVI language (at least the com-
monly used parts) and with the PDF language (v1.2
or later, but only the formatting-related parts).
Please note that there are many things that are
not covered in this paper because, although very im-
portant for modern document science, they are not
directly relevant to the current subject. For exam-
ple, since we are considering a description language
for formatted, multi-use documents, we completely
ignore the current uses, aimed at expressing docu-
ments as logical tree-structures, of languages such
as XML and HTML (although these are often used
to provide an inspired mixture of semi-specified for-
matting and logical markup). It is also possible
to combine such languages with a language such as
PDF to describe “partially formatted” documents.
The major consequences of the chosen language
for the design of the applications, e.g., TEX or its
successors, that produce examples of it will be men-
tioned, but only in passing and hence incompletely.
However, these are probably of greater practical im-
portance than the details of the language itself.
The paper begins by setting up the context, de-
scribing briefly the relationship between DVI, PDF
and the various models of document formatting into
which they fit. It then describes various models that
must be supported by a fully functional language
for multi-use formatted documents and analyses the

consequences of these for the structure of the lan-
guage.

Subsequent work will consider in more detail
the specification of the language together with the
design and implementation of related applications.

DVI and PDF. One motivation for this paper was
my being asked at the TUG’98 conference: which is
better, DVI or PDF? My reaction then was: since
they are so similar, neither! But then I was think-
ing only of the original version of PDF; now, having
discovered the joys of v1.2 and more recently the
7.4MB of the latest (v1.3) manual, I publicly recant
from that position.

Although PDF is technically not a “device inde-
pendent” language, it contains a large core of stuff
that is, at least potentially, as “device independent”
as TEX’s eponymous DVI language. Both must, of
course, be parsed by an application that understands
the language and its underlying document model,
formatting model and page model; and, although
they look very different at the detailed level, the
page models of these two languages (and their ab-
stract semantics) also have a lot in common. This
is one reason why the part of pdfTEX [6] that han-
dles classical TEX files is only very locally and mini-
mally different from classic TEX. However, PDF has
a somewhat richer document model and it integrates
text and graphics in its formatting model. This is
one reason why pdfTEX has extra primitives.

On the other hand, PDF also has a large, and
growing, part that is dependent on the very specific,
and limited, features of Adobe’s own viewers and
font technologies. As with most languages that are
being actively developed whilst being widely used,
PDF is now a mixture of good and bad ideas: it is
still based on some simple but general models but
these are not always used to provide extensions nor
have they been developed to provide more inclusive
but equally clean new models. Instead, it has grown
a collection of ad hoc add-ons that lack simplicity
and coherence. Much of the additional functionality
of pdfTEX is there only to support such very partic-
ular features of PDF, as its meta-data objects and
stream compression possibilities.

Although this is a lot, PDF does only what it
does; it has become a more difficult language for
a (human) document formatter or programmer to
work with. It is therefore currently not at all clear
how to make straightforward adaptations or exten-
sions of the PDF language and we seem able to get
from it only what They want us to have in Our doc-
uments. Note that some caution is needed when
evaluating the PDF language itself since much of its

190 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

expressive ability is obscured by the lack of function-
ality and bad behaviour of the applications currently
available for viewing or translating it.

Given the close symbiosis between its develop-
ment and that of the Adobe’s Acrobat Reader ap-
plication, it is very likely that, wisely used, it is a
very good language for rapid and accurate screen-
ing of downloaded documents. However, this is by
no means a unanimous verdict on the utility of PDF
and any such advantages have clearly been at the ex-
pense of efficient and accurate production of those
documents since the current version is far from pro-
viding the uniform, clean, comprehensible interfaces
needed by writers of applications.

This suggests that there is a need for Yet An-
other Language: one with a clean and general model
and a flexible, uniform syntax. If this is incompat-
ible with fast incremental processing then a compi-
lation process should be inserted to transform this
into something at least as good as PDF. So here are
some thoughts on such a language.

Background and models

Here is a description of the use of a FDL (or Fixed
Formatted Document Language) and the models of
document processing that it both supports and pro-
vides.

The global model. The assumed usage of this
FDL derives from the following high-level model of
the document formatting process in which it is used.

e A generating application (GA) produces a fully
formatted document and outputs it in this FDL
language.

e A processing application (PA) uses the infor-
mation about a fully formatted document de-
scribed in this FDL in order to do only the fol-
lowing (these are informal descriptions):

— faithfully render (in accordance with the
medium) parts of the visual content of the
document on one or more media;

— when appropriate, supply information
about attributes of such a rendering needed
to determine the interaction state of the PA;

— pass on, but not process, information
streams to other applications (in partic-
ular, non-visual material).

At its top level, a formatted document consists of
a collection of objects, the most pertinent of which
are formatted objects (FOs).

A model for the language. What information
must therefore definitely be represented in an FDL
description of a document? Here is an answer.

Models and Languages for Formatted Documents

e The contents of the document that are needed
for rendering the FOs in the document on any
supported output medium.

e The contents that are needed to determine the
interaction state on any supported interactive
output medium.

e Information about structural relationships
amongst the formatted objects in the document.

e Pointers to other resources required for the ren-
dering process (e.g., rasterisation, font and col-
our information).

The following is information that is not essen-
tial but is useful; it is also very closely related to
the formatted document. Other (non-formatted)
objects contain such information.

e Information about the logical structure of the
document and its relationship to the structure
of the formatted document.

e Information needed for non-rendering activities
for which support is needed; in general, this is
too open-ended but some of these are the logical
information that is needed for activities that are
traditionally associated with on-line document
readers, such as indexing and searching.

There are, of course, many other things that
are essential to the complete description of a docu-
ment and it may well be appropriate to add to the
language objects to be used for their specification.
The following are some examples (from many) of in-
formation that is important to the document but is
not, per se, closely related to the formatted form of
the document.

e Database information about the document it-
self rather than its contents.

e How any visual material produced by other co-
operating applications (which may not them-
selves process the FDL material in this docu-
ment) should be placed relative to the rendering
of the document.

This paper will thus analyse in detail only the
information in the first group (of four items). It
will also discuss some ideas concerning the informa-
tion in the second group but will argue that the FDL
needs to be able to express only how the provision of
such information relates to information in the first
group, leaving the specification of most of this in-
formation to other, more suitable, languages; these
languages have been, or will be, developed elsewhere
and can be used in a wider context.

The FDL is not intended to provide a revisable
document format. Thus it will contain no provision
below the level of the FOs for the specification of

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 191

Chris Rowley

user-level graphical objects so that they can be di-
rectly manipulated, as in a drawing application or a
document editor. This should not rule out support
for extensions that, like PDF, provide some very lim-
ited but useful form of structured revisions of FDL
documents; however, this is not a primary property
of the FDL.

Further restrictions. In order to appease the ed-
itor of these proceedings and to put a reasonable
limit on the time I spend writing, I shall here re-
strict the analysis and discussion in the following
ways.

e The top-level formatted object (FO) described
by the FDL will be a two-dimensional, unro-
tatable rectangle (this is a convenient but not
essential restriction).

e The graphical model will have no concept of
transparency, i.e., no graphical layers: this re-
flects only the current limit on my resources for
investigating the issues involved and should be
relaxed as soon as possible. It is also one of the
areas where PDF’s support falls short of current
requirements.

e There is no concept of time nor of an external
environment beyond the idealised two-dimen-
sional output medium; hence the FDL itself does
not describe the non-typographic content of
sound/video; and documents cannot be defined
to look different on Wednesdays, on Macs or
on Vancouver Island (although some such re-
quirements could, of course, be implemented by
the PA).

e There is no concept of service levels to be ne-
gotiated between a client, knowing its local PA
resources, and a document server.

Note that the first restriction does not limit the
scope for specifying what is displayed since, within
these top-level FOs, complex clipping paths can be
specified.

Note also that the PA can use information ex-
pressed in the FDL to do complex things such as
affording different views of the document and con-
trolling time-dependent actions to produce son-et-
lumiére shows, etc., but these do not need to be
described directly within the FDL.

Moreover, the information needed to control
associated multi-media actions should be encoded
in languages designed explicitly for describing such
objects and these languages should not be part of
the FDL.

A model for the medium. The abstract model
of the visual medium is therefore a rectangular sub-
set of a mathematical Euclidean plane on which are

defined attribute functions such as “colour”. Thus
other technical issues not dealt with here are the
precision of numerical values and the closely related
provision of rasterisation information. These are
very important in practice but it is best to keep
them clearly separate from the raster-independent,
arbitrary precision part of the model. In addition
(or rather subtraction) many of the complexities of
colour and tone rendering are not present in the
model since these are intimately connected to the
rasterisation process.

Having so peremptorily dismissed rasterisation
from this formal model, I must quickly explain that
everything in the model is predicated on a model of
device-dependent rendering that involves a rasteri-
sation of this idealised plane.

Analogies. One can liken a simple implementa-
tion of this global model to a translator (the GA)
and its agent (the PA), where: the translator com-
piles application-oriented document formats into a
well-defined, machine-oriented representation of the
visual form of the document; the agent processes
this lower-level code. In this simpler paradigm, the
“model for the language” is analogous to the opera-
tional semantics of that machine-oriented represen-
tation and the “model for the medium” would be
the abstract architecture of the machine.

A heuristically better, but less precise, analogue
is with database models that include pre-compiled
views and data indexes.

Analysis

At the lowest level such an FDL needs to be able to
express, within the above limitations, full details of
the following, and nothing more:

e everything that could be visually displayed by
any PA using any supported visual medium;

e everything that is needed for the detection of
interaction events by any PA that supports in-
teractivity with such a visual mediuml

This information can be usefully divided into a num-
ber of related topics but they are all, ultimately,
graphical abstractions.

Graphical specifications. Here we separate the
concept of text (i.e., glyphs from fonts) from other
visual items; however, we do not separate the inter-
action-related graphical information from the visual
parts.

The underlying model for all this information
is the specification of regions in the visual medium
(idealised as a mathematical plane). These are the
only fundamental graphical objects that are used.

192 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Although there are many other possibilities,
there is no clear reason to depart from, or extend,
the commonly used collection of methods for speci-
fying regions in terms of cubic paths; see, for exam-
ple, the paper version of the original PDF specifica-
tion [2]. This almost universal method is also used
by PostScript and SVG.

Paths. These are used solely as a way of defining re-
gions (stroking, etc., define a narrow area along the
path). They are typically piece-wise cubics, other
common forms such as conics being provided by the
language only as syntax for their cubic approxima-
tions.

Note that these paths are mathematical ideal-
isations that are then used to define the somewhat
more concrete regions by means of various opera-
tors such as clipping, stroking and filling. Note that
the use of these words here does not imply that any
painting of the defined region is yet specified.

Regions. Having thus defined a region, it can be
(abstractly) painted in some way or it can be given
a label for use in defining interaction events; these
are not exclusive possibilities. Note that the speci-
fication of the region is identical for both visual in-
formation and for these interaction labels. This is
all that is needed from the FDL in order to support
all currently used types of interaction. A region can
both have a label and be painted, and these two
properties are completely independent. It may be
sensible for all regions to be labelled objects so that
all their properties, including painting related oper-
ations, would be accessed via the label.

Events. The first stage is to define events; although
there is a good case for a generic language to be
used here, the present level of development of the
technology suggests that ad hoc languages closely
linked to particular devices may be needed for some
time. That used by SVG is a good example of such
limited expressibility.

Thus the FDL needs event definition objects
where the following information can be put, using
a suitable language:

e definitions of the interaction events,
e the actions associated with interaction events.

An important and common case of an action is to
display a particular view of the current, or some
other, FDL document; the features needed to sup-
port this are described below.

Painting. Much of what comes under the detailed
specification of a painting method is relevant only
to the details of the rasterisation but some, such as

Models and Languages for Formatted Documents

colour information, also need methods for device-
independent specification. The most general colour
information is the specification of a colour gradient
function, to specify how a region should be painted;
this is a mapping from the abstract visual medium
to a colour space. There is a need for further in-
vestigation into what types of mappings are needed
here; SVG will support a small range of mappings,
including linear, radial and periodic (for patterns).

This could be extended to support the far more
general concept of getting such resources from an ex-
ternal paint server (not to be confused with the Mix-
Yer-Own machine outside the local Do-It-Yourself
store); this is analogous to the commonly used in-
direct ways of specifying glyphs and other font re-
sources.

Text. Although glyphs are also graphical objects,
the methods by which they are specified are typi-
cally so completely different that treating the two
similarly becomes fatuous. In particular, the choice
and positioning of glyphs typically requires external
resources and, hence, other languages. In the case of
PDF and PostScript, this is the only supported un-
derlying model for text: both positioning and ren-
dering information for typical fonts can only be spec-
ified via a fixed external font resource that must be
accessed via a fixed-size encoding table. Such exter-
nal font resources are used by a specialised glyph-
rendering part of the PA and also, often, by the GA:
it is clearly essential, but often difficult to achieve,
that these two applications use identical informa-
tion.

Whilst there are good reasons to support most
of these existing models and formats for glyph pro-
duction, the FDL must support a far wider range
allowing, if feasible, for future new glyph resources
and font technologies as they come into use. Thus
it should support the specification of all of the fol-
lowing;:

e font-resource independent specification of a
glyph within a font;

e explicit positioning of glyphs;

e relative positioning of sequences of glyphs (us-
ing font resources to calculate exact position-
ing): at least for all standard typesetting modes,
both horizontal and vertical, possibly also for
typesetting along more general graphics paths.

Although perhaps not strictly part of the FDL itself,
a clear requirement arising from these is the ability
to attach arbitrary external resources to a FDL file.

Higher-level structure. The basic formatted ob-
jects (FOs) can be related in various ways, including
these three of immediate importance:

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 193

Chris Rowley

e Logical arrangements: these can be very general
relationships but include traditional page se-
quences; these do not prescribe anything about
the formatting of the individual objects.

e Formatted arrangements: use and reuse of ob-
jects within others.

e Global information that allows viewers/printers
to define different views of a document in terms
of these objects: e.g., print sequences, relative
positioning of windows on a screen, suppressing
the rendering of the content of whole objects
(another area where PDF is currently deficient).

I see no reason to put any restrictions within the
language on the nature of these relationships, thus
at least a general labelled-graph language providing
arbitrary linking information is needed here.

Such relationships and their specification need
further investigation and development. Specifica-
tion of the formatting relationships will immediately
require an extended model of the medium that sup-
ports layers and transparency.

There is currently some small-scale research ac-
tivity concerned with logical information extensions
to PDF, in particular the work on structured-PDF at
Nottingham University. It is unclear whether Adobe
have any long-term interest in moving PDF in that
direction (or, indeed, whether they have any inter-
est at all in the language itself as anything beyond
a cryptic internal language for the Acrobat black-
boxes).

Trade-offs. Many of the choices that need to be
made in developing the detailed syntax of the lan-
guage lead to decisions that, whilst not affecting the
semantics or power of the language, do affect the
following measures of its utility. The first two items
in this list are independent of any particular docu-
ment, whereas the others will vary according to the
type of document and its uses:
1. the expected functionality of the GA,
2. the required functionality of the PA,
3. the relative size of the FDL file,
4. the relative speed of the generation of the FDL
file,
5. the relative speed of accessing information in
the FDL file,
6. the relative speed of processing information from
the FDL file.
In general, decreasing 1, and hence, typically, 4, will
increase 2 and, often, also 3, 5 and 6. For example, if
the FDL supports a large range of higher-level graph-
ical objects, such as transformations, arcs of conics
or smooth piecewise-cubic paths, then the GA does

not have to be able to turn these into basic cubic
paths but the PA must be able to process them.

Of course, increasing the amount of informa-
tion (e.g., font resources) that does not need to be
stored in the FDL file also decreases 3, but it also
requires the PA to be able to access these resources
effectively.

This section does not analyse the possibilities
for the use of alternative formats since these af-
fect equally any language. Some relevant techniques
are data compression, which is comprehensively sup-
ported by the PDF standard, and binary formats
that can be read quickly, as typically used by DVI
but not currently available in PDF.

Summary

Outline. A formatted document, as described by
an FDL specification, is a collection of reusable FOs
with labelled relationships. These FOs contain posi-
tioned graphical objects including, recursively, fur-
ther FOs; but they have no further internal struc-
ture. No distinction is made between the graphical
objects used for painting and those used to define
interaction events.

Interaction events and associated actions are
not described in the FDL itself but it provides ob-
jects specifically to contain these descriptions. It
also provides objects for describing external resources
and the possibility to attach such resources to an
FDL file.

Although glyphs are graphical objects, they are
most often accessed via external resources so they
must be treated very differently within the FDL.

All the organisational structure of the format-
ted document is defined in the FDL by general named
relationships between the FOs; other logical infor-
mation is not described in the FDL itself.

General principles. In developing the details of
such a language the following principles should be
adhered to as much as possible.
o Indirection: always A Good Thing.
e Modularity: but do not try to separate too rash-
ly things that should be intimately connected.
e Flexibility: do not impose unnecessary restric-
tions on the GAs or PAs.
e FEzxtensibility: of course! But only within the
limits of the above outline.
e (larity: and ease-of-use as the cream on the
cakel!

The way forward

The next step is to refine and formalise the ideas
described here and to investigate extensions of these

194 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

models that will support, in particular, a powerful
concept of layers in the output medium.

Some possible (and mutually supportive) ways
in which the TEX community should be able to assist
in this, and beyond, are as follows:

e Further extend DVI along the lines suggested
by the NTG TgX Future Working Group [7].
This already supplies a syntax for those graph-
ics objects supported by PDF; semantics satis-
fying the FDL model can be simply specified for
these and further necessary objects.

e Work with the W3C group to influence the de-
velopment of the SVG specification so that it
can be used as (part of) an FDL.

e Design future typesetting systems (such as NTS)
to output such a powerful, clean FDL and write
drivers that use it directly or translate it to
a more processor-friendly and currently sup-
ported language, such as PDF or the API (A..
P.. I..) of a printer/viewer sub-system.

Or maybe I should move on to even more radical
ideas whilst PDF and SVG/XML slog it out in the
market place and TEX/DVI continues to dominate
the quality niche? (Note: The last word must be
treated a la frangaise to make the pun work.)

Postamble

Preparing the conference talk and the subsequent
discussions have shown that there are other impor-
tant questions not even touched on above; thus, this
paper should be treated as “preliminary thoughts”.

In particular, it became very clear when I was
designing and producing the examples for the talk
that, even by using all currently available applica-
tions (including some pre-release versions), I could
not implement all of those features of a formatted
document that are currently agreed to be desirable.
Moreover, it has taught me that, even at the high
level of my models and languages, there is a lot
more to the interactions amongst graphics, text, and
screen formatting than I had considered so far.

For example, what should happen when a user
resizes a window that contains both graphics and

Models and Languages for Formatted Documents

text, possibly intimately connected? The possibili-
ties for each element are as follows (at least): resize,
clip, reflow.

Resizing may make sense, within reasonable lim-
its, for some graphics but maybe not for others; it is
rarely the best thing for text. Contrariwise, reflow-
ing is not usually feasible for graphics but may be
sensible for text, again within some limits.

So who decides what is allowed? The author
should at least be able to define the reasonable limits
but maybe the user should have some control over
what he is looking at.

Thus, more work, more ideas and, sadly, more
papers, are needed.

References

[1] PostScript Language Reference, 3rd ed., Adobe
Systems, 1999.
http://wuw.adobe.com/prodindex/
postscript/.

[2] Portable Document Format Reference Manual,
v 1.2. Adobe Systems, 1996.

[3] Portable Document Format Reference Manual,
v 1.3. Adobe Systems, 1999.
http://wuw.pdfzone.com/resources/.

[4] The DVIType Program. Stanford University,
1982.
http://www.CTAN.org/tex-archive/systems/
knuth/texware/.

[5] Scalable Vector Graphics (SVG) Specification.
W3C, 1999.
http://www.w3.org/TR/WD-SVG/.

[6] The pdfTEX Manual. 1999.
http://www.tug.org/applications/pdftex/.

[7] NTG TEX future working group. TEX in 2003:
Part II: Proposal for \special standard. TUG-
boat 19(3) pages 330-337, 1998.

[8] PDF e-mail discussion list.
http://tug.org/mail-archives/pdftex/.

[9] Hagen, Hans. Examples of the use of pdfTEX
to produce interactive documents. 1999.
http://wuw.pragma-ade.nl/.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 195

AcroTEX: Acrobat and TgX Team Up

D.P. Story

Department of Mathematics and Computer Science
The University of Akron

Akron, OH 44325

dpstory@uakron.edu

http://www.math.uakron.edu/ dpstory/

Abstract

Adobe’s Acrobat (PDF) and Donald Knuth’s TEX system make a powerful team
for putting mathematics on the internet. For the educator, this team, called
“AcroTEX,” is the poor man’s multimedia software company.

Though TEX was implemented before the rise in popularity of the World
Wide Web, PostScript code written to the .dvi file, using TEX’s \specials,
can be used to enhance an electronic document created from a TEX source by
introducing such elements as color, hypertext links, form features, sounds, and
even video clips. These special features are achieved by inserting ‘pdfmarks’
into the output file. The Adobe Distiller, in turn, interprets these pdfmarks and
translates them into the appropriate element as it writes the PDF document. TEX
is, therefore, well suited for creating PDF files, especially technical material. With
the aid of its very powerful macro facility and the ability to position material very
precisely on a page, these electronic enhancements can be created and placed in
an exact and automated way.

This paper explores the capabilities of AcroTEX and the contents of the
AcroTEX web site (www.math.uakron.edu/"dpstory/acrotex.html); examples
include tutorials, an electronic grading system, mathematical games, and techni-

cal articles.

Introduction

In this paper, I will describe how TEX, the out-
standing mathematical typesetting engine, and the
Portable Document Format (PDF) of Adobe Sys-
tems, first introduced in the Acrobat suite of soft-
ware, form a team called “team AcroTEX”,! and
how this team has opened up a world of possibilities
to people who are interested in electronic education.

From the perspective of an educator, this pa-
per is an exposition of the natural implications of
combining TEX and PDF; the exposition covers gen-
esis (first thoughts), creation (of tutorials), problems
and solutions, educational games, technical articles,
and new macro packages for readers who may want
to develop on-line educational materials themselves.

Here, AcroTEX refers to a process of producing
PDF documents from a TEX source. A PDF docu-
ment is a compact, self-contained file format which
preserves the page layout of the authoring applica-

L A proposed alternative is TEXrobat, but this sounds too
mechanical.

tion. This makes a PDF file suitable for distribution
over the Web.
AcroTEX also refers to a web site:

www.math.uakron.edu/ dpstory/acrotex.html

The documents referenced in this paper can be ac-
cessed at the AcroTEX web site, a site primarily ded-
icated to mathematical education. All files at this
site, save only some start-up HTML pages, are in
PDF format.?

Genesis

The original concept was to create a series of elec-
tronic tutorials covering some of the topics of the
first semester of a standard course of calculus as of-
fered in many colleges and universities in the U.S.
The design goals of the tutorials included typeset
quality on-screen mathematics, cross-referencing us-
ing hypertext links, and on-screen color.

Typeset quality mathematics and a presence of
limited finances implies TEX. Of the freeware and

2 Readers are available for virtually every platform; see
www .adobe . com/prodindex/acrobat/readstep.html.

196 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

commercial TEX systems available at the time, late
1994, only the Y&Y TEX system offered coloring of
fonts and a hypertext feature within its .dvi pre-
viewer, DVIWindo. A small site license from Y&Y
was purchased using a start-up grant from the Ed-
ucational Research and Development Office at the
University of Akron.

The calculus tutorial, called “e-Calculus”, was
written and put on the department intranet as a col-
lection of .dvi files. The students would come into
the computer lab to review the materials using Y&Y’s
DVIWindo. The system worked well; however, the
students were reluctant to spend the long periods of
time that would be necessary to read the tutorial in
the computer lab.

This reluctance prompted me to consider the
internet. For many reasons, the .dvi file format is
not a suitable format for the tutorials on the Web.
Adobe’s PDF seemed to be a natural choice: the
typeset quality of the material, page layout, and
color all would be preserved.

Fortunately, Y&Y was well positioned to con-
vert its .dvi files to .pdf files. Their dvi-to-ps
driver, dvipsone, automatically converted the hyper-
text links that DVIWindo understood to hypertext
links that the Acrobat Reader understood. As a re-
sult, “e-Calculus” was ported to the internet with
very little trouble.®> This was the beginning of the
AcroTEX web site.

The site has since grown in size to include other
tutorials, mathematical games, a demonstration of
forms processing using the PDF forms format FDF,
several technical articles on TEX, IXTEX and PDF,
and a couple of macro packages (web/exerquiz).

The tutorials

The writing of the “e-Calculus” tutorial was simple
enough and will not be discussed here; another tu-
torial, entitled “An Algebra Review in Ten Lessons”
(mpt_home.html), has since been written in response
to the needs of the incoming students at the Univer-
sity of Akron.

Beyond the technical discussions of calculus or
algebra that any paper document would provide —
though the discussions are more verbose than would
normally be seen on paper —these tutorials try to
take advantage of the electronic medium.

For finding information within the tutorials, hy-
pertext versions of tables of contents, bookmarks
(a feature of PDF), cross-references, and indexes —
both local (for the file being viewed) and global (for

3 File: e-calculus.html. Allfiles mentioned in this paper
are located at www.math.uakron.edu/~dpstory.

AcroTEX: Acrobat and TEX Team Up

the entire calculus/algebra set of tutorials) —are all
provided.

The tutorials include in-line examples and ex-
ercises a la Knuth: that is, in the source file, the
questions and solutions are kept together; however,
solutions are linked to the questions by hypertext.
The syntax is as follows:

\exercise < Some exercise question. >
\answer < The answer or solution. >

\endexercise

The macro \exercise sets the hypertext link,
\answer sets the target, a named destination, for
the link and starts a verbatim write macro. All ma-
terial between \answer and \endexercise is writ-
ten to the file \ jobname . ans, which is later included
at the end of the main file. There is an \example
macro that behaves in the same way to handle ex-
amples.

This method of handling exercises and exam-
ples allows the posing of the question within the
body of the text, but the solution does not appear
(and take up screen space) unless the reader wants
to see it. This allows for a clean, clear, more orderly
presentation and discussion of topics.

By the way, proofs of theorems are handled the
same way. The theorem is stated and a hypertext
link is given to the proof. The main text then contin-
ues with a discussion of the meaning of the theorem,
followed by examples and exercises.

Another feature of the tutorials is user inter-
action. User interaction with the document comes
in the form of multiple-choice questions or quizzes.
Click on the chosen response to obtain instant feed-
back in the form of humorous congratulations—or
an error message.

TEX and PDF

Macro packages. When I first started this project
in 1994, I decided to use ApS-TEX 2.1 as the basic
macro package. At the time, I had a rather slow
computer with very little RAM. I found that BTEX
was very slow in loading and took a long time to
process a file; however, ApS-TEX 2.1 on the same
system loaded quickly and ran acceptably fast. The
consequences of that decision meant: (1) I must
write all my own macros for page formatting, cross-
referencing, tables of contents, indexes, color inclu-
sion, hypertext linking, etc., and (2) I must read
The TEXbook not once, not twice, but many times.
Other books studied and found to be very useful are
the ones by Salomon (1995) and Eijkhout (1992).

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 197

D.P. Story

If T were starting over today, I would proba-
bly use IMTEX and Sebastian Rahtz’ hyperref pack-
age. IANTEX comes with many of the features that I
had to struggle with to include in my own system;
hyperref provides many of the hypertext features
that I regularly use in my tutorials.

However, I have no regrets. At the time I be-
gan this project in late 1994, hyperref was still in
its infancy anyway. One thing is certain, since I
wrote the macros myself, if something goes wrong, I
know immediately where the problem is, and how to
fix it. Problem turnaround time is much shorter: I
don’t have to complain (report bugs) to the package
author, then wait for the fix to arrive.

Creating PDF. There are essentially three meth-
ods for creating an interactive PDF document from
a TEX source:

1. Convert the .dvi output file to a PostScript file
using a dvi-to-PostScript driver such as dvip-
sone or dvips, then use the Acrobat Distiller to
convert the PostScript file to a PDF file.*

2. Convert the .dvi file to PDF, bypassing the
PostScript step, by using either dvipdf (Lesenko,
1996) or dvipdfm® by Mark A. Wicks.

3. Convert the .tex source file directly to a PDF
file by using PDFTEX,® a program that is the
ongoing labor of Han Thé Thanh (Sojka, Thanh,
and Zlatuska, 1996).

Figure 1 depicts the various paths from a . tex source
file to a .pdf file.

TEX
tex dvi
: w o7 -
o -
| - dvipsone
PDFTEX | -7 or gvips
| - 64\9
Vad
pdf ps
Distiller

Figure 1: From TEX to PDF

Use Type 1 fonts. One last point must be made
before leaving this topic. To create a quality PDF
document from a TEX source it is necessary to use
Type 1 fonts. The traditional font used by many
freeware TEX systems is the bitmap or pk font; these
fonts look choppy and jagged when incorporated
into a PDF document and viewed on screen (though
they do print decently).

4 This method is the process referred to as ‘AcroTEX’; it
is the only one that uses the Acrobat Distiller.

5 Information and download are available at http://odo.
kettering.edu/dvipdfm/.

6 See www.tug.org/applications/pdftex/ for more infor-
mation and download links.

Quality Type 1 CM fonts have been made avail-
able by a consortium of Bluesky Research, Y&Y, AMS,
SIAM, IBM, and Elsevier. The freeware, shareware,
and commercial TEX systems now come with Type 1
fonts. For an author wanting to publish on the Web
using PDF, every effort must be made to reconfigure
their TEX system to use these quality fonts.

Problems with multi-file systems

In this section, problems and issues associated with
maintaining a large multi-file system are discussed.
Hopefully, there will be enough detail to help readers
better manage their own systems.

The use of a Make utility. The tutorials consist of
a large number of files that are undergoing constant
revision. A make utility” is used to help maintain
this system of files.

A script file listing file dependencies was devel-
oped for each of the two tutorials, “e-Calculus” and
“Algebra Review”. (Actually, two sets of scripts are
maintained: one for the system of .dvi files and the
other for the system of .pdf files.) The make utility
reads the script and initiates the programed action,
perhaps calling the TEX compiler or the dvi-to-ps
converter.

To create PDF files, for example, the make util-
ity, as signaled by the controlling script file, calls
the dvi-to-ps converter (dvipsone in my case) for
each .dvi that needs to be updated, which in turn
dumps the PostScript output into “Watched Fold-
ers”. The Acrobat Distiller is activated and distills
the files in these watched folders automatically and
places them in an out folder. A batch file is then
invoked to move the new .pdf files into their proper
location.

The behavior of the make can be controlled by
way of command-line switches of the make utility.
As a result, only the files that have changed can be
updated or the whole system of files can be re-TEXed
and (optionally) re-distilled.

The make utility has been very helpful with the
problem of trying to keep all files up-to-date. Updat-
ing the whole system of files is a matter of starting
the make utility twice, once to TEX all files, then
again to create the corresponding PostScript files
dropped into the watched folders. The distiller does
the rest.

Macro option switches. Each file belonging to
one of the tutorials contains a table of contents, an

7 The make utility that came with Microsoft Macro As-
sembler 5.0 is used.

198 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

index, and cross-document hypertext jumps. To fur-
ther complicate matters, a collection of files cover-
ing a common topic, such as “Integration”, shares
the same table of contents (and same collection of
bookmarks). When a new section is introduced or a
new cross-document link is created, the supporting
auxiliary files (and there are eight of them) must be
properly updated and synchronized.

IXTEX has a more or less automated system of
updating the auxiliary files. Usually, XTEXing three
times does the job. However, the macros developed
for the multi-file system of tutorials are not nearly
as automated but still are quite effective.

The system of macros that I have developed has
“option switches” to update any cross-references be-
tween files, update the tables of contents, or update
the indexes.

Below is a verbatim listing of (a portion of) the
preamble of one of my “e-Calculus” files.

\documentstyle{tutorial}

\LocalOptions={}

\InstallOptions

The \LocalOptions token list allows local control of
what auxiliary information is written. For example,
after some changes in the file, this option can be
changed to read

\LocalOptions={\CompileTOC}

The updated table of contents information will now
be written to the file \jobname.toc.

In addition to local control of a file, global con-
trol of a collection of files is needed as well. In this
case, the master macro style file, tutorial.sty, is
opened and a token list, \GlobalOptions, is modi-
fied.

For example, the procedure for updating the
entire “e-Calculus” tutorial is as follows. First, all
local options are turned off and a \GlobalOptions
token list is modified to perform each of the follow-
ing tasks in turn: write to the appropriate auxiliary
file (1) all table of contents entries, (2) all cross-
document labels, and (3) all index entries. The “e-
Calculus” source files are then TEXed (with the aid
of the make utility) with each of these three tasks set.
Finally, Makelndex is run, the system is re-TEXed
again. The entire multi-file system of PDF files can
now be uploaded to the AcroTEX web site.

Write the document state. The tutorial system
consists of a series of related articles. Files are kept
to a size of around 500K in order to minimize the
download time yet maximize the content.
Sometimes a single article is spread over sev-
eral files. In this case, it is desired to have cor-
rect numbering of sections, examples, exercises, fig-

AcroTEX: Acrobat and TEX Team Up

ures, and so on. For this purpose I wrote a macro
called \WriteDocumentStateTo{<filename>}. The
macro is placed at the end of a file and its purpose is
to write the values of several count registers to the
file called <filename>.sts. Here is a sample listing
of one of the .sts files:

\secno=2 \subsecno=6 \resultno=2 \exno=43
\exmplno=14 \tagno=11 \figureno=2

The file <filename>.sts is then input by the file
<filename>.tex, which sets the ongoing count of
each of the listed registers.

Notice that the count register \pageno is not
transmitted to the next file. This is because, at the
time the system was designed, page numbers were
determined to be of little importance in a multi-file
system of tutorials!

No page numbers. Of course, TEX and PDF both
maintain physical page numbers. In the tutorials,
they are not printed on the electronic page and, with
one exception, not referred to at all.

Because the tutorials were designed specifically
for on-screen reading —mnot for the printed page—
all cross-references can be made using hypertext links
to named destinations. There is no need to write
“see the definition of continuity on page 106”; it
suffices to write “see the definition of continuity”,
where continuity is a hypertext link. (In the tuto-
rial, links are color-coded; for this paper publication,
they are underlined but do not work.)

Multi-file indexes. That one exception is in the
creation of indexes. Page numbers in the index are
used only as a visual reference of how far an index
entry lies in from the beginning of the file.

Another problem with indexes in a multi-file
system is that a given keyword, say “Euclid”, might
be referenced in several different files— perhaps, in
an article on functions, on limits, on continuity, on
differentiation, or on integration. How can the index
give an hint as to the context of the reference?

Looking at the index in “e-Calculus” you would
see the following entry under “Euclid”:

Euclid, c11:12, c1i:205

Each entry has an index descriptor followed by a
colon and a page number. The index descriptor de-
scribes the file the reference lies in; for example,
c11:12 indicates that the word “Euclid” was used
on page 12 in the calculus 1 file on limits (c11). The
page numbers are underlined and hypertext-linked
to the indicated page in the appropriate file.

The technique of manipulating the Makelndex
utility to obtain this index descriptor prefixed to the

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 199

D.P. Story

page numbers is a little sneaky and should, perhaps,
be left for another occasion.

Mathematical games

Games stimulate interest in mathematics, promote
creativity, and provide a resource of class projects.
All of the games listed below suggest that TEX and
PDF can be used to create simple games that are
inexpensive to build and challenging, educational,
and informative to play.

My interest in games was stimulated by Gary
Cosimini of Adobe. He created a game board in
PDF that fascinated me; I wondered how he did it
and set out to duplicate and expand on his game.
To construct my own version of the game from a
TEX source, I determined that I needed a greater
understanding of the pdfmark operator. My read-
ing and experimentation resulted in a Jeopardy-like
game called “Algeboard” covering some topics in el-
ementary algebra.

Studying the Pdfmark Reference Manual (Bi-
enz and Staas, 1996) and the PDF Reference Manual
(Bienz et al., 1996) gave me greater understanding of
how to construct the game. With TEX’s macro fea-
ture and its ability to place objects very precisely, I
was able to stack form fields one on top of the other,
and control their hidden attributes. When the user
clicks on one of the game squares, the visible form
field becomes hidden and another becomes visible.
This is the way some of the effects are accomplished
in the game.

“The Giants of Calculus”, a two-column game
of matching, was another challenge in coordinating
layered form fields to get the desired effects.

Later, when Adobe Acrobat 3.0 came out with
JavaScript, the Algeboard game was revised and
JavaScript was used to keep track of the score. Thus
was born “Algeboard/JS”. This gave me some early
experience in using JavaScript.

The experience with JavaScript helped when
I attempted to create the more complicated “PDF
Flash Cards for Kids”, an electronic variation on the
flash cards children use to practice their arithmetic
skills of addition, subtraction, multiplication, and
division.

All of the above-mentioned games can be down-
loaded from the AcroTEX web site.

Technical documentation

One of the goals of the AcroTEX site is to try to en-
courage other educators to use TEX (or ITEX) and
the Portable Document Format to put mathematics
(or any technical material) that might be of bene-

fit to students on the internet. To that end, I've
written several technical articles that describe how
to insert hypertext links and form annotations into
a PDF document, and how to use XTEX to create a
quality interactive document in PDF.

About Pdfmarks. A pdfmark operator is an ex-
tension to the PostScript language that is read and
understood by the Acrobat Distiller. The pdfmark
is used to insert PDF-related features such as hy-
pertext and form annotations. Primary documenta-
tion on pdfmarks is from Bienz and Staas (1996); an
excellent on-line reference to pdfmarks is the “pdf-
mark Primer”, one of the chapters from Thomas
Merz’ fine book, Web Publishing with Acrobat/PDF
(1998).

For the TEX programmer wanting to create hy-
pertext links or to insert form elements into a docu-
ment, the appropriate code can be inserted into the
.dvi file by using raw PostScript \specials. This
code is then passed on to the .ps file by dvi-to-ps
converters such as dvipsone or dvips.

For IATEX users, Sebastian Rahtz’ hyperref
package performs all these tasks wonderfully. Still,
there are certain special effects that hyperref does
not include; in this case, knowledge of pdfmark pro-
gramming is essential.

The electronic article, “Pdfmarks: Links and
Forms” (Story, 1998a), was written not long after
I had constructed the games just described. I had
made an in-depth study of the pdfmark operator and
thought it might be a useful to write about what I
had learned as a way of organizing the information
in my own mind.

The article describes the basic, the advanced,
and the more subtle techniques of creating hyper-
text links and form annotations for PDF. Written
from the perspective of a TEX user, the article is
interactive and highly informative. The many ex-
tensive and detailed examples contained in the ar-
ticle use TEX primitives and macros; TEX users can
copy and paste code swatches into their own source
document.

Authoring PDF documents using EBTEX. In
the past few years, I've received several inquiries
from educators about how to construct good on-
line tutorials using IXTEX. Not a regular user of
ETEX myself, I really didn’t know. Ultimately, I
got interested in learning I4TEX, and in understand-
ing how to use Sebastian Rahtz’ hyperref package.
As aresult, I wrote the article, “Using IATEX to Cre-
ate Quality PDF Documents for the WWW?” (Story,

200 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

1998b). In this article, I tried to describe all the ele-
ments that go into the creation of a visually attrac-
tive, interactive PDF document using KTEX, with
special emphasis on how to use the hyperref pack-
age.

The Web and Exerquiz packages

The goals of these two packages are: (1) to create
an attractive, easy-on-the-eye page layout suitable
for the WWW, and (2) to make it very easy (for
educators) to create interactive exercises and quizzes
in the PDF format. Both packages are available in
webeq.html.

The web package (for KTEX) is a set of macros
that establishes a page layout for a (PDF) document
that is meant to be read on-screen and not meant
to be printed. The package also redefines the table
of contents to a web style and defines optional navi-
gational aids. The package has options for use with
dvipsone, dvips, and PDFTEX.

The exerquiz package defines three new envi-
ronments:

e the exercise environment creates on-line exer-
cises; solutions are hyperlinked to the question;

e the shortquiz environment is used to construct
multiple-choice quizzes (with or without solu-
tions) with immediate feedback in the form of
“Right” and “Wrong” message boxes appearing
on-screen;

e the quiz environment is used to write longer
multiple-choice quizzes that are graded by Java-
Script.

The exerquiz package is somewhat independent of
the web package; it can be used with any of the stan-
dard KTEX classes and works correctly, for example,
with pdfscreen,® a screen design package written
for PDFTEX by C.V. Radhakrishnan.

It should be remarked that both packages have
been extensively tested using the commercial TEX
system by Y&Y, which uses dvipsone, and the MikTEX
system for Win95/NT, which includes dvips and PDF-

TEX.
Final remarks

It is surprising what can be done with TEX and PDF.
In the past, when I thought of TEX, I thought of a
compiler and a collection of macros that could pro-

8 CTAN: macros/latex/contrib/supported/pdfscreen.

AcroTEX: Acrobat and TEX Team Up

duce an outstanding typeset-quality article on pa-
per. TgEX, however, is capable of more than just
black and white. When teamed with Adobe Ac-
robat and the Portable Document Format, TEX can
produce colorful documents with the richness of user
interaction.

TEX and PDF are a natural for putting educa-
tional material, especially technical material, on the
internet. It is hoped that the use of “team AcroTEX”
will continue to grow in the educational and TEX
communities.

References

Bienz, Tim, R. Cohn, and J. Meehan. “Portable
Document Format Reference Manual”. Version
1.2, Adobe Systems, Inc., Mountain View, CA,
1996.

Bienz, Tim and G. Staas. “pdfmark Reference Man-
ual”. Technical Note 5150, Adobe Systems, Inc.,
Mountain View, CA, 1996.

Eijkhout, Victor. TEX by Topic: A TEXnician’s Ref-
erence. Addison-Wesley, Reading, MA, 1992.
Goossens, Michel, F. Mittelbach, and A. Samarin.
The BTEX Companion. Addison-Wesley, Read-

ing, MA, second edition, 1994.

Goossens, Michel, S. Rahtz, and F. Mittelbach. The
EIEX Graphics Companion: Illustrating Docu-
ments with TEX and PostScript. Tools and Tech-
niques for Computer Typesetting. Addison-Wes-
ley, Reading, MA, 1997.

Lesenko, Sergey. “The DVIPDF Program”. TUG-
boat 17(3), 252-254, 1996.

Merz, Thomas. Web Publishing with Acrobat/PDEF.
Springer-Verlag Berlin, 1998. Chapter 6, “pdf-
mark Primer”, is available on-line from: www.
ifconnection.de/~tm/pdfmark/.

Salomon, David. The Advanced TgXbook. Springer-
Verlag, Berlin, 1995.

Sojka, Petr, H. T. Thanh, and J. Zlatuska. “The joy
of TEX2PDF — Acrobatics with an alternative to
DVI format”. TUGboat 17(3), 244-251, 1996.

Story, D.P. “Pdfmarks: Links and Forms”. On-line
documentation: 1nk_forms.html, 1998a.

Story, D.P. “Using BTEX to Create Quality PDF
Documents for the WWW?”. On-line documenta-
tion: latx2pdf.html, 1998b.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 201

Jean-luc Doumont

Doing It My Way: A Lone TgXer in the Real World

Jean-luc Doumont

JL Consulting

Achterenberg 2/10
B-3070 Kortenberg, Belgium
JL@JLConsulting.be

Abstract

While a world-renowned standard in many academic fields, Don Knuth’s much
acclaimed typesetting system is almost unknown in most parts of the real world,
where many a document designer has achieved professional success without ever
hearing (let alone pronouncing) the word “TEX”. Outside academia, the lone
TrXer faces not only compatibility headaches, but also outright incomprehension
from his customers, colleagues, or competitors: why would anyone want to use
TEX to produce memos, two-color newsletters, full-color brochures, overhead
transparencies, and other items—in short, anything but books that contain a
lot of mathematics?

As a consultant in professional communication, I have been using TEX for
all documents I have produced for my clients and for myself during the last ten
years or so. Though it has turned out to be most successful, this approach is
seen by most as a mere idiosyncrasy. And yet, the systematic use of my own TEX
and PostScript programming gives me three unequalled advantages over using
off-the-shelf software: 1 travel light, I can go anywhere I please, and I guarantee

T’ll get there.

Introduction

Being someone who (among other activities) pro-
duces documents for a living, I often have to discuss
software issues with clients, colleagues (or competi-
tors, as the case may be), and service bureaus or
print shops. When I say I use “TEX,” these people
usually first ask me to repeat, then express their
surprise. Some immediately dismiss it as “never
heard of”; others first ask what exactly it is, be-
fore wondering why I would want to use something
“that nobody else uses” instead of a WYSIWYG,
“professional” application (the one they use, no
doubt).

My using TEX (and PostScript) for virtually
all documents I produce, successful as it may
turn out, has puzzled many a TEX user, too. Is
TEX really the best tool for documents other than
long, structured, or heavily mathematical ones?
Is a direct-manipulation, integrated application not
better suited to producing short newsletters, graphs,
or overhead transparencies? The most qualified
answer is likely to be, “Well, it depends.”

This paper relates the experience of a long-time
lone TEXer in the real world. It explains choices,
points out advantages and limitations, and draws
lessons from the experience.

202

Approach and opportunities

The very varied documents my company produces
can be grouped into two categories. Some are
in-house documents, such as letters, reports, and
teaching materials (handouts, lecture notes, over-
head transparencies). The others are documents
we create on behalf of clients, including newslet-
ters, brochures, corporate reports, and overhead
transparencies. Documents of both categories may
be black-and-white, two-color, or full-color ones,
printed in traditional (offset) or modern (digital)
ways, in small or large runs.

To be able to guarantee the quality of the
documents we produce for our clients, we have
opted to give them non-editable deliverables only —
in practice, paper, film, or ready-to-print electronic
files (in PostScript, for example). We thus strive
to preserve the quality of both the writing and
the typesetting against two sources of undesirable
alterations: unwise last-minute modifications by the
clients themselves, often ruining a consistency they
may not readily perceive, and accidental changes
caused by an all-too-theoretical “seamless conver-
sion” between platforms or versions of a given
software application.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

Our insistence on not giving away editable files
is a tough one to maintain (admittedly, it has
suffered exceptions): clients logically consider as
theirs the text they have paid us to write or the
format they have paid us to design and produce.
Yet our name in the list of credits constitutes our
best —if not our only useful —marketing tool: we
cannot afford to take chances. We will, of course,
ensure that what we create addresses the client’s
needs while attaining the quality level we strive for.

Though our approach is dictated by quality
standards, not ease of production, it does simplify
our work—to some extent, that is. Because we
need not exchange editable files back and forth
with external parties, we are free to choose not
only the platform but also the software tools with
which we work. More accurately, we must be
able to process incoming ASCII files and occasional
images in GIF or JPEG format, and to produce
PostScript files for laser printers, imagesetters, or
others still—all in all, minor constraints. Our
software tools are therefore essentially limited to an
ASCII editor, an image processor, and, of course, a
TEX environment, which we use to produce virtually
all our paper documents.

Surprise and frustration

The choice of TEX as all-purpose tool for producing
very varied documents surprises those who know
TEX and puzzles those who do not. Clearly, it
does stem from my previous experience with TEX
in an academic setting (Stanford University, which
happens to be TEX’s cradle), and from my tech-
nical education (applied physics) and consequent
preference for analytical thinking. Admittedly, it
may also partly originate in my pronounced taste
for computer programming and, more generally,
in my peculiar habit of wanting to (re)do things
my own way. Still, the perspective provided by
some ten years of successful professional practice
vindicates my choice: over the years, I have satis-
factorily moved to TEX for more and more types of
documents.

Until 1 entered the “real world,” T failed to
realize how poorly known TgEX is, at least over
in Europe. It is known by the more technically
minded participants at the training programs I
teach in academia and national research centers,
though even these people are often unclear about
what TgEX really is and typically confuse TEX
and IMTEX. In contrast, it is an unknown entity
to clients who entrust us with document-creation

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Doing It My Way: A Lone TEXer in the Real World

projects, even those in research organizations, typi-
cally from the Corporate Communication or Public
Relations department. These clients, used to main-
stream direct-manipulation packages, have difficul-
ties understanding the nature of TEX, the difference
between TEX itself and its implementation on a
specific platform, and the fact that TEX cannot do
much (relatively speaking) until one programs it.

Irrelevant as it may seem, given the lack of
compatibility issues in our case, the choice of TEX
in an essentially non-TEX world proved a liability to
our credibility. I had expected that clients who did
not know TEX would be content to judge the tool
by the result; I was wrong, for at least two reasons.
First, most of our clients are little able to judge the
quality of a typeset page; their eyes somehow seem
blind to stretched out lines, uneven line spacing,
and other basic points. Yet the eventual readers
of the documents may well notice the difference
(if unconsciously), so producing high-quality pages
still matters. Second, our clients judge merit by
popularity and hence distrust or even disdain what
they do not know; they figure that, if they have
not heard of TEX, then it cannot possibly be any
good. Consequently, and independently from what
they see, they are suspicious of the pages I typeset
with TEX. Ironically, they seem infinitely more
reassured when I simply tell them I use “a system
I programmed myself” rather than “the system
developed by Professor Donald E. Knuth”.

Distrust of the unknown goes beyond the
clients. Many of the print shops with which clients
sometimes ask me to work dislike my giving them
PostScript files instead of editable ones. PostScript
being akin to Greek to them, they somehow feel
deprived of their power and will not admit I have
done half of the work for them. When anything goes
wrong at any stage of the printing process, they are
quick to pin the blame on me, insisting to the client
that I use a software application nobody else uses,
“so it’s bound to create problems”. (As an extreme
case, one renowned print shop even resorted to this
excuse after mistakenly using a Pantone color other
than the one I had specified in writing.)

People who do understand what TEX is, after
some explanations, wonder why on earth I prefer
using such an intricate system rather than a much
more user-friendly (and better known) package. At
first, the advantages of TEX were so intuitively
obvious to me I was unable to put them into words.
Extolling the line-breaking algorithms, positioning
accuracy, or logical markup was pointless: these
people either saw no benefit in the features or
insisted they could do all of that with their own

203

Jean-luc Doumont

text processor. To a point, they were right, of
course, even if we all feel that “it’s not the same”.

A little help from my friends

At a loss for words in the defense of TEX, but con-
vinced from experience that it suited my work so
well, I set out to ask other users why they preferred
TEX. I contacted the makers of my own TEX im-
plementation, posted questions on comp.text.tex,
and asked around. The answers were varied but
can be grouped into five categories: output qual-
ity, flexibility, text-based formats, reliability, and
portability.

Not surprisingly, many who answered my post
on comp.text.tex summed it all up by saying that
TEX’s output “simply looks better,” especially as
regards mathematics. Among others, they pointed
to such features as transparent use of optical sizes,
better hyphenation algorithms, and line-breaking
algorithms that act on whole paragraphs, not line
by line.

Besides the quality of its output, users love
TEX for its flexibility, allowing one to extend its
capabilities almost ad infinitum. Some mentioned
virtual fonts, custom hyphenation patterns, and
non-European languages. Others lauded TgEX'’s
superior capabilities for floating inserts and cross-
references. Following the theme of the present TEX
Users Group conference, some also underlined the
parallel writing of printed and HTML documenta-
tion.

Less expectedly perhaps, users praised TEX’s
ASCII roots. A plain-text format, they said,
allows easy manipulation with any text editor,
easy generation of TEX files by other applications
(including preprocessors), and small files (hardly
larger than the actual text) that compress well.
Some also mentioned the small size of their TEX
implementation, compared to that of popular text
processors.

TEX’s text files, batch operation, and stability
over time were seen as the basis of its reliability
and portability. In contrast to those of integrated
applications, the TEX (source) files can be damaged
only by the text editing, not by the formatting,
the displaying, or any other downstream operation.
Moreover, source files typeset with TEX ten years
ago can be typeset again today — on any platform —
to produce the exact same output, in the exact same
device-independent format. TEX files, being plain
ASCII, can also safely be exchanged by electronic
mail across the world.

Besides the above observations, the (occasion-
ally emotional) discussion on comp.text.tex as a
result of my post pointed to two interesting differ-
ences. Trivial as these may seem in retrospect, they
helped me understand much of the religious wars
around software: they are the differences between a
software tool’s

e claimed and actual capabilities, and
e its potential and actual use.

Reliability and portability are typical issues
that differentiate between claimed and actual ca-
pabilities. There is no intrinsic reason why an in-
tegrated application should be unreliable, although
increased complexity and fast-changing versions
certainly increase the odds. Similarly, there is no
intrinsic reason why the claimed interchangeability
between platforms and between versions should turn
out untrue. Yet a pragmatic point of view suggests
otherwise.

Furthermore, the fact an application offers a
given feature does not imply that its users actually
use it — often a question of usability. As an extreme
example, any graphical application that allows one
to position characters precisely anywhere on the
page can produce output that matches TEX’s—
but at what cost? TEX, or so its users say, not
only makes some operations even possible at all,
it also makes many operations easier than direct-
manipulation software.

Actual use is also largely affected by stability.
In never-ending debates on software, protagonists
who claim their own tool to be more efficient than
that of others may well all be right, for the tool
each masters best is the most efficient for him or
her. Yet mastery requires time and users feel little
motivated to learn to master a tool that will soon
change: fast-evolving software, with pressure or
even obligation to upgrade regularly, may offer ever-
increasing capabilities, but discourages in-depth
learning.

As a final point, the comp.text.tex discussion
also clarified WYSIWYG (What You See Is What
You Get), a concept often confused with that of
direct manipulation. If WYSIWYG denotes faithful
correspondence between screen view (what you
see) and paper output (what you get), then some
.dvi viewers are the closest to WYSIWYG one can
get. Many people, however, actually mean that
what they do affects the output in a way they can
instantly see, a characteristic of direct-manipulation
software. For accurate positioning (for example, to
align two words exactly), direct manipulation may
not be the most practical approach.

204 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

Agreed, but...

Answers from other TEX users expressed some of my
intuitions in words, clarified some of my own mental
shortcuts, and triggered new thoughts. I agreed
on all advantages presented, but felt something
was still missing. Most users enthusiastically put
forward that TEX is unequaled for some documents;
very few suggested they were, like me, using TEX
for all documents they produce.

Users see TEX as particularly suited to the
production of large, structured documents. Its
batch process, ability to input files in other files,
and virtually unlimited capabilities (such as num-
ber of paragraph styles) make large projects easier
to handle. The separation of contents and visual
appearance that it encourages (via macro program-
ming or use) allows one to focus more easily on
content, structure, and style.

To my surprise, many a TEX user I talked to
admitted to resorting to direct-manipulation appli-
cations for short, less-structured documents (letters
being the typical example) because “It’s so much
easier.” I wonder what, specifically, they find easier.
Letters— business letters, that is—may be seen,
if not as one large, structured document, at least
as a uniform collection of documents. Consistency,
therefore, is as important to the 250 business letters
I write every year as a one-off long report. Such
a level of consistency, it seems to me, is more
easily and more reliably achieved with TEX than
with direct-manipulation software. As an example,
the instruction \JL99001 TME/MDe typesets a letter
header with my company’s logo, my name, the date
(in the proper language), the letter’s reference num-
ber (here, 99001), and the complete address block
of my addressee (here, person MDe from company
TME, as specified in a data file).

