Threshing EPS files

Bogustaw Jackowski, Piotr Pianowski, and Piotr Strzelczyk

BOP s.c.
ul. Piastowska 70, Gdanisk, Poland

B.Jackowski@gust.org.pl\\ P.Pianowski@gust.org.pl\\ P.Strzelczyk@gust.org.pl

Abstract

In this article we describe the CEP package for compressing EPS files. It belongs
to the public domain and was released at the GUST meeting in Bachotek, 1997.

The amount of disk space occupied by bitmap
graphics is a well-recognized problem. For example,
a 300 dpi picture (A4) contains ca 8700000 pixels;
assuming that each CMYK pixel occupies four bytes,
one obtains ca 35MB of disk space needed to store
the picture.

Now, imagine a TEX-er, who is not allowed to
use binary graphic data (because of the otherwise
magnificent DVIPS); thus our poor TEX-er usually
converts the binary data to hexadecimal EPS files,
thus doubling the required space, and next, after
compiling a document with TEX+DVIPS, the whole
graphic data is put into the resulting PostScript file,
so the required space is doubled again —altogether
140MB per one A4 page. The nightmare begins. . .

This problem is not a new one; it was recognised
by Adobe a relatively long time ago. In the Post-
Script Level 2 specification, they included objects
called filters which enable data compression. In
particular, instead of hexadecimal data, one can
use ASCII85 encoding (there are explanations of
abbreviations at the end of the article), run length
compression, LZW compression, DCT (used in JPEG
files), and many others. Why not make use of
these tools? The question is not as silly as it may
look at the first glance, as there exist relatively few
applications capable of generating well-compressed
PostScript graphics.

We decided to patch somehow this gap. We
developed a little package enabling the compression
of “normal” (non-compressed) graphic data. The
nature of the problem is more complex, however,
than one might expect. In particular, a universal,
always efficient compression technique does not ex-
ist. Choice of an optimal algorithm depends upon
the kind of data, form of the file and the expected
application. Hence, the package has several “but-
tons” which enable controlling various aspects of
compression.

Actually, the name CEP is derived from “com-
pressed EPS”. Coincidentally, the name in Polish

means “the flail”. We hope that others find thresh-
ing EPS files useful, in order to get rid of chaff, i.e.,
redundant data.

About the program

Our package consists of two pairs of AWK programs
(cep.awk—uncep.awk and cop.awk—uncop.awk),

four MS-DOS batch files and text information. cep.awk

and cop.awk generate (on-the-fly) PostScript pro-
grams which, processed by Ghostscript, yield the
appropriate data compression. UNCEP and UNCOP
accomplish (using a similar technique) the reverse
process, i.e., uncompression.

CEP is devised for the compression of the
usual bitmapped EPS files, containing a single,
hexadecimally-coded image; COP can be used to
compress any PostScript data.

The question arises: Why use two packing
techniques? The answer is simple: the efficiency
of compression is higher if a compression program
knows in advance which kinds of data are to be
expected. In general, bitmaps are more regular
(redundant) than arbitrary PostScript data, hence
even simple algorithms turn out to be more efficient.

Tests show that in the best case (screen dumps)
squeezing up to 10% of the original size is noth-
ing unusual. Sometimes, however, no compression
method gives a satisfactory result. In such a case,
one can always use encoding data using the ASCII85
filter, obtaining a reduction of a hexadecimal bitmap
size by approximately 35%.

Below we give a brief description of CEP and
COP. So far, only the MS-DOS version of the
PostScript-compressors is available, but it should be
easy to adapt our package to any platform, where
GAWK and Ghostscript are available. In this version
the GNU implementation of AWK (GAWK-EMX.EXE)
and Aladdin Ghostscript interpreter (GS386.EXE)
are used.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 267



Bogustaw Jackowski, Piotr Pianowski, and Piotr Strzelczyk

We tested the package using several Ghostscript
and GAWK implementations; now we use Ghost-
script 5.10 and GAWK 3.0.3.

CEP

The CEP subpackage consists of the MS-DOS batch
files cep.bat and uncep.bat and the AWK pro-
grams cep.awk and uncep.awk. First, AWK in-
spects the source EPS file doing its best to recognize
a position of a hexadecimal bitmap; next it creates
an appropriate PostScript program; and then the
control is passed on to Ghostscript which just per-
forms the submitted program: encodes the bitmap
and copies verbatim the remaining lines. The orig-
inal preamble is slightly modified; nevertheless, all
DSC comments are left intact.

