TUGBOAT
Volume 19, Number 4 / December 1998

347 Addresses
348 A seasonal puzzle: XII / David Carlisle

General Delivery 349 From the President / Mimi Jett
351 Editorial comments / Barbara Beeton
TUG election; TEX ’98; The end of an era— Phyllis Winkler retires;
Sans Serif; Sauter font distribution has a new maintainer;
Goodies on CTAN

Typography 353 Typographers’inn / Peter Flynn
355 Typesetting with varying letter widths: New hope for your narrow columns /
Miroslava Misakova

Software & Tools 366 Editorial: EncTEX, by Petr Olsak / Barbara Beeton
366 EncTEX —A little extension of TEX / Petr Olsak
372 ConcTEX: Generating a concordance from TEX input files / Laurence Finston

Language Support 403 Cyrillic encodings for INTEX2¢ multi-language documents / A. Berdnikov,
O. Lapko, M. Kolodin, A. Janishevsky, and A. Burykin
417 Romanized Indic and IATEX / Anshuman Pandey
419 New Greek fonts and the greek option of the babel package / Claudio Beccari
and Apostolos Syropoulos

Hints & Tricks 426 ‘Hey—it works!” / Jeremy Gibbons
Controlling abbreviations in BIBTEX (Jeroen H. B. Nijhof);
A small minus sign (Jeremy Gibbons);
Ornamental rules (Christina Thiele)
428 The Treasure Chest: A package tour from CTAN —soul.sty / Christina Thiele

Abstracts 431 Les Cahiers GUTenberg, Contents of issue 30

News & 433 Calendar
Announcements 434 TUG’99 Announcement

Late-Breaking 432 Production notes / Mimi Burbank
News 432 Future issues

TUG Business 437 Institutional members
438 TUG membership application

Advertisements 439 TEX consulting and production services
440 Y&Y Inc.
¢3 Blue Sky Research



[A] ‘pi’ of type thrown on the floor constitutes no reading matter,
though it contains its elements. The order, the sequence
of letters in a sentence, is therefore paramount.

Victor Hammer [1955]

“Those Visible Marks...”, The
forms of our letters Typophile
Monograph, New Series,
Number 6, 1988

UGBOAT

COMMUNICATIONS OF THE TgX USERS GROUP
EpiTor BARBARA BEETON

VoLuMmE 19, NUMBER 4 . DECEMBER 1998
PORTLAND . OREGON . U.S.A.



TUGDboat

During 1999, the communications of the TEX Users
Group will be published in four issues. The
September issue (Vol. 20, No. 3) will contain the
Proceedings of the 1999 TUG Annual Meeting.

TUGboat is distributed as a benefit of mem-
bership to all members.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

The next regular issue will be Vol. 20, No. 1. The
deadline for technical items will be February 15;
reports and similar items are due by March 1.
Mailing is scheduled for March. Deadlines for other
future issues are listed in the Calendar, page 433.

Manuscripts should be submitted to a member
of the TUGboat Editorial Board. Articles of general
interest, those not covered by any of the editorial
departments listed, and all items submitted on
magnetic media or as camera-ready copy should be
addressed to the Editor, Barbara Beeton, or to the
Production Manager, Mimi Burbank (see addresses
on p. 347).

Contributions in electronic form are encour-
aged, via electronic mail, on diskette, or made
available for the Editor to retrieve by anonymous
FTP; contributions in the form of camera copy
are also accepted. The TUGboat “style files”, for
use with either plain TEX or I#TEX, are available
“on all good archives”. For authors who have no
network FTP access, they will be sent on request;
please specify which is preferred. Send e-mail to
TUGboat@tug. org, or write or call the TUG office.

This is also the preferred address for submitting
contributions via electronic mail.

Reviewers

Additional reviewers are needed, to assist in check-
ing new articles for completeness, accuracy, and
presentation.  Volunteers are invited to submit
their names and interests for consideration; write to
TUGboat@tug.org or to the Editor, Barbara Beeton
(see address on p. 347).

TUGDboat Advertising and Mailing Lists

For information about advertising rates, publication
schedules or the purchase of TUG mailing lists,
write or call the TUG office.

TUGDboat Editorial Board

Barbara Beeton, Editor
Mimi Burbank, Production Manager
Victor Eijkhout, Associate Editor, Macros
Jeremy Gibbons, Associate Editor,

“Hey — it works!”
Alan Hoenig, Associate Editor, Fonts
Christina Thiele, Associate Editor,

Topics in the Humanities

Production Team:

Barbara Beeton, Mimi Burbank (Manager), Robin
Fairbairns, Michel Goossens, Sebastian Rahtz,
Christina Thiele

See page 347 for addresses.

Other TUG Publications

TUG publishes the series TEXniques, in which have
appeared reference materials and user manuals for
macro packages and TgEX-related software, as well
as the Proceedings of the 1987 and 1988 Annual
Meetings. Other publications on TEXnical subjects
also appear from time to time.

TUG is interested in considering additional
manuscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the TEX community in general. Provision can be
made for including macro packages or software in
computer-readable form. If you have any such items
or know of any that you would like considered for
publication, send the information to the attention
of the Publications Committee in care of the TUG
office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
MS/DOS is a trademark of MicroSoft Corporation
METAFONT is a trademark of Addison-Wesley Inc.
PCTEX is a registered trademark of Personal TEX,
Inc.
PostScript is a trademark of Adobe Systems, Inc.
TEX and AAS-TEX are trademarks of the American
Mathematical Society.
Textures is a trademark of Blue Sky Research.
UNIX is a registered trademark of X/Open Co. Ltd.



348 TUGboat, Volume 19 (1998), No. 4

A Seasonal Puzzle

XII

David Carlisle
david@dcarlisle.demon.co.uk

\let~\catcode™ ‘76~ ‘A13"‘F1~‘jO0~ ‘P2jdefA71F~ ‘7113jdefPALLF
PA’ ’FwPA; ;FPAZZFLalLPA//71F71iPAHHFLPAzzFenPASSFthP ; A$$FevP
A@Q@FfPARR717273F737271P ; ADDFRgniPAWW7 1FPATTFvePA**FstRsamP
AGGFRruoPAqq71.72.F717271PAYY7172F727171PA??Fi*LmPA&&71jfi
Fjf£i71PAVVF jbigskipRPWGAUU71727374 75,76F jpar71727375Djifx
:76jelse&U76 j£iPLAKK7172F7117271PAXX71FVLn0SeL71SLRyadR@oL
RrhC?yLRurtKFeLPFovPgaTLtReRomL ;PABB71 72,73:Fjif.73. jelse
B73:j£iXF71PU71 72,73 :PWs; AMM71F71diPAJJFRAriPAQQFRsrelLPAI
I71Fo71dPA! 'FRgiePBt’el@ 1TLqdrYmu.Q. ,Ke;vz vzLqpip.Q.,tz;
;Lgl.IrsZ.eap,qn.i. i.eL1lMaesLdRcna,;!;h htLgm.MRasZ.ilk,%
s$;z zLgs’.ansZ.Ymi,/sx ;LYegseZRyal,@i;@ TLRlogdLrDsW,®@;G
LcYlaDLbJsW,SWXJW ree @rzchLhzsW, ;WERcesInW qt.’oL.Rtrul;e
doTsW,Wk;Rri@stW aHAHHFndZPpqgar.tridgeLinZpe.LtYer.W, : jbye

Seasons greetings to all.

This code should be input to plain TEX, not IATEX. For those without
patience to figure out what the output will be, and to save the fingers and
sanity of anyone who would like to try it out, the file can be found at
http://wuw.tug.org/TUGboat/Articles/tb61/xii.tex.

Enjoy!



TUGboat, Volume 19 (1998), No. 4

General Delivery

From the President
Mimi Jett

Greetings TUG Members!

As the year draws to a close and the new year
arrives, we pause to reflect on the events and accom-
plishments we have enjoyed in 1998. I will review
the year from my catbird seat, then go on to tell
you about the fantastic meeting we had in Torun,
and our plans for a celebration — and opportunities
for discovery —at our 20th annual meeting in Van-
couver, BC, Canada, in August 1999. Once again,
there is a good deal of administrivia to discuss. But,
finally, we have the people and the plan in place to
provide great service and benefits to our member-
ship. We have elections coming up again, so please
pay special attention to the words of wisdom from
Barbara Beeton, and take the initiative to nominate
yourself or someone else to the board, or for presi-
dent. The more participation we have from our en-
tire membership, the stronger we are. At this time,
we have an extremely wonderful board; active in
many aspects of creating benefits and learning for
our members; willing to work across barriers; and
gracious and respectful to each other; this group is a
delight to work with. Most of our board has agreed
to stand for re-election, that is good news! There
are open seats on the in-coming board even if our
standing group stays, so please think about it.

1998: The year in review

Release of TEX Live 3 to TUG members
fantastically successful!

The first issue of TUGboat for 1998 included the
CD TgX Live 3. This was one of the most outstand-
ing benefits we offered this year, and it was the
fulfillment of a goal to include it in the first is-
sue of the year. The combined, almost heroic, ef-
forts of Sebastian Rahtz, Olaf Weber, Mimi Bur-
bank (who provided many different testing plat-
forms at the Florida State University Supercom-
puter Research Institute), Kaja Christiansen, Robin
Fairbairns, Eitan Gurari, Fabrice Popineau, An-
dreas Scherer, Thorsten Schmidt and Eli Zaretskii
were involved in assembling and testing the collec-
tion. Karl Berry, Thomas Esser, Graham Williams,
and (as Robin puts it) “hordes of others” were the
source of the software and packages. Together, they
all brought forth the best TEX Live release we have

349

ever seen. Indeed, this is one of the best things we
have done for our members. Compilation and dis-
tribution of TEX Live was a joint effort by UK TUG,
GUTenberg, DANTE and TUG, with additional sup-
port from the Czech/Slovak, Dutch, Indian and Pol-
ish groups. Thanks to alll Truly, without the com-
bined efforts of everyone, this would not have hap-
pened.

DANTE provides CTAN archive to all TUG
and DANTE members

A three-CD set of the complete CTAN archive
was distributed to all TUG members in TUGboat
19:2, thanks to a very generous donation from
DANTE. We are indeed grateful to DANTE for
this very valuable resource. The importance of
CTAN was immediately clear to me when I heard
Anita Hoover exclaim “I haven’t written a macro in
years. .. everything I need is on CTAN.”

NTG release of 4allTEX provided to TUG
members

In addition to the software and data resources al-
ready mentioned, we were also fortunate to have the
opportunity to deliver 4allTEX, the popular Win-
dows TEX program, to our members. The program
was developed and donated by Erik Frambach and
Wietse Dol at NTG, with the cost of manufactur-
ing and duplication covered, once again, by DANTE.
Isn’t it nice to have generous relatives?

Confusion reigns after Microsoft
announcement

An amusing, and all-too-believable article was
posted as an April Fools’ Day prank claiming that
Dr. Knuth had sold out TEX to Microsoft. Complete
with in-depth reporting, background, and quotes
from the victims of this tragedy, it is no surprise the
article was taken as genuine news by several people
around the world. In the 10th anniversary edition
super-issue of MAPS, NTG reprinted the article as it
was originally written, and included color photos of
Dr. Knuth and Bill Gates with serious expressions
on their faces. This added credibility and fuel to
the flames. I received messages from other groups
asking what TUG will do, continue or disband, now
that Bill is our leader? Up to that point, I didn’t re-
alize that it was taken seriously. Of course, once the
joke was realized it was appreciated as good humor.

Renewed interest in TEX and TUG apparent

This year has been another growth year for us,
thanks to the great developments that are happen-
ing in Europe, Australia, and literally dozens of



350

countries around the world. With the migration of
publications to the World Wide Web, TEX is being
discovered anew by authors and publishers of techni-
cal material. The ability to use live math for display
or coded content is quite desirable in the world of
database storage and delivery. All of this translates
to more inquiries and requests for information about
TUG. We have had a steady flow of new members,
including both individuals and institutions.

Complete turnover in office staff

Probably the most important thing that has hap-
pened for TUG this year is the lucky fate that sent
Dick Detwiler to us. Dick has been managing the
office since early summer, and it is finally beginning
to feel like we are organized. Several times we have
thought we had things figured out, just as another
alligator surfaced from the swamp. The member-
ship database was terribly inaccurate, with records
of payment for dues confused for more than 500
members. We spent many hours editing, reviewing,
and correcting the data. I think we have now fixed
all records, and mailed the missing TUGboats and
CDs to most members. If you have been billed or
credited erronously, I apologize.

TUG ’98 in Torun

The 19th annual meeting was held in Torun, Poland,
August 17-22, and what a meeting it was! Sev-
eral people commented that it was “the best TUG
meeting ever.” Not having been to every meeting,
I cannot say. But it was an incredible week. FEv-
ery session was started pretty much on time and
ended on time. The quality of all the papers was
very good. Hans Hagen was exceptional in all of his
presentations. Hans was voted the best in all three
categories; content, presentation, and overall, by the

TUGboat, Volume 19 (1998), No. 4

audience. The workshops were well organized and
highly informative. Everything was orchestrated by
the GUST team; all events, meetings, and facilities
were perfect. Visiting the Teutonic Knights’ castle
was quite an experience, not only feeling the his-
tory of the place, but watching Gilbert breathe fire
and hearing Bogustaw leading folk songs, made the
night one to remember for a lifetime. Thanks to our
friends at GUST for a wonderful time, and to the
people of Poland for their gracious hospitality.

Board News

We are fortunate to welcome Mr. Philip Taylor to
our board. Phil has been active in TUG and UK TUG
for many years, and brings a depth of experience
and knowledge to us. The following directors have
resigned: Cameron Smith, Donna Burnette, and
Jit{ Zlatuska. We thank them for their service to
TUG. Please don’t forget the upcoming elections.
We would love to have more members standing for
the board.

Plans for 1999

TUG 99 — 20th Annual Meeting in
Vancouver, BC, August 15-20

This will be an outstanding conference, based on the
papers that have been accepted and the training,
workshops, and events that are planned. (See the
conference preliminary schedule on page 434.) The
conference and program committees are actively cre-
ating an itinerary you will enjoy. Please stay tuned
to the TUG website (http://www.tug.org/tugd9/)
for additions and announcements.
See you in Vancouver!



TUGboat, Volume 19 (1998), No. 4

Editorial Comments

Barbara Beeton

TUG election

Please remember that this is an election year for
TUG. Both the presidency and a number of seats
on the Board are open for candidates. Nomination
papers are due to the TUG office by March 15,
1999, balloting will take place during the spring, and
newly elected officials will assume their offices at the
annual meeting in Vancouver.

The form for nominations appeared in TUG-
boat 19 (3), on page 234. The form is also available
from the TUG Web site, at http://www.tug.org/,
in the form of a PDF file, or a copy can be obtained
on request from the TUG office (office@tug.org).

Your participation in this election will help to
determine the course that TUG will take headed into
the new century. Don’t leave it to chance— become
active and help make it happen.

TEX *98

During the past summer, Don Knuth undertook his
periodic review of the accumulated bug reports for
TEX, METAFONT, and the Computers & Typeset-
ting book series. The new versions of all the source
files are in place on CTAN, in ftp://ftp.ctan.
org/tex-archive/systems/knuth/, mirrored from
labrea.stanford.edu.

Here is a brief summary of changes.

e The most important TEXbook corrections ap-
pear in the files errata.nine and errata.tex;
some insignificant changes (e.g., page numbers
in index entries out of order) are corrected in
texbook.tex but not mentioned in the errata
files, so anyone who thinks s/he has found an
error should check it in texbook.tex before
reporting it.

e plain.tex has had a few changes and now
has a format version 3.1415926, two steps
ahead of the version of TEX itself. The defini-
tions of \AA, \d, \b, \c, rightarrowfill and
\leftarrowfill were corrected or improved to
work correctly or more robustly in a wider range
of situations. A new control sequence, \Orb,
was introduced to typeset the big circle used in
\copyright.

e A few corrections were made to comments in
TeX: The Program, but the version remains
3.14159.

e In The METAFONTbook, numerous nitpicky
corrections are recorded in the errata file, but
the only really important change is the cor-

351

rection to the syntax of path expressions on
page 129 (repeated on page 213).

e METAFONT moves to version 2.7182, correcting
a bug involving unprintable strings of length 1.

e Changes to Computer Modern typefaces are
documented completely in the file cm85.bug as
well as in errata.tex (changes to Volume E).
Most corrections simply make the programs
more robust in the presence of weirder com-
binations of parameters. Contrary to previ-
ous claims that the shapes would never change
again, a few have changed in nontrivial ways, to
improve their appearance in the new editions of
The Art of Computer Programming: lowercase
beta and omega, uppercase sans serif C and G,
and the position of the dots on the i’s in sans
serif fi and ffi ligatures has descended to the
normal position for i dots.

e DVIitype is now version 1.6; it reports some
errors better.

e VPtoVF is now version 1.5, fixing a bug with
respect to rules of dimension zero.

e Typos in GFtoPK.web and PKtype.web were
corrected, with no change to version numbers.

e In logo.mf, the S has been redesigned; it now
sort of assumes that a T will follow, as in
METAPOST.

Don’s advice is to TEX and print out the file
errata.tex for reference. His transmittal letter
concluded, “In summary, I'm pleased that people
still care enough about TEX/METAFONT to under-
stand the details and to help me get them right. But
oh how I wish I hadn’t made so many mistakes!”

Don will next address TEX-related bugs in 2002.
Until then, I will continue to collect reports, acting
as his entomologist.

The end of an era— Phyllis Winkler retires

When Don Knuth created TEX, he intended it to be
a tool for himself and his secretary, Phyllis Winkler,
to prepare his books and papers for publication.

On October 1, 1998, Phyllis retired from Stan-
ford, after 32 years of service, for 28 of which she
was Don’s secretary. As he says on his Web page of
news for 1998,

She typed more than 200 of my papers, most
of which required several rounds of revisions.
She buffered all of my email and telephone
messages. She administered the editorial

L http://www-cs-faculty.stanford.edu/ knuth/
news98.html; a photo shows Phyllis with Don, who is,
for I think the first time I've seen it, wearing a necktie.



352

work of more than a dozen technical jour-
nals, and helped out with numerous research
projects. She made online indexes of all the
correspondence in our files. She did all of
the initial keyboarding for the new editions
of The Art of Computer Programming, Vol-
umes 1 and 3 —amounting to more than 1500
printed pages of what printers used to call
“penalty copy” because it is so hard to do.
And so on and so on, what a team we made!
And she was simultaneously also serving as
secretary for several other faculty members.

I remember Phyllis most fondly. I met her in
1979 when I was first sent to Stanford with a small
group from AMS to learn TEX; she took very good
care of us. Whenever a TUG meeting was held
at Stanford, I always enjoyed checking in with her
to find out what was happening. I learned some
interesting personal things about her, for example
that her son-in-law raised and trained large cats for
several well known magicians; a delightful poster on
her wall showed him with his hands full of tiny tiger
kittens, their mother looking on with curiosity but
without concern. Phyllis told me that once when she
was visiting her daughter, her son-in-law suggested
she might go out in the back yard to get some
exercise running around with their resident panther.
I think they were just kidding. . .

Phyllis also took care of communicating mes-
sages between Don and me whenever he would work
on the current batch of TEX bug reports. She could
always be depended on to get necessary messages
through to him, but insulate him, firmly but po-
litely, from things that weren’t urgent.

On September 30, members of the Stanford
Computer Science Department held a retirement
party for Phyllis. Among the other greetings,
a resolution from the TUG Board expressed our
appreciation for all her contributions over the past
20 years.

Along with many other friends, I wish Phyllis a
long, productive, enjoyable retirememt.

Sans Serif

Don Hosek, editor and publisher of Serif: The Mag-
azine of Type & Typography, has created an elec-
tronic adjunct — “Sans Serif: The On-line Compan-
ion to Serif”. These Web pages (found at http://
www.quixote.com/serif/sans/) contain some ma-
terial related to items in the print product, along
with a full calendar of type- and print-related events.
Check it out —it contains more local and specialized
events than we are able to include in the TUGboat
calendar.

TUGboat, Volume 19 (1998), No. 4

Sauter font distribution has a
new maintainer

The Sauter font distribution, a comprehensive set of
parameters for automated generation of Computer
Modern and other METAFONT fonts, has been main-
tained for quite a long time by Jorg Knappen, who
took over this task from the originator, John Sauter.
Owing to a change in his employment status,
Jorg found it necessary to look for, and has found, a
replacement. The new maintainer of the Sauter font
distribution is Jeroen Nijhof; he can be reached at
J.H.B.Nijhof@aston.ac.uk.

Goodies on CTAN

With the recent posting of yet another translation
of The (not always) short introduction to BTEX
(familiarly known as Ishort, the number of languages
in which this little manual is now available has
reached seven: KEnglish, Finnish, French, German,
Mongolian, Russian, Spanish.

On CTAN, Ishort can be found in
/tex-archive/info/lshort/(language).

This is a fine beginner’s manual for ATEX 2¢,
and while it doesn’t replace Lamport or the other
formally published manuals, it is readily available,
and the price is right!

Other new or updated packages, tools, docu-
mentation, you name it,..., appear on CTAN in
a contining stream. How is one to know what is
there, and to determine whether it is useful in one’s
own work? With this issue of TUGboat, we have
initiated a new column, “The Treasure Chest”, in
which one or more packages will be presented in
each regular issue. Enough examples will be shown
to provide a flavor of the package, so that a reader
can decide to investigate further, if it’s of inter-
est. The first package to be presented is soul.sty.
Take a look, let us know what you think, and if
you have any suggestions for other packages you
would like to see highlighted, send them to Christina
Thiele (cthiele@ccs.carleton.ca). Better still, if
you’d like to volunteer to help produce the column,
Christina will be delighted!

¢ Barbara Beeton
American Mathematical Society
P.O. Box 6248
Providence, RI 02940 USA

bnb@ams.org



TUGboat, Volume 19 (1998), No. 4

Typography

Typographers’ Inn
Peter Flynn

‘C’ stands for Euro

January 1st came and went, and we survived the in-
troduction of the Euro, the planet’s ugliest-named
currency. I can now write cheques in €, do elec-
tronic transactions, and even lodge credits, should
anyone be generous enough to send me money. As
a IWTEX user, I have discovered the \texteuro com-
mand in the textcomp package (which I should have
mentioned last time, but mea culpa, I am a recent
convert to ITEX and am still finding stuff squirrelled
away that I didn’t know about). And, I'm pleased to
say, IWTEX’s € is a much more suitable design to go
with those serif fonts which have none of their own
than the strange C-like designs put out by Microsoft
in their TrueType replacement fonts (designed by
and licensed from Monotype, of all people!). But
\texteuro uses PostScript fonts (the T1 encoding)
and while that’s fine by me, it’s not for everyone.
Full marks, therefore to Henrik Theiling for his
eurosym package, which implements the original EU
(sans-serif) design in roman, bold, italic, and out-
line using METAFONT, so it’s usable in TEX-based
systems anywhere. No seriffed version yet, but the
following table shows some of the glyphs available.

| n=sc sl=it ol
m € €
bx € € g

Adobe also has the Euro in PostScript fonts avail-
able for download, including sans and serif versions
(with serifs top and bottom, too!), and there’s al-
ready a Euro in the china2e package (a METAFONT
font). Bitstream sells a standalone pi font with the
Euro symbol, and will customize your existing fonts
for you (for a charge). Linotype sells nearly 200
Euro symbols for DM 100 but makes the same mis-
take as Monotype in pretending the E is a C in the
serif versions.

The EU has laid down that the official design
is to be used regardless of the surrounding font (in
both style and colour, see http://europa.eu.int/
euro/html/entry.html). Fortunately I don’t know
anyone daft enough to want to follow that diktat.

As T write, each of my Euros appears to be
worth $1.30 Canadian, so I've started to save for
the TUG meeting in Vancouver.

353

ETEX and glue

I've pretty much settled down to using KTEX now.
I don’t make so many mistakes and I've stopped
typing plain TEX on the rare occasions when I ac-
tually write a document in raw code. Most of my
text is authored by other means and converted to
ITEX for formatting, so my misgivings about the
default ITEX appearance mean that most of what
I do is writing or modifying style files to publishers’
specs. I've started to turn some of the ideas which
have spun off from this into class and package files in
preparation for a project I mentioned online recently
and which I will be presenting in Vancouver.

I had several responses to my suggestion that
we ditch the weird concept that the default style for
reports should have chapters, most of them support-
ing a change. It’s probably inadvisable to change the
source of article.cls, as too many people have
too much private code rigged to cope with its pe-
culiarities, and they rightly rely on the stability of
TEX systems to maintain their text. What I'm aim-
ing at is a package that repairs this and other leaks
and seals them up so that authors have to spend
less time fiddling and thus have more time for writ-
ing!. Articles should work more like authors and
publishers expect them to, books more like books,
and reports more like reports. Maybe this will even
help stem the flow of FAQs about these problems on
comp.text.tex.

And what was that about glue? When you
repair a puncture in a tire, you glue a patch of
rubber to the inner tube. In the early days of cy-
cling and motoring, tire rubber needed heat treat-
ment after repairs to ensure the patch was properly
bonded, and this treatment was called ‘vulcanising’.
To avoid the bond degrading as the rubber flexes
in use, the glue is made of our good friend latex
(plus assorted chemicals). Those of you with long
memories may recall childhood cycle repairs with
‘self-vulcanising’ glue, which replaced the need for
heat-bonding. Hence by a tortuous path the name
vulcan for a package which seals the leaks in M TEX —
come to Vancouver and see (tell your boss you're off
to learn about latex bondage or something: Dan
Quayle will explain).

Backquotes

Maybe it’s just the way that once you notice some-
thing once, you repeatedly see it all around you,
but I've spotted the reversed quote () several times,

I But where should we be without the inveterate fiddling
author inventing new styles?



354

SG AL

washington, d.c.

Figure 1: Type fac-simile of the SGMLI7 logo

including some extremely public displays which in-
cluded the logo which appeared on all the posters,
leaflets, proceedings, and assorted publicity for the
XML'97 conference in Washington, DC. They got
it right on the title page, and anywhere that it was
reproduced from typed characters, but the logo it-
self, approximated in Figure 1 with CM fonts, used
the reversed quote. I'm curious to know why so I've
sent a message to the designer and I'll let you know.

Get writing

The new journal I mentioned last time, Markup Lan-
guages: Theory € Practice [1], is up and running.
It’s quarterly, peer-reviewed, and the first one of its
kind devoted to text markup. I'm therefore repeat-
ing my call for articles: as the markup we use for
TEX and ITEX was one of the major advances in
the move towards logic-based or structural markup,
I feel that there is plenty of scope. Dip your quill in
the ink and start writing now.

Postscript

Probably like many of you I’ve been using PostScript
fonts for years. They're portable, convenient, rea-
sonably accurate, and although the hinting isn’t a
full substitute for design-sizing, in most practical
situations they work just fine. I don’t do many
jobs requiring extremely large sizes, so I haven’t run
into the problems that I am told exist in advertising
work, for example.

But my guess is that most TEX systems, par-
ticularly in research or academic sites, don’t have
PostScript fonts (a font survey would be interest-
ing). There is a cost involved once you go beyond
Charter and the other free PostScript fonts, and al-
though it is small per font, it can be outside the
budget of many individuals, especially students, and
even some projects. The bigger stumbling-block is
the installation: T had my own problems when I did
the first few fonts, but I was lucky to have generous
and helpful people on call who patiently explained
what I needed to do; and this was long before the
new TEX Directory Structure.

I have therefore finally gotten around to writing
a new PostScript font installer. The old mkvf pro-
gram which I wrote to take the Virtual Font route
was a shell script, and fairly crude; the mkcd batch

TUGboat, Volume 19 (1998), No. 4

Silmaril mkPS v0.88

Add file Help

Remove file Log file
ake fort file &

DAPSFOMTSYU_ZM0326a_ ptb

bwnlBre -
l:l b =] |Bitstream - Encoding vectar
J wh ~| [windzorBT-Light Condensed 0326 ~| frenc [~
| =] |Light [E
& x| [TexBaselEncoding (6 M| Ready
’E‘ |E0ndensed Cand j

‘windsor Light Condensed

Figure 2: The MKPS PostScript font installer

file for DOS/Windows systems which followed was
never satisfactory as the restricted operating envi-
ronment available precluded it doing all that mkvf
did. This time I have taken the plunge into Win-
dows’95 and rewritten it as a windowing utility: it’s
the most prevalent platform I support. The tool I
used, Visual DisplayScript, is a very simple and ef-
fective way of tying together a simple interface to
make a little utility (see Figure 2).

It assumes the TDS, although you can change
that if you store your fonts elsewhere, and it makes
reasonably intelligent although by no means fool-
proof attempts to deduce the Karl Berry fontname
abbreviations from the extended descriptive name in
the AFM file (part of this grew out of having to res-
cue a client’s broken installation where all the AFMs
were corrupt and I had to try and dig into several
hundred PFBs for the same data). I hope to have
a distributable beta release by the summer: if any-
one can recommend a similarly simple environment
for producing X Window mini-apps, I’d be happy to
hear of it.

The core that does the work is about four lines:
afm2tfm, vptovf, some file-copying, and the append-
ing of the relevant line to psfonts.map (it does as-
sume dvips: it’s all I know about). What takes the
time, as usual, is handling the configuration, the de-
ducing, the file-loading, and working out the name
(and checking in the fontname map files). The user
should be able to drag and drop a PFB file onto it,
check that it has correctly resolved Bonemontano,
Inc’s Gracatia Sancta Skinny Weird DemiBold into
zgsdw8ro and then just go ahead and do everything,
including creating a skeleton FD file. If you're tired
of hearing people complain that TEX systems have
only got one font, and it’s soooo hard to get it to



TUGboat, Volume 19 (1998), No. 4

work with anything else, mail me to go on the beta
list. And no, I'm not offering €1.00 per bug.

References

[1] Markup Languages: Theory & Practice. MIT
Press, Cambridge, MA. ISSN:1099-6621.

¢ Peter Flynn
Computer Centre
University College Cork
Ireland
pflynn@imbolc.ucc.ie
http://imbolc.ucc.ie/ pflynn/

355



TUGboat, Volume 19 (1998), No. 4

Typesetting with Varying Letter Widths:
New Hope for Your Narrow Columns

Miroslava Misakova

Introduction

The line-breaking algorithm based on optimum fit,
which serves as a basis of the TEX typesetting en-
gine is considered to be of very high quality. How-
ever, there are still a large number of line-breaking
problems where the results are not satisfactory. Es-
pecially when typesetting text in narrow columns
with justified line margins, its optimising criteria
can usually be met only by enlarging the amount
of white space allowed (\emergencystretch). This
introduces unacceptable distortions in the overall
grayness of the page appearance.

One way to tackle this problem is to go back to
an ancient technique used by Gutenberg for typeset-
ting his 42-line Bible: extend the set of font types by
letters with width variations. If one succeeds in se-
lecting optimal typefaces modified to suit individual
lines, one can minimize the annoying “holes” which
otherwise occur within the pages.

When considering this approach, we come to
the METAFONT system that makes it possible to
keep constant stem width even when the width of
individual letters is modified, and to use the cur-
rent optimum-fit algorithm of TEX for finding suit-
able line breaks within the paragraphs to be typeset.
A real implementation would require the typeset-
ting system to be rewritten completely, especially its
line-breaking algorithm. However, even with lower
effort, we can happily explore this method and per-
form various (eesthetic) experiments.

This paper demonstrates the potential of a sim-
ple method of implementing the idea of extending
font types by using letters with width variations. Se-
lecting optimal typefaces modified to suit individual

355

lines should make it possible to minimize the annoy-
ing “holes” which otherwise occur within paragraphs.

We will present the results of paragraph break-
ing using TEX and the improvements we can get us-
ing iterated line-breaking, based on variants of the
fonts modified by width distortion. We will discuss
benefits and limitations of this method.

The average document

When a TgXist, on a lovely summer day, enters
his \bye and leaves the real world for the gates of
TEX’s brackets, they will be surprised to find that
the quality of the average document at the dawn of
the twenty-first century is still less than satisfactory.
They might analyse more texts and realize that, nev-
ertheless, the situation is better than some five years
ago. The initial enthusiasm over the mere existence
of DTP systems declines and both the designers and
users of those systems start to exhibit a certain self-
discipline in re-acquiring the achievements of this
500-year-old science called typography.

The vast majority of small typesetting problems
encountered in the process of plain composition that
arise from the competition of three paradigms (uni-
formity, information and structure) can be solved by
any program that aspires to being called “the type-
setting system”. It is a must if we want to tackle hy-
phenation, ligatures, kerning, ties and various types
of dashes. However, in the presence of this, there
is much less progress in an area which attracts the
user’s attention very quickly and with great inten-
sity:

How is it that this issue — so important to type-
setting masters in the good old days —is so ignored
by almost all present-day DTP systems? If we want
to avoid sparse typesetting, perhaps we cannot ap-
ply just a simple algorithmic approach. With only
a little exaggeration, we can say that, with respect
to the goal of producing consistent grayness on the
page, digital composers are still at the typewriter
level. With despair we observe that even when TEX
is relatively better because of the optimum-fit line
breaking algorithm, it cannot avoid all problems.

What, in fact, is sparse composition? We could
say, for example, that it is plain composition, where
the inter-word spacing is in the range of 66 to 150
per cent of the width of the ideal space, as specified
by the font designer. But even in documents type-
set with TEX, we can often find spaces that exceed
this limit by several magnitudes. Philip Taylor [6]
shows how to try to improve such results but there
is a general consensus that, for example, justified
narrow columns are unsolvable if the regular level
of grayness of the text is the main criterion. With



356

decreasing \hsize the problems of the line breaks
suddenly jump out.

Narrow columns today

Why do we need those narrow justified columns any-
way? Isn’t the natural answer simply to put 70 char-
acters on a line —the most pleasant number for the
eye of our reader [5]?7 No way! Typesetting is al-
ways a compromise between ergonomics and overall
design that may require parts that are hard to pro-
duce (flowing around pictures, newspapers). Unfor-
tunately, we cannot simply forget the existence of
narrow columns. A more typical approach to this
problem is letterspacing, a solution which is awful
yet widely used. We can only wonder how a method
so heartily frowned upon' has found its way into
present-day typesetting. With today’s greater cul-
tural awareness, letterspaced words can particularly
confuse readers used to certain national traditions
that use it for em phasizing when appropri-
ate italics was not at hand. Only by slowing down
and asking “why did they emphasise this word” can
we realize that it stands on a line by itself and is
letterspaced only in order to justify the text. The
flow of information is significantly disturbed.

A much more acceptable solution is to use
raggedright lines rather than justify them. The
reasons preventing the composer from picking up
this style for any narrow column are, to be true, ir-
rational. However, typography, as a discipline serv-
ing irrational beings, has to accept them. People
simply want justified columns. It is like architects
(often compared to typographers), who would have
a hard time thrusting non-linear walls upon their
customers; we treat books with unjustified margins
with a certain disdain: we tolerate it only where
justified lines would lead to much greater violation
of the overall grayness than would unjustified lines.?

So we would like a different tool in our fight
with sparse typesetting. One possibility is the ap-
proach presented in the remainder of this text—
that is, to typeset using typefaces containing wider
or narrower variants of characters while preserving
all of their design characteristics. This way we give
the typesetting algorithm one more degree of free-
dom in its search for optimum breaks; the algorithm

1 «A man who would letter-space lowercase would steal a
sheep.” F. Goudy

2 Another example of an algorithm broken by users’ so-
lutions is hyphenation in esperanto. The authors of this lan-
guage are allowed to hyphenate at any point in a word; users
of the language, however, have come up with various artif-
ical constraints that have led to hyphenation patterns that
are the same (or bigger) in size than those of other natural
languages. . .

TUGboat, Volume 19 (1998), No. 4

is not constrained to change only the width of inter-
word spaces. Some situations viewed as critical with
regular systems become easier to solve (for example,
lines with a minimum number of spaces —the more
letters we have on the line, the more we can slightly
vary their widths and get a reasonable result). We
have more letters than spaces in regular texts but we
cannot alter their width as much as we can the white
spaces. To find out how practical and applicable this
idea might be, we used experiments exhibited later
in this article.

Is it moral to play with such a terrible
thing?

Wider M’s. Narrower O’s. Isn’t it a Greek gift
which, in an attempt to make the page more regu-
lar, will break up the visual well-being of the reader
because their brain will be confused with strange ab-
normalities in the shapes of letters? It’s a weighty
question. Superficial specification of the problem
might even lead to the notion of a result that a
master typographer will condemn — what’s going on
here might seem to be a mizing of fonts in its worst
form because we suddenly have dozens of different
typefaces, maybe even a different font for each line,
whereas it is generally accepted to have at most
three or four fonts in the whole document. However,
here the intent is not to have the document as fancy
as possible (goals of designers spitting around fonts
and typefaces) but to stifle any irregularity. The
modifications to the characters shouldn’t exceed the
limit beyond which they are recognized without a
more thorough examination. This limit would need
to be derived from empirical tests; it will vary for
both different readers and different typefaces. The
first estimate assumes modifications should not be
greater than 5 per cent of the original width of the
character. Another requirement is to maintain a
uniform look to the whole line, which is the greatest
unit that the reader really perceives.

It is hard to predict if there will regreses ap-
pear frequent, an uncertain feeling of incorrectness
or that it is simply harder to read.®> We need to
make many practical tests and we will probably not
be able to generalize results to other font families.

It is useful to remember that we are primar-
ily speaking about minuscules; the text of a title on

3 The paths of human vision are strange. As an example,
consider the long-standing dispute about sans serif typefaces:
they ought to be more readable because they do not disturb
the reader with serifs and lead the eye more quickly to the
important shapes of the letter, and yet it seems to be less
convenient because it lacks the bounding box of line that
leads the reader’s eye along.



TUGboat, Volume 19 (1998), No. 4

which the eye will spend a longer time and thought-
lessly explore the shapes erquires different principles
than plain paragraph, where the main goal is to pass
on the information and disappear.

Historical reminiscences: When in doubt, it is
always good to look into the history, to experience
gained by past generations. When studying his-
torical contexts, we can see that some variations
on this method were used by many typographers
who needed precisely justified documents. Oldfich
Hlavsa [4] gives an example of varying characters
that can be found in a catalogue of type from 1920.

BOSSEMAGNETE vsichni vy na Slezské, viichni vy dim,
:l_clulrnnnmum DER FIRMA EISEMANN hlubokich pﬁni vy dolg;

prijde den, z dolid jde plamen a dym,
HE!E.(E!..‘.'!.E".EEQE.& . Difjde den, sictujem spolu!

BOSSEMAGNETE <eecaaltkK)

LICHTMASCHINEN DER FIRMA EISEMANN
PAL ESSENER )

KON/TRUKTIONS-MATERIAL/BASEL-SUD 11

Figure 1: With variant typefaces, it is rela-
tively easy to create justified but still closely
tied advertisement. (left) Only a closer look
at Preissig’s solution for the design of a book
of poetry shows modified letters. (right)

VojtLch Preissig has also added variants of
some letters to his font to get lines with regular
light and a more beautiful appearance.

It is also important to note that in traditional
hot-metal typesetting it was quite common to have
(almost linear) contraction of width, up to about
1 per cent. It was achieved by strong tighting of
the screws, taking advantage of the elasticity of the
typesetting alloy.

What about “John-from-Good-Mountain”? If
we were to consider the above examples as spo-
radic fads, we can go deeper to the roots, to Johann
Gutenberg’s workshop. The exact records about
his “art of multiplication of books” are not known,
but what we do know is that the admired uniform
grayness of his 42-line Bible was accomplished by us-
ing dozens of ligatures, often abbreviations, placing
punctuation to the middle of inter-word space and
especially by using a vast set of character types. It
was the selection of characters with variant widths
which allowed him to typeset those perfectly jus-
tified lines that inspired Europe and that were so
akin to good manuscripts. We can assume that his
goal was nothing less than to achieve uniformly dis-

357
AEDEFONT IMAOPRED
gﬁzbffﬁmnmrmmmpnab
TYBXPZ

T88xYy 2 i
gaadaaadadabbiemEERLEK
mmmmrszfiffcanuﬁq
PN XE ¥R OLe ¢ T € €€
i EERBggFggagguyh
R EEyemi i 00000
i Bl (! momdMMnoaaadi
uoﬁiauiiﬁﬁpgnnan@@

P mppyqiddqgaqgqaad
D BET fiag ([ [8FBOAD
gBRsse s tctifcfc¢iff@Puudl
foguo o omMWWEE PP ITOEI I

RLEFARR
dedd it ¢t qpeoff€&inl
nappe Tt {(FOAOTRBIT 7 g

nuamwep

Figure 2: The typeset used in Gutenberg’s
Bible had hundreds of items.

tributed white space in the whole document. The
great amount of work that he devoted to the prob-
lem confirms how great a problem sparse typesetting
was for the old typographers.

The quest

When exactly typographers lost the need to cre-
ate pages with perfect uniformity in grayness is not
known. Probably this tradition did not survive the
switch over from texture typesetting to the rounded
italic typefaces of the present. Leaving the distinct
vertical casts of the letters, the effort to make the
mirror of a page into the regular grid has vanished
and a much simpler method for line justification has
predominated along the centuries: widen the inter-
word spaces. Other techniques, as we have shown,
run through the history of typography; they were,
however, never used widely. I believe it was not
caused by @stetic condemnation but by overwhelm-
ing technological difficulties. Not until electronic
typesetting brought simpler ways for experiments
with these micro-typographical effects and make it
possible to include them in our documents.*

4 The really practical and transparent use of variant-
width characters would of course mean a really new gener-
ation of the line-breaking module to typesetting algorithms.
Such a task is far beyond the scope of my thesis, which dis-
cusses these ideas. Nevertheless, URW started to work on



358

Fringrellus Agelus aiy ed diit. Aue
grana plenasdus tecii-heaedida e in
mulietibs. Que i audiffet-aurtata ot
m{eavone eara; ee cogitabat qualis
tirritalalutado. £ ait angeus o
e timeas mavia: imuenifti enf geat
A apud dedl. Eeee concipivs in vten
et pavies K 2uorabis nomen cins
thelu. Bjiceeit magoua: 1610 altilli
i pocabitur. £ dabit il ditede? fe-
demdautd paces ring: et veguabiti
dowo iacoh in etevoii : et vegtt o nd

Figure 3: From the 42-line bible.