The major perceived obstacle to using TgEX,
to which some comp.text.tex members rapidly
pointed, is its steep learning curve. TEX, or rather
TEX packages, are often quite immediate to wuse.
Despite a marked aversion for computer program-
ming, my business partner used my TEX macros
very readily, even without the user manual I never
got around to writing. By contrast, TEX, or rather
the fine programming of TEX, is not that immedi-
ate to learn, as confirmed by Knuth’s “dangerous
bend” signs in The TEXbook (1984). The same
business partner was often at a loss when some-
thing unexpected occurred: the mental paradigm
she had built through practice was insufficient to
understand those cases.

Doing It My Way: A Lone TEXer in the Real World

Conclusion

Faced with people who equate “most popular” with
“best”, I stopped saying I work with TEX in casual
conversation. Today, if people ask, I usually say
I use “my own system” and refrain from explain-
ing further. If people insist, I give them a short
document that explains my company’s approach,
including its choice of software tools (Figure 1). Be-
cause they may care little about output quality and
because our approach bypasses portability issues,
the two pages on TEX and PostScript emphasize
the three other categories mentioned above: we say
it allows our work to be fast, flexible, and reliable.

While I have been a TEX enthusiast for over
ten years, I have never been a TEX evangelist.
More importantly, while I am convinced that using
TEX my own way is one of my best professional
moves, | have never advised anyone to develop his
or her own package from scratch, let alone use
mine. Some clients, who do notice the superior
output TEX allows me to produce, have asked what
software tool I was using in order “to buy it for
themselves”. 1 have to disappoint them, telling
them my “tool” could not really be bought. Other
clients, who had heard about TEX, asked me for
the documents’ source files, so they could convert
them automatically to HTML. How could their
HTML converter know, for example, that my TEX
command \Cs [137] produces 37Cs?

Using TEX in the real world, where time and
money matter much, may require a dedicated TEX
wizard. A well-oiled macro package may save con-
siderable time and money by yielding consistently
beautiful documents fast. It may, however, not
account for the admittedly limited but nonetheless
important special cases. In those cases, real-world
users may want to call upon a TEX wizard, some-
times on short notice. How severe a limitation
this is depends on management strategy. Learning
TEX, in my case, certainly paid off, but it was
quite an investment, one that was eased by personal
motivation but that may not make sense from a
pure business point of view. Still, it has given me
an edge in many demanding professional cases, in
which I can— actually —do what others can not.

I may remain a lone traveler, but my mind
is made up: I will go on traveling light, going
anywhere I please, and resting assured I’ll get there.

Reference

Knuth, Donald E., The TEXbook. Addison-Wesley,
Reading, Massachusetts, 1984.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 205

Jean-luc Doumont

Figure 1 (next two pages) The two pages on our using TEX and PostScript, out of a short document
explaining our approach to our clients.

best typesetting tools. All the paper documents we produce therefore
rely on two highly acclaimed standard codes: TgX and PostScript.
TpX is a typesetting system developed by Donald E. Knuth at Stanford University
for “the creation of beautiful books—and especially for books that contain a lot
of mathematics.” PostScript is a standard page-description language developed
by Adobe Systems Inc. “for imaging high-quality text and graphics.”

B ECAUSE WE STRIVE FOR THE HIGHEST QUALITY, we invested in the

Software tools Taking advantage of their complementarity, we use TgX and PostScript in
combination. We use TgX programming and encoding for all aspects of
typesetting (arranging type on the page). We use PostScript programming and
encoding for elements other than type, such as drawings and graphs. For
simple illustrations, we write PostScript code directly. For complex ones, we
use PostScript-oriented Adobe products: Illustrator™ for vectorial descriptions
such as drawings, Photoshop™ for pixel descriptions such as sampled images.

Software Since we go from scratch to final pages, compatibility issues are few, if any. As

compatibility input from clients, we favor the simplest form of all: unformatted ASCII-encoded
text or data (often referred to as “plain text”), readily obtainable with most
software today. And as output, we convert the whole document to PostScript
code, for printing or imaging on a PostScript device. Our clients, in other words,
do not have to know anything about TgX to work with us.

Advantages Programming TgX and PostScript—a route on which few professionals venture—

of own tools gives us three unequaled advantages over using off-the-shelf software: our
work is fast, flexible, and reliable. First, we know our tools in and out, and are
not slowed down by countless unnecessary options: we travel light. Second,
whenever a feature seems to be missing, we program it: we can go anywhere.
Third, whenever a feature does not work as we intended, we can and do fix it:
we’ll get there. We can therefore guarantee a well-done job by a certain date,
without fearing that the software irremediably let us down at the last minute.

Freedom has its price: programming TgX and PostScript requires skill and
dedication. Skill we have acquired through a high-level technical education,
then refined through ten years of practice. Dedication is fueled by our
(and our clients’) satisfaction with the results. Though we seldom recom-
mend this approach to others, we will continue to develop our own tools,
while guaranteeing full compatibility of the output pages with printing devices.

206 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

Doing It My Way: A Lone TEXer in the Real World

The beauty of TgX TgX (pronounced “tech” or “teck”) is not so much a word processor as a
programming language, complete with typed variables, block structure,
executable statements, and a powerful macro facility. The TgX compiler turns
a one-dimensional source program into a two-dimensional typeset page. Below
is an example of source code (right) and resulting output (left).

50 L B B B R

\draw[\white]{8\pc}{8\pc}

40 \xrange03{10} \xaxis01{10}34
\yrange0{503}1 \yaxis0{10}151

&0 \markerdata

20 0.034 6.1667 0.051 13.833 ... \enddata
\Tinedata

0.0 4.45 0.3 52.28 \enddata
0 N \an{0.2}{35}{$r"2=0.93$}rb
0.0 0.1 0.2 0.3 \enddraw

TgX’s advantages are numerous. Dedicated to high-quality typesetting, it pro-
duces the best output available today, especially for such tasks as kerning lines,
hyphenating paragraphs, and displaying mathematics. It allows accurate posi-
tioning (better than 1 pm) and can tackle virtually any language, in any alphabet.
As a clearly defined language, it is platform-independent and stable over time,
allows a high level of automation and extension, nicely separates contents from
format (thus encouraging logical design, rather than visual one), and works
with plain-text source files (smaller, easier to manipulate, edit, transfer, and
compress, and much harder to mangle by accident than word-processor files).

The example graph above exemplifies some of TgX’s advantages. The plain-text
code is compact and compiles fast to produce a consistent graph. Typeface,
tick lengths, and line widths are defined at the top of the document, and apply
by default to all graphs. The graph is exactly eight interlines high, and is
shifted down by 1/4 of an interline; bottom labels are aligned to a line of text,
contributing to the overall harmony of the page.

Because typesetting is a complex process, so, unavoidably, is TgX. While merely
using existing macros is simple—much simpler, in fact, than using a word
processor—writing one’s own set of macros is not. Though we would personally
settle for nothing less, we consider TgX a tool for professionals and a priori
do not recommend its widespread business use around the office.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 207

The vulcan Package: A Repair Patch for IXTEX

Peter Flynn

University College Cork
Computer Centre
pflynn@imbolc.ucc.ie
http://imbolc.ucc.ie/ pflynn/

Abstract

Over many years, TEX and IXTEX systems have proved successful in providing
high quality, affordable typesetting from the desktop. This success has tended to
disguise some of the less felicitous design decisions made in good faith in earlier
days. These are now making it harder to keep BTEX-based systems in line with
user expectations, as the defaults remain rooted in a document model and a
rendering which reflect the period of M TEX’s genesis.

Of the thousands of IMTEX packages, many have already tackled the allied
problems of providing better formatting and configuration management and of
adding new formatting features. This paper presents an attempt to tackle three
of the more deep-seated problems: providing an improved document model, an
updated rendering, and some fixes for what many users perceive (often wrongly)
as bugs.

The document model is compared with current practice elsewhere in the
text field, and the fixes answer some of the most common user requests from the
various FAQs and questions asked on ‘ comp.text.tex'. The changes are presented
as a standard ITEX 2¢ package which will be submitted to the CTAN when testing

is complete.

Background

When Lamport introduced the KTEX structured
documentation system in 1983, the TEX world en-
tered a new era. There was now a standard set
of commands (macros) for processing some common
document types, which could be learned very sim-
ply, ‘even by academics and business types’, as an
esteemed colleague once phrased it. People who
wanted acceptable quality typesetting without hav-
ing to learn the low-level formatting hitherto used by
dedicated typesetters could now obtain it, and I TEX
rapidly became a de facto standard for laboratory
and other research documents, both in academia and
business.

However, as Lamport himself acknowledged dur-
ing his informal presentation at the Santa Barbara
TUG meeting in 1994, the default typographic styling
of the article, report, letter, and book document classes
leaves something to be desired. The best that can be
said about them is perhaps that they formed a stan-
dard at a time when no other was available. Regu-
lar readers of the ¢ comp.text.tex’ Usenet newsgroup
will be familiar with the frequently asked questions
about how to change the default styles.

208

Equally obvious even to the casual user is the
lack of some of the most basic features expected by
publishers, such as provision for author affiliations
and subtitles, and document controls like submission
and approval dates.

The concept or model of ‘a document’ which
ITEX represents is a curious hybrid. Early markup
systems tended to regard the document as sequences
of text blocks (paragraphs, lists, sections, chapters)
separated by headings which applied to all text that
followed, until the next heading. The end of a sec-
tion was thus implicit in the occurrence of a new
heading. More recent models, notably SGML, tend
to regard the document as composed of textual units
which are hierarchically ‘containerized’; that is, they
have explicitly marked start- and end-points' and
subsections lie physically within the bounds of their
parent section. WTEX by default uses parts of both
models, reflected for example in its uncontained sec-
tioning and in its use of bounded environments.

1 The quite separate issue of markup minimization for
convenience is not relevant: the reference is to fully normal-
ized markup.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Development. For ten years the concept of all but
the most trivial changes to the default styles was
beyond most IWTEX (and even TEX) users, who had a
job to do and were not prepared to commit precious
time to making changes in largely undocumented
baseline code. The customization features of INTEX
2.09 were not extensive, and yet it is a tribute to the
robustness of Lamport’s work and the dedication of
hundreds of volunteers that many macro packages
were written to extend its functionality.

1993-94 saw the arrival of WTEX 2¢, intended as
an interim solution to some of the problems while
work on KTEX3 continued. The second edition of
Lamport’s book appeared (1994), updated for
IMTEX 2¢, and also the compendious and wonderful
ETEX Companion, which provided for the first time
a substantial corpus of in-depth detail on the inter-
nals of the system, as well as copious information on
packages and macros.

Structure. Nothing was done, however, about the
level of markup detail or the default appearance of
the document styles. This is understandable when
IATEX is viewed from the point of view of a standard,
but it is regrettable, as it is the visual appearance
of the default styles which is the very aspect of the
system which draws the most criticism, and is per-
haps second only to broken markup as the reason
which has contributed most to the poor image and
take-up rate of INTEX outside the scientific and aca-
demic fields.

A second factor in the use of structured doc-
umentation systems also came to the fore in the
decade before INTEX 2-. The SGML standard? grew
in use (and slowly, too, perhaps for reasons not un-
like those which faced I4TEX). The potential for
a system which could separate content almost com-
pletely from appearance was attractive to many
IMTEX users, and those who worked on M TEX 2¢ were
very much aware of the existence and growth of
SGML. Users, too, were not unaffected by the grow-
ing popularity of one rather small and restricted ap-
plication of SGML called HTML (HyperText Markup
Language).

The Vulcanize project. In concluding that there
are areas of IWTEX’s implementation which need at-
tention, there is no suggestion that KTEX itself—
‘latex.ltx‘, for example—is in any way ‘bust’, so
there is no implication that the core concepts of
IMTEX itself need to be ‘fixed’. It is contended, how-
ever, that ITEX’s default styles and provision of
markup are, at the very least, sub-optimal.

2 Standard Generalized Markup Language: ISO
8879:1985 (Goldfarb, 1990).

The vulcan Package: A Repair Patch for N TEX

Changing this basic provision of markup is not
possible as it is frozen, and too many documents rely
on the continued existence of the IATEX defaults.
One solution to this is the development of transpar-
ent ‘drop-in’ styles which provide solutions to the
problems without affecting anything else. This al-
lows existing files to be processed without changes
to the markup, and allows new files to be created
with markup which is 100% backward-compatible.

The Vulcanize project,® and the vulcan pack-
age which it is developing, grew out of the author’s
work in supporting I#TEX in a research environment
and also using it in a commercial production envi-
ronment. The simple practicalities of this made it
clear that while perhaps 85% of style writing could
be handled by existing packages and options, there
was a repeated necessity for some common features
which were not well addressed by the standard pack-
ages. The present macros are therefore aimed at
fixing these aspects by supplementing the standard
KTEX defaults with three additional features:

1. extra commands to support many of the re-
quirements for ‘logical’ markup (Lamport, 1988),
not a few of which are derived from the experi-
ences of SGML and XML

2. new formats for the default document classes
which become operational without any change
to existing markup, drawing on practices and
developments in typographic design over the
last two decades or more

3. document design support for authors and others
wanting to make changes, based more closely on
the way the typesetting and publishing industry
works

The initial stage of work planned for the project is to
cover the first item above, and part of the second. A
later stage will tackle the more difficult problems of
‘customizable customization’ implied by the third.

It has been noted that while the additional pro-
visions of vulcan are in themselves non-standard,
there is an opportunity at this stage to try and har-
monize some of the work being done by publishers
and others, especially for the front matter or meta-
data, and that the XTEX3 project may be a suitable
forum for discussion.

Other work. There have been many packages which
enhance the default TEX and IXTEX styles, and some
of them also provide alternative methods of specify-
ing changes to the styles. Among the best known
are probably blu, lollipop, and koma. The last in

3 As was noted in the author’s recent column in TUG-
boat(Flynn, 1998), the reference is to the vulcanization of
rubber being used to seal leaks.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 209

Peter Flynn

particular is of interest, as it implemented, for the
first time in a TEX system so far as the author is
aware, the page layout parameters favored by Jan
Tschischold in later life (Tschichold, 1935). These
have been borne in mind, although not directly used,
in the layout changes implemented in vulcan.

It is no part of this project to detract from these
packages, all of which provide much-needed addi-
tional features. On the contrary, it is an explicit
aim to supplement them by addressing a related but
distinct set of problems.

Commands in vulcan

This section deals with the primary stage of the
project, which is to develop additional commands to
support a greater use of logical markup. The great-
est part of this deals with the metadata found in doc-
ument headers and title blocks. Although the cur-
rent proposals do not relate directly to those of the
Dublin Core* or ISO 11179,% the author is monitor-
ing developments in this area, and suggestions from
catalogers as well as publishers have been sought
in relation to the need for markup to hold ISBNs,
ISSNs, CIP blocks, etc.

Titling. ITEX’s \maketitle command creates a
title block (or title page, if the titlepage option to
the current class is in effect), using the values sup-
plied in the immediately preceding \title, \author,
and \date commands. If the beginner omits one or
more settings, there are defaults or error messages
provided by I TEX.

These commands in standard KTEX accommo-
date only the most basic of document identification,
and require sometimes extensive additions to handle
the requirements of publishers, institutions, or cor-
porate standards. Code such as that in Figure 1 is
all too common, and is largely due to the fact that
the only way in the standard classes to effect a sub-
title is to bind it typographically to the title, and
the only way to effect a multi-author representation
is to bind it in a similar manner to the \author com-
mand by formatting. While it can be argued, cor-
rectly, that the default styles can be used to achieve
footnoted affiliations, for example, the problem is
that they are not called that: they have to be called
\thanks, which is misleading, especially for the be-
ginner. While it is not possible to provide ‘syntactic

4 A proposed methodology for adding metadata to HTML
files to aid retrieval on the Web.

5 A standard proposing Registries to disambiguate the
names used for data elements. This would allow context-
sensitive searches to take place without the user needing to
know what name an information provider has used for a par-
ticular class of information.

sugar’® for every variation of formatting, the current
contention is that the default styles are seriously de-
ficient in their provision of markup and that this is
a significant stumbling block to the advancement of
KTEX as a serious publishing solution.

One of the greatest problems of acceptance for
IXTEX is that after all the persuasive sales pitch has
been made about the importance of proper markup
and identification, and how portable it makes your
IMTEX, the new user is expected to perpetrate code
like that in Figure 1 because the default document
classes do not provide for anything else.

Figure 1: Traditional methods of article
attribution in ITEX

\title{Read Once, Write Many\\

{\Large Disambiguating multi-author
attributions in Restoration comedies}\\}
\author{Mae West$ a$\\

Mae East$ b$\\

Wile E Coyote$~a$\\

\\

{\small $"a$ University of Short

Island, NYH\\

{\small $°b$ Chicken College, RI}}

Read Once, Write Many
Disambiguating multi-author attributions in
Restoration comedies

Mae West®
Mae East?
Wile E Coyote®

@ University of Short Island, NY
Chicken College, RI

The problem has long been recognized, and many
publishers provide style files for their own journals
(TUGboat is no exception), but these are clearly
very specific solutions, as they address the immedi-
ate disambiguation requirement for formatting. It is
clear that as publishers slowly move towards more
productive use of SGML, the format dependencies
are also slowly changing, but in the common case
of the author writing a document when a suitable
publisher has not yet been identified, many current
formats are simply not useful.

For the three basic commands implemented by
the standard classes, the vulcan package provides a
replacement default title (‘Untitled Document’) and
author (‘Anonymous’), and modifies BTEX’s date
default to use the day—full-month—year format. In
addition, it provides for an optional subtitle, and

6 An alternative way of expressing something; strictly un-
necessary, but designed to keep people sweet.

210 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

author affiliation details (job title, department, or-
ganization, email address, website, and author bio)
for multiple authors in such a way as to make the
data more congruent with that required by many
publishers. This avoids the need for users to add
manual formatting to achieve a reasonably accept-
able generic article format. As more style files for
known publishers’ journals or series are developed,
it is hoped that a common core of similar markup
will emerge: one of the known barriers to acceptance
of IMTEX by publishers is the need to make a signif-
icant investment in programming in order to realize
the required markup.

Author details, if they appear in the title block
at all, usually occur in one of two places: a) im-
mediately after each author; or b) grouped together
after all the authors, and referenced with a raised
footnote letter. To achieve this in vulcan with mini-
mum effort on the part of the author, the positioning
of the author details within the markup is used to
determine where to place them.

e author details which are included within the
scope of the \author command argument (i.e.
before the closing curly brace of the author’s
name), will be printed ‘footnoted’ in a block
after all author names are complete

e author details which follow the closing curly
brace of the \author command (i.e. they lie
after each \author command), will be printed
as they stand, separately after each author

An example of the first layout is clearly seen in Fig-
ure 2. The information which can be provided about
each author is defined below (some syntactic sugar
has been added to make it more context-sensitive):

\jobtitle Synonyms are
\position and \rank.
A synonym is
\institution, and
the abbreviations
\affil and \inst also
work.

A synonym is
\department, and the
abbreviation \dept
also works.

Postal address.

Email address and
Web site, if any.

This is the author’s
short-form biography.

\affiliation

\office

\address
\email and \webpage

\blurb

The arrangements for handling multiple authors
sharing one affiliation is undecided at the time of
writing. Different publishers employ very different

The vulcan Package: A Repair Patch for N TEX

Figure 2: Sample title page in vulcan.

\title{Encoding Boole’s Algebra}
\subtitle{(Markup and Semantics) or \\
(Markup and Presentation)}
\author{Peter Flynn
\affil{University College Cork}
\office{Computer Centre}
\email{pflynn@ucc.iel}}
\author{Angela Gilham
\affil{University of Oxford}
\office{Computer Laboratory}
\email{angela.gilham@comlab.ox.ac.uk}}
\conf{ALLC/ACH 2002}
\journal{Markup Languages}\vol5\numé
\submitted{31 December 2002}
\maketitle

Markup Languages, 5:4

Encoding Boole's Algebra

(Markup and Semantics) or
(Markup and Presentation)

PETER FLYNN® ANGELA GILHAM®

®University College Cork Computer Centre
(pflynn@ucc.ie)

bUniversity of Oxford Computer Laboratory
(angela.gilham@comlab.ox.ac.uk)

Submitted: 31 December 2002

formats for this, some attaching the affiliation to the
first author’s name, some attaching it to the last,
and some using footnote-style raised figures in mul-
tiple occurrences. There needs to be more discussion
about how to make it easiest for the writer or editor
to assign affiliations to author names.

Markup is also provided for the identification of
publication-oriented metadata. This often occurs as
a running header, at least on the title page, so it is
implemented in vulcan in that position as left-hand
and right-hand heads:

\copyrightholder, A copyright notice
\copyrightdate (holder and year); left
head.

The name of the jour-
nal or other publica-
tion, if relevant (with
volume number and is-
sue number); left head.
The name of the con-
ference or event (and
the funder or sponsor-
ing organization), if rel-
evant; right head.

\journal, \vol, \num

\conf, \sponsor

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 211

Peter Flynn

Omission of date information works as for standard
BTEX (today’s date). Extra commands are provid-
ed to identify progress through the editorial process:
\submitted and \accepted are more commonly
used by authors, and \received and \reviewed are
more commonly used by editors.

An \ack command is supplied to identify fund-
ing sponsors or acknowledge other assistance.

In all cases the order of the commands is not
important, except that author-specific data must ac-
company its owner directly, in one of the two places
explained above.

Sectioning and structural markup. The major-
ity of BTEX’s default sectioning structure and ap-
pearance has been retained, but some aspects which
are the cause of numerous FAQs have been changed.

The sanshead option sets all section heads, ta-
ble and figure captions, headings on front- and back-
matter sections, and description list topics in the
current default sans-serif font. All display section
heads are set raggedright at all times.

The concept of a chapter has been removed
from code which is applied in the case of the re-
port class, as reports very rarely have chapters.” On
those occasions when a very large report in chapters
is needed, the chaprep option restores the original
use of chapters. This not only conforms with ob-
served practice, but solves an important annoyance
for the new user.

A new float type, example, has been added,
using the float package of Anselm Lingnau.

Example 1. Example of an example

The semantics of example markup require some care,
as it has been noted that in North America, this
term appears to be taken to mean exclusively ‘ex-
ample of verbatim programming code’, whereas in
Europe it can be any kind of example of anything,
depending on the context of the document, from the
brushstrokes in a painting by Cézanne to the right
way to boil a floury potato.

Formatting

This work forms part of that identified as the second
item in the section “The Vulcanize project”.

Title block. The layout of the title block or page
has been radically altered, as described in the pre-
vious section: see Figure 2. Instead of the classic
centred design, vulcan uses a flushleft default lay-
out, with sans-serif document title and subtitle, caps

7 It is unclear how chapters ever got into the report doc-
ument class in the first place.

and small caps for author names, and smaller type
for author details, dates, and acknowledgements.

However, the header layout is just an instance
of the \maketitle macro, so it can easily be altered
to reflect a new design, without the need to bor-
row heavily from the class file. The remaining work
on parameterization (see the section “Conclusions”)
will address this.

Indentation. IXTEX’s automatic \noindent after
section heads can be extended to new paragraphs
following lists, quotations, and so on by using the
trapindent option. This removes an unpleasant vi-
sual imbalance where a new paragraph indent would
follow the end of the hanging indentation of a fore-
going list. The flushquote removes the intrusive
initial indentation in the \quotation environment.

Extended cross-references. Extended cross-ref-
erences have been implemented for parts, chapters,
sections, tables, figures, examples, (and lists, where
possible), so that it is no longer necessary to name
the class of object you refer to. If a reference is
to a figure, then the word ‘Figure’ will be inserted
automatically. This is similar to the references seen
in TEXinfo,® which are fully explicit, giving section
name and number as well as the page reference, and
is already provided for in some class files, as prefixes
for counters. The objective is to free authors from
the need to carry such details in the head, and to
allow text containing labels to be moved from one
environment to another without the need to conduct
a manual search and check for referential integrity.
The \ref and \label commands have been mod-
ified to handle the relevant additional details, so vul-
can files will continue to work with standard BTEX
in this regard, except that the auto-naming will not
occur. Work is ongoing to eliminate some minor
conflicts with other referencing packages.

In-line lists. One class of lists which is inexplica-
bly missing from I#TEX is the in-line list.® These are
extremely common in all classes of document, where
they a) provide informality, b) consume less space,
and c) enable a list to form a part of a complete sen-
tence. They have been implemented in vulcan in the
same way as other lists (e as an environment), thus
\begin{inline}, \end{inline}, and \item can be
used inside a paragraph.

There is an optional argument to affect the num-
bering style, using the same values as for section
numbering (alph, Alph, roman, Roman, and arabic),

8 A plain TEX documentation package common on Unix
systems

9 As this goes to press I notice the new paralist package
which also implements these lists.

212 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

with a default of italicized lowercase letters (other
styles are upright). This argument can also be given
in the \usepackage{inlist} command if invoked
separately, to preset the default.

Hanging indentation. Hanging indentation has
been introduced on footnotes by default, using the
macro suggested in The KTEX Companion (p. 73).

Conclusions

Some parts of the vulcan package have been in use
in the author’s work area for many years. Parts of
the current version of the vulcan package have there-
fore already been used to typeset papers and books,
and work is continuing on improving robustness and
functionality, and on adding compatibility with the
darker recesses of the book and report classes.

The objective of codifying these macros was to
provide a reliable escape route for I TEX users who
needed a better default presentation format than is
provided by the basic installation, and at the same
time to explore the possibilities for creating a new
suite of document class style implementations to
provide new KTEX users with some visual justifi-
cation for their placement of faith. It can be an
unpleasant experience for someone whose only ex-
perience of text processing has been with Word or
WordPerfect (or worse) to discover that so much
manual labor is needed with IATEX when its pro-
ponents have been expounding its superiority.*°

Some experiments have been made with full pa-
rameterization for all the layout details in the new
header, by way of preparation for the next phase
of the project. This would allow very simple cus-
tomization, but the very large number of ITEX
‘lengths’ (TEX’s \dimenn registers) needed for all
controls would place an unreasonable burden on the
use of subsequent packages. The project is open to
suggestions about how to achieve a lighter weight
solution.

References

Flynn, Peter. “Typographer’s Inn.” TUGboat
19(1), 353-355, (1998).

Goldfarb, Charles. The SGML Handbook. Oxford,
Clarendon Press, 1990.

Goossens, Michel, F. Mittelbach, and A. Samarin.
The BEX Companion. Addison-Wesley, Read-

ing, MA, 1994.

10 The words ‘mote’ and ‘beam’ seem appropriate here.

The vulcan Package: A Repair Patch for N TEX

Lamport, Leslie. “Document Production: Visual or
Logical?” TUGboat 9(1), 8-10 (1988).

Tschichold, Jan. Designing Books. Benno Schwabe,
Basel, 1935. Quoted in John Lewis, Typography:
Basic Principles, Studio Books, London, 1963,
p- 39.

Sonnet from the ill-at-ease.

Oh what a tangled web we get

when first we practice to typeset.

And so we read TEX master Knuth

Hoping to Obtain some truth.

Or else we read through the book of Spivak
but end up simply crying Alack!

And then we go and join the TUG

trying to make our process chug.

Beginners know why the rhyme for TEX

is often the frustrated Blecchh.

I can’t even get a .dvi file,

and you think TEX to HTML will make me smile?

And yet I know if I abandon the Lion,
With any other package I'll surely be cryin’.
—Joseph Haubrich

The Hidden Passions of Mathematicians

Step into the garden of conjectures and see

my Julia sets are uniformly perfect.

Forget your nilpotence and steenrod algebras,

my theta divisor is very ample.

In this land of lemmata,

you’ll glide with the smoothness of Kelley

while I, I'll gather the perverse sheaves

and quivers, and we’ll dance

’til our zeta functions converge.

Sipping modular moonshine, we’ll reach

the highest eigenvalue without effort.

In this holomorphic vector field

with totally degenerate zeroes,

we may even discover the essence of chaos.
—Debra Kaufman

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 213

New Interfaces for IATEX Class Design:

Parts I and II

Frank Mittelbach
ETEX3 Project
frank.mittelbach@latex-project.org

David Carlisle
IXTEX3 Project
david.carlisle@latex-project.org

Chris Rowley
I¥TEX3 Project and Open University, UK

chris.rowley@latex-project.org

Introduction

Traditional IATEX class files typically implement one
fixed design via ad hoc, and often low-level, (I2)TEX
code. This style of implementation makes it much
harder than is either desirable or necessary to pro-
duce classes that implement a specific visual design.
Moreover, the construction of such classes typically
involves a lot of work that is essentially program-
ming and thus does not live easily with the declara-
tive kind of design specification for a document (or
range of documents) that would be produced by a
professional typographic designer.!

This work introduces some extensions to XTEX
that will help to provide a new, more declarative in-
terface that can be used in class files. It is based on
the idea of a template, which describes how to carry
out some action but which provides some flexibil-
ity since its code uses the values of a set of named
(keyword) parameters. The specific design for this
action, as required for a particular class, is then se-
lected by choosing values for the template’s named
parameters.

Plans

The plan is to provide standard templates for a wide
range of typographic objects but, of course, new
templates for new ideas can be created, possibly by
adapting an existing one or by a little TEX pro-
gramming. It is our firm belief that there will soon
be a large range of templates available and that it
will thus be possible for the majority of class files

1 [This is an up-to-the-minute report from the IXTEX3
team; a written version will follow in a future issue of TUG-
boat. —Ed.]

214

to be implemented in a declarative way, by simply
choosing suitable templates and supplying values for
their named parameters.

Spin-off technology

Whilst applying the idea of templates to document
design in WTEX we have had the opportunity to
substantially rethink many of the basic concepts of
ITEX’s formatting machinery. This has led to the
development of major enhancements in the following
parts of INTEX.

Paragraphs: There will be a completely new model
and design interface for all aspects of paragraph-
making, including: the parameters that con-
trol TEX’s hyphenation and justification sys-
tem; special typographical treatment of the be-
ginning and end of paragraphs, e.g., initial let-
ters/words (lettrines), nested run-on headings,
etc.

Galleys: The paragraph model will be linked to a
new model for the construction of galleys from
paragraphs and other material; this model will
incorporate current standard IX¥TEX concepts
such as logical labels, marks and colour-change
nodes, together with more experimental objects
such as hyper-information nodes.

Floats: These elements have undergone a major re-
development:

Captions: The formatting and positioning of
the caption can be decided individually
for each float and can depend on exactly
where on the spread it appears.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Position: The position specification allows
changes if the float does not fit on the cur-
rent page.

Pages: More flexibility and better specification
of both individual float pages and sequen-
ces of float pages (e.g., at chapter ends),
including more possibilities to choose
whether a text page or float page should
be used.

Margins: Better integration of floats and marginal
material, allowing floats to appear in margins
and for text to be changed according to which
margin is used.

Alignment: Better support for alignment between
‘minipages’, specified using logical handles such
as ‘top centre’, ‘centre left’ or ‘first baseline
right’: the relative positioning of two boxes
(with such handles) is done by choosing a han-
dle on each box and the (2-D) offset between
these handles.

Page layout: More types of pages and spreads with-
in a document; more layout choices and param-
eterisations.

Document commands: New tools for providing
document-level syntax.

Professional support: For editorial and page
make-up processes currently used in the pub-
lishing industry: e.g., flexible manual control
over positioning of floats, etc. in the final form
document; automated handling of complex bib-
liographic information in the front-matter of
journal articles.

These are all, of course, still severely limited
by what is practical within current TEX; for exam-
ple, precise control over page-breaking within para-
graphs is simply unobtainable using TEX’s standard
mechanisms. Nevertheless, we hope that what we
have been able to do will inspire others to use the
tools we provide in the creation and use of high-
quality typographic designs.

Presentations

The two presentations explain these concepts and
show examples of their use, covering both the cur-
rent standard B TEX designs and some more exciting
new possibilities.

We demonstrate working examples of the ap-
plication of these ideas in most of the major areas
of document design, including page layout, section
headings, lists and captions.

We also report on the current status of this
work and on our plans to complete and publish it.

New Interfaces for IXTEX Class Design: Parts I and II

Post-Conference Update

The slides from the TUG’99 presentation of the talk
we gave on a new interface for ITEX class designers
are available from the IXTEX Project website; look
for the file tug99.pdf at:

http://www.latex-project.org/talks/
The slides are also available from the TUG99 website
http://www.tug.org/TUGI9-web/pdf

carlisle.pdf,
mittelbach.pdf, or
rowley2.pdf.

(All three have the same contents.)

Please note that the accompanying notes were
only intended to be informal “speaker’s notes” for
our own use. We decided to make them available
(the speaker’s notes as well as the slides that were
presented) because several people requested copies
after the talk. However, they are not in a polished
copy-edited form and are not intended for publica-
tion.

Prototype implementations of parts of this in-
terface are now available from:

http://www.latex-project.org/code/
experimental/

We are continuing to add new material at this lo-
cation so as to stimulate further discussion of the
underlying concepts. As of December 20, 1999 the
following parts can be downloaded.?

xparse This module contains the prototype imple-
mentation of the interface for declaring docu-
ment command syntax. It supports the defini-
tion of user commands with a IATEX 2¢ inter-
face including star forms, optional arguments,
and picture mode arguments. See the .dtx files
for documentation. It is possible to use this in-
terface independently from all other modules
described below.

template This module contains the prototype im-
plementation of the template interface. Togeth-
er with xparse it forms the basis of all further
modules, i.e., to make use of any of the other
modules you need both.

The file template.dtx in that directory has
a large section of documentation at the front
describing the commands in the interface and

2 Please remember that this material is intended only
for experimentation and comments; thus any aspect of it,
e.g., the user interface or the functionality, may change and,
in fact, is very likely to change. For this reason it is explicitly
forbidden to place this material on CD-ROM distributions or
public servers.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 215

Frank Mittelbach, David Carlisle and Chris Rowley

giving a ‘worked example’ to build up some
templates for caption formatting.

xcontents This module contains the interface de-
scription for table of contents data, describing
both an extended data model to replace the
data deposited by heading commands into a
.toc file and a number of template type de-
scriptions for manipulating such data. There is
currently no code provided to produce specially
formatted table of contents; however, usable ex-
amples for the templates have been thoroughly
discussed on the latex-1 list, which can be re-
trieved as explained below.

xfootnote This module contains documented work-
ing examples for generating footnotes, etc. It
implements some of the functionality of the
package footmisc by Robin Fairbains and pro-
vides, although still incomplete, a good intro-
duction to the usefulness of templates in class
design. Due to the fact that support modules
for paragraph manipulation, etc. are still un-
der development, most of the implementation
should be considered as a first draft only.

Modules currently under development include the
following. Some if not all might be publicly available
by the time you read this issue of TUGboat.

galley2 This module will document a new data
structure for galley-related information, i.e., a
data structure to better support handling of
inter-paragraph material. Beside implementing
lower-level programmer mutator functions for
this data structure it will provide higher-level
templates for declaring paragraph shapes and
H&J (hyphenation & justification) specs. Most
other modules will depend on its services as
paragraph handling is needed for most aspects
of layout. The code of the second prototype
implementation for the galley data structure is
90% finished and it is targeted for a release date
in 1999.

xlists This module documents and implements tem-
plates for providing various kinds of list struc-
tures. As part of the included examples it will
contain a full set of ITEX 2¢ lists compatible
in design to the article class implemented as
instances of the templates provided. The pro-
totype code for this module is finished but re-
quires services from galley?2.

xinitials This module implements a template for
paragraph initials. An example of its use can
be admired in the slides of our talk. Since it
too relies quite heavily on galley?2 it is not yet
released.

All examples are organised in subdirectories and ad-
ditionally available as gzip tar files.

These concepts, as well as their implementa-
tion, are under discussion on the list LATEX-L. You
can join this list, which is intended solely for dis-
cussing ideas and concepts for future versions of
KTEX, by sending mail to

listserv@URZ.UNI-HEIDELBERG.DE

containing the line
SUBSCRIBE LATEX-L Your Name

This list is archived and, after subscription, you can
retrieve older posts to it by sending mail to the above
address, containing a command such as:

GET LATEX-L LOGyymm
where yy=Year and mm=Month, e.g.,
GET LATEX-L LOG9910

for all messages sent in October 1999.3

3 No, we don’t know whether or not the listserv software
is Y2K-compliant.

216 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Multi-Use Documents: The Role of the Publisher

Kaveh Bazargan
Focal Image Ltd.

2 St John’s Place

St John’s Square

London EC1IM 4NP
kaveh@focal.demon.co.uk

Abstract

Publishers now expect a variety of electronic files from the typesetter, both for
publishing, and for archiving. And yet, the publishing industry, by and large,
still follows the traditional “manuscript/edit/typeset/proofread/print” approach.
The process is still essentially paper-based. The typesetting is also geared pri-

marily towards paper output.

I suggest that we are in need of radical changes to these procedures so that
files can be used to produce output on any medium, including paper, and I
believe that these changes will benefit all concerned — authors, publishers, and
typesetters. And clearly TEX is an ideal medium to hold the definitive text in
modern typesetting. Not only can it be directly edited by the author, but it
can produce every type of output required directly. These include paper, PDF,

SGML, HTML, XML, etc.

Recent changes in typesetting author
manuscripts

Some ten years ago, the process of typesetting ma-
terial for publishers did not, in general, involve any
form of electronic files, whether for typesetting or
archiving. The author submitted a paper manu-
script which was copy edited and sent to the typeset-
ter for keyboarding, conventional proofreading, and
setting to bromide. The procedure had evolved over
decades, and if each party performed their roles and
knew their responsibilities, the process worked well.

During recent years, the well-defined roles of
the three parties—the author, the publisher, and
the typesetter — have been blurred, due to electronic
files, including those submitted to the publisher from
the author and those requested by the publisher from
the typesetter. When we look at current procedures
employed by publishers, we see that in the main, the
traditional manuscript-based approach is still taken,
with the electronic files being treated as an after-
thought, once the paper camera-ready copy (CRC)
has been completed.

I would like to examine the use of electronic
files, and propose some changes in the traditional
procedure which should benefit all three parties.

Why use electronic files from the author? For
the purposes of this discussion, I shall confine myself
to TEX and IXTEX files submitted by the author,
although the principle applies to other file types.

There are two reasons why files submitted by
authors should be used in typesetting a manuscript:

e By using the author’s original code, typographic
errors can be minimized. TEX documents are
often complex mathematical or technical ones,
and proofreading them is a difficult task. It
therefore makes sense to use the author input
where possible.

e If the author has used IXTEX in a structured
manner, then there may be a significant labour
and therefore cost saving for the publisher.

Electronic files required from the typesetter.
When publishers first requested electronic files from
typesetters, it was limited to PostScript files. These
were used firstly in order that the printer could pro-
duce high-resolution CRC to print from and, sec-
ondly, for archival purposes. Soon afterwards, PDF
files were requested, having the advantage of smaller
file size and screen viewability. After discovering the
joys of hypertext links in PDF files, some publishers
requested that these be included for citations, fig-
ures, tables, and sometimes to external URLs. Next
came HTML and SGML, either for the full text or
for abstracts and/or references. No doubt next in
line will be XML, MathML, and who knows what
will come after that. Gradually, these requests have
increased the workload of the typesetter, often with-
out any increase in prices charged.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 217

Kaveh Bazargan

Using ITEX to produce electronic files. For-
tunately, we find that we can use ITEX itself, in con-
juction with many programs which are in the public
domain, to generate all the electronic files required.
It is the open code of TEX and that of the auxiliary
programs written by third parties that allow us to
use IXTEX in this way. The electronic files that can
be produced in this way include full SGML files. An
important advantage is that there is only one source
code and the chances of differences between differ-
ent electronic versions are minimized. Most of the
tools needed for producing the electronic files are,
in fact, in the public domain, with the source codes
available. This means that they can be customized
to produce specific electronic output, for example
SGML output for a particular DTD.

The publisher’s role

Here are what I think the publishers should be doing
to help deal with electronic files better.

Take a more active role in encouraging good
IATEX submission. In order that files prepared by
the author can be used easily for multiple outputs, it
is essential that these files are coded with document
structure in mind and the coding is completely log-
ical, with little or no visual encoding. KTEX, used
correctly, is a very good authoring environment for
this type of coding.

It is my feeling that the acceptance of TEX files
by publishers has been under the pressure of au-
thors, rather than being initiated by the publisher.
With a few notable exceptions, publishers have sim-
ply passed on any TEX or IATEX files received from
authors onto typesetters, in case they can be used.
By supplying the author with an “author kit” (see
below) authors will gain confidence in the publisher
and will be encouraged to submit BTEX manuscripts
according to the publisher’s requirements.

Recognize the extra care needed when multi-
ple outputs are required. More and more publi-
cations are available electronically, usually through
the Internet. These include HTML, and PDF files.
I believe that publishers should consider all forms
of electronic delivery at the outset, and treat the
printed CRC as just one of those possible outputs.
They should take into consideration the extra care
that should be taken in the preparation of manu-
scripts and their associated files. This means that
they should be in contact with the author from the
early stages, making sure that clean, structured files
are submitted. If such files are not available, then
the publisher should be prepared to compensate the
typesetter for the extra work incurred.

They could also insist that all outputs, whether
electronic or paper, should emanate from the same
source code. This will guarantee uniformity in con-
tent of the different outputs and minimize delays for
last-minute changes.

Distribute an author kit By being provided with
such tools, the author is encouraged to submit a
well-structured BITEX document. Here is what the
author kit could contain:

o the ITEX manual [1]: this is a small investment
which I believe will encourage the user to follow
the standard)—it would only apply to book
authors

e an authors’ guide, based on the same user friendly
approach as Lamport’s manual

e a generic class file for authors only (see below)

e a fully working example file with accompanying
hard copy

Produce an ‘Editors’ Guide to Electronic Sub-
missions’ Book manuscripts are normally sent to
freelance copy editors before typesetting. The copy
editors are generally unaware that there are files ac-
companying the text, let alone that the files may
be TEX or KIEX. It would be useful to produce a
short non-technical guide for copy editors, in order
to make the process of copy editing smoother and to
reduce the number of marks made on paper. Points
that should be addressed in this guide would be the
following:

o Automatic cross referencing: It is useful for a
copy editor to know if cross references for cita-
tions, equations, etc. are generated automat-
ically. If an equation is deleted, for example,
they can simply ask for the rest to be renum-
bered appropriately, rather than marking each
occurance, which is the usual practice. They
should also be warned of the reasons for mys-
terious double question marks appearing in a
manuscript.

e Table of contents and Indexr: In ETEX docu-
ments these are usually automatically gener-
ated. Therefore copy editing them is invari-
ably a waste of time both for the editor and for
the computer operator. In particular, it is very
common for page numbers in index entries to
be edited. For the typesetter, this is extremely
laborious work to carry out and to check.

e Running heads: These are also automatically
generated and should not generally be marked
by the copy editor. By understanding the over-
all mechanism of running heads, a few simple
instructions should suffice for any changes.

218 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

e Making global changes: The copy editor should
be encouraged to make as many global marks as
possible, rather than marking every occurance
of an error.

The class/style files

The current situation. Let us take the case of
book production. At present, a typical scenario is
that the publisher asks a TEX consultant to write
a class file (let us assume it is only BTEX2: we
are dealing with). The consultant will be supplied
with an example book and/or type specifications,
from which to produce a I*TEX class file. Normally
instructions and an example file are also included.
This collection of materials is then distributed to
prospective authors to apply to their manuscripts.
When the manuscript is received by the publisher,
it is sent out for copy editing, and usually goes to a
TEX typesetter for production of final CRC and any
subsequent electronic files.

The important thing here is that there is only
one class file. It is used by the author to produce
the manuscript and by the typesetter to correct and
paginate the book. I would like to argue that this
approach should be re-examined and that separating
the author’s and typesetter’s class files might be a
better route to take. Let us look at the requirements
of each party in turn.

Requirements of the author. The author’s task
is primarily to concentrate on the contents of the
book or article being written, without much regard
for the final look, which is normally decided by the
publisher and is the responsibility of the typesetter.
Here are what I see as the main attributes of the
class file distributed to the author:

o Standard input syntax: The IMTEX book class
is well known, and easy to use. It is a great
advantage to present an author with a class file
which has an input syntax as close to book.cls
as possible. In fact, the class file and any in-
struction material should encourage the author
to enter standard KTEX code.

o FEasy installation: TEX is available on most com-
puter systems, including some old machines with
limited memory and power. It is a good idea
to have a class file that does not need a lot of
memory, computer power, or unusual fonts. In
particular, it is safest to limit the font require-
ments to the standard Computer Modern fonts
which are available on every TEX installation.

e Avoid unusual elements: In order to make it
easy for the class file to be used with any sys-
tem, unusual elements such as graphics should

Multi-Use Documents: The Role of the Publisher

be avoided and be reserved for the typesetting
stage.

e Forgiving class file: So that the author can con-
centrate on the contents of the work, the stan-
dard TEX parameters for such items as line and
page breaking penalties should be relaxed so
that overfull boxes are kept to a minimum.

Requirements of the typesetter. Let us now
look at the requirements of a class file used by the
typesetter. In general, the typesetter should have a
more in-depth knowledge of IATEX than the author.
He/she can therefore deal with much more complex
class files, with the following possible attributes:!

o Unusual fonts: The TEX typesetter will have ac-
cess to numerous commercial fonts. The class
file can therefore use any standard font for the
body text and a choice of several fonts for math-
ematical text.

o Graphical embellishments: 1 believe that type-
setters should strive to get away from the classic
“TEX look”. There are numerous ways in which
TEX and KTEX documents can be embellished
with graphical devices, from simple rules to full-
colour tints. A TEX typesetter should have all
these tools available to improve a book’s ap-
pearance (in association with a book designer,
of course).

Looking at the above requirements for the class
files for the author and the typesetter, it is clear that
there is a conflict. In the case of the author, the file
should avoid non-standard fonts, difficult construc-
tions, graphic elements, etc. On the other hand, the
class file used by the typesetter can be as complex
as necessary to get the desired effects in the final
typesetting. At the moment, any class file writer
has to strike a balance between these two conflicting
requirements. Graphic elements, if used, are kept
simple, so that authors do not have trouble with
them. Of course, this limits the complexity of the
final typeset book.

Using two separate class files. Looking at the
above requirements, it is my conclusion that the au-
thor should be supplied with a generic class file, de-
signed with the author requirements in mind. A
publisher need not distribute more than one or two
of these generic files, making support, debugging,
and maintenance easier. The class file used in the

1 Of course this may not apply to all cases. Some authors
are very adept at handling class files, and some books have
such an unusual layout that the final class file must be used
at all times.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 219

Kaveh Bazargan

final setting of the book need not concern the pub-
lisher at all but should be the responsibility of the
typesetter.

Re-use of typeset files by the author

A unique advantage of using BTEX to set books is
that once the typesetting has finished, the files can
be passed back to the author to work on another
edition. This cannot be done when other systems are
used for typesetting, as no other typesetting system
can generate clean, structured ETEX.

Sequence of events in setting a book with
IATEX. Here is what I see as a possible sequence
of events, regarding the IWTEX files used in setting a
book.

1. Author signs contract with publisher.

2. Publisher sends author the KTEX author kit.
The author is encouraged to contact publisher
for assistance at this or any subsequent point;
typesetter could be called on to support the au-
thor in the interests of extracting clean files from
the author.

3. Author sends sample chapter to publisher, type-
set using generic class file.

4. Typesetter evaluates and reports on sample, with
suggestions to author.

5. Author submits manuscript, accompanied by
full set of files.
Note: A possible extra stage here is that the
typesetter reformats the files in the final style
before handing over for editing, rather than the
generic style file being used, exactly as submit-
ted by the author; there are pros and cons to
this stage.

6. Copy editor edits manuscript, having read the
publisher’s ‘Editors’ Guide to Electronic Sub-
missions’.

7. Author reviews editing (optional, for books only).

8. Manuscript and files go to typesetter.

9. Typesetter implements editor’s corrections, con-
verts to final style, and sends copies to pub-
lisher.

10. Typesetter receives corrected proofs for CRC,
produces CRC and any specific electronic files,
and sends these to publisher and printer.

11. Typesetter strips out pagination codes used in
the author files to make the final pages, and
returns these files to author (via publisher).

220

12. Author uses generic style file to carry on work-
ing on other related material, such as the next
edition of the book.

13. Go to step 5 to repeat cycle.

References

[1] Lamport, Leslie. BTEX: A document preparation
system, 2nd ed. Addison Wesley Longman, 1994.

The Journey of the TEXxies

“A cold coding we had of it,

Just the worst package from TEXLive

For a document, and such a long document:

The macros long and the braces many,

The very pits of TEX.”

And the tables hard, badly-aligned, refractory,

Misplaced omit in every \multicolumn.

There were times we regretted

The dependence on longtable, the use of pdfmark,

And the hyperref macros breaking our \cite s.

Then the authors cursing and grumbling

And using Macintoshes, and wanting their

Framemaker and Word,

And the editor crashing, and the graphics corrupted,

And the setup.exe hostile and CTAN unfriendly

And the usergroups dirty and charging high prices:

A hard time we had of it.

At the end we preferred to work in XML,

Validating as we went,

With the voices singing in our ears, saying

That this was all folly.

Then at </tei.2> we came to the end

of the process,

valid, with all elements ended, all IDREFs satisfied,

With an XSL stylesheet, and even a version for TE5

And three HTML versions already on the Web.

And an old white horse galloped away in the meadow.
—stolen by Sebastian Rahtz

(untitled)

I thought I would never see
poetry, written by Chimpanzee
But given TEX and infinite time
I’ll steal it and call it mine
—Donald Arseneau

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Very Like a Nail: Typesetting SGML with TEX*

Frederick H. Bartlett

Springer-Verlag New York, Inc.
fredb@springer-ny.com

Abstract

At Springer-Verlag, we have been frustrated for some
years now with the difficulty of putting mathematics
into a web-friendly format. We have not yet found
a magic bullet, but ...

The XML application MathML may be the first
real tool for putting mathematics on the Web in a
useful form. Suppliers of mathematical tools such
as Mathematica and Maple are gearing up to use
MathML as an input/output format; thus, we can
look forward to a day when mathematics on the Web
will be truly interactive.

It is likely that —even if MathML fulfills every
bit of its promise— TEX will continue to be used
for the preparation of mathematics for display and
printing.

This presentation is an account of our efforts
to translate author-generated WTEX into XML. The
project can be divided into four stages:

1. Normalizing (La)TEX. That is, transforming
authors’ idiosyncratic usages (and even more
idiosyncratic macro definitions) into consistent,
and consistently structured, files. The vast ma-
jority of author-generated KTEX files can be
converted easily with a minimal understand-
ing of TeX’s digestive tract; those which can’t
(especially plain TEX files) will require some
human intervention —or increasingly sophisti-
cated (read ‘bloated’) software.

2. Converting to XML. This is the easy part: chang-
ing structural KTEX tags into XML tags.

3. Converting to MathML. And this is the hard
part: It would be ideal to be able to convert
IMTEX math into both presentation and content
MathML coding. Unfortunately, this is, even
in principle, extremely difficult. So at first we
concentrate on the WTEX-to-presentation mark-
up path. Eventually, it will be possible to pro-
duce an interactive B TEX-to-content mark-up
converter for authors.

4. Going backwards. It will eventually be helpful
to authors and publishers if MathML /XML can

* [No paper submitted. —Ed.]

be converted back to (La)TEX, but this is not
a high priority at the moment.

This talk describes something that is very much
a work in progress, so a discussion period will be

most welcome.

To TEX or not to TEX

To TEX, or not to TEX: that is the question:
Whether ’tis nobler on the page to suffer
The slings and arrows of outrageous software,
Or to write code against a sea of troubles,
And by opposing end them? Use Word? Use Quark?
No more! For such as they could never end
The heartache and the thousand unnatural shocks
That type is heir to.

BTEXe*?
Devoutly to be wish’d! Or Quark to TEX?
To TEX? Now there’s a dream. And here’s the rub:
From that disguiséd TEX the dream may come
That TEX should shuffle off this mortal coil,
So should we pause? There’s no respect
For TEX in all of its long life;
For who would bear the whips and scorns of Frame,
WordPerfect’s wrong, Microsoft’s contumely,
The pangs of despis’d TEX, Incontext’s delay,
The insolence of Active TEX and the spurns
That patient Wizards of th’ WYSIWYGers take,
When he himself might his quietus make
In a plain TEX style? Who would authors bear,
To grunt and sweat under a weary life,
But that the dread of something after TEX,
The undiscover’d standard from 15O
And W3C, puzzles the will
And makes us rather love the type we have
Than fly to others that we know not of?

TEX's enterprise of great pith and moment
With XML its currents join anon,
And gain the funds of moguls.

—stolen by Fred Bartlett

0 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Making a Book from Contributed Papers: Print and Web Versions

Harry Payne

Space Telescope Science Institute
3700 San Martin Drive
Baltimore, MD 21218, USA
payne@stsci.edu
http://www.stsci.edu/ "payne/

Abstract

This paper describes a set of tools used for several conference proceedings
projects. Processing of a run-file for the individual components is managed by
the UNIX make utility, and performed with perl and sed scripts. One advantage
to this scheme is that references to other papers in the same volume may be
supplied with a page number in a straightforward way. Another is that the entire
book may then be processed with latex2html to produce a Web version from the
same set of input files. The tools will be made freely available via the Internet.

Introduction

In my field (astronomy), it is common practice for
conference proceedings to be generated from a set
of contributed papers, each of which is a stand-
alone IXTEX document. Editors are expected to
not only edit the individual contributions but also
combine them into a book, with a table of contents
and proper page numbers. But publishers generally
provide little more than a style file and instructions
for the individual authors.

In this paper I will discuss my experience with
turning BTEX manuscripts into a book and into an
on-line volume on the Web. I will describe some
tools I have written for this purpose, after giving
some general comments that may save you some
work if you are faced with a similar task. But first,
I will describe how I got started on this, and the
choices and constraints we faced.

My job is in astronomical software, and in
1994 my institute hosted the fourth annual meeting
in a series devoted to Astronomical Data Analysis
Software and Systems (ADASS). I volunteered to
be a proceedings editor, at least in part thinking
that I could enjoy the meeting since my work would
all come later (unlike TUG, we go to the meeting
first, and then write our papers). The proceedings
of the first three meetings were already published,
so we knew what our book had to look like. The
Astronomical Society of the Pacific (ASP) provided
instructions to the authors. Previous editors used
perl scripts to kept track of the number of pages
in each contribution, so that each paper could be
printed with the right page numbers, and a table of
contents and index could be generated. But I chose
to depend on IATEX itself as much as possible.