If the bitmap cannot be found or the AWK
suspects that troubles may arise, the CEP engine
gives up.

The resulting file should be verified prior to
removing the original one, as the CEP heuristic
tricks may fail to fix the bitmap properly; moreover,
due to Ghostscript bugs, premature removal of the
source may also be painful.

CEP never generates binary output — only hexa-
decimal or ASCII85 encoding are supported. This
is due to the fact that CEP-compressed EPS files
are primarily meant to be used by TEX+DVIPS.
Nevertheless, the resulting files can be used in other
typesetting systems as so-called placeable EPS files.
The applicability to non-TEX applications, however,
is somewhat limited, as binary TIFF previews (re-
quired by WYSIWYG applications) may be misin-
terpreted by (G)AWK.

UNCEP requires that a CEP-compressed file
was not changed. In particular, it relies on the
information in a quasi-DSC comment %4UNCEPInfo:.
This information can be destroyed by a seemingly
innocent modification (e.g., by adding or removing
a comment line). Note that the technique employed
by CEP destroys, by its nature, the information
about the line-breaking structure of the hexadecimal
bitmap. Therefore, UNCEP cannot retrieve the orig-
inal file. Line-breaking structure does not make any
problem for a PostScript interpreter. There exist
programs, however, that read their own bitmapped
EPS files, which for unknown reasons make use of
such (sub)lexical information; Aldus PhotoStyler is
a notable example.

The command line invoking CEP is pretty sim-

ple:
cep.bat (in_file) (out_file) {options)

One should remember that the names of input and
output files must differ. The program recognizes the
following options:

8 — use ASCII85 coding (default)

h or H — use HEX (hexadecimal) coding

r or R — use RLE (RunLength) compression
(default)

1 or L — use LZW compression

f or F — use Flate compression
(PDF and Level 3)

n or N — don’t compress

Invoking UNCEP is even simpler:
uncep.bat (in_file) (out_file)

As mentioned, decompression and decoding meth-
ods are taken from an input file.

CcOoP

The subpackage consists of the MS-DOS batch files
cop.bat and uncop.bat, and the AWK programs
cop.awk and uncop.awk. COP reads and encodes
appropriately the supplied data. No analysis of the
PostScript data is performed, as the entire file is
encoded without changing even a bit. The only as-
pect that is taken into account is the DSC comment
%%BoundingBox:; if it is found, COP inserts this
comment in the preamble, otherwise the resulting
file does not contain the bounding box information.

COP-generated files are readable by any Post-
Script Level 2 interpreter.

UNCOP scans the header and deduces from it
the method of decompression, hence no options are
needed. UNCOP, unlike UNCEP, retrieves precisely
the original file. It is still recommended, however,
that a user verifies whether the resulting file is
properly interpreted by Ghostscript. Due to Ghost-
script bugs, premature removal of the source file
after compression or decompression may turn out
to be painful.

Since COP can be used to compress any data for
arbitrary applications, binary encoding is allowed
also. The resulting files can be used with typesetting
systems that accept so-called placeable EPSs. Un-
fortunately, binary TIFF previewers make files after
compression illegible for PostScript.

The usage of COP is similar to that of CEP:
cop.bat (in_file) (out_file) {options)
The program recognizes the following options:
8 — use ASCII85 coding (default)
b or B — use binary coding
h or H — use HEX (hexadecimal) coding

r or R — use RLE (RunLength) compression
(default)

268 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting



1 or L — use LZW compression

f or F — use Flate compression
(PDF and Level 3)

n or N — don’t compress

Observe that binary encoding is, in fact, no encoding
at all.

The reverse process, i.e., UNCOP decompres-

sion, is also straightforward:

uncop.bat (in_file) (out_file)

As with UNCEP, decompression and decoding meth-
ods are taken from an input file.

A heap of remarks concerning our package

The applied solution addresses several problems:

1. Tt is not at all obvious how to determine syn-

tactically where a hexadecimal bitmap begins
in an EPS file; semantic analysis (by redefining
PostScript primitives image, imagemask and
colorimage) is possible, but it also has its
limitations; anyway, we decided to recognize
a bitmap syntactically, which implied a problem
of recognizing such artifacts as add or def which
look like fragments of a bitmap but, in fact, are
not.