Implementation

Fonts: When trying to find how to initiate the idea
of varying-width characters, the problems with fonts
is of the main importance. Essentially, there are two
approaches: a) extend the typesetting with width
variants of certain group of characters, or b) gen-
erate the necessary typeface on the fly, according
to the requests from the typesetting system. The
first solution, supposedly used in the hz-system, has
both some drawbacks (limited flexibility that comes
from the fixed set of available characters) and ad-
vantages: the set of characters will (should) be pre-
pared by experianced designer, which will prevent
possible excesses, that could appear during auto-
matic generation; the disk usage is lower as well.
The second solution requires very good cooperation
of the typesetting system with the program gener-
ating the fonts. Also the number of fonts used in
document will be enormous.® The need to change
the shape of the characters and yet to keep all the

it. Its hz-system is, however, a typical commercial product:
the information vacuum is impenetrable, and no test or any
other version is available on the market. Yet the suspected
existence of the hz-system was a source of inspiration and
hope for us, hope that it would make sense to explore the

VLW approach. We did concentrate on the cooperation
with the TEX typesetting system, the tools that would al-
low anybody to test the utility and limits of this method;
hopefully one day somebody will implement it in a really sys-
tematic way.

5 This disadvangate could be eliminated by different font

management, similar to font servers that generate only char-
acters needed, not the whole fonts.

TUGboat, Volume 19 (1998), No. 4

main characteristics of the font (especially the stem
width) implies the use of METAFONT.®

Line breaking: You barely get sparse typesetting
with optimum fit algorithm. That was the thought
during the first years of experience with TEX. The
reality is slightly different. People are too lazy to aid
the hyphenation algorithm or rewrite the text to get
better line breaks. On the other hand, optimum fit
and the box-glue-penalty paradigm itself is still a
very strong concept.

Probably not very hard extension of it by gluish
boz, that would merge some features of both boxes
and glues, would allow such a change of the line-
breaking algorithm that would reflect the fact that
even the material in the box has got some width
variability. The badness of lines today is computed
using the formula b = |r|®> x 100. If we could stretch
or shrink both spaces and characters, the adjust-
ment ratio r would come out as something like

«a x change of spaces + 3 x change of characters

Fine-tuning the balance between o and (3, the
user could express if they prefer loose lines or lines
containing “deformed” font. By proper setting of
these parameters, one could even get the backward
compatibility with TEX.

How to simulate this approach in TEX

Let’s stop theorizing and see what we can do in the
current TEX, to finally understand how this inova-
tory typesetting looks like; how it works and what
effect it has on readers. After considering various
approaches (prototype system as a TEX change file,
typesetting system independent on TEX, other ways)
we opted for the method of postprocessing of DVI
and a cooperation of Perl, TEX and METAFONT.

Method: When preparing such a system, several
groups of problems needed to be solved. In the
present solution line breaking that considers the flex-
ible gluish boxes is simulated using existing TEXdata
type: glue. Optimum fit in TEX considers the con-
tent of the \rightskip register (it contains the glue
that should be placed on the right margin of the
line). If one breaks a paragraph into lines with the
setting

\rightskip=0pt plus 0.052\hsize minus 0.047\hsize

(\hsize holds the width of the page) we get the
same result as if we allowed all objects on the line
to stretch/shrink by 5 per cent. These broken lines
will be wrapped (using suitable macro) with marks,

6 Even if we can see some future in a Multiple Master
system that could bring the needed metaness to the Postscript
world.



TUGboat, Volume 19 (1998), No. 4

showing the beginning and the end of each line. For
this, we can use the \special primitive that allows
to write out arbitrary marks into the DVT file.

Proper positioning of the material on a broken
line is the phase when we leave TEX and the sub-
sequent work is done on the output DVI file that is
analyzed using a Perl program. It is kept intact up
to a place marked with the \specials, showing the
line boundaries. The distance between these marks
defines the space that should contain the objects and
minimize the variance from the required grayness.
The Perl script computes the widths of the charac-
ters; it uses heuristics to decide if the skips in the
DVI file come from spaces or kernings (kernings are
kept intact, spaces will be used for modifications).
It figures out by how much it needs to vary the font
and re-sets the line using the new font. If the nec-
essary metrics is not available, it waits for another
script to generate it.

The preparation of the variant-width fonts con-
sists of automatic generation of the source texts in
METAFONT. We base our procedure on the DC fam-
ily of fonts. The Perl script takes as a parametr
the font name, which defines which typeface it is
derived from and how much it differs (for example
dcr8+3w.mf is an 8 pt font extended by 3 per cent).
We modify the source code of the original font ac-
cordingly (the value of its width parametr \u#, to
be exact) and using METAFONT we generate new
metric and bitmap files. The implicit attempt is
to prepare 10 width variants with the width differ-
ences from the original font being (—5,—4,...4,5)
per cent. The actual typesetting is then done us-
ing the font that is closest to the one requested. To
have a special exact font for each line of the docu-
ment wouldn’t be feasible from the computational
point of view. In special cases, but only on request,
we can generate exact width-variant.”

Equivalence of the proper and implemented
solutions: The solution presented is in many re-
spects only an approximation of systematic ap-
proach. The most visible simplifications include:
The fact that % of the width of the line is
not equal to the sum of % of widths of the flexible
boxes that built it. The equality holds only if we
can vary the width of all objects involved. The first
goal was to get the document that has all the spaces
identical, so the fact that we consider the modifica-
tion of spaces in not a benefit. On the other hand, a
method that changes letters but not spaces, smells
too artifical. More problematic is the fact that the

7 For example for my favorite task to “typeset the headline
to exactly fit the specified width”.

359

line can contain parts that must not be modified at
all. The user has to have a tool to specify that cer-
tain hand-tuned typographical construction should
not be changed even by a micron. To improve the
result in the rest of the paragraph, we recommed
to the user to enclose these dangerous parts by a
couple of \special marks that will inform the jus-
tifying algorithm that this material should be type-
set without any change. We however encounter one
nuisance: the assumption about modifying the ma-
terial in the line by x per cent fails, if there is some
unchangeable part that occupies substantial width
of the line.

There is only one way how to check the bad-
ness of the created line. In this solution, we sim-
ulate the flexibility of the boxes by adding a glue
to the \rightskip variable. The only possibility is
to compute the badness using the standing formula
|7|> x 100, not distinguishing the white space and
deformed characters. For the same reason, when
searching for the optimum line-breaks in a whole
paragraph, we are not able to consider some variant
of \adjdemerits that would penalize adjaced lines
with stretched and shrinked characters.

We do not analyze the content of the \hboxes.
The \hbox in the DVI file is usually represented by
another stack level. Because the presence of such
a construct often marks something untypical (the
difference of the actual and declared width of ob-
jects, explicit shifts of the reference point back and
forth, complicated objects build by the user), we
keep these parts of the page intact.

Results of aesthetic experiments

The individual examples are provided with com-
ments and numeric characteristics, but we strongly
encourage the reader to do some aesthetic observa-
tion before taking author’s prejudice into account.
The empirical findings show that the perception of
microtypographical effects differs extremely for dif-
ferent individuals; we would probably need to make
great series of psychological and ergonomic tests to
get any objective valuation.®

In an attempt to quantify results of the work
by some algorithmic way, we have chosen following
metrics:

Badness: is shown with some examples that com-
pare the result with the result produced by TgX.

8 All remarks of kind readers about bad headaches en-
countered as a result of endless excitation of visual nerves
that try to seize the alphabet the same way they have known
it (i.e. with constant width of letters), are greatly appreci-
ated.



360

Unfortunately, vast majority of narrow columns
shown bellow fall through into the third pass of
the line-breaking algorithm (where the stretchabil-
ity of the line is extended by \emergencystretch).
In this pass, TEX doesn’t considers this added glue
in its final compilation log. Badness, as measure
of quality of the paragraph, is therefore insufficient.
That is why we show another metrics.

Percentage difference from the ideal width of
the space: Negative value means shrinking for ex-
ample white spaces in overfull bozes have the width
of —33 per cent. The paragraphs after iterated line-
breaking, include the following:

Percentage difference of the width of the font
used: The positive values mean that we have used
a font wider than the original, negative denotes
shrinking. By looking at adjaced fonts that differ
by a great amount (for example +5% and —4%), we
can review the critical spots of this way of typeset-
ting, because here the eye of the reader encounters
the biggest difference in the shape of the letters.

The following examples are prepared with the
standard settings of the plain format (especially
\pretolerancel00, \tolerance200, \hfuzz0.1pt,
\adjdemerits10000).

The first example: shows that TEX has substan-
tial problems when breaking lines into really nar-
row columns. The allowed tolerance limit of 200
is relatively tough; on the other hand, this is not a
mathematical text with many unbreakable formulas,
nor a technical text where terms not typical for the
Czech language could confuse the hyphenation algo-
rithm. The line-breaking is so hard that even after
the third pass there are some overfull boxes left.
The amount by which dere the white spaces were
stretched out in the solution with variable width font
(second columns at the bottom right) indicates that
even typesetting with five per cent ragged-right mar-
gin did not prevent the third pass or \emergency-
stretch. The fonts used here have, nevertheless,
made it possible to decrease the stretch of the white
spaces by an order of magnitude. When we com-
pare the sixth lines (bottom right and left) we notice
that the same material typeset with extended spaces
(34%) changes into a line where they are shrunk just
a little (—1%). This paradox solution was chosen
because the choice of the best of 11 possible width
variants has left us with less white space than would
be needed in the optimum case. By increasing the
number of variants in a font, it would be possible to
decrease the scale of these non-optimal spaces.

TUGboat, Volume 19 (1998), No. 4

The sixth and seventh lines show adjacent fonts
that differ by nine per cent, truly one of the critical
places on the page. Careful inspection of m’s reveals
that the differences are very noticeable.

When we compare the last thirds of the para-
graphs, the new system evidently wins. Not even
inherent scepticism can keep the author from ap-
preciating the regular grayness and more compact
ending with the more reasonable length of the bro-
ken lines (see Figure 4).

The second example: brings 6 lines with badness
10000. The ragged-right version shows that the
opening lines of a paragraph can be broken only
very short. And really, even after iteration, the
spaces on the second line are still very wide (124%).
The left side brings little comfort because TEX itself
was unable to typeset this paragraph at all.

The last part of the paragraph offers two dif-
ferent variants of italics for comparison. Even a
glimpse suggests that this typeface makes the mod-
ifications more visible than roman. The sixth and
seventh lines of the text differ by eight per cent, but
this is far less perceptible than those with italics.
Individual typefaces obviously have different limits
of painless modification (see Figure 5).

The third example: shows a typical way of using
the system: TEX could typeset the paragraph using
\emergencystretch but the possible ways to do so
were so few that even the freedom added by allowing
a ragged-right margin did not change the solution
chosen. Using the variant-width fonts we only ad-
just the spaces — we actually try to relax very loose
lines. Because of the upper limit of the font mod-
ification (5 per cent) the widths of spaces still re-
main “unacceptable” (to compare this, see the ideal
spaces in the ragged-right example). The advantage
of this solution is the fact that most of the lines
have undergone a similar type of modification —a
rather stretched font. We do not see the compati-
bility problems as in other cases (see Figure 6).

The fourth example: shows that when TEX en-
counters a truly unfeasible situation, as with very
long words (and at the beginning of a paragraph,
words shorter than 2\hsize are enough), even a big
value for \emergencystretch does not help. The
glue added in the third pass is considered and type-
set at the right margin of the text (see second line at
the bottom left). Even words that are theoretically
reasonably long can cause extreme problems— see
the 206 per cent spaces on the third line.

We can find faults in the iterated solution but it
comes very well from the comparison. The difficult



TUGboat, Volume 19 (1998), No. 4

10000
10000
20

10000
10000

10000

15
10000
28
87

154
329
2005
32
10000
768

35
169
72
10000
4391
3029
536
2884

2591

18%
11%
—14%
—33%
—33%
29%
—-9%
—33%
—33%
—14%
—33%
20%
26%
—33%
32%
47%
—14%
8%

18%
11%
57%
74%
135%
34%
—33%
98%
18%
—23%
98%
44%
238%
176%
155%
87%
153%
0%
147%

Norské runova jména
jsou pozdéjsi, z doby, kdy
bylo ve Skandinévii pouzi-
vano uz pouze 16 run, takze
kompletni seznam jmen run
této oblasti nemame. Na-
zvy, které rundm daly jiné
germanské narody, nezname
viibec (ackoliv néktera pis-
mena gotské abecedy maji
k jméntim run jisty vztah).
Ze 16 prezivsich norskych
run jich vétsina odpovida
jejich anglosaskym protéjskim;
a tuto podmnozinu pova-
Zujeme za runy nejstarsi,
pochézejici z davnych ger-
méanskych dob.

Norské runova jména
jsou pozdéjsi, z doby, kdy
bylo ve Skandinavii pou-
zivdno uz pouze 16 run,
takze kompletni seznam
jmen run této oblasti ne-
mame. Nazvy, které runam
daly jiné germénské néa-
rody, nezname vibec (ac-
koliv néktera pismena got-
ské abecedy maji k jmé-
nim run jisty vztah). Ze
16 preZivsich norskych
run jich véts§ina odpo-
vida jejich anglosaskym
prot&jskim; a tuto pod-
mnozinu povazujeme za
runy nejstarsi, pochéazejici
z dévnych germéanskych
dob.

5%
4%
8%
40%
62%
—-1%
—-3%
52%
—1%
—1%
25%
9%
—2%
—9%
13%
3%
—-1%
-3%
0%

361

Norskéa runova jména
jsou pozdéjsi, z doby, kdy
bylo ve Skandinavii pou-
Zivano uz pouze 16 run,
takZe kompletni seznam
jmen run této oblasti ne-
méame. Néazvy, které runam
daly jiné germénské na-
rody, nezname viibec (ac-
koliv néktera pismena got-
ské abecedy maji k jmé-
nim run jisty vztah). Ze
16 prezivsich norskych run
jich vétsina odpovida jejich
anglosaskym protéjsktm;

a tuto podmnozinu pova-
Zujeme za runy nejstarsi,
pochazejici z davnych ger-
manskych dob.

Norska runova jména
jsou pozdéjsi, z doby, kdy
bylo ve Skandinévii pou-
zivano uz pouze 16 run,
takze kompletni seznam
jmen run této oblasti ne-
mame. Nézvy, které rundm
daly jiné germénské né-
rody, nezname vibec (ac¢-
koliv nékteréd pismena got-
ské abecedy maji k jmé-
nam run jisty vztah). Ze
16 preZivsich norskych run
jich vétsina odpovida jejich
anglosaskym protéjskim;
a tuto podmnozinu pova-
Zujeme za runy nejstarsi,
pochézejici z davnych ger-
manskych dob.

Figure 4: The first example. Top left: format plain. Bottom left: with additional \emergency-
stretchlem. Top right: ragged-right lines (ideal spaces, \rightskip plus minus 5%). Bottom right:
ragged-right lines adjusted with modified fonts.



362

10000
175

111
190

10000

—33%
—33%
—16%
—33%
—17%
33%
—33%
—14%
26%
56%
47%
—33%
60%
1%
51%
64%
1%
—33%
0%

69%
46%
—33%
—4%
88%
65%
56%
60%
44%
26%
96%
116%
118%
64%
60%
57%
56%
-3%
0%

Ani pfi ndvodu nemuzeme od-
délovat to, co je spravné, od toho,
co je pouze zdanlivé spravné, po-
névadZz pravé to neni spornym stra-
nadm nikdy predem znamo. Proto
zde uvadim dskoky bez ohledu
na objektivni pravdu ¢i nepravdu,
nebot to ¢loveék sam nemize bez-
pecné védét. Teprve sporem mé
byt pravda zjisténa. A pak pii
kazdé debaté nebo argumentaci
viitbec se musime shodnout na né-
¢em, odkud — jakoZzto od prin-
cipu — hodlame otazku, o kterou
jde, zkoumat: Contra negantem
principia non est disputandum.
(Necht se nediskutuje s tim, kdo
popiré platnost zakladnich pojmu
a vét.)

Ani pfi navodu nemuZzeme
oddélovat to, co je spravné, od
toho, co je pouze zdanlivé spravné,
ponévadz pravé to neni spornym
strandam nikdy pfedem znémo.
Proto zde uvadim tskoky bez
ohledu na objektivni pravdu ¢i
nepravdu, nebot to ¢lovék sam
nemiize bezpeéné védét. Teprve
sporem méa byt pravda zjiSténa.
A pak pri kazdé debaté nebo
argumentaci viibec se musime
shodnout na néfem, odkud -
jakozto od principu — hodlame
otéazku, o kterou jde, zkoumat:
Contra megantem principia non
est disputandum. (Necht se ne-
diskutuje s tim, kdo popira plat-
nost zakladnich pojmi a vét.)

+5

17%
124%
56%
—3%
114%
19%
—-12%
—4%
2%
27%
0%
0%
1%
2%
15%
—11%
—13%
—4%
0%

TUGboat, Volume 19 (1998), No. 4

Ani pfi navodu nemuizeme
oddélovat to, co je spravné,
od toho, co je pouze zdanlivé
spravné, ponévadz pravé to neni
spornym stranam nikdy pie-
dem znamo. Proto zde uvadim
uskoky bez ohledu na objektivni
pravdu ¢ nepravdu, nebot to ¢lo-
vék sdm nemiize bezpetné védét.
Teprve sporem mé byt pravda
zjisténa. A pak pri kazdé debaté
nebo argumentaci viibec se mu-
sime shodnout na néfem, odkud
— jakozto od principu — hodlame
otézku, o kterou jde, zkoumat:
Contra negantem principia non
est disputandum. (Necht se nedis-
kutuje s tim, kdo popira platnost
zékladnich pojmu a vét.)

Ani pfi navodu nemuZeme
oddélovat to, co je spravné,
od toho, co je pouze zdéanlivé
spravné, ponévadz pravé to neni
spornym strandm nikdy pie-
dem znédmo. Proto zde uvadim
askoky bez ohledu na objektivni
pravdu ¢i nepravdu, nebot to ¢lo-
vék sdm nemuze bezpecné védeét.
Teprve sporem ma byt pravda
zjisténa. A pak pfi kazdé debaté
nebo argumentaci viibec se mu-
sime shodnout na néfem, odkud
— jakozto od principu — hodlame
otazku, o kterou jde, zkoumat:
Contra negantem principia non
est disputandum. (Necht se nedis-
kutuje s tim, kdo popira platnost
zékladnich pojmu a vét.)

Figure 5: The second example. Top left: format plain. Bottom left: with additional \emergency-
stretchlem. Top right: ragged-right lines (ideal spaces, \rightskip plus minus 5%). Bottom right:

ragged-right lines adjusted with modified fonts.



TUGboat, Volume 19 (1998), No. 4

25

10000

87
10000
143
10000
147
26

19

gl = = O

25

259
66
21
37

1199
2150
341
338
29
364
1960
1478
17

—20%
—-15%
-33%
6%
47%
—33%
56%
-33%
56%
31%
—19%
—4%
—7%
10%
—12%
0%

—20%
—15%
68%
43%
29%
36%
3%
114%
139%
75%
75%
33%
7%
134%
122%
27%

Eristicka dialektika je uméni
diskutovat, a sice tak diskutovat,
aby ¢lovék vzdy ziskal pravdu, tedy
per fas et nefas. Lze totiz mit ve
véci samé pravdu objektivné, a
prece se ¢lovék v o¢ich posluchadi,
ba leckdy i ve svych vlastnich,
ocitne v nepravu — tehdy, vyvrati-
li odptrce muj dikaz a plati-li
toto vyvraceni jiz také jako vy-
vraceni tvrzeni samého, jez prece
l1ze dokazovat jesté jinak; v tako-
vém piipadé je ovSem pomér pro
odptirce opacny: ziskd vrch, jak-
koli je objektivné v nepravu. Jak
je to mozné?

Eristicka dialektika je uméni
diskutovat, a sice tak diskutovat,
aby clovek vzdy ziskal pravdu,
tedy per fas et mefas. Lze totiz
mit ve véci samé pravdu objek-
tivné, a prece se ¢lovek v ocich
posluchaéii, ba leckdy i ve svych
vlastnich, ocitne v nepravu -
tehdy, vyvréati-li odptirce mij
dikaz a plati-li toto vyvraceni
jiz. také jako vyvraceni tvrzeni
samého, jez prece lze dokazovat
jesté jinak; v takovém pripadé
je ovSem pomér pro odpirce
opacny: ziskd vrch, jakkoli je
objektivné v nepravu. Jak je to
mozné?

+3

2%
—4%
23%
17%
1%
7%
3%
72%
79%
31%
30%
5%
32%
93%
80%
6%

363

Eristicka dialektika je uméni
diskutovat, a sice tak diskutovat,
aby ¢lovék vzdy ziskal pravdu,
tedy per fas et nefas. Lze totiz
mit ve véci samé pravdu objek-
tivné, a pfece se ¢lovék v odich
posluchaéii, ba leckdy i ve svych
vlastnich, ocitne v nepravu —
tehdy, vyvrati-li odptrce muj
dikaz a plati-li toto vyvraceni
jiz také jako vyvraceni tvrzeni
samého, jez prece 1ze dokazovat
jesté jinak; v takovém piipadé
je ovem pomér pro odpurce
opacny: ziskd vrch, jakkoli je
objektivné v nepravu. Jak je to
mozné?

Eristicka dialektika je uméni
diskutovat, a sice tak diskutovat,
aby ¢lovék vzdy ziskal pravdu,
tedy per fas et nefas. Lze totiz
mit ve véci samé pravdu objek-
tivné, a prece se ¢lovék v ocich
posluchaéii, ba leckdy i ve svych
vlastnich, ocitne v nepravu —
tehdy, vyvrati-li odptrce muj
dikaz a plati-li toto vyvraceni
jiz také jako vyvraceni tvrzeni
samého, jez prece lze dokazovat
jesté jinak; v takovém piipadé
je oviem pomér pro odpirce
opacny: zisk&d vrch, jakkoli je
objektivné v nepravu. Jak je to
mozné?

Figure 6: The third example. Top left: format plain. Bottom left: with additional \emergency-
stretchlem. Top right: ragged-right lines (ideal spaces, \rightskip plus minus 5%). Bottom right:
ragged-right lines adjusted with modified fonts.



364

second line is solved using a font with a customized
width. Here it even came out greater than the five
per cent limit — when examining the relevant line
and lines around it we find to our surprise that ad-
jacent lines that differ by 7.52% do not cause a big
problem (see Figure 7).

The variant width of the fonts can be used not
only for improving narrow columns but for many
other typographic purposes. This example shows an
attempt to typeset a paragraph of reasonable width
longer by one line (let’s say we need it to achieve
some higher visual goal). TEX will find such a solu-
tion but the price is an increased tolerance from 200
to 1635. Amazing rivers are one of its side effects.

Our solution reduces these annoying conse-
quences. With a similar approach we can use variant-
width fonts to improve paragraphs that need to be
typeset with specific \parfillskip values. When
typesetting such texts the loose lines can usually be
seen, even in rather wide lines.

The task of typesetting a headline with given
wording and size at a given width sometimes brings
problems as well. To alter the font by several per
cent is sometimes the smartest solution (see Figure
8).

Now that we have gone through the above se-
ries of examples, let us consider some thoughts and
conclusions. Adjacent lines with big differences in
the type of font modification are the most prob-
lematic ones. However, such narrow and short
paragraphs cannot be broken in too many ways,
so it’s hard to select a solution with more com-
patible adjacent lines— by increasing the value of
\adjdemerits we only increase the total demerits of
paragraphs but we do not get a clear improvement.
Much better results can be achieved, in this respect,
with paragraphs that were stretched by force (pos-
itive \looseness, lower \parfillskip), where this
method just “shrinks the white spaces” and in most
places where the stretched fonts are used.

One note about the aesthetic evaluations of
the examples: ordinary people usually “do not see
anything” (but this result might be ambiguous, of
course). On the other hand, people with some expe-
rience with micro-typographical effects only support
the feeling that the readers’ notions can differ sig-
nificantly.

TUGboat, Volume 19 (1998), No. 4

And in the end...

First, let me apologize for the many motivation
notes in the first part of this text. This article
is the final word to a successfully completed thesis
which nobody will ever re-open! So, the purpose was
to make expert TEX-programmers feel that variant-
width fonts are an interesting tool that would be nice
to have. Anybody who wants to do their own exper-
iments, both for inspiration when polishing difficult
documents or searching for ideas for programming
projects, can make use of scripts and macros avail-
able at http://www.fi.muni.cz/"imladris/vlw.
Any modifications, improvements or even complex
solutions to ideas presented here will certainly be
appreciated by those TEXists who (like me) enjoy
the never-ending playing with typography.

References

[1] Miroslava Misakova. Kuvalitni typografie v poci-
taéové sazbé (in Czech). diploma thesis on Fac-
ulty of Informatics, MU Brno, 1997.

[2] Martin Davies. The Gutenberg Bible. The British
Library Board, 1996.

[3] URW Software Hamburg. hz-program: Micro-
typography for advanced typesetting. 1993.

[4] Oldfich Hlavsa. Typographia 1-3. 1976-1986. In
czech language.

[5] Philip Taylor. Electronic typesetting and TEX:
Book design for TEX users. In Sbornik zvangch
predndsek SOFSEM 93, 1993.

[6] Philip Taylor. Pragmaticky
k odstavcim. TgXbulletin, 94(3), 1994.

[7] Adolf Wild. La typographie de la bible de guten-
berg. Cahiers Gutenberg, Septembre 1995.

pristup

¢ Miroslava Misdkova

Faculty of Informatics, Masaryk
University

Botanicka 68a,

Brno, 602 00

Czech Republic

imladris@fi.muni.cz

http://www.fi.muni.cz/
“imladris/



TUGboat, Volume 19 (1998), No. 4

10000
10000
157
200

84
10
85
10000

1342
10000
7030
1831
40
159

132
1

—33%

58%
63%
7%
47%
23%
47%

118%

206%
131%
37%
58%
—-9%
54%
12%

Tvuj priklad Llanfairpwllgwyn-
gyllgogerychwyrndrobwllllantysil-
iogogogoch (¢ili Llanfairu P.G.,
jak se pry bézné zkracuje toto
mé&sto ve Walesu) je pfece jenom
okrajovy. Némcina taky nestoji
a nepadé s tim, ze se v ni ,pro-
stfedi pro vyvoj aplikaci fekne
,/Anwendungsentwicklungsumgebung’.

Tvaj priklad Llanfairpwll-
gwyngyllgogerychwyrndrobwll-
llantysiliogogogoch  (¢ili Llan-
fairu P.G., jak se pry bézné
zkracuje toto mésto ve Walesu)
je prece jenom okrajovy. Ném-
¢ina taky nestoji a nepadéa s tim,
Ze se v ni ,prostfedi pro vyvoj
aplikaci‘ fekne ,Anwendungsent-
wicklungsumgebung'.

+5
+5.52

+5
+5
+5

+5
—2

Tvtj priklad Llanfairpwll-
gwyngyllgogerychwyrndrobwll-
llantysiliogogogoch (¢ili Llanfairu
P.G., jak se pry bé&zné zkracuje
toto mésto ve Walesu) je prece
jenom okrajovy. Némdéina taky
nestoji a nepadé s tim, Ze se v ni
,prostiedi pro vyvoj aplikaci’
fekne ,Anwendungsentwicklungs-
umgebung'.

Tvaj priklad Llanfairpwll-
gwyngyllgogerychwyrndrobwll-
llantysiliogogogoch (€ili Llanfairu
P.G., jak se pry bézné zkracuje
toto mésto ve Walesu) je pfece
jenom okrajovy. Némcina taky
nestoji a nepada s tim, Ze se v ni
,prostiedi pro vyvoj aplikaci‘
fekne ,Anwendungsentwicklungs-
umgebung'’.

38%
0%
—5%
1%
9%
13%
0%
102%
17%
0%

365

Figure 7: The fourth example. Top left: format plain. Bottom left: with additional \emergency-
stretchlem. Top right: ragged-right lines (ideal spaces, \rightskip plus minus 5%). Bottom right:
ragged-right lines adjusted with modified fonts.

Symposium o tolerantnosti

V hloubi Sedesatych let, kdy se na ceské
pudé zacala do uvah a rozhovoru vracet
nékterd zakdzana nebo zapomenuta té-

Symposium o tolerantnos-

ti

V hloubi Sedesatych let, kdy se na ¢eské
pudé zacala do tivah a rozhovorii vracet
nékterd zakazana nebo zapomenuta té-

Symposium o tolerant-

nosti

V hloubi sedesatych let, kdy se na ceské
pudeé zacala do tivah a rozhovorii vracet
néktera zakazana nebo zapomenuté té-

Symposium
o tolerantnosti

V hloubi Sedesatych let, kdy se na ¢eské
pudé zacala do tivah a rozhovorii vracet
néktera zakazand nebo zapomenuta té-

Symposium o tolerantnosti

V hloubi sedesatych let, kdy se na ¢eské
pudé zacala do tivah a rozhovorii vracet
néktera zakazana nebo zapomenuta té-

Figure 8: The fifth example. First four solutions: TEX. The fifth: headline shrunk by using the
narrower font.



366 TUGboat, Volume 19 (1998), No. 4

Software

Editorial: EncTEX, by Petr Olsak

Barbara Beeton

The motto introducing the following article, by Petr
Olsak, describes Donald Knuth’s original vision for
TEX, to be used mainly by him and his secretary.

Things haven’t turned out that way.

Publishers of scientific and mathematical jour-
nals now produce them with TEX, from TEX man-
uscripts prepared by the authors, adhering to uni-
form guidelines— any divergence causes problems in
automated production, with associated delays and
costs. For this reason and others— joint authorship
with manuscripts shipped back and forth, preprint
archives on the Web, ... —there is enormous peer
pressure in much of the TEX community (at least
in the English speaking part of it) to use standard
implementations and macro sets. Portability has be-
come paramount. However, as printed languages ac-
cumulate more and more accented letters, or use dif-
ferent alphabets, TEX-out-of-the-box becomes less
and less usable without workarounds, sometimes elab-
orate ones.

That is the environment in which Petr Olsik
finds himself, and he is trying to solve the problems
that will make TEX as easy to use for a computer-
literate, Czech-language-literate novice as it is for
a similarly well-educated English-speaking novice.
How much more difficult it would be to learn a dif-
ferent natural language before you could use a com-
puter tool created with that language in mind.

Three potential reviewers were asked to look at
this article. Two refused outright, stating personal
biases that might color their opinions. The third
agreed, but warned of a similar bias, and made a
strong (and successful) effort to overcome his prej-
udice. All three strongly agreed that the article
should be published, as it forms a solid basis for
discussion of this knotty problem.

Work is now going on to extend TEX to (ul-
timately) 16bit encodings; the transition has to be
planned with care, and it is going more slowly than
anyone really wants. The stability of TEX and the
conservatism with respect to adding features have
been proven out by the fact that TEX is still in active
use after nearly 20 years, while most other systems
of this vintage are long dead.

I invite discussion in particular from implemen-
tors of TEX, its successors and adjuncts. Space will
be reserved in the next issues for this discussion.



366

TUGboat, Volume 19 (1998), No. 4

EncTEX — A little extension of TEX
Petr Olsék

Motto:

Certainly, if T were a publishing house, if 1 were
in the publishing business myself, I would have
probably had ten different versions of TEX by now
for ten different complicated projects that had come
in. They would all look almost the same as TEX,
but no one else would have this program—they
wouldn’t need it, they’re not doing exactly the book
that my publishing house was doing.

Donald E. Knuth, Prague, March 1996

— — % — —

This article describes a simple change to TEX which
makes it possible to manipulate the internal TEX
vectors xord and xchr. These vectors are used to
convert input encoding into TEX internal encoding
and vice versa. For example, emTEX users (DOS or
0S/2) know the so-called tcp tables which are used
to set xord and xchr values. On the other hand
UNIX users have no chance to reset these values
once the TEX binary is compiled. The modification
of TEX described below enables something similar
to emTEX tcp tables. It is independent of the
operating system. You can implement it in all TEX
systems where the TEX program is compiled from
WEB source files. I have tested my modification
on UNIX systems with the web2c implementation of
TEX.

There exist so far two options how to work
with reencoding on UNIX web2c implementations.
The first one is Skarvada’s patch [3]. This solution
implements several reencoding tables directly into
the TEX source and the user cannot change these
tables at TEX run time. The encoding table is
selected by an environment variable. It is not saved
into generated formats during iniTEX. I think, this
solution is not so flexible.

The second option was implemented through
tcx files by Karl Berry. It is commented out
in current web2c sources with the following note:
“tcx files are probably a bad idea, since they
make TEX source documents unportable. Try the
inputenc IXTEX package.” I know the xord/xchr
reencoding solution is not compatible with the
inputenc package, but nevertheless I disagree with
the note above. I have the following arguments:

e The inputenc package is a solution for BTEX
only, but TEX is used via other formats too.

e The log files and the terminal outputs are not
legible if an overfull/underfull box of Czech



TUGboat, Volume 19 (1998), No. 4

text is reported. The ~~ notation is absolutely
funny. If section 49 of tex.web is changed
(via tex.ch of course) in the following way:
(k<" ")or(k=invalid_code), the =~ notation
no longer occurs and the text is legible. But
if inputenc is used with different internal TEX
encoding, the Czech sentences in log files are
still not legible.

e The reencoding is an implementation problem,
it is not the problem of a naive user, who must
write \usepackage[bla]{inputenc}. He or
she has no knowledge about encoding used in
his/her OS. He or she perceives the command
\usepackage [bla]{inputenc} as very mysti-
cal.

e If the ITEX document is sent via e-mail with
MIME (or similar methods of transport), the
reencoding is done by e-mail agents and the
document is properly encoded for the OS of the
receiver. The \usepackage[blal{inputenc}
is not automatically changed in the KTEX
header, thus if the sender and the receiver
work in different encodings — oops— Houston,
we have a problem. I think, the reencoding
must be solved by software for transportion
between different OSes (e-mail agents or WWW
servers/clients, for example) and this problem
should not be solved in the I TEX header.

e The inputenc package sets active \catcodes to
accented characters. So 01548k is expanded to
01\v s\’ak, and therefore you cannot define
the control sequence \018ak. Accented letters
have \catcode=13 but \catcode=11 is needed.

e Donald Knuth has implemented the xord/xchr
vectors into TEX to separate the encodings
used in an OS and the internal TEX encoding
(because text fonts used in TEX are independent
of 0S). Administrators can set up xord/xchr
values during the TEX WEB source state, but
they usually don’t do it. This is because there
are many TEX implementations with binary
TEX only. Even if the TEX WEB source
is available, setting xord/xchr is somewhat
difficult for some administrators. But if the
xord/xchr setting is possible during the iniTEX
state, the administrators will be more flexible to
choose the right setting for their OS.

e | think Donald Knuth did not take into ac-
count the possibility to reencode during the
expand processor state, as it is done by the
inputenc package. Just consider that the
\uppercase, \lowercase primitives do their
work on (balanced text) before expanding using

367

\uccodes and \lccodes, which are used in the
hyphenation algorithm after expanding.

My solution to the reencoding problem is more
general than the tcp tables or the tcx files, because
the encTEX tables are read during iniTEX simply
by using \input and are defined by TEX macros.
I have implemented three new primitives into TEX:
\xordcode, \xchrcode and \xprncode. They en-
able to set and read the values of xord and xchr
vectors and to set the “printability” attribute of
any character. A new quality is introduced: the
xord/xchr vectors may be set independently. This
opens great new possibilities.

A technical introduction

The =xord vector is 256 bytes long and stores
the reencoding information for inputting characters
from a text file into TEX. The xchr vector has the
same length and stores the reencoding information
for outputting characters from TEX to the terminal,
to logs and to the text output files created through
\write, but does not influence output to dvi files.
These vectors are built into the program. All text
information during input or output is reencoded by
these vectors. If the input character has an external
code x and an internal code y in TEX, the xord
vector must be set the following way: xord[z] = y.
The rules for the output characters are as follows: If
the character with internal code y is not assumed to
be “printable” then the ~~code y is output, other-
wise the character with code x = xchr [y] is written.

The encTEX package

The installation of encTEX was tested on web2c
version 7. If we have the WEB sources of this
implementation of TEX then the command

patch <enctex.patch

in the directory with tex.ch installs the encTEX
package. After that, the new compilation of the TEX
binary (make tex) is needed. For more details see
the INSTALL. eng file.

The patch changes the tex.ch file only. No
other files including the C libraries are changed.
The make tex command runs tangle on the main
source file tex.web and on the changed change-file
tex.ch. The Pascal source file tex.p is created and
it is converted into C by the convert script and
afterwards it is compiled into the run time binary
tex.

Different TEX implementations (than web2c)
can have different tex.ch files, thus the simple
patch command (for web2c) may not be applicable.
For that reason the enctex.ch file is included. All



368

encTEX specific changes are described in this file.
You can modify your tex.ch file manually using
information from this file.

The encTEX modification is independent of the
operating system and of the TEX implementation
because all the changes are done in a WEB change
file exclusively.

After encTEX is installed, you can set and
read the values of xord and xchr vectors by new
primitives \xordcode and \xchrcode. You can set
the “printability” attribute of the character by the
new primitive \xprncode. The syntax of all three
new primitives is the same as the syntax of the
\1lccode or \uccode primitives. For example:

\xordcode"AB="CD \xchrcode\xordcode"AB="AB
\the\xchrcode200

sets xord[0xAB]=0xCD, xchr[xord[0xAB]]=0xAB
and, as a result of the second line, the value of
xchr[200] is printed in this example.

The new primitive \xprncode enables to set
the “printability” attribute of the character. The
character with internal code y is “printable” if
and only if y € {32...126} or \xprncodey > 0.
For example, if we set \xprncode255=1, then the
character with code 255 is “printable” and it will
be printed as a character with the code xchr [255].
On the other hand, setting \xprncode” to zero does
not cause “non-printability” because the code of the
character “~” is in {32...126}. It is a kind of
“self-defence instinct” against an unsound user who
could set all characters to be “non-printable” and
the printing ability of the program may be lost. The
\xprncode primitive can take any value from the
range 0. ..255, but remember the rule — “printable”
if \xprncode is positive.

There is an important difference between the
new encTEX primitives and well-known primitives
like \lccode or \catcode. The new primitives
represent internal TEX registers and are global under
any circumstances. You can set their values in a
group and these settings are not changed at the
group end. I rejected the possibility of local settings
(via the eqtb table) in order to achieve more efficient
code.

The initial values, when iniTEX starts, are the
following:

\xordcodei =i for i € {128...255},
\xchrcodei =i for i € {128...255},
\xprncodei =0 for i € {0...31,127...255},
\xprncodei =1 for i € {32...126}.

The values \xordcode i and \xchrcode i for i €
{0...127} depend on the operating system. If the
system is using the ASCII standard (very common)

TUGboat, Volume 19 (1998), No. 4

then \xordcodei = ¢ and \xchrcode i = i for all i.
If the operating system is using another (obscure)
encoding standard, then 95 printable ASCII internal
codes from {32...126} are mapped into appropriate
codes through corresponding changes in \xordcode
and \xchrcode initial values.

The values of \xordcode, \xchrcode and
\xprncode are stored in the fmt format file and they
are restored during the run of the production version

of TEX.

About the ambiguous encoding

This subsection will describe some issues with xord
and xchr resetting. Let us construct an example.
Say, we need to map the character \’a (having
code 129 in the OS, for example) onto the in-
ternal TEX code 128. So let \xordcodel29=128,
\xchcode128=129 and \xprncodel128=1. At the
same time the input code 128 is not mapped because
it is never used in the Czech alphabet, for example.
What if I get some file from Poland containing the
character with the input code 1287 This character
is mapped to the code 128 (internal in TEX) but it is
returned to \log as the code 129. That means that
TEX is no longer able to distinguish between codes
128 and 129 on its input.

We will describe this phenomenon more exactly.
Let’s use mathematical terminology. Let X =
{0...255} be a set of input codes and Y = X be
the same set (from mathematical point of view) but
let’s use this letter for a set of the internal codes in
TEX. Let Y, C Y be a set of all printable characters.
We claim:

Y, = {y; \xprncodey > 0} U {32...126}.

It is obvious that the values of the xchr vector on the
set Y'\Y, don’t influence the behavior of the program
output.

Let I : X — Y be the “input” function defined
by the xord vector and O : Y, — X be the “output”
function defined by the xchr vector. The initial
values of xord or xchr ensure that [ is bijective and
O is injective and O = I~! on Y,,. This feature gets
lost after the first change of xord or xchr values.
For example, let x # y and z € X, y € Y,,. Let us
make a simple transposition:
xchrly] = . (1)
Now, neither I function nor O function are injective!
You can see, xord[z] = xord[y], and a similar
equation holds for the xchr vector. The following
condition must be fulfilled so that our functions are
injective after applying transposition (1) n-times.
The sequence xg, . . . z,, must exist with the following

xord[z] =y,



TUGboat, Volume 19 (1998), No. 4

properties:

o=z, x1 =y and =xord[r;] =z
foralli € {0...n—1} and the equation xord [z,] =
2 holds. Similar conditions must be fulfilled for the
xchr vector. The problem is, that we apply the
transpositions (1) only on a certain subset of X (for
example on the printable characters or on accessible
characters in a given encoding). Then we need not
be surprised that as a result of our settings neither I
nor O are injective functions and therefore equations
O =TI"1orI=0O"" are senseless. The inversion
exists only if the function is injective.

The encoding tables

There are two types of encoding tables in encTEX.
Both tables are TEX \input files with auxiliary
macros. The files have the common extension
tex. It is recommended to use these tables (or to
modify them to your needs). Don’t use the new
primitives \xordcode, \xchrcode and \xprncode
directly unless you exactly know what you are doing.

