Pretprin—a ETEX 2¢ package for pretty-printing

texts in formal languages

Marcin Wolinski

wolinski@melkor .mimuw.edu.pl

Abstract

A IMTEX 2¢ package is presented which provides tools for building lexical and
syntactical analyzers in TEX that can be used for pretty-printing. Examples of
such analyzers for the programming languages Pascal and Prolog are shown as
well as a small example of a new analyzer definition.

The problem

In most books on computer science published today,
algorithms are presented in a way known to every
TEXnician as verbatim. In some well printed books
however programs in algorithmic language Pascal
are formatted in a rather complicated way, with bold
keywords, italic identifiers and appropriate indenta-
tion on every line:

begin ¢ :=0; r := z;

while r > y do
beginr:=r—y; g:==q+1
end

end

Such a layout gives a graphical representation for
logical structure of the program. Indentation shows
control flow: one can easily see “which end matches
which begin”. Keywords are put in boldface while
other identifiers are in italic, so even a beginner
is able to recognize which elements are predefined
parts of the language. Every occurrence of a given
structure is formatted the same way, making it
easier to “navigate” in the text.

This paper is dealing with the question how to
generate such a layout with TEX.

A large amount of tedious work would be
needed to add all typesetting commands by hand.
Moreover it would be difficult to get a consistent
result in, e.g., a 200-page book.

Fortunately someone already had this problem
before. The person was Prof. Knuth, who wanted
to publish a few large programs written in Pascal
including TEX and METAFONT. Since he wanted to
get good quality printouts in a finite length of time,
he decided to teach the computer how to typeset
Pascal. This way of generating pretty-printed text
of the program became one of the WEB system
functions.

The WEB system (or rather, WEAVE, which
deals with the processing of the program’s docu-
mentation) performs syntactical analysis to recog-
nize language constructs such as if —then—else,
repeat — until, etc. This provides a layout consis-
tency that is hard to achieve with other techniques.

WEB is a really smart tool for generating
technical documentation for programs. But using
WEAVE to process a book on computer science,
containing some random pieces of code that are not
supposed to build a working program, is somewhat
unnatural. In such a case it would be preferable to
avoid using external tools. But that would mean
teaching TEX itself how to pretty-print Pascal.

That is precisely what Pretprin was meant to
do. The source for the example above in Pretprin’s
notation is:

\begin{Pascalx*}

begin q:=0;r:=x;while r>=

y do begin r:=r-y;q:=q+lend end
\end{Pascal*}

One more insight was crucial for Pretprin’s ar-
chitecture: in WEAVE (being a Pascal program),
the rules of parsing Pascal texts are expressed with
a series of complicated if — then — else constructs.
In TEX, on the other hand, it’s much easier to write
a general interpreter for such rules. But this means
language-specific rules are separated from the rest
of the program and it is relatively easy to substitute
them with other sets of rules.

So in its present shape Pretprin is mainly a tool-
box for building scanners and parsers in TEX. The
tools can be used to analyze any sufficiently regular
data, which probably includes any commonly used
formal language.

298 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Pretprin—a IMTEX 2¢ package for pretty-printing texts in formal languages

Examples of Pretprin usage

Pretprin is loaded with \usepackage commands
stating which language-specific modules should also
be loaded. For example, to typeset a document
containing pieces of Pascal and Prolog use:
\usepackage [pascal,prolog] {pretprin}

The Pascal module provides a KTEX environ-
ment named Pascal that is used to typeset dis-
played pieces of Pascal programs:

\begin{Pascal}
var i,L,w:integer; ch:char;Z:
array [1..wmax]of char;
begin L:=0;repeat w:=0;read(ch);
while (ch<>’ ’) and (ch<>eol)
do ...
until eof (input)
end.

\end{Pascal}

Note in the output shown below that spacing, in-
dentation and line-breaking was done by Pretprin,
completely ignoring the layout of the input (which,
by the way, is definitely bad). Moreover, relational
symbols such as =, < or # (which is substituted for
<>), and binary operators like +, .., and A (which
replaces and in the source), are put into TEX’s math
mode with correct spacing. The overall layout is
very similar to that generated by WEAVE.

var i, L, w: integer; ch: char; (1)
Z: array [l .. wmaz] of char;
begin L := 0;

repeat w := 0; read(ch);
while (¢h # *,?) A (ch # eol) do
begin w :=w+ 1; Z[w] := ch;
read (ch)
end;
if w > 0 then
begin if L +w < Lmaz then
begin write(’’); L:=L+1
end
else begin write(eol); L :=0;
end;
for i :=1 to w do write(z[i]);
L:=L+w
end
until eof (input)
end.
Inline pieces of code such as “Consider A being
an array [1.. N] of integer...” can be written as

Consider \pascal{A} being an
\pascal{array [1..N] of integer}...