The ASP kindly allowed the editors of the 1993
volume to translate the proceedings into HTML for
access over the Web. The Web was new in 1993,
and although this first Web volume was attractive,
I wanted to do things differently. The first version
of Nikos Drakos’ KTEX2HTML had appeared in the
meantime. I decided that I wanted to do the entire
book as a single N TEX document and then feed the
whole thing to ITEX2HTML.

I settled on a scheme to edit each contribution
as a stand-alone KTEX document, but to add in-
formation for use in the book, such as index and
author index entries, and cross references between
contributions (fairly common since the authors have
already heard one another’s talks). The contribu-
tions are preprocessed into chapters, and a skeleton
document pulls in each chapter to make a book.
Front and back matter are created by BTEX in a
straightforward way. The UNIX make utility keeps
track of all the pieces, updating the book if any of
the papers is changed.

The on-line version of the book is produced
from the same files used to produce the printed
volume, processed by ITEX2HTML. The output from
IMTEX2HTML is modified with the help of some perl
scripts to obtain the final product. Reprints of the
papers and a searchable index are provided.

I have used this scheme on about a half dozen
books, and other editors have used it on a few more.
The editors of the most recent volume in the ADASS
series' have made some improvements that I will
mention.

1 D. Mehringer, R. Plante, and D. Roberts, University of
Illinois.

222 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Making a Book from Contributed Papers: Print and Web Versions

Editing the Book

As I was editing my first book with this scheme, I
made notes to myself every time I went through all
of the contributions to fix something. Here are some
examples:

e “Took out multiply named labels.”
The instructions to authors said to label your
first figure with \label{fig-1}. When I put
all of the contributions together into one docu-
ment, fig-1 was used many times, of course.
e “Added author index information.”
I cloned the \index macros to provide a way to
compile an author index.

e “ie. and e.g. are followed by a comma, and are
not italicized.” “Em dashes don’t have spaces
around them.” “No bold, italics, or Greek
symbols in titles or section headings.”

And many other substitutions as well.

e “Work on tables.”

The editors decided that each table would have
two \hlines, the headers, one \hline, the
body, and two final \hlines.

e “Work on references.”

Describing the new TUGboat macros, Robin
Fairbairns writes “Bibliographic citations give
much grief to the editorial team” (1996, p. 286).
This is a mild statement of the situation faced
by editors in technical fields. North American
and European astronomers use different cita-
tion formats, and BIBTEX is rarely used.

The common thread connecting these items is that if
we had made these decisions and properly instructed
our authors before they submitted their papers, we
could have saved ourselves a lot of work. Time spent
providing your authors with the information they
can use will repay itself many times over.

In this spirit, the editors of the most recent
volume in the ADASS series came up with a way to
add cross references to other papers in the same vol-
ume. Authors were instructed to label their papers
with the identifier given in the meeting program,
and to use this identifier to refer to other papers.
In the absence of such instructions, inserting these
cross references requires searching for all variations
of “this meeting,” “this conference,” “these pro-
ceedings,” “this volume,” etc. These editors also
required authors to make their own author index
entries. Instructions for all recent ADASS volumes
describe how to refer to Web resources in ways that
turn into live links in the on-line version.

You cannot give authors enough information to
make their own entries in a real index — making an

index is an iterative process that depends on seeing
all of the entries. We provide a \keyword macro for
authors to provide a half dozen keywords or so, just
as a starting point for the editors. Our astronomical
software series now has enough volumes that we can
ask authors to use previous volumes as a guide, but
authors must be free to create.

Once the papers and their associated figures
have been collected, you can finish editing them only
after deciding the trade-off between uniformity and
the author’s own voice. Making all of the tables
look the same was a worthwhile effort. On the other
hand, we foolishly once replaced all British spellings
with their American equivalents. In the case of
authors who are not native speakers of English, you
will have to decide when your voice is preferable to
the author’s— when unidiomatic phrasing is more
confusing than colorful.

Finally, if PostScript figures accompany the
papers, plan on spending time fiddling with the
figures to make sure that the individual papers all
print on your system.

Making the Book

Once you have finished editing the papers, you can
create the structure for making the book. You need
to convert each paper from a stand-alone document
into a chapter in the book and create a skeleton
document for pulling all of the pieces together.

Depending on the tools you have available,
you may not have to wait until you have final
versions of the papers. 1 work with the UNIX
operating system, and the scheme I use depends on
the make utility program. Programmers use make
to manage software projects. You tell it which
components depend on which others and specify
rules for building the dependent pieces from the
independent ones. A program might depend on a
number of files containing source code. After editing
any of the source code files, the programmer runs
make to recompile only the changed files and then
build an updated version of the program.

Each paper’s .tex file is preprocessed to be-
come a chapter in a file with the same name but
using the .1tx extension. In the make configuration
file (Makefile), I list all of the .1tx files I will need

PAPERS = \
accomazzia.ltx agafonovm.ltx \
alexova.ltx antunesa.ltx \
ballesterp.ltx ...

and provide a rule that accomplishes the preprocess-
ing. Below is an example using sed, the UNIX stream

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 223

Harry Payne

editor, just because all of the pieces are visible; you
could use perl or a compiled program instead.

.tex.1ltx:
sed "s/\\\\documentstyle/{% &/" $< |\
sed "s/\\\\begin{document}/% &/" |\
sed "s/\\\\nofiles/% &/" |\
sed "s/\\\\title/\\\\chapter/" |\
sed "s/\\\\begin{abs/\\\\1label{$x}&/" [\
sed "s/\\\\end{document}/}% &/" > $@

To translate, this is a rule for converting a .tex file
into a .1tx file. Each line performs a substitution,
commenting out \documentstyle, \nofiles, and
\begin and \end{document} commands, replacing
\title with \chapter, inserting a label containing
the name of the file ahead of the abstract, and
putting braces around the entire paper to limit
the damage when authors define their own macros.
“$<,” “$0,” and “$*” are make macros for the source
file, target file, and filename root, respectively.

For the skeleton document, I found it conve-
nient to define a \paper macro which, in addition
to an \input, gives the list of author names as they
should appear in the table of contents, as well as the
title and list of authors as they should appear in the
headers:

\paper{accomazzia}{A. Accomazzi, G.
Eichhorn, M. J. Kurtz, C. S. Grant
and S. S. Murray}{Accomazzi, Eichhorn,
Kurtz, Grant and Murray}{Mirroring the
ADS Bibliographic Databases}

I like each \paper command to be on a single long
line, to make it easier to rearrange their order.
The ADASS papers alternate author names and
affiliations, making it tricky for a program to sort
them out. I confess to generally using cut and paste
to build these commands, but a perl script can give
you a head start. Finish up the book skeleton with
a table of contents, and front and back matter of
your choice, such as a preface, list of participants,
conference photograph, and colophon.

The Makefile says that the book’s .dvi file
depends on the chapter files and the index file

book.dvi: $(PAPERS) book.ind
As well, the Makefile has rules for obtaining .dvi
and index files:
.tex.dvi:
$ (LATEX) $=*

.tex.idx:
$ (LATEX) $x*

.idx.ind:
makeindex $<

With these pieces in place, the make book.dvi
command will create all of the chapter files, run
ITEX to make the .idx file, run makeindex to
generate the .ind file, and then run IXTEX again
to make the .dvi file. If you go back and edit the
papers, you can update the book just by running
this command again—only the papers you edited
will be processed into chapters again.

A style file for the book defines the \paper
macro, and redefines the \chapter and table of
contents macros to match the format required by the
publisher. A number of details are also addressed:
page format, macros for references to earlier volumes
in the series, the author index, and proper number-
ing of figures, equations, appendices, etc. 1 wrote
macros that add the publisher’s copyright notice to
the first page of every paper, which I use to produce
a version of the book that is sliced up into reprints
for the on-line version.

There are Makefile dependencies to control the
production of the final printed copy to be sent to the
publisher. Our publisher reduces the camera-ready
pages we send, so I let BTEX work with pages and
fonts that are the same size as the book, and then
ask the dvips program to enlarge the pages to the
size requested by the publisher.

In theory, once you have finished editing and
produced a final printout, you can send it to the
publisher and turn your attention to the on-line
version — after all, it is desirable that printed and
on-line versions be identical. In practice, I strongly
suggest that you wait. At this point, you will be
tired of looking at the text, but the first look at
the on-line version will make it all fresh again. I
guarantee that you will find things to change in the
printed version.

Making the On-line Version

Running KTEX2HTML on a large book does impose
some requirements on the hardware you use. Be-
cause the program holds the entire book in memory,
you will need a large amount of virtual memory —
for a 500-page book, I have seen IMTEX2HTML require
750 MB of memory. Aside from this, there is nothing
too unusual about the way I use ETEX2HTML. But
I do manipulate its output to produce the final
product.

Neither the papers nor the book skeleton file
needs to be modified to produce the on-line version.
But the Makefile does contain a rule for creating a
new skeleton file from the original. The EXTEX2HTML
program runs a separate task to expand \input
instructions; instead of modifying this task I create a

224 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Making a Book from Contributed Papers: Print and Web Versions

new skeleton file, where all of the \paper commands
are demoted to ordinary \input commands.

IATEX2HTML allows for customization using perl
style files (IATEX2HTML itself is written in perl). My
customizations are either routines to translate new
macros into HTML or routines which change the
default behavior of ITEX2HTML. For example, my
simple macro for referring to the fifth volume of the
ADASS series

\def\adassv{in Astronomical Data Analysis
Software and Systems V, ASP
Conf."Ser., Vol. 101, eds.

G."H. Jacoby \& J. Barnes
(San Francisco: ASP)}

is implemented with a routine that simply inserts
the same text, translated into HTML, into the out-
put stream:

sub do_cmd_adassv {
local($_) = @_;
join(’’,"in Astronomical Data Analysis
Software and Systems V, ASP
Conf. Ser., Vol. 101, eds.
G. H. Jacoby & J. Barnes
(San Francisco, ASP)$_");2}

The changes to the default behavior are primarily in
the navigation panels, where I wanted a particular
format, links to an index and reprint files, and a
copyright notice. Other changes suppress the index,
which I make in a different way, and make sure that
chapters are not numbered.

The Makefile has a rule for running I TEX2HTML
on my new skeleton file to produce HTML and image
files. Most ADASS papers are short, so I let INTEX2-
HTML put each paper into its own HTML file. I
also select options which keep footnotes with each
paper (rather than breaking them out into separate
files) and which add section numbers, an HTML
title for the book, and an address at the bottom of
every page. Using a Sun SPARCstation 5, running
IATEX2HTML on a 500-page book with 120 PostScript
figures and a lot of equations takes the better part
of an afternoon. If you have to do it again, it will
go much faster if you can re-use the image files.
After WTEX2HTML has done its job, you need to
examine the output with a Web browser, looking for
problems that might force you to do the conversion
again: broken image files or images that are out of
sequence.

When you are satisfied with the output from
IXTEX2HTML, you are ready to make the final prod-
uct. I like to rename the output HTML files for
the papers, restoring the original name. To do this,
I combine information in the .aux file from KTEX

and the labels.pl file from KXTEX2HTML to create
a file containing three columns: the new file name,
the original file name, and the page number in the
printed version:

accomazzia.html node99.html 395
agafonovm.html nodel4.html 58

albrechtm.html node91.html 363
albrechtr.html node62.html 248

I then run a script which renames the files and
updates all of the links. The page numbers are used
for making the table of contents and index (so you
can determine a citation to the book from the on-
line version). The table of contents produced by
KTEX2HTML will not contain the author names, so I
replace it by running a script on the .toc file from
ITEX. While working on the table of contents, I
put all of the front and back matter together under
a “Preface” heading. I generally make a version of
the book cover by hand and use either this cover or
the table of contents as the entry page for the on-line
book.

One of the advantages of the on-line version
of the book is the ability to do full-text searching.
There are many options for indexing software, and
many are free, but your choice will depend on your
Web server platform. I have used WAIS, a somewhat
dated search technology, since I already had a WAIS
server available. Every page in the on-line version
has a link to an index page from which the user
can perform a search. Although this mechanism
provides a powerful way to find what you are looking
for, I also translate the author and subject indices
from the book into HTML, using perl scripts and
information from the .ind file produced by IXTEX.

We published the on-line version of the book
with the permission of the publisher. As a courtesy,
we put the publisher’s copyright notice on each
HTML page (making the notice into a link taking
users to the publisher’s home page) and each reprint.
I also added instructions for obtaining a printed
copy of the book by way of the publisher’s website.
Except for the searchable index, all of the links in
the on-line version are relative. This makes it easy
to create mirror sites.

You can spend as much time as you like on
projects like JavaScript commands to identify peo-
ple in the conference photograph just by moving
the mouse. However, you can realistically expect to
produce an on-line volume with a few days of effort,
once the printed volume is ready.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 225

Harry Payne

Trying it Yourself

You can find the files you need to try out this scheme
at ftp://ftp.stsci.edu in /pub/software/tex/
bookstuff/.

The most recent on-line volumes produced this
way can be found at http://www.stsci.edu in
/stsci/meetings/lisa3/ and /stsci/meetings/
adassVII/.

References

[1] Fairbairns, Robin. “The New (WTEX2:) TUG-
boat Macros.” TUGboat 17,3 (1996), pp. 282

288.

Mr. Fine, with the eye of the sleuth
has discovered why TEX is uncouth,
that its catcodes are many

when there shouldn’t be any
Has anyone told Donald Knuth?

TUG ’99 musings

Mr. Flynn is now running on La-

TEX, and finds, when the tread starts to fray,
he can patch up the rules
with his vulcanize tools

pump them up, and back on his way

Though some of you authors may fret
about how every page should be set
and think what you see
and what it must be
Mr. Bazargan says what you get
—Pierre MacKay

Ode to a special

Oh what a tangled web we get

When first we find \def and \futurelet.

We turn to eTEX, we turn to Omega,

They both look good, we start to get eager.

But no, whats this, a misplaced \omit?

Did we miss a brace, does \vbox still not fit?

Help me fix my macros, bracket heroes all!

But Pierre’s font is calling, Lamport’s left the hall
Barbara says use \downcase, Downes just strokes
his beard.

Erik sells me 4TEX, pretends he never heard.
David’s hacking tables, Frank is fixing floats,
Ogawa’s talking slowly, Kacvinsky wants his oats.
Will Kaveh help me out? no, his dhoti’s dirty,
Nelson’s feeding awks, Mimi’s feeling flirty.

Flynn says use a rubber, Wendy needs a hug,
Kath has got the answer, no it’s just another mug.
Young Ross is such a hoot, he says use xypic

Why not turn to Sojka, he’s sure to know the trick.
Anita, a Hoover, what use to me’s a dam?

Send me out with Kiren, we’ll both go on the lam.
Irina claims ‘for us in Mir is no problem’,
TRIUMEF uses \mathcode but \hspaces just one em.
TrueTEX does it both ways, and you can trust the
Blue Sky

but hyperref the backend, oh why oh why oh why?

ActiveTEX, PassiveTEX, what a great to do,

Can there be yet some way through?

MathML has pointies, XSL can claim its templates

ExerQuiz is so cute—so phooey on you Billy Gates.
—Sebastian Rahtz

226 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

Managing Large Projects with PreTEX: A Preprocessor for TEX

Managing Large Projects with PréIgX:

A Preprocessor for TEX

Robert L. Kruse

PrelTgX, Inc.

2891 Oxford Street

Halifax, Nova Scotia, B3L 2V9
Canada

bob@pretex.com

Abstract

PreTEX is a preprocessor for TEX that supplies an author with many tools
to simplify the writing and management of larger (book-length) projects. This
paper concentrates on PrélEX’s use of secondary input files and conditional
typesetting in managing large projects. The user may insert location tags within
a file which can then be used by PreIEX to include parts of one file within
another, in any order determined by the user. Parts of a file may also be
selectively typeset according to the status of various conditions.

Introduction

Let us consider two projects large enough to chal-
lenge most TEX systems.

The first is a large science or math textbook
at the high school or elementary college level. Such
a book is often over 1000 pages long, requires four-
color printing, and contains many hundreds of full-
color photographs or other complicated images. It
has a large index, bibliography, and cross references
throughout. Answers to some of the exercises
appear at the back of the book. There may be
many supplements, such as a separate solutions
manual, a study guide, a lab manual, a bank of
test questions, or transparency masters. All of
these contain many references that need to be keyed
to the textbook itself. There may be a separate
book of instructor’s notes keyed to the text, or the
book may be simultaneously published in a special
instructor’s edition with the notes in the margins or
on extra, unnumbered pages. Some of these many
supplements may be published on paper, some on
the Internet, some in PDF or other format on
CD-ROM with interactive links.

Our second example project is the documenta-
tion library for a large software system, one that
may contain hundreds of thousands or millions of
lines of computer code, written in several differ-
ent programming languages and distributed over
many files. To avoid errors and inconsistencies,
it is important to keep all the documentation in
the same files with the code. Such a system
will have several kinds of documentation: informal

introductory guides for the user, reference volumes
for more sophisticated users, precise specifications
for each part of the program, in-house documenta-
tion and other comments from programmers, and
bug/modification reports and history.

PreTEX is a preprocessor for TEX (consisting of
about 15,000 lines of C code), designed explicitly to
facilitate the work of authors and editors in writing
and production of large projects such as these.
PreTEX’s features, moreover, remain equally useful
for more ordinary book-length projects or even for
small typesetting projects such as research papers.

By exploiting context dependency, PréTEX sup-
plies much of the routine markup required for high-
quality typesetting in TEX, simplifies the notation
for mathematics, supplies user-friendly error diag-
nostics, uses its own tables of information to resolve
many ambiguities in typesetting, and, by recog-
nizing some of the syntax of various programming
languages, provides powerful tools for typesetting
computer-program listings.

Some of these features were discussed for a
preliminary version of the PréTEX software in Kruse
(1988). Since that article was published, the PréTEX
software has been substantially revised, extended,
and used intensively in a commercial environment.
It is now ready for initial public release.

This paper discusses only a fraction of the tools
provided by PréIEX. Here, we concentrate on Pre-
TEX’s file-management facilities that are especially
valuable to authors of large projects. For a discus-
sion of PréTEX’s implementation of hypertext links
in PDF, see Mailhot (1999).

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 227

Robert L. Kruse

Independent chapter processing

High-resolution scans of color photographs or other
complicated graphics require considerable space in
computer storage. If a book contains hundreds
of such images, its output files can become pro-
hibitively large, often several gigabytes in Post-
Script. It therefore becomes imperative to divide
such a project into smaller files that can be pro-
cessed independently.

In fact, PréIEX allows a project to be di-
vided into conveniently small, chapter-length files
which are processed independently at every stage,
including the final production of PostScript or PDF
files. At the same time, PreéIEX integrates the
cross references, the index and contents entries, and
the bibliographic citations from all the input files
comprising the entire project. Hence, while the
author works on the files for one chapter, cross ref-
erences to other chapters will still resolve properly.
Page numbers, chapter numbers, and other elements
that number consecutively throughout the book are
automatically updated for each chapter file.

To accomplish these goals, PreI[EX maintains
a whole directory of auxiliary files in place of the
single auxiliary file used by I TEX. Indeed, for each
chapter there are several auxiliary files that are
accessed by PrélTgX, by TEX, by BIBTEX, and by
PreTEX’s enhanced equivalent of Makelndex. Under
normal circumstances, the user never needs to look
at any of these auxiliary files directly. Since there
are separate auxiliary files for each chapter, the
system modifies only those corresponding to the
chapter currently being developed.

For some purposes, PreIEX must string all
these files together in the correct order; to do so,
PréTEX uses a short file containing a master list of
all chapter files. A sample of this master file list is:

title
contents
preface
partl
chapterl
chapter2
part2
chapter3
appendixl
appendix2
index

The blank line specifies that the page numbering is
not continuous from preface to chapterl; other-
wise each file begins after its predecessor. Contents,
index, cross-reference, and bibliographic entries,
however, are merged for all the files.

Secondary input files

One of PrélEX’s most powerful features is its
ability, while processing one file, to include portions
of other files, arranged in any desired order, with
parts skipped under the control of Boolean (that
is, true-false) variables. This feature is like TEX’s
\input command, except that \input includes the
entire file, whereas PréTEX may select only portions.
First, we need some notation.

PreTEX Command Syntax. As a preprocessor,
PrelEX has its own extensive command language,
as well as responding to certain TEX commands.
It recognizes several different environments and
processes its input differently according to the
environment. In the mathematics, verbatim, and
computer-program environments, the characters ‘<’
and ‘>’ are processed as usual, but in text (where
they would normally not appear) ‘<’ and ‘>’ are used
to delineate commands to the PreTEX preprocessor.
Such commands take forms such as

<:command_name optionl option2>

where the number of options and their syntax vary
with the command.

To access a secondary input file, we need only
write an instruction such as

<:read file filename from tagl to tag2>

at the place where we wish to include part of the
secondary file filename. The location tags, denoted
<tagl:> and <tag2:>, are placed immediately be-
fore and after the part of the secondary file that
will be read. Any number of location tags may be
placed in a file (at any place where the file is in text
environment); these tags are used only to control
file reading and will not appear in the output after

processing by PréTgEX.

Conditional Typesetting. When the same ma-
terial is processed for different purposes by PrelgX,
it is often convenient to use TEX macros both to
control how an element is typeset and, depending on
the purpose, to determine if the element is included
at all. In a textbook, for example, the author may
wish to place solutions to exercises immediately
adjacent to the exercises themselves, so that, if
the exercise is modified, its solution can easily be
modified to match. When we are processing the
textbook itself, these solutions must not be included
in the output, but when typesetting the solutions
manual, they must appear.

We can accomplish this goal by instructing
PreTEX to create a new Boolean variable, which we
might call solutions, and to use this variable to

228 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

Managing Large Projects with PreTEX: A Preprocessor for TEX

control the typesetting of material between a pair of
control sequences, which we might call \solution
and \endsolution. With this instruction, PreTEX
will recognize two new commands:

<:solutions on> and <:solutions off>

Depending on the setting, PréTEX will include or
delete material between

\solution and \endsolution
For the textbook itself, we specify
<:solutions off>

(likely in a style file, so it need be done only once
for the entire book), in which case all solutions will
be deleted. When processing the solutions manual,
we specify

<:solutions on>

so that all solutions will appear immediately after
their exercises.

With these tools, typesetting a separate solu-
tions manual is trivial, and it will be guaranteed
to be kept current with any revisions to exercises
in the text. All we need to do is to place location
tags before and after each group of exercises in
the text’s chapter files. Then the file for the solu-
tions manual will contain almost nothing except for
the command <:solutions on> followed by a long
series of <:read file ...> commands to include
each group of exercises and their solutions from the
various chapter files.

Some authors, on the other hand, prefer to
place all exercises and their solutions into separate
files, one or more exercise files per chapter. This
organization will work just as well. Now, with loca-
tion tags before and after each group of exercises,
<:read file ...> commands in the main chapter
files will include the exercises where desired (along
with their solutions, which will be deleted, provided
solutions is off).

To place answers in the back of the book is
just as easy. We now introduce a second Boolean
variable, say answers, include the commands <: so-
lutions off> and <:answers on>, and use the
same <:read file ...> commands to typeset, at
the book’s end, only the selected answers.

Production of other supplements for a large
book follows much the same plan. The material
for these supplements can either be placed in the
main files with typesetting controlled by Boolean
variables, or placed in separate files used to produce
the supplements, with <:read file ...> com-
mands as appropriate to include material from the
main file or other supplements. In any case, the
names of the files for all the supplements should

normally be included (in separate groups) in the
master file list for PreTEX. In this way, cross refer-
ences may be made from any of the supplements to
any other or to the main text. Similarly, in PDF,
hypertext links allow the user to jump directly from
locations in the text to appropriate locations in any
supplement, or the reverse.

Program code and StripTEX

Now let us turn to our second motivating exam-
ple, a documentation library for a large software
system, where the code and documentation are
distributed over many different files, generally with
differentauthors.

By treating each file of program code and doc-
umentation as a secondary file, PréTEX can be used
to combine any desired extracts of the documen-
tation or the program code in any desired order.
The identical source files can in this way be used to
construct, for example, informal user guides, user
reference manuals, programmer’s reference manuals,
or other documentation, either for in-house use or
external distribution.

In PréTEX’s different environments, the same
symbols will be processed in different ways. PreIEX
provides special facilities for typesetting computer
programs, understanding enough of the program
syntax to adjust spacing and choose special symbols.
For example, curly braces { ... } (delineating a
group in TEX) become printed symbols in C or C++,
enclosing code segments, whereas in Pascal, they
delineate comments that will be typeset as text, not
as computer code. PrélEX provides environments
for many common programming languages (Java,
C++, C, Pascal, Ada, Fortran, Basic, Cobol, among
others). By treating program lines as tab-controlled
lines (as illustrated in The TEXbook, page 234), tab
stops can be used to achieve proper alignment, or
other TEX markup can be inserted into programs.

For these program files, PreIEX provides a
further utility, called StripTEX, that removes all
the text surrounding program code, as well as
any TEX markup in the program code, yielding
output that can be submitted directly to a com-
piler. StripTEX recognizes all the same commands
as PrelgX, including reading from secondary files.
Hence, the order of subprograms within files and
their accompanying documentation need not have
any connection with the order expected by the
compiler; StripIEX can be used to extract sub-
programs from arbitrary files and arrange them in
whatever order is needed by the compiler. The
same file(s), containing both documentation and

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 229

Robert L. Kruse

code, can be processed through PréIgX to obtain
a well-formatted, documented program listing, or
through StripTEX to obtain the program in exactly
the form needed by the compiler.

In this way, PreTgX and StripTEX provide all
the functionality and capabilities of Knuth’s WEB sys-
tem. PréTEX replaces WEAVE, and StripTEX replaces
TANGLE. The PreTEX-StripTEX system, moreover,
brings several advantages over WEB:

e The user has unlimited flexibility in the or-
dering of subprograms and documentation and
their placement in various files.

e The same software manages programs in any
number of computer languages, including sev-
eral for which WEB is not available. For software
systems using several languages, the identical
software generates all the files needed for the
various compilers.

e The user has no need to learn a new command
language: StripIEX shares the identical syntax
of PreTEX, which is an easy extension of TEX.

Bibliographic entries

For large projects with many references, maintain-
ing the bibliography can require considerable work.
BIBTEX provides excellent facilities for maintaining
a bibliographic database; PrélEX uses BIBTEX with-
out change. Any I#TEX user of BIBTEX will immedi-
ately be familiar with the PréTEX commands <:cite
...> <:nocite ...> <:bibliography ...>, and
<:bib_style ...>.

As a preprocessor, PréIEX can automate and
streamline the use of BIBTEX. I#TEX, for example,
requires a four-pass process:

1. Run IATEX to collect the citation keys.

2. Run BIBTEX to assemble the corresponding
references from the database(s).

3. Run IATEX to associate the citation keys with
their references.

4. Run IATEX to resolve the citations.

PreTEX accomplishes the same results with only two
passes and with no special attention from the user.
On its first pass, PreTEX assembles the citation keys
and automatically invokes BIBTEX, after which Pre-
TEX immediately associates the citations with their
references. On its second pass, PrélEX resolves
the citations. Whenever the document is processed
again, PréIEX automatically detects if the citations
have been changed, and PréIgX invokes BIBTEX
only when necessary to keep the bibliography up
to date.

As our final example, consider a symposium
or conference proceedings in which the individual

chapters are written by different authors who may
not be in touch with one another. Each chapter
will then be written and processed independently;
if desired, each chapter may have its own cross
references, index, or contents. The editor may then
later merge all these resources for the entire volume.
The editor may supply a bibliographic database for
use by all authors, accessed as needed by BIBTEX
from within PréTEX. In addition to these global
citations, PréITEX allows bibliographic citations local
to each chapter, so each author may use both
the global database and, independently, use local
citations from other bibliographic databases. To
enable local citations, PréIEX includes a second set
of citation commands with ‘1’ prefixed to the name
of each, such as <:1cite>, <:1bibliography>, and
the like.

Preview

This paper touches on only a few of the tools
PreéTEX provides to authors to simplify the writing,
management, and typesetting of large projects.
Together with its preprocessor, the full PrelEX
software package contains the StripTEX processor,
an auxiliary program for the construction of the
index, another for the table of contents, and a large
TEX macro package of about the same size and
capability as IATEX, but with a somewhat different
design philosophy.

The PreTEX software has been under devel-
opment and revision for several years, and at the
same time it has been used intensively by PreTgEX,
Inc., for the commercial typesetting of many text-
books in mathematics, engineering, and science.
The software is now ready for initial external test-
ing and application, with public release to follow
in due course. Before its general public release,
however, some work remains to be completed, espe-
cially the writing of user guides, reference manuals,
and other documentation necessary for the effective
application of the PreéTEX tools.

Bibliography

Kruse, Robert L. “PrelgX: Tools for Typeset-
ting Technical Books.” TgXniques No. 7: Confer-
ence Proceedings of the Ninth Annual Meeting,
Montreal, August 1988. Ed. Christina Thiele,
pp- 219-226. TEX Users Group. 1988.

Mailhot, Paul A. “Implementing Dynamic Cross-
Referencing and PDF with PreTEX.” 1999. (See
elsewhere in these Proceedings.)

230 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Database Publishing with JAVA and TEX*

Arthur Ogawa
TEX Consultants, California
ogawa@teleport.com

Abstract

Sun Computer intends its JAVA programming lan-
guage to be the lingua franca of the World Wide
Web. Sun may get their wish: dozens of books about
JAVA are published every year, and there is even a
conference about JAVA, JavaOne, being held in San
Francisco at the same time as this TUG meeting.

If you wanted to publish a book documenting
and cross-referencing all the JAVA class libraries
(running to 1,000 pages and covering over 1,500
classes, organized into about 70 “packages”) what
would you do? If you are Patrick Chan and Rosanna
Lee, you would use JAVA itself to manage the data
(about 40Mb of it) and you would use TEX to format
your pages.

In my talk, I will describe the criteria for se-
lecting the formatter (i.e., TEX plus macros) for a
database typesetting project, the best way of in-
terfacing between TEX and a database engine, and
some interesting (perhaps even challenging) features
of the formatting work. I will also show how the
success of the project enabled the author to make
last-minute revisions to the book (changes neces-
sitated by late developments in the JAVA class li-
braries themselves) even though this involved the re-
processing of all 40Mb of data, in less than 24 hours.

* [No paper submitted. —Ed.]

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Oh what a tangled web we get

When first we find \def and \futurelet.

We turn to eTEX, we turn to Omega,

They both look good, we start to get eager.

But no, whats this, a misplaced \omit?

Did we miss a brace, does \vbox still not fit?

Help me fix my macros, bracket heroes all!

But Pierre’s font is calling, Lamport’s left the hall
Barbara says use \downcase, Downes just strokes
his beard.

Erik sells me 4TEX, pretends he never heard.
David’s hacking tables, Frank is fixing floats,
Ogawa’s talking slowly, Kacvinsky wants his oats.
Will Kaveh help me out? no, his dhoti’s dirty,
Nelson’s feeding awks, Mimi’s feeling flirty.

Flynn says use a rubber, Wendy needs a hug,

Kath has got the answer, no it’s just another mug.
Young Ross is such a hoot, he says use xypic

Why not turn to Sojka, he’s sure to know the trick.
Anita, a Hoover, what use to me’s a dam?

Send me out with Kiren, we’ll both go on the lam.
Irina claims ‘for us in Mir is no problem’,
TRIUMEF uses \mathcode but \hspaces just one em.
TrueTgX does it both ways, and you can trust the
Blue Sky

but hyperref the backend, oh why oh why oh why?

Ode to a special

ActiveTEX, PassiveTEX, what a great to do,

Can there be yet some way through?

MathML has pointies, XSL can claim its templates
ExerQuiz is so cute—so screw you Billy Gates.

—Sebastian Rahtz

1075

Paul A. Mailhot

Implementing Dynamic Cross-Referencing and PDF with PreTgX

Paul A. Mailhot

PrelTgX, Inc.

2891 Oxford Street

Halifax, Nova Scotia, B3L 2V9
Canada

paul@pretex.com

Abstract

This paper discusses how we can create dynamic and interactive on-line
documents in Portable Document Format (PDF), using TEX. PDF documents
are generally device and platform independent, therefore, ideally suited for
on-line publishing and information exhange. We will need to work in three
programming languages: macros in TEX, and definitions in PostScriptand PDF.
We begin by describing the steps necessary to process PDF through TgXand
PostScript, followed by several examples of defining such TEX macros. The
examples are quite easy to follow; however, some knowledge of PostScript and

PDF programming is useful.

Paperless publishing

Publishing of books and documents has dramati-
cally changed in the past few decades. Philip Taylor
(1996) accurately described the emergence of com-
puter typesetting with emphasis on Web document
rendering applications, using portable multiplat-
form hypertext exchange standards, particularly
focusing on the merits of PDF and HTML (including
XML, SGML, et al.). For our purpose we can define
on-line as any means by which a document can be
electronically rendered; this is perhaps more aptly
called paperless printing.

The popularity of on-line books and documents
has spawned a diverse variety of on-line readers.
These readers, for our purpose, are programs, ap-
plets, and interpreters which can read electronic
data and output the image to a screen, in much
the same way that one would see the output from a
printer. Readers include proprietary single-platform
programs, stand-alone multi-platform readers (in-
cluding Frame Reader, Ghostscript, and Acro-
bat Reader), Web browsers (including HTML and
JAVA), and Web browser plug-ins (including Acro-
bat). It is not at all wrong to suggest that TEX,
along with a DVI previewer, is one of the first
platform independent readers. Many people have
generously contributed packages to the TEX cause,
by which users can incorporate recent advancements
in reader design such as HTML and PDF.

Portable Document Format

Portable Document Format, more commonly called
PDF, was developed by Adobe Systems and is a
descriptive programming language, devoid of soft-
ware and hardware dependence, used to render
documents. PDF is sometimes grossly misunder-
stood as being a subset of the PostScript format
language. It is true that PDF and PostScript share
many common features but each format language
suits a particular task, and there are features found
in each but not the other. Thomas Merz (1997)
describes these similarities and differences in suit-
able detail. For our purpose we will concentrate
on PDF documents, in particular addressing some
hypertext features including bookmarks, links, and
annotations.

A PDF document in general cannot be directly
viewed, but rather, must be processed through a
reader such as Adobe Acrobat Reader or Ghost-
script. There also exist a number of application
plug-ins for internet, word-processing, and desktop-
publishing software which allow viewing of PDF
documents. PDF documents are usually created
by printing a document through a printer driver
such as Acrobat PDF Writer or printing to a
PostScript file which is in turn passed through
Acrobat Distiller. The second method is more
commonly used by the TEX community; a brief
description is given by Amy Hendrickson (1998).
Contributions such as hyperref (Thanh and Rahtz,
1997) and pdftex (Thanh, 1998) provide direct-to-
PDF document processing.

232 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

Implementing Dynamic Cross-Referencing and PDF with PréTEX

PDF through PostScript

For our purpose we will concentrate on the method
used by Hendrickson. The description of PDF and
PostScript operators for hypertext links is found in
Merz, but for our purpose we will briefly review it.

In order to create PDF links, we must first sup-
ply a set of raw PostScript instructions/definitions
which will allow passage of PDF link code through
Acrobat Distiller to create PDF files with links.
This PDF code will be ignored by non-PDF de-
vices such as PostScript printers. The following
PostScript source code accommodates this by an
if-else statement:

/pdfmark where
{pop}
{dictionary /pdfmark
/cleartomark
load put}
ifelse

In this PostScript code, the where command
searches for a PostScript dict containing a defi-
nition of pdfmark. If the definition is found, then
the if portion {pop} is executed and word pdfmark
is popped off the execution stack by the PostScript
interpreter; otherwise, pdfmark is defined to remove
all the tokens between mark and the word pdfmark
by using the PostScript operator /cleartomark. A
mark in PostScript is the character [. We now
have an avenue by which PDF code can be passed
through both to PDF devices and non-PDF devices.

Most new DVI-to-PostScript interpreters have
already included the above PostScript code in their
document header. Those interpreters that do
not include it can do so with the following TEX
definition:

\def\initializePDF{
\special{header=pdfparse.psc}}

This TEX macro tells TEX and any generic DVI-
to-PS driver to insert the file pdfparse.psc into
the PostScript output file header. The file pdf-
parse.psc would then contain the above PostScript
code with the /pdfmark definition.

The PDF code

Now that we have taken care of passing PDF link
code, we must create PDF code for creating PDF
links. The PDF code works in the same manner as
PostScript in that we must create definitions using
predefined PDF operators. There are essentially two
parts to implementing PDF links. Merz (1997:288—
298) gives several examples of fully functional links
which can be easily followed. The example

[/Rect [0 0 60 60]
/Page 124
/LNK pdfmark

contains all of the essential elements required for a
link to pass through PostScript and be executed in
PDF. The PostScript mark [and definition pdfmark
delimit the PDF code. It cannot be assumed that
the code between the delimiters is PDF because we
may need to pass values from TEX into the PDF
code. The fully functioning example

\def\pdfbookmark#1#2{{
%#1=section/Chapter/etc..
%#2=usually the title
\special{verbatim=
" [/Title (#1 #2)

/0UT pdfmark"}
1

shows how we can define a TEX macro, using a
PostScript special, to insert entries into an outline
of a PDF document. An example of an outline in
Adobe Acrobat is shown in the left side of Figure 1.
We can jump to each entry of the document by
clicking the icon to the left of the outline entry.

Figure 1: An example of a PDF document con-
taining an outline. We can use the outline to jump
to its location in the body of the text.

A more useful but trickier example is:

\def\pdfnameddestination#1#2{{
4#1=xrf-tag name
%#2=pagenumber
\special{verbatim=
" [/Dest /#1

/page #2

/Border [0 0 0]

/DEST pdfmark"}
1}

\def\pdfgotonameddestination#1{{
t1l=xref-tag name
\special{verbatim=
" [/Rect [currentpoint

2 neg add exch

10 neg add exch

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 233

Paul A. Mailhot

currentpoint
8 add exch
0 add exch]
/Border [0 0 0]
/Dest /#1
/LNK pdfmark "}
7

This example supports dynamic cross-referencing in
the PDF document in the same manner as IATEX.
The first macro creates a mark where the source
reference is located and the second macro creates a
link to that reference. The second macro does this
by creating a PDF link box 10 points square in the
PDF document. If, in Acrobat Reader, you click on
this box, you will jump to the page where the link
is defined.

One major restriction of this method is that
the entire project needs to be in one PDF document.

Multiple-file PDF documents

Many books and other large projects need to be
processed as multiple files, broken up so that each
section is of more manageable size. But our earlier
method of creating links as named references does
not work outside a single file.

A better method, which works over multiple
files, is to create a set of macros that reference
both the filename and the page number With this
method, we can set up a link to any PDF document,
as long as we know the file name and the absolute
page reference. This method is implemented in the
following TEX definition:

\def\pdfxrffileopen#1#2{{
%#1= file name
7#2= absolute page number -
% not the printed page number
\special{verbatim=
" [/Rect [currentpoint
2 neg add exch
10 neg add exch
currentpoint
8 add exch
0 add exchl]
/Border [0 O 0]
/Action << /Type /Action
/Subtype /GoToR
/File (#1.pdf)
/Dest [#2 1 neg add /Fit] >>
/Subtype /Link
/ANN pdfmark "}}}

This definition contains a few more operators but
it has an overall structure similar to the earlier
example. It is important to note that PDF docu-
ments are referenced by absolute page number. If,
for example, the document contains front matter
numbered i to xvi and text pages 1 through 23, then

the absolute page numbers are 0 for i, 15 for xvi,
16 for 1, up through 38 for page 23. With a little
work, one could easily redefine TEX cross-reference
and index macros to include file names and absolute
page numbers, thereby implementing dynamic and
automatic PDF linking. One method for keeping
track of absolute page numbering in TEX is to define
a new counter and increment it in the TEX output
routine.

We can combine the methods of the two previ-
ous examples by having the TEX macro PDFnamed-
destination include another TEX macro which
writes each instance, named destination, and file-
name, to a global output file containing calls to
each document file:

% Global file containing
% named destinations
\input documentl.nd
\input document2.nd

\input documentN.nd

In this manner, all files can be accessed somewhat
independently and named references for each docu-
ment can be easily updated. By referencing this file,
one can determine in which file a named destination
occurs.

m Contents s—

5]

e

Fel

frebar @ il b
g [EE L TR R P

T T— [— — i
ek Pt - B IR S TU———
Pl Ty —

Lo o ot s ot b Bl 11

[=

Pt i i by Fimali [l S [T VT N S— 1 —

Y —— []

[T e e ey e

153 ke i
IZF Lir Poy e Fregraemy ¥

1i Fegmapgien il
1 e

Figure 2: An example of a PDF document con-
taining links from Table of Contents entries to their
locations in the main body of the text.

Duplicate named destinations should not occur.
Figures 2 and 3 show several examples of how this
combination can be implemented to give PDF links.
The small shaded boxes represent PDF link boxes;
clicking on these boxes will jump the reader to the
destination page.

234 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

Implementing Dynamic Cross-Referencing and PDF with PréTEX

Index m—————

BEETRE

ENCTRIEFCETIN N N PO E PO RR Y

e S g, P e |
[|]
s e] g b e
e | .
iy im

[A — T :"_':l
byl -
[rtp— e
e, T i
La, M e ur
™ —
— ::'-.-I.
o o :_ ety T
v ks, e
] e, TR,
mamys =1
—iwade e i frave -ty
e e, s, B

Figure 3: An example of index entries containing
links to their locations in the main body of the text.

Launching applications from PDF
links

One final useful example of a PDF link is to allow a
user to launch an application program while reading
the PDF document. The following code allows an
executable to be opened directly and related files to
be opened using associations:
\def\pdflaunchapp#1{{%
% #1 = filename (pathname is optional)
\special{verbatim=
" [/Rect [currentpoint
2 neg add exch
10 neg add exch
currentpoint
8 add exch
0 add exch]
/Border [0 0 0]
/Action << /Type /Action
/Subtype /Launch
/File (#1) >>
/Subtype /Link
/ANN pdfmark "}}}

The TEX example
\pdflaunchapp{filename.c}

can be used to compile, or to open with an Inte-
grated Development Environment (IDE), files hav-
ing extensions associated with C compilers. Files
such as MS-DOS executables can work, although
these files can only be run in a DOS/Windows
environment. The shaded boxes containing the
uppercase “D” in Figure 4 indicates a PDF link
to launch the program compside.exe. In gen-
eral, this type of PDF link can be platform- and
operating-system-specific; however, under certain
conditions, it can be quite useful. Any link to an

executable should be thoroughly tested before being
distributed.

FrafimRdui] Pl b swreres praer P Uy e e pEgue
Prmgca A mam ki ma e e et s e e ks
Fiad 8 Sarrean S o iy B om i 2171 Tha s, ary e gy s
O sdrws = il by Sy 'ps s Py i i m— l—
ainh e g e i s de e gk v e
L B e Ay, ik w8 e e el nd
e et I ——
e e g e i e

EFETde

L Py b b G r) sl e e o e b B wromesd (e
o e L T e T
I

L T

L]
i Fir et i ey B aomw | b e i g
= Fim rogh-§ st Gy skt | o gy P Ll e
1 T T T L S
8 Tir bt gl d e s oo iy U e
L e
-amm b e B
g
o b R]

W A T T W e o vy g s g

Figure 4: An example of launching an application
in a PDF file by clicking the shaded boxes containing
the “D”.

Customized PDFlink radio buttons

We can now create documents which contain dy-
namically linked cross-references in the form of PDF
links. We should now enhance our PDF documents
by creating menus or user-defined buttons which
will allow warping to different locations of the book.
In Figures 1 to 4 we see a menu with such headings
as Title, TOC, Prev, Next, Index, and Help;
all these represent links to various locations in the
book. These are inserted onto each page by includ-
ing a TEX command in the output routine. The
TEX output routine

\def\output{\shipout\vbox{\pdftoolbar

\makeheadline

\pagebody

\makefootlinel}’,

\advancepageno

\global\advance\absolutepageno by 1

\ifnum\outputpenalty>-\@MM

\else\dosupereject\fi}

is taken from the set of macros used to create the
pages in Figures 1 to 4. Note that there is also a
reference to absolute page numbering in the sixth
line, as we suggested earlier. The TEX macro for
the PDF link toolbar

\def\pdftoolbar{{

\vbox to Opt{\hbox to Opt{\hskip -15pc
\vbox{\hsize=8pcj,

\pdftitlepage

\pdftoc

\pdfprev

\pdfnext

\pdfindex

\pdfhelp

HhssH\vss}t}}

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 235

Paul A. Mailhot

is quite simple. Depending on its implementation,
however, must not affect the remainder of the page
body. The TEX macro \pdftoc, for example, is
simply a line containing a PDF link using the
\pdfxrffileopen macros.

Acrobat 4

In this paper we have attempted to define a set
of TEX macros which will create on-line PDF doc-
uments which are platform independent. Since we
cannot foresee advancements in software develop-
ment, with the release of Acrobat 4 and future
versions, there remains the potential for better and
more visually appealing on-line documents. The
examples used in this paper are based on exist-
ing PDF features found in the on-line document
Portable Document Format Reference Manual, Ver-
sion 1.2, November 1997, by Adobe Systems. This
edition is rather old, but one can get the most recent
PDF version at the Adobe website www.adobe. com.

PreTEX and PDF

PréTEX is a preprocessor and macro package for
TEX, developed by PreTEX, Inc., which supplies an
author with many tools to simplify the writing and
management of larger (book length) projects. (For
a discussion of PréTEX, see the article by R. Kruse
elsewhere in this issue.) One of PréTEX’s important
expansions of the resources available to an author
is the inclusion of PDF links by using TEX macro
definitions similar to the examples above. In this
way, a book can be published both on paper and in
an electronic form that incorporates automatically
generated PDF links for cross-references, index
entries, launching application programs, and the
like. The current set of PDF macros are not stable
enough; they will be made freely available in the
spring of next year (1999).
Cheers.

References

Adobe Systems Incorporated. PostScript Language
Reference Manual. Addison-Wesley, Reading, Mas-
sachusetts, 1993.

Adobe Systems Incorporated. Portable Document
Format Reference Manual. Addison-Wesley, Read-
ing, Massachusetts, 1993.

Hendrickson, Amy. “Real Life IATEX: Adventures
of a TEX Consultant.” TUGboat 19(2), 162-167
(1998).

Kruse, Robert. “Managing Large Projects with
PréTEX: A Preprocessor for TEX.” 1999. (See
elsewhere in these Proceedings.)

Merz, Thomaz. PostScript and Acrobat/PDF
Springer-Verlag, Berlin, Heidelberg, 1997.

Taylor, Philip. “Computer Typesetting or Electronic
Publishing? New trends in scientific publishing.”
TUGboat 17(4), 367-381 (1996).

Thanh, Han Thé. “Improving TEX’s Typeset Lay-
out.” TUGboat 19(3), 284-288 (1998).

Thanh, Han Thé, and Sebastian Rahtz. “The
pdfTEX user manual.” TUGboat 18(4), 249-254
(1997).

A TEX Haiku

\expandafter\def
\csname def\endcsname
{\message{farewell}}\bye

—Sebastian Rahtz

A TgXnician’s Haiku

This haiku for TEXnicians consists entirely of TEX
control sequences; furthermore, it forms a valid
TEX assignment statement—provided that a certain
control sequence that is normally undefined is
defined in an obvious way. Can you identify the
control sequence in question?

\catcode\csname
\romannumeral\parshape
\endcsname\month

—Michael Downes

A TEX Cheer

Flush to the left

Flush to the right

\vskip, \hskip, type type type
Michael Sofka

236 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

A Web-Based Submission System for Meeting Abstracts

Hu Wang

American Institute of Physics
1INO1

2 Huntington Quadrangle
Melville, NY 11747
hwangQaip.org

Abstract

As one of the services provided to AIP’s Member Societies, we publish program
books and abstract books for meetings sponsored by the societies. In this paper,
we describe a Web-based client-server abstract submission system. It uses HTML
forms to gather and validate user input of abstracts and related information, pro-
vide on-line proof before officially submitting, and store the input in ETEX files
and a database. From the publishing production’s point of view, the major bene-
fit of such a system is the greatly improved quality of well-structured submissions,
which makes it possible to streamline the whole production cycle. Some possibil-
ities with its integration into a database publishing system are briefly discussed

afterwards.

Introduction

The American Institute of Physics (AIP) publishes
program books and abstract books for some of its
member societies’ meetings. The last few years have
seen many changes in the ways some societies’ meet-
ing abstracts are submitted and published.

At the beginning, hardcopy abstracts prepared
in various text formatting software were mailed in
and published with the cut-and-paste method. It
was non-digital, inefficient, and the resulting quality
of finished products was understandably poor.

Then, with the popularity of IXTEX in scien-
tific communities and the widespread availability of
email, came email-based electronic submissions. Au-
thors would download an appropriate ITEX tem-
plate file that included predefined tags (WTEX com-
mands and environments), fill it out, and email it to
a designated address. A program would collect the
submissions and save them as individual IATEX files.

The email approach had the potential advan-
tages that all files were standardized, well tagged,
and the publishing process could be highly auto-
mated. Unfortunately, since there are still many
authors who are not familiar with or do not have
ITEX, many submissions had to be manually cor-
rected for syntax errors by the production staff, which
was time consuming and sometimes impractical. This
often led to syntactically invalid submissions, which
in turn prohibited auto-processing. Another draw-
back was that the process was not interactive. As
for authors, those without IATEX could not proof-

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

read their abstracts, and figures could not be easily
submitted with the abstracts.

We needed to develop a system that could take
advantage of the potential strength of the email-
based method while avoiding its shortcomings, name-
ly, the non-interactiveness and lack of control on the
quality of submissions.

A Web-based system

As the World Wide Web spreads around the world
(for some society meetings, over one third of the
contributed papers come from abroad), it lends itself
naturally to a solution of our problems.

We have developed an automated, Web-based,
client-server meeting abstract submission system
with the following features:

e interactive user interfaces via HTML forms
e on-line M TEX help info

e choice of INTEX or non-I‘TEX entry methods
e uploading figures with abstracts

e on-line proof viewing and syntax validation
e editable abstracts

e easy integration with publishing phases

Regardless of the input method chosen by the
authors, each submission results in a well-tagged
IXTEX file that is free of syntax errors, a valid HTML
file into which the input data is injected, and up-
dated database records.

IMTEX is used as the ultimate file format for
the abstract collecting phase for two reasons: it fits

237

Hu Wang

well with our existing production systems and it is
a widely accepted standard for publishing scientific
and technical documents. In fact, the on-line proof
is produced by BTEX, along with dvips, and some
PostScript-to-gif conversion program.

System requirements

Client: Internet connection and a conventional Web
browser.
Server: Web server, WTEX, dvips, Image Alchemy
or ps2gif, GhostScript, and CGI scripts.

In the following section, we describe the imple-
mentation of this system.

Implementation

A user accesses the system by using a Web browser
to connect to a designated URL and entering the
meeting password included in the calls for paper dis-
tributed to the society members.

Once logged in, the user indicates whether he
or she is entering a new abstract or wishes to edit a
previously submitted abstract by clicking on the ap-
propriate radio button. The former choice prompts
the author to indicate, via radio buttons, the total
number of mailing addresses needed for all the au-
thors of the abstract and the total number of figures
(up to 2) in the abstract. An appropriate template
is then displayed for the user to fill out. The latter
choice requires the user to enter the abstract num-
ber and the PIN that were both assigned and emailed
to the author by the system when the abstract was
initially submitted. In this case, their filled-out tem-
plate will be shown for editing. Authors who forget
their abstracts numbers and PINs can query the sys-
tem and the results will be emailed back to them.

Template. One of the key components of the sys-
tem is the Web template. The elements from this
HTML form are captured for insertion into the data-
base and are also tagged for the KIEX file that
results from completing and submitting the tem-
plate form.

To accommodate users who are unfamiliar with
or do not need IXTEX, the top of the template has
two radio buttons labeled “Straight Text” (i.e. non-
BTEX) and “KETEX”, respectively, for choosing the
method of entry. With the former method, no IATEX
commands are recognized because everything en-
tered will be treated literally, which means it is im-
possible to choose fonts or set math expressions.
The usual KTEX commands are allowed with the

IMTEX entry method —except for \thanks, \footnote,

\begin{center} and the like.

The template has hyperlinks to sample inputs
for both entry methods, and to ITEX help on how to
input symbols and mathematical expressions. When
clicked, these links open separate windows for easy
reference.

The following form elements are used in the
template:

radio buttons for choosing the entry method
e presenting author’s name

e corresponding author’s name, address, country,
phone, email address, fax

e title and short title

e author’s name and address

e <textarea> for abstract body

o file selection fields for uploading figures (if any)
e figure caption (if any)

e topics of paper

e requested presentation method

e hidden fields

Hidden fields are for passing state variables informa-
tion from one invocation of a CGI script to the next.
They are embedded in the template to identify the
client session, to indicate if it’s a new or previously
submitted abstract, as well as the number of figures
and author groups in the abstract.

CGI scripts. Processing of submitted forms is han-
dled by CGI scripts, which are programs communi-
cating (via the Web server) with clients. The essen-
tial scripts are those that deal with filled templates
and proof screens. They perform the following tasks
sequentially:

1. Validate the form and figures (PostScript or Tiff
only, if any). This checks if any required input
fields are empty, if illegal input is found (e.g.
no TEX or KTEX commands are allowed in the
Straight Text entry method, \thanks is not al-
lowed in either method, and so on.), and if the
uploaded figure is a valid PostScript file (the
PostScript language interpreter Ghostscript is
used for this purpose) or a Tiff file.

Any input that fails to pass the validation
will cause an appropriate error message to be
displayed.

Here, JavaScript, which is faster on the client
side, can be used for form validation also.

2. Build a temporary I#TEX file and process it. If
there is no syntax error, run dvips and Alchemy
to generate the gif image and display the im-
age to the user for proof. If there are syntax
errors, extract the error message from the log

238 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

A Web-Based Submission System for Meeting Abstracts

file, display it, and ask the user to go back to
the template screen and fix the IATEX error.

We choose the gif format for proofing because
it is accessible without requiring browser plug-
ins or help applications. Of course, the PDF
format may be used for proofing, which requires
the Adobe Acrobat Reader for viewing.

In order to show the user the dynamically
generated gif, we must prevent browser caching
from displaying the old gif. This can be done by
proper HTTP headers such as ‘Cache-Control:
no-cache’ or ‘Cache-Control: no-store’. The gif
file for a typical abstract is about 20Kb in size.

Building IXTEX files via the Straight Text meth-

od warrants a little note here, as whatever the
user has entered will be treated as literal. The
CGI script must handle the following TEX spe-

cial characters carefully to properly escape them:

#$%h&_ {3 " \N<>|
For example, author’s input < should be con-
verted to $<$ in the ITEX file; otherwise, un-
expected output will result even though KTEX
does not complain.