The first type of encoding tables

These tables are used during the iniTEX run. The
values of xord/xchr are set symmetrically during
the \input, the transposition (1) is used repeatedly
for setting of the xord/xchr values. The resulting
settings are stored in the format file using \dump and
used in the production version of TEX.

These tables declare the relation of internal TEX
encoding and the encoding used on the host oper-
ating system. For example, our system encoding is
IS0O8859-2 and internal TEX encoding is chosen by
the Cork standard (called T1 in ITEX). In this case,
the encoding table name is i12-t1.tex. It redefines
the xord vector to map ISO8859-2 to T1 and the
xchr vector to map T1 back to ISO8859-2. A part
of the i12-t1.tex table is shown in Appendix 1 at
the end of this article.

The first thing every encoding table does is
input the macro file encmacro.tex, which conse-
quently defines macros \setcharcode, \expandto,
\texmacro, \texaccent. See the README. eng file in
the encTEX package for detailed documentation of
these macros.

Secondly, the internal encoding-specific macro
is read. An input of the timacro.tex file is
performed in our example. The encoding-specific
macros (such as accent definitions) are placed here.
These macros solve similar issues as the £d files for
text fonts in TEX.

369

See Appendix 2 for the overview of all tables of
the first type included in encTEX. You can list these
files by

1ls *-csf.tex *-tl.tex

EncTEX contains many files prepared for
iniTEX for plain-variant formats. For example, the
command

initex plain-il2-dc

generates the plain format with ISO8859-2 as the
input encoding. This format name is plain-il2-dc,
it includes the hyphenation table in T1 and uses
the dc fonts for text. The content of the
plain-il2-dc.texfile is shown in Appendix 3. The
\input of Knuth’s original plain.tex and the table
i12-t1.tex is performed here.

The second type of encoding tables

The tables of the second type perform reencoding
only on the input side of TEX, so the xord values
are changed but the xchr values are not. The name
convention identifies these tables: the symbols like
t1 or csf are missing in the name, because tables of
this type deal with reencoding from one operating
system standard to another and therefore they are
not related to the TEX internal code.

For example, the table 1250-112.tex maps the
input characters from CP1250 to ISO8859-2. The
CP1250 encoding becomes a new input encoding
and we assume that the first type of encoding table
i12-*.tex was used in iniTEX.

We can use the table of the second type when a
part of the input document (or the whole document)
has a different encoding from the encoding used by
our operating system. The table of the second type
establishes the relationship to the input encoding
declared in the table of the first type.

For example, the i12-t1.tex table was used
in iniTEX and we have obtained a document in
CP1250. We can write:

\input 1250-i12

\input document
\restoreinputencoding

The IS08859-2 is restored here.

The double reencoding is active when the
document.tex is read: firstly from CP1250 to
ISO8859-2 and secondly from ISO8859-2 to internal
TEX T1 encoding. The text is output to log, to the
terminal and to \write files in ISO8859-2 encoding.
The ISO8859-2 input encoding is restored after the
\restoreinputencoding command.



370

Attention: it is impossible to reread the \write
files when the table of the second type is ac-
tive. If, for instance, the file document.tex in-
cludes some \write activities (for index, table
of contents and so on), we have to read these
auxiliary files before \input 1250-il2 or after
\restoreinputencoding. That is the reason why
\dump (the format generation) is senseless while
table of the second type is active.

About compatibility

The encTEX extension successfully passes the TRIP
test with two exceptions: 1. The banner is changed.
2. The number of multiletter control sequences is
greater than in original TEX by three.

All changes of TEX which do not change the
behavior of original TEX and only add some new
primitives are backward compatible with Knuth’s
original TEX. It means that if we have written a doc-
ument for original TEX and it is processed through
extended TEX we will get the same results. Here is
one exception though: the macro construction of the
type \ifx\xordcode\undefined has to be missing
in such a document. But, I guess, the probability
of existence of such constructions in documents for
standard TEX is equal to zero.

We have to say that it is possible to write new
macros and documents in extended TEX which are
not backward compatible with original TEX. This is
a disadvantage of all extensions of TEX. We face this
situation both if the extension adds new primitives
directly (as in encTEX or pdfTEX, for example), as
well as if the access to new primitives is hidden
and may be initialized by some trick at the format
generation time (as in e-TEX or MLTEX). The issue
is, how many users will use the new primitives and
who will be a supervisor for the standardization of
these primitives.

In case of my encTEX package, I have no claim
to standardize its primitives into newly developed
TEXs. I have made this extension for my needs and
if somebody likes it, he/she can use it realizing that
his/her documents may not be backward compatible
if he/she uses the new primitives directly. On the
other hand, I meant my primitives to be used pri-
marily while generating formats and not to be used
directly in real documents. Thus the documents can
still be backward compatible.

If an administrator of a multi-user system
installs a TEX format using encTEX, he/she can call
some table of the first type and prohibit the usage
of the new primitives before \dump:

\let\xordcode=\undefined
\let\xchrcode=\undefined

TUGboat, Volume 19 (1998), No. 4

\let\xprncode=\undefined

Thus users can’t access the backward incompatible
extension of encTEX. I recommend this setup for
public sites. If encTEX is used this way exclusively,
then the xord and xchr vectors work as was meant
by the author of TEX: They filter operating system
specific encodings into internal TEX encoding.

The question in my mind is why Donald Knuth
did not introduce primitives similar to mine. He
probably wanted all TEX macros to behave the
same way on various implementations. In this
case the direct access to xord/xchr values was not
acceptable for him. We can use a condition like
\ifnum\xordcode‘®@=@, thus our macro processing
depends on whether or not the operating system
adopts the ASCII standard.

The same macro behavior is not exactly reached
in standard TEX either. We can \write a character
into a file and we can reread this character in the
next run. If we set \catcode ¢ ~=12 before rereading
then we can conditionally continue processing based
on the “printability” attribute of this character in a
given operating system.

Conclusion

Everybody can modify the TEX source for his needs
(see the quotation from the author of TEX at the
beginning of my article). Modifying the TEX source
is simpler than it looks. In my case, I perused [1]
in the evening and reconsidered all issues. The next
morning, I implemented my ideas into a computer
and performed a couple of tests. And I wrote this
article in the afternoon (in the Czech language; the
English version took me considerably more time : -).
The goal was reached quickly thanks to the very well
documented program TEX.

References

[1] Donald Knuth. TgX: The program, volume B
of Computers & Typesetting. Addison-Wesley,
Reading, MA, USA, 1986.

[2] Petr Olsdk. The encTEX package,
ftp://math.feld.cvut.cz/pub/olsak/enctex

[3] Libor Skarvada. The patch for web2c TEX
ftp://ftp.muni.cz/pub/tex/local/cstug/
skarvada

o Petr Olsak
Department of Mathematics
Czech Technical University
Prague, Czech Republic
olsak@math.feld.cvut.cz



TUGboat, Volume 19 (1998), No. 4 371

Appendices

Appendix 1: A part of the table of the first type i12-t1.tex.
%%% The encoding table, v.Sep.1997 (C) Petr 01\v s\’ak
%%% input: IS0-8859-2, internal TeX: Cork

\input encmacro \input tlmacro

% (1) Czech/Slovak alphabet
% input TeX lc uc sf cat prn sequence
\setcharcode "C1 "C1 "E1 "Cl1 999 11 1 \texaccent \’A

\setcharcode "E1 "E1 "E1 "C1 1000 11 1 \texaccent \’a
\setcharcode "C4 "C4 "E4 "C4 999 11 1 \texaccent \"A
\setcharcode "E4 "E4 "E4 "C4 1000 11 1 \texaccent \"a
\setcharcode "C8 "83 "A3 "83 999 11 1 \texaccent \v C
\setcharcode "E8 "A3 "A3 "83 1000 11 1 \texaccent \v c
\setcharcode "A4 "1F 0 0 0 15 0 Y% =o=, not accesible
\setcharcode "A7 "9F 0 0 0 12 1 \texmacro \S
\setcharcode "D7 "03 0 0 0 13 0 \expandto {$\times$}
\setcharcode "F7 "O7 0 0 0 13 0 \expandto {$\div$}
Appendix 2: A list of tables of the first type.
File name input encoding internal TEX encoding
il2-csf.tex 1SO8859-2 CS-font
kam-csf.tex Kamenickych CS-font
1250-csf.tex CP1250, MS-Windows CS-font
852-csf.tex CP852, PC Latin2 CS-font
mac-csf.tex MAC-CZ, Macintosh CS-font
il2-tl.tex ISO8859-2 T1 alias Cork
kam-t1.tex Kamenickych T1 alias Cork
1250-t1.tex CP1250, MS-Windows T1 alias Cork
852-t1.tex CP852, PC Latin2 T1 alias Cork

mac-tl.tex MAC-CZ, Macintosh T1 alias Cork

The CS-font encoding and T1 are commonly used as the internal encoding of TEX for the Czech language.
CP1250 is commonly used in MS Windows systems, ISO8859-2 in UNIX, CP852 or Kamenickych encodings
are used in DOS and MAC-CZ is used in Macintosh systems.

Appendix 3: The content of the plain-il12-dc file.

\input noprefnt % re-defines \font: \font\preloaded is ignored
\input plain % format Plain
\restorefont % original meaning of primitive \font
\input dcfonts 7% loads text-style dc fonts
\input i12-t1 7% input: IS08859-2, internal TeX: Cork
\input hyphen.lan 7% czech / slovak hyphenation pattern
\input plaina4 % \hsize and \vsize for A4
\everyjob=\expandafter{\the\everyjob
\message{The format: plain-il2-dc <Sep. 1997>.}
\message{The cm+dc-fonts are preloaded and A4 size predefined.l}}
\dump



372

ConcTgX: Generating a concordance from
TEX input files

Laurence Finston

Abstract

ConcTgX is a package that generates a concordance
from a plain TEX file. It has been designed specifi-
cally for books containing transcriptions of medieval
manuscripts, such as facsimile editions, but it can
be adapted for other types of material. ConcTEX
consists of TEX code in the file conctex.tex and
a Common Lisp program in the file conctex.lsp.
The main advantage of ConcTEX is that the same
TEX files are used for typesetting and for generating
the concordance. It also performs alphabetization
of arbitrary special characters and lemmatization.
ConcTgX illustrates the power of using TEX and
Lisp in combination. It is available under the
normal conditions applying to free software.
Introduction

Designing and typesetting a facsimile edition of
a medieval manuscript is a formidable challenge.
The plates with the facsimile itself will be pho-
tolithographs or, in books of the finest quality,
collotypes, and will therefore require no typeset-
ting. However, facsimile editions invariably contain
parts which must be typeset, such as an introduc-
tion, a transcription and a concordance.

Manuscript transcriptions must be carefully
designed and they generally require frequent font
changes and numerous special characters. Typeset-
ters, if there are any left, are unlikely to be able
to read the language of the manuscript, and each
manuscript has its own peculiarities of language
and orthography, so the process of proofreading
and correction is even more difficult than for or-
dinary books. Nowadays, authors or editors are
often expected to supply camera-ready output to
the publisher. This often means a printout from
one of the popular word-processing packages, which
are incapable of producing typesetting of sufficient
quality for the task. In today’s market, using me-
chanically set lead type is prohibitively expensive
and the number of publishers willing to typeset
difficult copy in this way decreases every year.

The task becomes even more daunting when a
concordance is desired.! Compiling a concordance
by hand requires so much labor that it is no longer
economically feasible. Today, concordances are

L A concordance is a complete listing of all words occur-
ring in a manuscript, lemmatized, with the main forms of
the lemmata sorted alphabetically.

TUGboat, Volume 19 (1998), No. 4

generated by means of computer programs, but,
until now, this has required preparing a specially
formatted file containing the transcript. Since
a separate file, or a typescript, was used for
typesetting, changing either the transcript or the
concordance necessitated making the corresponding
change in the other. In some cases, a conversion
program could be used to automate this process.
Where this was not possible, either because a
typescript was used or no conversion program was
available, every change had to be made in two
places by hand: an editorial nightmare.

ConcTgX is a package that attempts to solve
these problems. It includes a file of TEX code,
conctex.tex, containing tools for designing a fac-
simile edition of a manuscript, and a program
written in Common Lisp, conctex.1sp,? for gener-
ating a concordance from the TEX input files. The
concordance program performs lemmatization and
alphabetization of arbitrary special characters, and
its output is another TEX input file containing the
concordance. ConcTEX is designed for producing
facsimile editions of manuscripts, but it can be
adapted for other types of material.

Using ConcTEX makes it possible to bene-
fit from the typographic capabilities of TEX and
METAFONT, of which readers of TUGboat need not
be convinced. Apart from this, its most significant
advantage is that the TEX input files are used both
for typesetting and for producing the concordance,
so that any changes in the input files are automat-
ically reflected in both the printed output and the
concordance.

ConcTEgX is not for novices. A certain amount
of TEXpertise and knowledge of Lisp are necessary to
use it successfully. The version I describe in this ar-
ticle has been designed for a particular project. Any
other project will require some customization. Many
of the individual features of ConcTEX as described
here are the result of decisions regarding the design
of a particular book. Other books will require other
decisions. I have programmed most of the routines
in a general way, so that details can be changed while
the basic operation of ConcTEX remains the same.

Both the TEX code in conctex.tex and the
Lisp program conctex.lsp use some fairly ad-
vanced techniques, so readers may find this article
somewhat difficult. 1 expect the description of
the Lisp program will present the most problems,
because Common Lisp is likely to be unfamiliar to

2 Technically, it is incorrect to speak of “the program”
conctex.lsp. In Lisp a program is not a file. It is, however,
convenient to refer to the file conctex.1lsp as “the program”.



TUGDboat, Volume 19 (1998), No. 4

most TEX users.? Some of the more difficult and
subtle points are in the footnotes; for others, I've

borrowed Prof. Knuth’s “dangerous bend” sign: @

I sometimes use footnotes and “dangerous bend”
paragraphs to refer to topics that are introduced
later in the article. Most readers will want to skip
these paragraphs on the first reading.

Generating a concordance is admittedly a spe-
cial application; most TEX users won’t want to do
such a thing. However, the techniques for extracting
information from TEX input files, described in this
article, are of general applicability.

In the following description and examples, I
use two transcriptions of Icelandic manuscripts of
the 13" century, AM 234 fol and Holm perg 11 4°,
each containing a wita of the Virgin Mary and a
collection of miracles. I wish to thank Dr. Wilhelm
Heizmann, my Doktorvater (dissertation advisor),
who prepared the transcriptions, for permission to
use them in this article.*

In the following, many phrases have special

meanings. They are all explained at their first
appearance, but to avoid confusion, they are listed
in a glossary on page 402.
Installation. In order to use ConcTgX, the file
conctex.lsp, containing the Lisp program, must
be in your working directory, and conctex.tex,
containing TEX code, must be either in your working
directory or in a directory in TEX’s load path. If
you don’t know what this is, or how to change it,
ask your local TEX wizard, or just put the file in
your working directory. The line

\input conctex

must be at the beginning of your input file.
Why not IATEX? ConcTgX is designed for use
with plain TEX. It is theoretically possible to
adapt it for use with I#TEX, but I recommend
against doing so. I use plain TEX in preference to
IATEX in ConcTEX for the following reasons:

1. Making significant changes to one of IATEX’s
pre-defined formats is difficult and time-con-
suming, whereas programming a format based
on plain TEX is relatively easy.

2. IATEX enforces a rigid structure on formats.
This makes sense for formats that are intended

3 The standard introduction to Lisp is Patrick Henry
Winston and Berthold Klaus Paul Horn’s LISP. Once you
know how to program in Lisp, Guy L. Steele’s Common
Lisp, The Language is the one indispensable reference.

4 T would also like to thank Giinter Koch and Jiirgen
Hattenbach of the Gesellschaft fiir wissenschaftliche Daten-
verarbeitung mbH Goéttingen, Germany for help above and
beyond the call of duty.

373

to be used by many people, many of whom
may have minimal knowledge of how TEX
works. However, it is simply not worth the
time and effort to write a IATEX format for a
single book, when a plain TEX format is just
as good and can be written in a fraction of the
time. And every book (or series) deserves its
own design.

3. IATEX loads various files by default, and signals
an error if it doesn’t get them. Some of
the things in these files might not even be
necessary, but you’ve still got to wait until
they’re loaded.

4. The more macros you use, the more likely
it is that they will start to interfere with
each other. The problem is even worse when
using a large package with macros you a)
don’t need and b) don’t understand. IANTEX’s
macros are very difficult to understand because
pieces of them are scattered all over the place.
For this reason, it can be very difficult and
frustrating trying to get I#TEX to stop doing
something you don’t want it to do. ConcTEX
changes the \catcode of several characters and
includes a large number of macros. Therefore,
the likelihood is great that there would be
interference between ConcTEX and IATEX.

The TEX input file

Multiple input files can be used for typesetting a
document and generating a concordance, so the
document can be divided into several files in the
customary way. In the following, I will assume, for
simplicity’s sake, that there is only one input file.
This file can have any name within reason.

Like any other TEX input file, an input file for
ConcTEX will contain text, control sequences for
typesetting and perhaps comments (using %). But
it will also contain Lisp code used by the program
conctex.lsp. Therefore, TEX input files used for
generating a concordance are subject to greater
restrictions than is ordinarily the case with plain
TEX. Some parts of the input file will only be used
by TgX, some will only be used by conctex.lsp,
and some will be used by both, or neither. Many
of the complications of ConcTEX have to do with
making TEX and/or Lisp ignore items in the input
file.

Environments. ConcTEX changes some category
codes and redefines some control sequences in order
to format the transcription correctly. This can make
it difficult to type in “normal” text using plain
TEX’s familiar conventions. It might be useful to
do this if sections of transcription alternate with



374

sections of commentary. The macro \plain defines
an environment where \catcodes and macros are
reset to their normal values. This environment ends
with the macro \endplain.

In the \trans environment, which is the de-
fault, the \catcodes of characters and macro expan-
sions are set to the values needed for transcription
lines, i.e., the lines that contain the actual tran-
scription. The macros \endplain and \endtrans
are defined like this:

\let\endplain=\trans
\let\endtrans=\plain

The changes made by \trans and \plain (and
\endplain and \endtrans) are global. A \trans in
the input file need not be matched by an \endtrans,
but \plain and \endplain must be matched,
otherwise they will wreak havoc in conctex.1sp.

Another environment is used for commentaries,
which are described below. Commentaries also
reset some category codes and macros, but the
commentary environment is not identical to the
\plain environment. Commentaries will usually
contain material similar to that in the transcription
itself, whereas material in the \plain environment
should be formatted differently. The \catcodes of
several characters needed in math mode are also
reset by the token list \everymath.

A line beginning with \trans or \endtrans in

an input file will be ignored by conctex.lsp,
but \plain and \endplain are replaced by x*,
so conctex.lsp treats text between \plain and
\endplain as a commentary.

Having the \trans environment be the default

isn’t hard-wired into ConcTEX; however, the
definitions of \- and - assume that \trans is the
default, so this will need to be fixed if you want
\plain to be the default environment.

In both the \plain environment and within

commentaries, - is reset to \catcode 12 and
\- is used for discretionary hyphens, because line
breaking is not performed explicitly, but rather by
TEX’s line breaking routine.

Transcription lines are the lines in the input
file that contain the text of the transcription itself.
They are processed in whole or in part by both TEX
and conctex.lsp. In order to do its job, ConcTEX
redefines the \catcode of several characters. Each
of these changes is explained in its proper place,
but there is a list for reference on page 402.
Transcription lines are formatted according to the
settings in the \trans environment, and processed

TUGboat, Volume 19 (1998), No. 4

by conctex.lsp. Apart from the text, they may
contain items like comments, commentaries, and
certain macros.

Comments and commentaries. ConcTEX makes
a distinction between “comments” and “commen-
taries”. A comment can be a normal TEX comment
using %, but it can also be code that looks like this:

\begincomment{This is a comment.}
\endcomment

The format defined in conctex.tex uses a con-
ditional (defined with \newif) called \ifdraft.
Whenever \drafttrue, that is to say, whenever
\ifdraft=\iftrue, certain things are done which
are useful for editing purposes, but which aren’t
done for the final draft. Omne of these things is
printing out comments. If \drafttrue, this line:

helgum m{\oe}nnum
\begincomment{This is a comment}%
\endcomment {\ae}{\dh}r i. helgari

=

helgum meennum * This is a comment *
20r i. helgari

If \draftfalse, it yields
helgum meennum &0r i. helgari

A commentary, on the other hand, is text which
should be processed by TEX and appear in the
output, but should be ignored by conctex.lsp,i.e.,
not be used for generating the concordance. This is
for editorial remarks within the transcription itself.
Commentaries can be coded in several different
ways. Usually, a commentary begins and ends
in *.°

\catcode ‘\*=9

herbergi heilag{\slongl} anda."%
* This passage is particularly
interesting * {\oe}1lvm\\
helgum m{\oe}nnum {\ae}{\dh}r
i."helgari\\

{\tirok} haleitari.”er komin

at k{\ydot}n\\

herbergi heilagl anda. This passage is particu-
larly interesting cellvim

helgum mecennum &0r i. helgari

2 haleitari. er komin at kyn

5 The control symbol \\ in the following example is used
for breaking the lines. It’s explained on page 381. The
letter {\slong} — [, used in the following examples, is an
alternative form of “s”. It is simply the “f” from Computer
Modern Roman, with the crossbar removed.



TUGboat, Volume 19 (1998), No. 4

In this example, TEX simply ignores the character
*, because its \catcode has been changed from 12
(other) to 9 (ignored), so the commentary is printed
in the same font as the transcription. If I want the
commentaries to be printed in a different font, I can
code something like this:

\catcode‘\*=\active
\font\ssf=cmss10

\def\startcommentary{\begingroup\ssf}
\let\finishcommentary=\endgroup
\let\docommentary=\startcommentary

\def*{\docommentary
\ifx\docommentary

\startcommentary

\global\let\docommentary=
\finishcommentary

\else

\global\let\docommentary=%

\startcommentary

\fi}

This makes * an active char whose expansion
switches back and forth between \startcommentary
and \finishcommentary. The example above then
comes out looking like this:

herbergi heilagl anda. This passage is particularly
interesting oellvim

helgum mecennum &0r i. helgari

2 haleitari. er komin at kyn

If you want * to do more than just change the
font, you can put more code into the expansions of
\startcommentary and \finishcommentary. The
macros \begincommentary and \endcommentary
are both \let to *, so using them is exactly the
same as using *. They can be useful for marking
longer commentaries, e.g.,

herbergi heilag{\slong} anda. {\oe}1lvm\\

\begincommentary

\<This commentary is so long that it’s
nice to mark it with
{\tt\string\begincommentary}

and {\tt\string\endcommentary}

to make it easier

to see in the input file, since \* and \*

might be easy to overlook.\>

\endcommentary\space

helgum m{\oe}nnum {\ae}{\dh}r
i. helgari\\

{\tirok} haleitari. er komin

at k{\ydot}n\\

375

herbergi heilagl anda. cellvin

(This commentary is so long that it's nice to mark
it with \begincommentary and \endcommen-
tary to make it easier to see in the input file,
since * and * might be easy to overlook.) helgum
meennum &0r i. helgari

2 haleitari. er komin at kyn

The explicit \space following \endcommen-
tary is necessary, because ordinary spaces following
\endcommentary would just be swallowed up in the
usual way. It would be easy enough to change by
redefining \finishcommentary, so that it always
inserts a space into the current list.

\def\finishcommentary{\endgroup\space}

However, it might be desirable to have commentaries
end within a word sometimes.
Ignored lines.

e Lines that begin with % are ignored both by
TEX and conctex.lsp. (A % in the middle of
a line causes both TEX and conctex.lsp to
discard the rest of the line.)

e Entirely blank lines are processed normally by
TEX (the second (return) in a row is converted
to \par), and ignored by conctex.lsp.

e Lines that begin with \ are treated in the
normal way by TEX and ignored by conc-
tex.1lsp, with a few exceptions. This makes it
possible to include undelimited macros (control
sequences that are not surrounded by braces)
in the input file without worrying about how
the Lisp program is affected by them. These
can be skips, font changes or other commands.
Beginning a line with \relax or \empty makes
it possible to type anything in the input file
and have conctex.lsp ignore it.

@ Certain undelimited macros, such as \lineno
and macros like \putontop and \overstroke
that are used for text, do not cause conctex.lsp to
ignore a line, so they can appear at the beginning of
text lines. Other exceptions may be programmed.

Evaluated lines. Lines in the input file can contain
Lisp code to be evaluated by conctex.lsp. The
first non-blank character in these lines must be the
commercial “at” symbol, @ The \catcode of @
has been changed to 14 (comment), so TEX ignores
these lines. An evaluated line should contain a
complete balanced expression (s-expression or sexp);
multiline Lisp expressions are not permitted in the
input file. If an @ is not the first non-blank character
in a text line, both TEX and conctex.lsp discard
the rest of the line following the @, and Lisp does
not evaluate it.



376

The most common use of evaluated lines is to
reset the text position for a new leaf, side or
column.

@ (set-position "28va")

They can also be used for adding occurrences

for words which TEX can’t format in the normal
way, perhaps because a word is written vertically
and extends over multiple lines (see page 398).

@ (add-occurrences "drotning" "1lva~1-7")

The character ¥. The program conctex.lsp
considers all letters (\catcode 11) and some char-
acters of type “other” (\catcode 12) in text lines
as “word elements”. Some “other” characters are
considered “word separators”: in particular, blanks
and punctuation. The character ¥ (decimal 165,
octal 245, hexadecimal A5)® is a special kind of
word separator: it is ignored by TEX (\catcode 9).
The program conctex.lsp will ignore most lines
that begin with an undelimited macro, but if the
line begins with ¥, conctex.1sp will process it.

¥\vskip12pt DROTNING himins ok
iar{\dh}ar ...

The character ¥ may look different on your ter-
minal.” However it looks, it should always be
used rather than ~~a5 in your input file;® TEX will
recognize ~~ab as referring to a single token, but
conctex.lsp will treat it as a string of 4 charac-
ters. It’s never necessary to use ¥, it is merely a
convenience.

Curly braces. As far as plain TEX is con-
cerned, the characters { and } are simply set to
categories 1 and 2, beginning and end of group,
respectively. They can be set to other categories,
and other characters can be set to categories 1
and 2. ConcTEX doesn’t support this generality;
the \catcodes of { and } should not be changed

6 It’s sometimes convenient to know the decimal, octal
or hexadecimal notation for an integer in another of these
radices. ConcTEX includes a lagniappe, a C program that
converts between decimal, octal and hexadecimal integers
easily and quickly, and several Emacs-Lisp functions for
calling this program from within Emacs.

7 If you’re using Emacs, you can enter any character by
typing Control-q followed by an octal integer, so I can type
Control-q 245 to get ¥. You may get another character,
though, depending on your editor, operating system, etc. A
better way to type in special characters is to define a key
sequence or an abbreviation to do it. There’s more about
this in the documentation supplied with ConcTEX.

8 Any character can be represented in a TEX file as =~
followed by two lowercase hexadecimal digits (The TEXbook,
p. 45). If necessary, conctex.lsp can be made to recognize
this notation.

TUGboat, Volume 19 (1998), No. 4

and other characters should not be used in their
place. The reason for this is that the program
conctex.lsp uses { and } explicitly in strings. It
would be possible to change this and have a general
mechanism for recognizing a beginning-of-group and
an end-of-group character, but I did not consider
that this was worthwhile.

Braces are used in transcription lines for their
normal purpose: to delimit macros and their ar-
guments. TEX normally permits “unmotivated
braces”, i.e., braces that are typed into the input
file for no particular reason.

Th{is} line has {unm}otiv{ated} br{acel}s.
—
This line has unmotivated braces.

The unmotivated braces will only have an effect if
they separate parts of a ligature, as in waf{f}le
— waffle, or prevent kerning, as in {V}A —
VA. Sometimes, of course, as in {shelf}ful —
shelfful,” this is useful, but then the braces aren’t
unmotivated. ConcTEX does not permit them,
and the function letter-function in conctex.1lsp will
signal an error when it finds an unmotivated }. If
cases like “shelfful”, where the word looks better
without the ligature, are desired, they must be
accounted for in conctex.1sp.

Changing fonts. Manuscript transcriptions
often require frequent font changes, sometimes
within a single word. For example, editorial
emendations may be printed in italics: prestr
(Engl. “priest”), and perhaps enclosed in brackets,
too: p[re]str. Some letter forms may be represented
in the transcription as small capitals, such as the
“R” in p[re|stR. Different fonts may be used for
various other purposes, too, according to the book
design. For instance, initials, large and/or decora-
tive letters, and letters written in a different color
ink in the manuscript may all be indicated by a
special font in the transcription. Font changes are
handled in the normal way by TEX and discarded
by conctex.lsp. Font changes can extend over
multiple transcription lines.

Special characters and other macros.
A fundamental decision in editing a manuscript
transcription is, to what degree the transcription
should correspond to the actual appearance of the
manuscript, e.g., how special characters are repre-
sented, whether abbreviations are expanded, etc.
With TEX and METAFONT, it is possible to imitate
the appearance of the manuscript to a greater degree
than is possible with other methods; however it is up

9 The TEXbook, pp. 19 and 306.



TUGboat, Volume 19 (1998), No. 4

to the editor and the book designer whether to make
use of this capacity or not. I believe that a transcrip-
tion will usually be of greater interest if it’s not nor-
malized, and if the abbreviations are not expanded.
No matter what style of transcription is chosen, a
wide range of special characters is usually required.

In TEX, special character macros can be typed
with or without enclosing braces, e.g., the word
“ett” (Engl. “a quarter of the heavens, one’s fam-
ily”)!% can be coded as “{\ae}tt” or “\ae_tt”, or
even “\ae . tt” since spaces following a control
word are ignored. The second and third alternatives
are impractical even under normal circumstances,
because it is unclear in the input file that “\ae”
and “tt” belong together. In ConcTgX, however,
all special character codings must be enclosed in
braces (“{\ae}tt”). TEX will handle “\ae tt” and
“Naeyuuutt” in the normal way, but conctex.lsp
will signal an error when it reads “\ae” without
enclosing braces.!! All macros used in transcription
lines must be accounted for in conctex.lsp. Others
will cause an error.

In most medieval manuscripts, words are often
abbreviated. There are several methods of abbre-
viation. One is to write some of the letters of a
word and put a stroke over them, like “mm” for
“monnum.” It may be desirable to expand these
abbreviations in the transcription. One way of
doing this is to print out the characters that do
not appear in the manuscript, but in italics and
underlined, e.g., “mgnnum”. (Other solutions may
be used according to the book design.) The macro
\ustroke is used to do this:

m{\ustroke{{\ohook}nnu}}m

=
monnum

You can type “m{\ustroke{{\ohook}nnu}}m” or
“m\ustroke{{\ohook}nnu}tm”, i.e., the macro \us-
troke can be delimited or undelimited. Either way,
conctex.lsp discards the macro and its braces,
and the argument is treated as part of the word, so
in this example, “monnum” is printed in the out-
put and “monnum” will appear in the concordance
(under the main form “madr”, Engl. “man”).

Since such abbreviations occur frequently, the
\catcode of the underline character _ (decimal
95, octal 137, hexadecimal 5F) has been reset to
\active and \let to \ustroke. So now you can
type “m_{{\ohook}nnu}m” to get “mgnnum”, which

10 CLEASBY-VIGFUSSON, p. 760.

11 Tt is letter-function that signals the error, when it reads
the \.

377

makes the input file somewhat easier to type and
read. The \catcode of _ is reset to 8 (subscript) in
math mode, so it’s available for making subscripts,
and also in the \plain environment, so that it’s
possible to load files with the character _ in their
names. But it’s not reset in commentaries, which
might very well want to use _ for \ustroke.

@ The macro \ustroke is defined as follows:

\def\ustroke#1{%
\def\subustroke{\leavevmode
\ifx\next.% It’s a period
\setbox0=\hbox{{\it#1}}\else
\ifx\next,% It’s a comma
\setboxO0=\hbox{{\it#1}}\else
% It’s neither a period nor a
% comma
\setbox0=\hbox{{\it#1\/}}V
\fi\fi
$\underline{\box0}$}’
\futurelet\next\subustroke}

Since the underlined text is put in italics, it’s nice
to have \ustroke insert the italic correction (\/)
automatically, if and only if \ustroke’s argument
is followed by something other than a period or a
comma. In order to find this out, it’s necessary to
peek at the following token, using \futurelet. If
\ustroke uses a non-slanted font, it can be defined
more simply. It uses the \underline macro, which
is available only in math mode. This makes
the underlines go below the bottom of the lowest
character in \ustroke’s argument.

_{ypa} _{abc}
_{{\ehook}{\ohook}{\oehook}}

=

ypq abe ¢og
It might be nicer to have the underlines all at the
same depth, preferably close to the baseline, but
unfortunately, this doesn’t turn out to look very
good. If \ustroke is defined like this:

\def\ustroke#1{/,
\def\subustroke{\leavevmode
\ifx\next.% It’s a period
\setbox0=\hbox{\it#1}\else
\ifx\next,%
% It’s a comma
\setbox0=\hbox{\it#1}\else
% It’s neither a period
% nor a comma
\setboxO=\hbox{\it#1\/F\fi\fi
% This makes a .25pt rule.
\hbox to Opt{\vrule height -.8pt



378

depth 1.05pt
width \wdO\hss}\box0}Y%
\futurelet\next\subustroke}

then

_{ypg} _{abc}
_{{\ehook}{\ohook}{\oehook}}

=

upq abe gog
I think it looks worse to have the underline stroke
go through the descenders of y, p, and ¢, and the
ogoneks (,) of ¢, g, and ¢, than it does to have
the underline stroke be at different heights. To
do this properly, it would really be necessary to
design fonts with the underline stroke included in
the individual letters.!?

Sometimes manuscript transcriptions will re-
quire the use of special characters which are not
available in existing fonts. It may be possible to
create them by manipulating existing sorts.'® For
example, in Holm perg 11 4°, many words have
letters with smaller letters placed over them. A
logotype'4 &, coded as {\bOVERa}, can be defined
using the existing letters “a” and “b”, boxes, and
glue. For other sorts, like 2, the Tironian symbol
for Latin “et” (“and” in English and “ok” in Old
Icelandic), it may be necessary to program a font
using METAFONT.

\bOVERa is actually defined as
\putontop{a}{b}{}{}{}. The macro \puton-
top is defined like this:

1. \def\putontop{\begingroup

2. \catcode ‘\-=12

3. \def\subputontop##1##2##3##4##5{%
4. \setbox1=\hbox{##1}/,

5. \setbox3=\hbox{##3}/,

12 Cf. The TEXbook, p. 323.

13 “Sort” is a technical term for a typographical unit,

synonymous with “character”. The term “character” is am-
biguous in the context of TEX, because the characters in
the input file differ in nature from the characters in the
fonts used for typesetting, and the coding of the latter in
terms of the former is subject to modification. Therefore, I
sometimes prefer the unambiguous term “sort” for a char-
acter when I mean a typographic unit belonging to a font.
WILLIAMSON defines a character or sort as a “single figure,
letter, punctuation mark, symbol or word-space cast as a
type or generated by photocomposition, CRT [cathode-ray
tube] or digital system, or typed.” (368).

1 WILLIAMSON defines “logotypes” (or “logos”) as fol-
lows: “letters joined to each other & cast on a single
shank.” (p. 379.) He also notes that there is a shortage of
logotypes in some photocomposition systems, where they are
replaced by separate characters.

TUGboat, Volume 19 (1998), No. 4

. \setbox4=\hbox{##41}/,

. \setbox5=\hbox{##5}/

)

. %% These are the default dimensions.
10. %% For shifting the top letter
11. %% to the right or left:

12. \dimen3=-.8\wd1

13. %% For shifting the top letter
14. %% up or down:

15. \dimen4=1.2\ht1

16. %% For increasing or decreasing
17. %% the kern following \putontop:
18. \dimen5=0pt

19. %

20. \ifdim\wd3>0pt

21. \advance\dimen3 by ##3\fi

22. %

23. \ifdim\wd4>0pt

24. \advance\dimen4 by ##4\fi

25. %

26. \ifdim\wd5>0pt

27. \advance\dimen5 by ##5\fi

28. %

29. \setbox2=\hbox{\kern\dimen3

30. \raise\dimen4

31. \hbox{{\small ##2}}}/

32. \leavevmode\box1

33. \hbox to Opt{\hss\box2\hss}

34. \kern\dimen5\endgroup}\subputontop}

The macro \putontop takes its second argu-
ment and puts it above its first argument in a
smaller size. The third and fourth arguments can
be empty, or they can be used to shift the position
of the second argument. The fifth argument can
also be empty, or it can be used to increase or
decrease the space following \putontop. The first
and second arguments to \putontop need not be
single characters. Here are some examples of using
\putontop.

\putontop{abc}{def }H{}{}{} ghi

—t
def

abc ghi
This shifts the raised letters to the right.
\putontop{abc}{def}{10pt}{}{} ghi

—
def

abc ghi
This shifts them down.
\putontop{abc}{def }{}{-20pt}{} ghi
_—
abc ghi

def



TUGboat, Volume 19 (1998), No. 4

This increases the kern following “abc”.
\putontop{abc}{def}{}{}{20pt} ghi

et
def

abc ghi
And this reduces it.
\putontop{abc}{def H{}I{}{-10pt} ghi

—t
def

ahghi
At the beginning of \putontop, the \catcode of
- is reset temporarily to 12 (other). This makes
it possible to use negative dimensions in its third,
fourth, and fifth arguments.

If a certain combination of letters like & appears

frequently in a transcription, it’s easier to
define a macro like \bOVERa for it rather than using
\putontop explicitly over and over. The function
replace-items can replace {\bOVERa} with “ab” or
any other string, so that a word like “r8bit” will
appear in the concordance as “rabbit”. Another
possibility is to account for {\bOVERa} in letter-
function. In this case, “r&bit” will be written
to the concordance, unless “r{\bOVERa}bit” has
been specified as a variant of “rabbit” in the
lemmatization dictionary.

(generate-entry "rabbit"
:variants "r{\\bOVERa}bit")

If a word like “eptir” (Engl. “after”) is abbre-

viated as \putontop{e}{pHHHH2ptH{}tir —
“etir” in the input file, the first two arguments
shouldn’t be discarded, because they belong to the
word. However, the string “\putontop” and its
other arguments, whether they’re empty or not,
will cause an error in letter-function, if they reach
it. The function process-macro inside the function
discard-items discards the string “\putontop”, takes
the first two arguments out of their braces and
discards the rest.!®

This works, if words using \putontop always

conform to this pattern. When they do,
\putontop can be used explicitly in the input file.
However, when they don’t, a different approach
is required. Sometimes, for instance, letters that
are put over other letters stand for parts of the
word which are left out. If the word “drotning”

is abbreviated frequently in the manuscript as “d”,

15 The function process-macro receives two arguments
which tell it which arguments to take out of their braces and
which to discard.

379

then it would make sense to define a macro \dr as
follows:

\def\dr{\putontop{d}{r{}{}{}}

Then, {\dr} can be made a variant of “drot-
ning” in the lemmatization dictionary.

(generate-entry "drotning" :variants "{\\dr}")
or
(add-variants "drotning" "{\\dr}")

Alternatively, the function replace-items can
replace all occurrences of “{\dr}” in the input
file with “drotning” before current-line is passed
to process-line. Note that “{\dr}” should always
appear within braces, like the special character

macros. 16

If there are a lot of cases of this type, and the
transcription does not expand the abbreviations,
then it would be a good idea to add another
argument to \putontop.

\putontop{ma{\dh}r{mI{r}{I{}H{}

In this example, the word madr (Engl. “man”) is ab-
breviated as m. Then, discard-items can call process-
macro in such a way that the first argument, contain-
ing the whole word as it should appear in the con-
cordance, is taken out of its braces so that it reaches
process-line and read-word, and the other arguments
are discarded. In this case, \putontop should dis-
card the first argument when TEX is run, so that
only the abbreviation is printed to the output.

If the word “madr” appears frequently in the
manuscript, which is likely, it might make sense
to define a macro as follows:

\def\madhr{\putontop{{m{r}{3{{}}

Here, the first argument can be empty, since TEX
ignores it. The string “{\madhr}” must be made
a variant of “madr” in the lemmatization dictio-
nary or replaced by “ma{\dh}r” in the function
replace-items, as above. The macro \madhr can
be used in words like “{\madhr}inn” — “minn”
for “madrinn” (nominative singular with enclitic
article).  Cases where a single special charac-
ter is used to represent a frequently used word,
like {\hxbarhk} — “0i” (abbreviation for “hans”,
Engl. “his”, personal pronoun, masculine singular
genitive) and {\thxbarhk} — “p” for the word

16 The control word \dr could even rbe accounted for
in letter-function, which would make “d” appear in the
concordance. If it was assigned the list (d-value r-value o-
value t-value n-value i-value n-value g-value), it would even be
alphabetized correctly. I don’t think this would be useful for
a concordance, but it might be for some other application.



380

“bessu” (demonstrative pronoun, feminine singular
dative), can handled in the same way.

An advantage in using TEX is the ability to
use temporary definitions for special characters. If
I hadn’t programmed 2 yet, I could define it as
follows:

\def\tirok{\&$ {\rm Tir.}$}
Then, a line like the following:

{\tirok} haleitari. er komin at
k{\ydot}In

will be printed like this:
&Tir haleitari. er komin at kyn

When I've gotten around to programming 2, it
will be printed like this:

2 haleitari. er komin at kyn

but I won’t have to change my input file.!”

This is the TEX code that’s necessary for using
special characters like 2, assuming the font is
called specialfont.

\font\specialfontnine=specialfont9
\font\specialfontten=specialfont10
\font\specialfonttwelve=specialfont12

Now, \specialfont must be defined where

\rm, \large, \small etc. are defined, so that
\specialfont accesses the correct size of the font
specialfont, e.g.

\def\rm{\let\specialfont=}
\specialfontten ...
\def\small{\let\specialfont=/
\specialfontnine ...
\def\large{\let\specialfont=%
\specialfonttwelve ...

Finally, \tirok is defined like this:
\def\tirok{{\specialfont\char’140}}

The character “2” is in position octal 140
(decimal 96, hexadecimal 60) in specialfont.

g% In a similar way, TEX makes it possible to
distinguish words in the input file which should
not be distinguished in the output. For instance,
there are two forms of “m” in Holm perg 11 4° which
are used interchangeably. Depending upon the
degree of normalization desired in the transcription,
these two letters can be distinguished in the output
or not, as desired. One form can be coded as m —

17 TEX is generous with space for storing macros; there’s
room for over 2000, so there should be enough for all the
special characters you need.

TUGboat, Volume 19 (1998), No. 4

“m” and the other as {\mone} (for “m-one”) which
also prints as “m” and is defined as

\def\mone{m}

The function replace-items can convert each

occurrence of the string “{\mone}” in the
input file to “m” before current-line is passed on
to process-line, so {\mone} will never appear in the
concordance. If, later, a different letter form should
be used to represent {\mone} in the output, \mone
can be redefined, e.g.,

\def\mone{{\specialfont\char’001}}

Math mode material is always treated in the
normal way by TEX. It is treated in different ways by
conctex.lsp. Display math material is processed
normally by TEX and discarded by conctex.lsp.!'®
Math mode is very likely to appear in transcription
lines, mainly for sub- and superscripts and certain
special characters. Sometimes, the math mode
material will be irrelevant for the concordance, but
at other times it may be an essential part of a word,
or even serve to distinguish between two otherwise
identical words. If math mode material is attached
to a word, that is, if it isn’t separated from the word
by blank space or another word-separator (like most
punctuation marks), it is considered to be part of
the word. If not, conctex.lsp discards it. For
example,

drotning$~\pi$
is treated as a word, “drotning”™. It will appear
as such in the concordance and will be a separate
entry from “drotning”, if this word occurs in the
transcription. If this appears in the transcription,

drotning $~\pi$
conctex.lsp will discard the math mode material,
“drotning™” will appear in the output and “drot-
ning” will appear in the concordance. To have
conctex.lsp discard the math mode material, but
not separate it from the word in the output, type:

drotning¥$\pi$

In this case, conctex.lsp also discards the math
mode material, and “drotning” appears in the con-
cordance, but “drotning™ appears in the output,
because ¥ is ignored by TEX (\catcode ‘\¥=9), and
treated as a word separator by conctex.lsp. The
math mode material can also be put on the next
input line following a %.

drotning
$"\pi$ himins ...

18 The program conctex.lsp converts $$ to *, so display
math mode material is treated as a commentary.



TUGboat, Volume 19 (1998), No. 4

—
drotning™ himins ...

and “drotning” appears in the concordance.

The \catcodes of some characters, such as
-, _ and <, that have been changed for use in
transcription lines, should have their normal values
in math mode. The token list \everymath resets

them.

\everymath={\catcode ‘\-=12\catcode ‘\_=8
\catcode ‘\*=12\catcode ‘\<=12\relax}

The \relax at the end of \everymath is necessary
because assignments, such as changes to \catcodes,
only take effect when TEX is building a list.!® The
same effect could be achieved with \vbox{} or
\hbox{}, or a harmless macro (but not \empty).

Math mode material should not extend over

more than one transcription line. If it does,
conctex.lsp will signal an error. Normally, it
shouldn’t be necessary anyway, since most manu-
scripts don’t contain multiline equations. FEven if
yours does, the elements of the equation probably
don’t belong in the concordance anyway, so the
multiline math mode material can be put in a
commentary. In this case, it may be necessary to
reset the line number explicitly with set-position. If
your application requires a lot of math mode, it
would be advisable to reprogram the routines for
handling it. Display math mode material is treated
as a commentary, so it can extend over any number
of lines.

Line ends. The treatment of line ends is an
important factor in ConcTEX. A typeset manuscript
transcription will generally have lines corresponding
to the lines in the manuscript, so it is undesirable to
have TEX do the line breaking for the text lines. (It
would also be a lot of work to write a hyphenation
dictionary for a medieval manuscript.) However, it
will rarely if ever be desirable to use \obeylines,
because there are many other items which can
appear in the input lines, making it impractical
for the lines in the input file to correspond to the
lines in the output: font changes, index entries,
footnotes, comments, etc. Therefore, the ends of
transcription lines must be indicated.

Most transcription lines should end in \\. The
control symbol \\ is \let to \par in conctex.tex
and recognized as a line end by conctex.lsp.
The program conctex.lsp keeps track of the line
numbers, so this is important. A transcription line

19 The TpXbook, p. 373.

381

in the input file that is followed by a blank line is
treated as if it ended in \\.

Normally, the lines in the output should corre-
spond to the lines in the manuscript, so they should
be wide enough, i.e., the value of \hsize should be
large enough so that transcription lines don’t have
to be broken. In exceptional cases, however, this
may not be possible, for example, if a line includes
a long commentary.

\lineno{8} himins _{ok} *\<{\ss This
is an extremely long commentary which
causes this otherwise short line to

be broken so that it results in more
than one line in the output.}\>*
iar{\dh}ar. s{\ae}l {ok} dyr{\dh}\-
\lineno{9} lig m{\o}r Maria. mo{\dh}ir
d_{ro}tti_{n}s\\

—

8: himins ok (This is an extremely long commen-
tary which causes this otherwise short line to
be broken so that it results in more than one
line in the output.) iardar. szl ok dyrd

9: lig mgr Maria. modir drottins

The control symbol \\ expands to \par and

the value of \parskip and \parindent have
been set to Opt in order that multiple blank lines
won’t cause excessive vertical space or unwanted
indentation in the output. If \\ expanded to
\hfil\break, a blank line following \\ would cause
two \baselineskips to appear in the output, one
from the \break and one from the second ~~"M
({return)), which is converted to \par. On the
other hand, a \par following a \par is harmless.2’
The text in manuscripts is generally not divided
into paragraphs, so it’s unnecessary to use blank
lines to indicate paragraphs, and it’s convenient to
allow them for the sake of making the input file
more readable.

The control symbol \\ is not needed in the

\plain environment, because TEX does the
line breaking there. The values of \parskip and
\parindent can also be changed in the definition of
\plain, for text that should be formatted differently
from the transcription itself.

Manuscript positions are defined according
to leaf (folium), side (recto or verso), column (if
there are multiple columns), and line number. The

20 The first \par puts TEX into vertical mode, where the
second \par has no effect, “except that the page builder
is exercised ... and the paragraph shape parameters are
cleared.” (The TEXbook, p. 283.)



382

leaves of Holm perg 11 4° and AM 234 fol have
two columns, so a position is identified as follows:
2ra 17 is leaf 2, recto, column a, line 17. When a
new leaf, side or column begins, the input file must
contain a line that looks like this:

@ (set-position "28vb")
If that column starts with line 15, perhaps because

the top of the leaf is missing or unreadable, the line
should look like this:

@ (set-position "28vb" 15)
Lines beginning with @ are ignored by TEX and
evaluated by conctex.lsp. The Lisp program
counts the lines and keeps track of the position in
the manuscript. However, it will usually be useful
to indicate line numbers in the transcription itself,
so a line in the input file might look like this:

31: f_{ra} savgn_{n} Mathevs
In the output, it will look like this:
31: fra savgnn Mathevs

However, “31” should not appear as a lemma in
the concordance. Therefore, conctex.1lsp discards
numbers, punctuation and blanks at the beginning
of transcription lines. Another possibility is to use
the macro \lineno to make them print or not,
according to the value of a conditional.

\ifprintlinenumbers
\def\lineno#1{...}\else
\def\lineno#1{\relax}\fi
\lineno{1} Drotning etc.

\newif\ifprintlinenumbers
\printlinenumberstrue

=
1: Drotning etc.

\printlinenumberfalse
—
Drotning etc.

The macro \lineno is an exception to the rule
about conctex.1lsp discarding lines that begin with
undelimited macros. It can be defined as follows:

\ifprintlinenumbers

\def\lineno#1{\leavevmode
\setbox0=\hbox{33:\spacel}’,
\hbox to \wdO{\hss#1:\spacel}’
\hangindent\wdO\hangafter 1}

\else

\def\lineno#1{\relax}\fi

Line numbers, whether explicit or in \lineno, are
discarded by conctex.lsp. Since \\, \- and -

TUGboat, Volume 19 (1998), No. 4

(explained below) and a blank line all cause a \par
to be added to the current list, \lineno always
begins a paragraph (assuming \printlinenumbers-
true). Usually, this paragraph will consist of one
output line, just as it corresponds to one line in
the manuscript, but if the paragraph is longer than
one line, the \hangafter and \hangindent macros
cause the following lines to be indented so that they
begin directly below the text of the first line in the
paragraph.

The same effect could be achieved by using the

token list \everypar, and separate \everypars
could be maintained for the \plain and \trans
environments.

The “magic number” 33 in \box0 in the defi-

nition of \lineno is there simply to make the
box an appropriate size. Numbers wider than “33”
extend into the left-hand margin, so the colons (or
periods, or whatever) always line up.

In some applications, positions may not require
line numbers. For instance, positions in a concor-
dance of the Bible should be given as book, chapter
and verse. In this case, TEX could take care of
the line breaking, and \\ could be used to indicate
the end of a verse. It could be \let to \relax in
conctex.tex and cause conctex.lsp to increment
a “verse-counter” instead of line-counter (explained
below). The exact way that ConcTEX handles line
numbers in the input file can and should be set for
each particular project.

@ While it is convenient to define macros in this
way:
\ifprintlinenumbers
\def\lineno#1{...}\else
\def\lineno#1{\relax}\fi

it is sometimes preferable to define them like
this:
\def\lineno#1{\ifprintlinenumbers

... \else\relax\fi}

or like this:

\def\linenoprint#1{...}
\def\linenonoprint#1{\relax}

\ifprintlinenumbers

\let\lineno=\linenoprint

\else\let\lineno=\1linenonoprint

\fi

The advantage of the last two alternatives

is, that it is possible to put the definitions
of \linenoprint and \linenonoprint in a file



TUGboat, Volume 19 (1998), No. 4

used for generating a preloadable format file with
INITEX. If you try to generate a format file using the
first example, where the definitions themselves are
within the conditional construction, one version
will be skipped when INITEX runs, depending
on the current value of \ifprintlinenumbers.
However, in the second example, the conditional
construction is within the definition, so it will
expand according to the value of \ifprintline-
numbers when \lineno is called. This means that
the expansion of \1lineno can switch back and forth
during the TEX run. In the third example, the
two definitions are assigned to two different macros,
and \lineno is \let to one of them according to
the value of \ifprintlinenumbers at the time.
This conditional construction can be put in an
ordinary macro file, loaded after the preloaded
format. The assignment must occur before \1lineno
is called for the first time. A subsequent change
to the value of \ifprintlinenumbers later in
the TEX run has no effect on the expansion of
\lineno. You can, however, switch the definition
explicitly by saying \1let\lineno=\linenoprint or
\let\lineno=\linenonoprint at any time. If you
have a lot of macros, it can be useful to create a
preloadable format in this way.?!

The Lisp program doesn’t use the explicit line

numbers in the input file for its line counting
routine, although it could. Explicit line numbers
are optional, so conctex.lsp needs its own line
counting routine anyway. It does, however, check
that the line numbers from its routine and the
explicit line numbers in the input file match up. If
they don’t, it issues a warning, but doesn’t signal
an error. Warnings are written to standard output
when conctex.lsp is run, but also to the file
warnings. If conctex.lsp is set up to write code
like this to warnings:

echo "At line 21 of input.tex:
Line numbering is incorrect.
(\\1lineno: 12) (line-counter = 14)"

and conctex.lsp is run using a UNIX shell script,
then the shell script can execute warnings by
calling sh warnings, causing all of the warnings to
be printed to standard output after conctex.lsp is
done.

Broken words. Some lines may end in words
that are continued on the next line. In AM 234 fol,
some of the broken words have hyphens and some do
not. It is necessary to distinguish between these two
cases in the input file. I use - (hyphen) to indicate

21 The TEXbook, p. 344.

383

a broken word with an explicit hyphen and \- to
indicate a broken word with no hyphen. Using \-
indicates broken words in the input file, and causes
conctex.1lsp to treat such a broken word as a unit,
but no hyphen appears in the typeset output. For
example:

tok j vpphafi {\slongln{\slong}
Gv{\dh}{\slongl}pia-

11z.%at telia {\ae}tt drottin{\slong}
ie{\slongl}us

=

tok j vpphafi [ Gvdlpia-
llz. at telia sett drottinf ielus

Whereas

tok j vpphafi {\slong}n{\slong}
Gv{\dh}{\slong}pia\-

11z."at telia {\ae}tt drottin{\slong}
ie{\slongl}us

=

tok j vpphafi [ Gvdlpia
llz. at telia sett drottinl ielus

If a line in the input file ends in - or \-,
this obviously indicates the end of a line in the
manuscript, so it would be redundant to type -\\
or \-\\.%

The program conctex.lsp recognizes - and \-
at the end of a line as line ends for its line numbering
routine. TEX also recognizes them as line ends at
the end of a line and inserts a \\. However, - can
also occur within a line, or even at the beginning of
a line. Here it should not be recognized as a line
end, either by TEX or by Lisp. A - at the beginning
of or within a line is simply printed as - (what
else?). As far as TEX is concerned, a \- within a
line is harmless, but doesn’t make any sense, since
it doesn’t print anything. Therefore, TEX issues a
warning but doesn’t signal an error. The program
conctex.1lsp discards \-s that are neither at the
end of an input line nor followed by \\. The strings
-- and --- still yield — (en-dash) and — (em-dash)
respectively, but they do not cause line ends, either
in TEX or in Lisp.?3

The following code is necessary to accomplish
this:

1. \catcode‘\(©=\active
2. \let(©=\-

3.

22 Although it’s redundant, it is nonetheless permitted.

23 If a concordance is to be generated for a manuscript
which uses more characters to indicate broken words, like =
or z, both conctex.tex and conctex.lsp must be modified
to account for these cases.



384
4. \def\hyphen{-}
5. \def\dash{--}
6. \def\Dash{---}
7.
8. \catcode‘\-=\active
9

10. \begingroup
11. \catcode ‘\""M=\active
12. \global\let”"M=\empty

14. \gdef\invisiblehyphen{

15. \begingroup\catcode‘\""M=\active
16. \def\subhyphen{\ifx\next~"M\\\else
17.  \ifx\next\\ % Do nothing

18. \else

19. \message{Ignoring \noexpand\-. %
20. Don’t use \noexpand\- %

21. in the middle of a line.}

22.  \fi\filendgroup}
23. \futurelet\next\subhyphen}

25. \global\let\-=\invisiblehyphen

26.

27. \gdef-{\begingroup\catcode‘\""M=\active
28. \def\aEathyphens##1{

29. \futurelet\next’

30. \bEathyphens}

31. \def\bEathyphens{

32.  \ifx\next-\Dash

33. \expandafter\cEathyphens\else

34.  \dash\endgroup\fi}

35. \def\cEathyphens##1{

36. \futurelet\next\endgroup}

37. \def\subhyphen{

38.  \ifx\next~"M\hyphen\\’% It’s a return.
39. \let\eathyphens=\endgroup\else

40. \ifx\next-% It’s a hyphen

41.  \let\eathyphens=/,

42. \aEathyphens\else

43. %% It’s not a return or a hyphen.
44. \hyphen

45. \let\eathyphens=\endgroup

46.  \fi\fi

47. \eathyphens}
48. \futurelet\next\subhyphen}

50. \endgroup

The primitive \-, which is ordinarily used for
inserting discretionary hyphens, must be redefined.
Since the user decides where transcription lines are
to be broken, discretionary hyphens are unnecessary
there. In case they are needed, however, the
character (© (decimal 169, octal 251, hexadecimal

TUGboat, Volume 19 (1998), No. 4

A9) is made active and \let to \- before \- is
redefined (lines 1 and 2). Make sure you use (©
and not ~"a9. TEX will treat ~~a9 as a single
token, but conctex.1lsp will not, just as with ¥ and
~~ab (unless conctex.1lspis modified to allow this).
In commentaries and the \plain environment, \-
reverts to its primitive self.

TEX’s ligature routine won’t work for -, --,
and --- after the \catcode of - has been changed
to \active (line 8), so first T put -, -- and
--- into the expansion of the new control words
\hyphen, \dash and \Dash, so I can still use them.
Now I define - and \invisiblehyphen and \let\-
to \invisiblehyphen.?* They check whether the
token following - or \- is a (return), ASCII code
13, which can be notated as ~~M, in which case \\
should be inserted to break the line.??

Under normal circumstances, i.e., when \cat-
code ‘\""M=5, it wouldn’t be possible to tell whether
the character following an active char is a (return)
or not. For example:

\def\abc#1{\show#1}
\abc
d

causes

> the letter d.
<argument> d
\abc #1->\show #1

to be printed to the screen, or standard output, to
be precise, and

\abc

d

causes an error.
?
Runaway argument?

! Paragraph ended before
\abc was complete.

24 The macro \invisiblehyphen is defined in order to
make it possible to switch the definition of \- back and forth
when changing environments. This is necessary, because \- is
already a control symbol (in fact, it’s a primitive), whereas -
has \catcode 12 in the \plain environment, commentaries,
and math mode. Therefore, the active character - can
be defined globally. When the environment is switched, it
suffices to change the \catcode of -.

25 Incidentally, you might be wondering why I'm talking
about “(return)s”. I use a computer running UNIX where
the end-of-line character is (newline), ASCII 10, and not
(return), ASCII 13. The reason is that TEX converts the
external coding scheme of the input file to its own internal
coding (The TEXbook, p. 43), so UNIX’ (newline)s are
converted to TEX’s (return)s.



TUGboat, Volume 19 (1998), No. 4

<to be read again>
\par

The first time \abc was invoked, it skipped the
first ~~°M, which had been converted to a space, and
found the “d” in the next line. The second time it
was invoked, \abc skipped the first ~~M, but found
the second one, which had been converted to a
token (The TEXbook, p. 47). A normal macro can’t
accept arguments that contain \pars, so an error
was signalled. Here’s another version.

\long\def\abc#1{\show#1}
\abc

d
=

> \par=\par.
<argument> \par

\abc #1->\show #1

A macro defined using \long\def won’t signal an
error if a \par occurs in its arguments, but the first
~~M is still skipped. So simply reading in arguments
is useless for discovering whether a macro or an
active character is followed by a ~~"M. In addition,
\abc\par will produce the same screen output as the
last example, since TEX can’t distinguish between
an explicit \par and one that was converted from a
“TM.

The same behavior can be demonstrated using
\futurelet:

\def\abc{\futurelet\next\subabc}
\def\subabc{\show\next}

\abc

a

_—
> \next=the letter a.
and
\abc

—
> \next=\par.

In order to check whether the character follow-
ing a control sequence or an active character is a
~~M, it is necessary to change the \catcode of ~"M.
One possibility is to change it to \active. I do
this locally within the definitions of - and \-, so
that ="M otherwise behaves normally. However, in
order that the ~~Ms within the actual definitions of
- and \- are handled correctly while they’re being

385

read into TEX’s memory, it is necessary that \cat-
code‘\""M=\active and that ~~M is set globally to
\empty (line 11-12). Tt could also have been set to
\relax.

Serendipitously, setting "M to \empty makes it
unnecessary to use % at the end of lines that end in {
or }, such as lines 14, 21-22, etc. However, % is still
necessary in the \message command in lines 19-20,
otherwise there would be no space between “\-.”
and “Don’t” in the message, i.e., any trailing spaces
before the ~~M would be swallowed up. A % is also
necessary in the \futurelet construction in line
29, otherwise \next would be set to \bEathyphens,
the token following the ~~M, which is expanded.

The way TEX handles "M at ordinary times,
i.e., when \catcode‘\""M=5, causes the global
definition of “"M as a macro to be reset to \par.
Therefore it’s necessary to set it globally in line 12,
so that it expands to \empty in - and \-. Setting
\catcode‘\""M=\active in line 11 is only in effect
inside the group that ends on line 50; when -
or \- is invoked, 4t must begin a group and
reset \catcode‘\""M to \active. However, this
being done, the \global\let” "M=\empty is in effect
while - or \- is expanding. It doesn’t work to
get rid of the \globall\let‘\~"M=\empty and put
\let ‘\""M=\empty in the definitions of - and \-.
I'm afraid I don’t understand why not, but it is
apparently connected with peculiarities of category
code 5.

Since the definitions of - and \invisible-
hyphen are inside of a group, they must be \gdefs
(global definitions), or they wouldn’t be available
outside the group. The same applies to \-, which
is \1let globally to \invisiblehyphen. The defini-
tions inside - and \invisiblehyphen, however, are
local to the groups begun in these macros.

Another possibility is to set

\catcode‘\""M=\active and \let”"M=\empty
globally (i.e., get rid of the group begun in
line 10 and ended in line 50, change \gdef and
\global\let to ordinary \def and \let, and reset
\catcode ‘\""M=5 after the definitions.

If - were defined like this:
\gdef-#1#2{.. .}

i.e., with arguments, it wouldn’t be possible to check
whether the tokens following - in the input file were
~~M or not, because the arguments would have been
read in and expanded before - had had a chance
to change ~"M’s \catcode. Once a token has been
read in as an argument this is no longer possible. So
- and \invisiblehyphen change the \catcode of



386

~~M, peek at the following token using \futurelet,
and turn over control to \subhyphen. Both -
and \invisiblehyphen have their own version of
\subhyphen.

In \invisiblehyphen, \next contains the to-
ken following the \- in the input file. This token is
examined by \subhyphen. If \next is "M, \sub-
hyphen inserts \\ to break the line. If it’s \\,
\subhyphen does nothing (\-\\ is redundant but
permitted in the input files). If it’s anything else,
\subhyphen issues a warning that \- shouldn’t be
used in the middle of a line. Then \subhyphen ends
the group begun by \invisiblehyphen in line 15.

The active character - functions in a similar,
but more complicated way. It too uses \futurelet
and \next to examine the following token.

I If \next is ~"M, \subhyphen inserts a hyphen
with \hyphen (defined in line 4), a \\ to break the
line, and \lets the control word \eathyphens to
\endgroup, to end the group begun in line 27.

T Else, if \next is not -, \subhyphen adds a
\hyphen to the current list, but no \\, and \eathy-
phens is \let to \endgroup.

T Else, if \next is -, \subhyphen \lets \eat-
hyphens to \aEathyphens.

Now, \eathyphens takes over control. In the
first two cases, i.e., \next was ~"M or anything else
other than -, \eathyphens merely ends the group
begun in line 27. However, if next was -, matters
are more complicated.

If - is followed by -, this could be --, which
should be replaced with an en-dash, or ---, which
should be replaced with an em-dash. In neither of
these cases should the line be broken. Therefore,
it’s necessary to peek at the token following the
second -, but first we have to dispose of the second
-, because it’s not possible to peek at the next
token but one, and the second - is still to be
read by TEX’s parser. The macro \aEathyphens
takes one argument, which disposes of the second -,
then peeks at the following token using \futurelet
and \next, and passes control to \bEathyphens.
This macro examines \next. If it’s not - (in
the \else construction), \bEathyphens inserts a
\dash into the current list, and ends the group
begun in line 27. However, if \next is -, it
inserts a \Dash into the current list and calls
\cEathyphens. The \expandafter is necessary to
prevent \cEathyphens from reading in \else as its
argument. Instead, it reads in and thereby disposes
of the third -. It could just end the group now, but
it doesn’t. It peeks at the token following the third
- using \futurelet and \next yet again. This has

TUGboat, Volume 19 (1998), No. 4

the effect that —— or ——- at the end of a line is not
followed by a blank space.

Normally, in plain TEX, or when using the
\plain environment in ConcTEX, -- or —-- at the
end of a line is followed by a blank space.

. in lines 299--
547 ...

There was a sudden crash--—-
then silence.

=

... 1in lines 299— 547 ...
There was a sudden crash—_ then silence.

However, in the \trans environment, the spaces
disappear.

... in lines 299-547 ...
There was a sudden crash—then silence.

This is nice, since one doesn’t want spaces following
en- or em-dashes. If you do want them, it’s easy
enough to redefine \bEathyphens and \cEathy-
phens so they’re added before ~~M, or you can
type

. in lines 299--\space 547 ...

There was a sudden crash---\space
then silence.

However, you may be puzzled as to why they
disappear. If \cEathyphens just eats the third -
and ends the group, a following ~~"M will cause a
space to be inserted into the current list, so it’s the
\futurelet that causes the space to disappear.2’
When \futurelet peeks at a token, it fixes its
\catcode even though it doesn’t expand it.?” When
the group ends and - is finished, TEX’s parser reads
the ~~M that follows the second or third -. The
\catcode of this "M was fixed at 13, so it expands
to \empty, its expansion within - rather than
a blank space.

Changing the category code of - to \active has
some minor, unpleasant side effects in the \trans
environment. It is no longer possible to use -, —-
and --- in the arguments to some macros, such
as \beginchapter and \beginsection, which are
defined in conctex.tex, and code like \vskip-2pt
will cause an error, because — must have \catcode
12 (other) for this to work. The control words
\hyphen, \dash and \Dash can be used in macro

26 Tn the case of -, it’s the \futurelet in \aEathyphens
that causes the space to disappear.

27 The TEXbook, p. 381: “... TEX stamps the category on
each character when that character is first read from a file.”



TUGboat, Volume 19 (1998), No. 4

arguments instead; other cases should be put into
a commentary or the \plain environment, where -
has \catcode=12, e.g., *\vskip-12ptx*.

If certain macros that use -, --, or -—- are used
frequently in the \trans environment, and you
don’t want to put them in commentaries or the
\plain environment, you can redefine them using a
similar technique to that used in the definitions of
- and \invisiblehyphen.
\begingroup
\catcode‘\-=12
\gdef\mymacro{\begingroup
\catcode‘\-=12
\def \submymacro##1##2##3{/,
...\endgroup}?}
\endgroup

The macro \putontop is defined like this. It
doesn’t work if you try to redefine \vskip,
though.

Homograph identifiers. Homographs are
words that are spelled the same, but belong to
different lemmata. They must be indicated ex-
plicitly in the input file. In order to do this, I
have defined the characters “<” and “>” to delimit
homograph-identifiers in the \trans environment.
For instance, in Old Icelandic, the word “4” can be
a noun, meaning “river” or a preposition, meaning
“at, on,” etc. In the input file, I can distinguish be-
tween them by typing the preposition as {\’a}<p>
and the noun “4” as plain {\’a} or {\’a}<n>.
TEX handles them in different ways, depending on
the value of \ifdraft. For rough drafts, it will
be useful to see the homograph-identifiers, whereas
they should not appear in the final draft.

To accomplish this, the \catcode of < has been
changed to \active. The definition of < depends
on the value of \ifdraft:

\catcode‘\<=\active

\def\eatit#1{\ifx#1>\else
\expandafter\eatit\fi}

\def\donteatit{$\{$%
\def\subdonteatit##1{J
\ifx##1>$\}$\else##1Y,
\expandafter\subdonteatit\fi}%
\subdonteatit}

\ifeathomoids
\let<=\eatit

\else
\let<=\donteatit\fi

387

The macro \eatit simply reads an argument, tests
to see if it’s “>” and if it isn’t, calls itself again.
The arguments it reads are discarded, hence the
name. The macro \donteatit functions in a similar
way, but has the added complication that the “{”
should only be put into the current list once, so the
main work of not eating the string is taken over
by \subdonteatit. When \draftfalse, < is \let
to \eatit. When \drafttrue, the homograph-
identifiers shouldn’t be eaten, so < is \let to
\donteatit, which puts the text between < and >
inside curly braces, e.g., “4{p}”.

Homograph identifiers can be as long as you

want, because \eatit and \donteatit pro-
cess the tokens (or groups) within the angle braces
one-by-one. This prevents a long argument from
burdening TEX’s memory. When \eatit or \sub-
donteatit calls itself recursively within the condi-
tional construction, the \expandafter allows the
conditional, and hence the current invocation of
\eatit or \subdonteatit, to complete execution
before the recursive call is expanded. Therefore,
only one invocation of \eatit or \subdonteatit is
active at any time. This is called “tail recursion”
(cf. The TEXbook, p. 219). It would also be possible
to define \eatit and \donteatit like this:

\def\eatit#1>{\relax}
\def\donteatit#1>{$\{$#1$\}$}

In this case, extremely long homograph identi-

fiers will burden TEX’s memory, but in practice,
it would be just as good, since it’s unlikely that
anyone would want to type in extremely long ho-
mograph identifiers.

The Lisp program conctex.lsp

The Lisp program conctex.lsp consists of several
parts:

1. A lemmatization dictionary.

2. A parser that reads the input files, discards ex-
traneous material, and passes the transcription
lines on for further processing.

3. A routine for extracting information from the
transcription lines, accessing Lisp symbols, and
storing the information in data structures.

4. An output routine that writes the TEX file
containing the concordance.

ConcTEX does not use the page numbering
information generated by TEX’s output routine,
so it doesn’t require a preliminary pass. The
concordance shows the position of individual words
in the original manuscript, not the page numbers
of the printed transcription. This makes it possible



388

to generate the concordance directly from the TEX
input file without running TEX at all.

Making a concordance using the page numbers

generated by TEX’s page breaking routine is
a more difficult matter. If the input files contain
explicit commands for page breaking, i.e., \eject,
\supereject, and/or macros that call one or the
other of these macros, ConcTEX can be used with
only trivial modifications. However, it will not work
if TEX is supposed to break pages automatically.
One way around this problem would be to let
TEX break the pages automatically, and insert
code for conctex.lsp in the final version, at the
page breaks TEX found, so conctex.lsp knows
to increment a page counter. This would not be
entirely satisfactory, however.

If explicit page breaks are used, or code is

entered in the input file indicating where pages
are broken, then explicit line breaks (using \break
and/or \par, or macros using one or the other of
these commands) would make it possible to generate
a concordance using line numbering information
referring to the lines in the output. If TEX does
the line and page breaking automatically, however,
and page breaks are not explicitly indicated, then
conctex.lsp won’t know when to increment the
page counter and reset the line counter to 1. There
is mo way to gemerate line numbering information
without explicitly breaking the lines.

It is therefore not possible to use ConcTEX

for making a concordance using line and page
numbers that result from TEX’s line and page
breaking routines, i.e., without explicit line and
page breaking commands. But it might be possible
to design a concordance program that could do this
by having it process the dvi file instead of the
input file. However, if this sort of concordance were
desired, a better approach would be to write a new
version of TEX that incorporates the features of
ConcTEX in the WEB program itself, thus making it
unnecessary to use an auxiliary program. However,
since conctex.lsp uses several features peculiar to
Lisp, an entirely different program structure would
be necessary.

Lemmatization. The most difficult problem in
generating a concordance is lemmatization. There
are three cases that need to be accounted for:

1. Homographs. Words that are spelled the same,
but belong to different lemmata, like the word
“spring”, which can be one of several nouns or
a verb.

TUGboat, Volume 19 (1998), No. 4

2. Subsidiary forms. Distinct words that belong
to the same lemma, like “man”, “man’s” and
“men” in English.

3. Variants. Words that are spelled differently,
but are really the same, and should appear un-
der the same heading, like “color” and “colour”
in English.

A lemma in the context of generating a con-
cordance is a set of one or more distinct words
which belong together, like the various forms in a
morphological paradigm, e.g., the nominative, geni-
tive, dative, and accusative; singular and plural, of
“drotning” (Engl. “queen”).

Sg. Pl
Nom. drotning drotningar
Gen. drotningar drotninga
Dat.  drotningo drotningom
Acc.  drotning drotningar

One of these words is denoted the main form of the
lemma; with nouns, it’s usually the nominative sin-
gular, with verbs, the infinitive, etc. The subsidiary
forms should appear in the concordance below
the main form, indented, with their occurrences,
arranged according to grammatical criteria.

drotning (2) 1va 12, 3rb 14.
drotningo (2) 2rb 25, 12va 30-31.
drotninga (1) 13ra 16.

Homographs must be distinguished in the con-
cordance. Sometimes, they can belong to the same
lemma, like the three forms of “drotning” that are
spelled “drotningar”: the genitive singular and the
nominative and accusative plural. Sometimes they
can belong to different lemmata, like the noun “&4”
and the preposition “4” in Old Icelandic.

Lemmatization must also account for variants.
Where there are variants, all of the occurrences
are assigned to a single form, which appears in the
concordance. One way variants can arise is from the
use of interchangeable letter forms in a manuscript.
The manuscript transcription might use a macro
or a font change to indicate the use of an alterna-
tive letter. For example, the word “prestr” may
sometimes appear in the transcription as “prestr”
— “prestr” and sometimes as “prest{\r}’ —
“prestR”, depending on the form of “r” used in
that passage in the manuscript, so “prestR” may
be termed a variant of “prestr” (or vice versa).
Only one of them, say “prestr”, should appear in
the concordance, and the occurrences of “prestrR”
should be listed under “prestr”. Subsidiary forms
can also have variants.

Lemmatization is the process of sorting indi-
vidual words, so that each one is put into its proper



TUGDboat, Volume 19 (1998), No. 4

lemma. There are several possible solutions to this
problem. The one described here is a lemmatization
dictionary, which must account for all subsidiary
forms and variants.

Running conctex.lsp without loading a lem-

matization dictionary produces a complete list
of all the words in the transcription, with their
occurrences, but each entry is considered a main
form, and only those variants are accounted for
which replace-items or process-line catch automati-
cally. For a concordance this is clearly inadequate,
but it might be useful for some other purpose.

If concordances are to be generated for normal-
ized transcriptions, or for a group of manuscripts
whose orthographic conventions are very similar, a
master lemmatization dictionary can be used. In
most cases, however, the orthography and the form
of the language of a given manuscript will diverge
enough from that of others that it will be necessary
to create a special lemmatization dictionary for that
particular manuscript.

One of the first things that conctex.lsp does
is to load the lemmatization dictionary. This is one
or more files of Lisp code with invocations of the
functions generate-entry, harmless, and add-variants.
These functions cause data to be stored in word
structures.

The data for the entries in the concordance are
stored in structures of type word, defined like this:

(defstruct word
main-form
occurrences-mariu-a
occurrences-mariu-s
sort-string
tex-string
forms
root
variants

)

More slots can be added for other applications;
in particular, occurrences slots can be added for
additional manuscripts.

The function generate-entry. The basic
function for generating a lemmatization dictionary
is generate-entry. It’s invoked like this:

(generate-entry "David")
or like this:

(generate-entry "David" noun)

The string, which is the first, required argument to
generate-entry, is used, perhaps with some modifi-
cations, as the name of a symbol which is bound
to a word-structure. The original string is stored

389

in the main-form slot of the word structure. In this
example, the string “David” is surrounded by |1,
and the symbol is accessed with read-from-string.2®

(set (read-from-string " |David|")
(make-word : main-form "David"))

Surrounding a string with || has the effect of
escaping all the characters within the string. This
makes it possible to have symbol names with
lowercase letters and other characters, which are
normally not allowed in symbol names in Lisp.
Evaluating

(read-from-string "David")

without || returns a symbol named DAVID, because
Lisp converts lowercase to uppercase letters in
symbol names unless they are escaped using \ or
I

The second, optional argument to generate-
entry, noun in the example above, is discarded by
generate-entry. It is allowed for compatibility with
another program that uses the same dictionary files
for a different purpose.?’

Alphabetization. The first argument to gene-
rate-entry always refers to the main form of a
lemma. It is treated as a heading in the concor-
dance. Lemmata are sorted in the concordance in
alphabetical order of the main forms. ConcTEX
includes a special sorting routine.?® It makes
it possible to sort arbitrary special characters in
a user-defined order by replacing ordinary char-
acters and special character macros with 0 or
more characters from Lisp’s code table, which is
based on the ASCII code table. In its current
form, it allows up to 256 positions; however the
actual number of special characters that can be
sorted is much greater. This is because some
characters occupy no position at all, others share
a position with another character, and still oth-

28 What generate-entry really does is a bit more compli-
cated, but the effect is the same.

29 This other program is called LexTEX and I plan to
document it in a subsequent article. It’s for generating
dictionaries, vocabulary flashcards and similar things from
files of Lisp code.

30 The alphabetization routine for ConcTEX is essentially
identical to the one in my Spindex package. For a more
complete discussion of the alphabetization routine, see my
previous article “Spindex —Indexing with Special Charac-
ters”, TUGboat 18(4)/1998, pp. 255-273. Since ConcTEX,
unlike Spindex, does not require a preliminary TEX run in
order to generate page numbering information by means of
TEX’s output routine, and therefore uses no \write com-
mands, special character macros in the input file can be
coded in the normal way (but with obligatory braces).



390

ers use the positions of more than one other
character.

The string “David” is passed to the function
generate-info, which passes each letter or special
character coding to letter-function in order to gen-
erate a sort-string. Each letter or special character
in the string is used to create a new string using
characters from Lisp’s code table. The sort-string
generated for “David” might be ""D~A~["K~D",
depending on the way the alphabetization routine is
set up.3! The sort-string is put into the car of a cons
cell, with the symbol bound to the word structure in
the cdr.

(""D~A~["K"D" . |Davidl)
This cons cell is then put into an association list
(or alist) called var-alist. This alist will contain a
cons cell for each of the word structures created by
generate-entry in the lemmatization dictionary. If
this is the lemmatization dictionary:

(generate-entry "David")
(generate-entry "eiga")
(generate-entry "eptir")

var-alist will look like this:

((""D~A~[*K~D" . |David|)
(""F~K~H~A" . |eigal)
("“F~U~Y~K"W" . [eptirl))

Formatting commands like \it, \bf, \sc,

etc. are ignored when the sort-string is gen-
erated, otherwise, they would cause an error in
letter-function.

Words in the lemmatization dictionary can
contain special characters.

(generate-entry "dyr{\\dh}ligr")

Note that two backslashes are necessary for the
{\\dh} in generate-entry’s argument. The result-
ing symbol that is bound to the word structure
is |dyr{dh}ligr| (Engl. “glorious”), and the back-
slashes disappear in the symbol name.

The braces surrounding special character mac-

ros are needed so generate-info knows where
they begin and end. TEX’s parser is cleverer than
generate-info. When TEX finds an escape character,
it reads the following tokens and uses them to make
the longest control sequence possible. The function
generate-info, on the other hand, needs delimiters

31 Fach project will have its own requirements with respect
to alphabetization, so this must be customized by the user.
The documentation supplied with ConcTEX explains in detail
how to do this. The string ""D~A~["K~D" consists of non-
printing characters in Lisp’s printed representation.

TUGboat, Volume 19 (1998), No. 4

for control sequences within words so it can pass
them as a whole to letter-function.

Subsidiary forms. The function generate-
entry can also have keyword arguments.

(generate-entry "dyr{\\dh}ligr"
:forms "dyr{\\dh2}lig")

The :forms argument tells generate-entry that “dyro-
lig” is a subsidiary form of “dyrdligr” (in fact,
it’s the feminine singular nominative and neuter
plural nominative and accusative form).  The
string "dyr{\\dh}lig" is used to access a symbol,
|dyr{dh}lig|, which is bound to another word struc-
ture. The symbol |dyr{dh}lig| is added to the list in
the forms slot of the word structure |dyr{dh}ligr|,>?
and the symbol |dyr{dh}ligr| is put into the root
slot of the word structure |dyr{dh}lig|. The function
generate-info is used to generate a sort-string for
|dyr{dh}lig|, and the cons cells

(""D~~"W-E~P~K~H~W" . |dyr{dh}ligr|)

and

(""D~""W~E"P~K~H" . |dyr{dh}ligl)
are added to var-alist. All of the word structures are
added to var-alist, not just the ones for main forms
of lemmata.

The :forms argument to generate-entry needn’t
be a single string. It can also be a list of strings.

(generate-entry "dyr{\\dh}igr"
:forms  ("dyr{\\dh2}ligs" "dyr{\\dh}ligum"
"dyr{\\dh}ligan"))

In this case, the subsidiary forms listed are
the masculine singular genitive, dative, and ac-
cusative strong forms “dyroligs”, “dyroligum”, and
“dyrOligan”. Each of the forms is used to access a
symbol and bound to a new word structure. The
symbol |dyr{dh}ligr| is put in the root slot of each
of these word structures, and the symbols for the
subsidiary forms are put into the list in the forms
slot of |dyr{dh}ligr]|.

(Idyr{dh}ligs| Idyr{dh}ligum| |dyr{dh}ligan])

The forms are stored in the order in which they
appear in the invocation of generate-entry. They will
appear in this order in the concordance. They are
not sorted alphabetically, because subsidiary forms
should be arranged in the concordance according to
grammatical criteria.

Variants. Some words in a manuscript may
differ from the standard form that should appear in
the concordance. For example, the word for “king”

32 Tn Lisp, nil is the same as the empty list (), so it’s
possible to add an element to the list nil.



TUGboat, Volume 19 (1998), No. 4

in Old Icelandic is “konungr”, but sometimes the
form “kongr” is used (cf. Modern Danish “konge”).
If a manuscript uses both forms, “konungr” and
“kongr”, but only “konungr” should appear in the
concordance, generate-entry can be called using the
:variants keyword argument.

(generate-entry "konungr" :variants "kongr")

The string "kongr" is used to access a symbol,
| kongrl|, but this symbol is not bound to a word
structure; instead, it’s bound to the symbol |ko-
nungrl, i.e.,

(setq lkongr| ’|konungrl)
(symbol-value ’ | kongr|) — |konungr|

(Again, what generate-entry really does is more
complicated, but this is the effect.) The occurrences
of the word “kongr” in the transcription, if any, will
appear under “konungr” in the concordance.

The :variants keyword argument to generate-
entry may also be a list of strings.

(generate-entry "konungr"
:variants ’("kongr" "ko{\\n}gr"
"kvnvngr" "konongr"))

In this case, all of the strings in the list are used to
access symbols which are bound to |konungr].

The symbols that are made from the string or
strings in the :forms keyword argument to generate-
entry can also have variants.

(generate-entry "eiga" :variants "ei{\\g}a"
:forms 2 ("{\\’a}"
("attv" :variants *("al\\Ehv" "atto")))

Here, there are two forms, “4” and “attv”, and
the latter has two variants, “aTv’ and “atto”.
The :forms argument can be a list comprising a
combination of simple strings and/or lists such as

("attv" :variants ’("a{\\t}v" "atto")).

“

(generate-entry "eiga" :variants "ei{\\gra"
:forms ’("eigir"
("eigi" :variants "ei{\\g}i")
"eigomll
("attv" :variants

P("a{\\t}v" "atto"))))

The function generate-entry takes lists like
("eigi" :variants "ei{\\g}i") in its :forms ar-

391

gument and conses®® (or puts) the symbol sub-

generate-entry onto the front so it looks like this:

(sub-generate-entry "eigi"
:variants "ei{\\g}i")

Then it appends the list
(:root "eiga" :recursive t)
to the end of it, resulting in

(sub-generate-entry "eigi"
:variants "ei{\\g}"
:root "eiga" :recursive t)

and evaluates this list.3*

@ The lists in generate-entry’s :forms argument
can also have :forms arguments.

(generate-entry "abc"
:forms ("def" :forms "ghi"))

This is meaningless in the context of a concor-

dance, since nesting in grammatical paradigms
only has two levels. It might be useful, if vari-
ants were to appear in the concordance. Then
they could be indented to the value of \parindent,
and their forms could be indented to the value of
\parindent\parindent. It might also be useful for
some purpose other than a concordance. Changes
to process-line and export-entry would be necessary
to make deeper nesting work.

Homograph identifiers can be assigned to a
word structure in two different ways: by using the
<string> syntax, as in the input file,

(generate-entry "afl<nsg>")

or by using the :homograph-identifier keyword argu-
ment.

(generate-entry "afl"
:homograph-identifier "nsg")

The string “nsg” stands for “neuter, singular”.
In the concordance, this word will appear as “afl
[nsg]”. If you want “afl [n. sg.]” or “afl [neut. sing.]”
to appear in the concordance instead, you can write

(generate-entry "afl<n.~sg.>")

or

33 In Lisp, a list is a chain of cons cells. Cons cells contain
two elements, the car and the cdr, in that order. In the list
(a b c d), the first cons cell has the symbol a in its car and a
pointer to the following cons cell in its cdr. This in turn has
the symbol b in its car and a pointer to the next cons cell in
its cdr. The last cons cell in the list has d in its car and nil in
its cdr: (d . nil). So the list (a bcd) isreally (a . (b . (c.
(d . nil)))).

34 Since the original invocation of generate-entry called
sub-generate-entry, as explained below, the latter is called
recursively for subsidiary forms.



392

(generate-entry "afl"
:homograph-identifier "n.

sg.")
or

(generate-entry "afl<neut. “sing.>")
or

(generate-entry "afl"

:homograph-identifier "neut. “sing.")
instead. But “afl<nsg>” is more convenient to
type in the input file than “afl<neut.”sing.>”, so
it’s possible to use a cons cell as the :homograph-
identifier argument to generate-entry.

(generate-entry "afl"
:homograph-identifier
’("nsg" . "neut. sing."))
This way, you can type “afl<nsg>” in the input
file, but “afl [neut. sing.]” will appear in the
concordance.

If you use both the <string> syntax and an
explicit :homograph-identifier argument,

(generate-entry "afl<n.~sg.>"
:homograph-identifier
’("nsg" . "neut."sing."))
the explicit :homograph-identifier argument takes
precedence, and the homograph-identifier using the
<string> syntax is discarded. It doesn’t matter
whether it’s a simple string or a cons cell in the
:homograph-identifier argument.

When you use a homograph-identifier, no mat-

ter how you create it, the name of the symbol
bound to the word structure includes the homograph-
identifier. For instance, in the last example, the
word structure is bound to the symbol |afl<nsg>|,
its main-form is "afl", its tex-string is "afl [{\\it
neut.“sing.\\/}]", and its homograph-identifier
(i.e., the object stored in its homograph-identifier
slot) is "nsg".

When the main form of a lemma is a homograph
and has subsidiary forms, the latter may or may not
also need homograph-identifiers. In Old Icelandic,
there are two words spelled “afl”, a masculine noun
meaning “an ironsmith’s forge” and a neuter noun
meaning “physical strength”. If generate-entry is
called like this:

(generate-entry "afl<nsg>"
:forms 7 ("afls" "afli"))

the genitive and dative singular forms, “afls” and
“afli”, may appear in the input file with no
homograph-identifier, and they will appear in the
concordance as subsidiary forms of the neuter noun

TUGboat, Volume 19 (1998), No. 4

“afl”. This is not very satisfactory, however, be-
cause the genitive and dative singular forms of the
masculine “afl” are identical to the genitive and
dative singular of the neuter “afl”. So it’s necessary
to type in

(generate-entry "afl<nsg>"
:forms > ("afls<nsg>" "afli<nsg>"))

or
(generate-entry "afl"
:homograph-identifier "nsg"
:forms ?("afls<nsg>" "afli<nsg>"))
or

(generate-entry "afl"
:homograph-identifier "nsg"
:forms * (("afls"

:homograph-identifier "nsg")
"afli<nsg>"))

or one of the other possible alternatives. Note
that the various possibilities of formulating the
arguments are always allowed.

If no homograph-identifier is indicated for a
subsidiary form of a lemma whose main form has
one, the subsidiary form may be typed in the
input file with no homograph-identifier. However,
generate-entry automatically creates a variant using
the homograph-identifier of the main form.

(generate-entry "afl<m>" :forms "aflar")

This results in a symbol |aflar| which is bound to
a word structure, and a symbol |aflar<km>| which
is bound to the symbol |aflar|. The word “aflar”,
masculine plural nominative, is unambiguous and
needs no homograph-identifier, since no other form
of “afl” (masculine) or “afl” (neuter) is spelled the
same way.

Another problem is that words in the same
lemma sometimes have identical forms. The nom-
inative and accusative, singular and plural of the
neuter noun “afl” are all spelled “afl”. If it’s de-
sirable to keep the morphological forms of lemmata
separate in the concordance, it’s necessary to have
different homograph-identifiers for the forms that
are spelled the same.

(generate-entry "afl<nsg>"
:forms ?("afls<nsg>" "afli<nsg>"
"afl<nsga>" "afl<npln>"
"afl<npla>"))

Most of the time, the homograph-identifiers of sub-
sidiary forms are not printed to the concordance.
Since the homograph-identifier of the main form is
printed to the concordance, indicating for instance
that “afl” is a neuter noun, it’s not necessary to



TUGboat, Volume 19 (1998), No. 4

indicate this fact for the subsidiary forms that ap-
pear below it. Sometimes, though, it’s desirable
to print something. The homograph-identifiers for
subsidiary forms are printed to the concordance only
when an explicit :homograph-identifier argument is
used, not when the <string> syntax is used. The
homograph-identifiers for main forms of lemmata
are always printed to the concordance.

(generate-entry "afl<neut.>"
:forms > ("afls<nsg>" "afli<nsg>"

> (mafl"
:homograph-identifier
’("nsga" . "sg.~acc."))
> (mafl"
:homograph-identifier
>("npln" . "pl.“nom."))
7(naﬂu

:homograph-identifier
>("npla" . "pl."acc."))))
—

afl [neut.]
afls
afli
afl [sg. acc.]
afl [pl. nom.]
afl [pl. acc.]

Note that not all the information that’s necessary
for the homograph-identifier in the input file must
be printed. The string “afl<npln>” in the input
file indicates this form of “afl” unambiguously, i.e.,
neuter, plural, nominative. But only “pl. nom.”
need be printed to the concordance, because it’s
obvious it’s the neuter noun.

The tex-string is what is written to the
concordance. It is usually determined by a com-
bination of generate-entry’s first argument and the
homograph-identifier, if any. It is possible to over-
ride this by using the :tex-string keyword argument
to generate-entry.

(generate-entry "abc" :tex-string "xyz")

This causes a symbol |abc| to be created and bound
to a word structure, but “xyz” will be printed to
the concordance. Occurrences of “abc” in the input
file will appear under the heading “xyz”, and the
sort-string will be “X~Y~Z (depending on the values
assigned by letter-function), i.e., based on the string
“xyz” and not on “abc”.

A tex-string can also be set by using a cons cell
for the first argument to generate-entry.

(generate-entry ’("eiga" . "agie"))

is equivalent to

(generate-entry "eiga" :tex-string "agie")

393

However, if you type
(generate-entry ’("eiga" . "igea")
:tex-string "agie")
the explicit tex-string keyword argument takes prece-
dence over the tex-string in the cdr of the cons cell,
which is discarded. I'm not sure whether the
tex-string feature will prove to be useful, but it’s
available if needed.

The function generate-entry allows the use of

other keyword arguments. It doesn’t matter
what they are, generate-entry simply ignores them.
This is for compatibility with the program LexTgX,
which uses the lemmatization dictionary files for an-
other purpose (see page 389), or for other programs
that might be written. For instance,

(generate-entry "nema" verb
:forms ?("nam" "n{\\ohook}mum™"
’("nvmenn" :variants "nomenn"))
:class ’strong-4 :definition-english "take")

contains the keyword arguments :class and

:definition-english, and their values. They are
irrelevant to the function generate-entry in ConcTEX,
which ignores them, but are used by the function
called generate-entry in LexTEX.

ConcTEX could be extended to do more than

just produce a concordance. One possibility is
to sort the words into a file of TEX code according to
grammatical criteria. For instance, the words could
be written to an output file nouns first, then adjec-
tives, pronouns, verbs, adverbs, etc. Within these
categories, the words could be sorted according to
class. In order to accomplish this, more information
must be entered in the lemmatization dictionary,
i.e., generate-entry must be modified to process ad-
ditional arguments. Alternatively, the homograph-
identifiers could be used for this purpose.

Actually, generate-entry isn’t really a function

at all. It’s a macro, defined with defmacro. One
reason for this is that a macro doesn’t evaluate the
arguments that are passed to it. If generate-entry
were defined like this,

(defun generate-entry
(main-form &optional word-type forms

L))

then this would cause an error:
(generate-entry "{\ae}tt" noun
:forms "{\ae}ttar")

because Lisp would try to evaluate the symbol
noun, which is unbound. Since generate-entry
is a macro,



394

(defmacro generate-entry (&rest arg) ...)

it’s possible to manipulate its arguments before

they’re passed to the real function, which
is called sub-generate-entry. Another reason for
defining generate-entry as a macro is to make it
easier to extend ConcTgEX, or change the way it
behaves. The arguments can be manipulated and
passed to other functions, instead of or in addition
to sub-generate-entry.

The functions harmless and add-variants
are two other functions that can be used in the
lemmatization dictionary. These are merely con-
venience functions, you can accomplish the same
results using generate-entry.

The function harmless is for cases where none
of generate-entry’s keyword arguments are needed.
Some words, like prepositions and conjunctions (in
the Germanic languages, at least) have no inflected
forms, and some words may have no variants in a
particular manuscript. (So far, I've never needed a
tex-string.)

(harmless "{\\’a}<p>" "af"

TN AN ok Myfirt)
is equivalent to

(generate-entry "{\\’a}<p>")
generate-entry "af")
generate-entry "{\\’\\i}")
generate-entry "ok")
generate-entry "yfir")

PRy

The function harmless takes one or more strings
as its arguments, and calls (generate-entry (string))
for each of the strings. Note that a homograph-
identifier is permitted, using the <(string)> syntax,
as for {\\’a}r<p>.

Calling generate-entry with a lot of forms and
variants can be confusing,

(generate-entry "dyr{\\dh}ligr" adjective
:forms > (("dyr{\\dh}lig"
:variants "dyrdlig")
("dyr{\\dh}ligi" :variants "dyrdligi")
)

so the function add-variants can be used instead.
This is equivalent to the previous example:

(generate-entry "dyr{\\dh}ligr" adjective
:forms 7 ("dyr{\\dh}ig" "dyr{\\dh}ligi"))

(add-variants "dyr{\\dh}lig" "dyrdlig")
(add-variants "dyr{\\dh}ligi" "dyrdligi")
All of the arguments to add-variants are strings.

The first is used to access a symbol. This symbol
might be bound to a word structure, which would be

TUGboat, Volume 19 (1998), No. 4

fine. If, however, it’s unbound, then a word structure
is created, using the string as the only argument
to generate-entry. Otherwise, if it’s bound and not
a word structure, add-variants issues a warning, and
exits. Assuming the symbol is now a word structure,
the other strings are used to access symbols which
are set to the symbol derived from the first string,
just as generate-entry sets variants (as described on
page 390f).3°

The order of the subsidiary forms is important.
It will usually not be desirable to have them sorted
in alphabetical order in the concordance, although
it’s possible; usually, the order of the subsidiary
forms will be determined by the conventional order
of the forms within the paradigm, e.g., singular
nominative, genitive, dative, accusative, then plural
nominative, genitive, dative, accusative for nouns in
Old Icelandic. If you prefer the order nominative,
accusative, genitive, dative, just type the forms in
this order.

The parser. After the lemmatization dictionary
has been loaded, conctex.lsp opens the input file
and the function main reads it line-by-line. Entirely
blank lines, and lines that begin with % or \ are
discarded (except for lines beginning with \1lineno,
\putontop, \overstroke, or other exceptions, if
any). Lines that begin with @ are Lisp code, the @ is
discarded, and the rest of the line, which must be a
balanced expression (sexp), is evaluated. Other lines
are text lines, and passed to the function process-
line. This function strips off leading and trailing
blanks, discards line numbers and punctuation from
the beginning of the line, discards certain macros
and perhaps some or all of their arguments, discards
unattached math mode material, and replaces some
strings with others. If a @ or % appears in the middle
of a line, process-line discards it together with the
rest of the line. It also tests to see whether the end of
the input line corresponds to the end of a transcript
line. If the input line ends with \\, -, or \-, or
if the following line is blank, process-line treats the
end of the current line as the end of a transcript line
and increments the line counter (called line-counter)
when it’s done with the current line. (Advancing
the leaf, side or column requires an explicit call to
set-position, as does advancing more than one line at
a time, which is sometimes necessary, as when part
of a leaf is missing or unreadable.) Then process-line
passes the line to the function read-word. This func-
tion strips characters off the line until it has stripped
off a whole word. Then it returns the word, current-

35 Actually, generate-entry uses add-variants to set variants.



TUGDboat, Volume 19 (1998), No. 4

word, and the rest of the line to process-line. Now
the routine for access and data storage takes over.

Access and data storage. The function read-
word returns current-word as a string. The function
process-line appends | to the beginning and end of
the string, so that, for example, "{\\ae}tt" becomes
"I{\\ae}tt|".36 Now the string is used to access
a symbol (or variable) using read-from-string, and
the symbol current-var is set to this symbol, e.g.,
[{ae}tt|. (In C, you'd say “current-var is a pointer
to |{aektt!”.)

This is one reason why unmotivated braces
are not permitted in the input file. The braces
are needed to delimit the special characters for
generate-info and to distinguish between special
character codings and ordinary characters in the
symbol names.?” The vertical strokes surrounding
the symbol name act to escape all of the other char-
acters, which causes \ to disappear when the string
"[{\\ae}tt|" is converted to the symbol |{ae}tt].
If the input file contained the string “{\ae}tt”
— “ett” and “{ae}tt” — “aett” (using “ae”
instead of the ligature), and unmotivated braces
were permitted, they would both map to the same
symbol, namely {ae}tt, and they would not be
kept separate in the concordance.

Now process-line checks to see if the wvalue of
current-var (the symbol |{ae}tt], in our example) is
already bound. If it is, this means either that the
word “eett” is accounted for in the lemmatization
dictionary, or that it’s occurred previously in the
input file. If | {ae}tt| is unbound, process-line checks
whether the symbol |{Ae}tt| is bound. If it is,
current-var is set to |{Ae}tt|, otherwise process-line
checks whether the symbol {AE}TT is bound.?® If
it is, current-var is set to {AE}TT.39

36 Backslashes in strings read in from a file are automati-
cally escaped.

37 By uncommenting two lines in letter-function, it’s possi-
ble to allow unmotivated braces. I believe it’s safer to make
them signal an error, because it’s a good way of discovering
mistakes in the input file. Any cases where braces are
required can be accounted for in conctex.lsp.

38 No vertical strokes are needed around {AE}TT because
{, }, and capital letters don’t need to be escaped.

39 Manuscripts are often orthographically inconsistent,
and transcriptions often use uppercase and lowercase letters
to represent different letter forms, although the original
letters do not really correspond to our upper- and lowercase.
If the editor wants a particular word to be represented in
the concordance in lowercase, capitalized or all capitals,
and the first occurrence of this word in the transcription
does not have the desired form, then the word must be
entered in this form into the lemmatization dictionary. Of
course, capitalized, upper- and lowercase strings which map

395

Actually, the functions string-downcase, string-

capitalize and string-upcase are applied to
(symbol-name current-var). The symbol current-var is
evaluated once to get the symbol |aett|. If I wanted
to examine the symbol-name of |aett| directly, I
would have to type (symbol-name ’ | {ae}tt|) to pre-
vent evaluation of |{ae}tt|. Note that applying
string-capitalize to a symbol name beginning with a
coding like {ae} fails, because the capitalized string
would need to be {AE}. It is, of course, possible
to have \Ae expand to “A” in TEX, so that {Ae}
would yield the correct result, but it seems hardly
worthwhile, since words should be accounted for in
the lemmatization dictionary anyway.

Unbound symbols. If [{ae}tt|, [{Ae}ttl,
and {AE}TT are unbound, a word structure is
created, and |{ae}tt| is bound to it. A sort-string
is generated and stored in |{ae}tt|’s sort-string slot,
and a tex-string is stored in its tex-string slot, just
as for word structures created by the lemmatization
dictionary. If the word read in from the file includes
the symbols < and >, the string they enclose is
considered to be the homograph-identifier, which is
stored in the homograph-identifier slot, and affects
the form of the tex-string.

After a word structure has been created for the
symbol |{ae}tt|, the symbol itself is put into the
cdr of a cons cell, while its sort-string is put into the
car, e.g.,

("~A~F~X~X" L [{ae}tt])

This cons cell is now appended to the association
list (or alist) word-alist, not var-alist, as are the
word structures from the lemmatization dictionary.
The alist word-alist is used to store all of the en-
tries that are main forms of lemmata, i.e., not
subsidiary forms or variants, that actually occur in
the transcription. They will appear as top-level
entries in the concordance. Whenever a word in
the input file maps to a symbol that is unbound,
i.e., if it’s the first occurrence in the input file and
not in the lemmatization dictionary, this word is
considered to be the main form of a lemma, so
all lemmata with subsidiary forms and most vari-
ants must be accounted for in the lemmatization
dictionary. Variants that differ only in the use of
capitalization and upper- and lowercase letters, or
where certain special character macros are replaced,
are handled automatically (as above).

Positions and occurrences The word struc-
ture has an occurrences slot, where manuscript po-
sitions are stored. It might even have multiple

to different word structures are also possible, if they’re bound
in the lemmatization dictionary.



396

occurrences slots, if ConcTEX is being used for more
than one manuscript. When a word structure is cre-
ated in the lemmatization dictionary, there are no
occurrences to be stored yet. When an entry is cre-
ated for a word in the input file, the position-string is
stored as a string in a list in the proper occurrences
slot, e.g., ("28va~7"), using access-occurrences.

The current position in the transcription (and
the manuscript) will have been generated by the
function set-position, which is used in the input file,
and process-line’s line counting routine. In addition,
process-line can tell whether a particular word is
the first or last word in the transcription line. It
can sometimes be useful to indicate that a word is
at the beginning or end of a line in a manuscript,
because the use of unusual forms is often explainable
because of the position. For instance, words at the
beginning of lines may have fancy initials, and
words at the end may be abbreviated in order that
they may be squeezed into the remaining space on
the line. If a word occurs at the beginning or end
of a line, this may be indicated in the concordance,
if the book designer wishes. For example, if this is
a line at leaf 1, verso, column a:

\lineno{15} seg_{ir} e{\n} gaufgi
ken_{n}i"{\m}_{a{\dh}r} [ok enn]\\

—
15: segir eN gaufgi kenni Madr [ok enn]

then one of the positions for “segir” will be “lva 15°”
and one of the positions for “enn” will be “lva 15¢”.

The program conctex.lsp doesn’t print $"b$
and $~e$ explicitly to the concordance file. In-
stead, it uses the token lists \1inebeginstringand
\lineendstring,

\newtoks\linebeginstring
\newtoks\lineendstring
\linebeginstring={$"b$}
\lineendstring={$"e$2}
and prints \the\linebeginstring and \the\line-
endstring to the concordance file. To suppress “*”
and “®” in the concordance, all that’s necessary is
to redefine the token lists \linebeginstring and
\lineendstring.

\linebeginstring={}

\lineendstring={}

This feature will probably be turned off, because it
is not customary for concordances to indicate the
position of words in a line.

A concordance should only be generated for one
manuscript at a time. This is merely the way I've
set things up; it’s not hard-wired into the program.
The definition of the Lisp macro access-occurrences

TUGboat, Volume 19 (1998), No. 4

depends on the value of the variable manuscript. It
is used to access the appropriate occurrences slot for
setf.40

Multiple occurrence slots are useful if you want

to use the information generated by conc-
tex.lsp in another program. The word structures
can be written to a file using Lisp’s read syntax.
Another Lisp program can load this file, provided
structures of type word are defined, and the data
produced by the last run of conctex.lsp will be
available. This could be useful for dictionaries or
linguistic studies involving multiple sources.

Bound symbols. If the symbol pointed to by
current-var (| {ae}tt| in our example) is bound, this
means it was either bound in the lemmatization
dictionary, or that the word “zett” has already
occurred in the input file, or both.*! If it has already
occurred in the input file, and it’s a main form, word-
alist already contains the cons cell ("~A~F~X"X" .
[ {ae}tt]), but if it’s only bound because it appears
in the lemmatization dictionary, or it’s a subsidiary
form or a variant, this cons cell will not be in
word-alist. So, process-line checks to see whether a
cons cell containing |{ae}tt| is in word-alist, using:

(rassoc current-var word-alist)

which searches for a cons cell in word-alist using the
cdr as the search key. If it’s there, it means that
“gett” has already occurred in the input file.

The situation is more complicated if the symbol
is not already in word-alist. ~ There are three
possibilities: it could be the main form of a lemma,
a subsidiary form, or a variant.

T If the symbol is a word-structure, it is either a
main form or a subsidiary form.

T If the root slot of the word-structure is nil,
then it’s a main form. In this case, the cons
cell containing the symbol and its sort-string is
copied from var-alist into word-alist.

T Else, if the root slot of the word structure is
non-nil, the symbol is a subsidiary form. In
this case, its root slot is accessed in order to get
its main form, which is another symbol bound
to a word-structure. If the cons cell containing

40 Tt’s worth looking at the way access-occurrences is
defined, because it illustrates a limitation of Lisp’s setf access
function.

41 Or there’s been a terrible mistake. It is unlikely that
a symbol derived from a word in the transcription would
conflict with a symbol that’s already defined by conctex.lsp
or the Lisp interpreter itself. However, if this problem arises,
it would be easy enough to write safety routines to catch the
problem symbols.



TUGDboat, Volume 19 (1998), No. 4

this symbol and its sort string is not already in
word-alist, it’s copied to it from var-alist.

T If the symbol evaluates to another symbol, it’s a
variant. In this case, the symbol is replaced by
this other symbol, and this process is repeated for
the latter.

The Lisp macro access-occurrences then appends the
position-string for the new position, e.g., "28ra”15"
to the appropriate occurrences slot in the appropri-
ate word-structure.

Exporting the concordance. After every line in
the input file has been processed, the loop in main
returns nil. If you are generating a concordance
using multiple input files, the first input file is
closed, the next one is opened and processed in
the same way. When all of the input files have
been processed and closed, the alists word-alist and
var-alist are sorted.

(setq word-alist

(sort word-alist #°string< :key #’car))
(setq var-alist

(sort var-alist #’string< :key #7car))

This puts the cons cells in word-alist and var-alist in
alphabetical order according to their cars, i.e., their
sort-strings. Now the sort-strings are now longer
needed, so new lists are generated by popping off
the cons cells and putting the cdrs, i.e., the symbols,
into new lists, word-list and var-list. Only main forms
of lemmata are members of word-list, and only of
those lemmata, in which at least one form (which
can be a variant) occurs in the transcription. Other
main forms may be bound from the lemmatization
dictionary, but they will not be in word-list. The list
word-list is now passed to the function export-words,
which writes the TEX file for the concordance.
Exactly what export-words writes is a matter for
the editor and the book designer, so this part of
ConcTEX can be changed easily.

The function export-words pops the symbols
off of the front of word-list one-by-one. The tex-
string is written to the concordance file (here called
concordance.tex, but any name within reason
can be chosen), not indented. If there are no
occurrences of the main form, the tex-string is
enclosed in parentheses. If there are occurrences,
the number of occurrences is printed after the
tex-string, enclosed in parentheses, followed by the
occurrences. Subsidiary forms are printed to the
concordance if and only if there are occurrences for
them.

If there are no occurrences and no subsidiary
forms with occurrences, something is terribly wrong
and conctex.lsp will signal an error. The way

397

conctex.lspis set up, occurrences at the beginning
and end of a line are indicated with a superscript,
e.g., “27ra 31°” and “34vb 12°”. On the other hand,
if a word occurs multiple times within a line, not at
the beginning or end and not broken, the position
string is only printed out once, and the number
of occurrences is indicated within parentheses, e.g.,
“5lra 5 (2)”. If the word is broken, what is
printed depends on whether it’s broken across a line,
column, side or leaf. In the extremely unlikely event
that the word occurs at the beginning or end of
a line, or broken, and multiple times within the
line, the different cases are listed separately, e.g.,
“llra 5%, 11ra 5 (2), 11ra 5-6”.

When a symbol is popped off of word-list,
export-words checks whether forms are present in
the word structure’s forms slot. The forms should
be in the order in which they should be listed
in the concordance. The function export-words
accesses the symbol for each form, and checks the
appropriate occurrences slot. If it’s non-nil, the tex-
string for that form is written to concordance.tex,
with its occurrences, as above, but indented. If
a form has no occurrences, nothing is printed to
concordance.tex. The Lisp program currently
does not print out variants in any way. This
would require some additional programming, but it
is possible.

The program conctex.lsp can be extended to

extract grammatical information from manu-
script transcriptions. One way of doing this would
be to use standardized homograph-identifiers. An-
other would be to add one or more slots to the word
structure. Then, export-words could be modified to
write files for the various grammatical categories,
which could then be concatenated. After word-
list has been generated, word-alist and var-alist are
no longer needed, and var-list is never needed by
conctex.lsp. They are kept or generated only for
debugging purposes.

Other data. When conctex.1lsp is run, it gener-
ates some data in addition to the concordance. It
counts the number of lines and words in each input
file, the total number of lines, the total number of
words, the total number of distinct words and the
total number of lemmata. It prints this information
to the TEX file count_info.tex.

The number of lines in an input file is simply
the value of line-counter at the end of the file.
The number of words in an input file is the number
of times read-word returns a non-empty string while
that file is begin read. The total number of distinct
words is the number of times export-occurrences



398

is called and the total number of lemmata is the
length of word-list.

Hints on using ConcTEX. Trying to generate a
concordance from an entire manuscript transcrip-
tion all at once is a recipe for disaster. I recommend
testing the program with one column or side at
first, gradually increasing the amount of text. In
this way, the user can discover which lemmata are
needed, which subsidiary forms need to be assigned
to a lemma, which variants need to be accounted
for, and so on.

The program conctex.lsp writes an additional
TEX file containing only the words that are not
included in the lemmatization dictionary, and their
occurrences. This makes it easy to see which words
should be lemmatized or declared harmless, so the
lemmatization dictionary can be built up gradually,
as longer and longer portions of the transcription
are read by conctex.lsp.

A format for a manuscript transcription is likely

to be rather complex and the user will probably dis-
cover places where new special characters, fonts and
macros are needed. Every new control sequence de-
fined in conctex.tex and used in transcription lines
will require some alteration to the Lisp program, ei-
ther in process-line, read-word and/or letter-function.
T’ve intentionally programmed conctex.1lsp in such
a way as to allow changes to reflect different book
designs, so it may be necessary to change export-
words, too. The best way to proceed is to take small
parts and run TEX and conctex.lsp on the input
file to make sure that everything is working properly.
When you’ve got it running smoothly, and you've
built up a complete lemmatization dictionary, then
you can try running TEX and conctex.lsp on the
whole manuscript.
Running TEX on the concordance. Since
ConcTEX generates the concordance from the TEX
input file without running TEX, it’s no problem to
include concordance.tex (the TEX file output by
conctex.lsp which contains the concordance) in
the input file itself:

\input concordance
But it’s safer to include it like this:

\newread\concordance

\openin\concordance=concordance

\ifeof\concordance

\message{concordance.tex doesn’t exist.
Not inputting it.}\else

\closein\concordance

\input concordance

\fi

TUGboat, Volume 19 (1998), No. 4

If you use UNIX, you can ensure that the con-
cordance is always up-to-date by using a shell script.

# This runs the concordance program.
gcl<conctex.lsp

# Now I run tex on my input file.

tex transcription

# This executes the file "warnings"

# It prints the warning messages

# from conclsp.lsp to standard output.
sh warnings

It’s a good idea to use a shell script anyway, or
the equivalent in your operating system, if you're
using two-pass features, i.e., for an index, table of
contents, page references, etc.

A special case

Manuscripts often have peculiarities that are diffi-
cult to represent in set type. Often, these peculiari-
ties occur too rarely for it to be worthwhile writing
TEX macros and/or Lisp functions to cope with
them, but it is often possible to invent an ad hoc
solution. For instance, Holm perg 11 4° has words
that are written vertically, and are therefore, so to
speak, broken over several lines. This problem can
be solved in the following way:

\newskip\tempskip
\newskip\normalbaselineskip
\tempskip=.75\baselineskip
\normalbaselineskip=\baselineskip
\font\enormous=cmrl7 scaled 7500
\baselineskip=\tempskip
\setbox0=\hbox{{\enormous D}}%

* \lineno{1\dash 7}\copyO
\vskip-\htO\vskip-2pt
\dimenO=\wdO\advance\dimenO by 18pt
\hangindent\dimenO\hangafter-7
r\break o\break t \break n \break i
\break n \break g\par
\baselineskip=\normalbaselineskip *
\vskip.667\baselineskip

@ (add-occurrences "drotning" "1lva~1--7")
\lineno{8} himins _{ok}
iar{\dh}ar. s{\ae}1l {ok} dyr{\dh}\-

\lineno{9} 1lig m{\o}r Maria. mo{\dhl}ir
d_{ro}tti_{n}s\\

Produces the following output:



TUGDboat, Volume 19 (1998), No. 4

RBEBaon

1-7:

8: himins ok iardar. szl ok dyrd
9: lig mgr Maria. modir drottins

Since process-line ignores all lines within a com-
mentary, the complex construction for the word
“Drotning” isn’t read by process-line, so this occur-
rence needs to be set explicitly.

© (add-occurrences |drotning| "lva~1-7")

The function add-occurrences uses access-occurrences
to access the appropriate occurrences slot of the word
structure bound to the symbol in its first argument,
and appends its second argument, a string, to
the list in the occurrences slot. It can be any
string, so access-occurrences can be used to make
non-standard occurrences by hand. An occurrence
like “lva 1-7” cannot be created by conctex.lsp’s
ordinary routines.

Final remarks

ConcTEX demonstrates the power of Lisp and
TEX in combination. Designing and typesetting
a manuscript transcription, usually as part of a
facsimile edition, is a challenge under the best
of circumstances, and generating a concordance is
always a time-consuming task. I do not promise
miracles with ConcTEX, but I do believe that it can
make both of these tasks easier, and indeed possible
for non-professionals.
ConcTEX’s most significant advantages are:

1. It makes it possible to take advantage of the
typographic capabilities of TEX and META-
FONT.

2. It uses the very same file for typesetting and
generating the concordance.

3. It performs alphabetical sorting on arbitrary
special characters

ConcTEX is designed to be extendable. It
would be possible to adapt it for use with other
languages. For languages that are written left-to-
right, it will only be necessary to cope with the
usual difficulties with fonts and character encoding.
For right-to-left text or a mixture of left-to-right
and right-to-left text, the difficulties are greater,
but it should be possible to solve them. Many of
its features are of general utility and could be used
for other kinds of programs that extract data from
TEX input files.

However, there is one significant problem from
the point of view of book design. The virtues of

399

Computer Modern and its offspring notwithstand-
ing, there simply aren’t enough METAFONT fonts
in the public domain suitable for use in fine printed
books. Understandably, most of the other fonts
available either contain special symbols or alpha-
bets for non-Western languages, and are generally
designed to be compatible with Computer Modern.
But even if the Computer Modern fonts were the
most beautiful fonts in the world, not every book
should be printed in them. I admire Knuth’s ac-
complishment and I like Computer Modern, but
Monotype Modern 8A; on which it is based, is
not universally admired.*> It is possible to use
PostScript fonts with TEX, but it’s inconvenient,
and although they are well-designed, they have
the serious defect that most sizes are produced by
simple magnification or reduction. I consider it an
important desideratum that more METAFONT fonts
are created and made available, but I don’t see how
this goal can be accomplished by amateur program-
mers writing free software. But until such fonts
are available, books typeset without the financial
and technical backing of a publisher will continue
to suffer from a poverty of fonts.

I am far from being an authority on the subject,
but I doubt very much that any photolithographic
printing technique will ever be able to equal the
quality of impression of lead type. My dream is to
use METAFONT for designing lead type for use on
a TEX-driven, Linotype-like linecasting machine. I
say a linecasting machine only because I think that
it would be easier to implement glue on a linecast-
ing machine. It might, however, be an interest-
ing exercise to design a TEX-driven Monotype-like
typesetting machine, or even a typesetting machine
based on a different principle, such as casting an
entire page at once. Perhaps with such machines,
we can finally equal and perhaps even surpass the
great typographic achievements of the past.

Sample texts and concordances

Concordances become long very quickly, so this
section contains three mini-concordances and the
texts from which they were generated.

The first text is the beginning of the transcrip-
tion of Holm perg 11 4°, prepared by Dr. Wilhelm
Heizmann. It illustrates the use of line footnotes.
These are footnotes which refer to lines in the

42 WILLIAMSON, in reference to the English Monotype
Corporation’s Modern Extended series 7: “Not particularly
distinguished in letter form, the face has become familiar to
readers of scientific works; for some years, this was one of the
few series equipped with a full range of mathematical and
other special sorts.” (p. 130)



1-7:

400

transcription. Unlike ordinary footnotes, there is no
indication in the running text, such as an asterisk,
a dagger, or a superscripted numeral, but the line
number or numbers appear in the footnote where
the footnote indicator usually goes.

Note that a different definition of \ustroke
is used here than in the foregoing article. The
emendations are in italics and underlined, but not
enclosed in brackets.

Holm perg 11 4°
1va
proloGus

BB ao=

8: himins ok iardar. szl ok dyrd
9: lig mgr Maria. modir drottins
10: Tesus Xristz. blomi hreinlifis.
11: herbergi heilags anda. gllvin
12: helgum mgnnum 2edri. helgari
13: ok haleitari. er komin at kyn
14: ferdj af kongligri eett eptir pvi sem
15: segir eN gaufgi kenni Madr [ok enn]

Concordance to Holm perg 11 4°

a0ri (1): 1lva 12.
aett (1): 1va 14.
af (1): 1va 14.
(allr)

pllvm (1): 1va 11°.
(andi)

anda (1): 1va 11.
at (1): 1va 13.
blomi (1): 1va 10.
drotning (1): 1lva 1-7.
(drottinn)

drottins (1): 1va 9°.
(dyroligr)

dyrdlig (1): 1va 8-9.
enn (2): lva 15, 15°.
eptir (1): 1va 14.
er (1): 1va 13.
(gofugr)

1-7 Drotning, bis auf das initiale D sind die Buchstaben
untereinander angeordnet.
8/9 dyrdlig, dafiir in Ausg. zumeist dyrlig.

10 Tesus, 233 Jesu, Ausg. fir den Genitiv immer Jesu;
Xristz, 233 cristi, Ausg. fiir Xrist- fast immer Crist-, einige
Male auch Krist-.

TUGboat, Volume 19 (1998), No. 4

gaufgi (1): 1va 15.
(haleitr)

haleitari (1): 1va 13.
(heilagr)

heilags (1): 1va 11.

helgari (1): 1va 12¢.

helgum (1): 1va 12°.
herbergi (1): 1va 11.
(himinn)

himins (1): 1va 8.
(hreinlifi)

hreinlifis (1): 1va 10°.
Tesus (1): 1va 10°.
(igror)

iardar (1): lva 8.
kennimadr (1): 1va 15.
(koma)

komin (1): 1va 13.
(kongligr)

kongligri (1): 1va 14.
(kynferd)

kynferdj (1): 1va 13- 14.
(madr)

mgnnum (1): 1va 12.
Maria (1): 1va 9.
modir (1): 1va 9.
mor (1): 1va 9.
ok (4): 1va 8 (2), 13%, 15.
(seell)

seel (1): 1va 8.
(segja)

segir (1): 1va 15°.
sem (1): lva 14¢.
(Xrist)

Xristz (1): 1va 10.
bvi (1): 1va 14.

The Bible

Genesis

1. In the beginning God created the heavens and
the earth. 2. The earth was without form and void,
and darkness was upon the face of the deep; and
the Spirit of God was moving over the face of the
waters. 3. And God said, “Let there be light”; and
there was light. 4. And God saw that the light
was good; and God separated the light from the
darkness. 5. God called the light Day, and the
darkness he called Night. And there was evening
and there was morning, one day.

Concordance to the Bible

and (11): Gen. 1:1, 2 (3), 3 (2), 4 (2), 5 (3).



TUGDboat, Volume 19 (1998), No. 4

be (1): Gen. 1:3.

was (7): Gen. 1:2 (3), 3, 4, 5 (2).
beginning (1): Gen. 1:1.
(call)

called (2): Gen. 1:5 (2).
(create)

created (1): Gen. 1:1.
darkness (3): Gen. 1:2, 4, 5.
day (2): Gen. 1:5 (2).
deep (1): Gen. 1:2.
earth (2): Gen. 1:1, 2.
evening (1): Gen. 1:5.
face (2): Gen. 1:2 (2).
form (1): Gen. 1:2.
from (1): Gen. 1:4.
God (6): Gen. 1:1,2, 3,4 (2), 5.
good (1): Gen. 1:4.
he (1): Gen. 1:5.
(heaven)

heavens (1): Gen. 1:1.
in (1): Gen. 1:1.
let (1): Gen. 1:3.
light (5): Gen. 1:3 (2), 4 (2), 5.
morning (1): Gen. 1:5.
(move)

moving (1): Gen. 1:2.
night (1): Gen. 1:5.
of (3): Gen. 1:2 (3).
one (1): Gen. 1:5.
over (1): Gen. 1:2.
(say)

said (1): Gen. 1:3.
(see)

saw (1): Gen. 1:4.
(separate)

separated (1): Gen. 1:4.
spirit (1): Gen. 1:2.
that (1): Gen. 1:4.
the (14): Gen. 1:1 (3), 2 (6), 4 (3), 5 (2).
there (4): Gen. 1:3 (2), 5 (2).
upon (1): Gen. 1:2.
void (1): Gen. 1:2.
(water)

waters (1): Gen. 1:2.
without (1): Gen. 1:2.

):
):

Die Bibel
Das 1. Buch Mose (Genesis)

(With homograph identifiers.)

1. Am Anfang schuf Gott Himmel und Erde.

2. Und die{fsn} Erde war wiist und leer, und es
war finster auf der{fds} Tiefe; und der{mns} Geist
Gottes schwebte auf dem{nds} Wasser. 3. Und Gott

401

sprach: Es werde Licht! Und es ward Licht. 4. Und
Gott sah, dafi das{nas} Licht gut war. Da schied
Gott das{nas} Licht von der{fds} Finsternis 5. Und
nannte das{nas} Licht Tag und die{fas} Finsternis
Nacht. Da ward aus Abend und Morgen der{mns}
erste Tag.

Die Bibel
Das 1. Buch Mose (Genesis)

(Without homograph identifiers.)

1. Am Anfang schuf Gott Himmel und Erde.

2. Und die Erde war wist und leer, und es war
finster auf der Tiefe; und der Geist Gottes schwebte
auf dem Wasser. 3. Und Gott sprach: Es werde
Licht! Und es ward Licht. 4. Und Gott sah, dafl
das Licht gut war. Da schied Gott das Licht von
der Finsternis 5. Und nannte das Licht Tag und die
Finsternis Nacht. Da ward aus Abend und Morgen
der erste Tag.

Konkordanz zur Bibel

Abend (1): Gen. 1:5.
(an)
am (1): Gen. 1:1.
Anfang (1): Gen. 1:1.
auf (2): Gen. 1:2 (2).
aus (1): Gen. 1:5.
da (1): Gen. 1:5.
(das [n.])
das [akk. sg.] (2): Gen. 1:4, 5.
dem [dat. sg.] (1): Gen. 1:2.
der [m.] (2): Gen. 1:2, 5.
die [f] (1): Gen. 1:2.
die [akk. sg.] (1): Gen. 1:5.
der [dat. sg.] (2): Gen. 1:2, 4.
Erde (2): Gen. 1:1, 2.
(erst)
erste (1): Gen. 1:5.
es (3): Gen. 1:2, 3 (2).
finster (1): Gen. 1:2.
Finsternis (2): Gen. 1:4, 5.
Geist (1): Gen. 1:2.
Gott (2): Gen. 1:1, 3.
Gottes (1): Gen. 1:2.
Himmel (1): Gen. 1:1.
leer (1): Gen. 1:2.
Licht (4): Gen. 1:3 (2), 4, 5.
Morgen (1): Gen. 1:5.
Nacht (1): Gen. 1:5.
(nennen)
nannte (1): Gen. 1:5.
(schaffen)



402

schuf (1): Gen. 1:1.
(schweben)

schwebte (1): Gen. 1:2.
(sein [verb])

war (2): Gen. 1:2 (2).
(sprechen)

sprach (1): Gen. 1:3.
Tag (2): Gen. 1:5 (2).
Tiefe (1): Gen. 1:2.
und (10): Gen. 1:1, 2 (4), 3 (2), 5 (3).
von (1): Gen. 1:4.
Wasser (1): Gen. 1:2.
(werden)

werde (1): Gen. 1:3.

ward (2): Gen. 1:3, 5.
wiist (1): Gen. 1:2.

Category code list

e \catcode‘\<=\active. For homograph identi-
fiers. Reset to 12 (other) in math mode.

e \catcode‘\@=14 (Comment). Treated as a
comment by TgX, equivalent to %. If @
is the first non-blank character in an input
line, the Lisp interpreter evaluates the rest
of the line, which should contain a balanced
expression (sexp). Otherwise, if it’s in a text
line, conctex.lsp discards it and the rest of
the line following it.

e \catcode‘\¥=9 (Ignored). The character ¥
(decimal 165, octal 245, hexadecimal A5) is
ignored by TEX and treated as a word separator
by Lisp.

e \catcode‘\*=9 or \active. Used for com-
mentaries. Reset to \catcode 12 in math
mode.

e \catcode‘\_=\active. The underline charac-
ter is \1let to \ustroke. Reset to 8 (subscript)
in the \plain environment, so _ can appear
in the names of files loaded using \input, and
math mode, so it can be used for subscripts.

e \catcode‘\-=\active. The hyphen character
- is used for line ends where words are bro-
ken. Reset to 12 (other) in commentaries, the
\plain environment, and math mode.

e \catcode‘\""M=\active. This change is local
to the expansions of the active character - and
the redefined control symbol \-, where ~~M is
\let to \empty. Otherwise, it has its normal
\catcode of 5 (end of line).

e \catcode‘\@©=\active. The copyright symbol
(decimal 169, octal 251, hexadecimal A9) is
\let to \- before the latter is redefined, so it

TUGboat, Volume 19 (1998), No. 4

can be used for discretionary hyphens within
transcription lines, if necessary.

Glossary

Braces, unmotivated: Braces that delimit unnec-
essary groups in the input file. Not permitted in
transcription lines.

Comment: Comments can be normal TEX com-
ments that follow a %. Usually, however, “comment”
refers to invocations of the macros \begincomment
and \endcomment.

\begincomment{This is a comment.}
\endcomment

Comments appear in the output only if \drafttrue.
Comments are ignored by conctex.lsp.

Commentary: A commentary contains text which
should appear within the transcription lines in the
output, but which should not be used for generating
the concordance. Commentaries can be coded in
several ways.

* This is a commentary. *

\begincommentary This is also
a commentary.\endcommentary

\plain Yet another commentary.
\endplain

Evaluated lines: Lines in the input file, where
@ is the first non-blank character. Such lines
must contain a balanced Lisp expression, which is
evaluated by the Lisp interpreter. TEX ignores lines
beginning with @.

Homograph identifiers: In TEX, strings of the
form “<(string)>”. Used for indicating homographs
in the input file. Printed out or not, depending
on the value of \ifdraft. For the Lisp program,
homograph-identifiers can be set in various ways in
the lemmatization dictionary.

Ignored lines: Lines in the input file that are
ignored by TEX, conctex.lsp, or both. Completely
blank lines are ignored by conctex.1lsp and treated
normally by TgX. Lines beginning with % are
ignored both by TEX and conctex.lsp. If a line
contains a % in any other position, the rest of the
line is discarded by both TEX and conctex.lsp.
The character @ is equivalent to % in TEX. If a
line contains an @ that’s not the first non-blank
character in the line, conctex.lsp discards the rest
of the line.

Input file: A file containing text to be typeset for
a book containing a facsimile of a manuscript, or



TUGboat, Volume 19 (1998), No. 4

something similar. The input file or files are also
used for generating a concordance.

Lemmatization dictionary: A file of Lisp code
used for lemmatizing the words in the transcription.
The file can contain invocations of the functions
generate-entry, add-variants, and/or harmless.

Macro, delimited: A macro within braces, like

AN\%Y, {\rm ...}, or {\dh}

Macro, undelimited: A macro with no enclosing
braces, like \%, \rm or \indexentry{nouns}{}{x}%
{verbs}{}{}.

Output: The typeset result of running TEX on the
input file or files. Technically, the result of running
TEX is a dvi file, however I usually mean either
the paper printout or a display on the computer
terminal in a program like xdvi or Ghostview.

Text lines: Lines in the input file which are
processed by TEX. They may be transcription lines
or commentaries.

Transcription lines: Lines in the input file con-
taining the transcription of the manuscript. They
should correspond, for the most part, to the actual
lines in the manuscript; however, they may also
contain commentaries, which may affect the length
and hence the line breaking in the output.

Word element: A character which conctex.1lsp
considers to be part of a word. Includes all letters
(characters whose \catcode is 11), some characters
of type “other” (\catcode 12), and special character
macros.

Word separator: Characters that cannot be part
of a word. Currently these are blanks, punctuation,
and the character which is represented as ¥ on my
terminal (decimal 165, octal 245, hexadecimal A5).

References

The Bible. Containing the Old and New Testa-
ments. Revised Standard Version. American
Bible Society. New York: 1952.

Die Bibel. Mit Apokryphen. Nach der Ubersetzung
Martin Luthers neubearbeitet. Deutsche Bibel-
gesellschaft. Stuttgart: 1985.

KNUTH, Donald E. The TEXbook. Addison-Wesley
Publishing Company. Reading, Mass.: 1986.

STEELE, Guy L., Common Lisp. The Language. 2"¢
ed. Digital Press. 1990.

CLEASBY, Richard and Gudbrand Vigfusson. An
Icelandic-English Dictionary. 2™ ed. The
Clarendon Press. Oxford: 1957.

403

WILLIAMSON, Hugh. Methods of Book Design. The
Practice of an Industrial Craft. 34 ed. Yale
University Press. New Haven: 1983.

WINSTON, Patrick Henry and Berthold Klaus Paul
Horn. LISP. 34 ed. Addison-Wesley Publish-
ing Company. Reading, Mass.: 1989.

¢ Laurence Finston
Skandinavisches Seminar
Georg-August-Universitét
Humboldtallee 13
D-37073 Gottingen, Germany
lfinstol@gwdg.de



TUGboat, Volume 19 (1998), No. 4

403

Language Support

Cyrillic encodings for BTEX 2¢
multi-language documents

A. Berdnikov, O. Lapko, M. Kolodin,
A. Janishevsky, A. Burykin

Abstract

This paper describes the X2 and the T2A, T2B, T2C
encodings designed to support Cyrillic writing sys-
tems for the multi-language mode of IXTEX 2¢. The
encoding X2 is the “Cyrillic glyph container” which
can be used to insert into KTEX 2¢ documents text
fragments from all modern Cyrillic writings, but
it does not strictly obey all the rules of INTEX 2¢.
The encodings T2A, T2B and T2C are the “true”
IXTEX 2¢ encodings which satisfies all the require-
ments of the TEX 2¢ kernel, but as a result three
encodings are necessary to support the whole variety
of languages based on the Cyrillic alphabet.

These restrictions of the IATEX 2¢ kernel, the
specific features of Cpyrillic writing systems and
the basic principles used to create the encodings
X2 and T2A, T2B, T2C are considered. This
project supports all the Cyrillic writing systems
known to us, although the majority of the accented
letters need to be constructed using internal TEX
tools. The X2 encoding was approved at CyrTUG-
97— the annual conference of Russian-speaking TEX
users and was previously presented at the EuroTEX-
98 Conference. The encodings X2, T2A, T2B and
T2C were intensively discussed on the cyrtex-t2
mailing list.



404

1 Introduction

The project (originally named T2) to produce en-
codings necessary to support modern Cyrillic lan-
guages in IATEX 2¢ multi-language mode was initi-
ated at the TUG-96 Conference in Dubna. this pa-
per presents the results of that project. Although
some minor corrections could still appear as new in-
formation about minor Cyrillic writings appear, the
kernel of the project seems to be stable. The encod-
ing support includes:

e LHfont font collection version 3.2—the Com-
puter Modern Cyrillic fonts and European
Computer Modern Cyrillic fonts created by
0. Lapko,

e T2enc macro package created by V. Volovich
and W. Lemberg—the input and output en-
coding and font definitions necessary for the
IATEX 2¢ packages fontenc and inputenc,

e the hyphenation patterns in encoding-indepen-
dent style: ashyphen by A. Slepuhin, ruhyphen
by D. Vulis, Ivhyphen by M. Vorontsova and
S. Lvovski, znhyphen by S. Znamenskii,

e rusbabel package created by V. Volovich and
W. Lemberg to support Cyrillics (based on new
encodings) in BABEL.

The [-versions of these packages are on the
TEXLive 3 CD-ROM distribution. The final versions
are available on CTAN.!

Support for Cyrillics includes the following en-
codings:

e X2—the Cyrillic glyph container which con-
tains all the glyphs necessary to support mod-
ern Cyrillic writing. It does not obey all the
specifications that IMTEX 2¢ requires for an en-
coding with the prefix T, but as a result it
is enough to have just one encoding to insert
in IMTEX 2¢ documents the characters, words,
names, bibliography references, short sentences,
citations, etc., specific for all modern Cyrillic
writings without too large an increase in the
number of fonts used for this purpose (i.e., this
encoding is a tool which enables Latin-writing
people to occasionally use Cyrillics in their doc-
uments). The price is that some Cyrillic letters
do not exist as a separate glyphs but must be
composed from pieces (accents and modifiers)
contained in X2, and the user must obey some
rules of safety (described in section 6) since X2
does not satisfy all the requirements obligatory
for T(n) encodings;

1 /fonts/cyrillic, /languages/hyphenation/ruhyphen,
and /macros/latex/contrib/supported/t2.

TUGboat, Volume 19 (1998), No. 4

e T2A, T2B, T2C — the encodings which strictly

satisfy the requirements necessary for IATEX 2¢
multi-language mode. With these encodings it
is safe to mix different languages inside your
documents and to use large pieces of text with-
out any problems. The price is that it is neces-
sary to have three encodings (and an enormous
number of fonts each in agreement with the en-
coding conventions of the European Computer
Modern fonts) to support the whole variety of
Cyrillic alphabets. Some Cyrillic languages are
supported by one or two encodings from the
T2x% encoding family, some are supported by all
three encodings. The encodings are in agree-
ment with the BTEX 2¢ multi-language mode
and encoding paradigm. Although there are no
obstacles to the use of these encodings for orig-
inal Cyrillic texts, native users may have differ-
ent preferences;

LRO and LR1—the encodings which combine
the OT1 encoding for 0—127 and Cyrillic let-
ters and symbols from the leading languages of
the Former Soviet Union for 128-255. (The
encoding LRO contains the Russian letters only,
the encoding LR1 contains in addition the most
frequently used national letters.) These en-
codings are as close as possible to X2 and
T2A/T2B/T2C and are designed mainly for
non-IATEX formats based on the CM font fam-
ily and the original Plain TEX. There is some
hope (not confirmed at this moment) that LRO
and LR1 may become the inter-platform and
inter-format standard for representing Russian
letters inside TEX (as ASCII is the standard for
English);

LR(n)—1local encodings necessary to support
individual Cyrillic languages. The T2x encod-
ings are intended for the multi-language mode
of INTEX 2¢ and for this reason may be not well
suited to bilingual documents or to the prefer-
ences of the native users. It is definitely not
the task of the T2 working group, but that of
the national TEX User Groups, to organize local
encodings that are useful for their language;

TS2—the encoding containing accents, non-
letter symbols, etc., necessary for Cyrillic writ-
ings which are outside X2 and T2x% encodings.
This encoding is under consideration, and with
great probability all necessary additional glyphs
could be added to TS1 encoding. (The latter
case has the advantage that it prevents the in-
crease of the number of fonts needed to support
multi-language mode in WTEX 2¢);



TUGboat, Volume 19 (1998), No. 4

e LWN —the encoding which generalizes the
WNCyr font family by adding new Cyrillic
letters and new substitution pairs (ligatures)
based on ASCII Latin input. It is suitable for
Latin-writing users who use Cyrillics only occa-
sionally. (This encoding is still under develop-
ment and is not described here.);

e T5 encoding(s) to support Old Slavonic, Gla-
golitic, Church Slavonic, etc., writings. The
project to develop these encodings has just
started and its discussion is outside the scope
of this publication.

2 PETEX 2¢ system of encodings

The following types of encodings are recognised by
the MTEX Project:?

OT(n) — essentially 7 bit ‘old’ encodings. Typically
these will be small modifications of the origi-
nal TEX encoding, OT1 (for example, OT4, a
variant for Polish).

T(n)—8 bit Text Encodings. T(n) encodings are
the main text encodings that ITEX uses. They
have some essential technical restrictions to
enable multilingual documents with standard
TEX: (a) they should have the basic Latin al-
phabet, the digits and punctuation symbols in
the ASCII positions, (b) they should be con-
structed so that they are compatible with the
lowercase code used by T1. Further discussion
of the technical requirements for T(n) encod-
ings is given in section 3.

X(n) —other 8 bit Text Encodings (eXtended, or
eXtra, or X=Non Latin). Sometimes it may be
necessary, or convenient, to produce an encod-
ing that does not meet the restrictions placed
on the T(n) encodings. Essentially arbitrary
text encodings may be registered as X(n), but
it is the responsibility of the maintainers of the
encoding to clearly document any restrictions
on the use of the encoding.

TS(n) —Text Symbol Encodings. FEncodings of
symbols that are designed to match a cor-
responding text encoding (for example, para-
graph signs, alternative digit forms, etc.). The
font style of fonts in TS(n) encoding will or-
dinarily be changed in parallel with that of
the fonts in T(n) encoding using NFSS mecha-
nisms. As a result, at any moment the TS(n)
font style is compatible with the T(n) font and
the glyphs from TS(n) font (accents, punctu-

2 The following text is slightly adapted from a post by
David Carlisle to the mailing list cyrtex-t2.

405

ation symbols, etc.) can be mixed with the
glyphs from the corresponding T'(n) font.

S(n) — Symbol encodings. The style of fonts in S(n)
encoding need not be synchronized with that
of T(n) fonts. These encodings are used for
arbitrary symbols, ‘dingbats’, ornaments, frame
elements, etc.

A(n) — Encodings for special Applications (not cur-
rently used).

Ex — Experimental encodings but those intended for
wide distribution (currently used for the ET5
proposal for Vietnamese).

L*— Local, unregistered encodings (for example,
the LRO, LR1 and LR(n) encodings mentioned
above).

OMx* — 7 bit Mathematics encodings.
Mx —8 bit Mathematics encodings.
U — Unknown (or unclassified) encoding.

3 Specifications for T(n) and X(n)
encodings

There are two main restrictions to be fulfilled before
an encoding may be considered as an encoding with
the prefix ‘T’ satisfying the requirements of the
IXTEX 2¢ kernel:

e the \lccode—\uccode pairs should be the same
as they are in the BTEX 2¢ kernel (i.e., as they
are in the T1 encoding);

e the Latin characters and symbols: !, °, (,
P R T A T N
@ (questionable), 0-9, A-Z, a-z should be at
the positions corresponding to ASCII, and the
symbols produced by the ligatures --, ——-, ¢,
> (at arbitrary positions).

If the encoding requires the redefinition of the values
\lccode\uccode, or if it does not contain the
necessary Latin characters in the ASCII positions,
it will produce undesirable effects in some situations
inside IWTEX 2¢ and will make use of the encoding
incompatible with the general multi-language mode.
The reasons for such restrictions are explained in
detail in [1].

Although the BTEX Team’s technical specifications
for X(n) encodings are less restrictive than those for
‘ordinary’ text encodings, there are corresponding
restrictions on their use, and some desirable proper-
ties for them to have. In particular:

e If the encoding does not have Latin letters in
ASCIT slots then the users must take care not
to enter such text, otherwise ‘random’ incorrect
output will be produced, with no warning from



406

the IATEX system. Also, care must be taken
with ‘moving’ text that is generated internally
within I¥TEX (such as cross references), which
may fail if the encodings change;

e To reduce the problems with cross reference in-
formation, the IXTEX maintainers strongly rec-
ommend that at least the digits and ‘com-
mon’ punctuation characters are placed in their
ASCII slots;

e If the encoding uses a lowercase table that is
incompatible with the lowercase table of T1,
then it is not possible to mix this encoding and
a T(n) encoding within a single paragraph, and
obtain correct hyphenation with standard TEX.

If the X(n) encoding does not use a lowercase ta-
ble that is compatible with that of T1, the package
supporting this encoding should ensure that encod-
ing switches only happen between paragraphs (or
that hyphenation is suppressed when temporarily
switching to the new encoding). It should be noted
that this restriction on the lowercase table applies
only to systems using standard TEX (version 3 and
later). Using e-TEX version 2 will remove the need
for this restriction as the hyphenation system has
been improved —it will use a suitable lowercase ta-
ble for each language (the table will be stored along
with each language hyphenation table), and surely
it deals not at all with the Omega system.

4 “Cyrillic glyph container” —the X2
encoding

The encoding X2 should include all the glyphs neces-
sary to represent in I/ TEX 2¢ documents containing
texts from stable Cyrillic languages. The basis of
X2 is the Russian alphabet (since it is the main lan-
guage used for publication in Cyrillic). Taking ac-
count of the variety of old Cyrillic texts, only those
modern alphabets which are still in use are included
in X2. The exceptions are the characters B /5, &/ x,
V' /v which were used in Russian and Bulgarian texts
at the beginning of the 20" century.

The X2 encoding is designed so that by com-
bining "00—"7f from OT1 and "80—"ff from X2
one can construct an encoding which is adequate to
support the most common Cyrillic languages. This
permits use of X2 as the base Cyrillic encoding
for a variety of TEX formats (Plain, AMS-TEX,
BLUETEX, I*TEX 2.09, etc.) as well as BTEX 2¢.
(This local encoding is called LR1 below. The
design aim for LR1 was to select glyphs required by
the most widely-used languages and to put them
into the 128255 section of X2.)

Unfortunately the full set of glyphs including
accented letters is too big to fit into 256 slots,

TUGboat, Volume 19 (1998), No. 4

especially taking into account the \1ccode—\uccode
restrictions. So it is necessary to accept some
principles of selection which enable us to decrease
the number of Cyrillic glyphs included in X2:

1. The X2 encoding follows the IATEX 2¢ agree-
ments about \lccode-\uccode not to produce
garbage for the headings, table of contents,
hyphenations inside paragraphs, arguments of
\uppercase and \lowercase;

2. All glyphs used in publishing for some language
are included in X2 if they cannot be constructed
as accented letters or letters with additional
modifiers using TEX commands. Variant glyphs
for Cyrillic alphabets are also included in X2
if there is some free space and if different
languages use different variants;

3. The X2 encoding includes all punctuation sym-
bols, digits, mathematical symbols, accents, hy-
phens, dashes, etc., needed to form the full set
of symbols necessary for Cyrillic typography;

4. The additional Cyrillic letters which are used in
the PC 866 and MS Windows 1251 code pages
are included in X2 even if they are accented
forms;

5. Glyphs which are not used now but which were
used at some stage in the 20*" century may
be included if there are good reasons to do
so (as, for example, with the old Russian and
Bulgarian letters);

6. Glyphs which were used in old Cyrillic texts be-
fore 1900 (Old Slavonic, Church Slavonic, Gla-
golitic, old phonetic symbols, etc.) should be
moved to a separate glyph container. There
could also be an additional glyph container to
collect the exotic glyphs used in some contem-
porary Cyrillic texts;

7. When jettisoning accented letters it is neces-
sary to take into account that they may be nec-
essary for hyphenation patterns for some lan-
guages (if such patterns have been created or
if there is a chance that they will be created
sometime). For example, accented letters for
Russian, Ukrainian and Belorussian, Kazakh,
Tatar, and Bashkir are included in X2;

8. When deciding whether to jettison an accented
letter that is used in a language supported by
LR1, one must keep in mind that only the CM
accents are available in that encoding;

9. The following priorities are used when the ac-
cented letters or letters with simple modifiers
are thrown away: (0) letters which are easily
constructed by the internal command \accent
(so that the letters using accents available in



TUGboat, Volume 19 (1998), No. 4

CM fonts have lower significance); (1) letters
which contain a centered diacritic below the let-
ter (cedilla, ogonek, dot, macron) and are easily
constructed using a command similar to \c in
Plain TEX; (2) letters which contain a horizon-
tal stroke positioned symmetrically; (3) letters
which require special alignment of accents and
modifiers;

10. Accents and modifiers used in Cyrillic are in-
cluded in X2 even if all accented forms are in-
cluded in X2 for some other reasons (an exam-
ple is Cyrillic breve used for 1 and 37);

11. Latin letters or glyphs which are similar to some
Latin letter (used in Macedonian, Kurdish, etc.)
are placed at the same positions as the Latin
letters are in ASCII. Among other things, this
increases the number of languages supported by
the LR1 encoding;

12. Whenever it is possible, glyphs (ASCII, accents,
special symbols, etc.) are placed at the same
positions as they are placed in T1 encoding.

The X2 encoding is shown in Fig. 1. The Rus-
sian letters A~ 5, a— s (except E and &) are placed
in the only region in the encoding table where 32
consecutive letter positions are available—i.e., po-
sitions "c0—"df and "e0—"ff. The Russian letters
E and & are placed at the end of the block "80—
"9¢ and "aO—"bc which simplifies the ordering of
non-Russian letters. Latin letters and letters similar
to Russian letters are placed as in ASCII. Letters
used in other Cyrillic alphabets are grouped into
the parts "80—"ff and "00—"7f of the encoding
table according to the “popularity” of the corre-
sponding languages (to satisfy the requirements of
the LR1 encoding). They are placed in free posi-
tions reserved by IMTEX 2¢ for letters in some quasi-
alphabetic order. The old Russian and Bulgarian
letters are placed at the end of the block of letters
in "00—-"7f.

Accents and modifiers are placed in X2 at "00—
"1f; those also used by T1 are placed at the same
positions as in T1. The same is true for additional
symbols produced by the ligatures --, *>’, etc. The
punctuation symbols, digits, mathematical symbols,
etc., are placed as they are positioned in ASCII. A
special case is made of the symbols Ne XX § ,, « » which
are essential for Russian typography. These symbols
are placed in "80—"ff at the positions reserved for
symbols, to guarantee the correctness of the LR1
encoding.

Some accents (macron, dot) can be used as
lower accents as well for transliteration systems.
In some specific cases the upper comma ("1b) and

407

lower comma are also used as accents. The lower
accents will be constructed using TEX commands
from the upper accents available in X2.

The accents " ("12) and ™ ("13) are used as
stresses in Serbian; there is no letter in any Cyrillic
language where these symbols are used as “normal”
accents.

The quasi-letters ’ (apostrophe, "27),” (double
apostrophe, "22) and I (palochka, "0d) are used
like letters in some languages but do not have
uppercase and lowercase forms (i.e., for these letters
the uppercase form is just the same as the lowercase
form).

Single quotes are not used in Cyrillic writing,
and for this reason there is no need to keep single
French quotes. Instead, in their place, the angle
brackets { ("0e) and ) ("0f) are provided. Angle
brackets are used in Cyrillic typography, and it is
good if their style is changed in parallel with the
style of other symbols.

The Cyrillic breve “*” ("14) is a very famous
glyph (it is even included in the Adobe and Word-
Perfect Cyrillic fonts). Although all letters with this
accent (M1/i, ¥/¥) are included in X2, it is included
as a special glyph as well.

Cedilla “,” ("0b) and ogonek “” ("0c) are used
by some letters already included in X2 (3, G, ‘€).
These letters have variant forms where cedilla could
be oriented to the left or to the right depending
on the user’s taste. Also, some applications use
ogonek instead of descender for K, X, I, T, etc.
The availability of cedilla and ogonek in X2 makes
it possible to satisfy these needs.

Percentage zero “o” ("18) is included as a useful
idea borrowed from the T1 encoding and EC fonts:
this symbol is used to convert ‘%’ into ‘%o’ and
Pooo’.

Punctuation ligatures, i.e., the symbols pro-
duced by the abbreviations -- (endash, "15), ——-
(emdash, "16), ¢ ¢ (opening English quotes, "10), *’
(closing English quotes, "11) are used in the same
manner and are placed at the same position as in
T1, as is = (the hyphen used for hanging Hyphen-
ation, "7f). It is worth noting that the ligature ——-
(emdash, "16) corresponds to Cyrillic emdash which
(following the traditions of Russian typography) is
much shorter than that glyph in Latin-encoded CM
and EC fonts.

There are the special cross-modifiers: horizon-
tal “” at "17, grave-diagonal “” at "19 and acute-
diagonal “” at "1a which are used to construct from
pieces the letters E'/x, X/x, £/¢ and R/p used in
some minor Cyrillic languages. (These letters are
included as separate glyphs in T2A/T2B/T2C, but



TUGboat, Volume 19 (1998), No. 4

408

3 = & A & B 3 e 3 & < @ 3 A s h
£ %
Wv - ?KEJW ) Ft| won| moalon |5 H3Hqﬂm
e £
e 3 INEAE]E:a ow| | | | o x«moﬂmmoumw
g g
= IS :@VEH o = m Mls | K A2 R ! QueHXSW
X X
g i
= & Vi sg = = PH [ ol 0 | H | S A K| BB el
X X
R - &
W~ I SEERI=R ) MW S RS S = brnVUbW
g g
|« = || = |- B — > | D] ~ > o M| nDBKTnDN
X X
® R
W - o|lR |~ o P O o| wlm = M6uﬂcmw
R R
= ) ol Q|| ar Qe| 58 |1 |i= | @ | 57 o Fl<| = H| =| = a| 85
X X

3 = & & & B S s 3 =S X @ 3 A s "

Figure 1: The “Cyrillic glyph container” X2



TUGboat, Volume 19 (1998), No. 4

unfortunately the limit of 256 characters prevents
including them in X2.)

The positions "1c/"1d and "le/"1f are used
for the exotic letters §/8 and H/f used by some mi-
nor Cyrillic alphabets. Although following IATEX 2¢
rules these positions should be used for symbols, not
for letters, we have made them exceptions from the
severe IATEX 2¢ requirements. Formally speaking,
the IMTEX 2¢ requirements are not violated since the
\lccode\uccode data for these positions conserve
the original values. Instead of the explicit use of
the \lccode-\uccode mechanism, the lowercase—
uppercase conversion is performed by the IMTEX 2¢
\MakeUppercase and \MakeLowercase transforma-
tions using the list \@uclclist of identifiers. As a
result these “letters” cannot be used in hyphenation
patterns and they break the automatic hyphenation
whenever they appear in a word. The gain is that
even exotic Cyrillic texts could be created (if neces-
sary) using X2 only and without additional encod-
ings and fonts.

5 “True” BTEX 2¢ encodings T2A, T2B,
T2C

The base features of the T2x encodings are deter-
mined by the IATEX 2¢ specifications for T(n) encod-
ings and by the already created X2 encoding. Some
more requirements are added due to the necessity to
keep the fonts in the T'1, X2 and T2x encodings com-
patible. For example, it is necessary to keep similar
glyphs at the same positions in all fonts whenever it
is possible. As a result the following basic principles
appear.

1. The set of T2* encodings supports the full set
of modern Cyrillic languages, each Cyrillic lan-
guage is supported at least by one encoding T2x
so that there is no necessity to mix encodings
for some languages;

2. Cyrillic letters occupy the positions reserved
in WTEX 2¢ for letters, Cyrillic symbols— po-
sitions reserved for symbols, Cyrillic accents—
positions reserved for accents;

3. Letters included in T2x* follow the ITEX 2¢ con-
vention about uppercase and lowercase letters
(i.e., have the same \uccode-lccode assign-
ments as in T1);

4. ASCII glyphs (Latin letters, digits, mathemat-
ical and punctuation symbols, etc.) are placed
at "20-"7f;

5. The symbols produced by the ligatures —-, ——-,
€¢ 77 are included at the same positions as
they are in T1 and X2 (it is worth noting
that, as in X2, the emdash glyph is the Cyrillic

409

emdash which is shorter than that in OT1 and
T1);

6. The fl-ligatures (ff, fi, fl, ffi, fil) are included at
"1b—"1f as in T1 to keep the full set of Latin
glyphs necessary for typography;

7. The standard accents and symbols, and Cyril-
lic-specific accents and symbols used in "00—
"1a of X2, are reproduced in T2% at the same
positions except the cross-modifiers which are
not necessary (the letters with cross-modifiers
are included as separate glyphs);

8. The Russian alphabet is reproduced similar to
X2;

9. The symbols specific to Cyrillic typography (N
1§, « ») are reproduced in "9d, "9e, "9f, "bd,
"be and "bf, similar to X2;

10. Positions "80—"9b and "a0—"bb are used for
national Cyrillic letters (these are the only po-
sitions that differ from the T2x encodings since
all other codes are already fixed as described
above);

11. To prevent an increase in the number of en-
codings up to infinity, the accented letters for
Cyrillic languages which do not have the hy-
phenation tables in TEX format (and rarely will
have in future) are not included;

12. Equivalent letters occupy just the same posi-
tions in all the T2% encodings whenever possi-
ble (i.e., some glyphs may be absent in some
encodings, but if the glyph is included in an en-
coding, it occupies the same position as in the
other encodings).

The encodings can therefore be decomposed
into the following regions:

— the accent, non-ASCII punctuation and
ligature symbols ("00—"1f),

— the ASCII-encoded Latin letters, digits,
punctuation and mathematical symbols,
etc. ("20-"7f),

— non-letter symbols at "9d—"9f and "bd -
"bf (NQ Q § » « »)7

— specific (uppercase and lowercase) Cyrillic
letters ("80—"9b, "a0—"bb),

— uppercase and lowercase Russian letters
("cO—"df, "e0—"£f, "Oc, "bc).

The accent part (see Fig. 2) is copied from X2 with
minor changes:

a) the exotic letters ("1c—"1f) and the up-
per comma accent ("1b) are substituted by

the ff—ligatu]f’es “ﬁ777 LLﬁ777 “ﬂ”, “ﬁ”7 “j:flﬂ’



410 TUGboat, Volume 19 (1998), No. 4

x0/x8 | x1/x9 | x2/xA | x3/xB | x4/xC | x5/xD | x6/xE | x7/xF
Ox . — - Ox
, ) I ( )
13 7 ~ ~ o o -
1x 1x
0 1 ] ft fi f il il

a) Accents, ligatures, special symbols, etc.

x0/x8 | x1/x9 | x2/xA | x3/xB | x4/xC | x5/xD | x6/xE | x7/xF
| " )
o |- ! i # $ %o & o
( ) + : - : /
0 1 2 3 4 ) 6 7
3x 3x
8 9 : ; < = > ?
Q@ A B C D E F G
4x 4x
H I J K L M N O
P Q R S T U A% W
5x 5x
X | Y | % [ \ ] - _
‘ a b c d e f g
6x 6x
h i J k | m n o}
- P T S t u 1/ w -
x y z { | } -
b) ASCII glyphs
x0/x8 | x1/x9 | x2/xA | x3/xB | x4/xC | x5/xD | x6/xE | x7/xF
A b B r ik E 2K 3
Cx — Cx
n n K JI M H O IT
P C T Y ) X 11 9
Dx Dx
I 11, b bl b ) 1O bal
Ex a 6 B r I e K 3 Ex
n 1 K M H 0 I
Fx P ¢ T 4 x x 1 Fx
oI T b bl b 9 IO it

¢) Russian letters

Figure 2: Common parts in T2A/T2B/T2C



TUGboat, Volume 19 (1998), No. 4

b) the cross-modifiers are substituted by the
compound-word-mark symbol® ("17), the
dotless-i ("19) and the dotless-j ("1a) like
it is in T1.

The ASClI-encoded Latin letters, digits, punctu-
ation and mathematical symbols at "20—-"7f are
placed exactly as in the T1 encoding as shown in
Fig. 2.

The Russian alphabet letters and non-letter
symbols at "9d—"9f, "bd— "bf are just copied from
the corresponding positions in the X2 encoding (see
Fig. 2).

The component which is different in T2A /T2B/
T2C/ are the national letters at "80—"9b and "a0—
"bb, which are shown in Fig. 3 and Table 1. Al-
though we tried to fulfill the requirement that the
equivalent letters should occupy the same positions
in all encodings, it was impossible to completely ful-
fill this requirement. Fortunately there are only two
exceptions: the letters Jb/m and Ib/m are placed at
"87/"a7 and "9b/"bb in T2A, but at "88/"a8 and
"99/"b9 in T2B. All other letters and symbols in
T2A, T2B and T2C (and in the accent part "00-
"la, symbol/digit part "20—"3f, "Bb—"5f, "7b—
"7f and lower part "80—"ff of X2) have fixed po-
sitions.

A summary of the languages covered by
T2A/T2B/T2C is shown below. The encoding T2A
contains the leading languages sorted by using sta-
tistical data on populations. The encoding T2B con-
tains the majority of the remaining languages. Fi-
nally, the encoding T2C contains several languages
with exotic letters which do not fit into T2A or
T2B: Abkhazian, Orok (Uilta), Saam (Lappish),
Old-Bulgarian, Old-Russian. Due to the intersec-
tions between Cyrillic alphabets some languages are
supported by two or three encodings simultaneously:

T2A: Abaza, Avar, Agul, Adyghei, Azerbaidzan,
Altai, Balkar, Bashkir, Belorussian, Bulgar-
ian, Buryat, Gagauz, Dargin, Dungan, Ingush,
Kabardino-Cherkess, Kazah, Kalmyk, Karakal-
pak, Karachaevskii, Karelian, Kirgiz, Komi-
Zyrian, Komi-Permyak, Kumyk, Lak, Lez-
gin, Macedonian, Mari-Mountain, Mari-Val-
ley, Moldavian, Mongolian, Mordvin-Moksha,
Mordvin-Erzya, Nogai, Oroch, Osetin, Rus-
sian, Rutul, Serbian, Tabasaran, Tadjik, Tatar,
Tati, Teleut, Tofalar, Tuva, Turkmen, Udmurt,

3 The empty character with the zero thickness and the
height equal to lezx used in EC fonts and T1 encoding for
special applications — such as hyphenating compound words,
breaking down ligatures, creating accents to be placed over
the invisible space between two letters.

411

Uzbek, Ukrainian, Hanty-Obskii, Hanty-Sur-
gut, Gipsi, Chechen, Chuvash, Crimean-Tatar;

T2B: Abaza, Avar, Agul, Adyghei, Aleut, Al-
tai, Balkar, Belorussian, Bulgarian, Buryat,
Gagauz, Dargin, Dolgan, Dungan, Ingush, Itel-
men, Kabardino-Cherkess, Kalmyk, Karakal-
pak, Karachaevskii, Karelian, Ketskii, Kirgiz,
Komi-Zyrian, Komi-Permyak, Koryak, Kumyk,
Kurdian, Lak, Lezgin, Mansi, Mari-Valley, Mol-
davian, Mongolian, Mordvin-Moksha, Mord-
vin-Erzya, Nanai, Nganasan, Negidal, Nenets,
Nivh, Nogai, Oroch, Russian, Rutul, Selkup,
Tabasaran, Tadjik, Tatar, Tati, Teleut, To-
falar, Tuva, Turkmen, Udyghei, Uigur, Ulch,
Khakass, Hanty-Vahovskii, Hanty-Kazymskii,
Hanty-Obskii, Hanty-Surgut, Hanty-Shurysha-
rskii, Gipsi, Chechen, Chukcha, Shor, Evenk,
Even, Enets, Eskimo, Yukagir, Crimean Tatar,
Yakut;

T2C: Abkhazian, Bulgarian, Gagauz, Karelian,
Komi-Zyrian, Komi-Permyak, Kumyk, Mansi,
Moldavian, Mordvin-Moksha, Mordvin-Erzya,
Nanai, Orok (Uilta), Negidal, Nogai, Oroch,
Russian, Saam, Old-Bulgarian, Old-Russian,
Tati, Teleut, Hanty-Obskii, Hanty-Surgut,
Evenk, Crimean Tatar.

6 The Cyrillic glyph container X2 versus
Cyrillic encodings T2A, T2B, T2C

As was already specified, there are two main require-
ments essential to the reliable working of IATEX 2¢
in multi-language mode:

e we must keep the \lccode—\uccode table as
in T1,

e we must keep the ASCII encoding for positions
32-127.

Both requirements are fulfilled by the T2A/T2B/
T2C encodings and hence they can be safely mixed
with the Latin encodings OT1 and T1 inside a doc-
ument. The encoding X2 conserves the \lccode—
\uccode values but does not contain these ASCII
glyphs. As a result it may cause problems and unex-
pected effects inside ¥TEX 2¢ documents if the user
is not careful enough. So, why do we need X2 when
we have T2A/T2B/T2C?

The reason is that the requirement to keep all
the ASCII glyphs is very restrictive—it leaves only
61 positions for non-ASCII letters.* To fit all Cyril-
lic letters into T(n) encodings requires three tables

4 For Cyrillic encodings it is even more restrictive: it is
necessary to keep 32 base Russian letters in each encoding
as well since they are encountered in almost all Cyrillic
alphabets.



412 TUGboat, Volume 19 (1998), No. 4

x0/x8 | x1/x9 | x2/xA | x3/xB | x4/xC | x5/xD | x6/xE | x7/xF
r i B R h 2K 3 Jb
8x — 8x
I K K K ¥e D) H H S
0 C v Y Y X II Y
Ox Ox
Y € o B E Ne o} §
r
Ax r b h h ™ 3 * Ax
i K K K BS H "’ S
Bx e G y Y Y X I a By
q € 9 B é ” « »
a) T2A encoding
x0/x8 | x1/x9 | x2/xA | x3/xB | x4/xC | x5/xD | x6/xE | x7/xF
F F L 13} h 2K 0 3
8x 8x
Jb K J1 B JJ H H g
S) C ¥ Y X X X g
9x — 9x
9y | m | o | €| B | » ]| & §
A L F 3 T ) h K 8 5 | A
Jb K ! 5 J H 2 g
Bx © £ y Y X X X q By
q B ) € € ” <« »
b) T2B encoding
x0/x8 | x1/x9 | x2/xA | x3/xB | x4/xC | x5/xD | x6/xE | x7/xF
o LD il T 15) h P R 3
X 8x
M K J1 K JJ H M g
S € € b \% X II ©
9x — 9x
9 H o A E Ne @] §
Ac LD I, T B h P p 5| A
M K 7 k J H N ]
By 5] e ‘€ b \% X I @ Bx
9 H o € ” « »

¢) T2C encoding

Figure 3: The national Cyrillic letters in T2A /T2B/T2C



TUGboat, Volume 19 (1998), No. 4
Code T2A T2B T2C

"80/"a0 | ghe-upturned ghe-with-descender hcrossed | pe-with-tail
"81/"al | ghe-hcrossed ghe-hcrossed te+tse
"82/"a2 | dje (T+h with tail) | ghe-with-descender te-with-descender
"83/"a3 | tshe (T+h) ghe-with-tail ghe-with-tail
"84/"ad | h-special h-special h-special
"85/"ab | zhe-with-descender | zhe-with-descender er-with-descender
"86/"a6 | ze-with-descender delta-phonetical er-gravecrossed
"g7/"a7 | lje zet zet
"88/"a8 | i-with-umlaut lje em-with-descender
"89/"a9 | ka-with-descender ka-with-descender ka-with-descender
"8a/"aa | ka-with-left-poker el-with-descender el-with-descender
"8b/"ab | ka-vcrossed ka-with-tail ka-hcrossed
"8c/"ac | ate el-with-tail el-with-tail
"8d/"ad | en-with-descender en-with-descender en-with-descender
"8e/"ae | entghe en+ghe em-with-tail
"gf/"af | S en-with-tail en-with-tail
"90/"b0 | o-barred o-barred o-barred (fita)
"91/"b1l | es-with-descender es-acutecrosseds abkhazian-ch
"92/"b2 | u-with-cyrbreve u-with-cyrbreve abkhazian-ch with descender
"93/"b3 | Y-special Y-special yat (semisoft sign)
"94/"b4 | Y-special-hcrossed | ha-hcrossed izhitsa
"95/"b5 | ha-with-descender ha-with-descender ha-with-descender
"96/"b6 | tse-macedonian ha-with-tail tse-macedonian
"97/"b7 | che-vcrossed che-with-left-descender abkhazian-ha
"98/"b8 | che-with-descender | che-with-descender che-with-descender
"99/"b9 | e-ukrainian nje en-with-right-tail
"9a/"ba | shwa shwa shwa
"9b/"bb | nje epsilon big yus

Table 1: The national Cyrillic letters in encodings T2A/T2B/T2C

413

to achieve the coverage of X2: the problem is that
most characters in the T(n) tables are the same.
And to support each such T(n) encoding it is neces-
sary to have a separate font class like the EC fonts.

To keep such enormous numbers of fonts is
too large a price for people who use Cyrillics only
occasionally. On the other hand, if all the Cyrillic
glyphs are put into just one table without the Latin
letters in 32—-127, but in a way that satisfies the
\lccode—\uccode requirements, one table and one
font class is enough provided the user obeys some
elementary rules of safety. This “economy mode” is
implemented by X2.

There is a similar situation for Old Slavonic
characters and some other encodings which are only
occasionally used by normal users. To resolve this
problem, “glyph containers” like X2 could again
be helpful. The “glyph container” encodings X(n)
should be an intermediate case between T(n) and
the “free style” X{n): such encodings do not have

ASCII in 32-127, but they do have the standard,
compatible \1ccode—\uccode values.

Currently the IWTEX Team only supports the
T(n) encodings and TS encodings, while the support
of an X(n) encoding is entirely the responsibility of
the designer of the encoding.® For the “glyph con-
tainer” X2 such support should include listing some
simple rules which should be followed by Users so
as to avoid strange and undesirable effects. The X2
encoding does not contain Latin ASCII letters but
only digits, punctuation and mathematical symbols,
etc., therefore the rules should guarantee that text
containing Latin ASCII letters is never used with
the X2 encoding:

5 It seems that there should be support for such “glyph
container” encodings by the IXTEX Team as well (such sup-
port should include the registration procedure for glyph con-
tainers and maintenance of the official list of exceptions where
the glyph container encodings produce undesirable results).



414

1.

If you use ASCII Latin letters in the text part of
your document, some Latin encoding (i.e., OT1
or T1) must be active for this piece of your text;

. The following commands should be used only

outside the range where the X2 encoding is
active (or should be preceded by the explicit
specification of some “Latin” encoding) because
they may implicitly include the Latin text in
your document:

\part, \chapter, \section,
\subsection, \subsubsection,
\paragraph, \subparagraph, \caption,
\tableofcontents, \1listoftables
\listoffigures, \ref, \pageref, \cite,
\item, \labelenumzz, \labelitemaz,
\makelabel, \numberline, \thechapter,
\thesection, \thesubsection, \date,
\today.

Exactly the same requirement is needed for
all user-defined macros (or those loaded from
external packages) that have ASCII Latin text
in their body but without explicit specification
of the “Latin” encodings OT1 or T1 for this
text;

When you deal with floating objects (or moving
arguments), you should not rely on the assump-
tion that the Cyrillic letters are used by ITEX
when the floating material is inserted into the
document. For example, if Cyrillic letters are
used inside some command defining the floating
object, the encoding X2 should be activated ex-
plicitly in front of Cyrillic letters even if X2 is
active at the point where the command is is-
sued. Among such commands are:

(a) the floating environments:
\begin{table}-\end{table},
\begin{figure}-\end{figurel,
\begin{tablex}—-\end{tablex},
\begin{figure*x}—\end{figurex*},

(b) the commands that define floating text
explicitly:

\author, \title, \date, \address,
\name, \signature, \telephone,
\footnote, \footnotetext, \thanks,
\marginpar, \markboth, \markright,
\bibitem, \topfigrule, \botfigrule,
\dblfigrule, \footnoterule,

(¢) the commands that define headers, foot-
ers, margin remarks, etc., implicitly:
\part, \chapter, \section,
\subsection, \subsubsection,
\paragraph, \subparagraph, \caption,

TUGboat, Volume 19 (1998), No. 4

(d) the commands that write, explicitly or
implicitly, text to external files, which may
be loaded outside the X2 encoding;:

\addtocontents, \addcontentsline,
\glossary, \index, \part,
\chapter, \section, \subsection,
\subsubsection, \paragraph,
\subparagraph, \caption.
Similarly, if such a floating command includes
Latin letters and the resulting object may ap-
pear inside the range where X2 is active, some
Latin encoding (i.e., OT1 or T1) should be acti-
vated explicitly before the Latin-encoded text.

. Just the same requirement holds for all com-

mands which can occasionally insert Cyrillic or
Latin text where the Latin encodings OT1/T1
or the “Cyrillic glyph container” encoding X2
are active. For example, you should be care-
ful with the definition and re-definition of the
following commands:

(a) commands which create automatically
generated text used by other commands:

\labelenumzz, \labelitemzz,
\makelabel, \numberline, \thechapter,
\thesection, \thesubsection, \today,

(b) commands which are used in international
IATEX to define language-specific names:

\abstractname, \appendixname,
\alsoname, \ccname, \chaptername,
\contentsname, \enclname,
\headtoname, \figurename, \indexname,
\listfigurename, \1listtablename,
\notesname, \pagename, \partname,
\prefacename, \seename, \tablename,

(¢) commands which implicitly define headers,
footers, margin remarks, etc., and/or im-
plicitly write something into external files:
\part, \chapter, \section,
\subsection, \subsubsection,
\paragraph, \subparagraph, \caption,
\addtocontents, \addcontentsline,
\glossary, \index,

(d) commands which create floating text and
floating environments:

\author, \title, \date, \address,
\name, \signature, \telephone,
\footnote, \footnotetext, \thanks,
\marginpar, \markboth, \markright,
\bibitem, \topfigrule, \botfigrule,
\dblfigrule, \footnoterule,
\begin{table}—-\end{tablel,
\begin{figure}—-\end{figurel,



TUGboat, Volume 19 (1998), No. 4

\begin{table*}—\end{tablex},
\begin{figure*x}—\end{figurex*},

(e) macros and user-defined commands which
may be expanded unintentionally inside
or outside X2:

\def, \newcommand, \newcommand*,
\renewcommand, \renewcommandx,
\providecommand, \providecommandx,
\newenvironment, \newenvironmentx,
\renewenvironment,
\renewenvironment*,

\newtheorem, \ProvideTextCommand,
\ProvideTextCommandDefault,
\AtBeginDocument, \AtEndDocument,
\AtEndClass, \AtEndPackage,
\DeclareRobustCommand,
\DeclareTextCommand,
\DeclareTextCommandDefault.

7 The weak points of X2 and T2x

The X2 and T2x* encodings do not contain accented
letters, and (for some languages) this throws the
user back on the \accent primitive which prevents
construction of correct hyphenation tables and de-
stroys kerning pairs. The encodings (especially
X2) are also overloaded (to some extent) with rare
glyphs, which arise from the attempt to collect all
Cyrillic glyphs in one table.

There are the cross-modifiers (horizontal stroke
, vertical stroke “1”  diagonal strokes “” and
“7”) which are included in X2 but are absent in
T2A/T2B/T2C. Although there is a great chance
that these glyphs will be included in TS2 (see
section 8), their status at this stage of the project is
undefined. Similarly, there are the title forms® for
the letters Jb/m and b /B which were included in
previous (intermediate) versions of X2 but are now
excluded for some reason.

Another disadvantage of minor importance is
that there are two glyphs (B/b and ©/e) which
correspond to logically different letters: B/b stands
for Saam semisoft sign and for old Russian yat,
and ©/e stands for o-barred and old Russian fita.
Although graphically these symbols are similar, they
are different logically.

This situation can be accepted taking into ac-
count the status of X2 as a glyph table rather than

“w.”

6 The title form is a combination of the uppercase “JI”
or “H” and the bowl from the lowercase “b”. These glyphs
are used for first letters in titles, etc., where the first letter is
capital and other letters are in lowercase mode. For example,
there is the title form “Ij” for the ligature “IJ”/“jj” used in
Dutch. (Note, that the title form “Ij” is absent in T1 and
TS1 encodings.)

415

a table for direct text coding, and the status of
T2+ as the modern Cyrillic encodings. In struc-
tured markup, the ambiguity would be addressed by
assigning two symbolic names for each glyph (say,
\yat/\semisft and \fita/\obarred) and only us-
ing the semantically correct one to code texts.

Some preliminary information about exotic
glyphs and pure phonetic symbols has been provided
by linguists studying some minor writing systems.
These letters and symbols are not currently included
in X2 and T2# at all. The reason for not including
the glyphs at this stage is that the writing systems
are very unstable and are subject to change from
publication to publication. There is no justification
for including such symbols in the version of X2 and
T2x proposed as a standard until the situation be-
comes stable.

It seems that all the specific Cyrillic glyphs used
in modern Cyrillic alphabets are included in X2 and
in one of the T2%, but there is also a chance that
some minor writing system is omitted. There is also
a chance that some linguists suggest a new alphabet
for some minor language using their own glyphs
not available in X2. Until this happens we can
consider X2 and T2A/T2B/T2C as comprehensive
glyph collections for modern Cyrillic texts (although
not very comfortable and not specifically adjusted
for intensive Cyrillic writing).

8 Some remarks about the TS2 encoding

The TS2 is expected to be the collection of accents
and special symbols which are necessary for Cyrillic
typography, but which are not included into the
encodings X2 and T2A /T2B/T2C for some reasons
(i.e., TS2 is the encoding supplementary to X2 and
T2(n) as TSI is supplementary to T1).

For typographical reasons, ‘wide’ versions of
some accents— macron, tilde, breve, etc.— are de-
sirable. These versions would be used for extra wide
letters: as compared with the Latin alphabet, Cyril-
lic has a far higher proportion of wide letters. Such
wide versions of the accents are good candidates for
a TS2 encoding. Similarly, the lowercase/uppercase
variants of cedilla, ogonek and the accents absent in
T1 and TS1 may make useful additions to T'S2.

The letters Jb/m and Ib/m used in some
Cyrillic languages are actually ligatures “JI+b”
and “H+b”. As well as the uppercase and lowercase
forms there is also a title form for these letters:
the combination of the uppercase form for “JI” or
“H” and the bowl for the lowercase “s”. This form
is used for titles where the first letter is capital
while the other letters are ordinary (a similar effect
occurs for ‘IJ used in Dutch). Such title letters



416

should be placed in TS2 and shared by the X2 and
T2% encodings.

To construct some exotic letters from pieces,
special modifiers are necessary: horizontal stroke
“” vertical stroke “1”, diagonal strokes ‘“” and
. The diagonal strokes are used only for letters
C/¢ (Enetz) and R/p (Saam, or Lappish). Verti-
cal strokes are used only for letters K/x and Y/4
which have become obsolete since modern Azerbai-
jan writing is based on the Latin alphabet. Horizon-
tal strokes are used in several Cyrillic letters (F'/#,
K/k, ¥/y, etc.). There are serious reasons for keep-
ing these modifiers in TS2: there are still minor lan-
guages for which alphabets based on Cyrillic could
be proposed. The availability of these modifiers in
TS2 would support such developments without the
necessity to include more glyphs in the X2 and T2x
encodings.

It is still a question how, and whether, the TS2
encoding should be realized. Taking into account
that there are only a few glyphs really necessary
for it and that there are several positions in TS1
reserved for future extension of this encoding, it
may be a good decision just to combine these two
encodings.

[13%k)
/

9 Acknowledgments

There are many people who have contributed to this
project, and it is difficult to list all of them in this
section. Among the people who contributed the es-
sential components are Mikhail Grinchuk, Vladimir
Volovich, Werner Lemberg, Frank Mittelbach, Jorg
Knappen, Michel Goossens, Andrew Slepuhin, but
the list is not restricted to these names only.

We are especially thankful to Vladimir Vo-
lovich and Werner Lemberg for their work on
macro support for the X2 and T2x encodings and
to the members of the mailing list CyrTgX-T2
who discussed enthusiastically the X2 and T2x
problems. (To subscribe to this list send email
to Majordomo@vvv.vsu.ru with the command:
subscribe cyrtex-t2 your-e-mail-address.)

We are grateful to Robin Fairbairns for his time
spent polishing the text of our papers submitted to
the EuroTgX-98 conference where the preliminary
results of this project (namely, the X2 encoding) was
presented for the first time, and to Michel Goossens
for his efforts to organize the support for Russian
participants at FuroTEX-98.

Finally, although most work on this project was
done on a voluntary basis (as it is traditional for
TEX community), it is worth mentioning that part
of the research was supported by a grant from the

TUGboat, Volume 19 (1998), No. 4

Dutch Organization for Scientific Research (NWO
grant No 07-30-007).

References

[1] A. Berdnikov, O. Lapko, M. Kolodin, A. Jani-
shevsky, A. Burykin. The encoding paradigm
in BTEX2e and the projected X2 encoding
for Cyrillic texts. Proceedings of EuroTEX-98,
Saint-Malo, 1998.

[2] A. Berdnikov, O. Lapko, M. Kolodin, A. Jani-
shevsky, A. Burykin. Alphabets necessary for
various Cyrillic writing systems (towards X2
and T2 encodings). Proceedings of EuroTgX-
98, Saint-Malo, 1998.

[3] A. Berdnikov, O. Grineva. Some problems with
accents in TEX: letters with multiple accents
and accents varying for uppercase/lowercase
letters. Proceedings of FEuroTpX-98, Saint-
Malo, 1998.

[4] K. Piska, Cyrillic Alphabets, in: Proceedings
of TUG96, eds. M. Burbank and C. Thiele,
pp. 1-7, JINR, Dubna; TUGboat 17(2),
pp- 92-98.

[5] O. Lapko, Full Cyrillic: How many languages,
in: Proceedings of TUG 96, eds. M. Burbank
and C. Thiele, pp. 164—170, JINR, Dubna;
TUGboat 17(2), pp. 174—180.

[6] K. Kenneth. The languages of the world. Lon-
don, Henley.

[7] M. Ruhlen. A Guide to the languages of the
world. Stanford University, 1975.

[8] C. F. Voegelin, F. M. Voegelin. Classification
and Index of the World Languages. Academic
Press, 1977.

[9] WWW page by Karel Piska: http://www-hep.
fzu.cz/ piska/

[10] Ethnologue Database:
obi/Ethnologue/eth.Z

ftp://ftp.std.com/

o A. Berdnikov, O. Lapko,

M. Kolodin, A. Janishevsky,
A. Burykin

Institute of Analytical
Instrumentation

Rizskii pr. 26, 198103
St. Petersburg, Russia

berd@ianin.spb.su



TUGboat, Volume 19 (1998), No. 4

Romanized Indic and BTEX

Anshuman Pandey

1 Introduction

In 1990 at the 8th World Sanskrit Conference in
Vienna, a panel of Indologists devised two encod-
ing schemes which would enable them to exchange
electronic data across a variety of platforms. These
schemes are the “Classical Sanskrit” and “Classi-
cal Sanskrit eXtended” encodings, widely known in
Indological circles as CS and CSX, respectively, or
simply, CS/CSX.

2 CS and CSX

The CS and CSX encodings are currently the clos-
est thing to an accepted standardization of the 8-bit
transliteration of Indic scripts. CS/CSX is based on
IBM Code Page 437, whose characters of the range
129-255 have been reassigned with characters tradi-
tionally used for the romanization of Sanskrit.

The accented French and German characters in
the cp437 range 129-223 were not altered, in order
to facilitate the input of these languages as well as
English and Sanskrit. The accented characters re-
quired for Sanskrit were located as far as possible in
the positions used by cp437 for graphic or mathe-
matical symbols.

The re-encoding of ¢p437 was discussed in a
document by Dominik Wujastyk titled Standardiza-
tion of Sanskrit for Electronic Data and Screen Rep-
resentation [1].

CS is a basic inventory of diacritic letters com-
prising the following characters traditionally used
for the transliteration of Classical Sanskrit:

1 m a A 1 I @ U
R r R 1 L I L a N
t T d D n N § S s
m M h H

CSX is an extension of the above which provides
the following additional characters used in Vedic
Sanskrit and in Prakrit:

r a 1 U n a a 1 1
a4 u f v t & 1 u @e
o ¢ o 1

Contrary to what the name indicates CS/CSX
is not limited to the transliteration of Sanskrit, and
may be used to transliterate many other Indic scripts
effectively.

417

3 1ISO 15919 and CSX+

ISO/TC46/SC2/WG12, the International Standards
Organization Working Group for the Transliteration
of Indic, has been busy with the draft ISO 15919
standard [2]. This draft standard provides tables
which enable the romanization of Indic scripts which
are specified in Rows 09-0D and OF of UCS (ISO/IEC
10646 and Unicode).

This romanization is accomplished using plain
ASCII 7-bit (ISO-646) characters, two or three ro-
man characters often being required to represent
a single Indic one. These tables provide for the
Devanagari, Gujarati, Gurmukhi, Bengali (includ-
ing Assamese), Oriya, Telugu, Kannada, Malay-
alam, Tamil, and Sinhala scripts. This draft is not
yet a standard, although work is well advanced.

While ISO 15919 is still in draft stages, it ap-
pears that a consensus has been reached with regard
to the form of transliteration. It was therefore de-
cided that CS/CSX ought to be further extended to
account for the new characters proposed in the draft
standard. John Smith, Dominik Wujastyk, and I
developed an extension to CS/CSX known as CSX+
(Classical Sanskrit eXtended+).

CSX+ aims to be downward compatible with
CS/CSX, save for the relocation of two characters
in positions used for non-breaking spaces in popular
software packages. While seeking to implement the
draft ISO 15919 standard, CSX+ also retains a useful
set of European accented characters, dashes, and
quotes.

Most of the new characters are those required
for the draft ISO 15919 standard, which specifies
the following characters which are unsupported by
CS/CSX:

@ £ i r R f I 1 f
1 1 @ E &8 5 O & vy
P o o om t k kh Kh g
G ¢ C h h

In addition to the above, the following further
characters have been added as being centrally useful
in any text encoding:

“ 2

There is a single “European” accented charac-
ter — ¥ — that CSX inherited from the original Code
Page 437, but that is unlikely to be required for any
Indian or European language. It has been elimi-
nated to save one character slot. Other characters
removed from the code page are the currency sym-
bols sterling, yen, and cent, and the guillemets.



418 TUGboat, Volume 19 (1998), No. 4
128 C 147 6 165 N 184 1 203 & 222 — 241 ¢
129 i 148 & 166 1 185 @ 204 kh 223« 242 T
130 ¢ 149 o 167 1 186 o 205 § 224 a 243 d
131 & 150 @ 168 i 187 R 206 ¢ 225 B 244 D
132 & 151 1 169 1 188 ¥ 207 T 226 A 245 1
133 a 152 & 170 u 189 1 208 & 227 1 246 N
134 & 153 O 171 & 190 1 209 1 228 1 247§
135 ¢ 154 U 172 1 191 ¥ 210 @ 229 1 248 §
136 ¢ 155 i 173 n 192 6 211 @ 230 U 249 s
137 & 156 & 174 T 193 1h 212 5 231 1 250 S
138 ¢ 157 r 175 1 194 t 213 & 232 R 251 7
139 i 158 & 176 1 195 E 214 & 233 T 252 m
140 1 159 r 177 f 196 O 215 1 234 R 253 M
141 1 160 space 178 1 197 n 216 U 235 1 254 h
142 A 161 179 1 198 f 217 G 236 L 255 H
143 A 162 6 180 1 199 1 218 (O 237 1

144 E 163 1 181 & 200 Kh 219 h 238 L

145 = 164 1 182 a 201 k 220 h 239 n

146 & 183 1 202 space 291 — 240 N

Table 1: CSX+ Character Encoding Table

The remaining assignments have been made on
the basis that the best use for the small number of
spare slots available is to use them for capitalised
versions of those new characters with the most need
for capital forms—1i.e., characters capable of begin-
ning a word.

4 Input encoding

As the use of IWTEX amongst Indologists has sig-
nificantly increased, I felt that the CSX+ encod-
ing scheme ought to be adapted for use with IXTEX
through the inputenc package. To serve this end an
input encoding definition file called cp437csx.def
has been developed and placed on CTAN in the di-
rectory fonts/csx/styles/. Such an input encod-
ing definition will make the typesetting of romanized
Indic much easier, and might lead to the develop-
ment of hyphenation patterns for romanized San-
skrit and other Indic languages.

The file cp437csx.def enables text encoded in
CSX+ to be read and accurately typeset by KTEX
without the need for converting the CSX+ text into
IMTEX accent codes. Table 1 provides a map of
the CSX+ encoding character set. A screen font
and driver for displaying CSX+ text on MS-DOS
and OS/2 systems is also available in the directory
fonts/csx/.

The stabilization of the CSX+ encoding, in tan-
dem with the emerging ISO standard, will encourage

further necessary work, such as hyphenation tables
for romanized Indic.

References

[1] Wujastyk, Dominik. Standardization of Roman-
ized Sanskrit for Electronic Data Transfer and
Screen Representation [results of a session held
at the 8th World Sanskrit Conference, Vienna,
1990], in Sesame Bulletin 4(1), 1991, pp. 27-29.
Also available as a PostScript document from
CTAN/fonts/csx/csx-doc.ps.

Stone, Anthony [ed]. ISO Committee Draft
15919: Transliteration of Devanagari and Re-
lated Scripts into Latin Characters. Avail-
able at http://ourworld.compuserve.com/
homepages/stone_catend/trdcdlc.htm.

¢ Anshuman Pandey

University of Washington

Department of Asian Languages
and Literature

225 Gowen Hall, Box 353521

Seattle, WA 98195

apandeyQ@u.washington.edu

http://weber.u.washington.edu/
“apandey/



TUGboat, Volume 19 (1998), No. 4

New Greek fonts and the greek option of
the babel package

Claudio Beccari and Apostolos Syropoulos

Abstract

A new complete set of Greek fonts and their use
in connection with the babel greek extension is de-
scribed. Some suggestions are proposed so as to en-
hance some TEX related utilities and some ITEX 2¢
font description macros.

1 Introduction

TUGboat already reported several papers on the
possibility of typesetting Greek with (IA)TEX. Per-
haps the first paper was the one by Silvio Levy [1]
who, so to speak, set forth a standard of fonts and
macros in order to set texts both in English (or any
other “Latin” written language) and Greek.

His fonts, prepared to be generated with META-
FONT v.1.x, were very good replicas of the “stan-
dard” Didot Greek fonts; besides digits and punctu-
ation marks, they contained the 24 upper case letters
and the 25 lower case ones with all kinds of accents
and breaths and implied such ligatures so as to insert
the diacritical signs by inputting the corresponding
keystrokes before (or after for the iota subscript) the
letter to be marked. The correspondence between
the keys of a “Latin” keyboard (namely the US key-
board) and the Greek letters and the diacritical signs
was established in such a way that everybody, except
perhaps Macintosh users who have access to utilities
for configuring their keyboards for any “alphabet”,
got acquainted with Levy’s convention in such a way
as even people, like Beccari, who are not of Greek
mother language, can read Greek compuscript text
set on the screen with latin characters just as easily
as real Greek text set with true Greek fonts.

Levy’s fonts exploited the METAFONT ability
to describe fonts with 256 glyphs, but at his time
drivers could generally handle only 128 glyph fonts.
Haralambous [3] therefore developed a set of Greek
fonts with 128 glyphs by reducing Levy’s set in such
a way as to keep the substantial and most frequent
accent vowel ligatures, and to do away with the au-
tomatic setting of the initial/medial sigma as op-
posed to the final sigma.

Mylonas and Witney [5] soon after proposed a
set of fonts based on a main 256 glyph font and
its adjunct font (a 128 glyph one) by which they
could cover the extended necessities of the full set of
Greek glyphs, including any sort of breath-accent-
vowel-iota subscript combinations, including the ov
ligature with its diacritics; in this way they imple-

419

mented each “alphabet” with more than 300 glyphs.
Of course, due to TEX limitations, they had to make
some compromises for hyphenation of Greek text; as
TEXies well know, TEX can hyphenate words com-
posed of glyphs taken from the same font, so that
when the adjunct set was called for, TEX was unable
to hyphenate.

Haralambous [4] also described the hyphenation
of ancient Greek, but for several years no further ad-
vances were done in the field of typesetting Greek,
because (we suppose) WTEX was undergoing one of
its major changes, the transformation into WTEX 2¢
with its standard use of the NFSS (New Font Se-
lection Scheme) which has the ability to deal with
several font encodings, and the babel package was
getting richer and richer thanks to the introduction
of the Cork “double” font encoding with 256 glyphs,
that tremendously facilitated typesetting all those
European and extra European languages that use
lots of diacritical signs; moreover Haralambous had
started the enormous task of developing €2, a descen-
dant of TEX that can handle 16 bit Unicode coded
fonts.

Also Dryllerakis [6] generated with METAFONT
a set of Greek fonts that included the regular, bold-
face, slanted and italic typefaces; these fonts are to
play an important role as we shall see soon.

For Greek it was necessary to wait for the con-
stitution of the Greek Society of TEX Users, in order
to have the enthusiasm and the will to sit down and
prepare a complete set of babel macros and environ-
ments capable of handling the necessary change of
font encoding (with the corresponding changes into
the catcodes of the various extended ASCII codes)
and the switching in and out from Greek or Latin
font typesetting.

Syropoulos took the initiative of collaborating
with Johannes Braams, the author and curator of
babel [10], for writing the greek option to the babel
package. When Syropoulos first wrote his greek.1d
language definition file, he made reference to the
Dryllerakis fonts, that were the most complete set
at that time.

Apparently everything was settled for the Greek
authors and for the Ellenists around the world, be-
cause they now had all the necessary tools for type-
setting Greek texts, both as main ones and as cita-
tions within “Latin” written ones.

Beccari, triggered by a teacher of classical Greek
in Italian high schools, was induced to get strongly
involved in producing a set of tools for his friend;
when he had last examined the CTAN archives he
had not noticed the greek extension to babel nor the
Dryllerakis fonts; both had been there for a certain



420

time, but nevertheless he missed them. He started
working on Levy’s fonts, but he wanted to generate
something that could be just as versatile and com-
plete as Jorge Knappen’s ec “Latin” fonts are [7].

When he finally discovered the existence of both
the Dryllerakis fonts and the greek babel extension
by Syropoulos, he found out that his work, after all,
was not a complete waste of time.

In facts Syropoulos could not avoid some short
cuts for the lack of optically compatible sans-serif
Greek fonts, to the point that the “new” KTEX 2¢
font changing commands had to refer to other (not
by Dryllerakis) Greek font families in order to avoid
too many font substitutions.

2 The cb Greek fonts

When Beccari submitted his fonts to Syropoulos,
the latter agreed that the cb set was more complete
and supported the former with lots of helpful sug-
gestions. Beccari ended up with a set of fonts [8],
that he unmodestly called cb Greek fonts (as well
as Kostis Dryllerakis’ fonts are named after him kd
Greek fonts), which is very rich in families, series,
and shapes, so that all ATEX 2¢ font changing com-
mands refer to a specific font, and new commands
may be defined in addition to the standard ones.
According to Beccari’s idea, all the Greek fonts are
supposed to be optically compatible with one an-
other and with the corresponding “Latin” ones. See
the appendix for a sample of mixed text written with
several families and shapes.

His work led him to conclude that the NFSS
idea of encoding, family, series, and shape are possi-
bly incomplete in order to describe a set of fonts, or
at least Beccari’s imagination was not wide enough
to find a better description of the font characteris-
tics.

Beccari decided that his fonts had to be based
on Knappen’s algorithm for interpolating the var-
ious font parameters, just as Knappen’s ec fonts.
So he “borrowed” Knappen’s interpolating macros;
such METAFONT macros work perfectly with the ec
fonts; if they work well also with the cb fonts, it is
just Knappen’s merit, should they behave improp-
erly it is just Beccari’s demerit.

Beccari worked on the families, series and shapes
listed in Table 1; the boldface series applies to all
families except the monospaced ones. The outline
family has only the medium and bold extended se-
ries. Fonts for slides comprise both proportional and
monospaced, visible and invisible varieties, but lack
the serifed proportional shapes, as well as it happens
for the “Latin” ec fonts.

TUGboat, Volume 19 (1998), No. 4

As Table 1 clearly shows, the cb font set is even
wider than the standard ec fonts directly accessi-
ble with the standard KTEX 2¢ font changing com-
mands. Actually the ec fonts include some shapes
that require special commands to become usable in
a document, or require some modifications to the
standard font description files.

Syropoulos’ greek.1d language definition file
contains all the necessary commands to invoke any
of those valid family, series and shape combinations,
and the accompanying .fd font description files be-
have accordingly.

3 METAFONT considerations

It is necessary at this point to underline a drawback
of the ec and cb METAFONT source files. META-

name derives from the jobname special METAFONT
string variable; this jobname is assigned a value equal
to the name of the first file input by the specific
METAFONT run.

This approach does not produce any inconve-
nience with the standard cm fonts; with the ec and
cb fonts, the name of which includes a numerical
part equal to (one hundred times) the design size of
the specific font, it is somewhat redundant to have
hundreds of small files containing just two or three
lines of METAFONT code; in facts they simply spec-
ify the design size again and then input a “generic”
driver file whose task is exactly that of interpolating
the font parameters. Take for example the main file
for the roman medium normal ec (Latin) font:

% This is ecrm1000.mf in text format ...

if unknown exbase: input exbase fi;
gensize:=10;

generate ecrm

After inputting, if necessary, the base file for the ec
fonts, the design size is set with a value that actually
is already part of the file name (a part a factor of
100), and finally inputs the “generic” file for that
family, series and shape.

The cb main files are even simpler; for exam-

ple the main file for the regular medium normal cb
(Greek) font is:
input cbgreek;
(and the same line is contained in any other cb main
file); the trick lies simply in the fact that the file
cbgreek generates the design size directly from the
jobname and from the same jobname it extracts the
“generic” driver file name specific for that family,
series and shape.

1 The 77?7 part of the file extension may be void, or it is
formed by the product of the resolution times the magnifica-
tion of the used METAFONT mode.



TUGboat, Volume 19 (1998), No. 4

421

Table 1: The cb Greek font families, series and shapes

Family Series Shape
regular medium normal
outline bold extended oblique
sans serif monospaced italic
typewriter invisible upright italic

sans serif for slides
typewriter for slides

bold extended invisible
monospace invisible

caps-and-small-caps

Where is the drawback, then? It consists in the
hundreds of small specific main files necessary for
generating the jobname correctly, instead of working
the other way around. This implies that the file
system gets overloaded with hundreds of small files,
individually smaller than the smallest addressable
disk memory unit, that nevertheless clog the disk
with unnecessary information.

The excellent trick devised by Knappen of in-
cluding the design size directly in the file name, so
that the jobname is assigned the correct value, is
sort of hijacked by the rigidity of METAFONT that
does not allow to assign a value to jobname with an
explicit assignment. If one could run METAFONT
with a command such as:

mf \mode:=1jfive; mag:=1; gensize:=10;
input ecrm

with ecrm.mf starting with
jobname:=jobname & decimal (100gensize);

no specific main files would be necessary allowing
for an enormous saving of disk space. In comput-
ers with file systems that are not too smart, each
main file, although smaller than a block or sector
(512 bytes), may reserve up to 16Kb or 32Kb of disk
space, and the hundreds of main files necessary to
generate the ec fonts may take up several megabytes
of disk space.

With the cb fonts Beccari got used to a simple
batch file? that generates the specific main file, runs
METAFONT, and then deletes the now unnecessary
main file:

@echo off
if "%1"=="" goto message
if "j2"=="" goto dpi600

if "%2"=="600" goto dpi600
if "%2"=="300" goto dpi300
echo "Density %2 non allowed"

2 Batch file refers to DOS and related operating systems;
other operating systems may use the terminology of script or
command file.

3 For typesetting reasons some lines are wrapped to the
following line; in other words an indented line should be imag-
ined as a continuation of the preceding one.

echo "Nothing done

echo "===========

goto endbatch

:dpi300

set dpi=300

set mfmode=cx

goto dpiset

:dpi600

set dpi=600

set mfmode=1jfive

:dpiset

if exist %1.mf del %1.mf

echo input cbgreek; > %1.mf

mf \mode:=YmfmodeY; mag:=1; input %1

if errorlevel 1 goto endbatch

gftopk %1.%dpikgt

c:\texmf\fonts\pk\/mfmode¥\beccari
\cbgreek\dpi%dpi%\#%1.pk

move %1.tfm
c:\texmf\fonts\tfm\beccari\cbgreek

rem

del %1.%dpil%gf

del %1.mf

del %1.log

set dpi=

set mfmode=

goto endbatch

:message

echo Font name missing

:endbatch

With this strategy Beccari has the advantage
that unnecessary files are always immediately deleted
and only the .tfm and .pk files of the fonts effec-
tively employed are kept on disk.

The disadvantage is that the above batch file
can not be handled by those utilities that automat-
ically run the generation of .tfm and/or .pk files
with those TEX systems that may call on the fly
such programs as MakeTeXtfm and/or MakeTeXpk*.
At the same time both MakeTeXtfm and MakeTeXpk
are smart enough to perform more elaborate tasks

4 Such utilities with the Windows95 or NT based MikTeX
version 1.10 or later become maketfm and makepk respectively.



422

than simply running METAFONT. They could be
modified so as to handle both the ec and the cb
fonts in a way similar to the above simple batch file.

Since MakeTeXtfm and MakeTeXpk are able to
recognize the font group from the name first let-
ter(s), it would be very simple to add the following
file to the ec file bundle:

% File ecfonts.mf

% General driver file for ec fonts
if unknown exbase: input exbase fi;
string f_name, f_size;
f_name:=substring(0,4) of jobname;
f_size:=substring(4,8) of jobname;
scantokens ("gensize:="&f_size&"/100");
scantokens ("generate "&f_name) ;

so that substituting ecfonts to cbgreek, the pre-
vious batch file and/or the enhanced TEX utilities
could directly generate the .tfm and .pk files with-
out the need of overloading the file system with use-
less files; notice also that since the main driver files
are generated on the fly, if you specify in your source
KTEX 2¢ file something like:

\font\myfont=ecrm2600

i.e. an ec font with a design size that is not in-
cluded in the standard font description file, on run-
ning ITEX the required ecmr2600. tfm is not found,
so that the system is forced to shell out in order to
generate it; this task may be performed without er-
ror messages by the proposed enhanced MakeTeXtfm
utility.

This point sets forward another one: the font
description files .fd for the ec fonts (and for the
moment also for the cb ones) make use of a “name
generating” function genb that most I TEX 2¢ users
are unaware of, because, although it frequently gets
to play its role, it always operates behind the scenes.
This function generates the external font name when
a particular non-preloaded ec font is called for; but
because of the way it is used in the font description
files, it can generate names only for the specified
sizes, not for any size, although the ec fonts (as well
as the cb fonts) can be generated for any size from
5pt to 99.99 pt.

Although the ec and the cb fonts are not vec-
tor fonts (well, unless their source files are compiled
with Mike Vulis’ Vmf METAFONT interpreter that
comes with VIEX, or unless they are treated with
Syropoulos’ perl script mf2pt3 [9] for the generation
of Type 3 fonts, that scale pretty well), under cer-
tain points of view they are not too different from
the other vector fonts, in the sense that they may
be properly scaled (to be precise, designed to the
proper size) to almost any size.

TUGboat, Volume 19 (1998), No. 4

Actually the genb “file name generating func-
tion” that is used in the font description files for the
ec (and the cb) fonts is powerful enough to accept
any font size, not only those that are specified in
such files. If the font description file for the T1-cmr
family, for example, contained simple lines such as:

\DeclareFontShape
{T1}{cmrHo}I{n}{<-> genb * ecmr}{}

a user could specify in his source .tex file:

\DeclareFixedFont
{\myfont}{T1 {cmr}{m}{n}{26}

causing the NFSS macros to ask IMTEX 2¢ to look
for the external file ecrm2600. tfm, possibly shelling
out in order to run MakeTeXtfm should that file still
be missing. Analogous definitions are usable with
the cb fonts.

In a similar way the sizes for text, text math,
display math, script and sub-subscript, could be de-
clared differently from the standard sequence with
geometrical ratio 1.2; why not v/2 or the square root
of the golden section?

The enhancement of the utilities MakeTeXtfm
and MakeTeXpk, and of the font description files, as
suggested in the preceding paragraphs, would be
very handy in the sense that Kappen’s extended
fonts® (besides the new cb Greek fonts) could be
treated almost as vector fonts, at least in the range
of 5pt—99.99 pt.

4 babel greek extension

Greek typesetters as well as Ellenists do not have
to bother about the way KTEX 2 handles the en-
coding of the Greek fonts compared with that of the
Latin ones. Font encoding and character catcodes
are dealt with by the internal macros invoked by
babel’s greek extension behind the scenes®.

Two Greek languages are actually defined:
greek and polutonikogreek; they share the same
hyphenation pattern set, but they typeset internal
Greek words according to the modern “monotonic”
(default) accent system, as opposed to the classical
“polytonic” one. Actually there is no other differ-
ence.

Accents are introduced by means of some or-
dinary ASCII characters, not by means of control
characters as it is the case with Latin alphabets:
specifically > and " are the only ones dealt with
by the monotonic system, while with the polytonic

5 That is, not only the ec fonts, but also the Text Com-
panion fonts that are identified with similar names and gen-
erated with the same interpolating macros.

6 The functionality described here relates to what can be
achieved with release 3.7 of the babel package.



TUGboat, Volume 19 (1998), No. 4

one there are also ¢, 7, <, and >, plus the iota sub-

script |. Since these characters are to be treated
in a special way, they are catcoded as letters; up-
percasing changes them (except the diaeresis) to a
dummy invisible character so that they disappear.
Prefixed accents, breaths, and diaeresis and post-
fixed iota subscript interact with the font specifi-
cations so as to produce ligatures; those signs that
may be prefixed can be specified in any order, that
is >’a and ’>a produce the same result; with mono-
tonic spelling "’i and ’"i produce again the same
result.

The same ligature mechanism controls the use
of final as opposed to initial/medial sigma; if the
typesetter is used to type the letter ‘¢’ for the final
sigma and the letter ‘s’ for the initial/medial one, he
can keep doing so, but if he typed always ‘s’ the font
characteristics recognize the end of the word and use
the proper sigma in the final position; t’onos and
t’onoc in the input file produce the same result in
the output file: 7évog.

One simply declares the language selection with
the traditional babel command

\selectlanguage{greek}

and for short citations in “Latin” characters within
Greek text it is possible to use \textlatin{...}
which behaves exactly as any other font changing
command; on the opposite a Greek short citation
within another language may be inserted by means
of \textgreek{...}. The corresponding declara-
tions are \latintext and \greektext.

While in Greek mode, the usual font changing
commands, such as \emph or \textbf or \sffamily,
perform as they are supposed to do except they
operate on the Greek fonts. In addition to the
other font changing commands, the new command
\textol{...} allows typesetting with the outline
Greek fonts. Remember though that all these com-
mands obey the grouping rules, so that when a group
is closed, the font parameters revert to the values
they had before entering that group. If you change
size, for example, within the Greek environment,
when you close the Greek citation you automati-
cally get to \normalsize or whatever size you had
before.

The new commands \greeknumeral{...} and
\Greeknumeral{...} allow typesetting a counter
value or an explicit number in Greek lowercase or
uppercase numerals. With Syropoulos’ athnum. sty
additional package it is possible to set numbers with
Athenian numerals whose glyphs are already con-
tained in the cb fonts.

With reference to numbers, and therefore to
mathematics, it may be worth noticing that Sy-

423

ropoulos wrote also the package grmath.sty that
allows to “ellenize” all the log-like operator names
such as log, sin, cos,... This is intended especially
for Greek authors who write school books with a
special attention to young people who are not used
to the corresponding (standard) Latin names.

Of course \today, while in Greek mode, type-
sets the date with the Greek names for the months,
but keeps Arabic numerals for the day and the year.
Another command, \Grtoday, typesets the Greek
date using the Greek numerals for the day and the
year.

In the KTEX2c enumerate environment the
numbering is redefined in such a way as to use Greek
numerals for the numbered items. More specifically,
the TEX2¢ internal commands that translate a
number into a lower or upper case letter are rede-
fined in such a way that the number is converted to
a Greek numeral expressed by a suitable combina-
tion of the 29 Greek numeral symbols; therefore even
page numbering, if requested in alphabetic form,
turns to Greek numbering while in Greek mode.

Of course before using the greek (or the
polutonikogreek) babel extension, it is necessary
to rebuild the format with the inclusion of the Greek
hyphenation patterns. The Greek bundle includes
also the suitable hyphenation file, but it does not
become effective (as for any other language) until
the format file is rebuilt. Although the babel pack-
age documentation is explicit on this point, most
users fail to notice it, or may be they assume that
format rebuilding is automatic.

The necessary steps are quite simple; after veri-
fying that one has the babel bundle on the hard disk,
it is necessary to locate the file language.dat, and
edit it so as to append the following lines”

greek grhyph.tex
=polutonikogreek

then run the TEX initializer according to the instruc-
tions that come with the TEX system. With MikTeX
it is very simple, since it suffices to give the line
command

makefmt latex

from a DOS window; with other systems the proce-
dure is very similar although it might be necessary
to give more instructions and/or move files from one
directory/folder to another.

7 This might be the right moment for controlling that the
loaded hyphenation files correspond exactly to the languages
one wants to use; it is convenient to control also that the file
names correspond exactly to those one has on the hard disk
TEX search path; in case it is possible to fetch the proper files
from CTAN.



424

In order to complete the collection of useful files
that complement the basic greek option to babel,
it is worth noticing that Syropoulos wrote also a
number of other files that can be very useful for the
Greek typesetters as well as the other Ellenists.

A first file is08859-7.def [11] extends the col-
lection of distributed encoding files so as to map di-
rectly the keystrokes of a standard Greek keyboard
to the internal cb font codes; this allows people
to enter their IMTEX Greek text using actual Greek
characters, which makes the greek option more user
friendly.

A second set of files [11] generates either a
single cb font driver file (a perl script gendrv) or
the complete sets of both the text and slide fonts
driver files (cbstdedt.tex and cblstded.tex re-
spectively). At the moment these files are precious;
should makeTeXtfm and friends be enhanced as sug-
gested in this paper, their utility would be confined
to those systems that do not allow to shell out.

A third file is hellas.bst [12], a bibliography
style to be used with BiBTEX for creating mixed bib-
liographies (Greek and non-Greek) in a “consistent”
way.

5 Conclusion

The appendix shows the appearance of several Greek
fonts in line with the corresponding Latin ones; of
course the different shape of the single glyphs makes
it very evident the change between Latin and Greek,
but the use of the same font parameters both for
the overall alphabet and for the single characteris-
tics of the strokes (fine, crisp, ... lines; vertical and
horizontal upper and lover case strokes, upper case
serifs, etc.) guarantee that there is some optical
compatibility between the corresponding Latin and
Greek alphabets. Nevertheless the sans serif family
turned out more difficult than expected, so that few
font parameters had to be modified.

The italic shape for all families and series was
completely redesigned trying to get some inspiration
from the elegant italic shape named Olga produced
by the Greek Font Society [13]; since Beccari is nei-
ther an artist nor a good programmer, the result can
not be even compared to the original Olga font, but
if the constraints imposed by the “metaness” are
taken into account, the results may be considered
acceptable.

Criticism and suggestions, of course, are wel-
come.

References

[1] Levy S.:  “Typesetting Greek”; the file
greekhistory.tex is available from the CTAN

[10]

[11]

[12]

[13]

TUGboat, Volume 19 (1998), No. 4

archives.

Levy S.: “Using Greek Fonts with TEX”, TUG-
boat, 9(1):20-24.

Haralambous Y. and Thull K., “Typesetting
Modern Greek with 128 Character Codes”,
TUGboat, 10(3):354-359.

Haralambous Y.,
for ancient Greek and Latin”,
13(4):457-469.

Mylonas C. and Whitney R., “Complete Greek
with adjunct fonts”, TUGboat, 13(1):39-50.
Dryllerakis K.: “The kd Greek fonts”, available
from the CTAN archives.

Knappen J., The ec fonts released on
1997/01/17 together with the sixth upgrade of
BTEX 2¢; the previous (almost definitive) tem-
porary release, called the dc fonts, was de-
scribed in “Release 1.2 of the dc-fonts: Im-
provements to the European letters and first
release of text companion symbols”, TUGboat,
16(4):381-387.

Beccari C.: “The METAFONT source files
for the cb fonts”, available from the CTAN
archives in the directory tex-archive/
language/greek/cb/mf.

“Hyphenation patterns
TUGboat,

Syropoulos A.: mf2pt3 perl script, available at
http://obelix.ee.duth.gr/~apostolo.
Beccari C., Braams J., Syropoulos A.: “The
babel bundle for the Greek language”, will
be available from the CTAN archives to-
gether with the new release 3.7 of babel. A
preliminary version may be found in ftp//
obelix.ee.duth.gr/pub/TeX.

Syropoulos A.:  is08859-7.def, gendrv,
cbstdedt.tex, and cblstded.tex are avail-
abe in the CTAN archives in the directory
tex-archive/language/greek/cb/misc.
Syropoulos A.: hellas.bst is available in the
CTAN archives in the directory tex-archive/
language/greek/cb/BiBTeX.

Matthiopoulos G.D.: “Oblique or Italics? A
Greek Typographical Dilemma”, in Greek let-
ters — From Tablets to Pixels, Makrakis M.S.
ed., Oak Knoll Press, New Castle, Delaware,
1996.

¢ Claudio Beccari
Politecnico di Torino
Turin, Italy
beccari@polito.it

o Apostolos Syropoulos
Xanthi, Greece
apostolo@platon.ee.duth.gr



TUGboat, Volume 19 (1998), No. 4 425

Appendix

This is the beginning of J 1,1-8: «’Ev dpy{j fiv 6 Abyog, xal 6 Adyoc fiv npdc TOv Oedv, xal Oede
fiv 0 Adyoc. oltog fiv év dpy i mpoc Oedy. ndvta 3L’ adtol éyéveto, xol ywple adtol éyéveto oLdE Ev
0 yéyovev. &v a0t Lo fiv, xol 1 Lwn v 10 @idc @V Avtpednmy. xal T0 Q&c Ev Tfj oxotia galvet, xol
N oxotia adto 00 xatéhofev.

‘Eyéveto dvtpwnog dneotoluévog nopd Ocobd, dvoua adtd Twdvyng: oltog Hidev eic paptuplay,
tva paptupron mepl tob putoc, tva mdvteg motebowaoy U adtob. 0dx fv éxelvog TO @idg, GAN tva
popTuprion mepl Tob PwTde.»

This is the beginning of J 1,1-8: «’Ev dpxij 1jv 6 Aéyog, kai 6 Adyog fjv mpog tov Oedv, kai Oedg
v 6 Adyos. oltos fv év dpxij mpog Ocdv. mdva i’ avtol éyéveto, kai xywpis avtol éyéveto 0vbE v
0 yéyovev. év avtd Lwn Ny, kai 1) {wn 1y T0 &3¢ TGV dvTpdnwy. kal To e&§ év Tij okotig gaivel, kal
1) okotia avTo 0V katélafev.

s ¥ ; , . . s S , ,

Eyévero dvtpwnog dreatalpuévog mapa Ocol, dvoua avtd Twdvvng: olitog fAldev €is paptupiay,
tva paptuprion mepl tol pwtds, iva ndvteg motevowory b’ avtol. oUk Ny ékeivog To Pa3s, dAA’ iva

Haptupnon mepl tol PwTog.»

This is the beginning of J 1,1-8: «’Ev dpyfj fjv 6 Adyog, xai 6 Abyoc fiv mpog tov Ocdy, xol Ocdc
v 6 Adyos. oltoc 7jv év dpyij mpoc Oedv. mdavta 8’ adtol éyéveto, xal ywplc avtol éyéveto oUSe Ev
0 véyovev. v avtdd Lwn 1y, xal 1 {w)) v 10 9EC TéY AvTpdnwy. xal TO Ppis €v T oxotiq gaivet, xal
1) oxotio aUTO 00 xaTéAABEV.

‘Eyéveto dvtpwnog dneotaAuévos mapd Ocol, dvoua avtd lwdvyne: oltog HAdey eic uaptuplay,
va paptupron mepl to0 pwtde, va mdvtes motebowaoty du’ avtol. olx 1y éxeivoc T0 @i, dAA’ tva
uoptuption mepl T00 PwTES.»

This is the beginning of J 1,1-8: «’Ev dpxij fiv 6 Aéyog, kal 6 Adyog fjy mpog tov Oedv, kal
Oebg v 6 Abyog. oltog fiv év dpxij mpog Oebv. mdvta B avtod €yéveto, kal xwpilg avtol éyéveto
ovd¢ €v & yéyovev. év avte Lo fv, kal 1} {wn v 10 ¢S TEY AvTpdmwy. kal To ¢iS év Tfj okotig
gatvel, kal 1| okotia avTd 0¥ katéhafev.

Eyéveto dvtpomog dneotalpévog napd Ocod, dvopa avtd Twdvyng olrog fiAdev eig paptupiav,

p

va paptvprion mept tod pwtdg, tva mdvteg motebowow S’ avtod. ovk Ty Ekelvog o ¢BS, AAN tva
papTupfion mepi Tol PwTHS.»

This is the beginning of J 1,1-8: «’Ev dpyfj v 0 Abyog, kal 6 Adyog v mpdg tov Ocdy, kal Ocdg
v 6 Adyog. obtog v €v dpxT) mpdg Oedy. mavta 81’ awtol Eyéveto, kol Ywplg adtod eyéveto ovdE Ev
3 yéyovev. €v adtd Lo Ay, kol 1) {wn) Y 1O &G THY AvTpdTry. Kol T P&¢ €v Tf) okotia paivel, kal
1) okotia avtd 00 katéhaPey.

"Eyéveto dvtpwrog dneotapuévog mapd Ocold, dvopa adtd 'lwdvwng: obtog HAdey eig paptuploy,
Tva poptupon mepl 100 Qwtdg, va mévteg motebowaoty ' adtod. ovk v €kelvog TO @Pidg, AN’ T

tvor
paptupnon mepl ToD PwTdG.»

This is the beginning of J 1,1-8: «'Ev dpyfj jv 6 Aéyog, kai 6 Aéyog fjv mpog t6v Oedy, kad Oedg
v 0 Néyog. obtog v €v adpyij mpos Ocdy. mdvta 8’ altol €yéveto, kal ywpls adTol €yéveto oUSE Ev
6 yéyovev. v altd w1 v, kad ) {wn) v O Pic T@Y avTpdnwy. kol 16 &3¢ €v Tfj okotia paivel, kod
7 okotio alTo oV katéAafey.

‘Eyéveto dvtpwnog ancotaduévos napa Ocol, Svoua avtd lwdvvyg: obtog fAdev eic uaptupiay,
v paptuprjoy mepl 00 pwtds, va mdvteg motebowory 8i’ avtol. olk fjv ékelvos TO piss, dAd’ iva
uoptuptioy mepl 00 PwTéS. »

Date: 12 ‘Touviou 1998 Greek date: " Touviou oy
Athenian numerals: 1998 = XHHHHHAAAAAIIIIL



426

Hints and Tricks

‘Hey — it works!’

Jeremy Gibbons

Welcome to ‘Hey — it works!’, a column devoted
to (IMTEX tips, tricks and techniques. In this is-
sue we have three articles: one from Jeroen Nijhof
showing how to get multi-letter ‘initials’ in BIBTEX;
one from me, showing how to use a text symbol (in
this case, a hyphen) as an operator in maths; and
one from Christina Thiele on generating ornamen-
tal rules. My backlog of articles is running low, so
please send them in!

¢ Jeremy Gibbons
CMS, Oxford Brookes University
Oxford OX3 0BP, UK
jgibbons@brookes.ac.uk
http://www.brookes.ac.uk/
~p0071749/

1 Controlling abbreviations in BibTEX

In the TEX newsgroup, comp.text.tex, someone
asked how to get BIBTEX to abbreviate Yuri to ‘Yu.’,
in styles in which the author’s first names are abbre-
viated — after all, “Yu’ is one letter in Russian. Take
for example

@Article{govorukhin,
author = {Yuri Govorukhin},
title = {What we sow,
that we reap the fruits of},
-}

How to get the author abbreviated to ‘Yu. Gov-
orukhin’? Simply putting braces around the “Yu’
does not work. Somewhat surprisingly, BIBTEX will
not abbreviate {{Yu}ri Govorukhin} at all.
But if one defines a macro \Yu in the the pream-
ble that expands to ‘Yu’,
@Preamble{"\newcommand\Yu{Yu}"}

then {{\Yu}ri Govorukhin} will be abbreviated to
“Yu. Govorukhin’.

But as Oren Patashnik, the author of BIBTEX,
remarked, this solution has one problem. Namely,
the “Yu’ will be neglected for sorting purposes, so
this way the author would be sorted as if he were
‘ri Govorukhin’. To get both a proper abbrevia-
tion and proper sorting, one needs to use a feature
of BIBTEX (which is discussed in the BIBTEX docu-
mentation btxdoc.dvi): BIBTEX considers a special
character, which is everything from a left brace at
the top level directly followed by a backslash up to
the matching right brace, as one character, and all

TUGboat, Volume 19 (1998), No. 4

characters in it will be taken into account for sorting
purposes. So one can define a one-parameter macro
\oneletter:

@Preamble{"\newcommand\oneletter [1]{#1}"}

and {{\oneletter{Yu}}ri Govorukhin} will give
the desired effect. There are more tricks in the
preamble of xampl.bib in the BIBTEX distribution.

In our case, though, we can get by without a
preamble. The macro in the special character does
not have to do anything, it only has to provide a
backslash after the opening brace. So we can simply
write

author = {{\relax Yu}ri Govorukhin}

and here is some text.

o Jeroen H. B. Nijhof
Aston University
Photonics Research Group
Birmingham, UK
J.H.B.Nijhof@aston.ac.uk

2 A small minus sign

In a recent paper (Deriving Tidy Drawings of Trees,
Journal of Functional Programming 6(3) p. 535562,
May 1996) I had to make a visible distinction be-
tween unary minus (for example, the number ‘mi-
nus three’) and binary minus (for example, the sub-
traction ‘four minus three’). I decided to keep the
ordinary minus symbol for subtraction, and to use
a hyphen for negation: ‘2 —-3’.

The quick-and-dirty way to achieve this is to
use an \hbox:

\def\minus{\hbox{-}}

This looks fine most of the time (‘2 —-3’). Unfor-
tunately, the hyphen does not change size in super-
scripts and subscripts; compare ‘z,, _.’ with how it
should look (‘z,, ).

A better way is to use TEX’s \mathchardef:

\mathchardef\minus="002D

This defines \minus to be an ordinary symbol (the
first 0), taken from maths family zero (the second
0), using the character in position 45 (the 2D) of that
font, which in the case of Computer Modern Roman
happens to be the hyphen character. (There are no
guarantees in other fonts, of course!) The BTEX 2¢
way of writing this is
\DeclareMathSymbol{\minus}
{\mathord}{operators}{"2D}

but this has to go in the preamble of the document.
¢ Jeremy Gibbons

Oxford Brookes University
jgibbons@brookes.ac.uk



TUGboat, Volume 19 (1998), No. 4

3 Ornamental rules

Something you run across in books on occasion are
‘type ornaments’: those looping trellises and lattices
and swirls often used to indicate the top or bottom
of a titlepage, for example, or sometimes the top of
a chapter titleblock (called ‘headbands’, I believe),
or to separate sections within a chapter. What I no-
ticed was that sometimes the ornaments were noth-
ing more than a fairly simple character repeated a
few times:

or all the way across the page, like this:

So how can I get TEX to do this? Poking around
in the The TEXbook (pp. 353 and 357), I found the
following macros:!

\def\m@th{\mathsurround=0pt }
\def\dotfill{\cleaders\hbox{$\m@th
\mkernl.5mu . \mkernl.5mu$}\hfill}

(the \m@th is to switch off spacing around math-
ematical material, which complicates the measure-
ments) You can use this in a table of contents, for
example:

3. Typographic use of leaders ............ 45

So that’s how to get a repeating pattern going.
Here is the macro that does all the work:

\mathsurround=0pt
\def\motif#1{\cleaders\hbox{#1}\hfil}

It’s now a simple matter to replace the period and
\mkern amounts with other values. Here’s a defi-
nition using the \diamond, which I wanted to have
very close together:
\def\diamondpattern{$\mkern-.6mu
\diamond \mkern-.6mu$}
\motif{\diamondpattern}

But this only defines the repeating motif. To make
use of it, I've got a macro which takes the motif, and
allows you to specify how long the sequence should
span: e.g., bcm or even full page width:
\def\border#1#2{\leavevmode
\hbox to #2{\motif{#1}}}
The first argument to \border is a motif to repeat,
and the second argument is a dimension; for exam-
ple,
\def\divpattern{$\div \mkerni2mu$}
\border{\divpattern}{5cm}
or, to span the full width of the column,
\border{\divpattern}{\columnwidth}

I I'm sure there are other ways to do this; so far, this one
works fine for me.

427

The macro is designed to be used in horizontal mode,
so it can also be used inside IATEX’s center environ-
ment, as in the first example, above.

Some tips:

1. First place to raid: cmmi and cmsy have lots of
promising items; I've already tried \diamond,
\vee, \wedge, \dagger and \ddagger, \bowtie,
\div, \widetilde, ...

2. Other fonts which may contain some surprises:
msam and msbm, and of course, any dingbat font.

3. The value of \mkern must be given in ‘mu’ math
units; there are 18mu in lem (see p. 68 of The
TEXbook). While putting \mkern units both
before and after the symbol works for some char-
acters, others work better if only used after.
Changing the spacing can really alter the flavour
of the ornamental line, so experiments are use-
ful.

4. Note that \widetilde needs an argument in
order to know how wide it must be: I used
\widetilde{\qquad}:

5. It’s also fun to combine symbols: \times\div
yields ¢ x+x+x-+x-+x=+". Making the pat-
tern start and finish with the same symbol is
a little trickier. Because the pattern produced
by \cleaders is centered within the area to be
filled, it may be padded with a little extra space
at either end, which makes positioning the ex-
tra symbol difficult:

X+=X+X+-X+-X+ X

A better solution is to use \leaders instead,
as these are aligned with the smallest enclosing
box (see p.224 of The TEXbook); then the ex-
tra symbol can be placed at the start, with no
intervening space. The width of the repeating
section is the stated width less the width of the
first symbol.

\def\bordertwo#1#2#3{{/,
\setbox1=\hbox{#1}/,
\dimenO=#3\advance\dimen0O by -\wdi
\leavevmode\hbox{#1\hbox to \dimenO

{\leaders\hbox{#2#1}\hfil}}%
I
Then ‘\bordertwo{$\times$}{$\div$}{3cm}’
yields
IXEXEXEXEX ]

(which is no longer nicely centered, but that’s

life).

¢ Christina Thiele
Nepean, Ontario, Canada
cthiele@ccs.carleton.ca



428

%@’ The Treasure Chest

A package tour from CTAN —soul.sty

When the Treasure Chest is CTAN, there’s so much
to choose from. But even worse ... there are so
many packages that keep being added! And how to
even find out about them, if you don’t keep up with
notices posted to the newsgroups? This column is
one way to try to bring some of these treasures to
TUGboat readers, with a quick introduction to the
package and some examples of what it can do.

This is the first such column; let me know what
aspects are most useful and which ones less so, what
additional facets should be examined, what other
packages cover some of the same issues; which pack-
ages do you prefer.

1 Quick tour

Package: soul.sty

This is version 1.2, dated 11 Jan. 1999. Upon
processing, the file changes.tex is generated,
and describes the differences (the file is also in-
side the .dtx file!).

Explanation of the name: “[it] is only a combi-
nation of the two macro names \so (space out)
and \ul (underline) — nothing poetic at all...”

Keywords: spacing out, letterspacing, underlining,
striking out

Purpose:
soul.sty provides hyphenate-able letterspac-
ing, underlining, and some variations on each.
All features are based upon a common mech-
anism for typesetting text syllable-by-syllable,
using TEX’s excellent hyphenation algorithm to
find the proper hyphenation points. As well,
two examples are presented to show how to use
the interface provided to address such issues as
‘an-a-lyz-ing syl-la-bles’. Although the package
is optimized for INTEX 2¢, it works under plain
TEX and KTEX 2.09, and is compatible with
other packages, too.

Author: Melchior Franz
a86033650unet.univie.ac.at

! Documented source (.dtx) files are a combination of
macros and documentation, an evolution of Frank Mittel-
bach’s original DocStrip utility. There are usually two steps:
run IATEX over the .dtx file to get the documentation, and
run IATEX over its matching .ins file to generate the style
files, which are extracted from the .dtx file (sometimes the
.ins file is itself generated by the first step, which means you
only have to pick up the one .dtx file—even more compact
packaging).

TUGboat, Volume 19 (1998), No. 4

Compatible with: plain, WTEX (old and new).
Note: the documentation describes some re-
strictions when the soul package is not used

Location on CTAN:
/macros/latex/contrib/supported/soul

Files to fetch: soul.dtx and example.cfg.?

How to install: Put files with your other class and
style files on your system. Read the top por-
tion of soul.dtx (or the file soul.txt) for in-
structions on processing the files (you will need
KTEX 2¢). Notice that the soul.sty package is
not actually on CTAN; it uses the .dtx method
of documentation, a wonderful feature in
ITEX 2e. If you're unfamiliar with how this
works, see footnote 1 for a general overview.

Files generated: soul.ins, soul.dvi (documen-
tation), soul.toc, soul.sty, changes. tex, (as
well as the usual soul.aux and .1log files).

2 Documentation

The documentation is so extensive (26 pages long),
with explanations, examples of basic use and varia-
tions, that little needs to be said here!

The opening pages are a pleasant introduction
to the general notions of emphasis, however it is
achieved, and the various opinions which exist on the
suitability of their use. There is a pragmatism ex-
pressed here, offering the user the choice of options,
leaving the reasons for such choices to the user.

The user portion of the documentation provides
extensive examples and explanations for creating the
various effects (underlining, overstriking, letterspac-
ing).

Chapter 7 (pp. 14-25) provides a detailed ex-
planation of the macros themselves, along with some
additional points and tips, so do glance through it.

One nice addition from the author (in collabo-
ration with Stefan Ulrich) is a sample configuration
file, example . cfg, which shows how to select specific
spacing values for different fonts automatically, and
store them for local use. As well, the local file (call it
soul.cfg and hooks exist to read it in automatically
via soul.sty) can be used to store other changes to
the package default settings, thus avoiding making
changes in either the style file or inserting the cus-
tomizations into individual source files.

2.1 Table of Contents

1. Introduction

2 Note: CTAN also has the file soul.txt (description of
package + processing instructions), and soul.ins, which can
either be fetched, or generated by processing the .dtx file.



TUGboat, Volume 19 (1998), No. 4

2. Typesetting rules
(a) Theory ...
(b) ... and Practice
3. Modes and options
(a) IMTEX 2z mode
(b) Plain TEX mode
(¢) Command summary
4. Letterspacing
(a) The macros
(b) Some examples
(c) Typesetting Fraktur
(d) Dirty tricks
5. Underlining
(a) Settings
(b) Some examples
(¢) The dvips problem
6. How the package works
(a) The kernel
(b) The interface
(c¢) Doing it yourself
(d) Common restrictions
) Known features (aka bugs)
7. The macros
) The preamble
) Common definitions
(¢c) The letterspacing interface
(d) The underlining interface
) The striking-out interface
) The postamble
) Additional hacks

3 Examples

The following examples, taken directly from the doc-
umentation (with a few modifications for TUGboat’s
narrow columns), provide ample demonstration of
the many useful features available in soul.dtx.

melec-
tri-
cal
in-
dus-
try

m \so{electrical industry}
melectrical industry

Ordinary text can be typed in as usual.

= \so{man\-u\-script} "mman-
mmanuscript u-
script

\- works as usual.

429

= \so{le th{\’e}{\"a}tre} mle
mle théatre théatre

Tokens that belong together have to be grouped; text
inside groups is not spaced out. Grouped text must not
contain hyphenation points.

= \so{justyan, {{\hbox{example}}}} = just
mjust an example an
example

To prevent material with hyphenation points from
being spaced out, you have to put it into an \hboz
(\mboz) with two pairs of braces around it. However,
it’s better to end spacing owut before words not to
be broken and restart it afterwards.

m \so{inside.} \&\_\so{outside}. mwin-

minside. & outside. side.
&
out-
side.

Punctuation marks are spaced out if they are put into
the group.

w \so{{¢‘}\<Pennsylvania\<{’’}} = “Penn-

m “Pennsylvania” syl-
va-
nia”

Spaceout skips may be removed by typing \<. However,
it is better to put the quotation marks outside of the
argument.

= \so{input\slash output} min-

minput/output put/
out-
put

\slash, \hyphen, \endash, and \emdash allow
hyphenation before and after the break point.

= \so{unbreakable\~ space}
sunbreakable space

mun-
break-
able space

The \ ~-command inhibits line breaks. A space ., is
mandatory here to mark the word boundaries.

» \so{1\<3_ December {{1995}}} =13

13 December 1995 De-
cem-
ber
1995

Numbers should never be spaced out.




430

= \so{broken\\ line} sbro-
sbroken ken
line line

\\ works as usual. Additional arguments (e.g., * or
vertical space) are not accepted. Mind the space.

= \so{\dots and, ,{\hbox{-}}jet} m...and
m...and -jet -jet

\hyphen must not be used for leading hyphens.

w \so{pretty awful{\break} test} mpretty
mpretty awful aw-
test ful
test

The braces keep TEX from discarding the space.

4 Applications and comments

For my own purposes, I will most likely find uses
for the package in all three TEXs: plain TEX (for
critical editions), and both old and new KWTEXs (for
most everything else). In the past, I've had to cob-
ble together very unpresentable macros to deal with
overstriking and underlining: both were needed in
an article and then a book, to reproduce the cre-
ative writing process in Philip Larkin’s notebooks.
That is, an application which had nothing to do with
typographic emphasis and everything to do with try-
ing to reproduce hand-written notes via typesetting.
This package would certainly have made the job
easier!

TUGboat, Volume 19 (1998), No. 4

What is perhaps not immediately obvious is
that this package provides not just various forms of
emphasis but emphasis while retaining hyphen-
ation. Using \underline only works for one line of
text, and it blocks the last word from being hyphen-
ated. Devising simple strike-out macros (my case)
similarly removes the word(s) inside the macro’s ar-
gument from being considered for hyphenation.

This package gets over that hurdle, yielding es-
sentially a two-for-one set of tools which many type-
setters find they need at the last minute —as they
turn the manuscript page, open the next file, and
stare at several lines of underlined or over-struck text.

5 Follow-up

I’d like to invite users to fetch this package and see
how it works out for them, and then send word on
their application and results.

If you've been using other packages (perhaps
because they’re old and comfortable friends), give
this one a try and then tell us how they compare.
In particular, make a note of which TEX you’re us-
ing; I myself am hanging on to a number of ‘old’
things because they work—or is it the other way
around ... that I’'m not using the new KTEX in all
instances because I don’t have suitable replacements
or substitutes for the old and trusted friends?!

¢ Christina Thiele
15 Wiltshire Circle
Nepean, Ontario
K2J 4K9 Canada
cthiele@ccs.carleton.ca

ftp> quote site index soul
200-index soul

200-1998/12/08 |
200-1999/01/12 |
200-1999/01/11 |
200-1999/01/11 |

200 (end of ’index soul’)

Helpful hint for finding files on the CTAN archives via ftp

Don’t know where to find the package you want? The following shows how to use the quote site
index command, to quickly locate packages. Our example is for soul, the package just presented.

200-NOTE. This index shows at most 20 lines. for a full list of files,

200-retrieve /tex-archive/FILES.byname

3484 | macros/latex/contrib/supported/soul/example.cfg

70239 | macros/latex/contrib/supported/soul/soul.dtx
279 | macros/latex/contrib/supported/soul/soul.ins
1437 | macros/latex/contrib/supported/soul/soul.txt




TUGboat, Volume 19 (1998), No. 4

Abstracts

Les Cahiers GUTenberg
Contents of Issue 30
October 1998

Hommage a Gérard Blanchard

This issue of the Cahiers was produced in a very short
time in order to be ready for MultiTypo 98, the ATypl
meeting held in Lyon, France in October, to honor
Gérard Blanchard, who had just died in August. It
includes his last manuscript — his text as invited speaker
to ATypl.

JACQUES ANDRE and JEAN-FRANGOIS PORCHEZ,
Editorial : ATypl & Blanchard; pp.3-5

The editors present a brief overview of the ATypl
(Association de Typographique Internationale), from
its inception in France in 1957, through the great
technological changes from lead to computer, till its
return to France for the October 1998 annual meeting
in Lyon, a city long associated with print.

In addition to the conference publication, Lettres
frangaises, all attendees (courtesy of Louis-Jean Print-
ers) received copies of this 30th issue of the Cahiers,
which was originally to be a thematic issue on electronic
typography but was quickly re-worked to serve as a
tribute to Gérard Blanchard, whose interest in typog-
raphy extended beyond the subject itself, to the many
participants involved in different aspects of typography.

In addition to the last Blanchard manuscript, the
issue includes tributes from such old friends as John
Dreyfus, Fernand Baudin, and Massin. As well, there
are two pieces supplementing Blanchard’s Aide au choix
de la typo-graphie: a brief discussion of the methodology
behind the work, and an index for it.

JOHN DREYFUS, A Tribute to Gérard Blanchard;

pp.-6-9

First paragraph from the English text:
The death of Gérard Blanchard in August robbed
us of our chance to hear him speak at this
Congress. Though he had taken part in sev-
eral of our earlier congresses, many of you who
are not French may never have met him, and
may know very little about him. As I had the
happy experience of meeting him in the mid-1950s
for several consecutive years at the international
typographical meetings held at Lurs-en-Provence,
I readily agreed to pay this short tribute to his
wide ranging contributions to the graphic and the
typographic arts.

The text includes several references to Blanchard’s
works, which might interest the TUGboat reader:

431

1. an early long essay: “The Typography of the French
Book 1800-1914”, in Book Typography 1815-1965,
ed. Kenneth Day. Chicago: U of Chicago Press,
1966, pp. 37-80. [The next chapter is by M. Vox,
“The Half Century 1914-1964".]

2. a book: La Lettre. La lettre et ses usages sociaux.
Editions du Gymnase typographique, 1975.

3. a large paperback: Pour une sémiologie de la
typographie. Andenne: Rémy Magermans, 1979.

4. his last book: Aide au choix de la typo-graphie,
cours supérieur. Reillanne: Atelier Perrousseaux,
Editeur, 1998. [This book includes an extensive
bibliography of Blanchard’s work.]

FERNAND BAUDIN, Rencontres & confluence
[Meeting and merging]; pp.10-11

A personal account of feelings and memories which came
to mind upon hearing of Blanchard’s death, and how it
affects the author’s role at the upcoming ATypl meeting
(the note was written 6 October, before ATypl).

MaAsSIN, Des caves d’Hollenstein a la Sorbonne
[From the Hollenstein cellars to the Sorbonnnel;
pp- 12-13

A brief reminiscence of discordant beginnings to what
became a lasting friendship with and respect for Blan-
chard, with a particular memory of Blanchard’s intensity
in after-hours sessions held in the cellars of Hollenstein
Printers in Paris.

GERARD BLANCHARD,
Connotation typographique : Pour une poétique
de la typo-graphie [Typographic meaning: A case
for a poetry of typographyl; pp.14-39
Foreword to the article, edited by Jean-Frangois
Porchez and Jacques André:
This paper contains the text Gérard Blanchard
was supposed to deliver as Guest Speaker at the
ATypl conference, Lyon, October 1998. He died
at the end of August and we edit here his draft,
as it was found.

The editors have chosen to simply transcribe Blan-
chard’s manuscript notes, unchanged and unedited, sup-
plemented with scanned images of select pages, to show
his creative process at work. Their subsequent article in
this issue discusses this process in more detail.



432

JACQUES ANDRE, Noms propres cités dans Aide

aux choix de la typo-graphie de Gérard Blanchard

[Names cited in Gérard Blanchard’s Aide auz choiz

de la typo-graphie]; pp.40-56

Author’s abstract :
The following pages include an index of all
the names (people, authors, works, founderies)
quoted in the following book: Gérard Blanchard,
Aide aux choix de la typo-graphie, Atelier Per-
rousseaux éditeur, Reillanne, 1998. ISBN 2-
911220-02-1.

N.B. Works names are in italic; fonts are
already indexed in the book itself; cover pages
are referenced as 0. This index is published here
with Gérard Blanchard’s and Yves Perrousseaux’s
authorizations.

JACQUES ANDRE and JEAN-FRANGOIS PORCHEZ,
Classeurs et chemin de fer [File folders and
thumbnail layout]; pp.57-62

Authors’ abstract:
To prepare his Aide aux choiz de la typo-graphie,
Gérard Blanchard used small loose-leaf binders
together with a thumbnail layout (sketches of
how each set of facing pages would look). These
techniques allowed him to organize his book’s
layout as a hypertext.

The abstract merely hints at the strategies Blanchard
used not simply to organize book layout but also —and
I would hazard, primarily —to organize its contents. To
capture those thoughts and views which usually come to
mind in a very non-linear fashion as an idea begins to
take shape and then seemingly races off in a dozen differ-
ent directions, on at least half a dozen levels: references,
examples, suitable quotes, illustrations, cross-references,
and so on. In short, an analysis of the creative process
at work, whose topic just happens to be typography.
Rather like us, using TEX to talk about TEX!

[Compiled by Christina Thiele]

Articles from Cahiers issues can be found in the

form of PostScript files at the following site:

http://wuw.univ-rennesl.fr/pub/GUTenberg/
publications

TUGboat, Volume 19 (1998), No. 4



432

TUGboat, Volume 19 (1998), No. 4

Late-Breaking News

Production Notes
Mimi Burbank

Here is your last issue of 1998 — better late than
never. Herein are the promised articles held over
from the TUG’98 conference held in Torun, Poland.
The article by Miroslava Misakova on page 355 pre-
sented quite a challenge. Mirka (her nickname) used
DC fonts with Czech encoding and after moving all
of the fonts to SCRI, I was still unable to get the
font encoding correct (everyone else on the team was
either sick or traveling), so in order to finish the is-
sue, I distilled the .ps file used for the preprints
and created .eps files of the examples rather than
typesetting them.

Several authors and I corresponded frequently
about layout and fonts—1I would put up pdf doc-
uments in my WWW directory for them to peruse
using their browser, and they would then email me
comments and we would begin again. I find this a
satisfactory way of working out problems — of course,
depending upon any problems concerning bandwidth
across the ocean. I'm have a vision of some shark
cruising around the ocean floor, chewing on the “ca-
bles”.

Output The final camera copy was prepared at
SCRI on IBM rs6000 workstations running AIX v4.2,
using the TEX Live setup (Version 3), which is based
on the Web2c TEX implementation version 7.2 by
Karl Berry and Olaf Weber. PostScript output, us-
ing outline fonts, was produced using Radical Eye
Software’s dvips(k) 5.78, and printed on an HP Laser-
Jet 4000 TN printer at 1200dpi.

Coming In Future Issues I think the news ev-
eryone is waiting for is, “When will TEX Live4 be
available?” The projected completion date of the
CD is “Spring of 1999” and it will reportedly be
“bigger and better”. The completion date will af-
fect our decision whether or not to delay shipment
of the first issue of TUGboat until we receive deliv-
ery of the CD (otherwise, it will be June 1999 before
we can ship).

We will also be posting a list of additional en-
glish hyphenation exceptions uncovered since 1995;
the full article will be posted on the TUG Web site.

¢ Mimi Burbank
mimi@scri.fsu.edu



TUGboat, Volume 19 (1998), No. 4

433

Calendar
1999 May 24 TUGDboat 20 (2), deadline for reports.
Jun 1-11  Society for Scholarly Publishing,

Jan 29— Exhibition: Primitive types: The
Apr 24  sans serif alphabet from John Soane to
Eric Gill, St. Bride Printing Library,
London, UK. For information, visit
http://www.stbride.org/soanepr.htm.
Feb 15 TUGboat 20 (1), deadline for technical
submissions.

Feb 24—-26 DANTE’99, 20h meeting, “10 years of
DANTE e.V.”, Universitat Dortmund,
Germany. For information, visit
http://dante99.cs.uni-dortmund.de/.
Mar 1 TUGboat 20 (1), deadline for reports. Jul 5-7
Mar 1-5 Seybold Seminars Boston/Publishing,
Boston, Massachusetts. For information,
visit http://www.seyboldseminars.com/

Jun 9-13

Events/bo99/. Aug 8-13
Mar 13— ABeCeDarium: A traveling juried
Apr 17  exhibition of contemporary artists’
alphabet books by members of the Aug 15-19

Guild of Book Workers. This show
will join historical examples

from the Newberry collections.
Newberry Library, Chicago, Illinois.
Sites and dates are listed at http://
palimpsest.stanford.edu/byorg/gbw.

Apr 26-30 XML Europe’99, Granada, Spain. Aug 23

For information, visit Sep 2023
http://www.gca.org/conf/euro99/.
May 1-3 BachoTgX 799, 7" annual meeting of the
Polish TEX Users’ Group (GUST),
“Practical Aspects of Electronic
Publishing”, Bachotek, Brodnica Lake

215 annual meeting, Boston,
Massachusetts. For information, visit
http://www.sspnet.org.

Joint International Conference of

the ACH/ALLC in 1999 (Association
for Computers and the Humanities,
and Association for Literary and
Linguistic Computing), University of
Virgina, Charlottesville, Virginia,
USA. For information, visit http://
www.iath.virginia.edu/ach-allc.99.

CIDE’99: Second Colloque International
sur le Document Electronique,
Damascus, Syria. For information, visit
http://infodoc.unicaen.fr/cide/.

SIGGRAPH, Los Angeles, California.
For information, visit
http://www.siggraph.org/s99/.

TUG’99 — The 20" annual meeting of
the TEX Users Group, “TEX Online —
Untangling the Web and TEX”,
University of British Columbia,
Vancouver, Canada. Information will be
posted to http://www.tug.org/tug99/
as plans develop.

TUGboat 20 (3), deadline for reports.
FuroTEX 99, the XIth European

TEX Conference, “Document
Publishing”, Heidelberg, Germany.
Tutorials will precede and follow the main
conference. For information, visit
http://www.dante.de/eurotex99.
TUGDboat 20 (4), deadline for technical
submissions.

TUGboat 20 (4), deadline for reports.

XML 99, Philadelphia, Pennsylvania.
For information, visit
http://www.gca.org/conf/conf1996 .htm.

District, Poland. For information, visit Nov 8
http://www.gust.org.pl/BachoTeX/.
May 11-14 8" International World Wide Web Nov 22
Conference, Toronto, Canada.
. . . Dec 6-9
For information, visit http://www8.org.
May 10 TUGboat 20 (2), deadline for technical
submissions.
May 18 -20 GUTenberg’99, “IATEX, a route to the 2000
Web”, I'Institut de physique nucléaire
de L F . For inf ti isit
e Lyon, France. For information, visi Jul-Aug

http://www.ens.fr/gut/manif/.

TUG 2000 — The 21 annual meeting of
the TEX Users Group, in the UK.

Status as of 20 December 1998

For additional information on TUG-sponsored events listed above, contact the TUG office
(4+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

Additional type-related events and news items are listed in the Sans Serif Web pages,

at http://www.quixote.com/serif/sans.




TUGDboat, Volume 19 (1998), No. 4

Institutional
Members

Academic Press,
San Diego, CA

American Mathematical Society,
Providence, Rhode Island

CERN, Geneva, Switzerland

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

CSTUG, Praha, Czech Republic

Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands

Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

Hong Kong University of

Science and Technology,
Department of Computer Science,
Hong Kong, China

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

Towa State University,
Computation Center,
Ames, lowa

Kluwer Academic Publishers,
The Netherlands

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan

Max Planck Institut
fiir Mathematik,
Bonn, Germany

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag,
Heidelberg, Germany

437

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University of California, Irvine,
Information & Computer Science,
Irvine, California

University of Canterbury,
Computer Services Centre,
Christchurch, New Zealand

University College,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Universitat Koblenz—Landau,
Fachbereich Informatik,
Koblenz, Germany

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

University of Texas at Austin,
Austin, Texas

Uppsala University,
Computing Science Department,
Uppsala, Sweden



TEX
USERS
GROUP

Promoting the use of
TEX throughout the
world

mailing address:
P.O. Box 2311
Portland, OR 97208-2311 USA

shipping address:

1466 NW Naito Parkway,

Suite 3141

Portland, OR 97209-2820 USA
Phone: +1 503 223-9994
Fax: +1 503 223-3960
Email: office@tug.org
WWW: www.tug.org
President: Mimi Jett

Vice-President:

Kristofter Hggsbro Rose
Treasurer:  Donald W. DeLand
Secretary: Arthur Ogawa

1999 TUG Order Form

Rates for TUG membership, subscription, and products are listed below. Please check
the appropriate boxes and mail payment (in US dollars, drawn on a United States
bank) along with a copy of this form. If paying by credit card, you may fax the
completed form to the number at left.

* 1999 TUGDboat includes Volume 20, nos. 1-4.
* 1999 CD-ROMs include TEX Live 4 (1 disk) and Dante's CTAN (3 disk set).

* Multi-year orders: You may use this year's rate to pay for more than one year of
membership or of the CD-ROM product.

* Orders received after March 1, 1999: please add $10 to cover the additional expense
of shipping back numbers of TUGboat and CD-ROMs.

Rate  Amount
Annual membership for 1999 (TUGboat and CD-ROMs) [] $65
Student membership for 1999 (TUGboat and CD-ROMs)

(please attach photocopy of 1999 student ID) D $35
CD-ROM product for 1999 (CD-ROMs and TUGboat) L] $65
Subscription for 1999 (TUGboat and CD-ROMs) (Non-voting) (] $715
Shipping charge if after March 1, 1999. ] s10
Voluntary donations

General TUG contribution D .

Contribution to Bursary Fund* L] -

Total $

Payment (check one) [] Payment enclosed [ ] Charge Visa/Mastercard

Account Number:

Exp.date: ~ Signature:

*The Bursary Fund provides financial assistance to members who otherwise would be unable
to attend the TUG Annual Meeting.

Please complete all applicable items; we need this information to mail you products, publications, notices, and (for voting

members) official ballots.

Note: TUG neither sells its membership list nor provides it to anyone outside of its own membership.

Name:

Department:

Institution:

Address:

Phone:

Fax:

Email address:

Position:

Affiliation:




TUGboat, Volume 19 (1998), No. 4

439

TEX Consulting & Production Services

Information about these services can be obtained
from:
TEX Users Group
1466 NW Naito Parkway, Suite 3141
Portland, OR 97209-2820, U.S.A.

Phone: +1 503 223-9994
Fax: +1 503 223-3960
Email: office@tug.org
URL: http://wuw.tug.org/
consultants.html

North America

Hargreaves, Kathryn

135 Center Hill Road,

Plymouth, MA 02360-1364;

(508) 224-2367; letters@cs.umb.edu
I write in TEX, IATEX, METAFONT, MetaPost, PostScript,
HTML, Perl, Awk, C, C++, Visual C++, Java,
JavaScript, and do CGI scripting. I take special care
with mathematics. I also copyedit, proofread, write
documentation, do spiral binding, scan images, program,
hack fonts, and design letterforms, ads, newsletters,
journals, proceedings and books. I’'m a journeyman
typographer and began typesetting and designing in 1979.
I coauthored TEX for the Impatient (Addison-Wesley, 1990)
and some psychophysics research papers. I have an MFA in
Painting/Sculpture/Graphic Arts and an MSc in Computer
Science. Among numerous other things, I’'m currently doing
some digital type and human vision research, and am a
webmaster at the Department of Engineering and Applied
Sciences, Harvard University. For more information, see:
http://www.cs.umb.edu/ kathryn.

Loew, Elizabeth

President, TEXniques, Inc.,

362 Commonwealth Avenue, Suite 5E,

Boston, MA 02115;

(617) 670-1916; Fax: (617) 670-1916

Email: elizabeth@texniques.com
Long-term experience with major publisher in preparing
camera-ready copy or electronic disk for printer. Complete
book and journal production in the areas of mathematics,
physics, engineering, and biology. Services include
copyediting, layout, art sizing, preparation of electronic
figures; we keyboard from raw manuscript or tweak TEX
files.

Ogawa, Arthur

40453 Cherokee Oaks Drive,

Three Rivers, CA 93271-9743;

(209) 561-4585

Email: Ogawa@teleport.com
Bookbuilding services, including design, copyedit, art,
and composition; color is my speciality. Custom TEX
macros and IATEX2e document classes and packages.
Instruction, support, and consultation for workgroups and
authors. Application development in IATEX, TEX, SGML,
PostScript, Java, and 8C++. Database and corporate
publishing. Extensive references.

Outside North America

DocuTgXing: TEX Typesetting Facility

43 Ibn Kotaiba Street,

Nasr City, Cairo 11471, Egypt

420 2 4034178; Fax: +20 2 4020316

Email: main-office@DocuTeXing.com
DocuTgXing provides high-quality TEX and IATEX
typesetting services to authors, editors, and publishers.
Our services extend from simple typesetting and technical
illustrations to full production of electronic journals. For
more information, samples, and references, please visit our
web site: http://www.DocuTeXing.com or contact us by
e-mail.