. Also, it is not obvious which compression method
should be applied for a given data type; usu-
ally, ASCII85 encoding is advisable; for pure
bitmaps (CEP) RLE compression is satisfactory,
although LZW and Flate filters usually produce
much better results (the latter seems to be
the best); nevertheless, both LZW and Flate
encodings have limited usability:

(a) LZW encoding is not implemented in
Ghostscript ver. > 4 due to USA patent
law; as a by-pass, Aladdin implemented
an LZW-compatible filter which produces
non-compressed data (in fact, enlarged by
some 10%) readable for any LZWDecode
filter. You can use an old Ghostscript
version, or compile a Ghostscript version
containing the real LZW filter at your own
risk, but. ..

(b) Flate encoding (the same that is used
in GZIP) is available on photo-typesetters
having implemented PostScript Level 3;
it is also used in PDF files. It is safe
to assume that Ghostscript ver. > 4 has
this filter built-in. With other PostScript
devices, in particular commercial ones, the
test described in point 6 may prove useful.

As a rule of thumb we would suggest not to
use any compression but ASCII85 for detailed

Threshing EPS files

colour photo images. It is just a weakness of all
non-lossy techniques — algorithms employed by
ARJ, ZIP, LHARC, and others would yield poor
results also. A reasonable alternative for data
of this kind would be DCT (JPEG) compression.

. As was mentioned above, ASCII85 encoding can

usually be recommended; it added, however,
some troubles. First, due to Ghostscript bugs,
we decided to add the (dummy) NullEncode
filter which seems to cure the problem. But
there is one more problem: ASCII85-encoded
bitmaps may contain lines looking like DSC
comments, i.e, they may begin with double
percent signs, %%, or with a percent-exclamation
sign pair, %! —why didn’t Adobe exclude the
percent from ASCII85? Some programs may
try to interpret pseudo-DSC lines. For example,
DVIPS just removes such lines, unless the option
-KO is not used; on the other hand, leaving
DSC comments intact may stupefy document
managers.

. It would be convenient to have some more filters

implemented, in particular DCT and CCITT-
Fax; both of them, however, make use of some
additional input data which makes using them
more complex; moreover, it is not clear whether
one can find the optimal compression parame-
ters for DCT without a WYSIWYG program; we
consider a possibility of one-to-one conversion
between JPEG files and EPS files making use of
DCT filters; also, a similar conversion between
GIF files and EPS files making use of LZW filters
can perhaps be implemented.

. The package conserves the working disk space —

no large temporary files are created; roughly,
the needed disk space is equal to the size of the
source plus the size of the target.

. The following file may be helpful for verifying

whether a given PostScript device is able to
interpret compressed EPS files:

%!PS-Adobe-2.0 EPSF-1.2
%hPages: 1

%/%BoundingBox: O O 540 150
%%EndComments

/Helvetica 8 selectfont

90 rotate

1 2 moveto

(%)

{0 -10 rmoveto gsave show grestore}
255 string

/Filter

resourceforall

showpage

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 269



Bogustaw Jackowski, Piotr Pianowski, and Piotr Strzelczyk

%LEQF

Running this program yields the list of filters
for a given device. The error reported during
the processing of this file proves that the device
is not Level 2 compatible. In such a case, using
the CEP package should be abandoned.

7. Bugs and traps:

(a) Apparently, by preceding the closefile
command by flushfile, one neutralizes
an error in GS 3.x (tail of output swal-
lowed).

(b) Adding (a dummy) NullEncode filter neu-
tralizes (probably) another Ghostscript
bug: an ASCII85Encode filter with a tar-
get procedure may produce superfluous
EOD marks, i.e., “7>” (if things go really
badly you can obtain thousands of them).
Using the target procedure instead of a file
object excludes GS ver. < 3.x, because
early Ghostscripts didn’t support all fea-
tures of PostScript Level 2. Nevertheless,
Ghostscript ver. > 2.6 can be used for
compression with hexadecimal encoding
(it has a “legal” LZW compression).

(c) The target procedure mentioned in 7b is,
in turn, due to special treatment of the
ASCII85-encoded lines that look like DSC
comments; this special treatment is break-
ing lines after the first percent character.
It is dedicated to the DVIPS driver which
has a dangerous option remove comments
(-K1).

(d) An artificial form of quitting, i.e., {2 2
.quit} instead of {2 .quit}, is due to an
infinite loop of Ghostscript 3.5x caused by
the latter form. The Ghostscript internal
operation .quit was chosen to provide
error handling at the level of the operating
system.