The Pretprin module for pretty-printing Prolog
(in modern syntax) defines an environment Prolog

and a command \prolog with one parameter. Here
is an example of four Prolog clauses:
\begin{Prolog}
d(X,X,D):-atomic(X),!,D=1.
d(C,X,D):-atomic(C),!,D=0.
d(U+Vv,X,DU+DV) : -d(U,X,DU) ,d(V ,X,DV).
d (UxV,X,DU*V+U*DV) : -d(U,X,DU) ,d(V,X,DV) .
\end{Prolog}
The output is simpler than in the Pascal case, since
Prolog’s syntax is more terse. However, typograph-
ical symbols are substituted for :- and reasonable
spacing is added.
d(X, X, D) « atomic(X), !, D=1.
d(C, X, D) « atomic(C), !, D =0.
d(U+V, X, DU+ DV) «
d(U, X, DU), d(V, X, DV).
d(UxV, X, DU*V +UxDV) «
d(U, X, DU), d(V, X, DV).

Our last example shows a few rules of Stanistaw
Szpakowicz’s formal grammar of a large subset of
Polish. The notation used is a variation on the DCG
(Definite Clause Grammar) theme.

Nonterminals in the grammar are put in bold,
but conditions (marked with minus sign in front) are
in normal weight. In arguments, variables are set in
italic and constants in upright shape. The pretty-
printer prefers to break lines between a nonterminal
and a condition rather than between two conditions
or two nonterminals, so conditions tend to group
on separate lines. Pretprin also carefully takes into
account the space needed by rule numbers on the
right side of the column.

ZDANIETO
= ZDANIEOGR(NR, R, L, O, war, prze, NEG) (zt1)
= SPOJNIK(TO) (2t2)

ZDANIEOGR(nr, r, I, o, WAR, PRZE, neg) .
SZDRZ(p, r, MNO, o)

= SPOJLEWY((nr) —ALT(nr, 1.2.3) (szdrzl)
FRZ(p, r1, /1, o) PRZEC
SPOJPRAWY (nr) FRZ(p, r2, 12, 02)
—UZGR(r1, r2, r) —MIN(o1, 02, o)

= FRZ(p, r1, /11, 1) PRZEC KSPOJ(wz) (szdrz2)

—ALT(wz, (A.TAKZE).(JAK.ROWNIEZ)
(JAK.TEZ)) FRZ(p, r2, 12, 02)

—UZGR(r1, r2, r) —MIN(o1, 02, o) .

One more thing worth emphasizing here is that
it is possible to use multiple Pretprin modules in
a single document. For example, the current pa-
per contains examples in three different program-
ming languages and it was generated with a single

KTEX run.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 299

Marcin Wolinski

How to build a pretty-printer

In this section we will try to build a pretty-printer
for a very simple language of terms. Terms are
abstract expressions which logicians and computer
scientists just love to write. We will consider a basic
notation for terms which allows atoms (names built
from letters) and functors (having a name and, in
parentheses, a list of arguments, each being a term).
Here is a typical example of a term:

loves(John, and(Mary, and(Tom,Jerry)))

(No semantic interpretation please, terms are merely
abstract structures.)

Lexical analysis (scanning). The first task in
analyzing a string is to detect “words” in it. For
the string

foo(bar, baz)

the “words” are

foo bar D baz

(Note that space characters were ignored.) We can
distinguish here four “parts of speech”: sequences of
Latin letters (atoms), opening parentheses, closing
parentheses, and commas.

For splitting strings of characters into words we
use an apparatus known as a finite state automaton.
The diagram below represents an automaton for the
example language:

l

In the example language the function of any
letter is the same: letters are building-blocks for
atoms. For that reason the notion of character
groups is used. The following declarations define
in TEX parlance character groups [and w:
\DeclareGroup{1l}

{abcdefghi jklmnopqrstuvwxyz}
\DeclareGroup{w}{ ~"I~"M}
\CompileGroups
Therefore the label [in the diagram denotes any let-
ter, while the label w denotes any “white character”.

Let us now trace what happens when the string

foo(bar, baz)

is being run through our automaton. The automa-
ton starts in state 1 and encounters the letter f
from the input string. Since this character belongs
to the “letters” group, the automaton performs a
transition to state 2 (remembering the f). Now,
the letter o is input, and since there is a transition
from 2 to 2, reading a letter, the automaton does
just that. Then another o comes that is handled
similarly. And now, still in state 2, the automaton
sees a (. Since there is no arrow from 2 labeled
with (, the automaton cannot consume it and stops.
State 2 is marked with a gray circle meaning that it
is an accepting state; stopping in this state means
a word has just been read. In our case, the word
is foo. The action associated with state 2 will pass
this word to the next processing stages.

Now a search is started for another word, so
the automaton returns to state 1. A transition
labeled with (leads to state 4. The next character
is a space and there is no transition from 4 labeled
with a space. The automaton stops, and a single
parenthesis is recognized as the second word.

The next “word” consists of a single space. It
is accepted in state 6, which is somewhat special in
that the action associated with it is empty. This
way spaces get gobbled.

The process continues until the whole string is
processed.

Before we actually describe this automaton in
TEX we’ll take a closer look at the actions associated
with states. These actions prepare a list of “scraps”
on which the syntax analysis will work. This list
is constructed with \AppendElem procedure. Every
scrap has a grammatical category and translation
(the actual text). These two constitute arguments
of \AppendElem. In our case, categories are just the
parts of speech mentioned earlier: atom, open, close
and comma.

The first state is not accepting, so there is
no action associated with it. The state has five
transitions:

\DeclareTransition 1-1->2.
\DeclareTransition 1-,->3.
\DeclareTransition 1-(->4.
\DeclareTransition 1-)->5.
\DeclareTransition 1-w->6.

State 2 on the other hand is accepting, words of the
category atom are recognized in it:
\DeclareState{2}{\AppendElem{atom}{#1}}
\DeclareTransition 2-1->2.

(#1 above is the string read as the automaton was
going from the start state.) The rest of the states

300 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Pretprin—a IMTEX 2¢ package for pretty-printing texts in formal languages

have no leaving transitions but are accepting. Com-
mas and parentheses are recognized in them, and in
state 6, blank characters are gobbled.

\DeclareState{3}{\AppendElem{comma}{#13}}
\DeclareState{4}{\AppendElem{open}{#1}}
\DeclareState{5}{\AppendElem{close}{#1}}
\DeclareState{6}{}

And the last declaration specifies the starting state:

\CompileScanner{1}

Syntax analysis (parsing). Now the input string
has been read and converted to the form

atom open atom comma atom close
foo (bar s baz)

The next task is to recognize the syntactical
structure of the text. We already know the parts of
speech, but now higher level grammatical categories
can emerge. This process is described with a set of
simple grammatical rules.

Our first observation will be that when an atom
is immediately followed by an open parenthesis it is
the beginning of a term. We’ll call such an entity
termhd (a term head):

atom open — termhd

In our example this rule allows us to derive that
foo(is the beginning of a term.

If there is no parenthesis after an atom it surely
is a term all by itself (this is the case with bar and
baz in the example).

atom — term

Terms can have arguments, so the next rule
describes how a termhd can grow: adding a term
and a comma to a termhd gives another well formed
termhd.

termhd term comma — termhd

And finally when after a termhd comes a term
(the last argument) and a closing parenthesis the
whole fabric can be stuffed into a new term:

termhd term close — term

(Note that we do not accept foo() as a term.)
These rules again in the TEX notation are:

\DeclareProduction{atom,open}
\ThisElem\TwoElems{termhd}
{#2#1}\ThisElem

\DeclareProduction{atom}
\ThisElem\OneElem{term}
{\textit{#1}}\PrevElem

\DeclareProduction{termhd,term,comma}
\ThisElem\ThreeElems{termhd}
{#3\formatterm{#2}#1\ }\ThisElem

\DeclareProduction{termhd,term,close}

\ThisElem\ThreeElems{term}
{#3\formatterm{#2}#1}\PrevElem

This notation is somewhat more verbose and al-
lows us to describe situations where not all elements
of the left side of a rule are to be collapsed into a
new scrap (context rules).

The first rule can be read as follows: if you are
looking at the atom scrap followed by an open scrap,
do as follows: starting from ThisElement (the open
scrap), take TwoElements and replace them with a
scrap of category termhd, the translation of which
was formed from the translations of atom (#2) and
open (#1) scraps. Then continue the process starting
from This (the inserted) Element.

The pretty-printing depends on building appro-
priate translations of complex grammatical entities.
We have ignored all spaces in the input, so now we
are responsible for putting them back in a consis-
tent manner. Moreover, in the example language
when an atom is being recognized as a term without
arguments, \textit is applied to render the atom’s
name in italics. And whenever a term is added to the
list of arguments of a term-under-construction, the
macro \formatterm is applied. In the definition of
this macro we decide what it means to pretty-print
a term. To keep things simple, we will just put a
frame around each sub-term:

\newcommand\formatterm[1]{\fbox{#1}}
With these definitions

\begin{Terms}
loves(John, and(Mary, and(Tom,Jerry)))
\end{Terms}

yields
loves({John/, ‘and(Mary),

and (Zom, [Jerry])]))

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 301

Marcin Wolinski

A Appendix

302 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Pretprin—a IMTEX 2¢ package for pretty-printing texts in formal languages

Components of arrays need not be scalars— they themselves may be
structured. If they are again arrays, then the original array A is
called multidimensional. If the components of the component arrays are
scalars, then A is called a matriz. The declaration of a multidimensional
array variable follows the pattern formulated in (11.1). For example, in
the declaration

var M: array [a .. b] of array [c..d] of T (11.26)

M is declared to consist of b—a+1 components (often called matrix rows)
with indices a,...,b, each of which is an array of d — ¢ + 1 components
of type T with indices ¢,...,d. To denote the ith component (matrix
row) of M, the conventional notation

MTi] a<i<b (11.27)
is used, and its jth component of type T is denoted by
M)[j] a<i<b, c<j<d (11.28)

It is customary and convenient to use the following abbreviations, which
are entirely equivalent to (11.26) and (11.28), respectively.

var M: array [a..b,c..d] of T (11.29)
M, j]
Example: Multiplication of matrices. Given the two real-valued

matrices A(m X p) and B(p X n) compute the matrix product C(m x n),
as defined by

P
Cl'j = ZA“‘ * Bkj (1130)
k=1

fori=1,...,mand j=1,...,n.
The formulation of program (11.31) follows from (11.30) in a straight-
forward manner.

var A: array [1..m,1..p] of real; (11.31)
B: array [1..p,1..n] of real;
C: array [1..m,1..n] of real;
i 1..m; 5: 1..n; ks 1..p; s real;
begin {assignment of initial values to A and B}
for i :=1tom do
for j:=1ton do

begin s := 0;
for k:=1topdo s:=s+ Ali, k] « Blk, j];
Cli,j):==s
end
end.

Figure 1: A page from chapter 11 of Niklaus Wirth’s Systematic Programming: An Introduction

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 303

Marcin Wolinski

\documentclass{book}
\usepackage{pascal}

\begin{document}

Components of arrays need not be scalars---they themselves may be structured. If they are
again arrays, then the original array \pascal{A} is called \emph{multidimensional}. If
the components of the component arrays are scalars, then \pascal{A} is called a
\emph{matrix}. The declaration of a multidimensional array variable follows the pattern
formulated in (\ref{arrtype}). For example, in the declaration
\begin{Pascal}

var M: arrayla..b]Jof array[c..d]of T
\end{Pascal}\pplabel{abcdarray}
\pascal{M} is declared to consist of $b-a+1$ components (often called matrix rows) with
indices a,\ldots,b, each of which is an array of $d-c+1$ components of type \pascal{T}
with indices c,\ldots,d. To denote the ith component (matrix row) of \pascal{M}, the
conventional notation
\begin{equation}

\pascal{M[i]}\gquad a\leq i \leq b
\end{equation}
is used, and its jth component of type \pascal{T} is denoted by
\begin{equation}\label{ijthelem}

\pascal{M[i]l [j1}\qquad a \leq i \leq b, \quad c \leq j \leq d
\end{equation}

It is customary and convenient to use the following abbreviations, which are entirely
equivalent to (\ref{abcdarray}) and (\ref{ijthelem}), respectively.
\begin{equation}
\begin{tabular}[t]{1}
\pascal{var M: array [a..b,c..d] of T}\\
\pascal{M[i, jl1}
\end{tabular}
\end{equation}

\subsubsection{Example: Multiplication of matrices.}
Given the two real-valued matrices $A(m\times p)$ and $B(p\times n)$ compute the matrix
product $C(m\times n)$, as defined by
\begin{equation}\label{mmultdef}
C_{ij} = \sum_{k=1}"p A_{ik}*B_{kj}
\end{equation}
for $i=1,\ldots,m$ and $j=1,\ldots,n$.

The formulation of program (\ref{mmult}) follows from (\ref{mmultdef}) in a

straightforward manner.

\begin{Pascal}

var A:array[l..m,1..plof real; B:array[l..p,1..n] of real; C:array[l..m,1..n] of real;
i:l..m; j:1..n; k:1..p; s:real;

begin (*assignment of initial values to \pascal{A} and \pascal{B} *)

for i:=1to m do for j:=1 to n do

begin s:=0; for k:=1 to p do s:=s+A[i,k]*B[k,jl; C[i,jl:=s

end

end.

\end{Pascall}\pplabel{mmult}

\end{document}

Figure 2: Source code for the previous example

304 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