It’s rather straightforward to build KTEX files
with the INTEX entry method — just insert the
author input data into the arguments of appro-
priate IXTEX control sequences. Not surpris-
ingly, the IATEX file’s tags correspond nicely
to the template’s elements. For instance, these
tags are used:

e \pauthor

e \cauthor

e \caddress

e \cphone

e \cemailaddr

e \cfax

e \title

e \author

e \authaddress

e \begin{abstract}

e \caption

e \category

e \pmethod

Let us now demonstrate the relationship be-

tween author input in each entry method and
the resulting IATEX file.

The Straight Text method. In this sample,
the user faces a screen with the prompt “Title”
on the left and a blank box. The title text is
input literally, like this:

Title: ‘Straight Text Mode #8$% Title

which will be converted into the following in the
resulting ITEX file:

\title{Straight Text Mode \#\$\% Titlel}

Notice that the literal input of the special char-
acters #3$7, has been correctly converted with
the addition of backslashes.

The BPTEX method. By selecting this method,
authors can directly input BTEX code. In this
sample, the author is facing a similar screen,
with “Presenting Author” as the prompt to the
left of the boxed area for the name:

First name: Last name: |Kn\"oll

will result in this statement in the IATEX file:

\pauthor{P\’al}{Kn\"ol1}

. Build a temporary HTML file into which the

user-input data is inserted. This file will be
needed if the user wants to edit a previously
submitted abstract later on.

Here, care is needed too. First, every " char-
acter entered by the user must be replaced in
the resulting HTML file by the entitized ver-
sion, i.e. by " so that it does not inter-
fere with the HTML form’s element value de-
limiter ". Second, any scrolling list element in
the template must be placed in the HTML file
and a SELECTED attribute inserted inside the
<option> that has been selected by the user.

For instance, the previous example of enter-
ing the presenting author name would yield the
following lines in the HTML file:

First name:<input name=p_fname
type=text value="P\’al">

Last name:<input name=p_lname
type=text value="Kn\"oll">

Please note, when displaying an HTML file, the
browser replaces all entity references such as
the above one with the corresponding charac-
ters. Therefore, the CGI script that processes
the submitted form does not need to de-entitize
any form data.

. Insert relevant information into the database.

This may be needed later for searching, report-
ing, mailing label printing, etc.

After the WTEX source file is error-free and
a proof of its output is displayed, the user may
decide to finally submit it to the system or may
go back to the template to massage it further

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 239

Hu Wang

and then go through the proof and final sub-
mission cycle again.

5. Final submit. For a new submission, assign a
new sequential abstract number; for a re-sub-
mission, extract its abstract number from the
corresponding hidden field. In either case, re-
name the source file, the HTML file, and any
figure files to the abstract number with proper
extensions, email the abstract number and a
randomly generated PIN to the corresponding
email address, and insert or update the database
records accordingly.

Conclusions

This system offers many benefits to both users and
the production staff.

Users’ benefits. Self-evident HTML form templates,
choice of entry methods, easy figure handling, M TEX
syntax validation (this could be a mixed bag for
IXTEX newbies because the error messages may be
too cryptic for them), on-line proof viewing, and
editing previously submitted abstracts.

Production benefits. Since the rigorous valida-
tion processes shift more responsibilities to the users,
the abstract submission quality is greatly improved.
The production staff now start the game with stan-
dardized, well-structured data, which makes it pos-
sible for the subsequent events to be highly auto-
mated. In fact, this system can be expanded into a

240

comprehensive database publishing system for hand-
ing the following conferences-related tasks:

e During the period of collecting abstract submis-
sions, set up a cron job for the conference coor-
dinator to print out abstracts and accompany-
ing figures received the previous day, to gener-
ate a sort-by-category and sort-by-presenting-
author list of abstracts received so far.

e For program committee use: abstract database
search for various fields.

e Insert into the database the program commit-
tee’s decisions of acceptance and rejection, as
well as the meeting sessions information (such
as the session name, schedule, location, chair-
person, invited talks, contributed talks, posters,
time slot for each presentation, etc.).

e Generate letters of acceptance and rejection, as
well as mailing labels.

e Generate program books and abstract books.
e Searchable on-line program listing and viewing.

Acknowledgements

Several people at the AIP were involved in this project:
Don Lang, Chris Hamlin, and Kevin McGrath. My
thanks to all of them — especially Chris Hamlin, from
whom I have learned many TEXniques.

I would also like to thank the TUG99 review-
ers and the Proceedings editor, Christina Thiele, for
their constructive suggestions and comments.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Hyphenation on Demand

Petr Sojka

Faculty of Informatics
Masaryk University Brno
Botanicka 68a, 60200 Brno
Czech Republic
sojka@informatics.muni.cz

Abstract

The need to fully automate the batch typesetting process increases with the use
of TEX as the engine for high-volume and on-the-fly typeset documents which, in
turn, leads to the need for programmable hyphenation and line-breaking of the

highest quality.

An overview of approaches for building custom hyphenation patterns is pro-
vided, along with examples. A methodology of the process is given, combining
different approaches: one based on morphology and hand-made patterns, and
one based on word lists and the program PATGEN. The method aims at modular,
easily maintainable, efficient, and portable hyphenation. The bag of tricks used
in the process to develop custom hyphenation is described.

Motivation

In principle, whether to hyphenate or not is a style
question and CSS [Cascading Style Sheets| should
develop properties to control hyphenation. In
practice, however, for most languages there

is no algorithm or dictionary that gives

all (and only) correct word breaks, so

some help from the author may

occasionally be needed.

— (Bos, 1999)

Separation of content and presentation in today’s
open information managment style in the sense of
SGML/XML (Goldfarb, 1990; Megginson, 1998) is
a challenge for TEX as a batch typesetting tool.
The attempts to bring TEX’s engine to untangle pre-
sentation problems in the WWW arena are numer-
ous (Sutor and Diaz, 1998; Skoupy, 1998).

One bottleneck in the high-volume quality pub-
lishing is the proofreading stage — line-breaking and
hyphenation handling that need to be fine tuned to
the layout of particular publication. Tight dead-
lines in paper-based document production and high-
volume electronic publishing put additional demands
for better automation of the typesetting process.
The need for multiple presentations of the same data
(e.g., for paper and screen) adds another dimension
to the problem. Problems with hyphenation are of-
ten one of the most difficult. As most TEX users are
perfectionists, fixing and tuning hyphenation for ev-
ery presentation is a tedious, time-consuming task.

We have already dealt with several issues re-
lated to hyphenation in TEX (Sojka and Sevecek,
1995; Sojka, 1995). On the basis of our being in-
volved in typesetting tens of thousands of TEX pages
of multilingual documents (mostly dictionaries), we
want to point out several methods suitable for the
development of hyphenation patterns.

Pattern generation

There is no place in the world that is
linguistically homogeneous, despite the
claims of the nationalists around the world.
— (Plaice, 1998)

Liang (1983), in his thesis written under Knuth’s su-
pervision, developed a general method to solve the
hyphenation problem that was adopted in TEX82
(Knuth, 1986a, App. H). He wrote the PATGEN pro-
gram (Liang and Breitenlohner, 1999), which takes
e a list of already hyphenated words (if any),
e a set of patterns (if any) that describes “rules”,
e a list of parameters for the pattern generation
process,
e a character code translation file (added in PAT-
GEN 2.1; for details see Haralambous (1994),
and generates
e an enriched set of patterns that “covers” all hy-
phenation points in the given input word list,

e a word list hyphenated with the enriched set of
patterns (optional).

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 241

Petr Sojka

The patterns are loaded into TEX’s memory
and stored in a data structure (cf. Knuth, 1986b,
parts 40—43), which is also efficient for retrieval —
a variant of trie memory (cf. Knuth, 1998, pp. 492—
512). This data structure allows hyphenation pat-
tern searching in linear time with respect to the pat-
tern length. The algorithm using a trie that “out-
puts” possible hyphenation positions may be viewed
as finite automaton with output (Mealy automaton
or transducer).

Pattern development

... problems [with hyphenation] have more or less
disappeared, and I've learnt that this is only because,
nowadays, every hyphenation in the newspaper

is manually checked by human proof-readers.

— (Jarnefors, 1995)

Studying patterns that are available for various lan-
guages shows that PATGEN has only been used for
about half of the hyphenation pattern files on CTAN
(cf. Table 1 in Sojka and Sevecek, 1995).

There are two approaches to hyphenation pat-
tern development, depending on user preferences.
Single authors using TEX as an authoring tool want
to minimize system changes and want TEX to be-
have as a fixed point so that re-typesetting of old
articles is easily done, thanks to backwards compat-
ibility. For such users, one set of patterns that is
fixed once and for all might be sufficient.

On the other hand, for publishers and corpo-
rate users with high-volume output, it is more ef-
ficient to make a long-term investment into devel-
opment of hyphenation patterns for particular pur-
poses. I remember one TEX user saying that my sug-
gestion to enhance standard hyphenation patterns
with custom-made ones to allow better hyphenation
of chemical formulae would save his employer thou-
sands of pounds per year. Of course, with this ap-
proach, one has to archive full sources for every pub-
lication, together with hyphenation patterns and ex-
ceptions.

One of the possible reasons PATGEN has not been
used more extensively may be the high investment
needed to create hyphenated lists of words, or bet-
ter, a morphological database of a given language.

Pattern bootstrapping and iterative
development

The road to wisdom?
Well it’s plain and simple to express:
Err and err and err again

but less and less and less.

— (Hein, 1966)

When developing new patterns, it is good to start
with the following bootstrapping technique with it-
eration, which should avoid the tedious task of man-
ually marking hyphenation points in huge lists of
words:

1. Write down the most obvious initial patterns,
if any, and/or collect “the closest” ones (e.g.,
consonant-vowel rules).

2. Extract a small word list for the given language.

3. Hyphenate current word list with current set
patterns.

4. Check all hyphenated words and correct them;
in the case of errors return to step 3.

5. Collect a bigger word list.

6. Use the previously generated set of patterns to
hyphenate the words in this bigger list.

7. Check hyphenated words, and if there are no
errors, move to step 9.

8. Correct word list and return to step 6.

9. Generate final patterns with PATGEN with pa-
rameters fitted for the particular purpose (tuned
for space or efficiency).

10. Merge/combine new patterns with other mod-
ules of patterns to fit the particular publishing
project.

To find an initial set of patterns, some basic
rules of hyphenation in the specific language should
be known. Language can be grouped into one of two
categories: those that derive hyphenation points ac-
cording to etymology and those that derive hyphen-
ation according to pronunciation — “syllable-based”
hyphenation. For the first group of languages, one
should start with patterns for most frequent end-
ings and suffixes and prefixes. For syllable-based
hyphenation, patterns based on sequences of conso-
nants and vowels might be used (cf. Chicago Manual
of Style, 1993, Section 6.44, and Haralambous, 1999)
as first approximation of hyphenation patterns.

As using TEX itself for hyphenation of word lists
and development of patterns may be preferred to
other possibilities, we will start with this portable
solution, using hyphenation of phonetic transcrip-
tions as an example of a syllable-based “language”.

Let’s start with some plain TEX code to define
consonant-vowel (CV) patterns:

% ... loading plain.tex

% without hyphen.tex patterns ...
\patterns{cvicv cv2clc ccvlc cccvic
cccevlc cccecevle v2vl v2v2vl v2v2v2vl

242 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

There is a way to typeset words together with their
hyphenation points in TEX; the code from Olsdk
(1997, with minor modifications) looks like this:

\def\showhyphenspar{\begingroup
\overfullrule=Opt \parindentOpt
\hbadness=10000 \tt
\def\par{\setparams\endgraf\composelines}/,
\setbox0=\vbox\bgroup

\noindent\hskipOpt\relax}

\def\setparams{\leftskip=0pt
\rightskip=0Opt plus 1fil
\linepenalty1000 \pretolerance=-1
\hyphenpenalty=-100003}

\def\composelines{}
\global\setbox1=\hbox{}%
\loop

\setbox0=\lastbox \unskip \unpenalty

\ifhbox0 %

\global\setbox1=\hbox{%
\unhbox0\unskip\hskipOpt\unhbox1}%

\repeat
\egroup % close \setbox0=\vbox
\exhyphenpenalty=10000%
\emergencystretch=4emy,
\unhbox1\endgraf
\endgroup}

Now, we will typeset our word list in the typewriter
font without ligatures. To use the CV patterns de-
fined above we need to map word characters prop-
erly:

% vowels mapping

\lccode‘\a=‘v \lccode‘\e=‘v

\lccode‘\i=‘v \lccode‘\o=‘v

% consonants
\lccode‘\b=‘c
\lccode‘\d=‘c

\lccode‘\c=‘c
\lccode‘\f=‘c

\raggedbottom \nopagenumbers
\showhyphenspar

The need to fully automate the
batch typesetting process increases
with the use of word in wordlist

\par\bye
Finally, extracting hyphenated words from dvi the
file via the dvitype program, we get our word list
hyphenated by our simple CV patterns.

Another way to get the initial word list hyphen-

ated is to use PATGEN with initial patterns and no
new level, letting PATGEN hyphenate the word list

Hyphenation on Demand

that was input. PERL addicts may want to use the
PERL hyphenation module (Pazdziora, 1997) for the
task.

Once the job of proofreading the word list is
finished, we can generate new patterns and collect
other words in the language. Using new patterns
on the new collection will show the efficiency of the
process.

Fine tuning of patterns may be iterated, once
PATGEN parameters are set, so that nearly 100 % cov-
erage of hyphenation points is achieved in every it-
eration. The setting of such PATGEN parameters may
be difficult to find on the first attempt. Setting of
these parameters is discussed in Sojka and Sevecek
(1995).

Modularity of patterns

It is tractable for some languages to create patterns
by hand, simply by writing patterns according to the
rules for a given language. This approach is, how-
ever, doomed to failure for complex languages with
several levels of exceptions. Nevertheless, there are
special cases in which we may build pattern modules
and concatenate patterns to achieve special purpose
behaviour. This applies especially when additional
characters (not handled when patterns have been
built originally) may occur in words that we still
want to hyphenate.

Patterns generated by Raichle (1997) may serve
as an example that can be used with any fonts in the
standard IATEX eight-bit T'1 font encoding, to allow
hyphenation after an explicit hyphen. Similar pat-
tern modules can be written for words or chemical
formulee that contain braces and parentheses. These
can be combined with “standard” patterns in the
needed encodings. Some problems might be caused
by the fact that TEX does not allow metrics to be
defined for \lefthyphenmin and \righthyphenmin
properly — we might want to say that ligatures, for
instance, count as a single letter only or that some
characters should not affect hyphenation at all (e.g.
parentheses in words like colo(u)r). We must wait
until some naming mechanisms for output glyphs
(characters) is adopted by the TEX community for
handling these issues.

Adding a new primitive for the hyphenmin code
—let’s call it \hccode, a calque on \1ccode — would
cause similar problems: changing it in mid-para-
graph would have unpredictable results.!

It is advisable to create modules or libraries of
special-purpose hyphenation patterns, such as the

1 e-TEX v2 has a new feature to fix the \lccode values
during the pattern read phase.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 243

Petr Sojka

ones mentioned above, to ease the task of pattern
development. These patterns might be written in
such as as to be easily adaptable for use with core
patterns of a different language.

Common patterns for more languages

Having large hyphenated word lists of several lan-
guages the possibility then exists to make multilin-
gual or special-purpose patterns from collections of
words by using PATGEN. Joining word lists and gen-
erating patterns on demand for particular publica-
tions is especially useful when the word databases
are structured and split into sublists of personal
names, geographic names, abbreviations, etc. These
patterns are requested when typesetting material in
which language switching is not properly done (e.g.
on the WWW).

Czech and Slovak are very closely related lan-
guages. Although they do not share exactly the
same alphabet, rules for hyphenation are similar.
That has led us to the idea of making one set of hy-
phenation patterns to work for both languages, sav-
ing on space in a format file that supports both. In
the Czech/Slovak standard TEX distribution there is
support for different font encodings. For every en-
coding, hyphenation patterns have to be loaded as
there is no character remapping on the level of trie
possible. Such Czechoslovak patterns would save
patterns for each encoding in use.

It should be mentioned that this approach can-
not be taken for any set of languages as there may
be, in general, identical words that hyphenate dif-
ferently in different languages; thus, simply merging
word lists to feed PATGEN is not sufficient without de-
grading the performance of patterns by forbidding
hyphenation in these conflicting words (e.g. re-cord
vs. rec-ord).

Phonetic hyphenation

As an example of custom-made hyphenation pat-
terns, the patterns required to hyphenate a pho-
netic (IPA) transcription are described in this sec-
tion. Dictionaries use this extensively —see Fig. 1,
taken from Kirsteinova.

The steps used to develop the hyphenation pat-
terns for this dictionary were similar to those de-
scribed in the previous section on bootstrapping:

1. Write down the most obvious (syllable) pat-
terns.

2. Extract all phonetic words from available texts.

2 The IPA font used is TechPhonetic, downloadable from
http://www.sil.org/ftp/PUB/SOFTWARE/WIN/FONTS/.

akkompagnement sb [ekampanjo-
'map] -et, -er hudebni doprovod m
alimentationsbidrag sb [@&limente-
So0:’nsbidra:’w] -et, - alimenty pl,
prispévek m na vyzivné ditéte
befolknings||eksplosion sb [be'fal’g-
nens-] -en, -er populacni exploze f
m -tilvaekst -en, -er pfirtstek m
obyvatelstva m -taethed -en, -er
hustota f obyvatelstva
bemeerkelsesvaerdig adj [be'mer-
galsasver’di] -t, -e pozoruhodny
beslutningsdygtig adj [be'slud-
nepsdegdi] -¢, -e schopny
rozhodovat; den lovgivende for-
samling var ~ zdkonodarné shro-
mdzdéni bylo schopné se usndset

Figure 1: Example of phonetic hyphenation
in Kirsteinovd and Borg (1999).

3. Hyphenate this word list with the initial set of
patterns.

4. Check and correct all hyphenated words.
5. Generate final quality patterns.

In bigger publishing projects efforts like this pay off
very quickly.

Hyphenation for an etymological dictionary

In some publications (Rejzek, in prep., for exam-
ple), a different problem can arise: the possibility of
having more than 256 characters used within a sin-
gle paragraph. This problem cannot, in general, be
easily solved® within the frame of TEX82. We thus
tried €, the typesetting system by Plaice and Hara-
lambous, for this purpose. One has to create special
virtual fonts (e.g., by using the fontinst package) on
top of the ones, in order to typeset it —see Fig. 2.

More hyphenation classes

But at least I can point out a minor weakness
of TEX’s algorithm: all possible hyphenations
have the same penalty. This might be ok

for english, but for languages like German
that have a lot of composite words there
should be the ability to assign lower penalties
between parts of a composite i.e. Um-brechen
should be favored against Umbre-chen.

— (Hars, 1999)

3 One could try to re-encode all fonts used in parallel
in some paragraph such that they share the same \lccode
mappings, but this exercise would have to be made for each
multilingual-intensive publication, again and again.

244 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

naivni ‘prostoduchy, détinsky’, nai-
vita, naivka. Pres ném. naiv z fr. nai:f
tv., pivodné ‘pfirozeny, opravdovy’ zlat.
nativus ‘ptirozeny’ od ndatus, coz je pric.
trp. od nasct ‘rodit se’. Srov. Tnaciondle.

naruzivy ‘vasnivy, silné zaujaty’, nd-
ruZivost. Jen €. Souvisi s C.st. oruzi
‘zbroj, zbran, nacini’ (vSesl.). Psl. kofen
*-rog- (B1, B7) nejspis souvisi s lit. jran-
gus ‘prudky’ (HK), rdngtis ‘spéchat’,
ren~gtis ‘chystat se’, ranga ‘pristroj, na-
stroj’, dale asi se stthn. ranc ‘rychly, vi-
fivy pohyb’, ném. renken ‘pohybovat se
krouzivé sem tam’, angl. wrench ‘trh-
nout, vykroutit’, vie by to bylo od ie.
*yreng- ‘kroutit, ohybat’ a vzdalené pii-
buzné by bylo |vrhat.

nebozez ‘vrtdk na dfevo’, nebozizek.
HI. njeboz, sln. nabozec. Ptejato z germ.,
forma by ukazovala az na germ. *naba-
-gaiza pred zménou -z->-r- (A5, Bl),
kterd uz je provedena v sthn. nabager
(ném. Naber tv.). Prvni Cast germ. slova
odpovidd ném. Nabe (viz Tndboj), druha
ném.st. Ger z got. *gaiza- ‘néco Spicaté-
ho’.

Figure 2: Using () to typeset paragraphs in which
words from languages with more than 256 different
characters may appear and be hyphenated in
parallel.

Some suggestions on handling multiple hyphenation
classes were suggested in Sojka (1995). A proto-
type implementation of e-TEX and PATGEN has re-
cently been done (Classen, 1998). For wider adop-
tion of such improvements availability of large word
lists and development of new patterns is crucial.
Many of the methods mentioned above could be
used to develop such multi-class/multi-purpose pat-
terns. Allen (1990) contains such a word list, which
shows that some publishers do pay attention to line-
breaking details.

Speed considerations

Even though hyphenation searches using a trie data
structure is fast, searching for unnecessary hyphen-
ation points is a waste of time. It is advisable to tell
TEX where words shouldn’t be hyphenated. Com-
paring several possibilities for suppressing hyphen-
ation, the option of setting \1lefthyphenmin to 65 is
slightly faster than switching to \language, which

Hyphenation on Demand

has no patterns. These solutions outperform the
\hyphenpenalty 10000 solution by a fair amount
(cf. Arsenau, 1994).

Reuse of patterns

Sometimes we need the same patterns with differ-
ent \lefthyphenmin and \righthyphenmin param-
eters. The suggested approach is not to limit hy-
phens close to word boundaries during the pattern
generation phase but to use TEX’s \setlanguage
primitive. This can be done to achieve special hy-
phenation handling for the last word in a paragraph
(e.g., a higher \righthyphenmin) given proper mark-
up by a preprocessing filter. For example:

\newcount\tmpcount
\def\lastwordinpar#1{J
\tmpcount=\righthyphenmin
\righthyphenminb

\setlanguage\language #1
\expandafter\righthyphenmin\the\tmpcount
\setlanguage\language}

\showhyphens{demand}
\lastwordinpar{demand\showhyphens{demand}}
\bye

Future work

If you find that you're spending almost
all your time on practice, start turning
some attention to theoretical things;

it will improve your practice.

— (Knuth, 1989)

It seems inevitable that embedding of language-spe-
cific support modules will be necessary for the type-
setting system in the future. These demands may
not only apply for hyphenation but also for spelling
or even grammar checkers. As even people using
WYSIWYG systems may use tools that help to vi-
sualise possible typos (in color, etc.) on the fly, the
computing power of today’s machines is surely suf-
ficient to do the same in batch processing with even
better results.

The idea of using patterns to capture mappings
specific for particular languages or dialect modules
can be further generalized for different purposes and
mappings. The use of the theory of finite-state trans-
ducers (Mohri, 1996; Mohri, 1997; Roche and Sch-
abes, 1996) to implement other classes of language
modules looks promising.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 245

Petr Sojka

Summary

Some computerized typesetting methods in frequent
use today may render a conservative approach

to word division impractical. Compromise may
therefore be necessary pending the development

of more sophisticated technology.

— Chicago Manual of Style (1993, Section 6.43)

We have outlined some of the possibilities offered
by TEX and PATGEN for the development of cus-
tomized hyphenation patterns. We have suggested
bootstrapping and iterative techniques to facilitate
pattern development. We also suggest wider em-
ployment of PATGEN and preparation of hyphenated
word lists and modules of patterns for easy prepara-
tion of hyphenation patterns on demand in today’s
age of digital typography (Knuth, 1999).

Acknowledgements. We thank Bernd Raichle for
valuable comments and corrections to the paper. We
are indebted to the Proceedings editor for wording
improvements. The presentation of this work has
been made possible through support from the Min-
istery of Education, Youth and Physical Training
(MSMT CR grant VS97028).

References

Allen, R.E. The Ozxford Spelling Dictionary, vol-
ume 1T of The Ozford Library of English Usage.
Oxford University Press, 1990.

Arsenau, Donald. “Benchmarking paragraphs with-
out hyphenation”. Posting to the Usenet group
news:comp.text.tex on Dec 13, 1994.

Bos, Bert. “Internationalization / Localiza-
tion”. http://www.w3.org/International/
0-HTML-hyphenation.html, 1999.

Chicago Manual of Style. The Chicago Manual of
Style, 14th edition, 1993.

Classen, Matthias. “An extension of TEX’s hyphen-
ation algorithm”. ftp://peano.mathematik.
uni-freiburg.de/pub/etex/hyphenation/,
1998.

Goldfarb, Charles F. The SGML Handbook. Claren-
don Press, Oxford, 1990.

Haralambous, Yannis. “A Small Tutorial on the
Multilingual Features of PATGEN2”. In elec-
tronic form, available from CTAN as info/
patgen2.tutorial, 1994.

Haralambous, Yannis. “From Unicode to Typogra-
phy, A Case Study: The Greek Script”. Pro-
ceedings of 14th International Unicode Confer-
ence, preprint available from http://genepi.
louis-jean.com/omega/boston99.pdf, 1999.

Hars, Florian. “Typo-1 email discussion list”. 1999.

Hein, Piet. Grooks. MIT Press, Cambridge, Mas-
sachusetts, 1966.

Jarnefors, Olle. “ISO-10646 email discussion list”.
1995.

Kirsteinovd, Blanka and B. Borg. Ddnsko-cesky
slovnik, Dansk-Tjekkisk Ordbog [Danish-Czech
dictionary]. LEDA, Prague, Czech Republic,
1999.

Knuth, Donald E. The TgXbook, volume A of Com-
puters and Typesetting. Addison-Wesley, Read-
ing, MA, USA, 1986a.

Knuth, Donald E. TgX: The Program, volume B
of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986b.

Knuth, Donald E. “Theory and Practice”. Keynote
address for the 11th World Computer Congress
(Information Processing’89), 1989.

Knuth, Donald E. Sorting and Searching, volume 3
of The Art of Computer Programming. Addison-
Wesley, 1998.

Knuth, Donald E. Digital Typography. CSLI Lecture
Notes 78. Center for the Study of Language and
Information, Stanford, California, 1999.

Liang, Frank. Word Hy-phen-a-tion by Com-put-er.
Ph.D. thesis, Department of Computer Science,
Stanford University, 1983.

Liang, Frank and P. Breitenlohner. “PATtern GEN-
eration Program for the TEX82 Hyphenator”.
Electronic documentation of PATGEN program
version 2.3 from web2c distribution on CTAN,
1999.

Megginson, David. Structuring XML Documents.
Prentice-Hall, Inc., Englewood Cliffs, New Jer-
sey, 1998.

Mohri, Mehryar. “On some applications of finite-
state automata theory to natural language pro-
cessing”. Natural Language Engineering 2(1),
61-80, 1996.

Mohri, Mehryar. “Finite-State Transducers in Lan-
guage and Speech Processing”. Computational
Linguistics 23(2), 269-311, 1997.

Ol1sdk, Petr. TgXbook naruby [TEXbook topsy-turvy].
Konvoj, Brno, 1997.

Pazdziora, Jan. “TeX: :Hyphen— hyphen-
ate words wusing TgX’s patterns”. CPAN:
modules/by-authors/Jan_Pazdziora/
TeX-Hyphen-0.10.tar.gz, 1997.

Plaice, John. “pdftex email discussion
http://www.tug.org/archives/pdftex/
msg01913.html, 1998.

Raichle, Bernd. “Hyphenation patterns for words
containing explicit hyphens”. CTAN/language/
hyphenation/hyphtl.tex, 1997.

list”.

246 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Rejzek, Jan. FEtymologicky slovnik ceského jazyka
[Czech Etymological Dictionaryl. LEDA, Prague,
Czech Republic, in prep..

Roche, Emmanuel and Y. Schabes. Finite-State
Language Processing. MIT Press, 1996.

Skoupy, Karel. “N'78: A New Typesetting Sys-
tem”. TUGboat 18(3), 318-322, 1998.

Sojka, Petr. “Notes on Compound Word Hyphen-
ation in TEX”. TUGboat 16(3), 290-297, 1995.

Sojka, Petr and P. Sevecek. “Hyphenation in TEX —
Quo Vadis?”. TUGboat 16(3), 280289, 1995.

Sutor, Robert S. and A. L. Diaz. “IBM techplorer:
Scientific Publishing for the Internet”. Cahiers
Gutenberg 28—29, 295-308, 1998.

The Young Man of Vancouver

There was a young man of Vancouver
who thought he admired Anita Hoover
but he looked at some macros
which ran under Windows
and now all he can think of is \overs
—Sebastian Rahtz

Hyphenation on Demand

The TUG conference

Down the TEXing path we go
with a Sparc its not so slow
Up the network nodes we run
\href links can be so much fun
Round the browser wars we dodge
Sans MathML—a real hodge-podge
Home at last—the Web is fast—we wait for BTEX3
While Frank and David trade ideas,
Chris seeks terminology
—Christina Thiele

The Young Lady of Stanford

There was a young lady from Stanford
who delighted to play with Mac Word
she met a Don Knuth
who told her the truth
and now what she enjoys is absurd
—Sebastian Rahtz and Patrick Ton

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 247

Active TEX and the DOT Input Syntax

Jonathan Fine

Active TEX

203 Coldhams Lane

Cambridge, CB1 3HY

United Kingdom
fine@active-tex.demon.co.uk
http://wuw.active-tex.demon.co.uk

Abstract

The usual category codes give TEX its familiar backslash and braces input syntax.
With Active TEX, all characters are active. This gives the macro programmer
complete freedom in defining the input syntax. It also provides a powerful pro-

gramming environment.

The DOT input syntax, like TROFF, uses a period at the start of the line
as an escape character. However, its underlying element, attribute and content
structure is based on SGML. It is both easy to use and easy to program for.

Conversion to other formats, such as SGML, HTML and XML, or to propri-
etary formats such as Word and RTF, will be straightforward. This is because the
DOT syntax is rigorous. This new syntax will be described and demonstrated.

All manner of problems connected with TEX disappear when Active TEX
packages are used. For example, all input errors can be detected and corrected
before they can cause a TEX error message. This will make TEX accessible to

many more users.

Visit http://www.active-tex.demon.co.uk for information and macros.

Introduction

Much has changed since the introduction of TEX in
1982. Computers have become cheaper, more plenti-
ful and more powerful. The Internet has grown from
a tool used largely by North American academics to
become a mass medium subject to powerful com-
mercial interests. And Microsoft, who supplied an
operating system for IBM’s first PC, has become a
colossus.

Donald Knuth gave us a powerful and reliable
typesetting system. Other systems may be easier
to use and have all sorts of useful (and perhaps not
so useful) features, but when it comes to the typo-
graphic quality of the resulting pages, TEX is still
superior in many important respects to all of its
competitors. No other software even comes close to
matching it on its own home ground, which is tech-
nical books, articles and preprints that have large
amounts of mathematical material.

Both individuals and publishers are now mak-
ing information available on the Internet. This im-
poses new demands on the typesetting process. For
many users, HTML (and perhaps soon its replace-
ment, XML) is the preferred means for supplying

and receiving textual material. Twenty years ago
the typeset page was the principal result of the type-
setting process. Today, users are wanting both type-
set pages and HTML or similar pages. By typeset
pages I mean both pages for printing in the usual
way, and also pages for display, say in the Portable
Document Format introduced by Adobe. (In prin-
ciple, this term also includes the formatting of, for
example, HTML, for display in a browser.)

Most TEX authors use a text editor (such as
emacs) to prepare a computer file in the ITEX syn-
tax, for example. Other authors will use a word
processor to create a file that is stored in a propri-
etary format. Later down the line, these files will be
typeset, converted into HTML and so forth.

By and large, the closer is the syntax of the
author’s file to being rigorous and compatible with
the processing that will be applied to it, the bet-
ter will be the outcome. Compromise may be nec-
essary. With TEX each author became his or her
own typesetter. Very often (IM)TEX files contain
macro definitions, introduced for the author’s own
convenience. These definitions can be a great nui-
sance for those who have to deal with the file later,

248 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

particularly if they reside in an external file that
becomes separated from the main manuscript.

This then is the present context for the use of
TEX. Most TEX users now use the IKTEX macro
package, together with style files and additional pack-
ages. INTEX was developed in the early 1980s. The
first edition of its manual was published in 1985,
about a year after The TEXbook. It did a tremen-
dous job of making the resources of TEX available to
non-experts. Around 1990, however, its limitations
became clear, and more than an inconvenience. One
response was the birth of the KTEX3 project. In
1994 this group released IXTEX2e. This helped to
standardise the current situation.

Recently, Rahtz [11] described BTEX as “hugely
powerful, but chaotic, and on the verge of becoming
unmanageable.” He also tells us that the CONTEXT
macro package, due to Hans Hagen and Pragma, ad-
dresses this problem by incorporating into itself “all
the facilities you need.” It does away with document
classes and user-contributed packages.

Plain TEX, BTEX and CONTEXT all use the fa-
miliar ‘backslash and braces’ input syntax. This can
cause problems, because it is not rigorous. Transla-
tion to HTML, for example, requires that the source
document be parsed. But KTEX, for instance, is
in general the only program that can successfully
parse IATEX documents. This tends to result in
(I3)TEX living in a world of its own, isolated from
the world of desktop publishing and word process-
ing. For some communities of users, such as mathe-
maticians, this may not be a hardship.

Active TEX is a new way of using TEX. It allows
us to either avoid or solve many of our problems. For
the technical, its key idea is that each character is
active, and is defined to be a macro. For example,
the active letter ‘a’ is a macro that expands to the
control sequence lcletter, followed by an active
‘a’. Uppercase letters, digits and visible symbols
are treated in a similar manner. By manipulating
these definitions, we can make TEX do whatever we
want. In particular, we can choose our input syntax.
Both TEX and the system macro programmer work
harder, to ease the life of both the user and the
application programmer.

We will consider the problems relating to macros
under three heads, namely Input Syntax, Macro Pro-
gramming, and the Processing of Text. The final
section gives the history and prospects of Active
TEX. This article is somewhat informal, and should
not be read as a definitive or legally binding state-
ment. The software is still under development.

Active TEX and the DOT Input Syntax

The DOT input syntax

There are two aspects to an input syntax, namely
the concrete and the abstract. The abstract syntax
is the structure or organisation that the syntax pro-
vides. The concrete syntax is a means of expressing
objects so organised. Provided they have the same
abstract syntax, translation from one concrete syn-
tax to another will be a routine matter. The parsing
process starts with a concrete instance of the struc-
ture, and produces from it events that characterise
its abstract structure.

In SGML the concept of the content model pro-
vides a large part of the abstract syntax. It might
say, for example, that an article such as this one con-
sists of front matter, sections and end matter. Each
section would be a sequence of paragraphs, together
with figures and tables. The end matter might con-
sist of appendices and a bibliography. The latter
would be a sequence of bibliographic items.

In ETEX one would write

\section{Input syntax}
to start a section. In SGML one might write
<section title="Input syntax">

to start a section. This gives two examples of a
concrete syntax. In SGML the title is an attribute
of the section tag. In ITEX, Input syntax is a
parameter of \section.

The abstract syntax provided by SGML is solid
and well-understood. It is already widely used in
data processing. The concrete syntax, however, tends
to be somewhat verbose and difficult to use without
dedicated software. This has been an obstacle to its
widespread use. In the author’s view, with XML this
problem will become more acute.

Twenty years ago or so, the text formatting pro-
grams troff and nroff were developed, as part of
UNIX. In these systems, a dot at the start of a line
is an escape character, which can be used to call a
macro. For example

.SH 2.1

might introduce a section.

The author has developed a syntax whose con-
crete form is similar to the dot syntax of troff and
nroff, but whose abstract syntax is modelled on
SGML. This syntax we call the DOT syntax. As in
SGML, a tag name can contain digits, period and
hyphen as well as letters. As a section is, say a
second-level head, one could write

"Section heading"

.h2 Input syntax

to start a section.
In BTEX one might write

\documentclass{article}

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 249

Jonathan Fine

\author{Jonathan Fine}
\title{Active \TeX\ and input syntax}
\date{20 January 1999}
to start an article. In SGML terms, the author, title
and date are all attributes of the article element.
As in SGML, the DOT syntax allows start tags
to have attributes. One might write

.article Active &TeX and input syntax
..author Jonathan Fine
..date 20 January 1999

to specify the same information. This double dot
notation for attributes is similar to the leading dots
notation that TEX the program uses to show the
content of boxes [8, page 66]. XTEX does not really
have a concept of attributes.

An end tag in the DOT syntax is like so:

./article This is a comment

but, as in SGML, end tags can often be implied by
the context. For example, if a section cannot contain
a section, the start of a new section implies the end
of the current one.

SGML has the useful concept of a short refer-
ence. In the DOT syntax the start of a line, the
end of a line, white space at the start of a line
and a blank line are the possible short reference
events. One can set matters up so that ordinary
lines start paragraphs, blank lines end paragraphs
and indented lines commence math mode. Thus the
fragment

Einstein’s famous equation
E=mc "~ 2
expresses the equivalence of
matter and energy.
might be equivalent to
Einstein’s famous equation
.eq
E=mc "~ 2
./eq
expresses the equivalence of
matter and energy.

but the former is easier both to type and to read.

In summary, the DOT syntax combines the power
of SGML with the simple concrete syntax of troff
and nroff. It provides a concrete syntax that ordi-
nary authors can use, whose abstract form is equiv-
alent to that of SGML.

Macro programming

This section is particularly for the TEXnically mind-
ed. In Active TEX all characters are active. This is
both a problem and an opportunity for the macro
programmer. Ordinarily a line in a TEX file such as

250

\def \hello {\message{Hello world!l}}

would define a macro hello, whose execution issues
a greeting. This relies on the customary or plain cat-
egory codes being in force. In Active TEX another
approach must be taken.

Ordinarily, control sequences are formed using
TEX’s eyes. Thus, \def in the source file produces
the control sequence def.

Active TEX uses the mouth of TEX, or more
exactly csname and endcsname, to form control se-
quences. Macro definitions will be built up using
aftergroup accumulation. The plain code line

\expandafter \aftergroup
\csname def\endcsname

contributes the control sequence def aftergroup.
Similarly, the lines

\aftergroup {\iffalse}\fi
\iffalse{\fi \aftergroup}

contribute left and right braces respectively. Finally,
if the macro

\def \agchar #1{\expandafter
\aftergroup \string #1}

is passed a character as an argument, it will con-
tribute aftergroup the inert form of this character.

This mechanism allows us to define macros with-
out making use of the ordinary category codes. For
example, if we call begingroup, then aftergroup
commands as detailed above, and then endgroup,
the result could give exactly the same definition of
hello as at the beginning of this section.

To store such definitions in a file, a syntax is
required. Active TEX has been set up so that in a
compiled TEX code (ctc) file, a line such as

def hello {message
{)H)e)l)l)o) lwlolrllidil}};

has exactly the same effect as the previous defini-
tion. Within a ctc file, a letter takes itself and
all visible characters that follow, and uses csname,
endcsname and aftergroup to form and contribute
a control sequence. Similarly, active { and } con-
tribute explicit (or ordinary) begin- and end- group
characters { and } aftergroup. Active right quote ’
is as agchar above. Finally, the semicolon ; closes
the existing accumulation group and opens a new
one.

This technique of aftergroup accumulation is
enormously powerful. It allows arbitrary control
sequences and character tokens to be placed into
macro definitions. One can even do calculations or
pick up values from an external file, as the defini-
tions are being made. Tools are required to make
full use of this power.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Suitable content in ctc files allows arbitrary
macros to be defined. Active TEX has a develop-
ment environment, which produces ctc files from
suitable source code files. For example,

def hello
{ message { "Hello world!" } } ;

will when compiled produce the ctc code exhibited
above.
Here is another example:

def ctc.letter
{
begingroup ;
string.visible.chars ;
let SP endcs ; let TAB SP ;
let RE suspend.RE ;
let suspend endcs ;
xa endgroup xa ag cs ;

}

This macro is used within ctc files to produce con-
trol sequences aftergroup.

Some comments are in order. Any visible char-
acters can appear in control sequence names. This
power should not be abused. We rely on the defini-
tions

def string.visible.chars
{
let lcletter string ;
let ucletter string ;
let digit string ;
let symbol string ;
}
def suspend.RE { suspend ; RE } ;

being made already. The tokens SP, TAB and RE in
the source file produce (and here it is a mouthful)
characters in the ctc file that in turn produce ac-
tive space, tab and end-of-line characters aftergroup.
The tokens xa, ag, cs and endcs in the source file
are shorthand for expandafter, aftergroup, csname
and endcsname respectively. It is the latter strings
that are written to the ctc file by the compiler.
Semicolons in macro definitions are for punctuation
only. They are ignored. Outside macro definitions
they trigger renewal of the aftergroup accumulation
group.

This process, of defining macros via ctc files,
allows many of the basic problems in TEX macro de-
velopment to be solved. For example, one can insist
that identifiers (tokens in the source file) be declared
before they can be used. No more misspelt identifier
names! One can also apply a prefix to chosen iden-
tifiers, thus segmenting the name space. This will
allow a module to control access to its identifiers.
No more name clashes!

Active TEX and the DOT Input Syntax

In the same way, one can use named rather than
numbered parameters in macro definitions. For ex-
ample, instead of

\def \agchar #1{\expandafter
\aftergroup \string #1}

as above, one could write
def ag.char Char { xa ag str Char } ;

where Char has been previously declared to be a
macro parameter place holder.

Although this process is somewhat indirect, it
does not cause performance to suffer. The compi-
lation process, to produce the ctc files, needs to
be done only once, by the macro developer. With
modern machines, this does not take long. Similarly,
most files will be loaded only once, in the process of
making a preloaded format file.

In fact, Active TEX gives two performance ben-
efits. The first is that macro programmers no longer
need to resort to tricks, to obtain access to unusual
control sequences or character tokens. Thus, more
efficient code can be written. The second is that ctc
files are generally quite compact. This compression
allows them to be retrieved from the hard disc (or
network) more rapidly. The DOT syntax gives the
same benefits.

Tools for macro programmers are under devel-
opment. For example, short references will cause
indentation to indicate code lines. This section has
given examples of what has been done already, and
a taste of what lies in the future. The author invites
comments.

Processing text

We now turn to the raison d’étre of TEX, which is
of course typesetting. In §2 we saw how the DOT
input syntax allows a document to be broken down
into elements with attributes. In §3 we saw some
examples of how Active TEX can be programmed.
This section is concerned with the content of the
document or, more exactly, with the text and the
attribute values.
Typesetting plain text, such as

This is plain text.

is straightforward. Each visible character produces
itself, and spaces give interword spaces. Thus the
values

let lcletter string ;
let ucletter string ;
let digit string ;

let symbol string ;

def SP { unskip ; ~ } ;

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 251

Jonathan Fine

will, to a first approximation, suffice. (The unskip is
present so that multiple space characters will count
as one. The ~ is Active TEX’s way of calling for an
ordinary space character.)

Occasionally, the user will want to add empha-
sts. In SGML one uses tags

emphasis

like so, while in IATEX one uses a macro
\emph{emphasis}

but in Active TEX one might use
Plain text with {emphasis}.

for example. Because { and } are active, they can
be programmed to open and close an emphasised
group.

This brings us to perhaps the most important
concept of this section, which is that of a data con-
tent notation (DCN). Roughly speaking, such tells
us how text is to be processed. For example, the
plain text above already has a DCN, namely that
it is in English. This is very important if we are
using a spell checker or a search engine. Computer
programming languages are more formal examples
of a data content notation. Mathematics encoded
in either plain or KTEX is a third example.

The DOT syntax will be set up so that a data
content notation can be associated to the text in
each element, and to the text in each attribute value.
The DCN will, in a more or less formal manner, tell
us what is admissible and how it should be pro-
cessed. The specification of a DCN is not, however,
a matter for the DOT syntax. Rather, it is for the
users and experts in the area. Many countries have
official bodies that attempt to regulate and bring
order to the use, at least in printed form, of a lan-
guage.

The author suggests as a first step that for plain
text a DCN along the following lines be used. For
emphasis use { and }. For bold use + and +, and
for math use $ and $. For verbatim use | and |.
Certain nestings will be prohibited. The following

Plain text, {emphasis},

|verbatim| and +bold+,

with some elementary

$2+2=4$ mathematics.
is an example of its use.

In math mode, new rules will be required. The
author suggests that ordinary TEX but without the
backslashes, like so

sin "2 theta + cos "2 theta =1
as a first approximation. This is only a beginning.
Building up a complete system that is capable of
handling the complexity of modern mathematical

notation, whilst retaining both rigour and ease of
use, is not going to be an easy matter. Gaining gen-
eral acceptance and support of the user community
is as much a problem as the formulation and solution
of the technical problems.

When SGML is used for markup, there is a ten-
dency to use it for everything, regardless of size.
This causes enormous problems to users who either
do not have the software tools required, or who pre-
fer to work with plain text files. For example, in the
C programming language the & operator gives the
address of a variable. Code fragments such as

ptr = &i ;

are common. But in SGML, & followed by a letter
gives an entity reference, so for an SGML parser to
produce the above as output, it must be given

ptr = &i ;

as input. Something similar happens if one wishes
to produce a<b as parser output, for the <b must
not be recognised as a start tag.

Part of the philosophy of the DOT syntax is
that it deals with the big things (and also some of
the medium sized) while the data content notation
deals with the little things. The DOT syntax will
have its parser, and each DCN will have its parser.
They take turns in processing the input stream.

Let us now return to typesetting. Most of the
time, when TEX is typesetting, it is forming either
a horizontal list or a math list. Each DCN will, as it
processes characters, add items to the current list.
Special characters (such as $, { and }) will change
the mode in some way. From time to time, say at
the end of a title, the current list will be closed and
material will be added to the main vertical list, for
example. From here on the main difference between
plain TEX, BTEX, CONTEXT and Active TEX will
be in the libraries of macros used for page makeup,
output and so forth.

Typesetting is the purpose of a TEX macro pack-
age. TEX was developed to allow typesetting of the
highest quality. However, not until the basic func-
tions of Active TEX have been met will it be possible
to move on to the typesetting (composition, hyphen-
ation and justification, galleys and page makeup) as-
pects of the process. Put another way, macro pack-
ages such as plain and KTEX have typesetting as
their main purpose. Rigour, power and ease of use
are the main goals of Active TEX, at least in this
stage of its development. A fourth goal is to pro-
vide an enduring fixed point for document source
files.

252 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

History and prospects

Although the basic concept of Active TEX is quite
simple—all characters are active—it is surprising
just how long it has taken for this idea to emerge.
A brief history follows.

In plain TEX the tilde ~ is an active character,
which produces an unbreakable interword space, and
in math mode apostrophe ’ is effectively an active
character, used for putting primes on symbols, as
in f’(x). Technically, a prime is a superscript. In
addition space and end-of-line could be made active,
to achieve special results such as verbatim listing of
files. In 1987 Knuth [9] wrote about some macros
he had written for his wife, in which many of the
symbols are active.

In 1990 Knuth froze the development of TEX.
In his announcement [10] he wrote:

Of course I do not claim to have found the
best solution to every problem. I simply claim
that it is a great advantage to have a fixed
point as a building block. Improved macro
packages can be added on the input side; im-
proved device drivers can be added on the
output side.

In 1992 Fine [2] produced the \noname macro
development environment, which, like Active TEX,
is based on aftergroup accumulation. This solves
a major technical problem, namely how to define
exactly the macros we wish to define, when the cat-
egory codes are against us. The \asts problem [8,
page 373| at the start of Appendix D (Dirty tricks)
is solved using aftergroup accumulation.

In 1993 Fine presented a paper [3] to the 1993
AGM of the UK TgX Users Group that contains in
embryonic form most if not all of the ideas in this
paper. For example, he wrote

Let us solve all category code problems once

and for all by insisting that the document be

read throughout with fized category codes.

and then described how ‘\’, for example, could be
an active character that parses control sequences,
in much the same way as ctc.letter does. The
paper also contains other prospects that have not
been discussed here, such as visual or WYSIWYG
TEX (see [7] for a more recent presentation.)

In 1994 Fine [4] argued that the deficiencies in
TEX the program had been exaggerated, and that
“It would be nice if both TEX and its successor
shared at least one syntax for compuscripts that are
to be processed into documents” (p. 385). This syn-
tax would have to be rigorous.

In 1994-95 Fine went the whole way, and made
all characters active. Using this, he produced a pro-

Active TEX and the DOT Input Syntax

totype TEX macro package that was able to typeset
directly from SGML document files. Due to lack
of both sponsorship and commercial interest, the
project was left unfinished. This work was presented
at the Bridewell meeting (January 1995) on Portable
Documents, and published both in Baskerville [5]
and MAPS [6], but regrettably not in the special
TUGboat issue 16 (2) on TEX and SGML, published
later that year.

In late 1997 the project was revived, and in May
1998 Fine spoke on Active TEX and input syntax at
a meeting of the UK TEX Users Group. Since then
a proof-of-concept version of the macros has been
available to all those who ask.

There have been other developments that make
extensive use of active characters. Michael Downes
[1] has done important work on the typographic
breaking of equations. He writes (p. 182):

Some of the changes are radical enough that
it would be more natural to do them in A TEX3
than in MTEX2e —e.g., for M TEX3 there is a
standing proposal to have nearly all nonal-
phanumeric characters active by default; hav-
ing ~ and _ active in this way would have

eased some implementation problems.

Werner Lemberg [12] describes the CJK (Chi-
nese, Japanese and Korean) package. This package
makes the extended ASCII or eight-bit characters
active. He notes (p. 215):

It’s difficult to input Big 5 and SJIS encod-
ing directly into TEX since some of the val-
ues used for the encodings’ second bytes are
reserved for control characters: ‘{’, ‘}’ and
‘\’. Redefining them breaks a lot of things in
IXTEX; to avoid this, preprocessors are nor-
mally used [...].

Active TEX has been designed from the ground
up so that it can go the whole way, and allow prob-
lems such as these to be given completely satisfac-
tory solutions, without unnecessary difficulties. The
only real price seems to be performance. Because it
does much more, it is not as quick as plain TEX or
ITEX. This could be a problem for those who use
a 286, but on a 486 or better, disk input/output is
the real bottleneck.

One of the great things about TEX the program
is that it is a fixed point. I would like Active TEX to
become a similar fixed point, upon which users can
build style files and the like. I would also like the
DOT syntax to become a fixed point.

When TEX was developed, Donald Knuth had
[8, page vii] the active interest and support of the

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 253

Jonathan Fine

American Mathematical Society, the National Sci-
ence Foundation, the Office of Naval Research, the
IBM Corporation, the System Development Foun-
dation, as well as hundreds of more or less ordinary
users, many of whom went on to play an active part
in the life of the TEX Users Group, and the commu-
nity generally, and some of whom are still with us.

I firmly believe that Active TEX is a worthwhile
idea whose time has come. Please give it your sup-
port.

References

[1] Michael Downes. “Breaking equations.” TUG-
boat 18(3), 182-194 (1997).

[2] Jonathan Fine. “The \noname macros—A
technical report.” TUGboat 13(4), 505-509
(1992).

“New perspectives on TEX macros.”

Baskerville 3(2), 17-19 (1993).

“Documents, compuscripts, programs

and macros.” TUGboat 15(3), 381-385 (1994).

“Formatting SGML manuscripts.”
Baskerville 5(2), 4-7 (1995).

[6] — . “Formatting SGML manuscripts.” MAPS
14, 49-52 (1995).

[— . “Editing .dvi files, or Visual TEX.”
TUGboat 17(3), 255-259 (1996).

[8] Donald E. Knuth. The TgXbook. Addison-
Wesley (1984).

9] — . “Macros for Jill.” TUGboat 8(3), 309—
314 (1987).
[10] —. “The future of TEX and METAFONT.”

TUGboat 11(4), 489 (1990).

[11] Sebastian Rahtz. Editorial. Baskerville 8(4/5),
1 (1998).

[12] Werner Lemberg. “The CJK package for
ITEX 2¢: Multilingual support beyond babel.”
TUGhboat 18(3), 214-224 (1997).

(untitled)

Oh, what a tangled web is TEX,
what you need to reach success.
To make sure you don’t get a reject,
why not get some help from TEX.
—Peggy Kempker

(untitled)

Breathes there the man with the eye so blind
Who never for himself can find

The cossine, ‘c’ times ‘o’ times ‘s’

The \acronym run on to the rest

The sentence ending at et al.

Although no verb shall yet befall

Until a phrase two lines below

The endquotes where the quotes should go?

If such there be, away go he

To Delaware for a Ph.D.!

The thesis clerk no more shall check;
The only folks to judge his TEX

Are senior faculty, by norm
Concerned with content, not with form
His approval page they’ll surely sign;
The publisher, with wit sublime,

His words in XML encases;

And, should he be obscure in places,
With sentence structure ill-prepared,
His authorship will now be shared:

Credit will to the copy editor belong
Grammatically correct, but scientifically wrong.
—Stephen Fulling

254 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Convenient Labelling of Graphics, the warRMreader Way

Wendy McKay

Control and Dynamical Systems
California Institute of Technology
Pasadena, CA 91125
wgm@cds.caltech.edu
http://www.cds.caltech.edu/ " wgm/

Ross Moore

Mathematics Department

Macquarie University

Sydney, Australia 2109
ross@mpce.mq.edu.au
http://www.maths.mq.edu.au/ ross/

Abstract

This article describes a system for placing labels on included graphics in a way
that does not require the user to be concerned with explicit lengths or coordinates.
The full system was developed specifically for use on Macintosh computers but,
due to its modularity, can be used with other systems as well.

The warMreader (read ‘Wendy And Ross’, selecting either for the ‘M’) pack-
age defines macros to read information from a file, indicating the location of
specially marked points where labels may be desired. It also provides a link to
the Xy-pic macros, which allow arbitrary labels to be attached at these points.

Two applications, Zephyr and Mathematica, are used to demonstrate tech-
niques for creating files readable for warMreader, including ways to overcome
specific difficulties. Other methods can be used and warRMreader programmed to

read the resulting data files.

Various pieces of software and techniques exist
for using TEX to put labels onto included graphics.
All have significant drawbacks or shortcomings. One
method that is widely used, and often recommended
as best for Encapsulated PostScript (EPS) files, is to
first Typeset the label using Textures on a Macin-
tosh, Copy the resulting typeset window, then Paste
the clipboard contents into the image file, having
been opened within Adobe’s Ilustrator application.
Among the drawbacks of this technique are:

e dependence upon a particular computing plat-
form: Macintosh, or PowerMac;
e use of expensive commercial software: Adobe’s

Illustrator, and Blue Sky’s Teztures;

e applicability to just a particular image format:

Encapsulated PostScript;

e the original image file must be altered (after
copying, please!) to obtain the required results.
Depending upon the working environment, these

may not be problems at all; for example, a prepress
house would be expected to have the appropriate

hardware and software. Similarly an academic may
have made the investment to be able to follow this
strategy.

However, there is a problem which may cause
great difficulties when a manuscript is submitted for
publication. Suppose a labelled image needs to be
resized or the labels need to be changed for some
reason; e.g. the text style chosen does not blend well
with the fonts and styles used elsewhere in the pub-
lication. Now the EPS file needs to be edited or
regenerated in the same way as was done originally.
This may no longer be possible — the software used
to create it may not be available or the expertise to
use it may have been lost.

The warMreader solution is to use TEX itself, or
ITEX, for placing the labels. It uses the Xy-pic dia-
gram macros, extending the methods presented at
TUG’97 (Moore, 1997), and available on the Web.
The idea is to create a coordinate system tailored
for the size of the imported image, anchoring la-
bels at appropriate places using these coordinates.
This effectively creates an overlay which allows the

262 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

labels to seem to be part of the image, when in fact
they have been typeset by TEX. wArRMreader takes
this further, by automating the process so that a
user does not have to be concerned with coordi-
nates when specifying the labels. Since the styles
and content of the labels are specified within the
TEX or BTEX source, there is no need to alter any
EPS files. Furthermore, this can be done for graph-
ics of any format that can be included within a TEX
document, by whatever means. The only require-
ment is the ability to create a .bb file,! containing
information in an appropriate form.

For IATEX, the PSfrag package, as described
in The BTEX Graphics Companion (Goossens et al.,
1997, pp. 460-462), provides similar functionality for
EPS files, by treating parts of the file as tags to
be later replaced by blocks of TEX-typeset mate-
rial. This technique has several limitations, apart
from being available only for IATEX, and not usable
with graphics formats other than PostScript. For
best results, the PostScript file “should ideally be
designed with PSfrag in mind”, and for systematic
use, it “requires a good understanding of both the
PostScript language and the application generating
the figures” (Goossens etal., 1997, p.462). This is
because the replacement portions effectively become
part of the PostScript graphic at the point where
the tags occur, so are subject to, and must dovetail
with, the PostScript graphics state at those places.
As this includes color, size, rotation and cropping-
region, great care is required to avoid later parts of
the graphic obscuring earlier labels or labels being
cut off at edges of the graphic. It is not possible to
know exactly how the whole thing will appear until
the .dvi file has been processed with a PostScript-
aware viewer or printer, thus making it tedious to
fine-tune the placement of labels.

With warmMreader, the labels can be regarded
as occurring within a separate layer, controlled com-
pletely from within TEX or ITEX. Any graphic from
any source, in any format that can be handled by
the TEX installation, can be used as a “backdrop”,
provided that a suitable .bb file has been prepared.
Each of the following three steps can be done quite
independently, that is, by different people using dif-
ferent software or techniques:

1. construction of the graphic;

2. make a .bb file, perhaps with text for labels;

3. preparation of code for processing labels within
the TEX document.

1 Such files are used with IATEX’s \DeclareGraphicsRule
(Goossens etal., 1997, pp.40-41) for holding just the
bounding-box information, since this is all that is needed for
TEX to leave sufficient space for an image.

Labelling Graphics using warMreader

Figure 1: Imported image with “marked points”
indicated explicitly.

Only the last requires knowledge of TEX or KTEX,
though this is desirable if labels are to be completely
specified in the .bb file. Indeed it will become ap-
parent below that the greatest control over the fi-
nal appearance, hence the best results, are obtained
when these three tasks are kept completely separate.

Detailed example with marked points

The best way to explain how the waArRMreader macros
work is with an example. Figure 1 shows an EPS
image prepared for a mathematics text (Marsden
etal., 2000). Numbered xs are not part of the image
but indicate “marked points”, serving as anchors for
placement of labels.

Information for the marked points in Fig. 1 is
contained in a file named Figh.4.1.bb, with the
graphic itself being named Figh5.4.1.eps. The .bb
file gives the natural size (in points) of the imported
graphic as well as coordinates for marked points.

In addition to being numbered in sequence, a
text string may be given for each marked point. This
can be used to help identify why the point has been
marked. It may even provide the TEX code intended
to be used to specify the label, though it is not at
all necessary to use it for this purpose. For example,
the code used to produce Fig. 1 was as follows:
\begin{xy}

\xyShowAllMarkedPoints{}{Fig5.4.1}{eps}
\end{xy}

Techniques to create a file such as Figh5.4.1.bb (see
Fig.2) are discussed towards the end of this article.
A side effect of \xyShowAllMarkedPoints is to
write the coordinates and text strings for each of the
marked points into the TEX .1log file. The purpose
of this is to facilitate preparation of the required
labels over several consecutive processing runs.

Adding labels. There are several commands pro-
vided for placing labels anchored at marked points.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 263

Wendy McKay and Ross Moore

%#hCreator: PICT Displayer, by David Rand, Version 1.0, March 1999

%hTitle: (Figh.4.1.eps)
%%Date: 3/13/998h49 PM

%4HIMPORTANT: The following BoundingBox indicates only the size of the box, not its position!

%/%BoundingBox: 0 0 224 134
%%Coordinates: LL
Y%/hStartMarkedPoints

%/MarkedPoint: (38,118) 1 %F_{\lambdal}"*t(m_{\lambda})
%4MarkedPoint: (77,115) 2 %t(m)

%%MarkedPoint: (62, 72) 3 Ym

%#iMarkedPoint: (130,123) 4 %integral curve of X
%#hMarkedPoint: (1565,107) 5 %t(m_{\lambdal})
%%MarkedPoint: (113, 46) 6 %m_{\lambda}=F_{\lambda}(m)
%#iMarkedPoint: (174, 38) 7 %X(m_{\lambdal})
%%EndMarkedPoints

Figure 2: Contents of the file Fig5.4.1.bb, containing the “marked point” information for Fig. 1.

file: ./Figh5.4.1.bb
Bounding Box is (0,0)->(224,134)

Marked ’1’ point at (38,118) for F_{\lambda }"*t(m_{\lambda }).

Marked ’2’ point at (77,115) for t(m).
Marked ’3’ point at (62, 72) for m.

Marked ’4’ point at (130,123) for integral curve of X.

Marked ’5’ point at (155,107) for t(m_{\lambda 1}).

Marked ’6’ point at (113, 46) for m_{\lambda }=F_{\lambda }(m).

Marked ’7’ point at (174, 38) for X(m_{\lambda }).

Found 7 data points.

Figure 3: Marked point information, as it appears in the .log file.

The simplest, but not always the most effective, of
these is useful when the required labels are provided
as the text string accompanying each marked point.
For the moment, ignore the (mods) parameter; it
will be explained later.

\xyMarkedTxt (mods){(num)}
\xyMarkedText (mods){(num)}
\xyMarkedMath (mods){(num)}
\xyMarkedTxtPoints (mods){(list)}
\xyMarkedTextPoints (mods){(list)}
\xyMarkedMathPoints (mods){(list)}

The first two commands are just alternative names
which give identical results. These, and the third
command, set the supplied text-string as a label at
marked point number (num), assuming it to contain
TEX code valid in text or math mode, as the name
suggests. Several marked points are handled simul-
taneously by the remaining commands, where the
(list) consists of numbers and number ranges. Note
that the fourth and fifth commands are simply al-
ternative names which give identical results. With
\xyMarkedMathPoints, the strings in the .bb file
are presumed to be valid math-mode source, with-
out the need for surrounding $. . .$ delimiters.

In Fig. 3 it can be seen that point number 4
requires text mode whereas all others are meant for
math mode. One way to do this is with the following
code, which yields the results in Fig. 4:

\WARMprocessEPS{Fig5.4.1}{eps}{bb}
\renewcommand{\labeltextmodifiers}{++!D}
\renewcommand{\labelmathmodifiers}{+!D}
\renewcommand{\labelmathstyle}{\scriptstyle}
\renewcommand{\labeltextstyle}{\footnotesize}
\begin{xy}
\xyMarkedImport{}
\xyMarkedMathPoints{1-3,5-}
\xyMarkedTextPoints{4}
\end{xy}

Note the following points:

e The \WARMprocessEPS command uses its argu-
ments to specify the graphic image and the file
to read for the marked-point information.

e The expansion of \labeltextmodifiers yields
Xy=pic (modifier)s that affect the way a label
is positioned with respect to its marked point,
when using \xyMarkedTextPoints and other
text mode commands. For math-mode labels
there is \labelmathmodifiers.

264 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

integral curve of X

Figure 4: Imported image, with attached labels.

e \xyMarkedImport extends the Xy-pic command
\xyimport. Its argument can be the name of
the graphics file to be placed into the TEX or
IMTEX document. However, it is not required
when \WARMprocessEPS has been used already.

e A (list) can be a comma-separated list of num-
bers or numeric ranges, a-b.

For extra convenience in specifying lists, the follow-
ing commands are also available to put labels on all
but a specified (list) of marked points:

\xyMarkedTxtExcept (mods){(list)}
\xyMarkedTextExcept (mods){(list)}
\xyMarkedMathExcept (mods){(list)}

The empty (list) always means to use all marked-
points, regardless of the ‘Except’. Also, open-ended
ranges such as -3 and 5- refer to all numbers to or
from the appropriate extremity.

Commands for styled labels. As well as com-
mands listed above, font size and style for text and
math labels can be specified, using commands:

\xyMarkedStyledTxt (mods){(style)}{(num)}
\xyMarkedStyledText (mods){(style)}{(num)}
\xyMarkedStyledMath (mods){(style)}{(num)}
\xyMarkedStyledTxtPoints (mods){(style)}{(list
\xyMarkedStyledTextPoints(mods){(style)}{(list
\xyMarkedStyledMathPoints(mods){(style)}{(list
\xyMarkedStyledTxtExcept ((style)}{(list
\xyMarkedStyledTextExcept(mods){(style)}{(list
\xyMarkedStyledMathExcept(mods){(YH(tist

)}
)}
H)}
H)}
H)}
H)}

style

Allowable values for (style) in text mode are macro
names that can sensibly be used with Xy=pic’s \txt
command:

*(modifiers)\txt(style){...balanced text...}

while for math mode (style) must work within in-
line mathematics as follows:

$(style){...balanced math...}$.

Labelling Graphics using warMreader

integral curve of X

Figure 5: Imported image, with fine adjustments
to the positions of labels.

Fine adjustment of labels. The labelled image in
Fig. 4 looks quite good but there are blemishes: e.g.
the text label “integral curve...” overlaps with the
curved arrow, the math label “m) = ... ” is too far
from the large dot which it is meant to be labelling,
and the “t(m)” and “t(my)” are perhaps too close
to the arrows they are meant to label.

The position of the text label, at marked-point
number 4, could be adjusted by choosing a different
set of Xy=pic modifiers for the expansion of the macro
\labeltextmodifiers. This works when there is
just a single label to fine-tune but is no good when
more than one needs special adjustment.

To allow many specialised adjustments, all the
commands introduced so far allow Xy-pic modifiers
to be specified. These come immediately after the
command-name, but before the opening brace:
\xyMarkedMathExcept (mods){(list)}
\xyMarkedStyledPoints (mods){(style)}{(list)}
\xyMarkedStyledTxtPoints (mods){(style)}{(list)}

The (mods) are just Xy-pic (modifiers), here given a
shortened name to fit the column width.

Figure 5 shows how this could be done. The
source code is as follows. Note how three of the math
labels are positioned with explicit Xy-pic modifiers
while the others use \labelmathmodifiers. The
single text label is also positioned explicitly, to good
effect, so there is no need for \1labeltextmodifiers.

\WARMprocessEPS{\exnamei}{eps}{bb}
\renewcommand{\labelmathmodifiers}{+!D}
\renewcommand{\labelmathstyle}{\scriptstyle}
\renewcommand{\labeltextstyle}{\footnotesize}
\begin{xy}

\xyMarkedImport{}

\xyMarkedMathPoints ++!DI!L(.1){2}
\xyMarkedMathPoints +!D!L(.3){5}
\xyMarkedMathPoints ++!D{6}
\xyMarkedMathExcept{2,4-6}
\xyMarkedTxtPoints ++!D!L(.2){4}

\end{xy}

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 265

Wendy McKay and Ross Moore

Recall the effect of the Xy-pic modifiers, e.g.
+!ID!'L(.3). First, TEX sets an \hbox containing
the typeset label. Usually this box is centered, so
that if there were no (modifier)s the center of the
label would be anchored at the marked point. The
modifier + adds a small margin, increasing the size
of the box both vertically and horizontally. Next
the !D shifts the reference point (Down) within the
box to the bottom edge; with no further modifiers,
the label now appears entirely above the position
of the marked point, with the bottom edge occur-
ing the width of the margin away from it. Finally
the 'L(.3) nudges the reference point towards the
Lefthand edge, by an amount .3 of the distance to
it, so that now more of the label appears on the
righthand side of the marked point.

Note that nudging using !D, 'L, 'Rand U (Up),
has the effect of shifting the label in the opposite di-
rection to the specified nudge. Numerical (factor)s,
such as (.3), are optional; if omitted, the reference
point is moved all the way to the specified edge. 2

Strategies for marking points. Figure 5 shows
how labels can be accurately positioned, using the
locations of the marked points of Fig. 1. The marked
points are away from “busy” parts of the graphic.
They indicate where labels can be placed near to
that part of the image being labelled yet not inter-
fere unduly with other parts of the image.

While this is an intuitive strategy for selecting
places to be marked, it can mean that adjustments,
by “nudging”, are required to position the labels to
best effect. Some trial-and-error is usually required
before finalising the positions of all labels by choos-
ing the best (factor)s.

Marking the busy places. In many cases it is a
better strategy to put marked anchor points much
closer to the places to which the labels refer, rather
than to where the labels themselves are desired. In
Fig. 6 we see the same image as previously but with
a different set of marked points for the same labels.
For this set it is sufficient to use just a new file
(Figh.4.1.bb2) for the labels while retaining the
same file (Fig5.4.1.eps) for the image itself. In-
deed, that image is used 6 times in this paper, yet
only one copy of the file is required.
\WARMprocessEPS{Fig5.4.1}{eps}{bb2}
\renewcommand{\labelmathstyle}{\scriptstyle}
\renewcommand{\labeltextstyle}{\footnotesize}
\begin{xy}

\xyMarkedImport{}

\xyShowMarkPoints{*++[red] [F-:red] @{*}}{-}

2 Refer to the Xy-pic Reference Manual (Rose and Moore,
1999), for details of the Xy-pic language for structured dia-
grams.

Figure 6: Attaching labels by corners and edges
to places near to what they refer.

\xyMarkedMath +!DR{1}

\xyMarkedMath +++!D{2}

\xyMarkedMath +!U{3}

\xyMarkedTxt +!DL{4}

\xyMarkedMath +!L{5}

\xyMarkedMath +!UR{6}

\xyMarkedMath +!DL{7}

\end{xy}
When the marked points are chosen this way, the
labels can usually be well positioned by specifying
just margins and an edge or corner to be where the
reference point of the label should occur. There is
little need for delicate nudging and (factor)s.

On the other hand, extreme accuracy is not at
all necessary when choosing positions for the marked
points. In this article, the .bb files were generated
using low-resolution preview images. These need not
be accurate scaled-down versions of the higher reso-
lution images rendered by PostScript. Inaccuracies
can be compensated for using Xy-pic adjustments.
Adjusting sizes and styles. Another significant
advantage of this strategy becomes apparent when
the image or labels need to be resized or restyled,
perhaps for use in a different context. This will al-
most certainly change the relative size of the labels
and the image. Smaller-sized labels remain anchored
to places near to what they refer. On the other hand,
relatively larger labels can have been anchored so as
to expand over portions of the image that are oth-
erwise empty. In either case there may be no need
to make any adjustments to the coding of labels.
\WARMprocessEPS{Fig5.4.1}{eps}{bb2}
\renewcommand{\labelmathstyle}{\displaystyle}
\renewcommand{\labeltextstyle}

{\large\bfseries\sffamily}
\begin{xy}
\xyMarkedImport{}

\éﬁé{xy}

266 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

integral curve of X

Figure 7: Labels remain well positioned with
relative changes of scale.

To BTEX or not to TEX. Although the above
examples have used KTEX, the wARMreader macros
work equally well with plain TEX, and most other
formats, as does Xy-pic. The only requirement is
to be able to import the graphic and customise the
expansion of a single macro, \xyWARMinclude, to
suit. This macro takes as argument the name of the
image file. As a practical default, it expects to be
able to use the \includegraphics command from
IMTEX’s graphics package:

\def\xyWARMinclude#1{\includegraphics{#1}}

This definition can be overridden by replacing
the \includegraphics with \psfig or \epsfig or
\epsfbox or other command for placing an imported
graphic within the TEX or BTEX document.

There must be only one argument for the file-
name. The result should be an \hbox of exactly the
size required for the image to occupy. (This is so
that \xyWARMinclude{(filename)} can be used as
the argument to an \xyimport command.)

Note that some macros for including graphics

are not suitable. For example, the \centerpicture
macro from Teztures’ picmacs.sty file cannot be
used since it inserts stretchable ‘glue’ to span the
whole page width; on the other hand, \picture
from the same file can be used.
Rotations and scaling. The requirements stated
in the previous subsection allow scaling, rotating
and resizing of imported graphics. For example, a
rescaling can be achieved using IXTEX as follows:

\newcommand{\scaledfig}[2]
{\scalebox{#1}{\includegraphics{#2}}}

\renewcommand{\xyWARMinclude} [1]
{\scaledfig{.7}{#1}}

It is only the image which is resized or rescaled;
the size and style of labels is controlled indepen-
dently, as discussed above. When different images

Labelling Graphics using warMreader

integral curve of X‘

Figure 8: All labels dropped as Xy-pic styled text
boxes.

require different scale factors, then the definition of
\scaledfig belongs in the document preamble and
a re-definition of \xyWARMinclude should precede
a figure, if needed. (See Fig. 13 for an example.)
Optional arguments to \includegraphics or other
command can be incorporated in a similar way.

Same locations, different labels. It is not neces-
sary to use the text strings from the .bb file for the
labels. be specified within the TEX or IXTEX source.

This is most convenient, since it means that:

e changes can be made to the labels without the
need to make any adjustments to the .eps or
.bb files;

e the same image can be used many times with
different labels;

e labels may cross-reference other parts of the
document; in a web document the labels could
become hyperlinks, as in an “image-map”.

Figure 8 uses this technique as one way to get larger
sized mathematics in labels. The actual code used
is shown in Fig. 9.

Using \xyMarkedPos allows the most flexibility
amongst all the commands available for placing a
label. Essentially all that it does is to move the Xy~
pic “current point” to the location of the marked
point. Now any valid Xy-pic code can be used to
place anything at all at that point.

Commands to allow direct use of Xy-pic code at
the marked points are as follows:

\xyMarkedPos{(num) }(pos)*{object)
\xyShowMark{(pos)*(object)}{(num)}
\xyShowMarkPoints{(pos)*(object)}{(list)}
\xyShowMarksExcept{(pos)*(object)}{(list)}

In the latter three cases, if the {(pos)*(object)} is
empty, then a default \markobject is used for each
point in the (list). This is the same for the command

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 267

Wendy McKay and Ross Moore

\WARMprocessEPS{\exnamei}{eps}{bb2}
\renewcommand{\labeltextstyle}{\large\bfseries\sffamily}

\begin{xy}

\xyMarkedImport{}

\xyMarkedPos{1}*+!DR[blue] \txt\labeltextstyle{$F_{\lambda}"*t (m_{\lambda})$}
\xyMarkedPos{2}*+++!D[blue] \txt\labeltextstyle{$t (m)$}
\xyMarkedPos{3}*+!U[blue] \txt\labeltextstyle{m}
\xyMarkedPos{4}+/ulex/*+!DL[F-:red]\txt\labeltextstyle{integral curve of X}

\xyMarkedPos{5}*+!L[blue]\txt\labeltextstyle{$t (m_{\lambdal})$}
\xyMarkedPos{6}*+!UR[blue] \txt\labeltextstyle{$m_{\lambda}=F_{\lambda} (m)$}
\xyMarkedPos{7}*+!DL[blue] \txt\labeltextstyle{$X(m_{\lambda})$}

\end{xy}

Figure 9: Coding for Fig. 8 uses various Xy-pic effects.

\xyShowAllMarkedPoints, as was used in Fig. 1 and
Fig. 6. All these commands finish with the Xy-pic
\POS-parser command so that further Xy-pic draw-
ing can be done, if desired. For a single marked
point located using \xyShowMark, its number is also
placed, using a macro \markobjectlabel. This ex-
pands as follows; it can be redefined if desired.

\def\markobjectlabel#1{\POS*\dir{x},
*+<3pt>!U{\scriptscriptstyle#1}}

Symbolic names. Although all the examples so far
have referred to the marked points by number, they
can instead be assigned a symbolic name. Any text
string suffices instead of the number within the .bb
file. This string can be used instead of the (num) in
those macros that require such an argument. Macros
wanting a (list) still work since there is an internal
counter as well as the symbolic name.

Format of the .bb files. The examples shown here
have used .bb files in which the information is pre-
sented as in Fig. 2. This form is based on the struc-
ture of comments in PostScript files. Note how it
includes a %%BoundingBox comment in the standard
PostScript form as well as the actual marked point
information.

Indeed, it is the presence of this comment that
warrants the use of the extension .bb. In KTEX, the
\includegraphics command can make use of the
bounding-box information contained in a file with
this extension. For an EPS graphic this information
could be read from the . eps file itself; however, since
these files can be very large and can contain binary
portions which TEX does not handle easily, it is often
more convenient to have it extracted into a separate
.bb file. For non-EPS graphics, all TEX requires is
the bounding-box information to know how large an
empty box to leave while typesetting. Having this
in a separate .bb file is the only viable option due to
the binary nature of most graphics formats. With

wARMreader, this use of a .bb file has been extended
to include extra marked point information.

Furthermore, with a .eps or other PostScript
image, the contents of a .bb file can be pasted into
the .eps file for easier distribution. When there is
initially no .bb file, the warMreader macros search
the .eps file instead and a .bb file is created, con-
taining the %%BoundingBox comment. The marked
point information is included also, provided that a
%hStartMarkedPoints comment has been encoun-
tered within the first 20 lines.

It is now apparent that the labelling strategy
discussed here can be used with any graphics format
provided that:

e the TEX installation has a way to specify that
the image file is required within the .dvi or
other output format being produced;

e a file is available, containing the size and all the
marked point information, using numbered or
symbolic names and (optionally) text strings.

Making .bb files with Zephyr

With a Macintosh system, the easiest way to create
.bb files for EPS graphics, and other formats, is to
use David Rand’s Zephyr (1999) text and list editing
program. After launching the application, a graph-
ics file is opened by selecting the special PICT Dis-
player extension from the pull-down menu, as shown
in Fig. 10. Choosing Display LL Coordinates prepares
Zephyr for recording coordinate values for marked
points, where the origin is at the lower left of the im-
age. This opens a file-dialog window, allowing the
required file to be found and opened. Indeed, any
file that contains a graphics preview image, in the
Macintosh PICT format, can be selected from the
file-dialog. It is this preview image which will be
shown and used for marking points.

The Display UL Coordinates alternative can be
chosen instead, to have the origin at the upper-left

268 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Chididisd alphabit...
Creals new alphabai...
St leison characiers...

Catalogue wards...

Aboul extaimal gimmicks ...
Reload euleimal gimmicks
Clo ol i Der el Qoo B

Abaul FICT Bidplayer —

P Cliiel |niBrmation ¥
Frastials F| Didplayj UL coordinatis

Figure 10: Opening a graphics file with the PICT
Displayer in Zephyr.

corner and with the second coordinate increasing
downwards. If this is done, images in the TEX docu-
ment using such coordinates should be preceded by
the \MacintoshOrigin command.

To mark a point within the image, simply click
with the mouse at the desired point. A small window
will pop up, as in Fig. 11, allowing a label to be
typed and the selection confirmed.

After the first point has been chosen a Log-
window appears, containing bounding-box and other
information, as well as data for the first marked
point. A line of data is added for each subsequent
point. Within the image the point is marked by
a numbered cross. Guide-rules help position the
cursor accurately: gradations may be inches, cen-
timeters, or pixels. The Log-window can be seen in
Fig.11. Since it contains just plain text, the Log
can be edited at any time.

When finished with an image, click its close-box
(in the upper-left corner); this also adds the closing
comment to the Log. Finally close the Log-window
and Save As..., choosing whatever name is desired —
usually ending .Dbb, though this is not compulsory.

\MacintoshOrigin allow for coordinates with
origin at upper-left
\EndLineAdjust adjust for awkward line-end

characters

End-of-line problems. Text files created on one
computing platform do not always transfer to other
platforms in a way that allows them to work cor-
rectly. This can happen with .bb files. Declaring
\EndLineAdjust before processing the .bb file may
alleviate a TEX error that otherwise can occur.

Annotations on Mathematica graphics

The next examples have been used for teaching ele-
mentary mathematics. They were constructed using
the Mathematica (Wolfram, 1994) software package
and saved in EPS format. In fact there is more

Labelling Graphics using warMreader

[: T, 0 gy Ta90.L by |]

= ®q0-]| Eance I Pruy== |

Firsalcr FICT Oleplolss | b Oorid Fasa)
BET LTS FigS &, i dpa

Bdlaie: Grs Sminild FH |
HTREORTRT Trel m-lm..E TR LR |
Bl braghocec. B B 22 1
Sl oo Ll LL
B o L bt L

Al bt L Pify, Sah o 4 80| Lesesia |

Enter lahel

Figure 11: Marking points for the .bb file with
Zephyr’s PICT Displayer.

than one way to do this with Mathematica, which
can produce .eps files having quite different struc-
ture and properties. The first example is in direct
analogy with techniques discussed already. Extra
considerations apply when the .eps file contains an
%hAspectRatio comment, as in later examples.

The Mathematica Front-End software allows for
“point-&-click” on images to obtain coordinates,? in
the coordinate system used to calculate the image
contents. This technique was used to create data
files for the remaining examples; an extension .mbb
indicates their origin.
\WARMprocessMMA{Q1}{eps}{mbb}
\renewcommand{\xyWARMinclude}[1]

{\scaledfig{.7H#1}}%
\begin{xy}
\xyMarkedImport{}

\xyMarkedPos{para}*+{}
,\ar@{<-}+(.7,25)*+!D\txt{base of parabola}
\xyMarkedPos{cub1}*++{}!D(.6),\ar@{<-}-(3.5,15)
*+1U(.8) \txt{turning points\\of a cubic}="cub"

\xyMarkedPos{cub2}*++{},\ar@{<-}"cub",
\xyMarkedPos{negl}*++{},\ar@{<-}+(.5,-25),
*+1L(.6)\txt{local minima}="min"
\xyMarkedPos{neg2}*++{},\ar@{<-}"min",
\end{xy}

Click at the four edges to get the bounding-box
information. Some manual editing is needed to put
this into the form shown in Fig. 12. The TEX source
uses the macro \WARMprocessEPS to read size and

3 First click once on an image to select it, then hold down
the modifier-key while clicking at the desired places within
the image. When done, choose the Copy menu-item. Subse-
quently Paste the contents into an editable cell.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 269

Wendy McKay and Ross Moore

LDRU:{-3.89059, -43.2333, 4.21704, 43.0523}
StartData

,{1.5145, 5.44064, para}

,{2.03422, -9.67778, cubl}

,{-1.01481, 17.6091, cub2}

,{0.96013, 2.49071, negl}

,{-1.04945, 2.49071, neg2}

EndData

Figure 12: Listing of Q1.mbb, containing the
marked-point data for Fig. 13.

marked-point data. Having just a symbolic label
for each point is quite sufficient for Fig. 13, in which
the marked points are not where labels occur but
are near the endpoints of arrows. Positions for the
labels are determined relative to these arrow-ends,
using Xy-pic commands. Notice how some labels are
positioned relative to one marked point, then used
to draw an arrow to another.

Adjusting for aspect ratio. Some graphics ex-
port options in Mathematica result in graphics for
which the bounding-box is not the same size or
shape as the preview image. For instance, some
have a rectangular preview but %%BoundingBox for
a square enclosing the image.

%hAspectRatio: .61803

%LDRU:{-2.42465, -3.80861, 6.6868, 3.25092}
LDRU:{-2.18, -3.57, 6.50, 3.24}

StartData

,{2.29262, 2.27719, 3sinX}

,11.54949, -0.927998, sin3X}

EndData

The “aspect ratio” (i.e. height/width) of the
rectangle must be known to handle such graphics
correctly with warMreader. This can be obtained
from the .eps file, where it is given as a PostScript-
like comment; it must be supplied as the first line
in the .mbb file. The \WARMprocessMMA macro is
replaced with a variant called \WARMprocessMMAR.

Such images sit badly in a TEX document with-
out removing the extra space below, when the aspect
ratio is greater than 1, or at left and right, when the
aspect ratio is less than 1. This explains the \vskip
commands in the following listing for Fig. 14.
\WARMprocessMMAR{QA1}{eps}{mbbl}/,
\renewcommand{\xyWARMinclude} [1]

{\scaledfig{.7H{#1}}/
\newcommand{\Xhair}{/

\drop [thinner] [red]+[o] [F-]1@{x}}%
\vskip-3.25\bigskipamount
\begin{xy}

\xyMarkedImport{}
,(0,0)\Xhair, (0,3)\Xhair, (0,-3)\Xhair
,(6.2831,0) \Xhair, (-1.5708,1) \Xhair

40
base of parabola
30
. \
10
O AN
-10
20 local minima
turning points
-30 of a cubic
3 2 1 0 1 2 3 4

Figure 13: Labelled graphic, using Mathematica
and wARMreader.

,(-1.5708,-3)\Xhair, (1.5708,3) \Xhair

,(.5236,1) \Xhair, (3.6652,-1) \Xhair

\xyMarkedPos{3sinX},*++!L{3\sin x}

\xyMarkedPos{sin3X}*+{}
N\ar@{<-}+(.7,-1)*+!1U'L(.4){\sin 3x}

\end{xy}%

\vskip-3.5\bigskipamount

In most cases this is enough for good placement
of labels over the imported image; fine-tuning can be
done using Xy-pic modifiers, as described earlier. If
greater accuracy is required in establishing the co-
ordinate system over the image, some tweaking of
the bounding-box may be done inside the .mbb file,
as in the third line of the above listing for Fig. 14.
The second line, which shows the coordinates ob-
tained from edges of the preview image, has been
suppressed to allow the following line to give mod-
ified values. Note how the cross-hairs have been
accurately positioned.

A further complication occurs when the graphic
contains wide axis labels or tick marks. Now not
all edges of the preview image need correspond to
edges of the bounding box, when printed on the
page. Mathematica rescaled the preview to include
the axis labels but, on the printed page, the main
part of the image is larger, with the axis labels ex-
tending into the extra space due to the aspect ratio.

To get best positioning, some visual estimation
is required. An extra offset parameter is supplied
with the %%AspectRatio comment, to measure the
extent that labels would fall outside the bounding-
box, if it had been rectangular, not square.

270 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

3sinx

/\

. \/
N

sin 3x

0 2 4 6

Figure 14: Mathematica graphic having aspect
ratio # 1. Cross-hairs superimposed at fractional
multiples of 7, indicate accuracy of the alignment.

%hAspectRatio: 1.6 :1.294

%LDRU:{-5.24417, -171.787, 8.21328, 248.046}
LDRU:{-3.95, -148, 8.21328, 226}

StartData

,{-1.13851, 16.7698, amax}

,{4.94396, -92.2394, amin}

,{2.05478, 0.565704, bflat}

EndData

In the above listing of the .mbb file for Fig. 15, the
third line gives the extents of a rectangle, with as-
pect ratio 1.6, that just encloses the height of the
graphic. The left-hand edge of this rectangle falls
roughly 1.294 = 5.24417 —3.95 horizontal units from
the edge of the axis labels on the left.

Other formats for .bb data

The warMreader macros can be used to read data
for marked-points from files having other formats.
For a given format one needs to specify ‘data-start’
and ‘data-end’ strings, as well as patterns to be used
with macros to extract the necessary components
of the bounding-box and the lines of marked-point
data. Stripped-down versions of these patterns are
also needed, to help determine when a line does not
match what is required. Also required is a token
list, to hold the expansion part of a TEX macro to
interpret the data which matches the supplied pat-
tern. This macro must store the data appropriately
for later use. Finally, there must be a TEX macro
that controls the order in which the various steps are
performed; i.e. reading the data file with the appro-
priate pattern to interpret each data line. For more
specific information on what is required, consult the
file WARMreader.sty.*

4 Available from http://www-texdev.mpce.mq.edu.au/
TUG/WARM/WARMreader.sty .

Labelling Graphics using warMreader

200
23 = 62 + 122 =9
150
100 flat point of
local inflection
maximum
50

/

local
minimum

\

23— 622 — 152 +7

=50

-100

-2 0 2 4 6 8

Figure 15: Mathematica graphic with non-trivial
aspect ratio and relatively wide axis labels. The
frame shows the oversized bounding-box, while
dotted grid-lines indicate the accuracy of the
alignment.

References

Goossens, Michel, S. Rahtz, and F. Mittelbach.
The ETEX Graphics Companion. Addison-Wes-
ley, 1997.

Marsden, Jerrold E., R. Abraham, and T. Ratiu.
Manifolds, Tensor Analysis, and Applications.
Springer-Verlag, 2000. (in prep.; 2nd ed. 1988).

Moore, Ross. “High quality labels on included
graphics, using Xy=pic”. TUGboat 18(3), 159—
165, 1997. On-line version at http://www-
texdev.mpce.mq.edu.au/XyPIC/XYarticle/.

Moore, Ross. “Erratum: High quality labels on in-
cluded graphics, using Xy-pic”. TUGboat 19(1),
61, 1998.

Rand, David. “Zephyr, A list and text editor for the
Macintosh”. Shareware software available on-
line at http://www.crm.umontreal.ca/ rand/
Zephyr_Eng.html, 1999.

Rose, Kristoffer H. and R. R. Moore. Xy=pic Refer-
ence Manual, version 3.7. DIKU, University of
Copenhagen, 1999.

Wolfram, Stephen. Mathematica, A System for Do-
ing Mathematics by Computer. Addison-Wesley,
2nd edition, 1994. http://www.wri.com/.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 271

Sergey Lesenko and Laurent Siebenmann

Viewing DVI files with Acrobat Reader:
DVIPDF gives birth to AcroDVI

Sergey Lesenko

Institute for High Energy Physics (IHEP)
Protvino (Moscow Region)

142284 Russia

lesenko@mx.ihep.su

Laurent Siebenmann
Mathématique, Bat. 425

Université de Paris-Sud

91405-Orsay, France
Laurent.Siebenmann@math.u-psud.fr

Abstract

The first author’s DVIPDF program converts from DVI, the output format
of TEX, to PDF, the input format for Adobe’s Acrobat Reader. Although
DVIPDF has existed as a prototype for about three years, the uses to which
it will be put by the TEX community are only gradually emerging. This
article presents one concrete application. DVIPDF has been adapted under the
Windows 9X/NT operating systems to allow “drag-and-drop” viewing of DVI
files in Acrobat Reader. The resulting viewer is called AcroDVI: it involves
DVIPDF and the Acrobat Reader, operating in concert. Intended for viewing
legacy DVI files, it aims to support the most common \special commands. An
evolutive change in electronic publishing practice is proposed in this connection:
the conventional EPS graphics format could well be replaced by various optimal
formats: JPEG or PNG for bitmaps, and PDF for vectorial graphics. These
can then be conveniently exploited in some natural ways hitherto unavailable:

shared, re-edited, or directly viewed.

Introductory viewing experience

... Egli e’ scritto in lingua matematica, e i
caratteri son triangoli, cerchi, ed altre figure
geometriche . . .

— Galileo, writing on physical science

To view an article, the modern scientist using
AcroDVI can simply push its DVI file icon onto the
icon of AcroDVI. The DVI file is quickly converted
to PDF; then a window pops up for viewing by
Acrobat Reader. If you are not already familiar
with Acrobat Reader, the biggest thrill will surely
be the top-quality graphics and typography, both
superior in various respects to what web browsers
offer. Worth noting for TEX users are the hypertext
features familiar from web browsers. All this is
remarkable, but only the notion that DVI can be
the root format is new.

In the AcroDVI viewing experience, even those
familiar with Acrobat Reader will enjoy one novelty:

enhanced visibility of the graphics objects. They
appear not only in the PDF page view but also
autonomously in native formats suitable for reuse
and also for display at an optimal scale. The
three formats that AcroDVI deals with directly are
PNG (Portable Network Graphics) for bitmapped
high contrast graphics, JPEG (Joint Photographic
Experts Group) for color photos, and PDF (Portable
Document Format) for vectorial graphics (more on
these later). Ome of these formats should be
optimal for just about any still (that is, non-
moving) graphics object.

If you push the icon of a PNG or JPEG or
PDF file onto that of AcroDVI, then it will be
immediately viewed in an Acrobat Reader window.
Likewise for EPS files, provided Acrobat Distiller
or Ghostscript is accessible and enough fonts are
available. Latent in Acrobat Reader, which does
not directly process PNG or JPEG files, are broad
graphics viewing capabilities, and DVIPDF has

272 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

merely tapped into them; Adobe could have done
as much for Acrobat Reader, but chose not to.

There are many specialized tools for both
viewing and editing PNG and JPEG files, notably
the free XNview under Windows and Linux and
the shareware program Graphics Converter on the
Macintosh. If you take care to view at scale 100%,
then you will see the bitmapped graphics at their
best possible quality.

The most widely used tools for viewing PNG
and JPEG graphics are probably the web browsers.
This is an open invitation to make double use of the
graphics in an article: first, in an illustrated HTML
introduction, and second, in the DVI file for the
article’s body. Thus, AcroDVI provides polyvalence
for graphics. At the same time, it provides a basic
polyvalence for text, namely, the possibility to view
the same DVI file with Acrobat Reader and with
traditional DVI viewers.

The need for polyvalence and low bulk was the
immediate motivation for developing AcroDVI. It
arose for mathematics journal content in the CD-
ROM project called MathCD, for which the second
author is managing editor. Indeed, MathCD has
an order of magnitude less space available for many
journals than a single journal can afford to use on
the Internet.

Where space is at a premium, as on some
CD-ROMs and in personal electronic libraries, the
DVI format plus auxiliary native graphics can now
reasonably replace the PDF format. On the other
hand, where space is virtually unlimited, as on
many Internet sites, expect to see more formats and
greater bulk.

There are relatively few hyper-references in
the electronic journal articles on MathCD. Cur-
rently, DVIPDF does support hyper-references using
a \special syntax, parallel to Acrobat Distiller’s
pdfmark syntax. However, it does not yet sup-
port the most common \special syntax of today’s
DVI files, namely the one introduced by xhdvi and
paralleling HTML.

What is AcroDVI really?

The technologically aware user will tend to see
AcroDVI as the sum of its parts: DVIPDF plus
Acrobat Reader plus some Windows programming
using the Dynamic Data Exchange (DDE) protocol
as the framework for collaboration between DVIPDF
and Acrobat Reader.

However, to the passing user, the whole will be
more important than the parts. That is, AcroDVI
acts as a viewer that directly accepts most DVI files

AcroDVY

(modulo font availability), as well as graphics files
in the PNG, JPEG, or PDF formats—it is the first
viewer to do all this.

We have decided to dignify the whole with the
the acronym AcroDVI. A viewing eye is what you
should see in the logo:

AcroDVCi)

that is put together by a TEX macro \AcroDVI from
pieces of standard TEX fonts.

The Windows icon is a colored iris (an “eye-
con”); files to be viewed are dragged and dropped
on top of the icon. (See Fig. 1 for black-and-white
renditions of the current icon.)

In its present provisional state, AcroDVI in-
volves a single binary executable called dvipdf .exe
while the shortcut icon to it and the distribution
directory are called AcroDVI. This makes DVIPDF
and AcroDVI rather like a marsupial ‘mother-with-
baby-in-pouch’.

To facilitate portability, source code is divided
into modules of C++ source code devoted exclu-
sively to the AcroDVI viewer functions and modules
of C code that can hopefully be compiled as a
“black box” processor to implement DVIPDF as
a stand-alone DVI-to-PDF converter. Incidentally,
most of the \special features developed recently
for viewing legacy DVI files (see below) have become
permanent additions to the “black box” part of the
DVIPDF program.

What shape will maturity bring to AcroDVI?
Two options currently hold our attention.

In Lesenko (1997), it was proposed to build
a DVIPDF plug-in for Acrobat Reader. With this
approach, to view a given DVI file in Acrobat
Reader, one would push its icon onto the Acrobat
Reader icon rather than onto the DVIPDF icon. The
plug-in architecture promises to promote portability
of AcroDVI.

A second reasonable option would make Acro-
DVI an autonomous Windows application distinct
from DVIPDF. This architecture promises to fa-
cilitate orchestration by AcroDVI of multilateral
collaborations among DVIPDF, Netscape, Zip, Ac-
robat Reader, Ghostscript, and so on.

As soon as Ghostscript/Ghostview under Win-
dows provide support for the key functions “Open
Doc” and “Close Doc” of DDE, we will make avail-
able a new AcroDVI configuration that replaces
Acrobat Reader by Ghostscript/Ghostview. It will
probably be less luxurious than with Reader, but it
will, in addition, accept EPS files.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 273

Sergey Lesenko and Laurent Siebenmann

Fonts

DVI files do not contain fonts—that is one basic
reason why they are so compact. The question then
arises: where are fonts for AcroDVI to come from?
The best one can hope is that, in practice, enough
Type 1 fonts will be in AcroDVT’s expansible reper-
toire, which is based chiefly on B.K. Malyshev’s
BaKoMa Type 1 font collection, covering essen-
tially all fonts commonly used in freely distributed
electronic science publications.

Adobe’s Type 1 is currently the only font
format supported by DVIPDF; TrueType fonts are
not accepted. Nor are Adobe Type 3 fonts allowed,
bitmapped or not; Acrobat Reader would in any
case handle them poorly.

The Adobe Type Manager, which first made
screen viewing with scalable (vectorized) fonts a
significant reality is not needed by AcroDVI since
the relevant functions have been absorbed into
Acrobat Reader.

On MathCD, there are just a few DVI files that
call for commercial Adobe Type 1 fonts. DVIPDF
will not currently handle these unless you have them
installed in Type 1 format. Since many of these
have acceptable TrueType versions preinstalled by
Windows, more support for TrueType would be
desirable.

Until then, we recommend Malyshev’s own
DView for such fonts. It offers essentially universal
font support —although different graphics support.

Installing AcroDVI

AcroDVI (including DVIPDF) currently runs under
all recent versions of Microsoft Windows (not under
version 3.x). It is freely available on the Internet
(see Resources).

Currently, both AcroDVI and DVIPDF are
presented as a directory of approximately 1.5 mega-
octets (Mo), not including the BaKoMa font collec-
tion, which is another few megaoctets. As for many
Windows programs, an installer program is used.

The installed system is largely autonomous
in that it requires only the prior presence of the
Acrobat Reader (v. 4.0 or higher), and non-invasive
in that it alters the behavior of nothing outside its
own installed directory (currently called dvipdf).
To deinstall it, one just deletes that directory.

Hopefully, this means that AcroDVI will be as
simple to use as Acrobat Reader itself. For sophis-
ticated users, there is an extensive configuration file
to play with.

Performance testing

The following performance figures are for a 1997
PC with a Pentium I processor operating at clock
speed 200Mhz under Windows 95. For other
Windows environments, a simple correction for
clock speed should give a good first approximation
to performance. The standard warning that “your
mileage may vary” is appropriate. The programs,
like vehicles, are extensively configurable, and the
files, like terrain, are diverse.

For a typical mathematics article, the conver-
sion to PDF format goes at about 15 pages per
second, about 4 times greater than with Acrobat
Distiller, or with Ghostscript in its PS2PDF mode.
Comparison is relevant since it would be possi-
ble to publish compressed PostScript files without
included fonts while giving Acrobat Distiller or
Ghostscript access to the same BaKoMa font col-
lection.

For its PDF output, DVIPDF does both font
subsetting and stream compression. (The new
compressed Type 1 font format has yet to be
exploited by DVIPDF.) The efficiency of its default
PDF output is thus respectable but not yet optimal.
For example, it is comparable to that of the PDF files
currently published by the American Mathematical
Society, for the electronic research journal ERA
(Electronic Research Announcements). However,
by playing with the settings of Distiller, we were
usually able to do better with Distiller, typically
by a 3:2 ratio, particularly for small files. Do not
rush to conclude that this ratio in favor of Distiller
applies to all math journals. Indeed, the advantage
swung in favor of DVIPDF for the next test by (not
quite) a 2:3 ratio. It seems that both these PDF
compilers could still reduce PDF bulk somewhat, in
spite of many years of effort in this direction. From
this point, however, we will focus on AcroDVI as a
viewer of DVI, while ignoring its role as a compiler
of PDF.

The DVI files used by AcroDVI are far less
bulky than the PDF files used by Acrobat Reader.
As evidence, here are a few examples from the first
1999 issue of the Electronic Journal of Probability,
which added the PDF format compiled by Distiller
to its web offerings in 1998:

Article Pages .pdf .pdf.gz .dvi .dvi.gz Adv

1 11 402 284 48 22 129
2 19 437 320 78 27 118
3 19 459 343 85 35 9.8
4 81 1162 960 412 154 6.2
5(7) 12 251 112 55 33 3.4

274 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

All file sizes are given in kilo-octets (Ko). Notice
that DVI files regularly compress to about 40%
of their original size while PDF files compress far
less (as big internal chunks are precompressed).
The last column of the table, the DVI advantage,
gives the size ratio of compressed PDF files to
compressed DVI files. This is an accurate measure
of modem transfer speed ratios— whether the files
are compressed or not—because during modem
transfer, all material is compressed. The same ratio
will be roughly the file size advantage of DVI files
on a CD-ROM such as MathCD, which attempts
to make the best use of available space. Indeed,
a thoroughly precompressed form of PDF would
be chosen for such a CD-ROM while the DVI files
would probably be zip-compressed, along with any
auxiliary graphics files.

The fifth article was anomalous in a number of
respects. It had \special commands; there were
two .eps figures, and these were complemented by
their .pdf versions from Distiller, and the total
of these graphics inclusions was less than 12 Ko
of insertions (compressed). The explanation for
PDF being only 3.4 times less efficient than DVI
turned out, on investigation, to be mostly due to
a common error in the production of PDF; namely,
it was made with bitmapped TEX fonts, which
perform disastrously in Acrobat Reader. When this
is corrected, one can expect a PDF size similar to
that of the first article.

Here are a couple of further examples, the
shortest and longest available articles from a 1999
issue of ERA:

Article Pages .pdf .pdf.gz .dvi .dvi.gz Adv

1 3 105 84 12 5.0 15.3
2 12 248 215 66 27 8.0

These examples were reworked by us using well-
tuned settings for Distiller (Windows version); the
results (see below) are more flattering for the
PDF format while leaving substantial advantage to
DVI. Note that the difference between efficient and
inefficient PDF is often many times greater than the
total size of a DVI version.
Article Pages .pdf .pdf.gz .dvi .dvi.gz Adv

1 3 62 50 12 5.5 9.1
2 12 144 118 66 27 4.4

In the same vein, we note that the electronic
journal Geometry and Topology (see www.emis.de)
posts no TEX format whatsoever, just the Adobe
formats PS and PDF. For their first 1000 pages
the average PDF bulk per page is 10Ko (fonts
included) or about 8 Ko compressed. Thus, the DVI

AcroDVY

advantage would probably be somewhat less than 4.
Expert use of PDF does make a big difference.

The modem bottleneck. Modem transfer speed
is an important time factor. With a good telephone
modem and a good line one can hope to get a
transfer rate of about 5 Ko per second of compressed
material. Now, a mathematics article in DVI format
is about 2Ko per compressed page, and thus the
transfer rate is about 2.5 pages per second. This
is about the speed at which one can scroll through
the article with the 200 MHz PC used for these
tests. Note that DVIPDF converts to PDF format
at 6 times this speed. The time taken is perhaps
time lost, but it is negligible.

With poor telephone lines or modems, or again
congested web conditions, transfers that last more
than a minute or two are likely to be broken; clearly
the large PDF files are the ones at greatest risk,
and with present web protocols, partial transfers
are completely wasted.

Article transport costs. To get a very rough
cost estimate, consider a mathematics article of 100
pages posted on the Internet and ultimately down-
loaded by a thousand readers (the typical number
of subscriptions to a paper journal). Let is assume,
to get an easily calculated figure, that everyone uses
a contempory 56K baud modem with telephone
charges of $2 per hour and in compensation let us
neglect all other charges. With these figures, the
telephone cost for delivering the article is about $22
for DVI format and between $70 and $250 for PDF
format. Such figures suggest that use of DVI does
reduce data transport costs significantly.

Improving the AcroDVI environment. First,
the problem to be solved: in browsing the literature,
it is not uncommon to look quickly at dozens of
articles. This can quickly eat up many megaoctets
of disk space if PDF format is involved. Now, one
of Murphy’s computing laws asserts that any hard
disk that isn’t new is surely nearly full, no matter
what its capacity, since “data expands to fill any
void”. Thus, DVIPDF constantly risks running out
of space.

To largely eliminate this overflow risk, there
will be a setting for AcroDVI that makes the PDF
file ephemeral and invisible. As soon as the next
DVI file is processed, the previous invisible PDF
will be erased. (That is no loss, since it can be
regenerated quickly.) With this scheme, it suffices
to verify at the beginning of a browsing session that
your hard disk has enough space for the largest

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 275

Sergey Lesenko and Laurent Siebenmann

single PDF file you expect to read, plus enough
space for the relatively small DVT files.

Going one step further, the speed of AcroDVI
can now be doubled by switching off compression of
the the PDF output. At this point AcroDVI has
been nicely optimized as a DVI viewer — at the cost
of temporarily neglecting its role as a PDF compiler.

Comparing PDF and DVI formats

Adobe’s Acrobat Reader has PDF as its native file
format. This format is very autonomous:

e Graphics objects are always embedded within
the PDF file.

e Fonts are usually embedded as well (the al-
ternative, to use system fonts, has proved
somewhat unreliable).

These positive features bring some disadvantages:

e Bitmapped graphics are unlikely to be dis-
played on-screen at optimum quality since that
means no scaling. Vectorial graphics may not
be seen in their full glory since that often
requires the full screen.

e It is difficult to export graphics objects from
the PDF file in the most useful formats.

e PDF files tend to be many times larger than DVI
files. This is, of course, partly because of the
font burden,' but the complexity of the PDF
file structure brings substantial hidden costs.

Besides its space economy, the DVI format
has other virtues worth mentioning. Like all of
TEX, the DVI format is very stable, in spite of
(and even because of) its \special appendages.
This is important for archiving. Second, DVI is
simple: only a few pages in Knuth’s book on the
TEX program (Knuth, 1986) are needed to define
it adequately. Finally, one can derive from DVT all
formats currently used for mathematics, excepting
TEX source (i.e. the .tex file).

The strongest argument for PDF format has
been the wide availability and high performance of
the Acrobat Reader. Particularly outstanding are
the user interface, the graphics quality, and the
graphics speed. Adding to this: search, hypertext,
copy-and-paste to text files, annotations, printing
facilities, and PostScript (or EPS) export, it is clear
that Acrobat Reader is a major contender for the
affections of the reading public.

! The journal Geometry and Topology posts PDF
format both with and without included fonts; omis-
sion of fonts economizes 25% over the first thousand
pages of articles.

This does not prove that Acrobat Reader has
no rivals among DVI readers. For example, xdvi
(under unix) is by far the fastest viewer; the recent
BaKoMa DView can do better in quality and scope
of typography; emTEX provides better search and
text export. Interesting new DVI viewers continue
to appear: for example, tkdvi and nDVI (see
Resources for details). It would be destructive
not to serve such DVI readers. And ultimately
destructive of TEX itself since TEX systems are
typically built around them.

EPS, and now PDF, PNG and JPEG

The schemes to be described follow proposals in
(Siebenmann, 1996); they are just some of many
that have been elaborated for integration of graphics
into the PDF output of DVIPDF (see Lesenko, 1997,
1998).

Let us begin by considering the graphics in-
tegration issue that arose for electronic journal
articles to appear on MathCD. The DVI format is
usually one of two or three presented, and it entails,
for each article, one DVI file accompanied perhaps
by some EPS graphics files. For MathCD it was
important that the TEX version of the articles not
be necessary for the integration of the reformatted
graphics files.

Since DVIPDF cannot, on its own, convert EPS
graphics to PDF, it was initially decided to provide
PDF versions of the graphics objects via Distiller.
One reason for this decision was that the PDF
versions of vectorial graphics files are of optimal
quality and often quite efficient, provided that font
subsetting is used in creating them. Inasmuch
as these PDF files can be immediately viewed by
Acrobat Reader on most platforms, this conversion
is of immediate benefit to almost all users.

Gradually, it became apparent that conversion
to PNG and JPEG formats by various methods
sometimes offers greater advantages. Fortunately,
the solution to be described for PDF extends to
PNG and JPEG graphics files.

The \special syntax in the DVI files used
for EPS integration was most often the one used
by Tomas Rokicki’s epsf.tex. Aiming to exploit
pre-existing DVI files using with Rokicki’s dvips,
we decided to have DVIPDF interpret the existing
Rokicki syntax:

\special{Psfile=test.eps 1llx=11 11ly=22
urx=33 ury=44 rwi=550 rhi=660}

276 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

This is probably the world’s most common \spe-
cial syntax.?

The unit for the first four “bounding box”
entries is 1 bp (“big point”). 11x is the x-coordinate
of the lower left corner of the bounding box, etc.
Most often (but not always), this bounding box has
simply been copied by TEX from the bounding box
indicated in the EPS file header.

The last two entries, tagged by rwi (for real
width) and by rhi (for real height), specify, in units
of 0.1bp, the width and height of the integrated
bounding box on the output page. Either of these
two entries, may be absent, in which case uniform
scaling is used. By convention, the integrated box
has its lower left corner placed at the DVI insertion
point.

The (expanded) argument of this \special
command is passed intact into the DVI file. Beware
that it is normally generated inside of TEX, so that
the author sees only some high-level commands, as
those found in epsf.tex.

For both the .eps file and its derived .pdf file,
the figure is located on a coordinate plane with unit
of length = 1bp; also, the scale and orientation are
the same for both planes. In the event the .pdf
file was created by Ghostscript, the two coordinate
systems will be exactly the same. Then the dvips
rules of integration from dvips are applied without
modification and the results are identical.

If the .pdf file was created by Distiller, the
two coordinate systems are related by a translation
and some care is required required to make it
predictable. We omit the details.

In fact, MathCD has used Distiller mainly, en-
countering only occasional problems. Fortunately,
the reader of an article will be completely obliv-
ious to such complications; only website editors,
CD-ROM editors, and conscientious authors are
concerned.

Generalizing to bitmapped graphics. There is
an important variant of the above mechanism that
is optimal for bitmaps. EPS and PDF are very
general formats that can accommodate vectorial or
bitmapped images; however, for bitmaps, EPS tends
to be bulky and slow, and both seem to obstruct the
recovery of embedded bitmaps. On the other hand,
bitmap manipulation tools such as XNview under
Windows and Linux/UNIX or Graphics Converter
for Macintosh are easy to obtain and can generate

2 Tt is not, however, the simplest for the job;
indeed, one could get by without the “bounding
box” entries (cf. Siebenmann, 1996).

AcroDVY

an EPS format at any time. Thus, to the extent
that you wish to grant full control of bitmapped
graphics to the reader of your article, you may wish
to use a native bitmapped norm.

The converse applies too: one can lock a PDF
file or restrict its use in various ways. And it must
be conceded that PDF manages to inherit the space
efficiency of both leading public bitmapped formats:
PNG and JPEG.

Recall that PNG (Portable Network Graphics)
is the most efficient contemporary norm for faithful
bitmap compression and is suitable for scientific
figures and for most of the myriad uses which the
commercial GIF format enjoys on the web. PNG
is typically 15% more compact than GIF.? JPEG
is the dominant “lossy” format for compression of
low-contrast color images such as photos. JPEG
(like GIF) is well supported by current versions of
the Web browsers.

Hopefully, the above considerations will en-
courage more TEX users to exploit PNG and JPEG
bitmaps. Those who are still restricted to vector
graphics in TEX should be reminded, every time
they see a web browser, that the full gamut of (still)
bitmapped images, color included, as seen on the
web, are begging to be used in TEX.

What we have said about PNG and JPEG
being native or editable graphics formats is to some
extent true for PDF. Indeed, the Windows graphics
program Mayura Draw uses it as its storage format;
however, it does not read arbitrary PDF files.

It is clear from the above conversion, that
the preparation ab initio of a manuscript in DVI
format with PNG bitmapped graphics inclusions can
use the conventional EPS integration mechanism.
We summarize since the process applies with little
change also to JPEG and PDF:

e convert the PNG graphics to EPS, in XNview
or similar program;

e integrate the .eps file using the consensual
special command; and finally,

e replace the .eps file by the original .png file
(the .eps file is usually bulky and is perhaps
best discarded since it can be regenerated if
the need arises).

The end user then just pushes the .dvi file onto
the AcroDVI icon and viewing in Acrobat Reader
will begin — using the original PNG graphics.

3 Unfortunately, the leading browsers, Netscape
and Internet Explorer, have been tardy and half-
hearted in their support for PNG. It may become
necessary for AcroDVI to support GIF.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 277

Sergey Lesenko and Laurent Siebenmann

But there is a shortcut; it is unnecessary to
generate an EPS file. Specifying

DoBBoxFile =YES

in a configuration file, preview the PNG by pushing
its icon onto that of AcroDVI. As a by-product, this
previewing creates an auxiliary file (extension .bb),
which contains the BoundingBox comment as in an
EPS file header. With a suitable macro package
such as boxedeps.tex (version for year 2000) or
the IATEX packages graphics or graphicx, the .bb
file can be used in lieu of an EPS file.

Auxiliary roles for Ghostscript. The first is
to allow on-the-fly integration by AcroDVI of EPS
files into DVI format; optional settings of AcroDVI
enable this when Ghostscript is present. This is
very useful for viewing legacy DVI-plus-EPS postings
prevalent on the Internet.

When an author or publisher is preparing an
article for publication in DVI format with graph-
ics inclusions, the strategy should be to vary the
graphics format: maximize image quality while
minimizing bulk. Effort spent on this often leads to
surprising but useful results (see the 1999 documen-
tation for boxedeps). Thus, it is advisable to urge
authors to present originals of all graphics objects.*

Secondly, Ghostscript is a valuable converter
to bitmap formats from PS, EPS, and even PDF;
it has command-line options for parameters such
as resolution. Unfortunately, Ghostscript has its
quirks as a rasterizer. On the other hand, we
have mentioned that the Adobe PS- and PDF-based
systems seem loath to surrender internally stored
bitmaps; they can be likened to a bank so eager
for deposits that it has forgotten to provide for
withdrawals. When need for withdrawals comes,
Ghostscript may be your best friend.

The medium molds the message. One has to
bear in mind that the various graphics formats
and the various viewing mechanisms may influence
what ultimately reaches the human eye. The pages
of TUGboat, for example, are printed in black
and white by photo-offset methods and will never
faithfully render the colored iris that is the icon
for AcroDVI.

For the reader’s amusement, Fig.1 shows in
black-white several rather different renditions of the
iris, all of which derive from one multicolored pastel
original contributed by Tina and Keira Miyata. This

4 For example, in preparing MathCD, the lack of
such originals has been more of a vexation than the
lack of TEX source files!

Figure 1

was scanned in 32-bit color to a 450 x 450 -pixel

bitmap, and stored as a 57 Ko file in JPEG format.

This TUGboat article used the .eps versions.

(a) a suitable projection to black-white (= b/w)
by Graphics Converter; size 30 Ko as .eps.gz,
20Ko as .pdf.gz, 14 Ko as .png.

(b) is derived by Floyd-Steinberg filtering by Graph-
ics Converter; size 36 Ko as .eps.gz, 26 Ko as
.pdf, and 18 Ko as .png,

(c) (colored) arises from vectorization, by 16 re-
gions of flat color, using Adobe’s Stream-
line (v.3); size 144Ko as .eps.gz, 146 Ko as
.pdf.gz, and 30Ko as . jpg.

(d) (b/w) is the 1000 or so curves that are the
boundaries of the 16 colors of (c); size 203Ko
as .eps.gz, 186 Ko as .pdf.gz, and 15Ko as
.png. This last bitmap blurred the curves;
doubled resolution gave a 53 Ko .png file.

The quest for image clarity and beauty is an
empirical art; with no testing, the results of photo-
offset printing may be disappointing. We apologize
in advance.

On the need for DVI efficiency

There is currently lukewarm support for the use
of efficient methods. What can be done efficiently
by astute programming is by preference done by
the liberal expenditure of RAM or disk space
or processor power. Thus, for AcroDVI to be
taken seriously, cogent evidence is wanted that
the resources economized through maintaining and

278 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

developing the efficient DVI format can be used
decisively.

This is perhaps most evident with CD-ROMs.
A CD-ROM contains about 650 Mo of data. If
exploited to archive mathematics in compressed DVI
form (and no other) a CD-ROM could contain about
300,000 pages of mathematics. That is enough space
to record all the mathematics currently on the
xxx.lanl.gov “e-print” archive (recently named
“arXiv”), which is said to amount to about 200,000
pages. Alternatively, it is enough to distribute
all the mathematics research articles published in
one year (on paper or electronically). Again, it is
enough space to reprint the whole of the Annals of
Math (the most prestigeous math journal) plus the
whole of Crelle (the oldest math journal).

Going beyond mathematics, it might be possi-
ble to present a complete encyclopedia on a single
CD (or two), using compressed DVI (and graphics)
files for storage and AcroDVI for viewing. Cur-
rently, the favored storage format for encyclopedias
is RTF (Rich Text Format) and the usual viewer
is MSWord. RTF enjoys efficiency comparable to
that of HTML and DVT; it allows the same enviable
flexibility of line length as HTML, and it is some-
what more expressive than HTML but less so than
DVI. AcroDVI (allied with Acrobat Reader) offers
the best typography and $peed.

Although such projects may not be realized in
the immediate future, MathCD is intended to hint
at them all.

There should also be evidence that CD-ROM
capacity will not grow so fast that it outstrips the
increasing demand for such permanent storage. If it
does, then it is plausible that there is room for waste.
The spectacular 1000-fold growth of the capacity
of inexpensive hard disks in the last dozen years
has fed wild expectations of storage technologies.
But the reality for CD-ROMs is sobering. It is now
known that the next (second) generation of CD-
ROMs, called DVDs (Digital Versatile Disc) coming
about 15 years after the first, will be based on a
simple evolution of the current CD-ROMs: a rough
doubling of density is involved, along with use of
both sides of the disk. The capacity gain to 4.5 Gig®
will be somewhat less than 10-fold (not 1000-fold).
This is a factor frighteningly similar to the wastage
factor that would be imposed by general adoption
of the bulky PDF format. Furthermore, it could
be a decade before the new CD-ROM format is
sold at the affordable prices of today’s CD-ROMs,

5 Double that for two-layer versions— whose
durability is, unfortunately, in doubt.

AcroDVY

since that is the time it took for today’s CDs to
reach mass consumer prices. This is one of the
strongest arguments for retaining the efficient DVI
norm. Fortunately, DVD readers will accept today’s
CD-ROMs.

The current pause in progress of telephone
modem speeds gives additional arguments. The 56
kilobaud telephone modems of today are considered
to be the last gasp of a tired technology up
against what is called the “Shannon limit”. In
this case, a dramatic switch to ADSL (Asymetrical
Digital Subscriber Lines) is being promoted with
great speed gains: nominally 1.5 megabits/sec
download and .5 megabits for upload (but, in
practice, perhaps only one third or one quarter of
that). There remains the question whether and
when this technology will be as widely available and
as affordable as the present modem technology.

Although hard disk capacity has been growing
prodigiously, electronic libraries such as ELibMath
EMS (www.emis.de) could come to need DVI’s
polyvalence and efficiency. Thus far, a hard disk of a
few gigaoctets is sufficient to store the entire library
of a few dozen journals. At current affordable prices
for storage, dozens of mirror copies of the library
have been established worldwide. As time passes,
journals are not only multiplying and individually
growing but are offering more and more formats for
downloading, notably the bulky PDF. If and when
this causes overflow of the current generation of the
ELibMath hard disks, DVI format could offer an
attractive remedy.

The xxx.1lanl.gov e-print server has shown the
way on economy by deriving essentially all formats
from a .tex source on demand. This server suc-
cessfully deploys immense expertise and resources
under UNIX systems and manages to compile any
document from .tex files to derive on-the-fly any
other format the user requests. To do much the
same on a CD-ROM, but using .dvi format, seems
just within the realm of possibility —relying heav-
ily on the greater simplicity and wide acceptance
of DVI format. The first edition of MathCD will
nevertheless be far more liberal (heteroclite) than
the xxx.lanl.gov server.

We conclude that the economy and polyvalence
of TEX’s original DVI norm may indeed be the
magical stuff from which dreams can be woven.

Is AcroDVI in the lead?

As a front end to Acrobat Reader for DVI viewing,
how well does AcroDVI face competition?

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 279

Sergey Lesenko and Laurent Siebenmann

There are several interesting indirect competi-
tors that we merely mention in historical order:
Ghostscript/ Ghostview, then Distiller teamed with
Acrobat Reader, and most recently pdfTEX (see
Thanh, 1998), also for use with the Reader.

Potentially, the strongest indirect competitor
would be Acrobat Reader itself using a more com-
pact and agile version of PDF format — but there is
no sign of that.

One direct competitor of AcroDVI is Malyshev’s
BaKoMa DView, which not only has the broadest
typographic capabilities in the TEX world of 1999,
but also the ability to output PDF files. We leave
the user to judge the relative virtues. Both will be
provided on MathCD.

A second direct competitor is dvipdfm by
Mark A. Wicks, which surfaced in 1998. It is
an autonomous converter quite similar in concept
to DVIPDF. Executable binaries are available
on CTAN for 2 platforms, WIX/NT and i386
Linux. The reviewer of our paper informed us of
many compiled dvipdfm binaries on the TEX-Live 4
CD-ROM. The platform/OS combinations served
include: DEC alpha/OSF4, HP/HPUX10, i386
/Linux, SGI/IRIX6.2, RS6000/AIX4.1.4, Sparc/
Solaris 2.5-2.6, and Windows (32-bit).

Thus far, neither of these direct competitors has
provided close integration with Acrobat Reader. It
is probably fair to say that both are presently aiming
at PDF publication, not DVI viewing. They are not
yet competing frontally —but they soon could.

As for support of the most frequently used
\special commands, BaKoMa DView is well ad-
vanced, thanks to adherence to dvips syntax.
AcroDVI has some catching up to do here because
it originally fashioned its own \special syntax;
basic functionality for color and hyper-references
are, however, present. Least adapted for viewing
legacy DVI files is dvipdfm — because of its reliance
on ‘pdfmark’ syntax; however, it has good basic
\special functionality.

On the other hand, the recent wide porting
of dvipdfm and distribution via the TEX-Live CD
could well eclipse DVIPDF, and with it, AcroDVI.
If that is our fate, we hope that both DVIPDF
and AcroDVI will nevertheless be remembered as
seminal proofs of feasibility.

Acknowledgements and History

The second author is grateful for an invitation from
Stanislas Klimenko to visit IHEP in Protvino for
several weeks in the autumn of 1997 to work with
the first author, and also with Basil Malyshev. Basil

has very kindly permitted us to distribute a version
of his BaKoMa font collection with AcroDVI.

The idea of exploiting DVIPDF and Acrobat
Reader together as a feature-rich DVI reader has
been a subject of discussion between us (Lesenko
and Siebenmann) since the 1996 TUG meeting in
Dubna, Russia. For a long time, this project
remained on a back burner while basic features
of DVIPDF were perfected by the first author.
As MathCD project took shape, it offered many
stimulating design challenges, and the last year has
brought substantial progress that seems to justify
our early optimism.

Resources

Acrobat: a series of products by Adobe Inc.,

including Acrobat Reader, and Acrobat Dis-
tiller; the former is free while the latter is sold
(but low prices for Distiller are available to
academic users in many countries). Supported
platforms include: Windows 3.x, Windows 9X,
Windows NT, Macintosh, OS/2-Warp, Linux,
IBM-AIX, SunOS, Solaris, SGI-IRIX, HP-UX,
and Digital UNIX. Adobe’s website address:
www.adobe. com.
There is an active news list (comp.text.pdf)
that can provide user support. See also EMJ,
below, in particular Nelson Beebe’s comments
of 23 April 1999.

AcroDyY (with DVIPDF): by S. Lesenko and L.
Siebenmann. Alpha versions are posted by
anonymous ftp in Europe and N. America:
topo.math.u-psud.fr/pub/tex/
cmstex.maths.umanitoba.ca/pub/acrodvi
When AcroDVI is reasonably stable, it will be
submitted to the CTAN archive.

BaKoMa TEX: by Basil K. Malyshev. A TEX imple-
mentation for the Microsoft Windows OS that
appeared in 1998. Includes an advanced version
of the BaKoMa font collection, the DVI viewer
DView, and a DVI-to-PDF converter. Available
from CTAN and from ftp://ftp.mx.ihep.su.

boxedeps: by Laurent Siebenmann. A macro
package for EPS graphics integration that is
valid for all PS printer drivers. Available from
CTAN. The year 2000 version co-operates with
some PDF compilers to integrate PDF, PNG,
JPG graphics using .bb files.

dvips: by Tomas G. Rokicki; available from CTAN
in the dviware directory.

280 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

dvipdfm: by Mark A. Wicks. A DVI-to-PDF
converter that appeared in 1998:
http://odo.kettering.edu/dvipdfm/
Currently available on CTAN for i386 Linux,
and for Windows 9X/NT as part of the MikTEX
and fpTEX distributions.

EMJ: the Electronic Math Journals discussion list:
http://math.albany.edu:8800/hm/emj.

graphics, graphicx: I#TEX2¢ packages by David
Carlisle and Sebastian Rahtz, on CTAN.

Graphics Converter: by Thorsden Lemke. bitmap
editor and converter for Macintosh; shareware.
www.lemkesoft.de.

Ghostscript: by Peter L. Deutsch.
A PostScript and PDF interpreter, that pro-
vides bitmapped or PDF output; the latter
function is called PS2PDF.
ftp.cs.wisc.edu/pub/ghost/aladdin.

GSview: by Russell Lang. A viewer based on
Ghostscript

ftp.cs.wisc.edu/pub/ghost/rjl/.

MathCD: CD-ROM (in prep.) devoted chiefly to
journals and software for mathematics.
Go to MathCD.html at the editors’ web sites:
www.math.washington.edu/ burdzy,
topo.math.u-psud.fr/"1cs, and
rsp.math.brandeis.edu.

Mayura Draw: a graphics program by Karunakaran
Rajeev; its native format is a dialect of PDF.
www.wix.com/mdraw210.zip.

nDVI: a DVI viewer by K. Peeters.
norma.nikhef.nl/"t16/ndvi_doc.html.

tkdvi: a DVI viewer by A. Lingnau.
www.tm.informatik.uni-frankfurt.de
/~lingnau/tkdvi.

XNview: by Pierre-E. Gougelet, bitmap editor and
converter for Windows, Linux, etc.:
latour.univ-paris8.fr/“pierre.

AcroDVY

References

Bienz, Tim; Richard Cohn; and James Meehan.
Portable Document Format Reference Manual.
Addison-Wesley, Reading, Massachusetts, 1993.

Knuth, Donald. TEX The Program. Addison-Wesley,
Reading, Mass., 1986.

Lesenko, Sergey. “The DVIPDF Program.”
TUGboat 17(3), 252-254 (1996).

Lesenko, Sergey. “DVIPDF and Graphics.”
TUGboat 18(3), 166-169 (1997).

Lesenko, Sergey. “DVIPDF and Embedded PDF.”
Proceedings of Euro-TEX Conference, St. Malo.
Cahiers GUTenberg 28—29, 231-241 (1998).
www.gutenberg.eu.org/pub/GUTenberg/

Malyshev, Basil. “Problems of the conversion of
METAFONT fonts to PostScript Type 17. TUG-
boat 16(1), 60—68 (1995).

Siebenmann, Laurent. “DVI-based Electronic Pub-
lication.” TUGboat 17(2), 206-214 (1996).

Sojka, Petr, Han Thé Thanh and JiF{ Zlatuska. “The
joy of TEX2PDF — Acrobatics with an Alternative
to DVI Format.” TUGboat 17(3), 244-251 (1996).

Thanh, Han Thé. “The pdfTEX Program.” Proceed-
ings of Euro-TEX Conference, St. Malo. Cahiers
GUTenberg 28—29, 197-210 (1998).
www.gutenberg.eu.org/pub/GUTenberg/

Post-Conference Addendum

With reference to the discussion on modem down-
loading speeds (section “On the need for DVI
efficiency”), Michael Doob reports top speeds near
500Ko/sec on an optical cable network installed
originally for cabled home television. This is stun-
ning progress; even the authors’ institutional ether-
net LANs have never offered speeds quite so high.
Curiously, the slower ASDL technology is attract-
ing more investment. One should bear in mind
that better Internet access may well increase ‘peak
time’ Internet congestion, at which times effective
throughput is often less than for a simple telephone
modem.

We authors thank Michael Doob for hosting
our alpha version, and also for making the oral
presentation in Vancouver, when, at the last minute,
the first author was unable to attend.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 281

MathKit: Alternatives to Computer Modern Mathematics

Alan Hoenig

Department of Mathematics
John Jay College

445 West 59 St.

New York, NY 10019

(516) 385-0736 or (212) 237-8858

ajhjj@cunyvm.cuny.edu

Abstract

It is possible to generate hundreds of new math fonts using specially finagled math
fonts produced by MetaFont to match Typel PostScript fonts. This talk describes
the MathKit project which enables authors ignorant of MetaFont, PostScript, and
virtual fonts to create and use these fonts in a reasonably easy manner.

Introduction

I have long been impressed by the ingenuity and
persistance of the TEX community as its members
have gallantly shown how TEX can keep pace with
all sorts of publishing needs and with all kinds of
computer innovations, such as TEX and the World
Wide Web. But I have long been struck by one ap-
parent gap in this effort —there is no good way to
typeset mathematics if you want to use any of the
beautiful Type 1 PostScript fonts instead of Com-
puter Modern. It is common to see authors embed
Computer Modern math in Times Roman, say, but
CM math is really too spindly for such typesetting
to be as good as we know TEX is capable of. Several
years ago, I wondered if there was a way to close
this gap. One of the solutions I came upon is the
subject of this talk. I'm particularly pleased by it
because poky old METAFONT is an important com-
ponent of this system. Perhaps MathKit, the name
of my system, will help usher METAFONT into the
next millenium.

MathKit is one attempt to deal with typeset-
ting mathematics using fonts other than Computer
Modern. Till now, authors have had few alterna-
tives:

e They can use CM math together with a text font
family such as Times Roman, but the result is
not professional.

e They can use proprietary math fonts, such as
MathTime or Lucida New Math, but that re-
quires spending money.

e They can use the Euler math fonts, but these
letterforms are a bit too idiosyncratic for some,
and it is not well known how to properly imple-
ment them anyhow.

MathKit aids in the creation of math fonts which
are compatible with a text font family —that is, it
can help you typeset a Baskerville math document
where the equations really look Baskerville-ish. De-
pending on your choice of parameters, you also get
bold math fonts. MathKit consists of a perl script
and some auxiliary files to help an author—even
one ignorant of virtual fonts or of METAFONT — to
perform these tasks.

What it does— a detailed look

MathKit takes METAFONT parameters that are ap-
propriate to an outline font family and uses these to
create new math fonts with METAFONT. The sym-
bols and other special characters in these new fonts
look pretty good—and are compatible with your
outline fonts—but the italics and numerals look
ghastly. Fortunately, that’s not a problem. Using
virtual fonts, we manufacture math fonts that com-
bine the new special symbols (done by METAFONT
that look pretty good) with letters and numerals
from the outline fonts while we throw away all the
ghastly stuff. MathKit does this work for you; it
provides scripts for the remaining steps (all this is
described below). It also provides style files for plain
TEX and for the NFSS of IMTEX for you to use these
fonts in your documents. You don’t need to know
anything about METAFONT or virtual fonts to use
MathKit and the resulting fonts.

This version of MathKit comes with three sets
of font templates. Since Times Roman and Palatino
are so common, I have prepared templates for these
fonts. For fun, I have also prepared a template for
Monotype Baskerville. Times comes in regular and
bold series, Palatino is regular only and Baskerville
in regular and semibold.

282 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Figure 1: Here are Baskerville-like math fonts, produced by MathKit, together with Baskerville text

fonts.

MathKit: Alternatives to Computer Modern Mathematics

Unbound Orbits: Deflection of Light by the Sun

Consider a particle or photon approaching the sun from very great distances. At
infinity the metric is Minkowskian, that is, A(co) = B(co) = 1, and we expect
motion on a straight line at constant velocity V'

b~ rsin(p — doc) > 10 — Poo)
—V ~ %(mos((i) — b)) %

where 4 is the “impact parameter” and ¢ is the incident direction. We see that
they do satisfy the equations of motion at infinity, where A = B = 1, and that the
constants of motion are

J o= o (1)
E = 1-V? 2)
(Of course a photon has V' = 1, and as we have already seen, this gives £ =

0.) It is often more convenient to express f in terms of the distance 7y of closest
approach to the sun, rather than the impact parameter b. At ry, dr/d¢ vanishes,
so our earlier equations give

i N
]—70<%—1+V>

The orbit is then described by

A2 (r) dr

1
(¢t o] 2)'
7’3 B(n)—1+7172 Bn—1+17 2

The total change in ¢ as r decreases from infinity to its minimum value 7y and then
increases again to infinity is just twice its change from oo to 7, that is, 2|(rp) —
oL | . If the trajectory were a straight line, this would equal just T;

Ab = 21(10) = boc| — .

If this is positive, then the angle ¢ changes by more than 180°, that is, the trajec-

¢m=¢w+[m

tory is bent toward the sun; if A¢ is negative then the trajectory is bent away from
the sun.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

283

Alan Hoenig

However, I have had excellent luck matching
one of the templates with a non-related text family.
The Baskerville-like template works very nicely with
Monotype Janson and Adobe Caslon, for example.
Consequently, it is possible to generate not three
new math font families, but hundreds of them, as
the title to this document proclaims.

What you get as final output

MathKit itself produces lots and lots of scripts and
batch files. Once these are properly executed you
get the following:

1. Detailed instructions, both onscreen and in a
small ASCII file, telling you how to proceed.

2. Virtual fonts for math and text typesetting.
You will also get fonts for bold math if a tem-
plate containing bold parameters is supplied.

3. Style files for plain TEX and KTEX (NFSS).
These files support bold math if bold parameter
templates were present.

What you will need

All files can be found on any CTAN or mirror site,
unless otherwise noted.

1. First off, you will need current versions of TEX
and METAFONT. They must be sufficiently re-
cent to support virtual fonts.

2. fontinst, version 1.5 or better. To install this
software, retrieve all files from the

fonts/utilities/fontinst/inputs

area.

3. For plain TEX, Damian Cudgley’s pdcfsel font
selection macros are required. These can be
found in macros/plain/contrib/pdcmac.

4. Perl needs installation as well: version 5 of Perl,
a freely-available utility for all computer plat-
forms and easily obtained from many computer
archives and CD-ROM software collections. This
is simply a matter of placing the perl executable
somewhere on your computer’s search path.

5. Your text fonts need to have been installed us-
ing Karl Berry’s fontnaming conventions. Fur-
thermore, these fonts must have been installed
following the original TEX encoding, often de-
noted as 0T1 or ot1.

6. Working copies of the TEXware utilities tftopl
and vptovf, which should already be part of
your TEX installation. Make sure both these
executables are in some part of your computer’s
search path.

Installation

Installation of MathKit consists of three steps:

1. Create a directory called mathkit, and install
all the MathKit files in it.

2. Create a work directory below mathkit; switch
to this directory to do all your work.

3. Finally, there are a few parameters that need
careful adjustment at the beginning of the file
mathkit.par. Check the documentation for
more details.

MathKit also makes it possible to typeset with
some special font types, including blackboard bold,
calligraphic, Fraktur, typewriter monospaced, and
sans serif, and will provide typesetting commands
for these fonts, provided the latter exist. Except for
sans serif, though, you have relatively little choice
in which kinds of fonts to install. These fonts and
font sources are all available on CTAN. Here’s what
MathKit expects:

e MathKit uses the calligraphic alphabet in the
Computer Modern symbol fonts.

e The typewriter font must be installed under the
name cmtt10 and you will need an outline form
of this font.

e You will need the eufm10 Euler Fraktur font in
outline form for Fraktur typesetting.

e You will need the METAFONT source for Alan
Jeffrey’s blackboard bold fonts for blackboard
bold typesetting. On CTAN, these can be found
in the fonts area, or perhaps fonts/bbold.

e You have much greater freedom for sans serif
fonts, as discussed above.

Executing the software

The main MathKit script requires three parameters
at the command line:

1. The name of the parameter template: tm refers
to Times-like parameters, pl to Palatino-like,
and bv to Baskerville-like.

2. The name under which text fonts are installed.
This is apt to be something like ptm or mnt
for Adobe Times or Monotype Times New Ro-
man, ppl for Palatino, and mbv for Monotype
Baskerville (which is quite different from ITC
New Baskerville). As mentioned above, though,
you are welcome to any properly installed text
font family as well. Simply specify its fontname
abbreviation at the command line.

3. The encoding your fonts follow. Only 0T1 (orig-
inal TEX encoding) or maybe ot1 are currently
allowed. Use ot1 if your system doesn’t allow
uppercase file names.

284 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

MathKit: Alternatives to Computer Modern Mathematics

Unbound Orbits: Deflection of Light by the Sun

Consider a particle or photon approaching the sun from very great dis-
tances. At infinity the metric is Minkowskian, that is, A(co) = B(co) =1,
and we expect motion on a straight line at constant velocity V

b~ rsin(¢ — Poo) = (¢ — o)

—V = L(rcos(¢p — dpoo)) = &

where b is the “impact parameter” and ¢ is the incident direction. We
see that they do satisfy the equations of motion at infinity, where A = B =
1, and that the constants of motion are

J = b (1)
E = 1-V? ()
(Of course a photon has V = 1, and as we have already seen, this gives
E = 0.) It is often more convenient to express | in terms of the distance 7

of closest approach to the sun, rather than the impact parameter b. At ry,
dr/d¢ vanishes, so our earlier equations give

1 X 1/2
]:ro(m_1+v>

The orbit is then described by

Az(r)dr

1
(4 o] el - 2)
s | B(r)—1+Vv2] [B —-1+V2 r

The total change in ¢ as r decreases from infinity to its minimum value
1o and then increases again to infinity is just twice its change from oo to
ro, that is, 2|¢(ro) — ¢ |. If the trajectory were a straight line, this would
equal just m;

60 =+ [

Ad =2|¢(r0) — Poo| — .

If this is positive, then the angle ¢ changes by more than 180°, that is, the
trajectory is bent toward the sun; if A¢ is negative then the trajectory is
bent away from the sun.

Figure 2: Palatino-like fonts with Palatino text.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 285

Alan Hoenig

For example, I type

perl ../mathkit tm ptm OT1

in my work directory to create Times-like fonts fol-
lowing the original TEX encoding. To create my
Janson/Baskerville fonts, I type

../mathkit bv mjn OT1

at the command line.
Currently, you get bold math fonts unless you
choose the Palatino-like pl template.

Making the fonts

The following steps complete the font creation. Per-
form them all within the MathKit work directory
(Step 2 in the “Installation” section).

1. Execute the file makegf.bat to have META-
FONT create your pixel fonts. This step will
take some time.

2. You will need to compress all the pixel files.
Inside UNIX, you can do this via a series of
commands such as

foreach X (*.600gf)
foreach? gftopk $X $X:r.600pk
foreach? end

Not all operating systems are so accommodat-
ing, so there is a file called makepk.bat which
may be helpful in this regard. Caution: be-
fore executing this script, it will almost surely
be necessary to edit it.

3. Execute the script makepl.bat to create some
property list files needed by TEX.

4. Run the file makevp.tex through TEX. That
is, execute the command tex makevp or some-
thing appropriate for your system. This step
will take lots of time. Along with lots of super-
fluous files, this creates many virtual property
list files with extension .vpl.

5. Create the actual virtual files by running every
.vpl file through the program vptovf. You can
do this easily in UNIX:

foreach X (*.vpl)
foreach? vptovf $X $X:r.vf $X:r.tfm
foreach? end

Even easier — execute the file makevf .bat that
MathKit creates for you.

6. Test your fonts by processing testmath.tex
(for BTEX users) or testmatp.tex (plain TEX)
and then printing it. If adjustments are nec-
essary, return to step 4 (run tex makevp) and
proceed from that point onward. Adjustments
to your fonts will be discussed below.

7. Only when you are completely satisfied with
your new fonts should you execute the script
putfonts.bat, which moves font files and style
files to their proper places.

That still leaves behind files with extensions .log,
.mtx, .pl, .vpl, .bat, .600gf (or something simi-
lar), and several other miscellaneous other files. You
may safely delete all these.

Fine tuning and character adjustment The
only adjustment that should be necessary are spac-
ing adjustments to improve the appearance of over-
the-character accents, subscripts, and character place-
ment. The two test files that enable you test this
are testmath.tex (for ITEX) and testmatp.tex
(plain). Run one of these files through TEX and
examine the printed output carefully. MathKit will
have made two or more adjustment files for you that
facilitate making changes to character spacing.
Font mongers note: you may be able to fine-
tune the characters themselves by adjusting the pa-
rameter values in the template files to other than
those provided. Feel free! If you find a particularly
fine set of values different from what I have provided,
I would be grateful if you passed them along to me.

Using your new fonts

MathKit produces two style files, one for KTEX and
one for plain. Their file names are formed according
to the naming scheme

z{mock-family){font-family)

Here, (mock-family) is the two-character designation
for one of the font parameter templates (such as
tm, pl, or bv); the word ‘mock’ refers to the fact
that these fonts imitate but don’t equal the actual
fonts in this family. (font-family) is the Berry fam-
ily designation. Thus, if I create a Times-like set
of fonts for use with font family ptm, I would find
files ztmptm.sty (BWTEX) and ztmptm.tex (plain).
In the same way, the style files for mock-Palatino
and mock-Baskerville fonts are named zplppl and
zbvmbv (with the appropriate extensions). Style files
for my Baskerville/Janson math fonts have names
beginning with zbvmjn.

Plain TEX At the top of your file, include the state-
ment

\input ztmmnt

(or whatever the style file name is). Then, standard
font nicknames such as \it and \bf and the math
toggles $ and $$ will refer to these new fonts.

If bold fonts have been generated, a command
\boldface typesets everything in boldface — prose,

286 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

MathKit: Alternatives to Computer Modern Mathematics

Unbound Orbits: Deflection of Light by the Sun

Consider a particle or photon approaching the sun from very great distances.
At infinity the metric is Minkowskian, that is, 4(co) = B(0co) = 1, and we
expect motion on a straight line at constant velocity V'

b~ rsin(¢ — o) = 1 — Po)
-V~ %(VCOS(ﬁf’ = P0)) %

where b is the “impact parameter” and ¢ is the incident direction. We see
that they do satisfy the equations of motion at infinity, where 4 = B = 1,
and that the constants of motion are

J = bV? (1)
E = 1-1?)
(Of course a photon has V' = 1, and as we have already seen, this gives

E = 0.) It is often more convenient to express J in terms of the distance
ro of closest approach to the sun, rather than the impact parameter b. At ro,
dr/d ¢ vanishes, so our earlier equations give

The orbit is then described by

A2 (r)dr

-1 5
2L 1 1 _ 1
2 | B—1+12 B(r)—1+172 2

The total change in ¢ as r decreases from infinity to its minimum value ry
and then increases again to infinity is just twice its change from oo to ry, that
is, 2|p(ro) — ¢ |. If the trajectory were a straight line, this would equal just
UM

¢(r>=¢oo+/r°°

Ag =2|P(r0) = Poo| — .

If this is positive, then the angle ¢ changes by more than 180°, that is, the
trajectory is bent toward the sun; if A¢ is negative then the trajectory is bent
away from the sun.

Figure 3: Times Roman math + Times Roman text.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 287

Alan Hoenig

mathematics, whatever. Bold math may be appro-
priate for bold captions, sections heads, and the like.
Like any other font-changing command, this com-
mand should be placed within grouping symbols.

IKTEX and NFSS You simply need to include the
style name as part of the list of packages that you use
in the document. Thus, a typical document would
have a statement like

\usepackage{ztmptm, epsf,pstricks,...}

at the outset.

If MathKit has created bold math fonts for you,
a boldface environment will typeset everything in
that environment as bold, including all mathemat-
ics.

Math support for other font families

The parameters for the font families are contained
in files with names like tm.mkr, tm.mks, or tm.mkb.
The extensions refer to “MathKit regular”, “Math-
Kit semibold”, or “MathKit bold” sets of parame-
ters. The current MathKit assumes that you will be
creating at most one of the set of bold or semibold
fonts but not both.

It was surprisingly easy to prepare these pa-
rameter files. I prepared a test document in which
individual characters were printed on a baseline at
a size of 750pt. It’s (relatively) easy to measure
the dimensions of such large characters and META-
FONT can be asked to divide by 75 to compute the
proper dimension for ten-point fonts. It was par-
ticularly easy for me to make these measurements
as I used Tom Rokicki’s superior implementation of
TEX for NeXTStep. This package contains on-screen
calipers, which take all the work out of this chore.

If you plan to create your own parameter files
for other font families, please use the supplied files
as models. Make sure all measurements are given in

terms of sharped points pt#;! MathKit looks for this
string. And please consider placing this information
on CTAN.

Other details; in conclusion ...

For additional information, please see my book, TEX
Unbound. Sample output using MathKit-tweaked
fonts appears throughout this article. The current
version of MathKit is in the fonts/utilities/
mathkit area of CTAN. Additional details concern-
ing MathKit can be found in the documentation file
mathkit.tex, part of this package.

Interested authors may care to investigate the
author’s companion package, Mathlnst, the current
version of which appears in the fonts/utilities/
mathinst area of CTAN. In case you have Math-
Time, Lucida New Math, Euler, or Mathematica
math fonts, Mathlnst provides scripts for installing
these fonts with text fonts of your choice.

This software is issued as is, subject to the usual
GNU copyleft agreement.

If you have any questions, comments, or bug re-
ports, please send them along to me.

References

[1] Bouche, Thierry. “Diversity in Math Fonts.”
TUGboat 19,2 (1998), pp.121-135.

[2] Hoenig, Alan. “Alternatives to Computer Mod-
ern Mathematics.” TUGboat 19,2 (1998),
pp. 176-187.

[3] Hoenig, Alan. TgX Unbound: HKIEX and TpX
Strategies for Fonts, Graphics, and More. New
York: Oxford University Press, 1999.

[4] Horn, Berthold. “Where Are the Math Fonts?”
TUGhoat 14,3 (1993), pp. 282-284.

[5] Knuth, Donald E. The METAFONTbook. Read-
ing, Mass.: Addison-Wesley, 1986.

1 ‘Sharped points’ are “‘true’ units of measure, which re-
main the same whether we are making a font at high or low
resolution” (The METAFONTbook, p. 33). See also pp. 32-35,
91-99, 102-103, 268, and 315—all in The METAFONTbook.

288 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

MathKit: Alternatives to Computer Modern Mathematics

Unbound Orbits: Deflection of Light by the Sun

Consider a particle or photon approaching the sun from very great distances.
At infinity the metric is Minkowskian, that is, 4(co) = B(oco) = 1, and we
expect motion on a straight line at constant velocity V

b~ rsin(@ — Poo) ™ 1P — Do)
—V > L (rcos(dp — Poo)) ~ &

where b is the “impact parameter” and ¢ is the incident direction. We see
that they do satisfy the equations of motion at infinity, where 4 = B = 1, and
that the constants of motion are

I

S

Y
™)

J (D
E = 1-V? ()
(Of course a photon has V' = 1, and as we have already seen, this gives £ = 0.)
It is often more convenient to express J in terms of the distance ry of closest ap-

proach to the sun, rather than the impact parameter b. At ry, dr/d @ vanishes,
so our earlier equations give

1 172
2
J=r0(—1+V)
B(ro)

The orbit is then described by

Az (r) dr

1
21— (I A
2 [B—1+2] | BO—1+12 2

The total change in ¢ as r decreases from infinity to its minimum value ry and
then increases again to infinity is just twice its change from oo to ry, that is,
2|p(ro) — ¢;o |. If the trajectory were a straight line, this would equal just 7;

A =2|¢(rp) — Pool — .

If this is positive, then the angle ¢ changes by more than 180°, that is, the tra-
jectory is bent roward the sun; if A ¢ is negative then the trajectory is bent away
from the sun.

¢m=¢w+[w

<
)

Figure 4: MathKit makes possible math bold typesetting. Here is is Times Roman bold math + Times
Roman bold text.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 289

fpTEX: A teTgX-based Distribution for Windows

Fabrice Popineau

Supélec

2 rue E. Belin

F-57070 Metz

France
fabrice.popineau@supelec.fr
http://wuw.ese-metz.fr/ popineau

Abstract

This paper deals with the ins and outs of porting the widely used teTEX distribu-
tion to the Windows environment. The choices made and difficulties experienced
are related, a brief description of this huge distribution is given and the future

work is sketched out.

Motivation

Context. More and more people need to use some
sort of Microsoft environment, perhaps because of
office suite or the like, or because of management
staff decisions. Some of the greatest pieces of soft-
ware have been developed on UNIX (or other oper-
ating system) well before the general availability of
Windows. Thus, software such as TEX should be
available on Microsoft operating systems, natively
ported, and compatible with implementations on
other operating systems. TEX by itself is largely
platform independent but achieving complete com-
patibility for an entire distribution is better.

The Web2C TEX distribution is one of the great-
est TEX implementations and has support for porta-
bility. Moreover, Web2C is the base of the widely
used teTEX distribution for UNIX. Now that UNIX
and Windows can easily share files across the net-
work, thanks to tools such as Samba, it is most de-
sirable to have not a teTgX-like TEX distribution
for Windows, but the actual teTEX distribution for
Windows.

Free TEX for Windows. In the fall of 1997, when
I began to port Web2C to Win32, one main TEX dis-
tribution was available to Windows users: emTEX.
This is still a great TEX environment but it was de-
signed for MS-DOS first and then for OS/2. So, when
Windows became 32-bit-aware,! those MS-DOS ap-
plications could not benefit from the new 32-bit flat
mode, or at least not optimally. The so-called DOS-
extenders were not as smart? as they are today.

1 In fact, even if Windows 9x can run 32-bit mode appli-
cations, only the Windows NT incarnation of Windows is a
true 32-bit environment; see section about the previewer

2 For example, support for long filenames was not avail-
able at first.

Some of the nicest features of emTEX, such as its
dvipm previewer, were not available to Windows users.
Moreover, emTEX’s author, Eberhard Mattes, never
released his sources.

At the same time, MiKTEX began to mature.
Christian Schenk, author of MiKTEX, has followed
a different way. He has designed a completely new
Win32-oriented TEX distribution. Looking at his
work, I questioned the usefulness of porting Web2C
to Win32, but there were some reasons to do so:

Compatibility. Having a Windows TEX distribu-
tion based on exactly the same files as the UNIX
one means you can share resources. For exam-
ple, you can not only share texmf trees across

the network but also configuration and format
files.

Portability. Most of the ongoing developments
around TEX are done with UNIX Web2C (see
pdfTEX or e-TEX). Being able to share source
files means less efforts to compile a new release.
There is another consequence: on several occa-
sions, it has proven to be useful to compile the
source code on something really different from
UNIX. Errors that do not show up on one plat-
form may do so on another one.

Usability. Lots of people are familiar with teTEX
under UNIX. Having the very same distribution
under Windows is a plus.

The plan. The porting tasks can be divided as fol-
lows. Note, however, that the job was not formally
planned at all since it had to be done using mostly
spare time. So the project has followed a circu-
lar technique, with some issues only being resolved
quite recently. Below is a very short description of
the next sections.

290 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Command-line programs. The first goal was to
have a tex.exe running under the Win32 API
(Application Programming Interface), the set of
functions that implement the kpathsea library.

Compilation environment. teTEX uses a power-
ful tool called autoconf. This tool relies heavily
on having a UNIX shell and lots of UNIX utili-
ties such as sed, grep, awk, and so on. Clearly,
this is not something easy to find and run under
Windows.

Shell issues. Moreover, the source distribution uses
some shell scripts at run-time. It is not wise
to suppose that the end-user will have a UNIX
shell on a Windows machine.

Operating system-specific. Some issues like find-
ing a replacement for file links or naming files
on the network have been solved recently. The
question of using the registry is also mentioned.

Previewer. No TEX distribution would be com-
plete without a DVI previewer. So the port of
xdvi was contemplated.

Installation. This is the trickiest part. Binary dis-
tributions were not common under UNIX but
they are under Windows, and the installation
process is very different.

Configuration. The process of configuring Web2C
is very simple because it consists mainly of edit-
ing text files or setting up environment vari-
ables. The teTEX distribution introduces a smart
tool to administer the system, and this task can
be rendered in a Windows-oriented way as well.

Future work. There are many points that can be
enhanced and some will be done in the very near
future.

However, if tasks such as editing a text file, set-
ting environment variables or unpacking an archive
are usual in the UNIX world, they are not usual any-
more in the Windows, world where end-users expect
automatic or point-and-click things to happen. So
the installation and configuration parts are very spe-
cific to Windows.

The contents of the distribution
Before discussing the porting issues, here is a brief
outline of what is in the distribution:

e Web2C base distribution: TEX, METAFONT,
METAPOST, DVIware and fontware tools

e each TEX extension or package that is found in
teTEX:
- E_TE;Xv pdeEXa Q (Omega)
— dvipsk and dviljk to print DVI files

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

fpTEX: A teTEX-based Distribution for Windows

— gsftopk and ps2pk to rasterize Type 1
fonts to PK files

— mktex* support programs for generating
missing font files and fmtutil for building
formats

a DVI file viewer based on xdvi, but adapted to
Windows

packages found on the TEX-Live CD such as:
— dvipdfm, to convert DVI files to PDF

— tex4ht and tth, to convert TEX files to
HTML

— extra tools to deal with either DVI files,
PostScript files or fonts.

extra packages found only on the Win32 section
of the TEX-Live CD:

— ttf2pk and ttfdump will handle TTF fonts

— hbf2gf will handle East-Asian fonts

— gzip and jpeg2ps, which can be handy
the teTEX texmf tree, which is not the least
important part!

Command-line programs

The process. The Web2C distribution integrates
all TEX-related tools around one main library called
kpathsea. It was devised by Karl Berry to face
the growing number of environment variables needed
to set up a complete TEX distribution. Instead of
setting environment variables, the path values and
many other constants are looked for in a configu-
ration file. This guarantees extensibility and is far
easier to maintain.

The second point is the process of compiling
TEX itself. The Web2C distribution owes its name
from the Web — C translator that converts the orig-
inal Web code to C programs. Basically, the follow-
ing tools were needed:

e a C compiler targetting the Win32 API and,
if possible, supporting the standard C library
functions;

e some UNIX tools such as sed, grep and awk;

e the Perl language, which has proven to be useful
to put glue between many parts of the building
process, due to the lack of a shell with real pro-
gramming capabilities under Windows.

Choosing a compiler. The availability of GCC —
or rather of a native Win32 GCC — under Windows
is quite recent. Moreover, GCC in its Cygwin® incar-
nation has some drawbacks under Windows:

3 Most of the GNU tools have been ported to Win32 by
Cygnus Software and their port is under the GNU Public
Licence. See http://sourceware.cygnus.com/cygwin/.

291

Fabrice Popineau

e Every program is linked to a DLL (Dynamically
Linked Library) that emulates UNIX calls; this
slows down somewhat programs doing intensive
file system calls,* for example.

e At the time I began the Web2C port, this DLL
was not stable at all.

e Benchmarks on the same computer using GCC
under Linux and the Microsoft compiler under
NT have shown up to 20% less time on the same
runs in favor of the Microsoft compiler.®

Thus, the Microsoft compiler was chosen. The gen-
eral philosophy was to stick to the Win32 API as
much as possible and avoid any layer to handle the
translation, which might alter performance.

Many of the auxiliary tools needed for the build
process were available either through the GNU-
Win32 Cygnus project or from previous ports to MS-
DOS; however, almost none of them were available
natively ported to Win32. While I was at porting
kpathsea and Web2C to Win32, I also adapted the
tools I needed to Win32. This resulted in an archive
of UNIX tools, many compiled by myself and the
others gathered from the net. This archive is avail-
able in the same directory as fpTEX, in the CTAN
archives.

Compiling tex.exe. The kpathsea library already
had support at the source level for other platforms
than UNIX, namely Amiga and VMS. So the path
was already laid out. Fortunately, kpathsea already
encapsulated almost all system calls needed for TEX.
This was a great feature of the TEX source code, to
precisely identify system dependencies.

Disks. The Windows environment knows about de-
vice names attached to disks whereas the direc-
tory tree structure under UNIX hides them.

Paths. The path separator is not the same but, for-
tunately, the Win32 API support '\’ and '/’
path separators.

Links. There are no hard or symbolic links under
Windows.

Permissions. The permissions on files for UNIX
and Windows are handled in a completely dif-
ferent way.

Some of the problems met were specific to Windows

9x, where standard C library calls are available but

buggy. For example:
e system() is meant to run external commands
but fails to return their exit code—it always
returns true.

4 The kpathsea library can do lots of stat calls on a huge
texmf tree.

5 This was GCC 2.7.1 versus VC++ 5.0; the situation may
have changed today.

e popen() is available only for command-line pro-
grams but fails for graphical programs (the pre-
viewer uses this call!).

e stat () fails to recognize directories if their name
has a trailing /.

All these problems have workarounds using the Win32
calls instead of the standard C calls.

Compilation environment

In order to make the build process safer and closer
to what happens under UNIX, a number of decisions
had to be made.

Makefiles. Every UNIX Makefile comes in a gener-
ic shape, Makefile. in, that needs to be instantiated
by the complex process of autoconf. The UNIX
Makefile.in is assembled and processed by the m4
macro processor to generate the actual Makefile
that will fit your own configuration. Moreover, those
Makefile use many UNIX constructs (shell or other
tools). So they are not usable as-is under Windows,
where the process is somewhat different.

The Windows Makefile is built by hand from
the UNIX Makefile.in. All common parts are stored
in a special place. An initial configure.pl Perl
script allows one to:

e configure the common parts with options like
root of the destination directory, root of the
source tree, and so on;

e ensure through the configuration that only the
files generated by the current build will be re-
ferred to; that is, no external kpathsea.dll
will interfere, no external pdftex.exe or texmf
will be referred to when generating documenta-
tion or file formats;

e save and restore each of the Makefile files in a
safe place.

Source code configuration. The same Perl script
also undertakes the translation process of every
config.inor c-auto. in configuration file into their
definitive form. Since there is only one target oper-
ating system, there is no need to guess if the fea-
tures are supported — just consult a table of fea-
tures. Thus, doing this ensures better compatibility
with the original source code.

Overall build process. The overall build process
is done by another build.pl Perl script. This script
delegates to the different Makefile and can be asked
to:

e clean up the source tree at different levels

e rebuild dependencies

e build and/or install the whole release

292 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

e use different compilation modes, such as debug
or release, statically or dynamically linked exe-
cutables

e prepare for specific tasks, such as profiling or
using advanced debugging and checking tools
such as BoundsChecker

e install everything from scratch, including in-
stalling the latest teTEX texmf tree

Up to now, the build process is not clean enough,
but nonetheless the source tree has been used suc-
cessfully by people with no previous knowledge.
Cleaning up the Win32 part of the source tree would
allow more people to access it and contributions
from the net could be expected.

Shell issues

The Web2C distribution may ask for font generation
at run-time. This is done through the kpathsea
library calling an external command when it fails to
find some needed font.

Because of the complex and evolving nature of
this process—how many versions of those make-
texpk scripts have been devised? —the generation
of fonts has traditionally been handled by shell scripts.

The shell requirement needed to be removed un-
der Win32 and the Perl alternative, despite some
drawbacks, was considered:

e Perl provides greater portability across such dif-
ferent operating systems as UNIX and Windows;

e Perl is not widespread enough under Windows
and under UNIX, which means you can easily
find it but not every single user will have it or
want it;

e Perl has quite a large disk space footprint.

Had UNIX users been ready to switch from shell
scripts to Perl scripts for this task, things might have
been different but that was not the case. So the only
risk-free and simple solution from the user point of
view was to code the shell scripts in C. Given the
complexity, the C version of the scripts required sev-
eral rewritings before becoming reliable enough. But
now, they do behave like their original shell counter-
parts. And the C version of these scripts can even be
used under UNIX. The several mktex* shell scripts
are provided as one DLL, with several stubs,® follow-
ing the same philosophy as for the TEX engines—
see next section. This means that kpathsea could
be linked with this mktex.d11l and could avoid cre-
ating a new process to generate a new font file.

6 A stub is a small executable program linked to some DLL
and whose only function is to set up some parameters before
calling the DLL. This way, the same large DLL can be called
in different ways by using only small executable programs.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

fpTEX: A teTEX-based Distribution for Windows

Operating system-specific

Two main features have been added and one has
been avoided.

No file links under Windows. The Web2C dis-
tribution uses file links under UNIX for linking pro-
grams under different names. The problem is that
you can have several format files generated by one
engine. For example, latex.fmt and plain.fmt are
both run with the tex.exe engine. Under UNIX, the
tex engine maybe linked under the names latex
and plain, and the name under which the engine is
linked determines which file format is loaded.

There are no file links under Windows * and
all you can do is simply copying the tex.exe engine
to latex.exe and so on—at the expense of disk
space. Given the number of engines, some of them
being quite large, it is important to overcome the
problem of file links.

Fortunately, for executable programs, there is a
natural way of doing something similar to file links
using the Win32. The trick is to build a DLL with
all the engine code and to have a small stub linked to
the DLL. This way, the DLL is shared and the stub
can be copied without using too much disk space.
For example:

7

03/17/99 08:44a 16,384 pdfinitex.exe
03/17/99 08:44a 16,384 pdflatex.exe
03/17/99 08:44a 389,120 pdftex.dll
03/17/99 08:44a 16,384 pdftex.exe
03/17/99 08:44a 16,384 pdfvirtex.exe

There are four stubs linked to the same DLL. Should
you create a new format file called frpdflatex.fmt,
for example, you only need to copy pdftex.exe to
frpdflatex.exe and the new format file will be
loaded automatically by calling the new command,
which has a very small footprint on disk.

There are other potential advantages:

1. upgrading to a new version of pdfTEX could be
done by only upgrading pdftex.dll;

2. clever TEX shells could drive TEX engines di-
rectly by talking to the DLL and not use the
command line.

Accessing files on the network. Under Win-
dows, you can access files shared on the network by
using UNC names. UNC refers to Universal Nam-
ing Code, a syntax introduced by Microsoft to re-
fer to shared resources—files or devices— available
through the network. The kpathsea library is thus
made aware of UNC names, means you can make

7 Shortcuts are not file links but rather redirections, avail-
able only through the Windows shell environment, not from
the command line.

293

Fabrice Popineau

$TEXMF point to \\TeXServer\TeXmf or ask dvips
to print on \\TeXServer\printer.

The registry. Under Windows, every program ac-
cesses the registry to retrieve its parameters and all
required information. The registry is a database,
shared across the network which encompasses the
environment.

So the question arises: should the port of Web2C
to Windows use the registry? The answer is no.
The main reason is that it is not recommended that
end-users modify the registry by hand — there is too
much potential danger for their system. So storing
the configuration into the registry would prevent
users to easily change the way their tools behave.
Temporarily setting environment variables is a quick
way to modify kpathsea behavior and a very useful
feature which it would have been unwise to remove.
Users can fiddle with their configuration parameters
exactly in the same way they would under UNIX: by
either editing the texmf.cnf file or overriding pa-
rameters in the environment. It is always a matter
of getting the best of both worlds.

Previewer

Motivation. It was not at first my intention to
devise one. DVI format is not a modern format any-
more. Even if it fulfills everybody’s needs, it does
not mean it will last. The new pdfTEX extension
has demonstrated that DVI is not mandatory for a
TEX system. Thus, devising a previewer for Win32
is not a simple task. Spending lots of time on a tool
that might turn quickly into something obsolete is
not very appealing.

But no TEX distribution would be complete with-
out a DVI previewer: many TEX users stick to the
good old (plain- or BTEX-generated) DVI format be-
fore any kind of PostScript conversion.

We still might argue that Ghostscript provides
an accurate view of what will be printed, but the
process of TEX — dvips — Ghostscript is somewhat
slow and heavy for many documents.

So I ended up in looking at the xdvi source code.
As T had no previous experience of Win32 graphics
programming nor of X-Window graphics program-
ming, so this was another reason for doing the pre-
viewer.

Porting graphics application. If we omit the
interface, xdvi uses only a few primitives from X-
Window: it only needs to draw bitmaps for glyphs
and rectangles for rules. So the decision was made
to adapt to Win32 everything that could be (the
page reading and drawing mechanism, for example)
and to rewrite the user interface part.

294

All but two of the C source files have been
patched to compile under Win32 and the missing
graphic primitives have been added. As well, a new
user interface has been devised following the sam-
ples provided by Microsoft with their Win32 System
Development Kit.

Some issues have been raised —and solved! —
by the redisplay mechanism. The main problem
with the redisplay was where it should happen: in
memory or directly onto the display surface? The
former was easier but had one major drawback: at
a scale factor of 1 and 600dpi, an A4 color page
would be huge (about 34Mb). So, on a second try,
the redisplay was changed to draw directly onto the
screen. In fact, both solutions are still in the source
code but only one is activated.

This is also the same reason for Windvi not dis-
playing PostScript inclusions at a scale factor of 1:
Ghostscript is told to allocate the whole page be-
cause it can be asked to display raw PostScript code.
So this time, Ghostscript would require the 34Mb
page. It does work under Windows N'T — albeit very
slowly —but it is too heavy for Windows 9x.

This was also the opportunity to fully under-
stand where Windows 9x and Windows NT are dif-
ferent. They share the same API but they behave
in very different ways. For example, the first data
structures I built and that used to work under Win-
dows NT assigned one bitmap handle per glyph used
in the DVI file. It was even pretty fast but the same
program running under Windows 9x was slow and
eventually crashed. Looking at the resources, all the
graphics resources were used. How to explain such
different behavior? In fact, the Windows 9x GDI—
the kernel part that implements graphics services—
allocates all the graphic objects in a few 64K stacks.
The one dedicated to bitmap headers was quickly
filled in when the DVI file was using even a low num-
ber of fonts.

Features. The features of Windvi are almost the
same as those of xdvi. I have tried to mimic the
behavior of xdvi whenever possible and, at the same
time, to add Windows behavior via status bars, tool
bars and tooltips. The most important features of
Windvi include:
e monochrome or grey-scale bitmaps (anti-alias-
ing) for fonts
e easy navigation through the DVI file
— page by page
— with different increments (by 5 or 10 pages
at a time)

— go to home, end, or any page within the
document

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

fpTEX: A teTEX-based Distribution for Windows

Fahrie §

Sarh |

Clontends

1 Risienslaitiang)
1 1 Ll w !

i "I LRIHINEND

Where to

e

fprlEs 0.3 User's Manial

njuluraca
-1

apniar fr

H. [IEE

o [SNTIL

Preparing

Lo

Gl uraiion

Fepls

. Troreiles bt g,

L Flmsvaiigor pausssorulioee.

Figure 1: Windvi featuring magni

different shrink factors to zoom page in and out
magnifying glass to show the page at the pixel
level

compatible with xdvi keystrokes

use of .vf fonts

display .pk and .gf font files

automatic generation of missing .pk files, even
for Type 1 fonts

tracking DVTI file changes and automatic reopen-
ing

understanding of Q extended DVT files
drag-and-drop file from the Windows shell ex-
plorer

external commands through \specials

color support (¢ la dvips)

real-time logging of background font generation
visualization of PostScript inclusions

support of Hyper-TEX specials

printing.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

fying glass and Hyper-TEX links

The main features not found in xdvi are color
support and printing. The latter was again the op-
portunity to test different behaviors between Win-
dows 9x and Windows NT — quite painful to debug.
In fact, printing is something not at all easily done
because there are many ways to handle it:

1. Print through the generic Windows printer driv-
er, but PostScript specials will not be printed.

Ask dvips to convert the .dvi file to PostScript,
and then either send the file directly to the
printer, if it can handle it, or else call Ghost-
script to do the job.

. Build a bitmap with the page, PostScript spe-
cials included, and do banding (because the page
would be huge) and send the bitmap to the
printer.

Currently the first and third options are implement-
ed but the third one uses lots of Windows 9x re-
sources.

295

Fabrice Popineau

Last, the fact that Windvi is quite close to a
port of xdvi was rewarding when it came to imple-
menting the Hyper-TEX feature, which relies on the
use of the libwww library, maintained by the W3C
consortium. Fortunately, this library is available for
UNIX and Windows. The net result was that adding
this Hyper-TEX feature to Windvi took only a cou-
ple of hours to have a first workable result that al-
lows navigation inside the document and referenc-
ing external programs. However, it turned out that,
under Windows, this library is not mandatory at all
because the shell can be called to open URLs, so it
is not needed anymore.

Installation

Packaging TEX. Maintaining a texmf tree is a job
that is very well done by Thomas Esser for teTEX
and by Sebastian Rahtz for the TEX-Live CD. Given
such a tree, I wanted to find a way to automatically
group files by packages.

As has been pointed out in electronic discus-
sion lists,® there is a lack of a standard procedure
to install TEX packages. So there is no way to get a
source texmf tree and build it, logging where every
single file has been installed. So I wrote a few Perl
scripts to reverse-engineer the build process, keeping
the following goals in mind:

e Have three levels of completion: basic, recom-
mended and full; given a package, these levels
are guessed by heuristics from the lists files,
devised by Sebastian Rahtz and to be found on
the TEX-Live CD.

e Build a two-level structure targetted for Install-
Shield us (see next section); this structure is
based on components (e.g. latex, omega, ...)
and subcomponents (e.g. latex\graphics).

e Group files as much as possible; for example,
to group fonts files, style files, source and docu-
mentation files for one package. This was done
by implementing some kind of rule-based sys-
tem in Perl, along with some other ad-hoc rules.

e Give a description for each sub-component; this
was done using the Web description of TEX
packages assembled by Graham Williams.

The result is not perfect, especially for the TEX-Live
CD, with its huge number of packages. Notably,
the automatic detection of descriptions is flaky —
some of them being false, but this is harmless—and
the recommended installation installs far too many
packages, which means that the levels attributed to
packages have been underestimated.

8 See the dedicated mailing list on tug.org.

The installer. There is a product dedicated to
building installers for Windows that is widely known
and used in the Windows world, called InstallShield.
Given a tree structure of components to which are
associated file groups and a few setup schemes, it
will build a nice looking installer.

But things are not so easy when it comes to
installing a huge distribution. While InstallShield
handles many common installation cases well, TEX
is quite special because of the large number of files.
This provides the opportunity to experiment with
bugs and any limitations in InstallShield. FEven
though it is being used for the current release of
fpTEX and the TEX-Live CD, it will probably be
abandoned and replaced by a dedicated installer.

All in all; even if the installer is not perfect or
flexible enough, it is useful enough to install from
the TEX-Live 4 CD. The latest version of the in-
staller used on fpTEX even makes it possible to add
packages on top of an existing installation. And fi-
nally, it has been useful to use InstallShield to sort
out all the problems related to installation; even if
it is not used for future versions, the specifications
are still there.

Windows integration. Most environments dedi-
cated to TEX in one way or another will support
fpTEX. Amongst them, we can cite WinEdt, 4TEX
and XEmacs.

Configuration

Assuming a recommended installation, there is little
to configure. But, as pointed out in the introduc-
tion, Windows users expect dialog boxes not text
files to be edited. This has lead me to devise a
dialog box-based tool targetted at fpTEX configu-
ration. The texconfig.exe tool allows the user to
access most of the configuration files in a point-and-
click way.

Moreover, the standard Windows menus are pro-
vided with shortcuts to command-line tools (to re-
build formats or file database) and to local web
pages (to access the documentation).

Future work

Some of the above-mentioned components will be
enhanced in the near future.

Previewer. Even if the DVI format is old nowa-
days, many people are still using it so I will enhance
Windvi in the following ways:
e Type 1 and TTF font support
e other graphics files format support
e graphical transformations for glyphs and rules
under Windows NT

296 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

fpTEX: A teTEX-based Distribution for Windows

e |

Main Pathes | Font naming | Sizes | Peltex|
| Patk

Yariable

+ B2 TEXMFCMF

+ B2 TEXMFDBES

+ B TEXMFMAIN

+ " TEXPOOL

- W TEXPSHEADERS
@ cort-ds

cont-en

ATERME Hpdites tex, dvips fontsAtyped FA74
ATERMF Hpdites tex, dvips fontsAtyped 1A

‘cant-hl

ATESMFHpdites tes dvips fontsAtupel 124

context
default
pdfczlates
pdfczplain
pdfelatex
pdfetex
pdfjadetes
pdflatex
pdfmes
pdftex
pdftexinfo

SOOI OOP

CATEXMF Hpdftes tex, dvips fonts/typel 144
ATEXMF Mdvips, pdftex tex fontstyped 124
TERMF Mpdites tes, dvips fonts ypel HAY
CSTESMEF Mpdites tes, dvips Forts wpe HAY
CETEXME Hpdftes tew, dvips fonts/tupel 1Y
ATERMF Hpdites tex, dvips fontsAtyped FA74
ATERME Hpdites tes, dvips fontstyped 1247
CATEXMF Hpdftes tex, dvips fonts/typel 144
ATEXMF Mpdftes tex, dvips fontsypel 124
CBTERMF Hpdites tes, dvips fonts wpe HAY
CSTESMEF Mpdites tes, dvips Forts upe HAY

+ " TEXSOURCES

Al
ok |

Concel | e | Hen |

Figure 2: texconfig.exe tool editing pdfTEX related paths

e two-page spread mode

e forward and inverse search; that is, from the
editor to the DVI file or from the DVI file to the
editor

e cut-and-paste to other applications

Installation. The dedicated installer is being work-
ed on. It will handle installations of both fpTEX
and TEX-Live. The fpTEX files will be distributed
as .zip files and if they are not present, the installer
will try to download them from the net.

Configuration. The texconfig.exe program is
not yet available. Its interface needs to be discussed
because it is difficult to be simple and powerful at
the same time. Many users want to tweak the con-
figuration whereas, to make this thing really simple,
we should hide most of the configuration parame-
ters.

Availability

The whole package is available from CTAN, in the
systems/win32/fptex directory. More information
is available from www.ese-metz.fr/ popineau/
fptex, the home of fpTEX. The TEX Users Group is
kindly hosting a dedicated mailing-list, fptex@tug.

org, to which you can subscribe by sending a request
to majordomo@tug.org.

Acknowledgements

All this work relies heavily on the work done by Karl
Berry, Thomas Esser, Sebastian Rahtz and Olaf We-
ber on the UNIX distributions Web2C, teTEX and
TEX-Live.

Obviously, the numerous authors of all the pack-
ages present in fpTEX — programs or TEX style files —
are thanked too for having shared their work.

References

Berry, Karl and O. Weber. “The Web2C distribution
of TEX”. http://tug.org/web2c, 1999.

Esser, Thomas. “The teTEX distribution of TEX”.
http://tug.org/pub/teTeX, 1999.

Gurari, Eitan M. “A demonstration of TEX4ht”.
http://www.cis.ohio-state.edu/ gurari/
tug97/tugd7-h.html, 1997.

Popineau, F. “Rapidité et souplesse avec le moteur
Web2c-7". Cahiers GUTenberg 26, 96-108, 1997.

Popineau, F. “Windvi User’s Manual”. MAPS 20,
146 — 149, 1998.

van Dobbelsteen, G. “DVIview: A new previewer”.
MAPS 20, 120-124, 1998.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 297

Jeffrey MCEArthur

Managing TEX Software Development Projects

Jeffrey MEArthur
ATLIS Publishing Services
8728 Colesville Road
Silver Spring, MD 29010

jmcarth@atlis.com

Abstract

During the past few years, many articles and books have been written about
managing software development projects. Software development projects using
TEX require some special attention. This presentation looks at the entire software
development life cycle as it applies to TEX and the following issues in particular:
requirements specification, design specification, coding standards, code review

checklist.

Why use software development
management techniques?

Writing good, versatile and well-documented code
should be the goal of anyone developing macros
in TEX. Unfortunately, even the macros that
are included in the standard distribution of TEX
fail that standard. Books typeset using TEX
often have special coding scattered throughout the
source to make the book layout better. The
macros used, however, do not always work the
way the documentation says. Book typesetting
specifications are often incomplete and ambiguous
or refer to the style of some other book without
any detailed information on fonts, page size, and
so on. Specifications can, and usually do, change
and mutate during the production process. Poorly
documented and bug-ridden macros make managing
the process a nightmare.

Database publishing pushes the process to its
limits. It is one thing to produce a book once, or
even once a year; it is another thing to produce
the same book each and every month, in a scenario
in which the data changes on a daily basis and is
extracted out of a database only for composition.
Database publishing does not allow the luxury of
scattering special code throughout the sources. The
production process is often automated and the TEX
typesetting macros must be written to take care of
all contingencies because the input data file format
cannot be adjusted to make the book layout better.

One solution is to use software development
management techniques. This paper is an attempt
to define a template or checklist suitable for man-
aging a software development project that uses TEX
as one of its primary programming languages.

Requirements specification

The first step in any software development project
should be to create a document known as a re-
quirements specification. This document defines
the project in very broad terms. A copy of the
requirements specification should be given to every-
one involved in the project; any time a requirement
changes, everyone involved should be informed of
the change by receiving an updated requirements
specification document. The requirements specifi-
cation should include:

Description. I am amazed at how difficult it is
to describe some projects. If it is not possible to
write down a simple paragraph that gives a valid
description of the project, that project is not well
defined and has a high probability of getting out of
control.

Project goal. Once the project is described a
goal or goals can be defined: “If you don’t know
where you are going, then how can you know when
you get there?” Defining the project goal can force
important issues to surface at the start of the
project. A written project goal provides a means
to objectively measure the success or failure of a
project.

Needless to say, the project goal should be
documented and understood by all members of the
software development team as well as the project
manager. Failure to have a documented goal will
lead to feature creep and project drift.

Overview of problems to be solved. Describe
the fundamental problems that need to be solved.
Converting the existing data into a usable format
may be a real challenge. Word processing files,

298 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

poorly organized databases with little or no doc-
umentation, and spreadsheets can, and often are,
the only available format for the data. All must
be converted into a format suitable for typesetting

with TEX.

Tasks/Functions. Specify the tasks or functions
the macros perform. For example, if there are
any extracted indexes or page cross references they
should be defined.

Current mode of operation. It is useful to know
the current mode of operation. This avoids the
problem of creating a solution that cannot be easily
integrated into the working environment of the user.
For example, if the user is a hard-core plain TEX
user, providing a set of macros that only work under
IATEX would not be an appropriate solution.

Communications. Does the user expect the data
back in some other format? One rather large project
that I was involved in required converting data
from a proprietary typesetting format into SGML,
typesetting a book, and producing an electronic
version of the data on CD. We finished the book
and the CD and figured we were done for the
quarter when the client called up and asked us
about the “mag-tape version”? Our marketing
department had forgotten to tell us that we had
to create yet another deliverable. The data was to
be delivered on an IBM formatted 6250 BPI mag-
tape with a specific tape label. The requirements
document should have specified that deliverable.
Unfortunately it did not, and we had to scramble to
pull together the resources to complete the project.

If the data undergoes any conversion processes
it is important to specify the life cycle of the
data and its changes. This means that the date
(and possibly the time) when the data is frozen
for production should be specified. If the data is
modifed for typographic reasons during the produc-
tion process, it must be specified if the original
data is to be updated to match the typographic
changes. For example, if the data is in SGML or
XML it is common to add processing instructions
to the data to help with the typography. It is
sometimes necessary to make structural changes in
tables, particularly CALS SGML tables,! to make

1 Continuous Acquisition and Life-Cycle Support
(formerly Computer-aided Acquisition and Logistics
Support) (CALS) is a Department of Defense (DoD)
strategy for achieving effective creation, exchange,
and use of digital data for weapon systems and
equipment. MIL-PRF-28001C is the military stan-

Managing TEX Software Development Projects

them typeset properly. Changes of this type require
complex changes to the source. If the data must be
returned in a format that could be used again, the
returned data must include the structural changes
to the table elements.

Another example involves the creation of a
printed book and an electronic product, e.g. CD-
ROM. Typographic changes due to typesetting the
book may need to be reflected in the CD. Failure
to document this requirement can lead to serious
problems if the products get out of sync with each
other.

Ease of use. Specify how experienced with TEX
the user of the macros should be. It is all too
easy to create macros that only an expert can use.
Occasionally, however, it is appropriate to create
complex macros. The key is to document the
expertise needed, since the level of experience of
the user also defines the amount of detail that the
documentation needs.

Hardware/Software. Specify the hardware plat-
form(s), operating system(s), and implementa-
tion(s) of TEX that the macros will run on. This
is important if you are using some of the modified
implementations of TEX like e-TEX, Omega, or
PDFTEX.

Some implementations of TEX are compiled for
a particular memory size. Other implementations
are configurable. In either case, the minimum and
recommended TEX memory size should be specified.
This will let the user know if they have to use a
larger version of TEX or reconfigure their existing
version.

TEX has a very small memory footprint by
today’s standards. Unfortunately some of our users
have just about everything running on the PC at one
time. One of our users has the following programs
running at all times: FExcel, Word, Outlook, Internet
Explorer, and several other proprietary pieces of
software. “Bloatware” software packages can use
up tremendous amounts of local disk space and
memory. Attempt to define the possible interactions
that might occur if other software packages are
running. Define the amount of both network and
local hard disk space required.

dard for CALS markup requirements. A soft copy

of this is available at:
http://www-cals.itsi.disa.mil/core/
standards/28001C.pdf

Because CALS tables are designed to support the

entire DoD they are very complex and difficult

to use.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 299

Jeffrey MCEArthur

Quality. Outline in broad terms the rules for word,
paragraph, column, and page breaking.

Performance. TEX is a high-performance typeset-
ting system. Usually there is no need to worry
about performance. However, the generation of
PDF pages on demand by a web server can become
a performance issue. List all performance criteria.

Compatibility and migration. Specify if the
macros are based on plain or I4TEX or something
else. Specify if the macros have to be compatible
with any other macro package. If the macros are a
replacement /upgrade of an existing package specify
what amount of re-learning will be required of users
as they migrate their data to the new package.

International. Specify the need to support run-
ning and/or continued heads that may include sup-
port for ® and ™ as well as accented characters.
Specify how ® and ™ are to be typeset: superscript
or not, serif or sans-serif or font dependent.

Itemize the languages to be supported. Each
language requires it own hyphenation dictionary.
The encoding of the input data should be defined.
Determine if the data uses the Latin-1 encoding or
some other format, e.g. UTF-8.

There is a lot of data with accented characters
that uses MS-DOS code page 437 or 850.2 This data
is not compatible with the TEX standard encoding
or 8r, used with most PostScript fonts. The way
the data is encoded should be documented.

Service and support. Itemize the level of service
and support. The days and hours when support is
available should be listed in detail.

Pricing/Licensing. Define the ownership of the
macros. Specify the method by which the source
code will be provided and if the source code can be
de-commented.

Design specification

Creating the design specification document can be
done in parallel with creation of the requirements
specification document, but it should not precede
it. It is important to understand what is required
prior to defining the design of the pages.

2 The term “code page” refers to the keyboard
and display encoding. When MS-DOS was developed
there were no accepted standards for the layout of
accented characters. Code page 437 was the default
layout for the version of MS-DOS that what shipped
to the United States, and code page 850 was the
default layout for Wester Europe.

Publishers often provide design specifications,
but publisher-supplied design specifications are of-
ten incomplete, vague, and ambiguous. Even when
the publisher provides such information, a docu-
ment should be created that defines all the details
required by the project.

Documenting the specifications also gives the
typesetter a mechanism to generate additional rev-
enue when the publisher makes changes at the last
minute.

Description. Give a detailed description of the
typeset pages.

Output format. Define the output medium.
Resin-coated paper and film are still used as well
as electronic formats. The design specification doc-
ument should unambiguously define the format of
electronic files. There are many possible standard
electronic formats: PostScript, PDF, or separate
EPS files. If the deliverable is in PostScript, identify
which PostScript level 1, 2 or 3 is required, and
if the files are to be DSC-compliant (Document
Structure Convention). Specify how many pages
will be in each output file.?

If the final deliverable to the printer is to
be electronic files, it is important to establish a
dialogue early in the process with the printer’s
technical staff in order to determine the specific file
formats needed.

Covers/Spines. State if book covers and/or spines
are part of the deliverable.

Page size. Define the physical size of the page.
In PostScript this is also the bounding box. If
there are crop marks, the size of the physical page
will need to be larger than the size of the trimmed
page. The size of the trimmed page should also be
defined.

PostScript and imposition software may have
additional requirements. The bounding box of
the printed page may or may not need to include
the crop marks, depending on the needs of the
imposition software.

Crop marks. Specify if crop marks are needed
and where they are to be located. Today, many
web press printers want crop marks, but they must

3 Some imagesetters limit the number of pages
they can process in a single file. Often long runs
must be broken into ten or twenty page batches.
When this happens, the design specification docu-
ment should also define the file naming convention
for the multiple pieces.

300 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

be located one-eighth of an inch outside the page.
Specify the location of the crop marks and what
they should look like.

Color separations and registration marks.
Define the number of color separations and what
information is printed on each separation. Regis-
tration marks should also be specified. The use of
spot color or highlighting also needs to be defined.

Screens. Specify if there are any screens on the
pages or if the pages are to be set on colored
paper. Also define the amount that the screens
must extend beyond the trim size.

Bleed tabs. Define the number, size, and place-
ment of any bleed tabs as well as the amount that
the tab should “bleed” beyond the trim size.

Makeup. Define the number of columns per page
for each section of the book. The rules for starting
a new column, new page, and new right-hand page
should all be specified.

Fonts. Define what fonts are to be used. If the
output is PostScript or PDF, the document should
also specify if the fonts are to be embedded in the
document. Also specify if embedded fonts must be
the entire font or if the font can be a subset of only
the characters used by the document.

Running heads. Define the running heads. The
rules for any alpha-omega or dictionary heads should
be specified. The document should also define if
math, accented characters, or other complex textual
material can occur in the running heads since these
may require particular attention.

Even if there is initial agreement that there
will be no math in the running heads, this may
change later in the process. Any changes to design
specification must be agreed to by all parties.

Continuation heads. Define the number and
type of continuation heads. As with running
heads, the document should define if math, accented
characters, or other complex textual material can
occur in continuation heads.

Sorting. If the data is to be sorted, the rules for
sorting must be defined. Particular attention should
be made to rules for ignoring leading articles such
as “a”, “an”, and “the”, casing and punctuation.
The sorting order for names can be particularly
complex and must be defined.

Sorting languages like Chinese can be partic-
ularly challenging since it can be sorted in either
radical then stroke order or stroke then radical

order. The order is dependent upon the publisher’s

Managing TEX Software Development Projects

preference. Dealing with sorting and punctuation in
Chinese is particularly painful. Japanese has even
more complicated sorting requirements. All of these
need to be specified if the sorting involves Chinese,
Japanese, or Korean.

Cross-references and hypertext links. Define
the types of cross-references. The document should
define if they are simple references, or actual page
cross-references or even hypertext links. The for-
matting style for hypertext links should be defined.

Extracted indexes. Define any extracted indexes.
The sorting order for each extracted index must be
clearly described and all exceptions noted.

Graphics and line art. Define the parameters for
line art. If there are specific limits on the art size
or shape they must be documented. The acceptable
formats for the artwork should be specified. If the
artwork is to be scanned, the scanning resolution
should be specified as well as the delivery format.
If there is an approval process associated with the
artwork? it should be clearly spelled out.

Hyphenation. Define the rules for hyphenation.
Any multi-lingual document requires special atten-
tion to defining the hyphenation rules.

Widows and orphans. The rules for breaking
paragraphs, columns, and pages should be defined
in detail. Special attention should be devoted to
pages that run short or long.

Additional breaking and grouping logic. De-
scribe any logic that may be required for grouping.
For example, it may be undesirable to break address
listings except at specific places. For example: the
city, state or province, and postal code should sit
as a block, except when they will not fit, and then
it should break following the city. The rules for
addresses outside of the United States and Canada
should be defined in detail.

Blank pages. The direct-to-plate technology does
not come without a price: imposition software
demands consistency. Often it is necessary for the
final deliverable electronic pages to include blanks.
When a section of a book is defined to start on a new
right-hand page, the typesetting macros may need
to output a blank page instead of just incrementing
the folio. Bleed tabs, crop marks, and screens
complicate the process.

4 Advertisements in books are generally artwork
that must be approved prior to printing in the
finished book.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 301

Jeffrey MCEArthur

Front and back matter. Cover pages, copyright
pages, and dedications are often created using
WYSIWYG software. If the book is to be printed
using direct-to-plate technology these pages may
need to be integrated into the electronic files for
the body of the book. How these pages are to
be delivered and who will be responsible for the
integration must be documented.

Typesetting deliverables. Define how the fin-
ished pages are to be delivered. In the case of
film or photographic paper, include the shipping
address and how the package is to be shipped. If
the deliverable is electronic, specify how the data is
to be transferred or shipped. Define the acceptable
media: floppy, zip-disk, CD-ROM. If the files are to
be electronically transmitted, list the email address
or the ftp site to which the data is to be sent. If
the data is to be transferred through a firewall, the
security measures should be specified.

Features/Enhancements. Define possible future
features or enhancements that could be made to the
typesetting macros.

Exit conditions. The printer has the final word
on the design specification document. The location
of crop marks, bleed tabs, registration marks, and
screens may need to be adjusted to meet the
demands made by the printing press. Sample pages
should be sent to the printer for their approval as
soon as possible in the process.

Metrics

Dr. W. Edward Deming, a well-known author on
management techniques and practices, introduced
various quality control methods into management
practice. He emphasized that you cannot manage
what cannot be measured — otherwise you have no
idea if what you are doing helps, harms or has no
effect. He also introduced a number of statistical
techniques for measuring product quality, as well as
procedures for measuring improvement.

Therefore, as part of managing the develop-
ment process, it is important to create an objective
measure of the quality of TEX macros. As a pro-
gramming language TEX has some unusual features
such as the ability to change the category code
of characters. This makes it difficult to create
accurate metrics. The solution is to enforce coding
standards.

Metrics are a complex and controversial subject
that requires more than just a few paragraphs. I
plan on writing a detailed paper in the near future,
to cover the topic of metrics and TEX.

Coding standards

There is very little literature about coding standards
for TEX. ProTeX and docstrip are tools that
are supposed to aid in documentation and code
generation, but neither assures consistency in coding
style.

Introduction. This is an attempt to introduce a
formalized set of standards for software develop-
ment using TEX. During the past nine years I
have managed nearly twenty man-years of extensive
development in TEX and this paper is based upon
that hard-earned experience. My focus has been
exclusively on plain TEX, although most of these
standards can be applied to IATEX.

Scope. This set of coding standards and con-
ventions for coding and commenting TEX macros
will help ensure consistency and maintainability.
These standards were created not only for newly
developed code; any maintenance change to existing
code should attempt to bring that code into confor-
mance with at least the commenting standards.

Purpose. Coding standards provide a frame-
work for developing code that is both internally and
externally consistent. The framework should pro-
vide the support necessary to allow the programmer
to concentrate on creating the best implementation
of the code.

Deviations from industry standards. The
TEXbook defines a coding and commenting standard
by its numerous examples. The coding style used
in The TgXbook puts multiple statements per line
and uses trailing \fi. This style makes it difficult
to follow the logic of the code.

Instead of continuing to emulate the standard
defined in The TEXbook, this is an attempt to
define a new standard that treats TEX macros like
any other software development language.®

Some will argue that the coding styles in
printed books such as The TEXbook and TEX: The
Program are used to save space in the printed
product. Paper-saving economies that may have
been exercised for budgetary reasons should not
have a long-term bearing on standards particularly
if the result is compromised clarity. TEX is about
fine typesetting. Listings of code should be held to
the same high standard as typesetting text.

There are tools to help with coding. The editor
I use has a mode that is supposed to assist with the
formatting of TEX. I find it more trouble than it

5 McConnell (1993) is an excellent reference and
is the basis of much of this standard.

302 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

is worth, particularly since I rarely work with the
standard \catcode settings.

This points out the problems with tools like
funnelweb and ProTeX: they place restrictions on the
type of data the macros can be used with. If your
input file is in SGML or XML, there is absolutely no
reason to preprocess that file before using it with
TEX. It is relatively simple to typeset SGML or
XML data using TEX.

Working directories. The TDS, TEX Direc-
tory Structure, is designed to stabilize the organi-
zation of TEX-related software packages. Unfortu-
nately the TDS does not work in an environment
where there are multiple projects that use TEX as an
embedded typesetting engine or in an environment
where there are multiple projects where TEX is only
one of a number of tools used. It is preferable
to keep all the macros under development in close
proximity to the rest of the project and not part of
the TDS tree.

The directory structure in use at ATLIS Pub-
lishing Services is quite different from the TDS. The
top-level structure is based on accounts. Ideally,
each account is broken into projects. Under each
project specify the following directories:

doc for Documentation and correspondence

help for help files

version for version control files

alpha for distribution files that are part of the

current alpha release

e beta for distribution files that are part of the
current beta release

e release for distribution files that are part of

the current production release

tex for TEX files

sgml for SGML, DTD files and such

lex for Lex files

Delphi3 for Delphi 3 files

Delphi4 for Delphi 4 files

and so on for other project-specific files

Format files and such are built and copied to
the alpha directory where they are tested. When
the macros have passed regression testing, the alpha
files are moved into the beta directory as part of
a ‘beta’ release. When the ‘beta’ release has been
tested by the end users and accepted, the files are
copied into the ‘release’ directory.

6 The website www.greenbook.net/free.asp al-
lows viewing of thousands of SGML documents that
were typeset using TEX without the use of any
preprocessor. XML is a subset of SGML.

Managing TEX Software Development Projects

File naming conventions. Below is a table show-
ing the proposed file-naming conventions for macro
and font files:

Prefix Extension Description

.tex source file
.sty macro include file
.fnt font include file

.dat data file
Tst, .tex unit test file

Source file. TEX uses .tex as the default
extension for input files. This extension should
only be used for files that can be used on the
command line for TEX. That is, any file which is to
be run by itself through TEX or any file that can
create a format file. If the file will only run with
a particular format file, e.g. IATEX files, then the
extension should not be .tex. It should be possible
to determine the purpose of the file and how to
process the file from its file name. Using the .tex
extension for files that require the IATEX format is
counter-intuitive because the extension implies that
the file will work with TEX and does not imply that
a format file is required.

Macro include file. Style, or .sty files,
contain macro definitions. A .sty file should not
produce any output to the .dvi file.

Font file. TEX provides a tremendous amount
of power in its use of the \font primitive. Unlike
some desktop packages, TEX allows complete control
over how fonts are loaded and how they are used.
One of the goals of good macro design is to separate
form from function. That is, the data should be
tagged as to its purpose and not as to how it looks.
This philosophy should also be reflected in the way
fonts are loaded. \font statements should not be
mixed with macros. Fonts should be loaded as part
of a separate file (or files). This makes it easier
to change the fonts used to typeset a document.
The document itself should not reference any font
by anything but a generic name. The New Font
Selection Scheme (NFSS) follows this same principle.

To promote this methodology the .fnt files
contain all the \font statements. This has some
significant advantages over the standard IXTEX
method of specifying fonts. IATEX allows the user
to specify the main point size of the document
in the \documentclass statement. Changing the
main point size of the document requires the main
data file be modified. It is better to separate all
references to fonts and font sizes from the document.

File names. Having a portable file name
versus with an understandable file name is the main

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 303

Jeffrey MCEArthur

issue in choosing a standard for file names. “8 + 3”
file names are more portable than long file names
but it is difficult to use meaningful file names with
only eight letters. All users should be polled to
ensure that they can process the long file names,
however. To avoid any possible problems, all file
names should be limited to strictly alphabetical
characters.

Coding conventions.

White space or blank lines. Blank lines
should be used to show the organization of the file.
Files with no blank lines are difficult to read and
understand.

Dividing lines. By default TEX uses the
percent sign, %, as the comment character; it also
makes a good section divider. I recommend using
a line of percent signs to separate sections of text.
It is possible to mark off major sections by using
double lines of percents. Minor sections can be
delimited by using half lines or quarter lines of
percent signs.”

Version control. Keeping track of revisions,
releases, and versions of software is important
to all successful software development projects.
Integrating TEX with a version control system is
relatively simple. There are numerous version
control systems, each with their own features and
syntax. Each set of TEX macros should announce
to the user what version of the macros they are
running. The following code fragment shows one
method of passing the version information to a TEX
macro:

% First for the revision level
\def\DefStyleVersion’#1’{}
\gdef\StyleVersion{1l.#1}}

% **xkeyword-flag*x ’Yv (%d %t)’
\DefStyleVersion’2 (5-Aug-98 2:42:04)’

The version number should be announced to the
user by using \everyjob.

General coding conventions. The Funda-
mental Theorem of Formatting is that good visual
layout shows the logical structure of a program
(McConnell, 1993:403). TEX macros should use a
layout style that:

e accurately represents the logical structure of
the code

e consistently represents the logical structure of
the code

7 Some editors allow the user to specify how
many “repeats” of a character to use, a function
which facilitates insertion of such dividing lines.

e improves readability
e withstands modifications as the code is main-
tained

Modularity. Macros should be written in a
modular fashion. For example, the macro should
not call out fonts by their point size but rather
by their usage. So, instead of using \tenrm
the macro package should reference something like
\NormalRoman. This allows the fonts to be replaced
conditionally depending on context.

In almost every case, over the past nine years
of software development projects using TEX, the
font set had to be changed at some time during
the project. In many cases different outputs were
created using different sets of fonts.

The same input file can be used to create
dramatically different output formats. One project
entailed typesetting a directory of telephone and fax
numbers. The input composition file was approxi-
mately 60 MB in size. From the single composition
file two different directories were created. The
first, much larger, included both the phone and
fax numbers. The second, much smaller, contained
listings only with fax numbers. The TEX macros
were written to programatically suppress listings in
the directory if they did not have a fax number.

Macro coding conventions. TEX macros
should be self-documenting. In other words, the
code should be commented in such a way as to make
it easy for the casual reader to understand what the
macros are doing, no matter how complicated the
actual logic is. Each macro should have a preamble
comment. The preamble should define what the
macro does. If the macro takes parameters, each
parameter should be documented as to what it
is and what its expected value should be. If the
macros take optional parameters then those optional
parameters should also be documented.

Indentation. To accurately and consistently rep-
resent the logical structure of the code, macros
should be formatted using a block indentation style.

“if” coding conventions. All if-else—fi test-
ing should show the logical block structure of the
code. Below is an example of code that does not
show the logical structure:

\def\strut{\relax’
\ifmmode\copy\strutbox,
\else\unhcopy\strutbox\fi}

The logical structure is much easier to understand
using the following formatting style:

304 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

\def\strut{%
\relax
\ifmmodeY
\copy\strutbox
\else
\unhcopy\strutbox
\fi%
}

“elseif” coding conventions. TEX does not
define an \elseif primitive. Occasionally it is
useful to do several sequential tests, such as testing
a parameter to see if it matches some pattern.
Because the tests are sequential, a strict indentation
style would be difficult to read. In those cases a
modified indentation style should be used:

\def\TestValue{%
\ifx\next\ValAY
\ProcessA’,
\else\ifx\next\ValB},
\ProcessB/
\else\ifx\next\ValC}
\ProcessC}
\else,
\ProcessOtherY,
\fi\fi\fi%
}

Specialized TEX coding conventions. The
code necessary to change the value of the TEX
escape character, \, in order to process verbatim
text or produce auxiliary index files, is difficult to
document. In cases like this, there should be an
extensive preamble that documents the process.

User interface. TEX is a batch processing type-
setting system and as such has a very rudimentary
user interface. However, the user should be able to
tell at a glance what version of the macros they are
running. TEX provides an \everyjob facility that
allows format files to show the user the information
about the version of the macros.

As TEX processes pages it displays the folio. For
large jobs, it may also be desirable to inform the user
what part of the document TEX is processing. This
can be done using \write or \message statements.

Code review checklist

Prior to doing a code review, the software should
undergo a clean build, followed by an inspection of
its design and coding.

Clean build process. Prior to the release, the
software should be subject to a clean build and
test. Doing a clean build ensures that all the files

Managing TEX Software Development Projects

are properly checked into the version control system
and that it would be possible to recreate the project
from a backup of only the source code.

Back up everything. The first step in a clean
build is to back up everything. This is important
because, as part of the process, many files will be
deleted.

Check everything into version control.
Make sure that all source files are checked back into
the version control system. This also ensures that
version /revision numbers are incremented.

Delete the entire project. All source code
files and format files are deleted from the system.
Those who are worried about disaster recovery
would start with a system with a completely clean
disk and would require all the development software
to be reinstalled.

Restore the source from version control.
Restore all source files from the version control
system.

Build the project. At this point the format
files should be rebuilt. One of the most common
problems is missing files. If a file is missing, it was
not included in the version control system.

Regression testing. Testing to make sure
that software has not taken a step backward and
reintroduced bugs that have been fixed previously
is called regression testing. Because the entire
system has been rebuilt, it is important to check
that nothing has been inadvertently changed.

Design and coding inspection. The clean build
should find any files not included in the version
control system. Every project should have a
document that defines how it is to be built and this
document should be updated to list any problems
that appeared during the clean build.

Using the Design Specification Document, the
code should be inspected to see if it is easy
to determine if the code implements the design
specification. Items that should be checked include:
page size
crop marks
color separations and registration marks
screens
bleed tab
page makeup
fonts
running heads
continuation heads
cross-references and links
extracted indexes
artwork
additional hyphenation patterns

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 305

Jeffrey MCEArthur

e widow and orphan logic
e blank page generation

Project plan and status reporting

Successful management of a software development
project requires that a detailed plan be developed.
The plan should be created using project manage-
ment software. As a rule of thumb, all tasks should
be between four and sixteen hours in length. If the
estimated time for task is longer than sixteen hours,
the task should be broken up into sub tasks.

A status report showing the state of the project
should be created weekly. Because estimating the
time for a software development project using TEX
is difficult, it is important that the time for the
development be tracked against the plan. Tracking
the time provides feedback on the estimate, allowing
the estimating skills of the project manager to
improve.

Summary

The Software Engineering Institute, or SEI, has
defined a Capability Maturity Model, or CMM, for
the software development process.® Briefly, the
CMM levels involved are:

1. initial: no formalized procedures

2. repeatable: basic project management

3. defined: process standardization

4. managed: quantitative management

5. optimizing: continuous process improvement

This paper is an attempt to move from level 2 to
level 3. The process for managing TEX software
development projects must be defined so that the
process can be managed, level 4, and optimized,
level 5.

CMM levels provide an objective measure of
the quality of the management process. Better

8 SEI's website is: http://www.sei.cmu.edu;
the CMM material begins on /cmm/cmms/cmms . html.

managed projects provide higher customer satisfac-
tion and lower costs. The standards I am proposing
will encourage macro re-use and improved docu-
mentation, both of which should result in improved
efficiencies, cost-containment, and easier transfer
of maintenance and support duties to individuals
other than the original coder.

Acknowledgements

I would like to thank the reviewer for their time and
patience in reviewing this article. In particular, the
introduction to the section on metrics was vastly
improved by their comments.

A special thanks to Melissa Colbert and Denise
Marcus, who helped me prepare this paper for
submission.

I would also like to thank Christina Thiele for
the thankless work as editor.

Selected bibliography

Arthur, Lowell Jay. Improving Software Quality: An
Insider’s Guide to TQM. John Wiley and Sons,
New York, 1993.

Constantine, Larry L. Constantine on Peopleware.
PTR Prentice Hall, Englewood Cliffs, New Jersey,
1995.

Humphrey, Watts S. Managing the Software Process.
Addison-Wesley, Reading, Massachusetts, 1990.
McConnell, Steve. Code Complete: A Practical
Handbook of Software Construction. Microsoft

Press, Redmond, Washington, 1993.

Whitten, Neal. Managing Software Development
Projects. John Wiley and Sons, New York, 2nd
ed., 1995.

Yourdon, Edward. Decline and Fall of the Ameri-
can Programmer. PTR Prentice Hall, Englewood
Cliffs, New Jersey, 1993.

306 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

JAVA and TEX

Timothy Murphy
School of Mathematics
Trinity College Dublin
Ireland
tim@maths.tcd.ie

Abstract

TEX and METAFONT, translated into JAVA and compiled with TYA, a public-
domain JIT compiler, run about 10 times more slowly than the same programs in
C (without TYA, they are 20 times slower). A year ago, they ran 50 times more
slowly. In a year’s time, perhaps using Sun’s new JIT compiler, it is reasonable
to assume that the factor will be down to 2 or 3.

At that point — bearing in mind the speed with which the speed of computers
is increasing — TEX-in-JAVA will be a perfectly plausible alternative to TEX-in-C;
and then we shall have to weigh its lack of pace against the several advantages
that JAVA has to offer, such as, portability, “netability”, modularity, threads,

and graphics.

Has TEX found its natural niche?

TEX has attained a complete monopoly of the math-
ematical market. (Are there still primitive people
somewhere in the world speaking eqn?) And as
mathematics continues its remorseless march to col-
onize new areas of knowledge, it carries TEX (like a
disease) with it.

At the same time, it must be admitted that TEX
has been less successful outside these areas than was
hoped for, say 10 years ago. Of course that is not
a disaster. According to Ken Thompson (creator of
UNIX), “a program should do one thing, and do it
well”, and it may be that mathematical typesetting
is the one thing that TEX does well, indeed superbly
well. It would be foolish to risk this in pursuit of
some universal role.

However, the cause is not necessarily lost. In
the author’s view, the solution does not lie in the
addition of yet more features to TEX/IATEX — fea-
tures which all too often satisfy the needs of the
cognoscenti at the cost of complication for the new-
comer — but rather in a more rigorous analysis of
the TEX engine, and of the function and relation
of its parts. It is the author’s thesis that JAVA can
provide the stimulus to set such an analysis in train.

It should be emphasised that the author is
not suggesting—indeed, would be bitterly opposed
to—the creation of yet another “near-TEX”. The
only threat that TEX faces in the medium term is
fragmentation. All religions agree on one thing: that
the greatest danger comes from within. Today, none

of the schismatic versions of TEX (with the possible
exception of PDFTEX, which denies the accusation
of heresy) has a measurable share of the market; but
if NTS, let us say, were to gain the allegiance of 25%
of TEX users then the future of TEX —and NTS—
would be in doubt. (For a more sympathetic view of
NTS and other TEX extensions, see Knappen, 1995.)

The danger of such fragmentation can be seen
clearly in the failure of literate programming’ to ful-
fil the promise vested in it by Knuth (1992). The
proliferation of innumerable *WEB programs (and
one should include with these the KTEX doc sys-
tem) —each of them doubtless superior in some
aspect to Knuth’s original —far from leading to
widespread adoption of the literate programming
paradigm, has stifled it almost to death.

The JAVATEX project

Although the principal aim of this talk is to demon-
strate DviPdf, a TEX output driver written in JAVA,
it may be more useful in this written version to say
a little about the JAVATEX project of which DviPdf
is part. This project has two main thrusts:

1. To translate the classic .web files (tex.web,
mf.web, tangle.web, etc) into JAVA, using
web2java, a straightforward modification of the
standard web2c translator.

2. To develop output drivers—and other TEX
support programs—in JAVA, using the stan-
dard Knuth/Levy cweb, modified (slightly) to
output JAVA rather than C.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 307

Why Java? JAVA has several advantages over C
as a medium for TEX software.

Portability: In principle, a JAVA application — ex-
pressed as a number of communicating JAVA
classes—should work unchanged on all plat-
forms supporting JAVA, which means, in effect,
under every OS.

Netability: JAVA was designed with the Internet
in mind, and its adoption should allow TEX to
be integrated more easily into the Web.

Modularity: JAVA is object-oriented, allowing
classes to be shared by different programs, so
that, for example, all drivers can share the same
font manager and file server, and use the same
DVI reader, And one can define an abstract
generic driver, minimizing the size of actual
drivers.

More speculatively, although TEX and META-
FONT are large monolithic programs, they are
actually written in a modular style—almost
as though Knuth had JAVA in mind!—and it
should be relatively simple to “hive off” font
routines, for example, as a separate TeXFont
class, without modifying the essential code in
any way. Breaking up TEX (or METAFONT) in
this way into a number of co-operating classes
might mean that variations such as PDFTEX
and METAPOST could be implemented as rela-
tively small extensions of one or more of these
classes.

Graphics: The standard graphical interface built
into JAVA—but interpreted in the style of
the platform in use—should mean that the
same TEX viewer can function under UNIX,
MS-DOS and Mac. And this interface would
also offer a graphical alternative to the perhaps
old-fashioned text-based interface traditional to
TEX.

Threads: There are some advantages in running
the different parts of a program as separate
threads. For example, a font server can “sleep”
until a font is requested; in an integrated sys-
tem it may serve more than one program or
even more than one user. By running TgX
and friends as “threads”, last-minute changes
(as, for example, changing the sizes of arrays)
can be implemented before the thread starts,
and a program can pause while some interme-
diate task is performed, before resuming where
it left off.

But JAVA is so slo ...
its charm!

ow? But that is part of

DVI interface

DVIin DVIreader PDF out

DVIdevice

Figure 1: Anatomy of a driver

What is this world if, full of care
We have no time to stand and stare.

William Henry Davies (1870-1940)

At least things are getting better — three years
ago, JAVA was 50 times as slow as C. Today, it is
only five times as slow (with JIT compiler). Hope-
fully, this ratio will slowly approach a limiting value
between two and three.

Sadly, Sun’s long-awaited HotSpot compiler —
now available (free of charge) on several platforms
(Sun Microsystems, 1999) — failed signally to fulfil
its promise that it would make JAVA applications
run as fast as those in C++. It turns out to be
little better than other JIT compilers.

A TEX output driver

Although we have chosen to illustrate our talk

with DVIPDF — translating DVI input into PDF out-

put—most of the code is common to all our TEX
output drivers. The program is divided into seven

parts (Figure 1):

The DviReader: This reads the DVI document,
and translates the DVI commands into ‘mes-
sages’, as specified by

The DVI interface: This provides a “cordon san-
itaire” between the DviReader and the driver
proper.

The DviDevice: All output drivers share a great
deal of functionality. For example, all treat
fonts in much the same way. JAVA allows
us to define a generic, or abstract, driver —
DviDevice — containing this shared code. This
abstract driver implements DVI; that is to say,
it provides methods responding to the messages

308 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

sent by the DviReader, as specified by the DVI
interface.

The DviPdf driver: Several of the methods pro-
vided by the generic driver DviDevice are
empty; it is left to each concrete driver —such
as DviPdf —which “extends DviDevice” to
provide proper methods in these cases.

TeXFont: From TEX’s point of view, all fonts look
much the same. We express this by defining
an abstract TeXFont class. Each font type—
.pk fonts, Type 1 or Type 3 PostScript fonts,
.tfm font descriptors, virtual fonts, etc— ex-
tends this class by adding its own particulari-
ties.

TeXFile: This is our “file manager”, a highly sim-
plified analogue of kpathsea. In effect, it uses
JAVA’s Hashtable class to construct a database
of the TEXMF tree (or trees).!

The PDF classes: PDF— Adobe’s anointed succes-
sor to PostScript —is object oriented, and thus
particularly well-suited to JAVA.

Fortunately, there is an excellent library of
JAVA classes—the pj library from Etymon
Systems (1999), freely available with source—
for reading and writing PDF files. Each kind of
PDF object—font, page, etc—is represented
by a pj class, with methods appropriate to that
object.

In effect, the job of DVIPDF is simply to build
up a PDF object; it can then be left to the pj
classes to present that object to the world.

The DVI interface. The JAVA interface provides
an exemplary tool for dissecting an application (i.e.
a program) into independent parts which commu-
nicate according to the strict protocol laid down in
the interface definition.

The DVI interface specifies 15 kinds of “mes-
sages”. Any driver that implements DVI must pro-
vide 15 methods for responding to these messages.
Since the definition of the interface is short and
sweet, we give it in its entirety:

public interface DVI {

void moveRight(int dh);
void moveDown(int dv);

void moveTo(int h, int v);

void defineFont(int f, int checkSum,

L Am I alone in finding kpathsea excessively complex?
The bureaucracy of TDS (the TEX Directory Structure) seems
to me entirely misplaced. Surely the computer was designed
precisely to relieve us of such tedious (pun intended) tasks?
Does it really matter if .tfms and .pks and .stys find them-
selves in the same bed?

JAVA and TEX

int scaledSize, int designSize,
String area, String name);
boolean setFont(int f);
int setChar(int c);
void putChar(int c);
void setRule(int wd, int ht);
void putRule(int wd, int ht);

void special(String message) ;

void bop(int count[]);
void eop();

void preamble(int numerator,
int denominator, int mag,
String comment) ;
void postamble(int tallestPage,
int widestPage, int maxStackDepth,
int noOfPages);

DataIlnputStream dviStream(int c);

}

All these methods (except the last) will be more or
less self-explanatory to those familiar with the DVI
format.

The first two “motion methods”, moveRight ()
and moveDown (), describe relative motion, while the
third, moveTo (), is absolute.

We note that while communication is primar-
ily from the DviReader towards the “front end” of
the driver, information can be passed back through
the return value of the function or method. Thus
setChar () returns the width of the character (which
is all the DviReader needs to know about it), while
setFont () returns true or false according as the
font is wirtual or real.

The last method, dviStream(), is the only one
which is not immediately suggested by the DVI for-
mat. It is required to implement virtual fonts. A
virtual character —that is, a character in a virtual
font — consists of a fragment of DVI code, which
must be integrated into the DVI document proper.
In effect the input stream must be temporarily di-
verted to the sequence of DVI commands constitut-
ing that character.

The DviReader knows if the current font is vir-
tual, from the return value of the last setFont ().
If that is so then every character encountered until
the next setFont () is virtual. After reading such a
character, say character number ¢, the DviReader
sends the dviStream(c) message to the device,
which consults the appropriate font and points the
reader to the new stream. (We use here the nice
property of JAVA, that it can treat information in a
file, and in a string, on the same footing.)

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 309

Virtual fonts and superfonts. A virtual font
contains a number of local fonts. These are normally
real fonts, but in principle they could themselves be
virtual fonts.

This recursive potential of virtual fonts does not
seem to have been exploited. It means in effect that
the fonts in a TEX document form a tree, the leaves
of which are real fonts, while the internal nodes are
virtual fonts.

It is a natural step to connect the set of
fonts by introducing a superFont, of which the top-
level fonts— those actually named in the DVI docu-
ment —are local fonts.

Recall that a virtual character is a fragment
of DVI code. This suggests that we might regard
the DVI document itself as a character —let us say
character 0—in the superFont.

It is amusing to take this conceit a little further.
Different DVI documents could be characters 1, 2, 3,

., in the same superfont. Moreover, the super-
font could itself be a local font in a super-superfont,
which could itself A whole library of TEX doc-
uments might be organised in this way.

Tools

It is an essential feature of the JAVATEX project that
all code in the package is written in Knuth/Levy
cweb format, slightly modified (as described below)
to output JAVA rather than C.

Thus the DviPdf driver is encoded in the files
DVI.w, DviDevice.w, TeXFile.w, TeXFont.w, etc.
(By convention, cweb source files carry the extension
.w, to distinguish them from the classic PASCAL-
based WEB files, which carry the extension .web.)

As mentioned earlier, the JAVATEX project also
encompasses the translation of Knuth’s classic WEB
programs into JAVA, using web2java, a develop-
ment —in some ways, a simplification — of web2c,
the core program in the UNIXTEX implementation
of TEX and its relations.

As an exercise, we base our DviReader on
dvitype.web, which Knuth provided as a model for
drivers. Thus DviReader is defined by a change
file DviReader.ch to dvitype.web. The resulting
PAscAL file DviReader.p is then translated into
DviReader. java by web2java.

We end this note with a necessarily brief de-
scription of these basic JAVATEX tools.

Cweb for JAVA. Knuth’s original web format was
tied to PAscaL. Later Knuth and Levy devel-
oped cweb to provide output in C. Since JAVA is
a dialect of C, cweb only requires minor modifica-
tions to output JAVA. These are contained in the

change files ctang-java.ch, cweav-java.ch and
comm-java.ch. If ctangle and cweave are com-
piled with these change files (as, for example, by
modifying the cweb Makefile by changing the line
TCHANGES= to TCHANGES=ctang-java.ch, and sim-
ilarly for WCHANGES and CCHANGES). then the +j
switch? can be used to output JAVA:

% ctangle +j DVI.w

produces the file DVI. java, which can then be com-
piled in the usual way

% javac DVI.java

On the other hand, the documentation is produced
by
% cweave +j DVI.w

creating the IXTEX file DVI.tex, which can then be
processed in the usual way

% latex DVI
% xdvi DVI
% dvips DVI

Ctangle. In passing from web to cweb, Knuth and
Levy dispensed with the macro feature @d, on the
grounds that its functionality was more than ade-
quately provided by C’s #define.

However, JAVA in turn has dispensed with
#define, so it seemed useful to transplant back this
lost feature from tangle to ctangle. Fortunately,
this turned out to be relatively simple since the am-
putation had been crude and the stumps remained.
This allows us, for example, to say in DVI.w (and
elsewhere)

@d DviUnit == int
and then
void moveRight(DviUnit dh);

This clarifies the code and also makes it simpler to
change the type of DviUnit if that should prove de-
sirable.

Cweave. The changes to cweave, although more
trivial, proved surprisingly tricky. The problem is
that cweave (like weave) is based on a table of “pro-
ductions” —a kind of pseudo-syntax which allows
scraps of code to be “reduced”. It turned out that
JAVA required some five new production rules to add
to the 100 or so rules for C ...

‘Web2java. Web2java— like web2c —is a post-pro-
cessor to tangle. To create foo. java from foo.web
and foo.ch one first runs tangle:

tangle foo.web foo.ch

2 The use of + rather than - as a prefix for switches is a
feature of cweb.

310 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

This creates the PASCAL (or pseudo-Pascar) file
tangle.p (or tangle.pas on some systems).> Class
files are machine-independent — provided “native
methods” are eschewed, and care taken to avoid
such OS-specific idioms as ‘\n’ for end-of-line, rather
than JAVA’s ‘line.separator’—so tangle.class
from the JAVATEX distribution should run on any
system. Note that this file, like all JAVATEX pro-
grams, is defined to be in the javaTeX package,
and so must be placed in a subdirectory called
javaTeX relative to the CLASSPATH. Note too that
JAVA refers to this class as javaTeX.tangle, rather
than javaTeX/tangle, as one might expect.

This file is then passed through web2java to
create foo. java:

tangle
foo.web + foo.ch ———— foo.p

web2java .
—— foo. java.
Actually, this is a slight oversimplification. The file
common .defines is prepended to foo.p before pass-
ing through web2java:

web2java
_—

common.defines + foo.p foo. java.

All this is completely analagous to web2c, except
that we are able to dispense with the post-processor
fixwrites, for JAVA I/O contains nothing as exotic
as C’s printf.

The filter web2java is created by the programs
flex and bison (or lex and yacc) from the files
web2java.l and web2java.y. This is completely
analagous to web2c. The lex/flex file web2java.l
is the same as web2c .1, with the addition of a small
number of new tokens: new, try, catch, throw,
throws, etc. The syntax description in web2java.y
has rather more changes, compared with web2c.y.

On the plus side, since JAVA has no pointers all
the pointer-related material has been deleted. There
is no attempt to determine if a function argument
is “formal var” or not; and no need, therefore, to
re-name functions with such arguments.

On the other hand, the introduction of class
and object tokens necessarily adds to the number
of rules in web2java.y. Thus variables and func-
tions can be preceded by a CLASSIFIER, consisting
of a (possibly empty) sequence of class_id_toks
and object_id_toks followed by periods (‘.’s). For
those familiar with web2c, a short excerpt from
web2java.y should give the idea:

CLASSIFIER:
/* empty */

3 If you like driving in the slow lane, you could run
the JAVA tangle instead: java javaTeX.tangle foo.web
foo.ch.

JAVA and TEX

| CLASSIFIER class_id_tok ’.°
{
my_output (last_id) ;
my_output(".");

}
| CLASSIFIER SIMPLE_QOBJECT °.°
{
my_output(".");
}

SIMPLE_OBJECT:
object_id_tok
{
my_output (last_id);
}
VAR_DESIG_LIST
| object_id_tok
{
my_output (last_id);
}

But for the most part translating WEB to JAVA
is, if anything, simpler than WEB to C. One apparent
difficulty is the lack of a pre-processor in JAVA, since
web2c leaves a good deal of work to cpp. This means
that more must be done in the change file, which
is probably A Good Thing. The three main issues
which arise are:

e the absence of gotos in JAVA

e the lack of typedefs in JAVA

e input/output
These are discussed briefly in the following three
subsections.
Removing gotos. Java has no goto; in compen-
sation, it allows break and continue statements to
carry a label, as in break 1lab21 or continue lab3,
for example. The corresponding labels must appear
at the beginning of the loop in question. (A break
label can also be attached to a switch statement,
but we make no use of that.) If a break or continue
statement has no label, it is understood to refer to
the smallest loop (or switch) enclosing the state-
ment. Thus, labelling is only required in the case
of nested loops or switches.

Fortunately, Knuth has followed a strict pro-
tocol in the classic WEB files. Raw gotos (as in
goto 40) very rarely appear. In almost all cases
a label is used, as in goto found, where found has
earlier been defined as

@d found=40
In effect, the gotos are divided into a small number

of cases, according to their function. By far the most
frequent of these cases are: goto break to break out

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 311

of a loop, goto continue to continue around a loop,
and return to return from a routine.

This protocol allows most gotos to be pro-
cessed automatically. Thus goto break is trans-
lated as break and goto continue as continue,
while return is translated as return (with the ap-
propriate value in the case of a function).

However, in perhaps a third of the gotos, la-
bels must be inserted by hand, for example, as a
break out of an outer loop. Note that in such a
case the label in the WEB file is almost certainly in
the wrong place, for, by Knuth’s convention, break
means “break to the end of the loop” while JAVA
requires the label to appear at the start of the loop.
web2java takes advantage of this by deleting the la-
bel from a break or continue statement unless that
label has already appeared (in the current routine)
before the statement.

Of course a goto may not go to the beginning
or end of a loop; in that case a new “artificial” loop
must be inserted, with a break at the end to ensure
that it is only traversed once.

All this is rather messy and could probably be

automated to a much greater extent. At least some
checks have been introduced in web2java.y, to ver-
ify as far as possible that the new code has the same
effect as the old.
Type definitions. There are no typedefs in Java.
In theory one could replace typedefs by class defini-
tions but that would add considerable complication
to the code. Instead, we simply change them to
substitutions (as though in C changing typedefs to
#define’s). So, for example, we make the change

0x

O<Types...0>=
@!ASCII_code=0..255;
ey

@d ASCII_code==0..255
0z

Later web2java will replace this range 0..255 by
an appropriate type (currently int). This entails
some changes in web2java.y, to allow ranges for
procedure and function parameters such as:

procedure p(x:0..255);

Presently all ranges are replaced by int, since Java
is rather strict about type conversion, and requires
casting where C does not.

Input/Output. JAVA I/O is much closer to PAs-
CAL syntax than is C. Thus

write_ln(term_out, ’value is ’, v);
in PASCAL becomes

System.out.println("value is " + v);

in JAVA. This allows us to incorporate I/O into
web2java.y, dispensing with the fixwrites post-
processor required by web2c.

The only unusual feature of JAVA I/0 is that
most I/O statements must be contained in a try
statement, which in turn must be followed by a
catch statement to catch any I/O ‘errors’. How-
ever, this is perfectly straightforward, as may be il-
lustrated by an I/O function from DviReader. ch:

function signed_pair:integer;

{returns the next two bytes, signed}

var a,Q@'b:eight_bits;

begin a:=0; b:=0;

try begin a:=dvi_file.readByte;

b:=dvi_file.readUnsignedByte; end;

catch (ex: IOException) begin

EOF_dvi_file:=true; end;

if EOF_dvi_file then signed_pair:=0

else begin cur_loc:=cur_loc+2;

signed_pair:=a*256+b; end;

end;

Conclusion

Hopefully, this all-too-brief tour has given some
taste of the JAVATEX project. All comments, contri-
butions and suggestions will be gratefully received.

The project (and all its parts) is freely avail-
able (Murphy, 1999). For simplicity it is published
subject to the GNU GPL Licence, Essentially this
allows the work to be freely copied and used, pro-
vided the original files DVI.w, etc, are made avail-
able. Changes should preferably be made through
change files, e.g., DVI.ch.

References

Etymon Systems. “Java software for parsing, ma-
nipulating, and creating Adobe PDF file”. http:
//www.etymon.com/pj/, 1999.

Knappen, Borg. “NTS-FAQ”. CTAN/info/NTS-FAQ,
1995. (In these references, CTAN denotes any of
the CTAN sites, eg ftp://ftp.tex.ac.uk/pub/
tex or ftp://ftp.dante.de/pub/tex).

Knuth, Donald E. Literate Programming. CSLI,
Stanford, 1992.

Murphy, Timothy. “The JAVATEX project”.
http://wuw.maths.tcd.ie/ tim/javaTeX,
1999. Also available from CTAN/systems/java/

javatex.
Sun Microsystems. “Java HotSpot Performance
Engine”. http://java.sun.com/products/

hotspot/, 1999.

312 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Barbara N. Beeton:
TUG Board Member for 20 Years

Christina Thiele, Proceedings Editor

Abstract

Barbara Beeton has been a board member for twenty years, since 1989/90, when
she was listed as ‘Wizard of Format Modules’ on the TUG Steering Committee —
the info’s on cover 2 of the very first TUGboat issue, 1(1).

As the only board member to have ‘been there’ since the beginning, Barbara
has seen TUG presidents come and go—seven in all. And so the idea came to
me that surely some of us would have something to say about attending board
meetings with Barbara every summer (and one winter — Cincinnatti 1982) for
the past twenty years. Barbara, these pages, for a change, are about you!

Pierre MacKay (1983-1985)

Is it possible that there was a time before I could
count Barbara as a friend? The calendar tells me
that there has to have been such a time, but the
calendar is oddly unconvincing. When I first ar-
rived at a meeting of the TEX Users Group (only a
couple of sessions after Barbara had led the initia-
tive to create it) I was surely the most naive and in-
experienced of all the attendees who were to become
site-coordinators, but I seem
to remember that when I

Past Presidents

conversation never ends; it only adjourns, ready to
be picked up again at the next meeting.

Nelson Beebe (1990-91)

I've been meeting Barbara Beeton for almost 20
years now at TUG gatherings, and I never cease to
marvel at her dedication to TEX, to TUG and its
Board, to TUGboat, and to all things typographic.
She has my deepest thanks for all her work; it has al-
ways been a great pleasure to work
with her.

Richard Palais
Pierre MacKay
Bart Childs
Nelson Beebe
Malcolm Clark
Christina Thiele
Michel Goossens
Mimi Jett

talked to Barbara I came
away with the impression that
I knew what I was talking
about. There not many people
with the talent for instant and
lasting friendship that Bar-
bara offers to those who make
the effort to recognize it. My
earliest specific memory is a

(1980-1983) Barbara has been with TUG-
(1983-1985) boat right from the beginning, suc-
(1985-1990) ceeding Robert Welland as Editor-
(1990-1991) in-Chief with Vol. 4, No. 2 (Sept.
19911992 1983). In March 1999, TUGboat
(B) Vol. 19, No. 1, reached a milestone
(1992-1995) of 2,000 published articles. More
(1995-1997) than 1,900 of them have appeared
(1997-2003) since she took the helm, and the

discussion, by mail, of the
virtues of an old Corona typewriter with misaligned
punctuation, on which I submitted my first, rather
irrelevant, contribution to TUGboat. In that corre-
spondence it already seemed as if I had always been
a member of TUG, and the feeling has remained, al-
though the calendar again tells me it cannot quite
be the case.

I can’t imagine what my term of office as presi-
dent of TUG would have been without Barbara. As
everyone knows who has filled the office since, it is
partly a sinecure as long as Barbara is there. And
after the business is over there is the time spent
talking of everything that friends can talk of. That

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

inky waters have been typograph-
ically rough and challenging: I don’t know of any
other journal which has published articles with so
many different fonts, and from so many output de-
vices. There are 100 TUGboat articles that bear her
name, 96 of them with her as the sole author. There
are also 674 short articles credited to Anonymous,
the bulk of which I believe are her creations as well.
TUGboat is always interesting, and I look forward
to every issue.

Barbara has made, and continues to make, im-
portant contributions beyond the TUG community,
with her long involvement as a representative of the
American Mathematical Society in the international
standardization of mathematical character sets.

313

Christina Thiele, Proceedings Editor

She is also the sole channel for reports to Don
Knuth on TEX and METAFONT bugs, problems, and
suggestions, thereby helping to shield him from dis-
tractions that would further delay The Art of Com-
puter Programming series that, we should remem-
ber, was the reason that TEX and METAFONT were
written in the first place.

Barbara has probably attended more TUG and
TEX conferences than anyone, and as a result, is
probably the world’s expert on what new things peo-
ple around the world are doing with TEX and METR-
FONT.

Past Meetings

Michel Goossens (1995-97)

It was in July 1988 at the Third EuroTEX Confer-
ence in Exeter that I first met Barbara Beeton, that
“funny American woman with the wide hat.” When
somewhat later I also met Joachim Schrod with his
famous cowboy-like hat, I really started thinking
that all those TEX people were weird indeed .. .1
Of course, the name of bb was not completely
unknown, since I had seen it on the front cover—
and in various other places—in TUGboat. So there
I was, speaking to the living leg-

Don’t ever retire,

Barbara! We need you. 1980 Stanford, Calif.
Christina Thicl 1981 San Francisco, Calif.; Stanford
ristina iele - . .
(1992-95) 1982 Cincinnati, Ohio; Stanford
1983 Stanford
% %Ont,t rertn%mbsr Wh;’n 1984 Stanford
TSt met barbara. 1985 Stanford
fact, my first meeting
in Seattle (1987) was 1986 Medford, Mass.
somewhat of a blur 1987 Seattle, Wash.
once I gave the open- 1988 Montreal, Canada
ing talk (some 10 min- 1989 Stanford
utes faster than I'd 1990 Coll Stati Tex.: Cork. Treland
clocked it). But I must ollege Station, "lex.; Cork, Irelan
have met her. 1991 Dedham, Mass.
The following year, 1992 Portland, Ore.
in Montreal, I joined 1993 Birmingham, UK
the TUG .l()iozn;d (Bar(‘; 1994 Santa Barbara, Calif.
was - presiden), an 1995 St. Petersburg, Fla.
over time I learned
a great many things 1996 Dubna, Russia
I'd never have learned 1997 San Francisco
any\zf/here else. For me, 1998 New York, NY; Torun, Poland
moving up from ‘just 1999 Vancouver, Canada

end, the person who had a di-
rect line to Knuth himself. And,
although I myself and a lot of
the other participants were only
novices in TEX, Barbara took all
her time to gently explain, with
the necessary detail and with
eternal patience, this or that triv-
ial or not-so-trivial point about
TEX. Quite an experience for
my first TEX conference and with-
out a doubt this helped convince
me to get to know more TEX
and friends.

Later, when I got more in-
volved with the practical day-
to-day support of TEX and be-
came a board member of both
GUTenberg and TUG, I had the
occasion to meet Barbara more
often and got the opportunity to
appreciate other aspects of her
multi-faceted personality. Bar-
bara has a special sense for lis-

a board member’ to
member of various committees, and then on to the
executive — Barbara’s been the best constant factor
I could ever have imagined.

She remembers things. She knows the right
things to do. As much as she knows TEX, she’s
knows procedure! And while I still can’t seem to
take in much of what she tells me about TEX, I most
certainly have taken in an awful lot about procedure:
how to work within procedures, how to be very care-
ful when adopting procedures, how to suggest when
procedure is useful and when it’s just a constraint.

For me, Barbara represents the collective mem-
ory of TUG; she is our most valuable resource and
she is one of the best friends I have made during my
own adventures in the TEX community.

tening to what people have to
say, and for trying to build a consensus. She draws
on her many years of experience dealing with peo-
ple in the TEX world, where she is well known and
respected, but, more importantly, where she knows
almost everybody personally.

As a Continental European, and probably the
only non-native English-speaking president of TUG,
I came to appreciate the importance that Barbara
attached to contacts with TEX users all over the
globe. Thus, she always did her best to attend TEX
conferences in Europe or in North America, sup-
ported the creation of local user groups and pro-
moted the exchange of information, publications,
etc. I consider Barbara to be a genuine example

11 found out later that Barbara and Joachim shared an-
other passion: gastronomical outtings and visiting famous
wine cellars.

314 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

what an international collaborative effort could and
should be.

To me, Barbara is the ideal safekeeper of the
history of TEX and TUG, one of the few who were
present “from the very beginning” —and are still
around to tell us the story. Thus, she is ideally
placed to remain the Voice of TUG and TEX well
into the next century,
and T look forward to
her wise words in the
Editor’s note: of TUG
boat at least until the
year 2010.

Mimi Jett
(1997-2003)

There are some people
in this world who are so
unique, once you meet
them you never forget.
They have a particular
style and demeanor that
separates them from the
crowd, subtle but bril-
liant. Barbara Beeton
is just so unique. My
guess is that most peo-
ple who have met her
will agree— something
about that meeting is
memorable, special.

I first saw Barbara
at the 10th annual meet-
ing in 1989 at Stanford;
however, we did not meet until the following year in
TEXas, when I started becoming aware that this was
not only a collection of some interesting characters,
TUG was clearly an important organization. If peo-
ple like Barbara, Bart Childs, and Pierre MacKay
were willing to donate so much time and intellect
to this, it must have extreme value. Within another

(Photo by Warren Leach, Blue Sky Research)

Barbara N. Beeton: TUG Board Member for 20 Years

year, I was involved with the conference program
committee and soon the board.

The importance of Barbara’s contributions dur-
ing my years with board cannot be quantified. She
is the voice of reason, sometimes our conscience, but
always the expression of objective, non-judgemental
truth. During the most heated discussions or the
boring details of by-law se-
mantics, Barbara is the one
person who can consistently
separate the wheat from the
chaff and give us a sense of
having accomplished some-
thing. There’ve been times
of frustration when she has
pulled me through with her
patient friendship.

Knowing how many peo-
ple share my appreciation for
her friendship, it is a wonder
she has time for any work at
the AMS, with such a heavy
schedule for support for all
of us.

In Vancouver this sum-
mer, I was the fortunate driv-
er of a busload of hungry
TUGies; I looked in the rear-
view mirror and realized I
had some of my favorite char-
acters on board: Barbara,
Christina, Michael Doob,
Pierre, Craig Platt, Don De-
Land. It felt like all these
years had led us to that moment. Vancouver was
our 20th annual meeting, and Barbara was recogniz-
ed for her decades of service with a bottle of Russian
Vodka, imported by Irina Makhovaya. There is no
way to thank you, Barbara, for 20 years of service
on the board, except to say “Thanks, and would you
mind another 207”

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 315

POSTER EXHIBITION:

Text of The Apocalypse as Graphics
by Prof. Alban Grimm

Christina Thiele

The Alban Grimm exhibit, ‘Text of the Apoc-
alypse as Graphics,” on display during the TUG’99
meeting, shows what happens when a typographer-
cum-graphic artist is introduced to computer pro-
grams and finds that inputting code can lead to out-
putting incredible visual results.

At the urging of his son, Gerhard, Professor Al-
ban Grimm first encountered TEX and METAFONT
via AmigaTEX, so that Gerhard’s thesis in electri-
cal engineering might be typeset. Browsing through
The TEXbook and The METAFONTbook, the profes-
sor recognized the vast possibilities that TEX offered
for his own field of work—and he was motivated
enough that he even attempted to overcome the lan-
guage barrier while studying those books. Several
months later, he meet Frank Mittelbach for the first
time (summer of 1990).

One of Prof. Grimm’s aims was to study the na-
ture of computer-generated type. That is, a hand-
made type has the look and feel of hand-made type;
if one used a chisel, characteristics specific to chisels
would be apparent. So—can one extend this idea
and identify features of truly computer-generated
type (in contrast to type generated with the com-
puter but emulating other methods)? The ‘VN’ set
of font variations which resulted were inspired by a
search for a font to set the biblical text, The Apoc-
alypse by St. John.!

It was Frank who suggested that an exhibit
of this melding of computer code and graphic ge-
nius be held at TUG’99. We are therefore deeply
indebted to him for provoking Prof. Grimm with
METAFONT, and for making the arrangements to
bring over from Germany the enormous folder con-
taining these posters (a weight of over 10kg!). For-
tunately, Wendy McKay and Ross Moore (also re-
sponsible for the TUG’99 web version of this mate-
rial) were able to pick up both Frank and the folder
from the airport.

L A revelation made to St. John and recorded by him in
the last book of the New Testament, called also the Book of
the Revelation of St. John the Divine.

The exhibition comprised 7 sets of panels, each
set being the full text (in German) of the Apoca-
lypse. Some sets had 22 graphic pages while others
only 11 (Where two chapters were set on one page).
In all, 132 panels were displayed, with Frank putting
up a different set each morning and afternoon, with
assistance from Anita Hoover, program co-chair and
technical editor of the proceedings. In addition, sev-
eral texts written by Prof. Grimm and translated
by his son provide some background to the whole
project.

To describe the images in this exhibit is nigh im-
possible. Almost. Imagine a large off-white poster-
sized panel, with two main areas of ‘stuff’ rendered
in varying combinations of black, red, blue, yellow,
... The upper area shows material that is text (it
just doesn’t look like text), while the lower area (in
the early series) is clearly an all-caps text (the VN
font). The graphics on top of each page were gener-
ated from the first and last sentences of the current
chapter, which appears in the lower area (either on
one page or two). The difference in presentation is
the result of selecting appropriate METAFONT mod-
ifications.

The poster included in these proceedings has
black text in the background (the ‘square’ config-
uration), and then red overlaid with bright green
(lighter gray) in the foreground. Of course, these
black and white reproductions cannot fully do jus-
tice to the work; I invite you, therefore, to follow
the links from www.tug.org for a better view.

Obviously a colour monitor is a good idea (!).
Since these are image files, downloading takes a while;
in addition to . jpg format, the .pdf versions of the
multi-colored images provide an additional show, as
the image ‘develops’ on-screen.

Prof. Grimm generously allowed all his prints
for this exhibit to be given away to the participants
at TUG’99. We would like to express our thanks —
and our amazement —to Prof. Grimm, for having
shown us that paper and ink can go far beyond
‘boxes and glue’.

316 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

5 EANEN
av’:‘fﬁ\ y

i
Iy
|

a"

A

/
(‘
-

)‘«?’l
A WY
7

~
e AN

S
S
e

1

AR

Text of The Apocalypse as Graphics

Prof. Alban Grimm

Joh. Gutenberg-Universitidt Mainz
Fachbereich 24

Am Taubertsberg 6

D-55099 Mainz

Germany

When undertaking graphical experiments on the text
of John’s Apocalypse over and over, I am always
fascinated with the interaction of shape and con-
tent which this text stimulates. To my eyes, reading
about such horrible events via a font of neutral style,
one which would be appropriate for any purpose at
all, is disturbing. The conflict between shape and
content irritates me. By attempting to compensate
for the lack of specific suitability solely by employing
appropriate arrangements, I learned that the exist-
ing variations of our roman typefaces are dedicated
to an aesthetic that is purely self-related.

My basic interest in creating an interaction of
text and contents of John’s Apocalypse in mani-
fold ways has nothing to do with a fashionable end-
of-times mood. The more I give in to previously
unknown possibilities of varying our typefaces, the
more I find confirmation of the fact that script as
shape extends beyond itself. This is very suitable
for the text of John’s Apocalypse.

If images—even excellent ones—remain hid-
den behind the telling of the Apocalypse, one has
to try to render the text itself as an image. This
relieves the artist from the possibility, as well as
the constraint, to provide illustrations. Associations
which resemble illustrations are illusionary. This
is not about illustrations. The text itself moves
into the pictorial domain — those transcriptions can,
however, never be interpreted as illustrations. The
script merely visualizes itself, being exposed to con-
ditions that are no longer dedicated to legibility.

Due to the nature of roman capitals, they lend
themselves easily to such transformations. A spe-
cial appeal results from the enhancements with dig-
ital graphical elements, and astonishing results be-
yond legibility can be achieved. Structures consist-
ing of very different computer-specific strokes re-
semble hand-drawings but, although they are static,
they exhibit a vivid appearance of a completely dif-
ferent sort.

Most of the attempts are concerned with the
contrast of script as text versus script as a language-
free play of shapes. Beyond the domain of language,
everything can be different. The process of read-
ing is no longer tied to running along the lines with
their sequence of words. Relieved of the constraints
of reading, the eye can move here and there, can fol-
low the scattering and clustering of lines back and
forth, up and down. The irreversibility of the uni-
directional nature of reading, a function of correct
linguistic interpretation, is obsolete. Furthermore,
reception is uncoupled from the semantics of lan-
guage. The transcriptions can be concentrations,
where reading reverts to the Latin legere.

The liberated characters form something new,
still requiring the text as a base, and thus challenge
the recipient’s thoughts to respond to this unusual
play of lines, according to his readiness and abil-
ity. Even rejection can be explained: those who re-
gard writing only as a cultural technique, something
learned in school, cannot be expected to be very
open-minded towards these transcriptions. Such tran-
scriptions are monstrous in terms of linguistic func-
tionality, because they make use of text in non-
standard ways. Being unreadable and thus exclu-
sively graphical, the text is only related to itself and
is itself the subject of the various visualizations.

Thus, as an observing and thinking being the
reader is referred back to himself, his willingness to
reflect encouraged.

318 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

ETA FONTS BY METARONT

The variable capital font VN is only available as a program capable of scaling various
types. The range of variance is unimaginably large and cannot be exhaustively demon-
strated by examples. The interaction of 21 parameters controlling the type creation
of this font is being reduced here to the contrast of writing as text versus writing as
graphics.

ABCDEFCHIJKEMNOPOQRSTUVWXY/Z

This basic example shows the isolated basic shape with a constant stroke width.

ABCDEFCHIJKLMNOPQRSTUVWXYZ

Example A uses a narrow broad-nip with unusual, varying angles and small deviations
from the basic shape.

ASCDEEGHI|JKLMNOPQP STUVWXYZ

Example B uses a broad-nip with varying width and emphasizes the deviations from
the basic shape. The character heights also differ more distinctly.

ABEDEFCHIKLMNSPORSTUVWLYZ

Example C uses several traces, each one repeating the character shapes differently.
The broad-nip is changing, and the heights are strongly differentiated.

Example D employs, in addition the usual character trace, another trace which is only
partly aligned with the corresponding shape. This “sub-trace” creates here a multitude
of light strokes, especially deviant at roundings.

ABCOERCH|JKLMNoPaRSTUYWXYZ

Example E does not use broad-nip and allows the character shapes more deviance from
the basic shape than the sub-trace, consisting of bundled dots. As in example D, the
alternative sub-trace is a graphical enhancement.

WORKSHOP:

ITEX to XML/MathML

Eitan Gurari
Ohio State University
gurari@cis.ohio-state.edu

Sebastian Rahtz
Oxford University, UK
s.rahtz@oucs.ox.ac.uk

The objective of this workshop was to show what it
takes to translate ITEX sources into XML in general,
and IYTEX mathematics into MathML in particular.
In addition, it aimed at reviewing backward transla-
tions from XML and MathML into TEX and KTEX.
Many of the details can be found in The FTgX Web
Companion.

We started by demonstrating the viability of
such translations. We provided pointers to 38 source
files in the public domain, including AMS preprints,
and their corresponding outcome in a XML dialect
consisting of the union of XHTML and MathML.
Then we looked at an example of a backward trans-
formation, which had been used to create PDF out-
put. As a side product, we noted that translations
to MathML may be used for debugging IXTEX for-
mulae. The translations relied on TeX4ht for the
forward direction, and PassiveTEX for the backward
direction.

The second part of the workshop reviewed XML
as an evolution from HTML, demonstrated the use of
Cascading Style Sheets (CSS) for specifying the look
of XML code, and illustrated the application of XSL
for defining transformations on XML documents.

In the third part we took a look at how the
translation of TEX documents can be managed, for
HTML, XML, and MathML output. Beyond the use
of built-in modes, we dealt with user configuration of
the output, and the constraints imposed by the TEX
engine and KWTEX style files. Finally, approaches and
tools for backward translations were reviewed.

We concluded by considering the relationships
between ITEX, TEX, and XML, and calling for more
coordinated work within the I TEX community.

References

[1] Slides of workshop:
www.cis.ohio-state.edu/"gurari/tug99/

[2] The BTEX Web Companion, Michel Goosens and
Sebastian Rahtz, with Eitan M. Gurari, Ross
Moore, and Robert S. Sutor. Addison Wesley
Longman, 1999.

[3] TeX4ht:
www.tug.org/applications/tex4ht/mn.html

[4] PassiveTEX:

users.ox.ac.uk/“rahtz/passivetex/

320 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

WORKSHOP:

How to Create Quality Interactive PDF
Documents for the Www Using ETEX

D.P. Story

Department of Mathematics and Computer Science
The University of Akron, Akron, OH 44325
dpstory@uakron.edu

http://www.math.uakron.edu/ dpstory/

This workshop covered many concepts that go into
the creation of quality interactive PDF documents
for the WWW. Topics included:
e setting up the Acrobat/TEX System (a Win95
based presentation)

e page layout for a PDF document designed to be
read over the Web

e adding a dash of color to text and background

e using hyperref, a package by Sebastian Rahtz,
and its “oo-many” options — only finitely many
were discussed.

e macros to create (1) problem exercises with hy-
perlinked solutions; (2) multiple-choice ques-
tions with instant feedback; and (3) multiple-
choice graded quizzes using JavaScript.

Extensive supplementary material in the form of pa-
per hand-outs and software (which included elec-
tronic technical articles and macro packages) were
distributed. These materials are available from the
AcroTEX web site:

www.math.uakron.edu/~dpstory/acrotex.html

From TEX to PDF

A discussion of various methods of creating qual-
ity PDF documents from a TEX or KTEX source
file. These comments are contained in my paper
“AcroTEX: Acrobat and TEX Team Up” (elsewhere
in these proceedings); in particular, see Figure 1.

Win32 TEX systems

The workshop was oriented towards Win95/NT op-
erating systems, although most comments were plat-
form-independent. A brief mention of TEX imple-
mentations designed for the Win95/NT operating
system and capable of producing quality PostScript
output using Type 1 fonts: the Y&Y system, the
MikTEX system by Christian Schenk and the fpTEX
system by Fabrice Popineau (see elsewhere in these
proceedings for Popineau’s paper).

Quality PDF documents for the WWW

The content of this segment of the workshop is con-
tained largely in the electronic article, “Using BTEX
to Create Quality PDF Documents for the WWW?”
available at the AcroTEX web site; a printed version
of this article was also distributed.

The web/exerquiz packages

The web package redesigns the page layout to a more
Web-friendly style, suitable for screen viewing.

The hyperref package provides a high degree
of interactively through hypertext links and form
elements. The exerquiz package uses hyperref to
define several environments for creating on-line ex-
ercises and quizzes.

The capabilities and features of these two new
packages were demonstrated; manual of usage and
the packages themselves were distributed.

Since the time of the workshop, several new
features of the exerquiz package have been added;
most importantly, quizzes defined by the quiz en-
vironment can now be graded and corrected using
JavaScript.

A do-it-yourself tutorial

A do-it-yourself tutorial on hyperref and the web
and exerquiz packages was made available on a few
discs distributed at the workshop. The material is
now available at the AcroTEX website, see the link
“TUGY99 Handout Material”.

Concluding remarks

I was pretty well satisfied with the course of the
workshop; I was able to cover all the advertised top-
ics and give several demonstrations on the computer.
I was very happy to see that the workshop was well
attended and well received. Judging from the nu-
merous questions posed after the workshop, there is
quite an interest in this topic. Thanks to all the at-
tendees for your kind response to my workshop (and
to my talk).

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 321

WORKSHOP:
Writing Class Files: First Steps

Michael Doob
University of Manitoba,

Winnipeg, Canada
mdoob@cc.UManitoba.CA

The workshop covered (just) enough background to A handout was provided, showing how a class
allow participants to write their own class files, using file was created for the Canadian Mathematical So-
the standard file classes.dtx as a model. Topics ciety’s publications, the Canadian Mathematical Bul-
included: letin and the Canadian Journal of Mathematics.

e class files and the docstrip concept These included:
e the different file extensions — an alphabet of woe? the file cms. ins
e the classes.dtx file

e adapting the standard to make your own class
file

output from running cms.ins
the driver part of cms.dtx
the file cms.drv

. the file classes.ins

a macro from cms.dtx

the same macro in cms.cls

O NS oW

the same macro in the documentation

322 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

WORKSHOP:

Converting a IXTEX 2.09 Style to a IXTEX 2¢ Class

Anita Hoover
University of Delaware
anita@udel.edu

The workshop was well attended. There were over
55 people in attendance; a handout with an outline
of the process was also provided. The main focus of
the workshop was to provide enough information to
begin converting an old KTEX 2.09 style file into a
IMTEX 2¢ class file. The objectives included:

e pointers to available documentation
e converting existing 2.09 style files to a class or
package

e conversion steps

Documentation

There is a lot of documentation available with the
distribution of WTEX2: (see texmf/doc/latex/
base); those most helpful for converting style files
to classes are:

o “IATEX 2¢ for class and package writers” (file:
clsguide.tex)
o “IATEX 2 for authors” (file: usrguide.tex)
Additional books for specific issues include The IATEX

Companion, by Goossens et al., and Lamport’s EATEX:
A Document Preparation System

Converting a style file to a class or package

General rule of thumb: if the commands can be used
with any document class, then put them into a pack-
age; if not, then put them into a class file.

Conversion steps

e Does it run in compatibility mode?
e Does it depend on another style?

e Structure setup.

e Make it robust.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

The workshop applied these steps to the Uni-
versity of Delaware thesis style file (udthesis.sty
and udthel2.sty). Attendees were able to see the
process of transforming the style file into a new class
file, udthesis.cls.

Conclusion

The example of transforming udthesis.sty into
udthesis.cls clearly showed how to convert a style
file into a class file, where the original style was
based on one of the standard style files such as book,
article, or report.

The point was also raised that style files which
had been built from a combination of many style files
would be much more difficult to convert easily to a
class file and most likely this would require starting
from scratch.

Resources

There is a Powerpoint slide presentation
LaTeXstyle2class.ppt

available via anonymous ftp for download from
zebra.us.udel.edu

in
pub/tex/TUG99/workshops/hoover

Also in this directory are the University of Delaware
thesis files, udthesis.sty and udthesis.cls.

Access from outside the University of Delaware
is limited to the hours of 6:00pm to 8:00am (Eastern
Standard Time) Monday through Friday, and all day
on the weekends.

323

PANEL DISCUSSION:
TEX and Math on the Web

Stephen A. Fulling, moderator
Mathematics Dept.

Texas A&M University

College Station, Texas

77843-3368 USA
fulling@math.tamu.edu

Panelists:
e David Carlisle, XTEX3 Project (UK)
e Michael Downes, American Mathematical Soci-
ety
e Andre Kuzniarek, Wolfram Research
e Jeffrey McArthur, Atlis Publishing Services
e Ross Moore, Macquarie University (Australia)

Moderator’s summary of views

The moderator started the discussion by asking how
soon his non-negotiable demand for math symbols
on the Web would be met.!

Various panel members reported that partial
solutions are provided by PDF, Scientific Word, Tech-
explorer, Publicon, and MathType, and that the
Netscape-affiliated Mozilla Organization will soon
provide Windows rendering of MathML (albeit ty-
pographically poor at the moment).

McArthur pointed out that searching and in-
dexing of the contents of PDF documents is not
currently possible. This set off a lengthy colloquy
among various members of the audience and panel
on whether indexing of mathematical expressions
makes practical sense in the first place.

McArthur said that TEX should be fixed to emit
XML, and its cousins. From the audience, Sebastian
Rahtz stated that 2 already does this. Carlisle ob-
served that sub-expressions are hard to handle.

The key need, said audience member Art Ogawa,
is MathML rendering in the browsers. Carlisle replied
that math symbols will soon be incorporated into
UNICODE (as a tiny perturbation on its linguistic
riches), and it will then be easy to map them into
existing font sets. Kuzniarek pointed out that the
Mathematica fonts are freely available. Don DeLand
raised the issue of server vs. client support for fonts.

1 The panel discussion was based on the 13-point “Dreams
and Difficulties” handout provided by the moderator. -Ed.

324

McArthur suggested that TEX can be treated
as a language, like Chinese, for which input editors
exist. The editor could convert to MathML, and
also convert backwards to something editable. Kuz-
niarek said that the translation might be trickier in
this case, but Peter Flynn replied that the Euromath
Grif [object-oriented editor recently adopted by the
Euromath consortium] already performs such con-
versions adequately.

Timothy Murphy and Michael Doob predicted
that most mathematicians will stick with TEX, no
matter what; mathematics is a separate world, which
TEX serves very well. These comments provoked a
spate of “on-the-other-hand” remarks:

— Carlisle: TEX users need to get onto the
Web somehow.

— Patrick Ton: Engineers at Boeing (for ex-
ample) use math too, and they need to
read and write it.

— Fulling: We can’t reach our students if
they encounter mathematics only in an en-
vironment that is alien to them.

— McArthur observed that TEX has surpris-
ing difficulty in dealing with elementary-
school math.

Ogawa summarized the task before: Both render-
ing and document creation are crucial needs, and
both will be hard sells as the small TEX community
struggles to integrate itself into the XML/MathML
world.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

PANEL DISCUSSION:

TEX in Publishing

Siep Kroonenberg
Kluwer, Dordrecht
siepo@cybercomm.nl

Panelists:

Kaveh Bazargan (moderator), Focal Image Ltd.
(UK)

Fred Bartlett, Springer NY

Jean-luc Doumont, JL Consulting (Belgium)
Nadia Molozian, Harcourt Intl. (UK)
Sebastian Rahtz, Oxford University (UK)

Summary of views

Points raised during the day’s panel discussion:

1

Nadia Molozian from Harcourt Publishers noted
a strong increase in the use of M TEX in produc-
tion at her company. An advantage of BTEX is
that copy editing involves less work.

Generally, WTEX submissions by authors also
appear to be up, although this is not true ev-
erywhere.

Production of conference proceedings is a messy
business; often, quick-and-dirty measures such
as photographic resizing must provide a sem-
blance of consistency.

I This summary was first published in MAPS, the commu-
nications of the Dutch User Group NTG, Number 23 (1999),
pp- 10-11, and appears by kind permission of the NTG editors
and the author. This text is part of an overall summary of the
TUG99 meeting, which appears in the same issue (pp. 8-12).

e The publisher has little chance of influencing

the coding style of monographies. Often, the
author has been working on his book for years
before a publisher gets his hands on it.

An interesting speculation by Frederick Bartlett
on why authors like to use bad BTEX coding:
writing is hard work; authors cast about for
distraction and find it in fiddling with appear-
ances.

The same speaker encouraged the audience to
complain to publishers about bad-looking books;
this would give publishers an incentive to let
their TEX specialists do something about it.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 325

PANEL DISCUSSION:

Future of IXTEX

Arthur Ogawa, moderator
TEX Consultants, California
ogawa@teleport.com

Panelists:

e Donald Arseneau, TRIUMF (Canada)
e Fred Bartlett, Springer NY
e David Carlisle, WTEX3 Project (UK)

e Michael Downes, American Mathematical
Society

e Steven Grathwohl, Duke University

e Andre Kuzniarek, Wolfram Research

e Frank Mittelbach, WTEX3 Project (Germany)
e Jeffrey McArthur, Atlis Publishing Services

e Ross Moore, Macquarie University (Australia)
e Chris Rowley, Open University (London)

326 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

J I ! l | (; 2 O O O Wadham College, Oxford, UK
August 13th—16th, 2000
The 21st Annual Conference of the TEX Users Group will take place at Wadham College, Oxford, between
Sunday 13th August and Wednesday 16th August 2000. Tutorials will be given on the 17th and 18th August.

The Location

Oxford is a small, pleasant city with an internationally famous
university. The city is full of ancient buildings, beautiful gardens,
libraries and bookshops. The conference will be held in Wadham
College, a traditional college (founded 1613) in the centre of the city.
Oxford is easily reached from London, and is a good starting point for
visiting much of southern England.

The Conference

The conference will feature talks

on all aspects of TEX and 1its

~ relationship to both traditional

: @/ “and electronic document

.. preparation and processing.

The Annual General Meeting
of the TEX Users” Group will be

o held during the period of the conference.

L 3 { ‘ | ‘
\\\(‘:x\iv We expect the cost to a typical delegate to be about £300, including
NN
‘04 V7

}‘ k‘\w

accommodation and meals; cheaper accommodation and bursaries will
also be available.

The conference chairman is Sebastian Rahtz (Oxford University
Computing Services) and local organisation is led by Kim Roberts
(Oxford University Press).

Dates and Contacts

15th January 2000 Proposals for papers

Sebastian Rahtz
31st January 2000 Acceptance of papers oOUCS
;')th ll:/lebrlllla;(})rof]OOO]I;ukl)'hcatmrfl of bookflng f(l)crm a}nd prices 13 Banbury Road

st Marc clivery of papers for referccing Oxford OX2 6NN, UK
31st May 2000 Delivery of final papers

Tel: +44 1865 283431

General enquiries: tug2000-enquiries@tug.org hito-lltue2000.¢ /
p:ltug .tug.org

Paper submissions: tug2000-papers@tug.org

Toulouse, France 10-12 May 2000

i i

KBTEX and XML:
Cooperating with the Internet

Toulouse has developped a reputation of being a dynamic city: aeronautics, space, electronics, and
computers are its keywords. But even more, Toulouse lets you see its history as easily as its new modernity.

GUTenberg, the French-speaking TEX Users Group, also aims to be in the forefront of expanding
frontiers. The upcoming GUTenberg meeting will bring together people who are working on IMTEX and XML
developments evolving at an incredible rate right now on the Internet.

And so GUTenberg has chosen to hold its last meeting of the millennium in the Rose-Coloured City,
from May 10 to 12, in the year 2000.

Authors are invited to submit their proposals in either French or English for consideration by the
Program Committee. The first page should include the title, name and address of the author(s), as well as
a time estimate for presentation.

Possible topics (not exhaustive)

behind-the-scenes presence of KTEX in
browsers or other XML programs

practical XML support for end-users (e.g., for

Internet exchange by authors)

a world-wide XML standard for the next
decade

XML use outside the Internet

XML, search engines, browsers and public
domain applications

tools, editors, previewers, printer drivers for
TEX engines

IMTEX extensions

world-wide archives, CTAN servers,
maintenance, checking, improvements

multi-language versions of tools, formats,
documents

fonts
standardisation

applications for: PostScript, PDF, SGML,
HTML, XML, MathML, etc.

graphics, sound, pictures
editorial process

aspects of scientific publication: tools for
math, physics, chemistry, etc.

IMTEX and competing products

Schedule

20 January 2000 submission of proposals
27 January 2000 acceptance notification
20 February 2000 deposit of paper

5 March 2000 submission of final paper
10-12 May 2000 conference in Toulouse

Ftp submission information

server: ftp.irisa.fr
user: gut2000

password: toulouse
cd incoming

Create a directory using author name; deposit files,
then send a message to michele.jouhet@cern.ch
with details of directory and file names.

Upon acceptance, the necessary style files will be
available from this server to produce the article in
a form suitable for publication in the subsequent
proceedings.

For information contact

Michele Jouhet (President):
michele. jouhet@cern.ch
Bernard Gaulle:
gaulle@idris.fr
Anne Collin (GUTenberg Office):
secretariat.gutenberg@ens.fr

Further details to be posted at: http://www.gutenberg.eu.org/manif/

TUGboat, Volume 20 (1999), No. 3

327

Participants at the 20th Annual TUG Meeting
August 15-19, 1999, Vancouver, British Columbia

TUG’99
Attendees

Donald Arseneau
asnd@triumf.ca
Canada

Kiren Bahm
office@tug.org
USA

Frederick Bartlett
fredb@springer-ny.com

USA

Kaveh Bazargan
kaveh@focal.demon.co.uk

United Kingdom

Nelson H.F. Beebe
beebe@math.utah.edu
USA

Barbara Beeton
bnbQams.org
USA

David Carlisle
davidc@nag.co.uk

United Kingdom

Lance Carnes
lcarnes@pctex.com
USA

Michael Carter
m.carter@econ.canterbury.ac.nz
New Zealand

Jae Choon Cha
jccha@knot.kaist.ac.kr
Korean

Daniel Christiansen
christiansen@albion.edu

USA

Kaja Christiansen
kaja@diami.au.dk
Denmark

Dennis Claudio
awkster@aol.com
USA

Helen C. Claudio
argon@its.caltech.edu

USA

Scott Collins
collins@siam.org

USA

Donald W. DeLand
deland@integretechpub.com
USA

Susan DeMeritt
sue@ccrwest.org
USA

Richard Detwiler
office@tug.org
USA

Simon Dickey
dickey@siam.org

USA

Michael Doob
mdoob@ccu.umanitoba.ca
Canada

Jean-luc Doumont
jl@jlconsulting.be
Belgium

Michael J. Downes
mjdQ@ams.org

USA

Gina Doxsey
texsales@pctex.com

USA

Peter Flynn
pflynn@imbolc.ucc.ie
Ireland

Erik Frambach
e.h.m.frambach@eco.rug.nl
The Netherlands

Yukitoshi Fujimura
yukif@ca2.so-net.ne. jp
Japan

Stephen Albert Fulling
fulling@math.tamu.edu
USA

Julian Gilbey
jdg@debian.org
USA

Steve Grathwohl
grath@math.duke.edu
USA

Peter M. Guinta
pgiunta@mit.edu
USA

Eitan M. Gurari
gurari@cis.ohio-state.edu

USA

Barbara Hamilton
hamilton@ccr-princeton.org

USA

Joseph Hertzlinger
jhertzli@ix.netcom.com
USA

Anita Z. Hoover
anita@zebra.us.udel.edu
USA

Patrick D.F. Ion
ion@ams.org

USA

Calvin Jackson
calvin@pcmp.caltech.edu
USA

Mimi Jett
jett@us.ibm.com
USA

Bob Johnson
bobj@synopsys.com
USA

Judy Johnson
jannejohnson@yahoo.com

USA

Tom Kacvinsky
tjkQams.org
USA

N.G. Kalivas
ngk9131Qwestminster.org.uk
United Kingdom

Debra Kaufman
dkj@duke.edu
USA

Evelyn Kidd
evelyn.kidd@nrc.ca
Canada

Richard J. Kinch
kinch@truetex.com
USA

Ki Hyoung Ko
knot@knot.kaist.ac.kr
Korea

Siep Kroonenberg
siepo@cybercomm.nl

The Netherlands

328

Robert L. Kruse
bob@pretex.com
Canada

Warren Leach
warren@bluesky.com

USA

Silvio Levy
levy@math.berkeley.edu
USA

Douglas Lovell
dcl@watson.ibm.com

USA

Alex Lowrie
alowrie@educaide.com

USA

Pierre MacKay
mackay@cs.washington.edu
USA

Paul A. Mailhot
paul@pretex.com
Canada

Irina A. Makhovaya
irina@mir.msk.su
Russia

Jeffrey McArthur
jmcarth@atlis.com

USA

Denise McCall
denise@ccr-p.ida.org
USA

Wendy McKay
wgm@cds.caltech.edu
USA

Lothar Meyer-Lerbs
TeXSatzQuni-bremen.de
Germany

Bruce Miller
bruce.miller@nist.gov
USA

Frank Mittelbach

frank.mittelbach@latex-project.org

Germany

Mikael Moller
texab@faksimil.se
Sweden

Nadia Molozian
nadia-molozian®@harcourt.com

United Kingdom

Patricia Monohon
pmonohon@zimm.ucsf.edu
USA

André Montpetit
montpetit@crm.umontreal.ca
Canada

Ross Moore
ross@mpce.mq.edu.au
Australia

Uwe Miinch
muench@ph-cip.Uni-Koeln.de
USA

Timothy Murphy
tim@maths.tcd.ie
Ireland

Timothy Null
tsnull@worldnet.att.net
USA

Arthur Ogawa
ogawa@teleport.com

USA

Harry Payne
payne@stsci.edu
USA

Craig Platt
platt@cc.umanitoba.ca
Canada

Cheryl Ponchin
cheryl@ccr-p.ida.org
USA

Fabrice Popineau
fabrice.popineau@supelec.fr
France

Mike Potter
pottmi@lidp.com
USA

TUGboat, Volume 20 (1999), No. 3

K. David Prince
kdpQ@u.washington.edu
USA

Sebastian Rahtz

sebastian.rahtz@oucs.oxford.ac.uk

United Kingdom

Heidi Rhodes Sestrich
heidi@stat.cmu.edu
USA

Nora Rogers
nora@scipp.ucsc.edu

USA

Chris Rowley
c.a.rowley@open.ac.uk

United Kingdom

Volker R.W. Schaa
v.r.w.schaa@gsi.de
Germany

Friedhelm Sowa

tex@sowa.rz.uni-duesseldorf.de

Germany

Donald P. Story
dpstory@uakron.edu
USA

Christina Thiele
cthiele@ccs.carleton.ca
Canada

Debbie Vose
vosede@lidp.com
USA

Hu Wang
hwangQaip.org
USA

Joseph Weening
jweening@ccrwest.org

USA

Alan Wetmore
awetmore@arl.mil
USA

De-Wei Yin
yin@asc.on.ca
Canada

TUGboat, Volume 20 (1999), No. 3

329

Calendar
1999 Feb 27— XTECH 2000, the XML Developers
Mar 2 Conference: “Looking back, going
Oct 7-10 ATypl’99, Association forwadr”, San Jose, California.
Typographique Internationale, For information, visit
Boston, Massachusetts. For information, http://www.gca.org/attend/
visit http://www.atypi.org/. 2000_conferences/xtech_2000/.
Nov 3— ABeCeDarium: A traveling juried Mar 8-11 DANTE 2000 and 22°¢ meeting,
Dec 17 exhibition of contemporary artists’ Technische Universitét
alphabet books by members of the Clausthal-Zellerfeld, Germany.
Guild of Book Workers, appearing at the For information, visit
Denison Library, Scripps College, http://dante2000.itm.tu-clausthal.de/.
Claremont, California. Sites and Apr DK-TUG conference (proposed),
dates are listed at http:// Aarhus Universitet, Aarhus,
palimpsest.stanford.edu/byorg/gbu. Denmark. For information, visit
Nov 11 NTG 24h Meeting, Technische http://sunsite.auc.dk/dk-tug/.
Universiteit Delft, The Netherlands. Apr 11 TUGboat 21 (2), deadline for technical
For information, visit submissions.
http://waw.ntg.nl/. Apr 30— BachoTEX 2000, 8" annual meeting of
Dec 6-9 XML 99, Philadelphia, Pennsylvania. May 3 the Polish TEX Users’ Group (GUST),
For information, visit “TEX on the turn of the 20th
http://wuw.gca.org/conf/conf1996.htm. century”, Bachotek, Brodnica Lake
Dec 11 NTS talk by Hans Hagen, Masaryk District, Poland. For information, visit
University, Brno, Czech Republic. http://www.gust.org.pl/.
Dec 13 Tutorial, “All the nice things we can May 9 TUGboat 21 (2), deadline for reports and
do with pdf(TEX)”, Hans Hagen, news items.
Masaryk University, Brno, May 10—12 GUTenberg 2000, “IATRX et XML :
Czech Republic. To attend, register with coopération pour Iinternet”, Toulouse,
secretary@cstug.cz. France. For information, visit
http://www.gutenberg.eu.org/gut/
2000 manif/gut99/.
Jun 1-3 Society for Scholarly Publishing,
Feb 7 TUGboat 21 (1), deadline for technical 22" annual meeting, Baltimore,
submissions. Maryland. For information, visit
Feb 7-11 Seybold Seminars Boston/ http://wwv.sspnet. org.
Publishing 2000, Boston, Massachusetts. Jun 12—-16 XML Europe 2000, Palais des Congres
For information, visit http:// de Paris, France. For information,
www.seyboldseminars.com/Events. visit http://www.gca.org/attend/
Feb 21 TUGboat 21 (1), deadline for reports and 2000_conferences/europe_2000/.
news items. Jun 16-18 TypeCon 2000, Westborough,

Massachusetts. For information, visit
http://tjup.truman.edu/sota/.

Status as of 1 November 1999

For additional information on TUG-sponsored events listed above, contact the TUG office
(4+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

Additional type-related events and news items are listed in the Sans Serif Web pages,

at http://www.quixote.com/serif/sans.

330

Jun 21-23

Jul 21-25

Jul 2328

Aug 1218

Aug 28—
Sep 1

TUGboat, Volume 20 (1999), No. 3

TypoMedia 2000, “Future of Sep DK-TUG, 2°d Annual General
Communication”, Mainz, Germany. Meeting. For information, visit
Linotype’s design conference; http://sunsite.auc.dk/dk-tug/.
for information, visit Sep 12 TUGboat 21 (3), deadline for reports and
http://www.typomedia.com. news items.
ALLC-ACH 2000: Joint International Sep 13-15 DDEP 2000: Digital Documents and
Cpnference of t'he Asgociation fo.r Electronic Publishing, Munich,
Literary and Linguistic Computing, Germany. For information, visit
and Association for Computers http://www.irisa.fr/ep9s.
he H iti 1 . .

gz(()ltfarf q %ﬁén;;fsi;lgrﬁgaixh visit Sep 19 TUGDboat 21 (4), deadline for technical
http://www.ach.org/. submissions.
SIGGRAPH 2000. New Orleans Oct 17 TUGboat 21 (4), deadline for reports and
Louisiana. For information, visit news items. o .
http://www.siggraph.org/calendar/. Nov 17-19 Conferenc.e: E.nc Gill & St. Dominic’s
TUG 2000 — The 21° annual meeting of Press, University of Notre Dame,
the TEX Users Gro “TEX enters a Notre Dame, Indiana; three concurrent
new millennium” \;\lleiham College exhibitions of Gill’s and related work will
Oxford, UK For’information visgi;t7 be held in the University museums
htto: /7/t 2 000. y ’ and library. For information, visit

p://tug ’ 1.1g. Ore/) http://www.nd.edu/"~ jsherman/gill/.
(Sj‘;ﬁgiiljal;f;ﬁ‘fﬁfzatsﬁﬁ Frizﬁmsco’ Dec 3-7 XML 2000/Markup Technologies 2000,
http:/ /m;w sevbol dsemin;r‘; com/Events Washington, DC. For information, visit

P: e ’ ' http://www.gca.org/attend/att_nxt_yrs.htm.

AN ANALOGY WITH WEE SITES

Cartoon

by Roy Preston

Youm Book SiR... SORRY ABOUT THE 2-WEEK
DELAY. YOU'LL NEED A SPANISHS ENGLISH
DICTIONARY WHICH YOU LL FIND OVER IN THE
REFERENCE SECTION, AND A MAGNIFYING
GLASS FROM THE HARDWARE STORE THE OTHER

SIDE OF TOWN...

2000 TUG Membership Form
I X Rates for TUG membership and TUGboat subscription are listed below. Please check
E the appropriate boxes and mail payment (in US dollars, drawn on a United States
bank) along with a copy of this form. If paying by credit card, you may fax the
completed form to the number at left.
* 2000 TUGDboat includes Volume 21, nos. 1-4.
SERS « 2000 CD-ROMs include TiX Live 5 (1 disk) and Dante’s CTAN (3 disk set).
* Multi-year orders: You may use this year’s rate to pay for more than one year of
membership.
GROUP * Orders received after March 1, 2000: please add $10 to cover the additional expense
of shipping back numbers of TUGboat and CD-ROMs.

Rate Amount

Promoting the use of Annual membership for 2000 (TUGboat and CD-ROMs) L] s65s
TEX throughout the Student/Senior membership for 2000 (TUGboat and CD-ROMs)
world (please attach photocopy of 2000 student/senior ID) L] $35
Subscription for 2000 (TUGboat and CD-ROMSs) (Non-voting) D $75
mailing address: Shipping charge if after March 1, 2000. S [J—
P.O. Box 2311 .
Portland, OR 97208-2311 USA Materials for 19991
(TUGboat Volume 20, TgX Live 4, 1999 CTAN CD-ROMs) D $75
shipping address: .
1466 NW Naito Parkway, Voluntary donations o
Suite 3141 General TUG contribution [] o
Portland, OR 97209-2820 USA Contribution to Bursary Fund* L] .
Phone: +1 503 223-9994 Total $
Fax: +1 503 223-3960 Payment (check one) | | Payment enclosed | | Charge Visa/Mastercard/AmEx
Email: office@tug.org
WWW: www. tug.org Account Number:

Exp. date: — Signature:

President: Mimi Jett
. . . *The Bursary Fund provides financial assistance to members who otherwise would be unable
Vice-President:

Kristoffer Hagsbro Rose to attend the TUG Annual Meeting.

Treasurer: Donald W. DeLand 1 If you are a new TUG member wishing to receive TgX Live and CTAN right away, please
Secretary: Arthur Ogawa order this item along with your 2000 membership.

We use the information you provide to mail you products, publications, notices, and (for voting members) official ballots, or
in a printed or electronic membership list, available to TUG members only.

Note: TUG neither sells its membership list nor provides it to anyone outside of its own membership.

If you do not wish to have your name or other information in our membership list, please check here: | |.

Name:

Department:

Institution:

Address:

Phone: Fax:

Email address:

Position: Affiliation:

The Most Powerful
Mathematical Typesetting
Software "

Y&Y TeX System

There’s no better mathematical typesetting language than
TEX, and there’s no better software for implementing it
than Y&Y TeX System. Y&Y TeX System simplifies TEX while
maximizing its unsurpassed typesetting capabilities.

B On-the-fly font re-encoding lets you
specify unencoded characters otherwise
inaccessible in Windows.

B Partial font downloading dramatically
Y&Y TeX SySt em. speeds up printing.

B Web publishing capabilities let you prepare
documentsin Acrobat PDF which appear
The Ultimate on screen exactly as you designed them.

B Customizable TEX menu lets you link to
an editor, spell-checker or any other DOS
or Windows program.

TgX is a trademark of the American Mathematical Society.

Problem Solver.

But that’s just part of the whole formula.

a For more information about

Y&Y TeX System, check out our

" Y&Y Inc' web site at http://www.YandY.com

Concord, MA USA

or e-mail sales-help@YandY.com

SV BV PR N0 Y Ill hitp:// www.YandY.com