(e) Still, there exist bugs in older Ghostscript
that we were not able to neutralize; e.g.,
some EPS files are properly compressed by
GS 2.6, but Ghostscript 2.6 breaks while
displaying them; GS 3.51 behaves simi-
larly with other bitmaps. So far, Ghost-
script > 4 seems to be the most resistant
to the “filter trial”, but it also reveals some
deficiencies. Let’s hope that GS 5.5, which
is expected to appear soon and is claimed
to have most of PostScript Level 3 features
implemented, will be still better.

(f) Summing up, we would strongly recom-
mend using Ghostscript 4.x or 5.x (pos-

sibly with LZWEncode compiled in) and
GAWK 3.x: GS 4.x is nearly complete
implementation of the Level 2 PostScript;
GAWK 3.x provides regular expressions for
record separators, which makes it possible
to force handling end-of-lines in exactly
the same manner as PostScript does and,
moreover, is more reliable than earlier ver-
sions.

CEP for everybody

The packages described herein, we have developed
for our own purposes. We make them available to
the public in the hope that others will find them
useful too. We intend to support the packages, but
we cannot guarantee that we will be able to follow
the frequency of Ghostscript upgrades.

Note that all copyrights, copylefts, copyups,
copydowns, or whatever you wish to call them,
concerning all the files in the CEP/COP packages
are essentially of the public domain character.

Vocabulary

You may find useful the following short explanation
of terms appearing throughout the article.

Ghostscript, GS: A reliable and efficient inter-
preter of PostScript language by Aladdin Enter-
prises, available as a free public license product;
its current version (in July —5.10) turns out to
be much more reliable than not a few commer-
cial interpreters.

AWK: A popular utility and a programming lan-
guage for convenient and efficient batch data-
reformatting; written in 1977 by Alfred V. Aho,
Peter J. Weinberger, and Brian W. Kernighan.

GAWK: GNU AWK, GNU Free Software Founda-
tion implementation of AWK, written in 1986
by Paul Rubin and Jay Fenlason, with advice
from Richard Stallman.

GNU: The initiative of the Free Software Founda-
tion (FSF), a non-profit organization dedicated
to the production and distribution of freely dis-
tributable software, founded by Richard M. Stall-
man.

TEX: Public domain typesetting system by Don-
ald E. Knuth of Stanford University.

DVIPS: A popular TgEX-to-PostScript driver by
Tomas Rokicki of Stanford University.

DSC: Document Structuring Convention—a stan-
dard for structuring PostScript documents de-
signed by Adobe.

270 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting



ASCII85: Algorithm for coding binary data as 7-
bit ASCII text consisting of only printable char-
acters; encodes every four bytes as five charac-
ters from % to u; additionally z is used to code
four zeros (see PostScript Language Reference
Manual, second edition, pp. 128-130).

RLE: Run Length Encoding—a standard method
of data compression (see PostScript Language
Reference Manual, second edition, pp. 133—
134).

LZW: An algorithm of data compression by J. Ziv,
A. Lempel (1978), improved by T. Welch (1984);
Unisys, at the time Welch’s employer, was
granted a US patent in 1985 on Welch’s al-
gorithm; a grandfather clause was established
by Unisys to make pre-1995 implementations of
LZW code free of royalty requirements, thereby
eliminating such claims on UNIX compress (in-
formation from Nelson H. F. Beebe, e-mail:
beebe@math.utah.edu).

Threshing EPS files

DCT: Discrete cosine transform compression, an
elaborate, very efficient but lossy compression
scheme, used in JPEG file format.

JPEG: Joint Photographic Experts Group, an or-
ganization responsible for developing an in-
ternational standard for compression of image
data; the PostScript (Level 2) DCTEncode filter
conforms to the JPEG-proposed standard.

GZIP: Compressing utility by GNU Free Software
Foundation, based on a superior and unpatented
compression algorithm (modified Lempel and
Ziv algorithm), developed in order to get rid
of the patented LZW algorithm. It has become
a standard compression tool in UNIX systems.

Flate: Filter in PostScript Level 3 based on the
compression algorithm used by GZIP; the name
is the truncation of the words “inflate” and
“deflate”.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 271



Bogustaw Jackowski, Piotr Pianowski, and Piotr Strzelczyk

272 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting



