Real World

Languages
and Fonts

PostScript
Topics

Tools

Futures

News &
Announcements

Production Notes

TUG Business

Advertisements

234
235
237

239
242

244
250
256

267
272

276

284
289
293

298

304

311
317

318
323

330

338
340

339

341
342

343
339
344

c3

TUGBOAT

Volume 19, Number 3 / September 1998
1998 Annual Meeting Proceedings

Barbara Beeton / TUG Election Notice
Barbara Beeton / Editorial Comments— A TUG ’98 trip report
TUG’98 Attendees

R.W.D. Nickalls / TEX in the Operating Theatre: An anaesthesia application

Janusz M. Nowacki / Antykwa Toruriska: An electronic replica of a Polish
traditional type

Richard J. Kinch / Belleek: A call for METAFONT revival

Karel Piska / Georgian scripts

Taco Hoekwater / Generating Type 1 fonts from METAFONT sources

Bogustaw Jackowski, Piotr Pianowski, and Piotr Strzelczyk / Threshing EPS files
Bogustaw Jackowski, Piotr Pianowski, and Piotr Strzelczyk /

More TEX-PostScript links
Piotr Bolek / METAPOST and patterns

Han Thé Thanh / Improving TEX’s Typeset Layout
Daniel Taupin / 1tx2rtf: Exporting INTEX documents to Word addicts
Wrtodek Bzyl / Adding native language support to the CWEB package and
the TEX program
Marcin Woliniski / Pretprin —a IATEX2: package for pretty-printing texts
in formal languages
Hans Hagen / The Calculator Demo, Integrating TEX, METAPQST, JavaScript
and PDF
Hans Hagen / Visual Debugging in TEX, Part 1: The Story
Hans Hagen / Visual Debugging in TEX, Part 2: The Macros

Karel Skoupy / N78: a New Typesetting System

NTG TgX future working group / TEX in 2003, Part I: Introduction and
views on current work

NTG TEX future working group / TEX in 2003, Part II: Proposal for
a \special standard

Calendar
TUG’99 Announcement

Mimi Burbank / Production notes

Institutional members
TUG membership application

TEX consulting and production services
Hug The Lion!

Y&Y Inc.

Blue Sky Research

TEX Users Group

Memberships and Subscriptions

TUGboat (ISSN 0896-3207) is published quarterly
by the TEX Users Group, 1466 NW Naito Parkway,
Suite 3141, Portland, OR 97209-2820, U.S.A.

1999 dues for individual members are as follows:
= Ordinary members: $65; $10 surcharge
if payment received after March 1, 1999,
to cover shipment of back issues.
= Students: $35; $10 surcharge if payment

received after March 1, 1999.
Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. A
membership form is provided on page 342.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $75 a year, including air mail delivery; $10
surcharge if payment received after March 1, 1999.

Periodical-class postage paid at Portland, OR,
and additional mailing offices. Postmaster: Send
address changes to TUGboat, TEX Users Group,
1466 NW Naito Parkway, Suite 3141, Portland, OR
97209-2820, U.S.A.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org).

TUGboat (© Copyright 1998, TEX Users Group

Permission is granted to make and distribute verbatim
copies of this publication or of individual items from this
publication provided the copyright notice and this permission
notice are preserved on all copies.

Permission is granted to copy and distribute modified
versions of this publication or of individual items from
this publication under the conditions for verbatim copying,
provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute transla-
tions of this publication or of individual items from this
publication into another language, under the above condi-
tions for modified versions, except that this permission notice
may be included in translations approved by the TEX Users
Group instead of in the original English.

Copyright to individual articles is retained by the
authors.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana®
Mimi Jett, President*t

Kristoffer Rose*t, Vice President

Don DeLand**, Treasurer

Arthur Ogawa**, Secretary

Barbara Beeton

Karl Berry

Kaja Christiansen

Susan DeMeritt

Judy Johnson™

Ross Moore

Patricia Monohon

Cameron Smith, Volunteer Coordinator

Petr Sojka

Philip Taylor

Raymond Goucher, Founding Ezecutive Director?
Hermann Zapf, Wizard of Fonts'

*member of executive committee
+member of business committee

Thonorary

Addresses Electronic Mail

All correspondence, (Internet)
payments, parcels, General correspondence,
etc. membership, subscriptions:

TEX Users Group

office@tug.org
1466 NW Naito Parkway

Submissions to TUGboat,

Suite 3141 :
Portland, OR 97209-2820 letters to the Editor:
TUGboat@tug.org
USA
Technical support for
Telephone TEX users:

support@tug.org

To contact the
Fax Board of Directors:
+1 503 223-3960 board@tug.org

+1 503 223-9994

‘World Wide Web
http://www.tug.org/
http://www.tug.org/TUGboat/

Problems not resolved?
The TUG Board wants to hear from you:
Please email to board@tug.org

TEX is a trademark of the American Mathematical
Society.

1998 Annual Meeting Proceedings

TEX Users Group
Nineteenth Annual Meeting
Torun, Poland, August 17-21, 1998

TUGBOAT

COMMUNICATIONS OF THE TgX USERS GROUP
TUGBoAT EDITOR BARBARA BEETON
ProceepINGS EDITORS MARIUSZ OLKO AND TOMEK PRZECHLEWSKI

VoruMmE 19, NUMBER 3 . SEPTEMBER 1998
PORTLAND . OREGON . U.S.A.

234

1999 TEX Users Group Election

Barbara Beeton
for the Elections Committee

The terms of the TUG President and of 10 mem-
bers of the Board of Directors expire as of the 1999
Annual Board Meeting, which will take place in con-
junction with the 20th Annual TUG Meeting to be
held in August 1999 in Vancouver, Canada.

The current President, Mimi Jett, has stated her
intention to stand for re-election. The directors whose
terms expire in 1999 are Kristoffer Rose, Don DeLand,
Barbara Beeton, Karl Berry, Kaja Christiansen, Susan
DeMeritt, Judy Johnson, Ross Moore, Cameron Smith
and Philip Taylor; directors named in italic are expected
to stand for election to another term. Continuing di-
rectors, with terms ending in 2001, are Arthur Ogawa,
Patricia Monohon, and Petr Sojka.

The election to choose the new President and
Board members will be held in Spring of 1999. Nom-
inations for these openings are now being invited.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG Presi-
dent/to the Board by submitting a nomination pe-
tition in accordance with the TUG Election Proce-
dures. Election ... shall be by written mail ballot
of the entire membership, carried out in accordance
with those same Procedures.”

The name of any member may be placed in
nomination for election to one of the open offices
by submission of a petition, signed by two other
members in good standing, to the TUG office at
least two weeks (14 days) prior to the mailing of
ballots. (A candidate’s membership dues for 1999
will be expected to be paid by the nomination dead-
line.) A nomination form follows this announce-
ment; forms may also be obtained from the TUG
office, and electronically via the TUG Web pages at
http://www.tug.org.

Along with a nomination form, each candidate
is asked to supply a passport-size photograph, a
short biography, and a statement of intent to be in-
cluded with the ballot; the biography and statement
of intent together may not exceed 400 words. The
deadline for receipt at the TUG office of nomination
forms and ballot information is 15 March 1999.

Ballots will be mailed to all members about 30 days
after the close of nominations. Marked ballots must be
postmarked no more than six (6) weeks following the
mailing; the exact dates will be noted on the ballots.

Ballots will be counted by a disinterested party not
part of the TUG organization. The results of the election
should be available early in June, and will be announced
in a future issue of TUGboat as well as through various
TEX-related electronic lists.

TUGboat, Volume 19 (1998), No. 3

1999 TUG Election— Nomination Form

Only TUG members whose dues have been paid for 1999
will be eligible to participate in the election. The sig-
natures of two (2) members in good standing at the
time they sign the nomination form are required in ad-
dition to that of the nominee. Type or print names
clearly, using the name by which you are known to TUG.
Names that cannot be identified from the TUG member-
ship records will not be accepted as valid.

The undersigned TUG members propose the nomi-
nation of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

0O TUG President

0 Member of the TUG Board of Directors
for a term beginning with the 1999 Annual Meeting,
August 1999.

Members supporting this nomination:

1.

(please print)

(signature) (date)

(please print)

(signature) (date)

Return this nomination form to the TUG office (FAXed
forms will be accepted). Nomination forms and all re-
quired supplementary material (photograph, biography
and personal statement for inclusion on the ballot) must
be received in the TUG office no later than 15 March
1999.' It is the responsibility of the candidate to ensure
that this deadline is met. Under no circumstances will
incomplete applications be accepted.

O nomination form
O photograph
O biography/personal statement

TEX Users Group FAX: +1 503 223-396
Nominations for 1999 Election
1466 NW Naito Parkway, Suite 3141
Portland, OR 97209-2820
U.S.A.
1 Supplementary material may be sent separately from

the form, and supporting signatures need not all appear on
one form.

Editorial Comments— A TUG 98 Trip Report

Barbara Beeton
American Mathematical Society
bnb@ams.org

The 1998 TUG meeting took place at the Nico-
las Copernicus University in Torur, Poland, from
August 17-20, hosted by GUST, the Polish Grupa
Uzytkownikéw Systemu TEX.

Although Torur itself is a (restored) medieval
walled city, the Nicolas Copernicus University is a
rather new university outside the walls. Established
in the middle of this century, it is named for Torun’s
most famous scientific son, the founder of modern
astronomy. The campus is largely wooded, with
paths and trails leading off in many directions; by
the end of the conference, when I had finally figured
out the most pleasant routes between the dorms,
the dining room and the lecture halls, I was sorry to
leave.

The theme of the conference, “Integrating TEX
with the Surrounding World”, was quite well ex-
plored, from using TEX to generate on-the-spot
anesthesia charts for patients’ records, to tools
for solving various TEXnical problems, to a wide-
ranging discussion of what the future might hold.
Although the number of participants was not as
great as at some previous meetings, everyone who
attended was well supplied with interesting things
to think and talk about.

A highlight of the sessions was the presenta-
tion by Hans Hagen of his visual debugging tool,
developed as an adjunct to CONTEXT, Hans’ macro
system that fills the same niche as ITEX —a user
interface based on logical markup and a multiplicity
of document styles. The audience response to this
was overwhelmingly positive; in the voting for the
conference “bests” (best content, best presentation,

and overall best paper) there was simply no contest.
Hans took home with him several fine old books pro-
vided by the local organizers, and the more highly
distilled Cathy Booth memorial prize, provided by
UK TUG.

One of my personal favorites was the presen-
tation by Dick Nickalls, “TEX in the Operating
Theatre!”; although the text appears in these pro-
ceedings, the slides that accompanied it in person
added a good bit of immediacy and “local color™.

The last presentation was a joint event led by
almost the entire contingent from the Netherlands,
a highly interactive session on “futures” what are
the directions of work currently underway, what new
features are wanted and needed, is there any hope
for standardization of \specials?, ... These topics
appear here in the papers entitled “TEX in 2003,
and are well worth mulling over.

However, not all was business. An evening
outing to the castle at Golub-Dobrzyn found us
gathered around a bonfire in the courtyard, eating
slices of a pig roasted over the fire by two yeomen
clad in “chain mail” (actually, loosely knit hooded
overshirts, coated with metallic paint). After a tour
of the castle, which had been a headquarters of the
Teutonic Knights before their ejection from Poland,
and later a home to Polish royalty, we were treated
to the spectacle of a fire breather (Gilbert van
den Dobbelsteen, who has other talents besides his
expertise with output device drivers). The evening
ended with guitar playing and folksong.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 235

Barbara Beeton

Another evening was spent in the newly re-
stored Artus’ Hall in the center of Torun, where
we were serenaded by a string quartet, and wined
and dined in a grand manner. This hall, a Neo-
Renaissance building from the late 1800s, is on the
site of an older hall, dating to the 14th century,
where a treaty was signed in 1466 ending a 13-year
war between the Poles and the Teutonic Knights,
and establishing Poland as an independent state.

The gracious hospitality of our hosts was surely
appreciated. The local committee included Jerzy
Ludwichowski (chair), Jolanta Szelatyriska, Stani-
staw Wawrykiewicz, Marek Czubenko, and Mariusz
Czerniak. The programme committee consisted of
Bogustaw Jackowski, Chris Rowley, Phil Taylor, Jifi
Zlatuska and Hans Hagen. Mariusz Olko, Tomasz
Przechlewski and Bogustaw Lichonski were respon-
sible for producing the preprints. The office staff
included the daughters of two committee members
as well as several students, all competent, cheerful,
and ever-helpful.

i

A number of sponsors contributed to the suc-
cess of the conference: the State Committee for Sci-
entific Research; several departments of the Nicolas
Copernicus University: the International Center for
Information Systems and Services, the Faculty of
Mathematics and Informatics, and the Faculty of
Economic Sciences and Management; Wydzial Kul-
tury Urzedu Miasta Torunia; Acer Polska; Artgraf
Warszawa; BOP s.c. Gdansk; VIA Publishing Torun-
Wroctaw; Sun Microsystems Poland; the 4allTEX
Team; DANTE e.V.; GUTenberg; UK TUG; NTG;
GUST.

Thanks to all.

Editor’s note: The photos are included for
those of you who were unable to attend the meeting.
They were taken from the TUG’98 web site http:
//www.gust.org.pl/TUG98/photos, and were pro-
vided by Luzia Dietsche. You must seem them in
color!

Mimi Burbank

236 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

TEX in the Operating Theatre: An anaesthesia application

R. W. D. Nickalls BSc, PhD, MBBS, FRCA.
Consultant in Anaesthesia & Intensive Care,
Department of Anaesthesia,

City Hospital, Nottingham, UK.

Telephone +44-(0)-115-9691169

FAX +44-(0)-115-9627713

dicknickalls@compuserve.com

Abstract

This article describes the author’s experience of using TEX for typesetting the
Anaesthesia Record as part of an automated data-collection system developed for

use in the operating theatre.

Introduction

Since the theme of this year’s conference is “Inte-
grating TEX with the surrounding world” I would
like to describe my integration of TEX with the world
of the operating theatre —specifically with the do-
main of anaesthesia.

One of the many things that occupies anaes-
thetists during an operation is documentation. This
takes the form of a log of various physiological pa-
rameters (see Figure 1), drugs used, blood lost, flu-
ids administered, procedures performed etc., other-
wise known as the Anaesthesia Record. Since this is
generally a hand-written record, the documentation
side of things can become rather neglected during
busy periods, and consequently, anaesthetists are in-
creasingly using computers to automate the collec-
tion of such data. This has many advantages includ-
ing allowing real-time processing of data, generation
of various derived parameters, and greatly enhanced
information display facilities.

Collecting and processing the data

Since most monitoring equipment used in Critical
Care environments has an RS-232 serial interface
the process of data-collection, construction of trend
graphics, formatting and typesetting can be auto-
mated reasonably easily.

My own system is a menu-driven research appli-
cation which uses compiled QuickBASIC programs
to coordinate the access, display and printing of
both real-time physiological data and keyboard in-
puts. The printing module uses WTEX to typeset the
text and graphics to create the Anaesthesia Record
in a format suited to the hospital notes.

The data from the various anaesthesia monitors
is accessed via the serial port using a multiplexing
device. Individual parameters are then extracted us-
ing the relevant software for each of the various mon-
itors—see [1] for interfacing details relating to par-
ticular anaesthesia monitors. Unfortunately there is
currently no standardisation with regard to data for-
mats for medical monitoring devices, but this may
well soon change with the development of the new
international Medical Information Bus (MIB) stan-
dard.

During anaesthesia the program accesses and
displays all the data in real-time as graphic trends,
as well as deriving a number of so-called ‘value-
added’ parameters and processing keyboard entries.
At the end of the operation the program typesets the
text and graphics to form the Anaesthesia Record.

The graphics are created using the excellent
freeware program GNUPLOT! which allows batch pro-
cessing and will output graphics in ETEX picture
format.

Armed with the maximum and minimum val-
ues for each of the measured parameters, the pro-
gram writes the GNUPLOT input files, and then calls
GNUPLOT, outputting the graphics in INTEX picture
format, and placing them into the appropriate di-
rectories. The program then writes the IXTEX input
.tex file, and then calls IXTEX to typeset the text
and graphics. Finally the .dvi file is printed and
put into the hospital notes. In practice all this is
performed locally within the operating theatre, such
that the Anaesthesia Record is printed and placed
in the patient notes just as the patient is returned
to the recovery area. Figure 1 shows the graphics
page of a typical Anaesthesia Record.

L http://www.cs.dartmouth.edu/gnuplot_info.html

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 239

Advantages of ASCII-based systems

The fact that both TEX and GNUPLOT use inputs
which are ASCII-based has the great advantage that
their input files can be written on-the-fly by the co-
ordinating computer program. Such flexibility al-
lows the final text and graphics of the document to
be tailored to the data. For example, this allows
the axes of graphs to be automatically adjusted de-
pending on maximum and minimum values. Sim-
ilarly, text layout can be made to vary depending
on the particular keyboard entries made during the
operation.

Small is beautiful

An automated system for data collection, display
and printing has clear advantages over the usual
hand-written method; it is certainly a more accu-
rate record, and physiological data can be sampled
much more frequently. Furthermore, keyboard entry

of drugs and other information can be made simple
and fast by careful design of the interface.

Since this is a specific stand-alone application,
it is possible to use a much cut-down version of
ITEX consisting only of the essential files, fonts and
style options required for the application, with the
effect that the size of the printing module can be
made extremely small. A not insignificant bonus,
therefore, of using TEX as the typesetting engine is
that I am able to make use of old 386 PCs having rel-
atively small hard-drives, which have been discarded
by my memory-hungry colleagues!

References

1. Nickalls RWD and Ramasubramanian R (1995).
Interfacing the IBM-PC' to medical equipment;
the art of serial communication.

Cambridge University Press, Cambridge, UK.
pp 402. ISBN: 0 521 46280 0.

200
150
BP sys O
BP dias o
HR o 100
CVP —
50
20
0
100
%
Sat o 90
02 []
80
70
%
N,O O 50
O20 39
21% ...
10
8
CO2 % 6
(exp o)
(insp) 4
2
Tidal vol 01000

(0-1000 mls) Y
Resp rate
(0-20/min) 250

4

Isoflurane % 3
(insp —) 9
(exp) 1
Total MAC ¢ 0

Theatre 1, City Hospital, Nottingham, UK.

TEX in the Operating Theatre: An anaesthesia application

ANAESTHETIC SHEET

DATE:
OPERATION:
ANAESTHETISTS:

SURGEONS:

18 August 2000
Laparotomy
RWD Nickalls et
AN Other et al.

al.

JOHN DOE

dob 24/01/1925
Hosp No: 123456789
Nightingale Ward

Age: 75

ﬁg%@*@
. M%@Wﬁ% o &f@%@
%M g M
9\8\8/8/@—@\8\& . o e ,M/ o
e DA T S G S S S S hd
09.30 09.45 10.00 10.15
0005000 g00P 000000050 0 JCECAOECNS)
o 0©0eo © o 2% o
. N o) . €] O o
o
09.30 09.45 10.00 10.15
I i iy R S A AR R L
FRRTRL oG R e &
09.30 09.45 10.00 10.15
>OR. .
P 0000000600G: & 06 GOEICPTOPOFVO0GHO
09.30 09.45 10.00 10.15
[]

ceooe EJDDE DOUponoooon g 2000 BUHdpopponoPogoo
EB[__}_DDB'eeeeee%eeeeeee +—0—0-0-0-0-00-00 0000 9-0-00-0 000
09.30 09.45 10.00 10.15
09.30 09.45 10.00 10.15

ANAESTHESIA RECORD SYSTEM—3A (©) RWD Nickalls, 1994-1998

20e

Figure 1: Example of the graphics section of a typical Anaesthesia Record. The six graphs are output by
GNUPLOT in IWTEX picture format. The record shows blood pressure (BP), heart rate (HR), central venous
pressure (CVP), oxygen saturation of haemoglobin (Sat), inspired oxygen (O2), inspired nitrous oxide
(N20O), expired carbon dioxide (CO3), tidal volume, respiration rate, isoflurane and MAC.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

241

Antykwa Torunska: an electronic replica of a Polish traditional type

Janusz M. Nowacki
Sniadeckich 82/46, 86-300 Grudziadz, Poland

jnowacki@to.onet.pl

Bogustaw Jackowski
BOP s.c., Piastowska 70, 80-363 Gdansk, Poland
B.Jackowski@gust.org.pl

In employing computers for typesetting Polish texts,
a big problem has emerged —the fonts which come
with publishing programs (usually of foreign origin)
don’t contain Polish diacritical characters. Up un-
til now the problem of local adaptation of these
programs was limited to merely adding Polish di-
acritical characters to the existing fonts. We should
remember, however, that Poles have printed their
books for centuries’ and have a long typographic
experience.

In the precomputer era, at least half of the Pol-
ish books and periodicals were produced with the
genuine Polish typeface Antykwa Poéltawskiego. It
was designed by the Polish graphic artist and ty-
pographer Adam Péttawski (1881-1952), and from
1931 was cast in the well known Polish type foundry
of Jan Idzikowski, and following World War II, in
Warsaw type foundry.

The second Polish font designed for production
was Antykwa Torunska. In order to preserve the Pol-
ish cultural heritige, I decided to convert both type-
faces from the metal cast to computer programs.
This is a very difficult task, as I am not a profes-
sional typographer or a graphic artist, but if pro-
fessionals prefer to polonize foreign faces forgetting
about the Polish ones,. ..

Antykwa Torunska is a serif font designed by
the Polish typographer Zygfryd Gardzielewski from
Torufi. A few collaborators helped him with the pro-
duction of metal types. Antykwa Torunska was used
mainly for commercial printing. Its distinguishing
features are expanded upper stem ends and wavy
shapes of certain bars, diagonal strokes and serifs. It
was first cast in the “GRAFMASZ” type foundry in
Warsaw and offered in three styles—roman, demi-
bold and italic—in sizes ranging from 6 to 48 didot
points.

The adaptation of Antykwa Toruriska for digital
typography started at the beginning of 1995. The

! First printing house was established in Cracow around
1490.

first version —a very imperfect one— was based on
shapes copied from the font catalogue.

The second version, still not entirely satisfac-
tory, was prepared from Xerox copies of character
shapes kindly donated by Mr. Zygfryd Gardzielew-
ski, to whom I am extremely grateful.

Andrzej Tomaszewski has pointed out many
deficiencies in this version, all of which derive from
the fact that the design of the typeface is too close to
that of the originals; these were prepared by hand
30 years ago, and thus do not conform to current
standards of computer typography.

The most recent version may legitimately be
called a “computer version”, since it guarantees the
precision and the exact repetition of key elements
of the characters. The characters’ outlines were
drawn in CorelDraw from scanned bitmaps, and the
resulting . eps files were exported to Fontographer.

Most of the time was spent positioning charac-
ter shapes inside bounding boxes and defining kern-
ing pairs rather than drawing character outlines.
The evaluation of positioning and kernings is sub-
jective so the opinions of others with regard to the
effect achieved may be different.

Hinting remains a serious problem, especially
taking into account the tools I am using. Antykwa
Torunska does not contain horizontal and vertical
lines; almost all lines are diagonal or fancy wavy. It
makes good hinting almost impossible. One should
not use this font at a resolution lower than 600
dpi, particularly at small character size. At high
resolution, hints became unimportant.

The font contains 232 glyphs set up according
to QX encoding. The character set enables TEX
users to work comfortably with almost all european
languages. Antykwa Torunska contains the following
characters:

w.. kfffiflffiffliy """ 7" BaecoL£ E
O 1"#8%& ()" +,-./0123456789:;=
b

) ?@ABCDEFGHIJKLMNOPQRST

242 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Antykwa Torunska: an electronic replica of a Polish traditional type

UVWXVYZ[“]" "abcdefghijklmnop
qrstuvwxyz-—"""AC>EJ<LN ~ ¢
t4SSS T UVZZZ{}§a¢@®0 +e]— X
th+«»T§8setyyzzz-""AAAAAR

......

As with the original (metal) version of Antykwa
Torunska, the font contains three shapes: regular,
italic and bold.

AAaAAAAAA

Figure 1: Antykwa Toruniska Regular (anttr) at 6,
8, 10, 12, 16, 24, 36, 48, 96pt

AAaAAAAA A

Figure 2: Antykwa Torusiska Italic (anttri) at 6,
8, 10, 12, 16, 24, 36, 48, 96pt

AAAAAAAA A

Figure 3: Antykwa Toruriska Bold (anttb) at 6, 8,
10, 12, 16, 24, 36, 48, 96pt

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 243

Belleek: A Call for METAFONT Revival

Richard J. Kinch

TRUETEX Software

6994 Pebble Beach Ct

Lake Worth, Florida 33467 USA
kinch@holonet.net
http://idt.net/ truetex

Abstract

Despite the importance of mathematical typesetting to the persistent popularity
of TEX, very few TEX math fonts are available to complement the thousands
of available text typefaces. Developing fonts is a very different enterprise from
programming other software, requiring different tools and different skills, offering
little reward in technical innovation, and often requiring a commercial price to
justify the effort. To the corpus of public-domain TEX software, we contribute
Belleek, a new set of hand-drawn math fonts to complement Times, published
simultaneously in METAFONT, Type 1, and TrueType formats, and compatible
with the INTEX mathtime package. We describe the difficult process of creating
such software with a graphical editor, which motivates a second-look at META-
FONT as a practical design tool. We examine Hoenig’s METAFONT-based MathKit
software as a paradigm of fitting math fonts to text typefaces, concluding that
METAFONT will become practical only when it gains a visual editor for input and

outline fonts for output.

These issues should be vital to mathematical publishing, because meta-math
fonts will likely be the only economical source for math fonts to complement most

of the universe of text typefaces.

Introducing the Belleek Fonts

Figures 1-3 set forth character-set tables and sam-
ple uses of the Belleek math fonts for use with Times
text. Figure 4 shows various samples of math-mode
usage of the fonts. These fonts are herewith con-
tributed to the public domain, with hopes that TEX
will thereby gain some small measure of flexibility to
adapt freely to typefaces other than Computer Mod-
ern. The fonts were hand-drawn using Fontogra-
pher 4.1, under the following constraints and goals:

1. The character set, encoding, and metrics must
match the three math fonts underlying the
TEX mathtime.sty package,!, thus allowing
their compatible use with a single \usepackage
{mathtime} command.

2. All characters must harmonize with the visual
style and weight of Times text.

3. The character shapes must be original designs
in those cases admitting sufficient latitude for
originality, so as to avoid any appearance of
infringement of existing proprietary designs.

I Namely the MathTime fonts mtex, mtsy, and rmtmi.

4. The math symbol shapes (as opposed to Greek
letters) should follow the general form of the
Computer Modern meta-designs, to the extent
possible while still strictly harmonizing with
Times. This goal is an experimental excursion
into the principle that a meta-typeface might
serve as a basis for automatic generation of new
math fonts.

Creating Belleek by Hand

Knuth said that success with METAFONT would de-
pend on “collaborative efforts” between “artists and
programmers” [5, preface]. One wonders if these
classes of people ever meet, because despite the
earnest hopes of many, the elegant mathematical
and linguistic power of METAFONT has seen little
application to font design, and has not been re-
cently used by the commercial type-design indus-
try. Taking in hand once again those beautiful
Volumes C and E of Computers and Typesetting,
and observing the erudition therein, one wonders
how such magnificent engines have seen such little
use. Have METAFONT and Computer Modern be-
come museum pieces, like some polished-brass steam

244 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Belleek: A Call for METAFONT Revival

rfa4jle(4|z\o0(x|r{e|¥%|Q|a|p|y]| d|c€
Clwl1@l it || A |lp|lv]| E|lal|lp|lol|lr]o|é]|x
ylole|d|lwmleo|c|le|—|—|—=|—]<<[>]C])
rA[@|A|E|(OD|Z|T| D | VY| . , < /> *
O|A|B|C|D|E|F|G|H| I J| K|L|M|N|O
PlO|R|S|T|U|V|IW|X|Y|Z|b|bh]|t]|—]|~—~
tlal|lb|lc|d|e]| fleglh i j k|l |m|n|o
plaglr|s|lt]lulflo]|]w]|x y | z s | J | x| Q
Figure 1: Belleek Math Italic (blmi) 10 pt at 600 dots/inch.
- x|*|+-|o|Xx|F|l@|O|®@|0|O[|O] 0| e
x|l=|C|2|<|=>2|2|=z|~||CclD2|L[>]|<]*>
~|l=11lllel 2] v]z2zlel=20l]le|lR] v x
/oo le]| | AWV JIL v Y| 3|0 R| S| T|L
N "o+l = "l =:s"] |
) T T o NE N N N N N G} AN |V
I A O A A O O I W
J O(vi/jluln|E|3]| w]| s w | w |] O | Q| S

NE-Not encoded in font

Figure 2: Belleek Math Symbols (blsy) 10 pt at 600 dots/inch.

/

/

Ch e e ey fope g
() EEERRARIRERRAVAR
(1) AHIIRAVARNEAR
/\“ flll{}'

\}||<>[_||_|¢7§©@®€B®®
ZHIUHHJ/\VZH/UHH/\\/
win) [L T
/\/ 0 I T N R R R e O B

Figure 3: Belleek Math Extension (blex) 10 pt at 600 dots/inch.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

245

Richard J. Kinch

2 & 2
(m—ka—yz)hp(x—ﬂyﬂ =0

2 =3 {(mz_]L(m/k)/rm/ku)_lJ .

m=2 k=1

o
— i _ 2m ¢ \n
pi(n) = ’nlgmm;(l cos™(v!"x /n)).

Let H be a Hilbert space, C a closed bounded convex subset of H, T a
nonexpansive self map of C. Suppose that as n — 0o, a r — 0 for each k, and
Y= peo@n ki1 — anx)t — 0. Then for each x in C, A,x = D02 ansT*x
converges weakly to a fixed point of 7.

alp dai2 ... din
a a ... dp
A= .
aml Adm2 ... Qmn
kY _ n
ajkl = Z aQkyAlky «« - |
j=0 Me>0 n>0 ko,k1,...>0

ko+ki+---=n

by, by, ...,bn

R aj+n ax+n apy+n
ai,ar,...,apm 1 — g% 1—qg* (1 =g
HR[}:H(g —g®m™) . (= g™

n=0

—o0

(1 —ghtm)(1 — gb2Fmy . (1 —gbvtm)’

o
/ e Ydx =7

;0 ;0
X:Zflﬁ—‘rzj:xjﬁ

Figure 4: Math mode samples (after The TEXbook) using Belleek and Times New Roman, 10 pt at 600

dots/inch.

engine, impressive to look at, but long since su-
perceded by higher-powered technology? Or were
they perhaps ahead of their time, and not yet har-
nessed to their potential to create?

Whatever its virtues as a field of human en-
deavor, working with type as software seems to sti-
fle one’s yearning to abstract and perfect a physical
enterprise in mathematical form. Instead, it seems
to stir the passions for raw, un-parameterized, bare-
handed manipulation of perimeters. You want to
grab a shape like a piece of hefty rope, not tweeze
some bits of code.

Thus fonts today are drawn using direct-ma-
nipulation, CAA (computer-aided agony) tools that

somewhat speed the brutish task of digitizing and
refining outlines. Big publishers have in-house soft-
ware, and the small-time designers have GUI soft-
ware such as FontLab, Fontographer, and Type De-
stgner.

This author is a true believer in languages
as a means to use computers. In respect of font
design this could hardly be better implemented than
through METAFONT. Yet when it came to the
practical problem of creating a few fonts in the
shortest time, even these near-absolute principles
fell to the expedience of the GUI tools. It is
indeed faster to just click and drag, just not to
be recommended as a steady job, if you value your

246 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

sanity. The TEX world would have also been better
off with a meta-version instead of a merely-specific
version.

As miserable as creating font shapes is, the need
to hint fonts for low-resolution use is even more
so. Hinting is like undertaking. One applies grisly
techniques to preserve the corpse from decay in the
presence of trying conditions. Success is achieved
when the casual observer comments on how natural
the result looks. The Belleek fonts are auto-hinted
(let us not carry the grim metaphor any further).
Perhaps someone will have the ghoulish expertise to
do a proper job on them.

Creating Math Fonts Automatically

Alan Hoenig has taken the right approach in his
MathKit [2] and MathInst [3] packages. In principle
we should be able to program (say, in METAFONT)
meta-characters for math symbols, and fit them au-
tomatically (with, say, METAFONT) to a given text
typeface. He exhibits successful applications of this
principle, instantiating the Computer Modern char-
acter programs with hand-measured characteriza-
tions (x-height, stem widths, etc.) of a few typefaces,
such as Times, Baskerville, Jenson, and Caslon.
Knuth’s ancient (in software years) Computer Mod-
ern math symbols seem to have been endowed with
a sufficient amount of meta-ness to cover a range
of target typeface styles. Where meta-qualities are
lacking in Computer Modern math, the METARFONT
programs can be upgraded.

So if there is great demand for TEX to typeset
math in anything-but-Computer-Modern fonts, why
has MathKit not received popular acceptance? It
is not due to any shortcoming in the results, but
rather to the utter mess that TEX (and more so
KTEX) have made of changing fonts, encoding, and
styles. What a user wants is not a programming
kit containing dozens of components for designing
new fonts, but a single command that says “I mean
to use Goudy, so please just make it so.” Instead,
the MathKit approach requires an almost super-
human expertise in TEX, PERL, NFSS, and not a
few other sophisticated tools. This is not to criticize
MathKit for being overly obscure; in examining its
implementation one must admire the economy and
efficiency it displays. The source of the complexity
is just the nature of the instantiation task.

The simplification of this daunting complexity
is not as simple as gathering the output of Math-
Kit for a given typeface into a ready-to-run package,
creating a little archive that the user can drop in
the TDS tree. Because MathKit in part depends on
METAFONT to rasterize fonts, MathKit must neces-

Belleek: A Call for METAFONT Revival

sarily impose several layers of scripts and programs
to guarantee that, for example, METAFONT can gen-
erate bitmaps for the fonts in the sizes eventually
called up in the user’s document. METAFONT seems
to be the dowdy aunt who is welcomed at first, but
then doesn’t know when to leave.

Minimizing the user’s task requires something
more, namely conversion of the MathKit instantia-
tion of the meta-math fonts into scalable outlines.
This reduces the components of a new style to a few
outline font files, a few TEX virtual fonts, and some
TEX or KTEX macros, all in a ready-to-run distri-
bution. The key, therefore, is the ability to convert
METAFONT designs to outlines.

METAFONT: The Flaw

If the ability to convert METAFONT designs to out-
lines is key, why has it been lacking? Indeed, we
reach a startling conclusion: METAFONT is funda-
mentally flawed, and this flaw has inhibited its ac-
ceptance as a font-design tool, namely:

METAFONT should produce outlines,
not bitmaps, as output!

Confirming this assertion is the software-tools phi-
losophy. METAFONT is at heart a language for
the expression of mathematically abstract shapes.
As a properly demarcated tool, METAFONT should
convert that abstraction form to another abstrac-
tion, and do no more and no less. Knuth’s prob-
lem with METAFONT in 1982 was that he, his stu-
dents, and colleagues were unable to practically
solve the computational-geometry problem of con-
verting stroked elliptical pens to outlines, and of
overlapping shapes to outlines. Instead he relied
upon rasterization as an expediency [6].

Also confirming this assertion is the existence
and popularity of METAPOST [1], which converts
METAFONT code to PostScript code, something
closer to (although still not quite) outlines. META-
POST works by intercepting METAFONT’s internal
data structures before they are bitmaps. In essence
it is taking the proper output from METAFONT and
expressing it in an intermediate form using the more
primitive PostScript language.

METAFONT: The Redemption

If METAFONT should produce outlines, but Knuth
sidestepped the problem, then what are we to do?
Ask him to try again, but harder? There would
seem to be two routes to getting outlines, instead of
bitmaps, from METAFONT:

Outlines from Overlapping Shapes. META-
POST converts METAFONT code to PostScript code,

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 247

Richard J. Kinch

expressing the same overlapping shapes in a more
primitive geometric form. MetaFog [4] first exhib-
ited a practical solution to the further task of reduc-
ing overlapping, stroked PostScript shapes to non-
overlapping outlines. We are tantalizingly close to a
“MetaFog 2” that completes the theoretical solution
and implements it in robust form. This would allow
fast and complete conversion of METAFONT code
to non-overlapping outlines, such as are required for
outline font formats.

Proper Outlines from Curve-Fitting Polygons
or Bitmaps. The MetaFog research attempts to
solve a generalization of an already-solved problem,
that of removing overlaps in polygons or bitmaps.
If we convert the overlapping METAFONT shapes
to polygons or bitmaps, then we can apply well-
understood algorithms to compute the equivalent
non-overlapping polygons or bitmaps. Indeed, in
the bitmap domain we have merely described what
METAFONT now does, namely, it computes a sin-
gle bitmap resulting from the rasterization of any
number of overlapping shapes.

If we consider a polygon (or bitmap) as a
digital sampling of an underlying analog shape, then
it would appear consistent with sampling theory
that the band-limited analog shape underlying the
polygon (or bitmap) should be recoverable, given
that we have sufficient resolution and absence of
noise in the polygon coordinates (or bitmap pixels).
This “given” is assured in the case of METAFONT,
since we can scale its output noiselessly to any
desired resolution.

While there are many published algorithms for
practical curve-fitting of bitmap edges (“autotrac-
ing”) [7], none attempts the possibility of recov-
ering the exact mathematical curves underlying a
noiseless rasterization such as METAFONT gener-
ates. (The typical application tries to fit approxi-
mating curves to a noisy scan of an irregular physi-
cal object.) In this matter, this author is again tan-
talizingly close to a curve-fitter that will solve the
problem and implement it in robust form. Among
other wonderful applications, this would allow con-
version of METAFONT shapes to outlines by “mere”
curve-fitting.

Other Meta-Design Formats. Besides META-
FONT, there are other formats for specifying some
degree of meta-design to typefaces, such as the mul-
tiple master extension to Type 1. But none of these
match the potent ability of METAFONT to express
meta-ness in far more sophisticated ways than mere
linear interpolation. Linear interpolation may be
sufficient for a limited range of variation, such as

stem weight, slant, or even the presence or absence
of serifs. But the non-linear and programmatic pos-
sibilities of METAFONT provide a much wider range
of possible variations; and still more powerful is
METAFONT’s ability to stroke and overlap shapes.

On the other hand, some anecdotal experience
has resulted in failures when attempting satisfac-
tory METAFONT designs [8]. One lesson from such
experience is that a single meta-character is not nec-
essarily able to represent wildly different character-
istics, particularly as might vary in letters. In the
case of nearly all non-letter math symbols, however,
one can expect that the possibilities of variation are
restricted enough to permit meta-characterization
to a degree sufficient to cover a wide range of text
typefaces. It might be necessary to produce differ-
ing math meta-characters for serif versus sans-serif
typefaces, or other gross variations; indeed this was
the effect of many of Knuth’s conditionals in Com-
puter Modern.

The Future: TEX, and the Web

The future of math publication, whether in TEX or
on the Web, will depend in part on the variety of
math fonts available. It would appear inevitable
that math fonts will always lag seriously behind
text fonts, if creation of quality math fonts neces-
sarily involves manual design. The present tools for
meta-font design suffer from a fundamental flaw in
that they cannot produce parametric output, only
bitmaps. This approach is impractical, if for no
other reason than it necessarily involves intractible
complications for users, who cannot be expected to
deal with the vagaries of bitmapped fonts.

The tasks of defining font encodings, building
a symbol inventory, designing meta-math programs,
and writing style-switching code are all substantial,
yet well-understood. None of those problems will
ultimately impede the adoptions of TEX, HTML, or
any other markup language. They involve compli-
cated details which can be managed by the experts
and well-hidden from the user.

It is therefore our conclusion that:

e Quality math meta-fonts will be crucial to suc-
cess in math publishing, because hand-drawn
shapes are too costly.

e Implementing quality meta-fonts reduces to two
fundamental problems:

— A language for meta-design, which we be-
lieve is superbly extant in the METAFONT
language.

— A processor for that language which can
produce non-overlapping outlines. This

248 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

requires solving one of two open research
problems: topological analysis of stroked,
overlapping shapes; and exact curve-fitting
of arbitrary-resolution rasterizations.

References

1]

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Hobby, John D. “A METAFONT-like System
with PostScript Output.” TUGboat 10 (4),
pp- 505-512, 1989. See also the software on
CTAN.

Hoenig, Alan. “Hundreds of New Math Fonts
with MathKit (version 0.7).” CTAN fonts/
utilities/mathkit.

Hoenig, Alan. “The MathInst Package (ver-
sion 0.8): New Math Fonts for TEX.” CTAN
fonts/utilities/mathinst.

Kinch, Richard J. “MetaFog: converting
METAFONT shapes to contours.” TUGboat 16
(3), pp. 233-243, 1995. Current version avail-
able with TRUETEX.

[5]
(6]

Belleek: A Call for METAFONT Revival

Knuth, Donald E. The METAFONTbook. Addi-
son Wesley, Reading MA, 1986.

Knuth, Donald E. METAFONT: The Program,
Section 524, “Elliptical Pens”. Addison Wesley,
Reading MA, 1986.

Schneider, Philip J. “An algorithm for auto-
matically fitting digitized curves.” In Graphics
Gems, Andrew S. Glassner, editor, pp. 612-626
and 797-807. Academic Press, Cambridge MA,
1990. See also the on-line archives at http:
//www.acm.org.

Siegel, David R, The FEuler Project at Stan-
ford. Department of Computer Science, Stan-
ford, CA, 1985.

(This “illuminating little booklet” on negative
experience attempting to metafont-ize the Eu-
ler font at Stanford was cited by Berthold Horn
in news://comp.fonts ca. Aug 1997.)

249

Georgian Scripts

Karel Piska

Institute of Physics, Academy of Sciences
180 40 Prague, Czech Republic
piska@fzu.cz, piska@cern.ch
http://www-hep.fzu.cz/ piska/

Abstract

Georgian writing is presented by three historical development steps: 1. asom-
tavruli (the earliest ‘capitals’), 2. nusza-zucuri (later ‘minuscule’), and 3. mze-

druli (modern Georgian).

The standard and headline printed forms of mzedruli shapes are based on
the Computer Modern Georgian font designed by Nana Glonty (1994). The
standard mzedruli font is extended with several letters that were formerly used
for Georgian and some other languages in the Caucasus; a modified definition
(co-ordinate transformation) is used in the font for headlines and titles. Fonts
for two old historical scripts and a handwriting form of mzedruli with numerous
letter connections (no ligatures are used in printed forms) are presented here as

designed by the author of this paper.

Introduction

Five alphabetic writing systems (and their adapta-
tions) denoting consonants and vowels and written
from left to right are used today for modern liter-
ary languages, in chronological order of their cre-
ation: Greek, Roman (Latin), Armenian, Georgian,
and Cyrillic.

The first Georgian alphabet was invented in the
5th century, presumably influenced by the Aramaic
script and the Greek alphabet. The earliest inscrip-
tions are written (or graven in stone) in inscriptional
capitals, in the ancient Georgian script known as
slimdmsghgeme L asomtavruli ‘capital letter’, ‘majus-
cule’ (also called d6ymmgsbo mrglovani ‘rounded’),
and can be found in Palestine and Georgia. The
earliest example dating from 430 AD, is in the Geor-
gian monastery in Bethlehem. Its text is presented
in Example 3a. Another sample is given in Example
3b.

Another script, known as bylbs-byyye0 nusza-
zucuri ‘priest (church) minuscule’ or bylbyeo nusruri
‘minuscule’ (also called jymbegsbo kutzovani ‘angu-
lar’) appeared in the ninth century .

The modern Georgian script, dbgeeywme mze-
druli (from 3bgeséo mzedari ‘warrior’, i.e., secular)
started its development in the eleventh century. It
is used for writing the modern Georgian literary

1 A Georgian script used implicit inside the English text
is mzedruli. The transliteration of the Georgian words follows
in IKE (in italic); see Table 1 for phonetic values to determine
how to read it.

language; it has been used also for writing (and
transliterating) other Georgian dialects, and other
languages in the Caucasus, related and unrelated
to Georgian: Mingrelian, other Kartvel languages
(without a literary form), Ossetic, Abkhaz.

All three scripts continued in a parallel exis-
tence for several centuries. While mzedruli prevailed
for secular functions and everyday handwriting, the
two older scripts, nusza-zucuri and asomtavruli (of-
ten together called byyy@o zucuri; from byggle zucesi
‘priest’), continued to be used in religious writing,
nusza-zucuri being more convenient for manuscript
texts, and asomtavruli for initials and titles (see Ex-
ample 4 with both scripts).

More information about the languages and ref-
erences to further sources can be found in the book
“The World’s Writing Systems” [1]. Letter shapes
and samples were taken from [2-5,7,8].

Alphabet

Table 1 presents the characters of the Georgian al-
phabet: the regular and headline forms of mzedruli,
the two old scripts, phonetic values, two more usual
transliteration systems, Greek and Armenian equiv-
alents. None of the Georgian scripts have capitals;
more accurately, there are no uppercase/lowercase
pairs — asomtavruli (‘majuscule’) and nuszuri (‘mi-
nuscule’) may be assumed to be the names of two
“historical” stages of evolution like Roman Square
Capitals or Carolingian Minuscule, i.e., two distinct
scripts.

250 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Georgian Scripts

Georgian Alphabet Table 1.

LETTER IPA LETTER NAME TRANSLITERATION | NUMERAL EQUIVALENT
m h a n mn u IKE LC grk arm
o 3 C ¢ [q ob AN a a 1 Aa Uw
6 8 4y [b] 356 BAN b b 2 BB fp
3 0 L 15 [d] aob GAN g g 3 Ty Qq
© R & &5 [q ©eob DON d d 4 A3 W
9 3 T 7 [9b EN e e 5 Ee Gt
3 3 P q [v] q0b VIN v v 6 Ty
Y Y b B [g bgb ZEN z z (/4 2q
B 8 b £ lee] |8 HE ey,e e 8 Hn Et
o 0 ¢ w [t"] | oob TAN,THAN t t¢ 9 O Rp
o 0 T = [ob IN i i 10 L bh
J ¢ 8 5 [K] | gb Kan k k 20 Kx Ul
© | > o [@b LAS 1 1 30 A L
d 9 d & [m] |[dsb MAN m m 40 My Uu
6 6 R F [n bsé NAR n n 50 Nv Lo
e 0 0 » 3] g HIE,YE Y, J y 60 8
o 0 Q w |9 mb 0N o 0 70 Oo 0On
3 3 U u [p] |36 PAR D,p p 80 IIn My
g 9 9 y [5] |gob zHAN,JAN 7 7 90 dd
6 6 b o+ [reg | 655 RAE r r 100 Pp Cp
L b L L g Lob sAN $ S 200 Xo¢ Uu
8 6 B p [t] |g6 TAR t t 300 Tt Sy
3 9 94 g [wi |39 WIE wi, i w 400 TYvu Iyl
7 4 O wy [6 UN u u (400) OTou NFm
2 g @ o [p?] (Boﬁ) PHAR,FAR p p¢ 500 &g ®h
g 3 + + [k |Job KHAN k 'S 600 Xy £p
e N n [©sb GHAN,RAN B,y g 700 n
g d 49 y [q¢] |y QAR,KAR 4,4,9 q 800
d 4 9 4 [f] dob SHIN § § 900 (%)
BB h f [ff] Bob CHIN ¢ ¢ 1000 o3
g 6 C p [t (396 CAN,TSAN c ¢t 2000 8g
d d d o [& doy JIL,DZIL i3 Z 3000 2a
¥ VvV B m [t |foxm CIL,TSIL ¢ c 4000 od
& 8 S 5 [|6 CHAR ¢ ¢ 5000 a6
b b H y [x bob XAN,HAN x x 6000 Tutu
g ¢ Y u [q §o6 HAR q X 7000
x X X x [|xob JHAN,DIAN 3,3 j 8000 Q9
3 3 L w [h dog HAE h h 9000 <h
d 38 R £ [ow] |3y HOE, OH ow,0 0 10000 Qo

m standard (regular) mzedruli, * headline form of mzedruli, * asomtavruli, ®

™0 Jetter name in mzedruli, * in English (the first one is Unicode);

IKFE transliteration as presented in Annual of Ibero-Caucasian Linguistics,
LC the Library of Congress transliteration;

8k Greek equivalents, ™ Armenian equivalents.

NUSTA-TUCUTT;

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 251

Karel Piska

The Georgian alphabet is phonemic, i.e., it fol-
lows a one-to-one correspondence between phonemes
(sounds) and characters (with only rare exceptions).
The alphabetical order agrees with that of the Greek
alphabet; letters that are not present in Greek are
located at the end.

The alphabet originally contained 38 characters
(see Table 1) but only 33 letters after 1860, when
five letters (G e [e(.])]a ey [J]a Jw [W(l)]v § 4 [q]a
and & o [o(w)]) were dropped. The letter 5 u [u]
was composed as a ligature o+3 o+w [o]+[w]. As
can be seen in Example 4 (specified by boxes) u was
represented by the digraph Q4 in asomtavruli or the
ligature uy (= w+) in nusza-zucuri. The symbol
O. was introduced later also foro. The sound u was
denoted formerly by Qd, then written O, and only
later O\ became u corresponding to Table 1.

Additional letters are designed for other lan-
guages than Georgian (only for printed mzedruli;
the Cyrillic equivalents are shown after slashes):
d/d ff], g/o1 shwa [3], s/2 a [2] for Ossetic and/or
Abkhaz [5], p (glottal stop) [?], ¢ uo [v] for Mingre-
lian (Megrelian) [6].

Alphabetic numeral notation was used formerly
(similarly to other alphabets). Arabic numerals as
well as Roman numerals and typical European punc-
tuation are used today.

Two Unicode names are corrected here: ZHAN
and KHAN (not ZHAR, KHAR).

Fonts

METAFONT sources for printed forms of mxzedruli
and asomtavruli were designed using the “Computer
Modern technology” (cmbase .mf and commands like
penpos, filldraw, etc.) with modifications and ex-
tensions similar to those used for defining “DC/EC
fonts” (parameter files as tables).

Table 2. Additional letters for mzedruli
(not present in original font
designed by Nana Glonty, 1994)

@QS 38 0Old Georgian

(’pas b‘[‘f Ossetic, Abkhaz, Mingrelian

There is one variant for asomtavruli (not listed
in Table 1): The letter 4, b has a variant 9,.

Nusza-zucuri was created in a simple way and
is very plain. There are tens of letter shape vari-
ants in manuscripts and I decided that the simple
font design can be “topologically” similar to many
of them.

Handwritten form of mxzedrul:

The handwritten form of mzedruli (see Table 3) is
also drawn by a simple pen. On the other hand, it
contains numerous letter connections (see Example
2). Not all letters in a word should be joined, so
only parts of words are continuous. Five obsolete
letters are omitted.

Table 3. Handwritten form of mzedruli

2530073 b

monQagm

Ry dbyd
T1by 3

Long and short variants
(may not be obvious to everyone)

Printed
Form

Handwriting
Long Short

< Q¢
N
6 b

Examples

The next few pages show several short examples of
all Georgian scripts.

252 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Example 1. Printed mzedruli

33930 YI6I0I0 Headline form (the same
LIR030 height and the zero depth)
Lsy396@0l bsgmagh 39d9300,

336 35ob3... 339 anﬂm!... an.d regular forn'1 of
printed mzedruli dbgeemo.

»Uds bt Bgdm Lgmogm!®

Handwritten forms taught in Georgian schools

Georgian Scripts

Exercise books for the beginning years of a Georgian school are preprinted with special grids, especially
the books for the first year. The second year needs only four horizontal lines. These represent “visualized”
imaginary upper-, middle-, lower-, and baseline. Pupils (or students) of Georgian handwriting learn to fill
the characters into boxes bounded by frames or between the lines. Starting in the third year, pages with

one baseline are used; letter heights and depths may be more free.

Example 2.a Hand-written mzedruli

1 (0 OPNNEON/ o (11 0)

A
A
CA

y 4

/
y
F)\ Wy,

3
alls

]
O

)
00 00
JJ

DO(J \)(5(\) (m \ D

Q

7
@
®

05— NSN 0
[N
] Q

SN=08 20N 0

B
O\ U U
1 D
OpAI0S

QDANAO,

/_\

1)
)

A
AOIANA
U

Ono
P

NN
J

\
02
\

00
A

0O

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

30633Q0
JQO[’O

(The first

year)

JQolm

(The second

year)

253

Karel Piska

Example 2.b Hand-written mzedruli (cont.)

[T”W(VLSB(QT’*WOO ?Tﬂf%wmo dyliady

JQolm
og! mmP)(Ho %ammmu ;
oaﬂm[b&w&)r(‘)om F)(M&("*WB - (The third
. year)

9

Brpoghotbosps daLbshs.
4ap3pb obydh&o “drdbL, tree

H20337|b-Ho0303303p.
oqomij bqup: ,,Qoéb,

Example 3.a Asomtavruli and transliteration in mzedruli and IKE

form”

5 uis denoted by Qd ow (in IKE). The letter 4, b has a variant 9,.

RFIGCQEFIQSQL || {Borsn 0goend- |[cmidao teodor-
13-CPQACRATIQ. || 396 75 96 ©3 - || e marowan da bo-
JdJ,BIR TRCR1 || '®bgb..... 9b obo || wrzen..... en ani

3smalsgobsls 7es3bels Jsdorymo dmbslighols IT Fsofgms, V L-ols T bsb.
palestinas udabnos kartuli monastris I1 carcera, V s-is I naz. [2], p. 3 (430 AD, cf. [1], p. 367).

Example 3.b Asomtavruli (cont.)

Upper horizontal bars mark conventional abbreviations of specific words known to scholars in the man-
uscript or in the inscription (tilde (7) in mzedruli and the IKE transliteration).

JIRTHRIGCHRLIGCCS T 3;]%]3600“0 d~@lmmo Q*‘a Seceuvnita k“esita dam
TQE191GCRFIS ILCETOLIET |gobgboos [dools o geloms | eozebita emidisa t eysita
JRCRPQR1CACOBCIQLICEQ, [976 sbgmbo 330 ©d 0clos do- | §™n antoni abay da iosia mo-
FLEFTBICFILLIPILCIBCEC | 3bdgezo 230l bygolse o ds- | mszmeli amis sepisay da ma-
FCOT6CITIQUICILTCHIR 9> @gsa onbosalio 535 ma deday iosiaysi amen

3sem9ligobsls 7esdbmls Jsborymo dmbslighrols I fabfgms, 532-552 .
palestinas udabnos kartuli monastris I carcera, 532-552 cc. [2], p. 11.

254 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Example 4. Nusza-zucuri

Ot & nonpchdeh orhe
1 ypmeadn ms gl o
CICTOmE /'n_m ITLB"76E'
Lt tocle Lakcl Lopln
Fmynmoed 8o Lodnnynmad
mE L fl_ﬁ'm: 3t Lrom
n /‘I_Hmtmqb 3t ool
yahe ol qu"hLugEa m
qm7/7157L1: 5117'{[:1:[,/71
oL yromed oo moms

B'Lul:/’l:u"ml:'b

a’lLLlT{U T uuphcd mycm
wiyrs ymha ool dnilc
yfic Lome /-r_Hm: [
Smamme 8t wjmyEm
wd Bun{B'uL/mmE 5u_u_/’Lu
E7L: E"Lun"nuqz_/’“lbt B'“lrp_/’ qHE'E@“ILE
Q.0 wlnfi Lo ff Lk b uy
Samlrnh muycoh /-I_HHv
pndromenafi 3t gl
wfi1 pRR wbbualenf oR
4,0 91RGT QQ LR MyL 34
CTF 31 aNlyul W1 Ch,Q
dB14CR LTTHFILT TFIL
b05'360 36).)3&Q0)o30, 864 V., 05Q3660, 274r,
sinuri mravaltavi, 864 ¢., anderji, 274g, [2], p. 83.

The text in nusza-zucuri has initials and ap-
pendix in asomtavruli. The digraph Qd or the liga-
ture wy denotes the sound [u] (3 u). Upper horizon-
tal bars mark conventional abbreviations of specific
words.

Conclusion

An extension of the modern Georgian font and other
Georgian fonts (including the old scripts) were cre-
ated in the first release.

Acknowledgements

I would like to thank Nana Glonty for her excel-
lent font design of the modern Georgian script and
all authors of free fonts (listed in the references) for
possibility to print the Greek and Armenian equiv-
alents, IPA values and other texts.

TUGboat, Volume 19 (1998), No. 3—Proceedings of the 1998 Annual Meeting

Georgian Scripts

References

[1] The World’s Writing Systems. Edited by P.T.
Daniels and W. Bright. Oxford University
Press, New York — Oxford, 1996.

[2] 0. JB'BQJ():]. ﬂ.)ﬁm’(‘]Qo $360l5 6031‘]3830. 3886086)330,
odoobo, 1973. [I. Abuladze. Samples of
Georgian Script. Mecniereba, Thilisi, 1973.]

[3] T.M.IIunb6axameuau. CaMoydnTenn
IPY3UHCKOTO A3LIKA (9JIEMEHTAPHBIA KypC).
W3n. 4-e, Tonnucu 1981.

[4] FO.H. Mapp u 1.B. Merpemuznze. [Tocobue
L5l ABTOPOB 1 HAOOPIIMKOB BOCTOYHLIX
mpudroB. Mennuepeba, Tonnucu, 1984.

[5] P.C. T'unapesckuit, B.C. I'pusnns,
‘Omnpenennreis A36IKOB MUPa IO
nucLMeHHOCTM', VI3 1aTesnscTBO BOCTOYHOMN
aureparypol, Mocksa, 1960.

[6] A. Kharchilava, personal message.

[7] International Organization for
Standardization. Information technology —
Universal Multiple-Octet Coded Character
Set (UCS) — Part 1: Architecture and Basic
Multilingual Plane. ISO/IEC 10646-1 : 1993,
(First edition, 1993-05-01), Geneva, 1993.
(Unicode version 1.0)

[8] http://charts.unicode.org/charts.html
Unicode 2.1 Character Charts, 1998.

[9] /CTAN/fonts/greek/cb/ Greek font — C.
Beccari, 1997.

[10] /CTAN/fonts/armenian/ Armenian font — S.
Dachian, V. Hakobian, 1997.

[11] /CTAN/language/cyrillic/ WN Cyrillic font
— B. Beeton, T. Ridgeway, 1987-1995.

[12] /CTAN/fonts/tipa/ phonetic font — F. Rei,
1996.

255

Generating Type 1 Fonts from METAFONT Sources

Taco Hoekwater
Kluwer Academic Publishers
Dordrecht
taco.hoekwater@wkap.nl

Abstract

This article makes a comparison between bitmapped and vector fonts, and presents some
of the problems I encountered when I tried to convert METAFONT sources into PostScript

Type 1 fonts.

The second part of this article will focus more closely on some of the problems
that I faced while trying to convert METAFONTS into PostScript Type 1 fonts, but first
some explanation is in order as to why one might want to do this conversion, and
precisely what this conversion entails. These topics are the subjects of the first couple

of paragraphs.

What are METAFONT Fonts?

How characters are created

T’ll assume the reader knows the following: every
TEX distribution has a program called METAFONT,
that compiles font sources more or less the same
way that the TEX program compiles text sources.
A major difference between the two programs is
that METAFONT produces device-dependent output
(called pk files), whereas TEX produces device—
independent output (also known as dvi files).

Let’s look into the font sources that METAFONT
uses, and see what kind of information they contain.
These are ordinary ASCII files just like TEX sources,
so it was easy to insert a listing of one of these
files. The file that contains the METAFONT logo
font (Logo10.mf) suits our purpose quite well, since
it is a rather simple font that probably everybody
has available:

font_size:= 10pt# ;

ht# := 6pt# ;
xgap# := 0.6pt# ;
u# 1= 4/9pt#
st =0 ;
o# := 1/9pt# ;
px# 1= 2/3pt# ;
input logo

bye

What do we see here? First there are a bunch of
assignments (the lines that contain :=), then there is
an input (this command functions the same way as
TEX’s \input, so it will start reading the file logo . mf
next), and finally the last command is bye.

The file 1ogo .mf contains the actual commands
to create the characters. It helps to run METAFONT

now to see what is going on. Just type the following
to a system command prompt:

mf logol0

Probably you didn’t have to worry about where
the logo10.mf file is on your hard disk, since
most METAFONT implementations can do recursive
directory searches just like TEX.

B MetaFont ¥2.71¢ Online Display

< o

Figure 1 METAFONT output window for mode-
less files

You should have seen a window popping up that
shows characters as they are being created (like the
one in figure 1, but it might look a little different
on your system). Also, there should have been some
terminal output, like this:

256 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

This is METAFONT, Version 2.718 (Web2c
7.2beta7) (logol0.mf (logo.mf [77] [69]
[84] [e5] [7o] [80] [83] [79] [781))
Output written on logol0.2602gf (9
characters, 98 80 bytes).

Transcript written on logol0.log.

The numbers you see are the positions of the
characters in the font. For the METAFONT logo font,
these are the positions of the used characters in the
ASCII table: M, E, T, A, F, P, S, O, N. As you can
see, they can appear in any order within the source
files.

The file METAFONT has written is not precisely
the same as the output on your screen, instead it
looks like figure 2. Not really usable when it comes
to typesetting text, but it contains some pretty
valuable information nevertheless.

5
0

[J:S

L19%

o=
ot

Figure 2 Metafont output file for modeless files

Have a look at the logo.mf file if you are interested
in the nitty—gritty details. I will use only a small
portion of that file to make some remarks about
METAFONT. First, here is the edited program text
I will use to explain things. (This is no longer valid
METAFONT input, so don’t start keying it in):

mode_setup;
define_pixels(s.u);

ygap#:=(ht#/ 13 bu#) ‘xgap#;
define_whole_pixels(xgap);
define_whole_vertical_pixels(ygap);

py#:=. 9px#;
define_blacker_pixels(px.py);

pickup pencircle xscaled px yscaled py;
logo_pen:=savepen;

Generating Type 1 Fonts from METAFONT Sources

leftstemloc#:=2 bu# s#;
define_good_x_pixels(leftstemloc);

beginlogochar ("M" 18);
x1 = x2 = leftstemloc;
x4 = xb =w x1;

x3 =W x3;
yi = yb;

y2 = y4;

bot yl1 = 0;

top y2 = h;

y3 = ygap;

draw zl z2 z3 z4 zb;
labels(1.2.3.4.5);
endchar;

Let us first look at the line that begins with
beginlogochar, because this is where the real work
is done. This portion of the source defines the letter
‘M’ in the font. What we see here is that characters
are specified by first setting up a bunch of equations
(the lines that have equal signs in them), followed
by a draw command that connects those points,
actually drawing the character.

We won’t go deeply into METAFONT syntax,
but it is vital to understand the following: a point
is defined as a pair of x and y coordinates. In METR-
FONT syntax, points are sequentially numbered per
character, starting from 1. z1 is the notation for
point 1. Notations like x1 and y2 specify the a-
component of point 1 and the y-component of point
2, respectively.

beginlogochar says that the ‘M’ is precisely
18u (units) wide, and 1logo10.mf has set up one u to
be 4/9pt, so the actual character is 4/9 x 18pt = 8pt
wide.

TEX and METAFONT have the same author, and
it shows: METAFONT can do macros just as easily as
TEX can. Macros can have arguments, define other
macros and assign values to things, just like in TEX.
beginlogochar is in fact one of those macros, and
it assigns some pretty important values when it gets
expanded by METAFONT. For one, it defines w to
be the width we calculated above, and it defines h
to be the height of the character (calculated from
ht# in logo10.mf, which equals 6pt).

From the values of u and s, it now follows that
leftstemloc equals (2.5 x 4/9) + 0 = 10/9pt. The
last value we have left is ygap = (ht/13.5u) *xgap.
ht and xgap have been given in the ‘driver’ file
logo10.mf, and after some small calculations ygap
becomes (6pt =+ (13.5 x 4/9pt x 0.6pt)) = 0.6pt.

It should now be easy to come to the conclusion
that the equations fix the precise x, y locations of the

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 257

Taco Hoekwater

five points that denote the character ‘M’, albeit in a
slightly indirect manner. If we fill in the values we
derived above, we get the following:

x1l = x2 = 10/9pt;
x4 = x5 = 8pt -~ x1;

x3 = 8pt - x3;
yi = yb;

y2 = y4;

bot yl1 = Opt;

top y2 = 6pt;

y3 = 0.6pt;

After METAFONT has calculated these equalities for
us, and with some minor reshuffling of the input, we
get the following end-result:

x1 = 10/9pt ; bot yl = Opt ;
x2 = 10/9pt ; top y2 = 6pt ;
x3 = 4pt ; y3 = 0.6pt;
x4 = 62/9pt ; top y4 = 6pt ;
x5 = 62/9pt ; bot y5 = Opt ;
e 5
3
5 : e

Figure 3 Metafont output file for modeless files,
hand-calculated version

We could have typed this in right away, and METR-
FONT would have been just as happy. The end
result would have been the same, as can be seen
in figure 3.1 But why do the calculation yourself if
the machine can do it for you?

METAFONT’s ability to do the needed calcula-
tions all by itself is one of its most important strong
points. Combined with macros and separate input
files, it becomes possible to use various fonts with
the same shared sources. In such a ‘font’, the only
file that is different between various versions of the
font is the ‘driver’ file, that assigns different values
to the same parameters. METAFONT’s calculations
will have different results, so that some of points will
end up in slightly different locations. The resulting

font will be similar in style but may still differ in
lots of ways.

Creating a full font

Usually, fonts are not just a bunch of characters.
There also is some other metric information included
in almost every font. The final section of our
example file (at the end, after all the characters have
been defined) contains the following lines:

ligtable "T": "A" kern - bu#;
ligtable "F": "O" kern —u#;
ligtable "P": "0" kern u#;

font_quad:=18u# ' 2s#;
font_normal_space:=6u# 2s#;
font_normal_stretch:=3u#;
font_normal_shrink:=2u#;
font_identifier:="MFLOGO" ;
font_coding_scheme:="AEFMNOPST only";

The first three lines belong to the ‘ligature table’.
Usually it will contain both real ligatures and the
kerning information for the font, but because this is
a very simple font, there are only three really simple
kerning pairs.

The next lines define TEX’s \fontdimen values:
how wide a space will be and how much it can stretch
and shrink, and some other information that will
appear in the created font but is generally not used
by programs.

Dealing with device dependence

Now let’s have a look at the device dependent
calculations that METAFONT does. Here is the
relevant portion of the example again:

mode_setup;
define_pixels(s,u);

ygap#:=(ht#/13 5u#) ‘xgap#;
define_whole_pixels(xgap);
define_whole_vertical_pixels(ygap);
py#:=. 9Opx#;
define_blacker_pixels(px,py);

There are, in fact, two kinds of device dependence
that need to be dealt with. The mode_setup line
takes care of the first kind of device dependence:
the effects that the actual hardware of the printing
engine can have on the printed font.

The most obvious difference between any two
printing devices is of course the resolution, but there

1 Actually, figure 3 is not completely identical to figure 2,
because in my example I cheated with the calculations a
bit to keep the explanation simple.

258 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

are other problems as well. Since we prefer our
output to look as close to our intended font as
possible, usually a certain amount of correction is
needed based on (i.e.) whether the device is going
to be an inkjet printer or a laser typesetter.

mode_setup cannot do this all by itself, and this
is why you usually have to specify somewhere what
printer you are using. Programs like dvips will call
METAFONT with a command like:

mf \mode=1ljfour; mag=1; input logolO

If we forget about that first backslash, we can
see that there are two assignments and one input
command on this line. The second assignment
differs from 1 when a font is called within TEX using
a command like

\font\logohuge = logol0 at 20pt

In that case, the assignment would be mag=2. The
other assignment is far more interesting. META-
FONT usually starts with a ‘format’ file similar to
the fmt files TEX uses, and somewhere in the sources
for those format files there are some definitions like
this:

mode_def cx =
mode_param (pixels_per_inch. 300);
mode_param (blacker, 0);
mode_param (fillin. .2);
mode_param (o_correction, .6);
mode_common_setup_;

enddef;

Figure 4 An example of two different imaging
models.

All parameters besides pixels_per_inch are a little
too technical to explain in detail in a short article
like this one, but figure 4 tries to explain that these
values really do depend on the printing engine. The
drawing on the left shows a more or less standard
inkjet, that shoots dots of (black) ink on the paper.
The right drawing shows a (hypothetical) printing
device with a radically different approach. This
machine pours light on a photographic film through
a raster, creating a negative image. There are still
round dots, but they are inverted! It is easy to
imagine that this radically different technique can

Generating Type 1 Fonts from METAFONT Sources

have quite an impact on the resulting image.

One effect that is very easy to see from the

(admittedly very badly drawn) figure is that the
inside corners in the right drawing are a lot blacker
than in the left one. This sort of thing happens
all the time in real life printing, but it often goes
unnoticed because people tend to have only one
printer.
The second device dependency is not really related
to printers at all, but is caused simply by the fact
that METAFONT outputs a pixel bitmap. Although
METAFONT does its calculations with a very high
accuracy, this does not help at all if there are simply
not enough pixels to display the character. The
commands that look like define_xxx_pixels take
care of this kind of dependency, whose effects can
be seen in figure 5.

Figure 5 The character on the right has been
created with all the define xxx pixels commands
removed from the source.

The sub-optimal distribution of pixels in this exam-
ple is caused by the underlying pixel grid that can
not be changed.

What are Type 1 fonts?

How PostScript fonts are created

PostScript Type 1 fonts are quite different from
METAFONT fonts. Usually, Type 1 fonts are created
in a wysiwyg environment with a drawing program
that is only suited for the creation of fonts. Figure 6
shows the program I usually use.

The graphical user interface nicely shields the
designer from what is happening behind the scenes,
so we need to look into the generated files themselves
if we want to get more information. On Windows
and Unix systems, the actual fonts are saved in
a binary file with the extension pfb (short for
PostScript Font Binary), and the metric information
in an ascii file with extension afm (short for Adobe
Font Metrics).

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 259

Taco Hoekwater

& Fontlah 30
Eie Bt iw Symbol Took Vandow Holp

o(E@] 4| (2] 8] 2|~ ol sl=] «]w] mjm)sm] dale) ezl wlo]slnls]a]0]) - el

€
HN| O | P

fove objects by dragging them left

press ight button

Figure 6 An interactive font editor: Fontlab

version 3

What a Type 1 font looks like?

The binary representation of a Type 1 font is just
a compressed version of the non-compressed ascii
format, with extension pfa. So we need a program
that will do the decompression for us. One of the
programs that can do this is Tlascii from the
T1Utils package. But running this programs leaves
us with a hexadecimal encrypted file. In the early
days, the encryption key was a trade secret of Adobe
Incorporated. This key is now freely available, but
the file format still reflects the past. Yet another
program from the T1Utils can convert this form to
real human-readable PostScript: Tidisasm. Now we
can look at the generated PostScript file to see how
the ‘M’ is defined in Type 1 format:

/M A{
78 800 hsbw
611 -20 hstem
-11 21 hstem
0 66 vstem
578 66 vstem
581 595 rmoveto
-259 -450 rlineto
-259 450 rlineto
-6 9 -12 7 -12 0 rrcurveto
-16 -17 -12 -17 hvcurveto
-563 vlineto
-17 15 -13 18 vhcurveto
19 14 13 17 hvcurveto
439 vlineto
76 -131 75 -131 75 -131 rrcurveto
5 -10 12 -6 13 0 rrcurveto
14 0 8 8 8 8 rrcurveto
75 131 75 131 76 131 rrcurveto
-439 vlineto
-17 14 -13 19 vhcurveto
18 15 13 17 hvcurveto
562 vlineto

17 -17 13 -16 vhcurveto
-12 0 -12 -5 -6 -11 rrcurveto
closepath
endchar
} ND

The code looks enough like normal PostScript to
recognize it at first glance, but the commands
themselves are not the same ones you would use in
everyday graphics. The PostScript language uses
reverse Polish notation for its commands, so you
should read backwards, starting at the end of the
line. 581 595 rmoveto means ‘move to the point
with coordinates (581, 595).

All values are given in a coordinate system
that maps 1000 units to one em. The nullpoint
lies at the lower left corner. When one uses a
PostScript font in a PostScript language program,
the coordinate system is initially scaled in a way
such that 1000 units equal precisely 1 bp. The
values used to describe points and intermediate
values can be negative, but never partial. This need
for discrete values can be a major problem when
converting METAFONT fonts, as we will see later on.

Now let’s have a short look at the used com-
mands. The command hsbw sets up the width
information for this character (the first number is
the left sidebearing distance, the second number the
advance width). The commands that end in stem
are used by the hinting system. The whole collection
of commands that look like x1ineto and xxcurveto
are shortcuts for the ordinary PostScript commands
lineto and curveto: these draw the actual outline.
All of these drawing commands are always relative
to the ‘current point’. The last couple of commands
end the character: closepath to close the defined

2 This section is loosely borrowed from Erik-Jan Vens’
article “Incorporating PostScript fonts in TEX”, EuroTEX
proceedings 1992, pp. 173-181.

260 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

path (like METAFONT’s cycle) and endchar to do
the actual drawing. ND functions as def: it defines
the command ‘M (from the first line) to mean ‘do
everything between the braces’ (remember this is
reverse Polish notation).

Glyph - ['7] M from logo10

VE Gngle master | @ [Custom 7] B & | o= folalo]
anlPnnnfinnannninnnnl R annna e iasnnlARan i R R RRnnnnn Rannnn Rl
@ | | 2l
3 | |

| |

3 | |

4 | |

2 | |

9 |

1 | |

i

é | | _
g | |

El |

: | |

7 |
I ot
a | |

3| | .

= kil "] v

Figure 7 How the character’s path is drawn.

At first sight it is a little surprising to see that
the PostScript representation is rather a lot longer
than the METAFONT version. This is caused by
another limitation of Type 1 format: every character
has to define an outlined path that is filled by
endchar. Thanks to this limitation, we cannot use
four stroked lines to draw the ‘M’ the way we did
in METAFONT, but instead are forced to trace the
borders of filled shape.

Dealing with device-dependencies

Adobe’s Type 1 format does not supply a means of
dealing with device differences directly, like META-
FONT’s define_good_pixels. But of course there
has to be some means of making sure that a font
looks reasonable on low-resolution devices, and this
is handled by a system called ‘hints’. The responsi-
ble commands are separated into two different levels:
there are ‘font-level” hints and ‘character-level” hints.
Font-level hints take care of three things:

1. Alignment zones
2. Standard stem widths

3. Extra information to control the hinting

The relevant portion of the font-file looks like this:

Generating Type 1 Fonts from METAFONT Sources

/BlueValues [-12 0 600 611] ND
/BlueScale 0.04379 def
/BlueShift 7 def

/BlueFuzz 1 def

/MinFeature { 16 16 } ND

/StdHW [60] ND

/StdVvWw [66 1 ND

/ForceBold false def

Alignment zones. First off, alignment zones are
defined by the array called /BlueValues. The values
in the array define vertical zones by specifying two
y coordinates for each zone. In this case, there are
only the two areas between [—12, 0] and [600, 611],
but there may be more entries.

Figure 8 An example of overshoot-suppression in
PostScript: the top and bottom of the ‘O’ are
adjusted so that the character becomes just as
high as the ‘H’. (Figure borrowed from the Fontlab
Manual.)

The first entry in the array defines an area in which
the y-coordinates of points (that lie within this area)
are changed into the highest (second) number. For
the following entry, the y-coordinate is changed into
the lowest (first) number. Together, these two areas
allow characters like the ‘O’ to be rendered at low
resolution without sticking out unacceptably below
the baseline if compared to characters like the ‘H’
(see figure 8).

Standard stem widths. Quite often, a vertical or
horizontal line in a font will be just a little bit too
large for one device pixel but not large enough for
two pixels. Depending on the underlying pixel grid,
the line may consequently be rendered as either one

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 261

Taco Hoekwater

g~ < a=
< P -+ —P g
4 - s
e i o = e
o N N N [
....... k'Y Y Y Y Y
4 .>_
| NN <]
e e I e e o o
N L
Vo -
NN -
Unhinted character Hinted character :

Figure 9 The desired result. (This figure is also
borrowed from the Fontlab Manual.)

or two pixels.

In these problematic characters, we want to
make sure at least that verticals and horizontals that
are intended to have the same width throughout the
font use the same number of pixels. This is done
by pre-defining the widths that are supposed to be
identical. The commands that pass this information
to the renderer are StdVW and StdHW. The effect
that a correct setting of these values has on the
rendering of the font can be seen in figure 9 (Like
all hinting information, these values are ignored if
the stem widths are larger than three device pixels—
approximating 1200 dpi for the average font. As a
result, output at 1200 dpi on a new device sometimes
looks inferior to the 600 dpi version for the trained
eye.).

Extra information to control the hinting.
There are some extra commands in the example that
we haven’t covered yet: the three Bluexxxx com-
mands define (amongst other things) the pointsize
below which overshoot suppression is turned on, and
a fuzzy correction on the values of the alignment
zones. ForceBold is used with bold fonts to make
sure that they will stay at least two pixels wide at
low resolutions (otherwise they would look identical
to the non-bold version at small sizes).

The character-level hints are handled by the com-
mands from the top of the listing given previously:

611 -20 hstem
-11 21 hstem
0 66 vstem

578 66 vstem

These define horizontal and vertical stem zones. The
first number says at which coordinate to start, the
second number the width to use from there. In this
case (remember this is an ‘M’) there are two vertical

stems, and two ‘ghost’ horizontal stems. Figure 10
shows the graphical representation of this character
in the font editor.

Glyph - [77] M from logo10

‘mFwe dafor o alalele] 0 o9

Figure 10 The character ‘M’ from the META-
FONT logo font, with PostScript hints added

The ‘ghost’ stems are inserted because without them
the overshoot suppression wouldn’t work.

Why we want to convert to Type 1

Now that we have looked briefly into both formats,
it is obvious that conversion from METAFONT input
syntax to PostScript definitions is not going to be
easy. METAFONT is apparently a lot smarter than
the Type 1 interpreter, much better suited to handle
device dependencies, and more accurate.

So, why bother at all? For practical reasons,
of course. The most important incentive is the
on-screen display of generated PDF files. Adobe’s
Reader is very bad at displaying bitmapped fonts,
so files with only Type 1 fonts look a lot better. As it
is, there are quite a few METAFONT fonts that don’t
(yet) have a Type 1 counterpart, so necessarily lots
of TeX-generated PDF files use bitmaps.

There also is another interesting motive: de-
signing high quality fonts in METAFONT syntax is
a lot easier than creating Type 1 fonts of the same
quality in an interactive editor (not to mention the
fact that interactive programs usually crash at every
second mouse click).

262 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Tasks to be handled by the
conversion process

Various things need to be taken care of by the
conversion, but the three major parts are:

1. Resolving the equations in the METAFONT
sources.

2. Converting stroked paths into outlined paths.

3. Insertion of Type 1 style hinting information.

Resolving the equations in the METAFONT
sources

The first item is easy to do with an already existing
program: METAPOST. METAPOST is a program by
John Hobby (co-author of METAFONT) that accepts
METAPOST input syntax and outputs an Encap-
sulated PostScript picture. For example, running
METAPOST on the logo fonts (using precisely the
same syntax as for METAFONT) gives the following
output:

»'PS

%%BoundingBox: 0 -1 8 7

%#hCreator: MetaPost

%%CreationDate: 1998.05.10:1535

%hPages: 1

%%EndProlog

%hPage: 1 1

0.66418 0 dtransform exch truncate
exch idtransform pop setlinewidth

[1 0 setdash

1 setlinecap

1 setlinejoin

10 setmiterlimit

gsave

newpath

1.10696 0.18819 moveto

1.10696 5.78938 lineto

3.98503 0.78595 lineto

6.8631 5.78938 lineto

6.8631 0.18819 lineto

1 0.9 scale

stroke

grestore

showpage

% HEOF

The PostScript code contained in this file is not that
hard. The first few lines are just comments. The
two lines that end with setlinewidth do nothing
except setting the line width for strokes. It looks
complex, but the code is always the same, the only
things in these two lines that ever change are the

Generating Type 1 Fonts from METAFONT Sources

two numbers.

The next lines set up some values of the
PostScript graphics state that do not always have
a predefined value (this is just a security measure).
These lines also never change. newpath is the first
command that is interesting: starting from here
the character is defined. Indeed, there is only one
moveto, followed by four straight lines, and finally a
stroke.

It would be a little bit easier if the calculated
values were given in units of a thousand per em, and
this can be done by inserting a different mode_def.
Basically, we ask METAPOST to generate a normal
font file, but at a magnification of 100.375. This
gives us an end result in PostScript big points, and
the generated character will now look like this (some
comments and irrelevant lines stripped):

%'PS

%%BoundingBox: 77 -12 723 612
66.66722 0 dtransform exch truncate
exch idtransform pop setlinewidth

gsave newpath 111.1115 18.88889 moveto
111.1115 581.11142 lineto

399.99867 78.88953 lineto

688.88585 581.11142 lineto
688.88585 18.88889 lineto

1 0.90001 scale stroke grestore
showpage

hhEQF

Good. This is starting to look like something we
could use. Ideally, we would prefer an output in
rounded numbers, but that is not possible.

Converting stroked paths into outlined
paths

Mr. Kinch (author of TrueTEX) has written a pro-
gram called Metafog that converts METAPOST out-
put as in the example above into the format required
by the Type 1 specifications. At the moment, the
program is only available as an optional extra with
TrueTEX, but correspondence with Mr. Kinch indi-
cate that it is very likely that this program will soon
be available separately.

Metafog reads the METAPQOST EPS file, and
converts this into another EPS file. It also displays
some debugging information about the character on
the terminal:

interp: "scale" implies elliptical pen, \
66.7 x 6 0.0

o: scaffolded TRUE

reduce: reducing shape 1 of 2

reduce: reducing shape 2 of 2

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 263

Taco Hoekwater

Page l--Initial Input Contour

Figure 11 Metafog output file, page 1

duplicate: scaffolded

try_point: 0.01 value scaffold

reduce: reducing shape 3 of 2

reduce: reducing shape 5 of 4

Plotting page 1 (Initial Input Contour) \
. done plotting.

reduce: reducing shape 1 of 1

reduce: reducing shape 2 of 1

Plotting page 2 (Final Result Contour) \
. done plotting.

Total knots used: 598 (a--wz), ~ 29% \

indexable capacity

The created files are pretty large, too large to
include literally. This is because the file serves two
purposes: it is the input format for another program
(Makefont, also by Kinch) and it also shows the
work that has been done by Metafog. The first page
shows the result, the second page the initial input
as Metafog saw it. (The output of one of these files
is shown in figure 11 and figure 12.)

All we have to do is run Metafog on all char-
acters in the font. If everything went correctly, the
next step in the process is running the Makefont

Page 2--Final Result Contour

Figure 12 Metafog output file, page 2

program. But this is not always the case. Metafog
has its flaws, and it is especially bad at handling
complex characters. One of those trickier characters
is given in figure 13.

Figure 13 The character ‘X’ from Ralph Smith’s
Formal Script

In order to handle cases like this gracefully, Metafog
has a special startup option that gives a half-way
result: it cuts the supplied shape in pieces, but it
does not try to remove parts that are not needed.

264 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

There is yet another program in the Metafog suite
that helps for the problematic characters.

A2 Weed - [_088weps] [_ o]
B View Window TR
) ;lJ

Figure 14 Screendump of the weeder’s window

This program is called the ‘weeder’ (figure 14). It
is an interactive program that reads the half-way
result Metafog created. The human operator now
has to select the partial lines that are supposed to
belong to the shape, and the weeder will write a
finished file for use by Makefont (just like Metafog
itself would have done if things had gone right the
first time).

For some fonts, one has to do almost every
character ‘by hand’, for other fonts none at all.
The point of view the machine has on what precise-
ly denotes a complicated character can be rather
unexpected: sometimes a character can look very
simple to you but be almost impossible to process
by Metafog (usually characters that use draw and
£i11 commands that intersect somewhere). And the
other way around also happens: large portions of the
nash14 (arabic) font looked exceedingly complex to
me, but were in fact handled by Metafog without
any problems.

Either way, eventually there will be EPS files
available for all characters in the font. Makefont
combines all of the separate files into one PostScript
file, and the last step of the actual conversion process
is running the T1Utils to get a binary representation
that can be fed into a commercial font editor.

Insertion of Type 1 style hinting
information

The pfb file created at the end of step two still has
a couple of major flaws that need to be fixed. First
and foremost among these: there are absolutely no
Type 1 hints included. There were hints in the

Generating Type 1 Fonts from METAFONT Sources

original METAFONT sources, but these are ignored
by METAPOST, and subsequent portions of the
conversion do not have access to them. This is
the major reason for the need of a commercial font
editor. Type 1 hinting is too complicated a process
to rely on any non-interactive program to make the
right choices.

Another thing that must be checked, especially
for symbolic fonts, is the turning direction of the
subpaths. In PostScript, whether a path will be
black or white depends on how the path turns:
clockwise or counterclockwise. Metafog sometimes
gets confused, and outputs a character in which
two concentric circles both turn leftward (like in
an ‘O’ or the diameter symbol from the Waldi
Symbol font). In those cases, the character will be
completely filled, which is of course wrong.

B Glyph - [31] diameter from wasyl0

B [B B [0 o o o0

0K | Cancel

[
\;

L
B

Figure 15 Paths that turn the wrong way
The absolutely final step (so far I've needed to do
this for every commercial font program I could find)
is disassembling the pfb file, running a perl script to
fix some incompatibilies/bugs in the used font editor
and to insert a couple of workarounds for bugs in
software that uses the font, and reassembling.

What I have done already and
future plans
So far, I have converted four METAFONT fonts that

I needed myself. The files that are now available
from CTAN are:

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 265

Taco Hoekwater

logo wasy2 stmary rsfs

All of these files reside in a subdirectory of the
METAFONT sources, named ps-typel/hoekwater.
Each directory also contains a README file that gives
some detailed information about the font in question
and its copyrights.

Please take note of the fact that I only want
to give support for problems that are intrinsically
related to the .pfb files themselves. I don’t have
enough spare time to help people with problems
related to the integration of the fonts into their TEX
distributions. If somebody wants to volunteer for
this job, please let me know and I will add you to
the readme.

I plan to add other fonts in the near future
(some of which may have been uploaded already by
the time you read this). The original announcement
of the availability of the files that are now on CTAN
almost immediately resulted in a doubling of the
length of my wish list.

The following fonts are TODO and will definite-
ly be done before the summer:

e At least the most important fonts that are
needed by the wsuipa package: tipaxx and
xipaxx

e The Nash font that is used by ArabTEX
(Klaus Lagally says that he needs to fix
and update the METAFONT sources first).

e The Blackboard Bold font (actually,
everything that is needed for the new
math font encoding will be available
in Type 1 before the end of the year).

e At least one each of the Greek, Cyrillic and
Hebrew text font families (could someone
please point me to the ‘best’ font of those that

are available?).
e The manfnt (requested by Phil Taylor).

Every font (presuming 256 characters) takes about
one day to complete. This does not sound like too
much time, but unfortunately I also have other work
to do ~(

I am still open for requests, but you may have
to wait a couple of months.

For further reading

On the METAFONT language: Donald E. Knuth,
“The METAFONTBook”. Addison-Wesley Pub-
lishing Company, June 1986, 361 pages.

On using METAFONT to design real life fonts: Don-
ald E. Knuth, “Computer Modern Typefaces
(Computers and Typesetting, volume E)”. Ad-
dison-Wesley Publishing Company, June 1986,
588 pages.

On the PostScript Language: Adobe Systems Inc,
“The PostScript Language Reference Manual”.
Addison-Wesley Publishing Company, Decem-
ber 1990, 764 pages.

On METAPOST: John Hobby, “A User’s manu-
al for METAPOST”, AT&T Bell Laboratories
Computing Science Technical Report 162, 1992.
Comes as part of the METAPQOST distribution.

On Type 1 fonts: Adobe Systems Inc, “Adobe
Type 1 Font Format”. Addison-Wesley Pub-
lishing Company, June 1995.

On the Metafog program: Richard J. Kinch, “Con-
verting METAFONT Shapes to Outlines”. Paper
presented at the 1995 TUG Conference in St
Petersburg, Florida, USA. Appeared in print in
TUGboat 16.3

266 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Threshing EPS files

Bogustaw Jackowski, Piotr Pianowski, and Piotr Strzelczyk

BOP s.c.
ul. Piastowska 70, Gdanisk, Poland

B.Jackowski@gust.org.pl\\ P.Pianowski@gust.org.pl\\ P.Strzelczyk@gust.org.pl

Abstract

In this article we describe the CEP package for compressing EPS files. It belongs
to the public domain and was released at the GUST meeting in Bachotek, 1997.

The amount of disk space occupied by bitmap
graphics is a well-recognized problem. For example,
a 300 dpi picture (A4) contains ca 8700000 pixels;
assuming that each CMYK pixel occupies four bytes,
one obtains ca 35MB of disk space needed to store
the picture.

Now, imagine a TgX-er, who is not allowed to
use binary graphic data (because of the otherwise
magnificent DVIPS); thus our poor TEX-er usually
converts the binary data to hexadecimal EPS files,
thus doubling the required space, and next, after
compiling a document with TEX+DVIPS, the whole
graphic data is put into the resulting PostScript file,
so the required space is doubled again — altogether
140MB per one A4 page. The nightmare begins. . .

This problem is not a new one; it was recognised
by Adobe a relatively long time ago. In the Post-
Script Level 2 specification, they included objects
called filters which enable data compression. In
particular, instead of hexadecimal data, one can
use ASCII85 encoding (there are explanations of
abbreviations at the end of the article), run length
compression, LZW compression, DCT (used in JPEG
files), and many others. Why not make use of
these tools? The question is not as silly as it may
look at the first glance, as there exist relatively few
applications capable of generating well-compressed
PostScript graphics.

We decided to patch somehow this gap. We
developed a little package enabling the compression
of “normal” (non-compressed) graphic data. The
nature of the problem is more complex, however,
than one might expect. In particular, a universal,
always efficient compression technique does not ex-
ist. Choice of an optimal algorithm depends upon
the kind of data, form of the file and the expected
application. Hence, the package has several “but-
tons” which enable controlling various aspects of
compression.

Actually, the name CEP is derived from “com-
pressed EPS”. Coincidentally, the name in Polish

means “the flail”. We hope that others find thresh-
ing EPS files useful, in order to get rid of chaff, i.e.,
redundant data.

About the program

Our package consists of two pairs of AWK programs
(cep.awk—uncep.awk and cop.awk-uncop.awk),

four MS-DOS batch files and text information. cep.awk

and cop.awk generate (on-the-fly) PostScript pro-
grams which, processed by Ghostscript, yield the
appropriate data compression. UNCEP and UNCOP
accomplish (using a similar technique) the reverse
process, i.e., uncompression.

CEP is devised for the compression of the
usual bitmapped EPS files, containing a single,
hexadecimally-coded image; COP can be used to
compress any PostScript data.

The question arises: Why use two packing
techniques? The answer is simple: the efficiency
of compression is higher if a compression program
knows in advance which kinds of data are to be
expected. In general, bitmaps are more regular
(redundant) than arbitrary PostScript data, hence
even simple algorithms turn out to be more efficient.

Tests show that in the best case (screen dumps)
squeezing up to 10% of the original size is noth-
ing unusual. Sometimes, however, no compression
method gives a satisfactory result. In such a case,
one can always use encoding data using the ASCII85
filter, obtaining a reduction of a hexadecimal bitmap
size by approximately 35%.

Below we give a brief description of CEP and
COP. So far, only the MS-DOS version of the
PostScript-compressors is available, but it should be
easy to adapt our package to any platform, where
GAWK and Ghostscript are available. In this version
the GNU implementation of AWK (GAWK-EMX.EXE)
and Aladdin Ghostscript interpreter (GS386.EXE)
are used.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 267

Bogustaw Jackowski, Piotr Pianowski, and Piotr Strzelczyk

We tested the package using several Ghostscript
and GAWK implementations; now we use Ghost-
script 5.10 and GAWK 3.0.3.

CEP

The CEP subpackage consists of the MS-DOS batch
files cep.bat and uncep.bat and the AWK pro-
grams cep.awk and uncep.awk. First, AWK in-
spects the source EPS file doing its best to recognize
a position of a hexadecimal bitmap; next it creates
an appropriate PostScript program; and then the
control is passed on to Ghostscript which just per-
forms the submitted program: encodes the bitmap
and copies verbatim the remaining lines. The orig-
inal preamble is slightly modified; nevertheless, all
DSC comments are left intact.

If the bitmap cannot be found or the AWK
suspects that troubles may arise, the CEP engine
gives up.

The resulting file should be verified prior to
removing the original one, as the CEP heuristic
tricks may fail to fix the bitmap properly; moreover,
due to Ghostscript bugs, premature removal of the
source may also be painful.

CEP never generates binary output —only hexa-
decimal or ASCII85 encoding are supported. This
is due to the fact that CEP-compressed EPS files
are primarily meant to be used by TEX+DVIPS.
Nevertheless, the resulting files can be used in other
typesetting systems as so-called placeable EPS files.
The applicability to non-TEX applications, however,
is somewhat limited, as binary TIFF previews (re-
quired by WYSIWYG applications) may be misin-
terpreted by (G)AWK.

UNCEP requires that a CEP-compressed file
was not changed. In particular, it relies on the
information in a quasi-DSC comment %4UNCEPInfo:.
This information can be destroyed by a seemingly
innocent modification (e.g., by adding or removing
a comment line). Note that the technique employed
by CEP destroys, by its nature, the information
about the line-breaking structure of the hexadecimal
bitmap. Therefore, UNCEP cannot retrieve the orig-
inal file. Line-breaking structure does not make any
problem for a PostScript interpreter. There exist
programs, however, that read their own bitmapped
EPS files, which for unknown reasons make use of
such (sub)lexical information; Aldus PhotoStyler is
a notable example.

The command line invoking CEP is pretty sim-

ple:
cep.bat (in_file) (out_file) {options)

One should remember that the names of input and
output files must differ. The program recognizes the
following options:

8 — use ASCII85 coding (default)

h or H — use HEX (hexadecimal) coding

r or R — use RLE (RunLength) compression
(default)

1 or L — use LZW compression

f or F — use Flate compression
(PDF and Level 3)

n or N — don’t compress

Invoking UNCEP is even simpler:
uncep.bat (in_file) (out_file)

As mentioned, decompression and decoding meth-
ods are taken from an input file.

CcOoP

The subpackage consists of the MS-DOS batch files
cop.bat and uncop.bat, and the AWK programs
cop.awk and uncop.awk. COP reads and encodes
appropriately the supplied data. No analysis of the
PostScript data is performed, as the entire file is
encoded without changing even a bit. The only as-
pect that is taken into account is the DSC comment
%%BoundingBox:; if it is found, COP inserts this
comment in the preamble, otherwise the resulting
file does not contain the bounding box information.

COP-generated files are readable by any Post-
Script Level 2 interpreter.

UNCOP scans the header and deduces from it
the method of decompression, hence no options are
needed. UNCOP, unlike UNCEP, retrieves precisely
the original file. It is still recommended, however,
that a user verifies whether the resulting file is
properly interpreted by Ghostscript. Due to Ghost-
script bugs, premature removal of the source file
after compression or decompression may turn out
to be painful.

Since COP can be used to compress any data for
arbitrary applications, binary encoding is allowed
also. The resulting files can be used with typesetting
systems that accept so-called placeable EPSs. Un-
fortunately, binary TIFF previewers make files after
compression illegible for PostScript.

The usage of COP is similar to that of CEP:
cop.bat (in_file) (out_file) {options)
The program recognizes the following options:
8 — use ASCII85 coding (default)
b or B — use binary coding
h or H — use HEX (hexadecimal) coding

r or R — use RLE (RunLength) compression
(default)

268 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

1 or L — use LZW compression

f or F — use Flate compression
(PDF and Level 3)

n or N — don’t compress

Observe that binary encoding is, in fact, no encoding
at all.

The reverse process, i.e., UNCOP decompres-

sion, is also straightforward:

uncop.bat (in_file) (out_file)

As with UNCEP, decompression and decoding meth-
ods are taken from an input file.

A heap of remarks concerning our package

The applied solution addresses several problems:

1. It is not at all obvious how to determine syn-

tactically where a hexadecimal bitmap begins
in an EPS file; semantic analysis (by redefining
PostScript primitives image, imagemask and
colorimage) is possible, but it also has its
limitations; anyway, we decided to recognize
a bitmap syntactically, which implied a problem
of recognizing such artifacts as add or def which
look like fragments of a bitmap but, in fact, are
not.

. Also, it is not obvious which compression method
should be applied for a given data type; usu-
ally, ASCII85 encoding is advisable; for pure
bitmaps (CEP) RLE compression is satisfactory,
although LZW and Flate filters usually produce
much better results (the latter seems to be
the best); nevertheless, both LZW and Flate
encodings have limited usability:

(a) LZW encoding is not implemented in
Ghostscript ver. > 4 due to USA patent
law; as a by-pass, Aladdin implemented
an LZW-compatible filter which produces
non-compressed data (in fact, enlarged by
some 10%) readable for any LZWDecode
filter. You can use an old Ghostscript
version, or compile a Ghostscript version
containing the real LZW filter at your own
risk, but. ..

(b) Flate encoding (the same that is used
in GZIP) is available on photo-typesetters
having implemented PostScript Level 3;
it is also used in PDF files. It is safe
to assume that Ghostscript ver. > 4 has
this filter built-in. With other PostScript
devices, in particular commercial ones, the
test described in point 6 may prove useful.

As a rule of thumb we would suggest not to
use any compression but ASCII85 for detailed

Threshing EPS files

colour photo images. It is just a weakness of all
non-lossy techniques — algorithms employed by
ARJ, ZIP, LHARC, and others would yield poor
results also. A reasonable alternative for data
of this kind would be DCT (JPEG) compression.

. As was mentioned above, ASCII85 encoding can

usually be recommended; it added, however,
some troubles. First, due to Ghostscript bugs,
we decided to add the (dummy) NullEncode
filter which seems to cure the problem. But
there is one more problem: ASCII85-encoded
bitmaps may contain lines looking like DSC
comments, i.e, they may begin with double
percent signs, %%, or with a percent-exclamation
sign pair, %! —why didn’t Adobe exclude the
percent from ASCII85? Some programs may
try to interpret pseudo-DSC lines. For example,
DVIPS just removes such lines, unless the option
-KO0 is not used; on the other hand, leaving
DSC comments intact may stupefy document
managers.

. It would be convenient to have some more filters

implemented, in particular DCT and CCITT-
Fax; both of them, however, make use of some
additional input data which makes using them
more complex; moreover, it is not clear whether
one can find the optimal compression parame-
ters for DCT without a WYSIWYG program; we
consider a possibility of one-to-one conversion
between JPEG files and EPS files making use of
DCT filters; also, a similar conversion between
GIF files and EPS files making use of LZW filters
can perhaps be implemented.

. The package conserves the working disk space —

no large temporary files are created; roughly,
the needed disk space is equal to the size of the
source plus the size of the target.

. The following file may be helpful for verifying

whether a given PostScript device is able to
interpret compressed EPS files:

%!PS-Adobe-2.0 EPSF-1.2
%hPages: 1

%/%BoundingBox: 0 O 540 150
%%EndComments

/Helvetica 8 selectfont

90 rotate

1 2 moveto

(%)

{0 -10 rmoveto gsave show grestore}
255 string

/Filter

resourceforall

showpage

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 269

Bogustaw Jackowski, Piotr Pianowski, and Piotr Strzelczyk

%LEQF

Running this program yields the list of filters
for a given device. The error reported during
the processing of this file proves that the device
is not Level 2 compatible. In such a case, using
the CEP package should be abandoned.

7. Bugs and traps:

(a) Apparently, by preceding the closefile
command by flushfile, one neutralizes
an error in GS 3.x (tail of output swal-
lowed).

(b) Adding (a dummy) NullEncode filter neu-
tralizes (probably) another Ghostscript
bug: an ASCII85Encode filter with a tar-
get procedure may produce superfluous
EOD marks, i.e., “7>” (if things go really
badly you can obtain thousands of them).
Using the target procedure instead of a file
object excludes GS ver. < 3.x, because
early Ghostscripts didn’t support all fea-
tures of PostScript Level 2. Nevertheless,
Ghostscript ver. > 2.6 can be used for
compression with hexadecimal encoding
(it has a “legal” LZW compression).

(c) The target procedure mentioned in 7b is,
in turn, due to special treatment of the
ASCII85-encoded lines that look like DSC
comments; this special treatment is break-
ing lines after the first percent character.
It is dedicated to the DVIPS driver which
has a dangerous option remove comments
(-K1).

(d) An artificial form of quitting, i.e., {2 2
.quit} instead of {2 .quit}, is due to an
infinite loop of Ghostscript 3.5x caused by
the latter form. The Ghostscript internal
operation .quit was chosen to provide
error handling at the level of the operating
system.

(e) Still, there exist bugs in older Ghostscript
that we were not able to neutralize; e.g.,
some EPS files are properly compressed by
GS 2.6, but Ghostscript 2.6 breaks while
displaying them; GS 3.51 behaves simi-
larly with other bitmaps. So far, Ghost-
script > 4 seems to be the most resistant
to the “filter trial”, but it also reveals some
deficiencies. Let’s hope that GS 5.5, which
is expected to appear soon and is claimed
to have most of PostScript Level 3 features
implemented, will be still better.

(f) Summing up, we would strongly recom-
mend using Ghostscript 4.x or 5.x (pos-

sibly with LZWEncode compiled in) and
GAWK 3.x: GS 4.x is nearly complete
implementation of the Level 2 PostScript;
GAWK 3.x provides regular expressions for
record separators, which makes it possible
to force handling end-of-lines in exactly
the same manner as PostScript does and,
moreover, is more reliable than earlier ver-
sions.

CEP for everybody

The packages described herein, we have developed
for our own purposes. We make them available to
the public in the hope that others will find them
useful too. We intend to support the packages, but
we cannot guarantee that we will be able to follow
the frequency of Ghostscript upgrades.

Note that all copyrights, copylefts, copyups,
copydowns, or whatever you wish to call them,
concerning all the files in the CEP/COP packages
are essentially of the public domain character.

Vocabulary

You may find useful the following short explanation
of terms appearing throughout the article.

Ghostscript, GS: A reliable and efficient inter-
preter of PostScript language by Aladdin Enter-
prises, available as a free public license product;
its current version (in July —5.10) turns out to
be much more reliable than not a few commer-
cial interpreters.

AWK: A popular utility and a programming lan-
guage for convenient and efficient batch data-
reformatting; written in 1977 by Alfred V. Aho,
Peter J. Weinberger, and Brian W. Kernighan.

GAWK: GNU AWK, GNU Free Software Founda-
tion implementation of AWK, written in 1986
by Paul Rubin and Jay Fenlason, with advice
from Richard Stallman.

GNU: The initiative of the Free Software Founda-
tion (FSF), a non-profit organization dedicated
to the production and distribution of freely dis-
tributable software, founded by Richard M. Stall-
man.

TEX: Public domain typesetting system by Don-
ald E. Knuth of Stanford University.

DVIPS: A popular TgEX-to-PostScript driver by
Tomas Rokicki of Stanford University.

DSC: Document Structuring Convention—a stan-
dard for structuring PostScript documents de-
signed by Adobe.

270 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

ASCII85: Algorithm for coding binary data as 7-
bit ASCII text consisting of only printable char-
acters; encodes every four bytes as five charac-
ters from % to u; additionally z is used to code
four zeros (see PostScript Language Reference
Manual, second edition, pp. 128-130).

RLE: Run Length Encoding—a standard method
of data compression (see PostScript Language
Reference Manual, second edition, pp. 133—
134).

LZW: An algorithm of data compression by J. Ziv,
A. Lempel (1978), improved by T. Welch (1984);
Unisys, at the time Welch’s employer, was
granted a US patent in 1985 on Welch’s al-
gorithm; a grandfather clause was established
by Unisys to make pre-1995 implementations of
LZW code free of royalty requirements, thereby
eliminating such claims on UNIX compress (in-
formation from Nelson H. F. Beebe, e-mail:
beebe@math.utah.edu).

Threshing EPS files

DCT: Discrete cosine transform compression, an
elaborate, very efficient but lossy compression
scheme, used in JPEG file format.

JPEG: Joint Photographic Experts Group, an or-
ganization responsible for developing an in-
ternational standard for compression of image
data; the PostScript (Level 2) DCTEncode filter
conforms to the JPEG-proposed standard.

GZIP: Compressing utility by GNU Free Software
Foundation, based on a superior and unpatented
compression algorithm (modified Lempel and
Ziv algorithm), developed in order to get rid
of the patented LZW algorithm. It has become
a standard compression tool in UNIX systems.

Flate: Filter in PostScript Level 3 based on the
compression algorithm used by GZIP; the name
is the truncation of the words “inflate” and
“deflate”.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 271

Bogustaw Jackowski, Piotr Pianowski, and Piotr Strzelczyk

272 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

More TEX-PostScript links

Bogustaw Jackowski, Piotr Pianowski, Piotr Strzelczyk

BOP s.c.
ul. Piastowska 70, Gdanisk, Poland

B.Jackowski@gust.org.pl, P.Pianowski@gust.org.pl, P.Strzelczyk@gust.org.pl

Introduction

According to Donald E. Knuth’s decision, TEX stays
frozen. This does not mean, however, that it cannot
be improved. There are several ways to conform to
Knuth’s idea of keeping TEX frozen while improving
it at the same time:

e developing macro packages;

e writing utility programs: drivers, pre- and post-
processors of DVI files, programs for generat-
ing TEX documents, graphic utilities (such as
METAPOST), etc.;

e providing links to other languages and/or sys-
tems: RTF, PDF, HTML, SGML, PostScript,
databases (bibliography), WWW pages, etc.

We shall focus our attention on one of the many
aspects, namely on PostScript applications. Linking
TEX and PostScript was a giant step towards mak-
ing a professional typesetting system out of TEX.
PostScript and TEX fit excellently together, as Post-
Script is a powerful, well-defined, world-wide stan-
dard language of graphic and text page description,
and so is TEX. Since most phototypesetters and
many printers understand PostScript, it is crucial
that TEX also understands PostScript.

Of course, the basic link is a good PostScript
driver. Fortunately, such a driver exists —it is Tom
Rokicki’s dvips. But the driver alone is nowhere
near enough—it provides access to nearly all of
PostScript’s features, but many of these need extra
tools in order to make them easy to use. The more
so as PostScript, unlike TEX, continues to develop
rapidly (recently, Adobe released PostScript Level 3)
and thus one can presume that more and more new
tools will be needed.

We describe here the tools we have developed
for our own purposes. We make them available
to the public in the hope that others will find
them useful too. The tools were released at the
GUST meeting in Bachotek, 1998. The release
can be considered as a continuation of a series of
earlier releases of similar tools, such as the PS_VIEW
previewer, the CEP utility for compressing EPS files,
EPS2MF and MF2EPS converters, and others.

Tiff2ps

Encapsulated PostScript files (EPS) are commonly
used with TEX for including graphics. Unfortu-
nately, not all systems support encapsulated Post-
Script. It is understandable, since in order to in-
terpret EPS files, a nearly complete PostScript in-
terpreter is necessary. Therefore, some applications
prefer simpler formats. Perhaps one of the most
popular is TIFF: a tag-based file format for stor-
ing and interchanging raster images. Despite being
simpler than EPS, TIFF is rich enough to describe a
broad range of bitmap images.

In order to convert a TIFF file to an EPS file
a special program is needed. There are several
programs available, but we do not know of any writ-
ten in PostScript. We decided to write our tiff2ps
converter in PostScript (actually, in Ghostscript)
for several reasons: (a) PostScript has fundamental
compression algorithms implemented, which simpli-
fies the processing of TIFF data; (b) the portability
of PostScript programs is higher than that of those
written in C, and comparable with the portabil-
ity of programs written in TEX; (c) by definition,
PostScript programs exist only in source form and
thus modifications and enhancements by third par-
ties are possible; and last but not least, (d) em-
ploying Ghostscript guarantees surprisingly efficient
processing.

The tiff2ps converter accepts most TIFF files
conforming to the TIFF 6.0 specification, including
gray, palletted, RGB, CMYK colour models, and
LZW, RLE, CCITT (fax) compression; JPEG com-
pression is expected to be available soon.

The resulting EPS files can be compressed using
LZW, RLE, or Flate PostScript filters; moreover,
the resulting bitmap can be written in either a
hexadecimal or an ASCII85 encoded form.

The package also can be used for generating
colour-separated EPS files (out of CMYK TIFFs) and
“EPS thumbnails”, i.e., EPS files with a reduced
resolution. Moreover, EPS headers, containing only
a pointer to a source TIFF file, can be created.
Such an approach has many advantages, as headers
are usually negligibly small, which increases the

272 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

efficiency of the processing of documents and saves
disk space. This form is similar to the OPI (Open
Prepress Interface) standard used in prepress sys-
tems. One should be aware, however, that not all
PostScript devices (phototypesetters) are equipped
to accept such header files.

The present version of the tiff2ps converter is
under development — more facilities and more TIFF
formats are to be implemented; nevertheless, back-
ward compatibility will be preserved.

Pf2afim

A “canonical” PostScript Type 1 font comes in
two files: an AFM (Adobe Font Metrics) file and a
PFB or PFA file (PostScript Font Binary or Post-
Script Font ASCII, respectively). PFB and PFA
files contain exactly the same information, namely
the description of glyph shapes; the only difference
being that PFB—as the name suggests — contains
the data in a binary form, while PFA exploits ASCII
(hexadecimal) representation of the data. The most
important part of an AFM file contains information
about the dimensions of glyphs and about kern
pairs.

PostScript interpreters make no use of AFM
files. The information is—as Adobe says— for
“communicating font metric information to people
and programs.”

TEX takes metric information from TFM files,
not from AFM ones. Fortunately, the AFM format
is so general that it can serve not only for “appli-
cation programs that generate PostScript language
page descriptions”; it can also be used by auxiliary
programs that prepare metric data for typesetting
systems. One of such programs is the well-known
afm2tfm (written by T. Rokicki and D. E. Knuth)
which produces TFM files out of AFM ones and thus
makes PostScript fonts available for TEX users.

It should be emphasized that for TEX, users
having both PFB/PFA and AFM files is crucial.
Alas, with the advent of Windows systems, a new
form of font metrics emerged, namely PFM (Printer
Font Metrics), containing a subset of the informa-
tion stored in AFM files. PFM files are used by
Adobe Type Manager (ATM) for Windows.

As a result, some vendors started to distribute
PostScript Type 1 fonts with PFM files instead
of AFM ones. We looked for a reliable program
to convert PFM files to TFM ones, but we found
none. Although a few programs converting PFM
to AFM exist, we were not satisfied with them.
We were thinking about writing our own converter,
when we encountered in the Ghostscript distribution
a PostScript program printafm, written at some

More TEX-PostScript links

point by James Clark. The program is capable of
extracting metric information from a PostScript font
and writing the data in an AFM form. We decided
to enhance Clark’s program in such a way that it
could make use of the data stored in a related PFM
file, whenever available. Moreover, we added an

interface facilitating batch processing.

The result of the enhancement is the pf2afm
converter, or, more adequately, the pf2afm patch.
Figure 1 shows the place of pf2afm in a simplified
TEX file processing scheme.

afmtotfm,
viinst,
TOIL, etc.

pf2afm

Figure 1: TEX file processing scheme

In general, the retrieval of the complete metric
information from PFB/PFA and PFM files is impos-
sible; only if we are lucky, i.e., if the Encoding vector
of a given font contains all the characters we need,
can we conveniently use the resulting AFM; other-
wise, hand-tuning may turn out to be necessary.

We believe that such a patch (or converter)
may prove useful for people dealing with PostScript
fonts, not only for TEX users. Anyway, the pf2afm
tool has been included in the standard Ghostscript
distribution.

In our practice, on several occasions, we en-
countered situations when missing AFM files caused
trouble. Before we created the pf2afm converter,
we had had to use special font programs, such as
Fontographer, which we would gladly avoid, to a
large extent because of the low reliability of much
“professional” software.

Ttf2pf

When a TrueType font format (TTF) was intro-
duced by Apple and Microsoft, Adobe responded by
equipping PostScript with a TrueType substitute,
Type 42 font format, and by including a TrueType
rendering engine in their PostScript interpreter.
The relationship between TrueType and Type 42 is
schematically shown in Figure 2.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 273

Bogustaw Jackowski, Piotr Pianowski, Piotr Strzelczyk

Type 42 font

POSTSCRIPT-specific

TrueType font font header

POSTSCRIPT strings
one-to-one

TrueType containing
- — :
file correspondence TrueType file
data

POSTSCRIPT-specific
font (Type 42) trailer

Figure 2: The relationship between TrueType
and Type 42 formats

The details are unimportant here. We only
observe that Type 42 is, in fact, an equivalent of
the TrueType format: TrueType data are simply
stored inside a Type 42 file, i.e., no surgery on font
intestines takes place and the intact TrueType data
can be retrieved from the Type 42 file. Note that the
conversion between Type 1 and Type 42/TrueType
involves fundamental changes of the representation
of glyphs, in particular the hinting information can-
not be preserved.

In other words, the conversion between True-
Type and Type 42 is purely formal, something like
the conversion between PFB and PFA, although the
latter is significantly simpler.

Since the font market has been recently flooded
with TrueType fonts, we decided that they should be
available for TEX users. The best starting point —
as usual—turned out to be Ghostscript. Actually,
the ttf2pf converter is based on PostScript programs
to be found in a standard Ghostscript distribution;
ttf2pf itself will be probably included in the standard
Ghostscript distribution.

The ttf2pf converter generates two files: Type 42
and AFM; the Type 42 file appears in an ASCII
form, thus it can be included by dvips as an ordinary
header file; the AFM file allows the generation of a
TFM file using standard tools.

It should be noted that not all phototypesetters
cope with Type 42 fonts. We also had trouble in
converting PostScript files containing Type 42 fonts
to PDF format using Adobe’s Acrobat Distiller. A
careful inspection showed that they were properly
embedded in PDF files as genuine TrueType fonts,
but the Acrobat Reader displayed uniform rectan-
gles instead of glyphs (although it was able to rec-

ognize that a document contained TrueType fonts).
That’s it for the bad news.

For the good news: Ghostscript renders Type 42
fonts smoothly. Incidentally, there is a possibility
that during the TUG meeting in Torun the Ghost-
script release compatible with PostScript Level 3
will be available.!

Colormap

Occasionally, a modification of a bitmap graphic is
necessary. For example, one may wish to have a
pale version of a scanned photo in order to use it as
a background. Such an intervention can be easily
accomplished using special graphics programs, but
this means that both the original and the modified
images need to be stored, which is inconvenient.
Moreover, GUI programs usually do not allow users
to define such changes numerically.

Fortunately, modifications of this kind can be
performed by a PostScript engine, and thus it is
possible to also perform them at the TEX level;
colormap is a tiny package of TEX macros that makes
possible nearly arbitrary colouring of gray bitmap
images.

The basic method of specifying colour change
is to define the colours to which black and white
should be mapped, assuming that for the interme-
diate colours a linear interpolation is applied. You
can specify the mapping using either gray or CMYK

1 Ghostscript 5.50 (released a few weeks after the confer-
ence) is still not fully compatible with PostScript Level 3 but
has a lot of its features.

Figure 3: The picture to the left is an

original image, placed using the command
\epsffile{tiger.eps} (assuming the

usage of the epsf package from the standard
dvips distribution); the picture to the

right is obtained using the command
\lingraymap[.85:.95]{\epsffile{tiger.eps},
where \lingraymap is defined in colormap.

274 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

models. For example, in order to make an image
pale, one should map black to ca 15% of black and
white to ca 5% of black, i.e., following the PostScript
custom, to 85% and 95% of gray, respectively. Fig-
ure 3 shows the result of such a modification.

The linear interpolation of colour is not oblig-
atory. It is possible to apply an arbitrary mapping,
given by an array (having 256 entries), represented
as a PostScript hexadecimal string. The string can
be either created manually or computed by an aux-
iliary program.

Actually, the colormap package defines four
macros, allowing users to map a grey-scale image to:

e another grey-scale image using a linear interpo-
lation (\lingraymap)

e a CMYK-model image using a linear interpola-
tion (\lincmykmap)

e another grey-scale image using an arbitrary
mapping (\gengraymap)

e a CMYK-model image using using an arbitrary
mapping (\gencmykmap)

More TEX-PostScript links

For details, see the file colormap.tex. Al-
though the colormap macro package is written in
plain TEX, it is also supposed to work with IATEX.

Acknowledgements

It should be emphasized that all the tools described
in this paper could be developed only thanks to
L. Peter Deutsch’s marvelous interpreter of the Post-
Script language: it is Ghostscript that provided a
convenient platform for creating such tools. We
are grateful to L. Peter Deutsch for making Ghost-
script available as freeware, for maintaining and
developing it, and for helping us promptly whenever
we met difficulties.

Postscript

Any trademarks, trade names, service marks, or
service names owned or registered by any other com-
pany and used in this publication are the property
of their respective companies.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 275

METAPOST and patterns

Piotr Bolek

ul. Szkolna 15, 05-180 Pomiechéwek, Poland
Phone: (48) 22-785 43 39
P.Bolek@ia.pw.edu.pl

Abstract

In this paper the METAPOST macros for defining and using patterns are pre-
sented. METAPOST is an excellent graphics program which gives the user access
to many PostScript features. But there is no way to access the Pattern Color
Space of PostScript Level 2. The mpattern package is the author’s attempt to give
users of METAPOST a comfortable way of accessing this feature of PostScript.
This package allows the user to define patterns using arbitrary METAPOST code,
modify the pattern transformation matrix and specify vertical and horizontal dis-
placement of adjacent pattern cells. Examples of defining and using patterns are

shown.

Introduction

METAPOST is a very good graphics program. It

takes the best from METAFONT, PostScript and TEX.

From METAFONT, it borrows the declarative pro-
gramming model and a way of describing graphic
objects. It has a very comfortable interface to TEX
and PostScript features. The user can typeset la-
bels using TEX commands and fonts and modify
the graphic state parameters of PostScript, such as
painting color, line thickness and dashing patterns,
as well as the way of line ending and joining. But,
the possibility of defining and using patterns is lack-
ing.

Patterns are very useful and comfortable. Once
defined, they behave like ordinary colors— they are
automatically tiled and clipped on the edges of the
painted area by the PostScript interpreter. They
can be used for easy definition of textures such as
stripes, waves, checkers, hexagons and many more.

Direct implementation of the interface to pat-
terns in METAPOST is impossible without modify-
ing the sources of the METAPOST program itself.
The solution proposed by the author is different.
The main part of the pattern package is written as
METAPOST macros, but the figures in which the
patterns are used must be postprocessed by a simple
perl script. This script is a simple wrapper that calls
the METAPOST program, finds the figures in which
the patterns were used and postprocesses these fig-
ures. The user who wants to define and use patterns
in METAPOST figures must use this wrapper script
(called mpp, which stands for “METAPOST with Pat-

terns”) instead of direct invocation of the META-
POST program.

Patterns in PostScript

There are two types of patterns in PostScript—
uncolored and colored. Uncolored patterns do not
specify any color and act as stencils for painting with
separately specified colors. In uncolored patterns,
operators that specify colors are not allowed. The
colored pattern specifies the colors used for painting
the pattern cell.

Definition of patterns in PostScript consists of
several elements. The pattern is defined as a special
kind of dictionary. (The PostScript data structure
acts as an associative array with elements which may
have different types.) The main element of the pat-
tern dictionary is PaintProc— the arbitrary Post-
Script procedure which is executed to paint a single
pattern cell.

The other important elements of pattern defini-
tion are: pattern bounding box (BBox) which is used
to clip the drawing made by PaintProc and hor-
izontal and vertical spacing between adjacent pat-
tern cells (XStep, YStep). This spacing may differ
from the values implied by the dimensions of the pat-
tern bounding box — the contents of adjacent cells
will then overlap or there will be gaps between cells.
Values of these parameters must be different from
zero— either positive or negative.

The pattern shape can be modified by the ar-
bitrary affine transformation specified during defi-
nition of the pattern— pattern cells can be scaled,
rotated or skewed.

276 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

PostScript patterns and METAPOST

How is METAPOST related to PostScript pattern
color space? The main part of the pattern defini-
tion is the PaintProc procedure. It is an arbitrary
PostScript procedure—and the purpose of META-
POST is to produce arbitrary PostScript procedures.
Therefore, the picture produced by METAPOST can
be used as a definition of the pattern PaintProc.
METAPOST knows the picture bounding box so we
can also use this information if we need it.

METAPOST also can be used to specify the pat-
tern transformation matrix which will be used to
change orientation, size or shape of the basic pat-
tern cell. The METAPOST transform type contains
the same information as the PostScript transforma-
tion matrix. We can specify the transformation of a
pattern cell using comfortable METAPOST (META-
FONT) transformation expressions.

The mpattern package

The mpattern package is the interface to the Post-
Script Pattern Color Space from METAPOST. Us-
ing this package, we can define patterns using arbi-
trary METAPOST commands. We can also specify
the bounding box of a pattern and spacing informa-
tion (XStep, YStep). It is possible to use expressions
of the type transform to specify an arbitrary affine
transformation which will be applied to our pattern.
The patterns defined with this package are colored
patterns.

Once defined, patterns can be used in natural
way — by using the withpattern operator, similar
to withcolor, withpen, etc.

Here is a simple example. Assuming that we
have already defined the path bean, we can define
and use a pattern like that below:

beginpattern(checker) ;
fill unitsquare scaled 4mm rotated 45;
endpattern;
beginfig(1);
fill bean withpattern checker;
draw bean;
endfig;

The result is shown on figure 1.

Figure 1

METAPOST and patterns

As we can see, the pattern is defined with two
macros: beginpattern and endpattern. The for-
mer has one parameter —the name of a pattern.
This name will be used later to identify the pat-
tern when the user wants to use it as a filling for a
closed path. Between these two macros, the user is
allowed to use any valid METAPOST commands.

In our example, the pattern bounding box is
not specified. In such situations, it is calculated by
METAPOST, and in fact is identical with the bound-
ing box of the implicitly defined picture. When the
bounding box should be different from the default,
we can specify it using the patternbbox macro. We
can modify our pattern very easily by specifying the
center of our square as the lower-left vertex of the
bounding box. It will clip the basic cell of our pat-
tern, ignoring everything outside the bounding box.

beginpattern(checker_clip);
£ill unitsquare scaled 4mm rotated 45;
zl=1llcorner currentpicture;
z2=urcorner currentpicture;
z1’=.5[z1,2z2];
patternbbox(zl’,2z2);

endpattern;

We can also change the spacing of the pattern with-
out modification of its bounding box. We can spec-
ify the vertical and horizontal spacing separately
(patternxstep and patternystep macros), or both
of them at once (patternstep).

beginpattern(checker_ovl);
£ill unitsquare scaled 4mm rotated 45;
patternxstep (4mm) ;

endpattern;

beginpattern(checker_gap);
fill unitsquare scaled 4mm rotated 45;
patternstep(6mm, 7mm) ;

endpattern;

These three modifications of our first pattern are
shown on figure 2.

Figure 2

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 277

Piotr Bolek

Using the mpattern package we can also spec-
ify arbitrary transformation of pattern cells. Ordi-
nary METAPOST expressions of the type transform
are used for this purpose. The patterntransform
macro the user allows to specify the transformation
of the pattern. The argument of this macro should
contain the type transform. To rotate our example
pattern we can define it as follows:

beginpattern(checker_rot);
£ill unitsquare scaled 4mm rotated 45;
patterntransform(identity rotated 22);
endpattern;

Patterns may also be translated, scaled and slanted.
The transformations can be joined in the usual way:

beginpattern(checker_sl);
fill unitsquare scaled 4mm rotated 45;
patterntransform(identity rotated 45
slanted .2);
endpattern;

Examples of transformed patterns are shown on fig-
ure 3.

Figure 3

Now we know all the macros for defining and
using patterns available to users:

e beginpattern, endpattern: the couple of ma-
cros which enclose the definition of basic pat-
tern cell.

e patternbbox: the macro which allows the ex-
plicit specification of the pattern bounding box.
If this macro is not used in the definition of the
pattern, then the bounding box of the whole
picture acting as the pattern cell is used. This
macro may have two parameters of the type
pair, or four numeric parameters.

e patternxstep, patternystep, patternstep:
the macros for specifying spacing of the pattern
cells.

e patterntransform: the macro for changing the
shape of a pattern cell. The argument of this
macros must have the type transform and it

represents the transformation which will be ap-
plied to the pattern. This transformation will
take place after determining the bounding box
and spacing of the pattern. Therefore the real
size and shape of the basic pattern cell can be
different from the ones specified in the pattern
definition. Any valid METAPOST transform ex-
pression can be used as the argument of this
macro.

e patterncolor: the macro used to assign color
to the defined pattern. In the first stage of
processing, the pattern is defined as a color
which is replaced by the pattern itself during
the postprocessing stage. The colors assigned
to patterns are generated automatically, but
we can force the use of concrete colors for this
purpose. The argument of the patterncolor
macro must be a number from range [0, 1] and is
interpreted as gray level (0—black, 1 —white).
Manual specification of a color tied with pat-
terns requires that this color not be used for
other (ordinary) purposes— because every ob-
ject painted with this color will be painted with
the pattern.

The use of only gray levels in the pattern-
color macro is by the implementation of as-
signment of colors to patterns. The assignment
information is stored in an array indexed by
the colors, which is possible only when the col-
ors are monochrome. This limitation may be
relaxed in the future.

e withpattern: the primary operator which can
be used for drawing shapes filled with earlier
defined patterns. It can be used in a way similar
to withpen or withcolor operators.

Implementation of the package

The mpattern package consists of two parts. The
first is the METAPOST code in which the user in-
terface and working macros are defined. The second
is the simple perl script which invokes METAPOST
and postprocesess its output.

The processing of the patterns takes place in
two steps and is managed by the simple perl script
called mpp. In the first step, the METAPOST pro-
gram is invoked. METAPOST code placed between
beginpattern, endpattern macros is processed as
the figure with a high number —the default is 999,
but if this number is used by the user, then 998
is used, and so on. Problems can arise when the
user uses all the picture numbers from 0 to 999, but
hopely this is a highly improbable situation. In the
endpattern macro, the PostScript code generated
by the pattern picture is read and remembered as

278 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

the PostScript pattern definition in the string vari-
able. When the user uses the withpattern opera-
tor, this code will be placed at the beginning of the
picture in which the pattern is to be used. This is
performed with a special command. Information
about every defined and used pattern is stored as
comments in output files and in the log file. This
information is used in the second step of processing
patterns.

The PostScript code defining the pattern is con-
structed by the macro endpattern. The tiling in-
formation supplied by the user in the patternbbox
and pattern[xy]?step! macros is converted to a
form suitable for PostScript. PostScript code gen-
erated from an implicitly defined picture is used as
the body of the pattern PaintProc procedure. All
of these elements are placed together into a pat-
tern dictionary and stored in string variables. The
METAPOST transform expression, given as an argu-
ment to patterntransform, is converted to a Post-
Script transformation matrix and used in definition
of the pattern to modify the coordinate system in
which the pattern will be painted.

Every defined pattern is joined with the color
which will be replaced by the pattern in the second
step. The area to be filled with the pattern is filled
by METAPQOST with this color. The colors used for
this purpose should not collide with “ordinary” col-
ors used by the user. At the moment, colors which
are to be replaced by patterns are constructed as

k * epsilon * white

where k is the number of the defined pattern, epsilon
is the smallest number in METAPOST, and white is
the white color. Using the macro patterncolor in
the definition of the pattern, the user can explicitly
specify the color (gray level) which will be used with
the defined pattern. Ensuring that pattern colors
will not collide with ordinary colors is, in this case,
left to the user.

Every pattern is remembered in a variable with
the same name as the argument of beginpattern,
so the user should not try to use such a variable for
other purposes.

The second step in processing patterns is per-
formed by a perl script. Pictures in which patterns
are used are found with the help of information
stored in the log file. Then for every such picture,
substitution from colors-to-patterns is performed.
See the small example below.

If the pattern checker was defined first — “his”
color will be (epsilon * white), and the line

0.00002 setgray

1 Regular expression notation is used here.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

METAPOST and patterns

in the output file will be replaced with
checker setpattern

and definition of the pattern checker will be placed
at the top of this file. If there are several different
patterns used in one picture, then several pattern
definitions will be placed at the top of output file.

Pattern examples

We have already seen several examples of patterns.
These were checkers—the simplest possible ones.
Now let us try to define more interesting and useful
patterns.

Line patterns. The basic patterns are of course
lines. It seems quite easy to define patterns from
lines. But let us have a look at figure 4.

-

Figure 4

Patterns consisting of vertical and horizontal
lines demonstrate something strange — at regular in-
tervals they have thinner parts. This effect has two
reasons— the pen used to draw lines is circular, and
METAPOST calculates the bounding box of the pat-
tern cell automatically. METAPOST is quite accu-
rate when it calculates the bounding box of the pic-
ture, so we have what we wanted. ..

Knowing the reason for this unwanted effect,
we can deal with it. Two possible solutions of this
problem are shown in the listing below. The first
solution is not to use a rounded pen (lines_s), and
the second is to explicitly define the bounding box
of the pattern in such a way that the rounded ends
of the lines are cut off (1ines_ss).
beginpattern(lines_h);

draw origin--10left
withpen pencircle scaled 2;
patternystep (2mm) ;
endpattern;
beginpattern(lines_v);
draw origin--10up

withpen pencircle scaled 2;

patternxstep (2mm) ;

279

Piotr Bolek

endpattern;
beginpattern(lines_s);
draw origin--10up
withpen pensquare scaled 2;
patternxstep (2mm) ;
patterntransform(identity rotated -45);
endpattern;
beginpattern(lines_ss);
draw origin--10up
withpen pencircle scaled 2;
patternxstep (2mm) ;
patternbbox(left,10up+right);
patterntransform(identity rotated 45);
endpattern;

Other patterns. Of course we are not limited to
the definition of such simple patterns only. The fol-
lowing represent examples of two patterns and their
transformations.

Figure 5

Definitions of our patterns are really simple, but
they look quite interesting (fig. 5).

def wave_def=
zl=origin; z2=bup+bright; z3=10right;
draw z1{right}..z2..{right}z3;
patternbbox(.25down, 10right+5.25up) ;
enddef;
beginpattern(wave_i);
wave_def;
endpattern;
beginpattern(wave_ii);
wave_def;
patterntransform(identity slanted .9
rotated 35 xscaled 1.5);
endpattern;
def fish_def=
zl=origin; z2=bright+5.up;
path p; p=z1{upl}..z2;
draw p;
draw p xscaled -1 shifted (5right+5up);
draw currentpicture xscaled -1;

enddef;
beginpattern(fish_i);
fish_def;
endpattern;
beginpattern(fish_ii);
fish_def;
patterntransform(identity slanted .9
rotated 67 xscaled 1.5);
endpattern;

Interesting patterns can be defined using a for loop.
Below we define a path which is later rotated, and as
aresult, we obtain quite interesting looking textures.

Figure 6

beginpattern(p_a);
z1=(0,0); z2=5up;
path p;
p=z1l{right rotated -10}..{up}z2;
for i=1 upto 4:
draw p rotated (i*360/4);
endfor;
patternbbox(-y2,-y2,y2,y2);
endpattern;
beginpattern(p_b);
z1=(0,0); z2=bup;
path p;
p=zi{left}..z1+(-2,3)..{dir 65}z2;
for i=1 upto 4:
draw p rotated (i*360/4);
endfor;
patternbbox(-y2,-y2,y2,y2);
endpattern;

Colored patterns. All previously defined patterns
were black and white; but we can of course de-
fine patterns with more colors. Here are three ex-
amples (fig. 7). (Editor’s note: Figures 7 and 8
may be viewed in color at http://www.tug.org/
TUGboat/Articles/tb60/bolek-cfigs.pdf.) Be-
cause the definitions of these patterns are not as
simple as those above, it may be interesting to see
the shape of the basic pattern cells (fig. 8). The code
defining these patterns is contained in Appenix A.

Of course we can use fonts in our patterns. Quite
interesting examples of patterns in which texts was
used are shown in fig. 9.

280 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Figure 8

But using text in patterns may be dangerous.
The PostScript created by processing the TEX doc-
ument including a figure with “text” patterns can
cause errors in PostScript devices or interpreters.
The problems occurs only when the fonts used in the
patterns are bitmapped fonts. When we use Type 1
fonts, the file is processed without errors.

METAPOST and patterns

x

Figure 9

Figure 10

It seems that the dvips interface to PK fonts is not
safe enough when used in patterns. So if we are
going to use text in patterns, we should use only
Type 1 fonts. Times New Roman is used in fig. 9.

The final example (fig. 10) is an illustration
from a chapter about map coloring in book about
combinatorics.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 281

Piotr Bolek

A Appendix

The definitions of patterns used in figure 7 are shown below.

beginpattern(Honey) ;
path p;
alpha:=360/6;
for i=0 upto 5:
z[1i]=(3mm*up) rotated (i*alpha-30);

endfor;
p=20--z1--z2--z3--z4--z5--cycle;
z6=2z5+z0-z1;

z1b=(x2,y3); z2b=(x6,y0);
patternbbox(z1b,z2b) ;
£ill z1b--(x1b,y2b)--z2b--(x2b,ylb)--cycle withcolor ((255, 193, 37)/255);
drawoptions(withpen pencircle scaled 4 withcolor (red+green+.5blue));
draw p;
draw z5--z6;
draw (z1--z2--2z3) shifted (z6-z2);
drawoptions() ;
draw p;
draw z5--z6;
draw (z1--z2--2z3) shifted (z6-z2);
endpattern;

beginpattern(Brick);
u:=3mm;
fill unitsquare scaled 2u withcolor (red+.4green+.4blue);
draw unitsquare xscaled 2u yscaled u withcolor white;
draw (u,u)--(u,2u) withcolor white;
draw (0,2u)--(2u,2u) withcolor white;
patternbbox(origin, (2u,2u));

endpattern;

beginpattern(Floor) ;
u:=2mm;
f£ill unitsquare xscaled 6u yscaled 2u withcolor ((238, 154, 73)/255);
drawoptions(withpen pencircle scaled 1 withcolor ((255, 241, 210)/255));
draw origin--(2u,2u)--(4u,0);
draw (4u,2u)--(6u,0);
draw (2u,0)--(3u,u);
draw (5u,u)--(6u,2u);
draw (-u,u)--(u,3u);
draw (5u,3u)--(7u,u);
patternbbox(origin, (6u,2u)) ;
endpattern;

Patterns with texts from figure 9

beginpattern(txt_i);
picture 1;
1=thelabel (btex\font\q=ptmr8r\q MetaPost etex, origin);
draw 1;
zl=llcorner currentpicture;
z2=urcorner currentpicture;
draw 1 shifted ((y2-yl)*up+.5(x2-x1)*right);
draw 1 shifted ((y2-y1)*up+.5(x2-x1)*1left);

282 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

METAPOST and patterns

patternbbox(zl, (x2,2[y1,y21));
endpattern;

beginpattern(txt_ii);
picture 1;
1=thelabel (btex\font\q=ptmri8r\q MetaPost etex, origin);
draw 1;
zl=1llcorner currentpicture;
z2=urcorner currentpicture;
draw 1 shifted ((y2-y1)*up+.2(x2-x1)*right);
draw 1 shifted ((y2-y1)#up+.8(x2-x1)*left);
patternbbox(zl, (x2,2[y1,y21));
patterntransform(identity rotated 60);
endpattern;

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 283

Improving TEX’s Typeset Layout

Han The Thanh
Faculty of Informatics
Masaryk University
Brno, Czech Republic

Abstract

This paper describes an attempt to improve TEX’s typeset layout in FyfIEX, based
on the adjustment of interword spacing after the paragraphs have been broken
into lines. Instead of changing only the interword spacing in order to justify text
lines, we also slightly expand the fonts on the line as well in order to minimise
excessive stretching of the interword spaces. This font expansion is implemented
using horizontal scaling in PDF. When such expansion is used conservatively, and
by employing appropriate settings for TEX’s line-breaking and spacing parame-
ters, this method can improve the appearance of TEX’s typeset layout.

Motivation

There exist many techniques which can be used to
produce high quality typeset layout. Most of these
are already implemented in TEX, such as ligatures,
kerning, automatic hyphenation, and very impor-
tantly the algorithm for breaking paragraphs into
lines in an optimal way, generally known as “opti-
mum fit”.

However, it is still a very difficult task to ob-
tain a uniform level of grayness of the typeset lay-
out, even with the help of these techniques. The
primary reason is that it is not possible to ensure
that all the interword spaces in different lines are the
same. The “optimum fit” algorithm can break the
paragraph into lines in the best way, but the amount
of interword space depends strongly on many other
parameters, such as the paragraph width, the tol-
erance of glue stretching/shrinking, the amount of
interword glue, etc. Considerable effort is often re-
quired in order to adjust these parameters to achieve
the appropriate break points and to reduce the con-
trast between the interword spaces in lines. The
purpose of our experiment is an attempt to perform
this task better by stretching or shrinking the fonts
used in each line within reasonable limits. The idea
is not really new, as it represents a quite common
technique using electronic font scaling in order to ex-
pand text lines that do not fit the paragraph width.
However this technique is also often regarded as a
bad thing, since it is frequently (ab)used in order
to rescue “impossible” cases, which often leads to
overdoing the scaling and produces really ugly re-
sults. In our approach, we try to use this technique

in a rather different way: instead of using font scal-
ing to improve only some “really bad” lines, we try
instead to produce a “relatively good” paragraph,
which does not contain any lines where the inter-
word spacing is too bad. Then we apply font scaling
to each line to reduce the difference between the in-
terword spaces in lines. The limit of font scaling
must, of course, be strictly controlled: in fact, the
sum of the spaces between the words on a line is
often very small in comparison to the sum of the
character widths on the same line, so very slightly
expanding the fonts may help considerably in im-
proving the interword spacing.

This idea can easily be integrated with TEX be-
cause of the biggest strength of TEX —the “optimum
fit” algorithm which is implemented in a very flexi-
ble manner, in order to handle restrictions on many
various parameters in an optimal way. In particular,
we perform the implementation in PyfTEX, where the
font expansion is currently carried out by horizontal
scaling in PDF as a first attempt. Other approaches
may be attempted in the future as time allows.

Implementation

PyfTEX is based on the original source of TEX, and
employs the changefile mechanism which allows easy
access to TEX’s internal data structures and simple
modification of the relevant program code. Gen-
erating PDF output directly from TEX is also an
advantage for our task, as we can control the spac-
ing much better than would have been the case had
we attempted it via DVI. The process of adjusting
interword spacing is as follows:

284 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

It was terribly cold and nearly
dark on the last evening of the
old year, and the snow was falling
fast. In the cold and the darkness,
a poor little girl, with bare head
and naked feet, roamed through
the streets. It is true she had
on a pair of slippers when she
left home, but they were not of
much use. They were very large,
so large, indeed, that they had
belonged to her mother, and the
poor little creature had lost them
in running across the street to
avoid two carriages that were
rolling along at a terrible rate.
One of the slippers she could not
find, and a boy seized upon the
other and ran away with it, saying
that he could use it as a cradle,
when he had children of his own.
So the little girl went on with her
little naked feet, which were quite
red and blue with the cold. In an
old apron she carried a number
of matches, and had a bundle of
them in her hands. No one had
bought anything of her the whole
day, nor had any one given her
even a penny. Shivering with cold
and hunger, she crept along; poor
little child, she looked the picture
of misery. The snowflakes fell on
her long, fair hair, which hung in
curls on her shoulders, but she
regarded them not.

Improving TEX’s Typeset Layout

It was terribly cold and nearly
dark on the last evening of the
old year, and the snow was falling
fast. In the cold and the darkness,
a poor little girl, with bare head
and naked feet, roamed through
the streets. It is true she had
on a pair of slippers when she
left home, but they were not of
much use. They were very large,
so large, indeed, that they had
belonged to her mother, and the
poor little creature had lost them
in running across the street to
avoid two carriages that were
rolling along at a terrible rate.
One of the slippers she could not
find, and a boy seized upon the
other and ran away with it, saying
that he could use it as a cradle,
when he had children of his own.
So the little girl went on with her
little naked feet, which were quite
red and blue with the cold. In an
old apron she carried a number
of matches, and had a bundle of
them in her hands. No one had
bought anything of her the whole
day, nor had any one given her
even a penny. Shivering with cold
and hunger, she crept along; poor
little child, she looked the picture
of misery. The snowflakes fell on
her long, fair hair, which hung in
curls on her shoulders, but she
regarded them not.

Figure 1: Parameters used in this experiment: \pdfadjustlimit = 50, \tolerance = 200,
\spaceskip = \fontdimen2\font plus 2\fontdimen3\font

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 285

Han Thé Thanh

It was terribly cold and nearly
dark on the last evening of the
old year, and the snow was falling
fast. In the cold and the darkness,
a poor little girl, with bare head
and naked feet, roamed through
the streets. It is true she had
on a pair of slippers when she
left home, but they were not of
much use. They were very large,
so large, indeed, that they had
belonged to her mother, and the
poor little creature had lost them
in running across the street to
avoid two carriages that were
rolling along at a terrible rate.
One of the slippers she could not
find, and a boy seized upon the
other and ran away with it, saying
that he could use it as a cradle,
when he had children of his own.
So the little girl went on with her
little naked feet, which were quite
red and blue with the cold. In an
old apron she carried a number
of matches, and had a bundle of
them in her hands. No one had
bought anything of her the whole
day, nor had any one given her
even a penny. Shivering with cold
and hunger, she crept along; poor
little child, she looked the picture
of misery. The snowflakes fell on
her long, fair hair, which hung in
curls on her shoulders, but she
regarded them not.

It was terribly cold and nearly
dark on the last evening of the
old year, and the snow was falling
fast. In the cold and the darkness,
a poor little girl, with bare head
and naked feet, roamed through
the streets. It is true she had
on a pair of slippers when she
left home, but they were not of
much use. They were very large,
so large, indeed, that they had
belonged to her mother, and the
poor little creature had lost them
in running across the street to
avoid two carriages that were
rolling along at a terrible rate.
One of the slippers she could not
find, and a boy seized upon the
other and ran away with it, saying
that he could use it as a cradle,
when he had children of his own.
So the little girl went on with her
little naked feet, which were quite
red and blue with the cold. In an
old apron she carried a number
of matches, and had a bundle of
them in her hands. No one had
bought anything of her the whole
day, nor had any one given her
even a penny. Shivering with cold
and hunger, she crept along; poor
little child, she looked the picture
of misery. The snowflakes fell on
her long, fair hair, which hung in
curls on her shoulders, but she
regarded them not.

Figure 2: Parameters used in this experiment: \pdfadjustlimit = 50, \tolerance = 500,
\spaceskip = \fontdimen2\font plus\fontdimen3\font

286 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

It was terribly cold and nearly
dark on the last evening of the
old year, and the snow was falling
fast. In the cold and the darkness,
a poor little girl, with bare head
and naked feet, roamed through
the streets. It is true she had
on a pair of slippers when she
left home, but they were not of
much use. They were very large,
so large, indeed, that they had
belonged to her mother, and the
poor little creature had lost them
in running across the street to
avoid two carriages that were
rolling along at a terrible rate.
One of the slippers she could not
find, and a boy seized upon the
other and ran away with it, saying
that he could use it as a cradle,
when he had children of his own.
So the little girl went on with her
little naked feet, which were quite
red and blue with the cold. In an
old apron she carried a number
of matches, and had a bundle of
them in her hands. No one had
bought anything of her the whole
day, nor had any one given her
even a penny. Shivering with cold
and hunger, she crept along; poor
little child, she looked the picture
of misery. The snowflakes fell on
her long, fair hair, which hung in
curls on her shoulders, but she
regarded them not.

Improving TEX’s Typeset Layout

It was terribly cold and nearly
dark on the last evening of the
old year, and the snow was falling
fast. In the cold and the darkness,
a poor little girl, with bare head
and naked feet, roamed through
the streets. It is true she had
on a pair of slippers when she
left home, but they were not of
much use. They were very large,
so large, indeed, that they had
belonged to her mother, and the
poor little creature had lost them
in running across the street to
avoid two carriages that were
rolling along at a terrible rate.
One of the slippers she could not
find, and a boy seized upon the
other and ran away with it, saying
that he could use it as a cradle,
when he had children of his own.
So the little girl went on with her
little naked feet, which were quite
red and blue with the cold. In an
old apron she carried a number
of matches, and had a bundle of
them in her hands. No one had
bought anything of her the whole
day, nor had any one given her
even a penny. Shivering with cold
and hunger, she crept along; poor
little child, she looked the picture
of misery. The snowflakes fell on
her long, fair hair, which hung in
curls on her shoulders, but she
regarded them not.

Figure 3: Parameters used in this experiment: \pdfadjustlimit = 30, \tolerance = 500,
\spaceskip = \fontdimen2\font plus\fontdimen3\font minus\fontdimen4\font

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 287

Han Thé Thanh

e After breaking a paragraph into lines, we mark
hboxes containing text lines created in this
phase as boxes that might need adjustment for
interword spacing.

e During glue setting of each hbox, we check
whether it has been marked in the previous
step. For every marked hbox we calculate the
amount of font expansion for the box, depend-
ing on the sum of the character widths con-
tained in the box and the amount of stretch-
ing/shrinking for the box.

e Finally, when shipping out marked boxes, we

expand the font using horizontal scaling in
PDF.

Thus the adjustment is applied only to those
boxes that have been created when breaking para-
graphs into lines. Also, we adjust only those boxes
that need such correction: boxes with infinite stretch-
ability and shrinkability are not changed.

There are two new primitives controlling this
additional adjustment: a positive value of an in-
teger parameter \pdfadjustspacing turns the ad-
justment on, and the value of an integer parame-
ter \pdfadjustlimit specifies the limit of font ex-
pansion in thousandths of the original font width.
For example, a value 50 of \pdfadjustlimit means
that the font expansion must not exceed 5% of the
original font width.

The font scaling is performed by changing the
text matrix when needed. The drawback of this ap-
proach is that it makes the size of the PDF output
larger. Displaying and printing such output files also
takes more time.

Experimental Results

The text in the experiments was taken from the The
Little Match-Seller by Hans Christian Andersen. All
tests were run using the font Utopia-Regular at 11pt.

Parameters that were used to adjust line-breaking
and interword spacing are indicated for each run.
The left column is typeset normally, whilst the right
column is typeset with font adjustment turned on.
The common setting for all tests is \frenchspacing,
\hsize = 2.4 inand \emergencystretch = 1 em.

Testing has suggested that the difference be-
tween the maximum values for stretching and
shrinking should not exceed 5060, otherwise the
font scaling will be visible and give very ugly re-
sults. Thus \pdfadjustlimit should not be set to
a value greater than 50 while adjusting paragraphs
where all the interword spaces are either all shrunk
or all stretched. In cases where interword spaces
can be shrunk as well as stretched, the value of
\pdfadjustlimit should not exceed 25-30.

The use of Multiple Master fonts might help by
allowing the above limits to be exceeded; however
we do not expect too much. In some cases where
TEX’s standard typesetting results were awful, the
adjustment did not help very much.

Conclusion

Our experiments have shown that the “optimum fit”
algorithm used in TEX is much more powerful and
useful than it might seem. The mechanism described
above can be also used to achieve better typeset lay-
out rather than to correct bad cases in an automatic
way. Trying to adjust the interword spacing is not
of much use in avoiding or reducing the need of for
hand-tuning of line-breaking and spacing parame-
ters. With some effort to establish appropriate val-
ues, it can considerably enhance the uniform level
of overall greyness of the typeset results.

288 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

1tx2rtf: Exporting ETEX documents to Word addicts

Daniel Taupin

Laboratoire de Physique des Solides
bt. 510, Centre Universitaire
F-91405 Orsay Cedex

France

Abstract

1tx2rtf is a compiler that translates KTEX2e source text into the RTF format
used by several text processors, including Microsoft Word and Word for Windows.
It was written by Fernando Dorner and Andreas Granzer in a one-semester course
in Vienna (Austria) and is currently found as latex2rtf in CTAN servers.

It was heavily corrected and adapted to IMTEX 2¢ in 1997 by Daniel Taupin.
The distribution was intended mainly for use within the MS-DOS window of
Win95 and Win3.11, but all sources can be compiled on UNIX computers having

GCC compilers.

Introduction: The need for a converter to
RTF

Like most of the audience of TUG and other TEXperts’

meetings, I usually write most of my papers in
IATEX 2¢. But problems arise when I need to trans-
mit these documents to non-IATEX users.

Various cul-de-sacs when transmitting BTEX
documents. Transmitting a ITEX document to
other IATEX users is no problem, since all IXTEX
formats at least recognise the 7-bit representation of
accented letters. The problem arises only when the
addressee is reluctant to use a A TEX representation:
Sending plain text. This obvious (poor) solution
fails because accented letters have at least three
commonly used codings, the 850 for PCs, the Mac
encoding and the ISO-latinl coding, notwithstand-
ing eastern European countries which use other ISO-
8859 codings. Even the possible 7-bit bypass is
often rejected since people who are not computer
scientists seem allergic to the 7-bit representation
“r\’esum\’e” instead of “résumé”.

Sending a PostScript file. This is apparently
the “good” solution used by everyone in scientific
areas. But it may fail for several reasons:

1. All hard-scientists have access to at least one
PostScript printer, but administrative offices,
as well as most private persons, may not due to
the high cost of PostScript printers.

2. Even if they can access a PostScript printer,
people receiving such a file in an e-mail un-
der Windows have no standard means to send
a PostScript file to their PostScript printer:
as a matter of fact, Windows provides sev-

eral “drivers” for PostScript printers, but no
driver which does nothing but plain transmis-
sion, which is possible only by using the UNIX
1lp or lpr commands, or the MS-DOS copy
command.?

3. Other software can solve this problem, but you
cannot reasonably ask your correspondent (all
of your correspondents in the case of a mailing
list) to install either GhostScript, GhostView or
prfilelO.

Sending image files. One could think of sending
images of the document, rather than the text with
its layout. In fact, this is rather satisfactory if
the document is one or two pages: a scanner can
be used to produce GIF files, or several packages
are available to help the knowledgeable producer
of a complex document in converting it from DVI,
PostScript, PCL to GIF, a format whose advantage
is being compressed. However:

1. not all addressees are aware that they could use
their Netscape or Microsoft Explorer to view a
local GIF file; and

2. the GIF-bitmap file of a pure text page con-
sumes much more space that the text it con-
tains: the size is no problem for a few pages,
but it is for dozens.

How to think of portability. The sender of a
ITEX document — as well as the sender of a C or F77
source program —is therefore faced with a portability
problem.

Unfortunately, the person who exposes these
difficulties is likely to get answers of the form: “Why

1 Which does not work with network connected printers.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 289

Daniel Taupin

1tx2rtf : exporting BTEX documents to Word addicts

Daniel TAUPIN
laboratoire de Physique des Solides
bat. 510, centre uni ai
F-91405 Orsay Cec

July 18, 1998

Abstract

source text into the RTF format used by several text
- Windows. 1t was written by Fernando DorNER and
) and is currently found as latex2rtf in

rosoft Word and W
semester course i

2 in 1997 by Daniel Taupin. The distribution was
intended mainly for use within the MS-DOS window of Win95 and Win3.11, but all sources can be
compiled on UNIX computers having GCC compilers.

1 Introduction: the need for a converter to RTF

Like most of the audience of TUG and other TgX|
IXTEX 2¢. But problems arise when needing to t

s meetings, T usually write most of my papers in
smit these documents to non-ISTEX. users,

1.1 The various cul-de when

BTEX dc
111 Sending plain text

This obvious (poor) solution fails because accented letters have at least three commonly used codings, the
850 for POs, the Mac encoding and the ISO-latinl coding, notwithstanding eastern European countries
which use other ISO-8859 codings. Even the possible 7-bit bypass is often rejected since people who are
not, computer scientists scem allcrgic to the 7-bit representation “r\’ esum\’e” instcad of “résumé”

1.1.2 Sending a PostScript file

This is the apparently “good” solution used by everyone in scientific areas. But it may fail for several
reasons:

1. All hard-scientists have access 1o at least oue PostScript printer, but administrative offices, as well
as most private persons, do not due to the high cost of PostScript printers.

Even if they can access a PostSeript printer, people receiving such a file in an e-mail under Windows
have no standard means to send a PostScript, file to their PostSeript printer: as a matter of fact,
Windows provides several “drivers” for PostSeript printers, but no driver doing nothing except
plain transmission which is possible only by using the UNIX 1p or 1pr commands, or the MS-DOS
copy command!.

w0

Other software can solve this problem, but you cannot reasonably ask your correspondent (all
of your correspondents in the case of a mailing list) to install either GhostSeript, GhostView or
priile10.

“Which does not, work with network connected printers.

2 The idea of 1tx2rtf: using Word as a DVI driver

one should think of which software is most wide-

Soft’s powerful advertisements, they all possess? a

Anyway, even with its deficiencies, latex2rtf produces a RTF file which is quite satisfactory in the
sense that it can be processed using Word, and nicely printed after several manual corrections, without
the need to retype the whole of the text and add the font changes

3 ltx2rtf

3.1 Features

In the same way as latex2html, 1tx2rtf compiles the INTEX source and directly produces RTF output,
instead of HTML.

o Part, chapter and section numberir
numbers which can be updated wi
Word. Optionally, these numbe
frozen for further Word updates.

e Word (and RTF) built-in macros
serting new sections (i.c. “title”
an be computed by 1tx2rtf itself, in

ch a way they are

* Convor
tures i

y, enumerate environments produce frozen numbers, mainly because Word's built-in fea-
bit within that i

al

ed letters - inclu
. the gorman cs

s - a y treated, includ 2
he latine “a”, the scandinavian “o” and the

“67, th

But the deficiencies of our Word 6.0 make environment multicol unreliable.

3.2 Implementation
3.2.1 Maths handling
3.2.2 Quality of the result

From the I¥
obtained by av
the discriminant

r's view point, output (text and moreover maths) is much better than the results
Wordists', especially with respect to lists. Fox example the famous formula using
VB = dac of the second degree equations:

—b+ Vb — dac

2a

T=

3.3 Availability
Software can be obtained from:

ftp://ftp.1ps.u-psud.fr/pub/1tx2rts/1tx2ret. zip

4 Conclusion

In the same way that DVIPS is not intended to help typesetters moving from LaTeX to PostScript,
1tx2ref is not intended to help them moving from BTEX to Word, but to help them in sending or
posting nicely typeset papers, thus multiplying by tens the number of persons able to display and print
it on their own Microsoft-addicted devices.

2Whether they actually bought the license is the addressee’s problem, not mine.

2

Figure 1: Example INTEX document.

don’t you get rid of your Windows system and move
to UNIX?”, “Why don’t you discard your old Ep-
son printer and have a PostScript printer?”, “Why
don’t you move from Microsoft’s text editors and
use TEX?”, “Why don’t you install GhostScript,
GhostView, prfilel0, or a Linux partition to your
PC?”, etc.

All these common sense answers are right, but
they just forget one thing: the problem is not with
my personal installation when sending/mailing a
document, the problem is with the installation of
the addressees, whose skill I perhaps do not know at
all, and who are probably unable to install software
other than what they got when buying their personal
computer or when registering on some multi-user
workstation.

The idea of 1tx2rtf: Using Word as a DVI
driver

When sending a document to a variety of addressees,
one should think of which software is most wide-
spread among them; the answer is “Thanks to Mi-

cro$oft’s powerful advertisements, they all possess a
version of Word [perfect] which can read RTF files.?

In fact, whatever many people claim about Mi-
crosoft’s way of managing its software, RTF spec-
ifications are published by this company, and are
available at: ftp://ftp.microsoft.com/Softlib/
MSLFILES/GC0165.EXE, a self-extracting zipped file
yielding a *.DOC file.? Thus, using this specification
file (130 pages) and testing the actual behaviour of
Word,* one can obtain a means of producing RTF
from a IATEX source.

This was attempted in 1994 by students at an
institution which appears to be a Technical Uni-
versity in Vienna (Austria) and widely posted on
CTAN under the name latex2rtf. Their translator
is provided as several C source files which can be
easily compiled with a satisfactory “makefile”.

2 Whether they actually bought the license is the ad-
dressee’s problem, not mine.

3 Unzipping it seems however to fail since that last post-
ing. No comment. ..

4 An old Word 6.0 did not exactly respect the specifica-
tions. ..

290 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

1tx2rtf : exporting LATEX documents to Word

addicts
Daniel TAUPIN
laboratoire de Physique des Solides
bat. 510, centre universitaire
F-91405 Orsay Cedex

Abstract

1tx2rtf is a compiler that translates LATEX2¢ source text into the RTF format used by several text
processors, including Microsoft Word and Word for Windows. It was written by Fernando DORNER and Andreas.
GRANZER in a one-semester course in Vienna (Austria) and is currently found as 12 rtfin CTAN servers.

It was heavily corrected and adapted to LATEX2g in 1997 by Daniel Taupin. The distribution was intended

mainly for use within the MS-DOS window of Win95 and Win3.11, but all sources can be compiled on UNIX
computers having GCC compilers.

1 Introduction: the need for a converter to RTF

Like most of the audience of TUG and other TiXperts' mectings, T usually write most of my papers in
LATEX2g. But problems arise when needing o transmit these documents 10 non-LATEX users.

1.1 The various cul-de-sacs when transmitting LATgX documents

1.1.1 Sending plain text

This obvious (poor) solution fails bec: d letters have at least three commonly used codings, the 850
for PCs, the Mac encoding and the IS0 2., notwith tries which use other
1S0-8859 codings. he possible 7-bit bypass is often r
allergic 1o the 7-bit representation “z\ *esum\ ' " instead of *

1.1.2 Sending a PostScript file

* solution used by everyone in scientific areas. But it may fail for several reasons:

to send a PostScript file to their PostScript printes matter of fact, Windows provides
for PostSeript printers, but no driver doing nothin t plain transmission which is

by using the UNIX 1 or 1pr commands, or the MS-DOS copy command'

this problem, but you cannot reasonably ask your correspondent (all of your

of a mailing list) to install either GhostScript. GhostView or pr£i1e10.

3. Other s s
correspondents in the c

' Which does not work with network connected printers.

1tx2rtf: Exporting BKTEX documents to Word addicts

2 The idea of 1tx2rt £: using Word as a DVI driver

When sending a document 10 a variety of addressees, one should think of which software is most wide-spread
nks (0 MicroSoft's powerful advertisements, they all possess’ a version of

Anyway, even with its def , latex2ztf produces a RTF file which is quite satisfactory in the sense
that it can be processed using Word, and nicely printed afier several manual corrections, without the need 10 retype
the whole of the text and add the font changes.

3 1ltx2rtf

3.1 Features
In the same way as latex2henl, 1t
instead of HTML
~ Part, chapter and scction numbering all use Word (and RTF) built-in macros to provide section numbers which
can be updated when inserting new sections (ie. “tle” levels) as provided by Word. Optionally, these
numberings can be computed by < itsell, in such a way they are frozen for further Word updates.
e environments produce frozen numbers, mainly because Word's built-in features
graphs within that environment

x2rt £ compiles the LATEX source and directly produces RTF output,

- Conversely, enu
inhibit unnumbered p:

re correctly treated. including the famous 1SO-latin
excluded “", the german es-zet ndinavian “¢” and the spanish “i” (as well as N).
But the deficiencies of our Word 6.0 make environment mu 1 i col unreliable.

3.2 Implementation
3.2.1 Maths handling

3.2.2 Quality of the result

X-er's view point. output (text and moreover maths) is much better than the results obtained by

pecially with respect (o lists. Fox example the famous formula using the discriminant
ond degree equations:

_ —bE VI —Tac
- 24
3.3 Availability

Software can be obtained from:
£tp://ftp.1ps.u-psud. fr/pub/ltx2rtf/1ltx2rtf.zip

4 Conclusion

In the same way that DVIPS is not intended to help typesetters moving from LaTeX to Pos
not intended 10 help them moving from LATEX to Word, but to help them in sending or posting nice

thus multiplying by tens the number of persons able (o display and print it on their own Microsoft-addicted devices.

Whether they actually bought the license is the addressee’s problem, not mine.

Figure 2: Example output from latex2rtf.

The C coding is clean and well structured
but, unfortunately, the students did not have a
knowledge of IMTEX of the same quality as their
C programming skill; thus many things had to
be revised concerning font management, sectioning,
itemize, enumerate, description and tabular
environments, notwithstanding I#TEX 2¢ more re-
cent specifications.

Anyway, even with its deficiencies, latex2rtf
produces a RTF file which is quite satisfactory in
the sense that it can be processed using Word,
and nicely printed after several manual corrections,
without the need to retype the whole of the text and
add the font changes.

1tx2rtf

Features. In the same way as latex2html, 1tx2rtf
compiles the IATEX source and directly produces
RTF output, instead of HTML.

Part, chapter and section numbering all use
Word (and RTF) built-in macros to provide section
numbers which can be updated when inserting new
sections (i.e. “title” levels) as provided by Word.
Optionally, these numberings can be computed by
1tx2rtf itself, in such a way that they are frozen

for further Word updates. Conversely, enumerate
environments produce frozen numbers, mainly be-
cause Word’s built-in features inhibit unnumbered
paragraphs within that environment.

Western European accented letters—including
capitals—are correctly treated, including the fa-
mous ISO-latinl excluded “ce”. In the same
way, additional abbreviation features provided by
Bernard Gaulle’s french.sty and Daniel Taupin’s
smallcap.sty (which enables a \scfamily com-
mand instead of \scshape to provide bold and/or
slanted small capitals).

Implementation.
Basic.

1. The input code can be either 7-bit, or ANSI
(ISO-latinl) or 850. The Mac coding is not
yet implemented but doing that would not be a
problem.

2. The source can be compiled with any GCC com-
piler (no serious problems with other normal
C compilers). We tested it mainly with the
DJGPP port of GCC to DOS (native, Win3.11
and Win95).

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 291

Daniel Taupin

3. Nothing more is needed, as long as one does not
want to translate maths.

4. Maths are tentatively translated using the few
RTF mathematical features such as raising
parts of the text and changing fonts (size and
shape).

Maths handling.
maths handling.

Two options are provided for

1. The -m option uses IXTEX-ing for displayed
equations, namely those enclosed with $$
(equation environment in the future). Then,
nearly in the same way as latex2html:

e 1tx2rtf calls latex to produce a DVI file
for each equation;

e 1tx2rtf calls an external procedure
(DVI2PBM.BAT under MSDOS) which, in
turn, either calls emTeX’s dvidrv dvidot
to produce PCX files and then calls
NETPBM routines to convert the PCX
to PBM, or calls DVIPS to produce a
PostScript file and then GhostScript to
produce a PBM file; ® and

e finally, the PBM file is read by ltx2rtf
itself and converted to “wbitmap” as spec-
ified in the RTF specification document.b

2. The -M option not only uses IWTEX-ing for dis-
played equations, but also for single $-enclosed
mathematical text.

Quality of the result. From the KTEX-er’s
view point, output (text and moreover maths) is
much better than the results obtained by average
‘Wordists’, especially with respect to lists.

Therefore the RTF produced is very good when
one wants to e-mail a W TEX-typeset text to unknown
(or known) addressees whose probability of possess-
ing Word is 95%, but of having at least DVI print-
ers/viewers or easy access to PostScript printers is
only 5%.
The inconveniences. From the producer’s view-
point, one sees the same installation difficulties as
with latex2html with the exception that neither
Perl nor GDBM/DBM are needed.

But more major inconveniences are seen from
the addressee’s viewpoint:

e Since Microsoft now rules the computation and
networking world, any apparent deficiency in
its products must be considered as “not a bug,

5 Thanks to Emmanuel Bigler who provided this alternate
solution.

6 Other picture specifications are described, but they
all fail with Word 6.0; therefore we kept to the only one
succeeding.

but a feature”. Therefore, any layout different
from what a Wordist usually gets (think of no
paragraph hanging indentation in hierarchical
lists) may be considered as a negative feature,
in the same way as accented capitals or non-
english characters, which are so difficult to type
(4 clicks and 3 mouse moves to produce @ or &
in French).

e Even worse, the IXTEX-like layout takes advan-
tage of the powerful basic commands of RTF —
something near to TEX primitives plus some
plain-TEX facilities — but such results are nearly
impossible to obtain with Word’s ready-made
clicking commands.

The reason is that the 1tx2rtf-generated for-
mat (“format” in the Word sense) is definitely
different from those which are provided as stan-
dard in Word’s clicking windows. This results
in the impossibility for the addressee to modify
the RTF file except for pure text corrections
and, perhaps, changes in sectioning (but not in
section numbering style).

e Obviously, math parts are frozen as images
which can only be removed, moved, enlarged
or shrunk, but not edited.

Availability. The software can be obtained from:
ftp://ftp.1lps.u-psud.fr/pub/ltx2rtf/1tx2rtf.
zip.

Conclusion

In the same way that DVIPS is not intended to
help typesetters moving from LaTeX to PostScript,
1tx2rtf is not intended to help them moving from
ITEX to Word, but to help them in sending or
posting nicely typeset papers thus multiplying by
tens the number of persons able to display and print
it on their own Microsoft-addicted devices.

292 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

-

Adding Native Language Support to the CWEB package and the TEX program

Adding Native Language Support to the CWEB package and

the TEX program

Wiodek Bzyl

Instytut Matematyki, Uniwersytet Gdanski, Wita Stwosza 57, 80-952 Gdaisk, Poland

matwb@univ.gda.pl

Abstract

By adding National Language Support (NLS, for short) to literate programs I
propose making such changes in their text via change files, which make modified
programs aware of and able to support multiple languages. This paper describes
how the GNU libc and gettext libraries were used to add NLS to the CWEB
package and presents a possible way of bringing NLS to the TEX program.

Introduction

In 1984 D. E. Knuth wrote about the WEB system
[Literate Programming. The Computer Journal,
27]: “I made a conscious decision not to design a
language that would be suitable for everybody. My
goal was to provide a tool for system programmers,
not for high school students or for hobbyists. I
don’t have anything against high school students
and hobbyists, but I don’t believe every computer
language should attempt to offer all things to all
people.”

Now, it can be said that WEB systems are used
by a small elite of literate programmers who are able
to combine their English verbal and programming
skills. This is so, because all existing WEBs have
been created with English conventions in mind, so
these tools should not be expected to work well in
non-English environments. Having realized that, I
asked myself: does a WEB system exist that could be
untied from the English conventions and tied anew
to conventions of another language? At that time I
was experimenting with FWEB, noweb, and CWEB.
Of these systems only CWEB supported the use
of non-Latin characters in literate programs. This
feature made me believe that a CWEB adaptation
to the Polish conventions and the conventions of
other languages is possible. After some work I
had a version of CWEB usable by any programmer
literate in Polish.

When 1 was experimenting with the changed
CWEB, new GNU libc and gettext libraries ap-
peared. These libraries make it possible to write
C programs that automatically adapt to local sets
of conventions set up by the values of some en-
vironment variables. This forced me to rethink
what I had done. New functionality offered by
functions from these libraries makes it possible to

have one CWEB that could be used for writing
literate programs in English, Polish and many other
languages.

If this idea is feasible, it would make literate
programming accessible to programmers who like
to write and to explain what they are doing in
the language of their choice, or in the language
appropriate for the audience to whom they are
going to present their concepts and ideas. Moreover,
the World Wide Web would not be populated with
slightly different CWEBs and the CWEB system of
Levy and Knuth will stay open for improvements
by everyone.

Programming interface for NLS —
the ISO C model

In the ISO C model, NLS works by means of locales
divided into six categories, to be selected and
activated independently. Each category specifies a
collection of conventions — one set of conventions
for each category. Here is the list of all categories.

LC_CTYPE — specifies the character set

LC_COLLATE — specifies the conventions for sorting
order

LC_MESSAGES — specifies the language for messages

LC_MONETARY — specifies the formatting of mone-
tary quantities

LC_NUMERIC — specifies the formatting of numbers

LC_TIME — specifies the formatting of dates and
times

Each category name is both a macro name to
be used in C code and an environment variable that
a user can set. There is also a special C macro
LC_ALL used to select all sets of conventions and
there are two special environment variables.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 293

Wiodek Bzyl

LC_ALL — if defined, its value specifies the locale
to use for all purposes

LANG — if defined, its value specifies the locale to
use for all purposes except as overridden by
any of the variables above.

In C code, the setlocale function is the main
means for specifying the categories to be used.
It does not change the program behavior directly.
Rather, the selected locale data is used by some
functions from the C library. For example, the
functions strcoll and strxfrm will use the sorting
order defined in the Polish locale whenever the
value of environment variable LC_COLLATE is pl. If
the LC_MESSAGES value is pl, then the users will
see Polish messages on their screen, supposing that
a catalog of messages with the translations of the
messages into Polish can be found.

According to the authors of the gettext manual,
bringing NLS to a C program is an easy two step
process.

1. [Internationalization.] Parameterize the pro-
gram code so that it does not include specific
cultural conventions in its output code and in
its message strings.

2. [Localization.] Specify for each locality of users
the set of cultural conventions and the catalog
of message strings to be used by the program
output code.

Although it could not be warranted that these
two steps could be successfully performed on ex-
isting code, in the next section it will be shown
how NLS can be added to the CWEB package. The
paper concludes with remarks on a possible way of
bringing NLS to the TEX program.

Adding NLS to the CWEB package

Look for special macro packages designed
for CWEB users in your language; or,
if you are brave, write one yourself.

— CWEB user manual

The purpose of the current section is to propose
a possible way of bringing NLS to the programs
ctangle, cweave, and to the TEX macro file cweb-
mac.tex; i.e., to the main components of the CWEB
package. Out of several possible ways of doing that,
I decided to use the ISO C model because of the
existing support in the newest GNU libc and gettext
libraries.

Clearly, the ISO C model could be used with
the literate CWEB programs, because they are
essentially C text. Therefore, a project of bringing

NLS to the CWEB package appears to be feasible,
but a more detailed analysis is necessary.

Let us remember what the ctangle/cweave
pair of programs actually does. In literate pro-
graming, ctangle creates a C program and cweave
creates a .tex file. The first line of the produced
.tex file tells TEX to input the file cwebmac.tex
with macros defining CWEB’s documentation con-
ventions. Finally cweave will generate a sorted
cross-reference identifier index, alphabetized lists of
the section names, and a table of contents. In case
of errors, both programs send various clues about
errors to the computer screen.

Recasting the above description in terms of the
ISO model we get the following TODO list:

LC_COLLATE — the code responsible for sorting
[§228-8239, cweave.w| should be changed. In par-
ticular, the collation mapping, based on the data
read from the LC_COLLATE locale, should be created
at runtime. A closer inspection of the code [§235,
cweave.w| reveals that LC_CTYPE data should be
used too, as the original collation mapping does not
differentiate between uppercase and lowercase char-
acters. This implies that the environment variables
LC_COLLATE and LC_CTYPE should have the same
value. Otherwise, we end up with a corrupted col-
lation table with lowercase characters not mapped
onto their uppercase equivalents. Therefore, we
only read the value of the LC_COLLATE environment
variable and use the value to read the LC_CTYPE
locale data.

LC_MESSAGES — strings to be translated should
be marked. Here, for each literate program, a
separate change file should be created, with a code
that initializes locale data and with strings to be
translated being marked. Next, everything should
be ctangled and the xgettext tool should be used to
create an initial message catalog from the produced
C sources.

LC_MONETARY, LC_NUMERIC — nothing to be done
for these categories.

LC_TIME — the \today macro should be redefined.
Otherwise, the file created by cweave and typeset by
TEX will contain English month names. This raises
the following question: how to make the expansion
of the \today macro depend on the values of
environment variables, as they are at the time when
the file is being made? This question is a particular
case of a more general one: how to characterize the
file produced by an internationalized cweave?

An admissible answer could be: the created
file should be able to instruct TEX which format
to use for typesetting. Additionally, the file should

294 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

-

Adding Native Language Support to the CWEB package and the TEX program

redefine the cwebmac.tex macros that output the
English text together with the extra fonts being
used.

It is a little known fact that the current Web2C
implementation of TEX makes it possible to choose
the format at runtime with a %& line.! This feature
appears to provide us with a way of producing such
a file. It suffices that the first and second line of
the file created by cweave are:

%&(LC_COLLATE wariable value)
\input cweb-({value of LC_COLLATE wariable).tex

Unfortunately, the first line could not be created
automatically, because names of format files do not
reflect the language supported by the format. For
example, the name mex does not tell us that the
mex.fmt is the adaptation of the plain format to
Polish conventions. Even if it were possible to
create the first line automatically, the file would
be typeset incorrectly —almost all characters with
codes from the 128-255 range would be missing, or
they would be replaced improperly. This is due to
the fact that the encoding used for writing down a
file differs from the internal encoding of fonts used
for typesetting. For example, to typeset correctly
a Latin-2 encoded file written in Polish, the file
should be presented to TEX as PL-encoded, which
is the internal font encoding used by the Polish
Computer Modern fonts.

It should be noted, that some TEX implemen-
tors have approached the problem of such a change
of encoding. For example, Eberhard Mattes in
his emTeX enables the user to save re-encoding
mapping in format files. The EncTeX package (the
Extension of TEX for the Reencoding of the Input)
by Petr Olsék provides new primitives to be used
for creating re-encoding mapping to be saved in a
generated format.

These non-standard extensions proliferate for-
mat files and make them depend on the file en-
coding. This is not necessary, because there are
other ways of making re-encoding superfluous; for
example, by instructing the current shell to do
re-encoding. Alas, none of the shells known to the
author allow such re-encoding.

Another possibility, based on a commented out
TCX-code in Web2C, would be to add the following
option to the %& line

-translate-file=(LC_COLLATE variable value)

! This notation is analogous to the #! notation
used in shell scripts to tell the kernel which shell
runs the script.

which tells tex to do input re-encoding defined in
the translate file. Unfortunately, this line would
be ignored by the tex program, as the user is not
allowed to put anything on the %& line except just
the format name.

As 1 am generally against the unnecessary
proliferation of format files, yet another approach
has been chosen. This approach does not yield, as
described above, a self-contained file. The format
and the re-encoding name must be written whenever
tex is run. For example, the following command

tex -fmt=mex -translate-file=pl foo

initiates the typesetting of foo.tex with character
codes re-mapped by a table read from the pl.tcx
translate file. This command should be used to
invoke tex on a Latin-2 encoded file written in
Polish.

To get the behavior just described, it suffices to
output the second line (from the two lines displayed
on the left and above), where the file being input
consists of two lines:

\input cwebmac.tex
\input (LC_COLLATE wariable value)-cweb.tex

Here, the second input file should redefine the
macros that output English text. Moreover, this file
could be used to add and to redefine extra fonts,
because all text fonts being used share the same
internal encoding.

Literate programmers should have the option
of using any 8-bit character code, even in identifiers
of the C program. Because there is no international-
ized C compiler around, which, by definition, would
allow the use of all character codes as identifiers,
the authors of CWEB made ctangle to recognize
character codes from the forbidden range 128-255
and to replace them by strings read from a default,
or user-constructed, transliteration table.

All the described changes have been imple-
mented. The result is the CWEB-NLS package.
The change files of the package could be used
for converting ctangle and cweave into programs
that easily adapt to local conventions. Switching
between different languages is achieved by setting
the LANG environment variable to the appropriate
language prior to using internationalized programs.
For example, let’s presume that the Polish language
is requested. At the shell prompt, or from the
users’ startup files the following command should
be executed

export LANG=pl

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 295

Wiodek Bzyl

(in bash, or an equivalent command in other shells).
If users prefer to see English messages on their
screen, they should execute

export LC_COLLATE=pl

and all NLS magic will happen automatically.

Let’s conclude this section with some statistics.
The CWEB-NLS package consists of 9 orthogonal
change files, where each file implements a different
functionality. These change files could be applied
with other change files extending ctangle and
cweave in other ways. The total number of changed
sections, from the total of 406, is 110 (around 20, if
not counting the trivial changes). The 112 different
messages output by ctangle and cweave have been
translated into Polish. Two TEX macro files have
been written to make possible a mechanical creation
of localized macro files. Finally, 36 different strings
output by the cwebmac.tex macros were translated
and 7 fonts were changed too.

TEX and NLS

In this section I am going to concentrate on the
possible ways of implementing message catalogs.
The proposed implementation applies also to META-
FONT and METAPOST. This section will conclude
with a list of proposed changes to the Web2C code
to make it more NLS friendly.

“Free software is going international! The Free
Translation Project is a way to get maintainers of
free software, translators, and users all together, so
that they will gradually become able to speak many
languages.” — this is how the ABOUT-NLS file begins.
I consider this GNU project very important for the
reasons explained above and I am glad to see many
GNU packages already speaking in Polish (see Ap-
pendix B for the current state of the project). But
it came as a surprise to find traces of NLS support
in Web2C. In the file texmfmp.c, which is a part
of tex, etex, pdftex, omega, mf, metapost code,
I found the statement setlocale(LC_CTYPE,"").
Unfortunately, this statement makes programs de-
pend on the values of the LC_CTYPE, LANG, LC_ALL
environment variables. In particular, the follow-
ing C functions are affected: isgraph, isspace,
isprint, islower, isdigit. Another unpleas-
ant surprise came, when I executed the following
command

LANG=pl tex -format-file=mex foo
It showed the following strange output

tex: nieznana opcja ‘-format-file=mex’
Try ‘tex -help’ for more information.

—a mixture of Polish and English. Generally, 1
do not like to be surprised by software in this way.
Therefore 1 decided to examine the code. TgX
is assembled from literate sources combined with
various change files and hand-coded routines spread
among several C source files. These files are not
localized and the non-localized code is responsible
for the appearance of the untranslated messages.

Unfortunately, the literate part of TEX does all
of its string processing by “home-grown methods”
[§38, tex.web| and string handling in TEX could not
be localized with the GNU tools because format files
play a role of message catalogs. To see this, let’s
recall the relevant facts. All the strings output by
tex are contained in the tex.pool file with a check
sum appended at the end. The check sum replaces
the place-holder $@ in tex.p—the tangled Pascal
source of tex. When the tex program is preparing
itself to dump a format file it reads the strings
from the pool file and writes these strings on the
format file. The tex program reads these strings
from format files. Whenever tex is run it examines
the check sums and gives up when the check sums
do not match. The above description shows that
removing the messages from format files requires
considerable changes in the code. For that reason,
I propose another approach for how to handle the
translated strings.

If we ignore the check sums, then it suffices to
translate all the 1309 strings from the tex.pool file
and to update the string lengths. Now, tex.pool
with translated strings could be used to build a
format with the command?

tex -ini -translate-file=pl mex

It is essential to use the translation file and to
recode the strings into the internal encoding of the
fonts being used. Otherwise, these strings would
not be re-encoded correctly when written back onto
the computer screen. It should be noted that the
produced format does not depend on the encoding
of the TEX file. For example, it could be used
to typeset CP852 encoded TEX sources written in
Polish. The actual command to be used should
begin with

tex -fmt=mex -translate-file=cp852

where we assume that cp852.tcx file contains an
appropriate translation table.

It is not particularly difficult to extend the
above approach to preserve the examining of check

2 Actually, due to the way TCX files are imple-
mented, the pool file has to be translated to the
internal font encoding by other means.

296 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

-

Adding Native Language Support to the CWEB package and the TEX program

sums. This would require changes in three sections
of tex.web (§53, §1307, §1308).
Let’s conclude with the promised WISH LIST:
« extend the syntax of the %& line to allow

including user options

localize all C sources in the Web2C directory

« implement the mapping file, analogously to
texfonts.map, which will allow one to rename
format files; the file will allow automatic gener-
ation of fully internationalized files as described
above.

= translate tex.pool

References

Drepper, Ulrich. “Internationalization in the GNU
project”, 1997.

Drepper, Ulrich, Jim Meyering and Francois Pinard.
“GNU gettext tools”, May 1998.

Knuth, Donald E. “Literate Programming”, The
Computer Journal 27 (1984), pp. 97-111.
Knuth, Donald E., and Silvio Levy. “The CWEB

System of Structured Documentation”, version
3.0. cwebman.tex file from the CWEB package.
ABOUT-NLS, file available on most GNU archive sites.

Appendix A

Someone writes in tex.ch: ,,TCX files are probably
a bad idea, since they make TEX source documents
unportable. Try the inputenc I#TEX package.”

I think that inputenc package does not pro-
vide the functionality offered by TCX files for the
following reasons:

« the \uppercase primitive does not work

» commands names which use diacritical charac-
ters could not be defined

« the inputenc package is usable for IATEX
only —other formats are not supported (there
are already 42 different formats on the TEX

Live 3 CD-ROM)

» the log file and terminal are not readable
because unreadable ‘~~’ notation is used —see
the example below.

Niewypelnione \hbox (licho$é 10000)
znaleziono w linii 2

\rm kos§é

\hbox (6.88889+0.0)x44.0

Arm k

.\kern-0.27779

A\rm o

A\rm

A\rm €

[2]Y

(11)

Wyjscie zapisane do foo.dvi

(1 strona, 212 bajtéw)

Niewype~“c2nione \hbox (licho”~c9""b8 10000)
znaleziono w linii 2

\tenrm ko~ "b1~"a2

\hbox (6.88889+0.0)x44.0

.\tenrm k

.\kern-0.27779

.\tenrm o

.\tenrm ~"bi

.\tenrm ~~a2

(11 5
Wyj~"c9cie zapisane do foo.dvi
(1 strona, 212 bajt~"f3w)

Appendix B

The following matrix shows, for several countries,
the current state of internationalization in the GNU
project, as of May 1998. The following matrix
shows, with regard to each package listed, the
languages in which message catalogs have already
been submitted.

Ready PO cs de fr nl no pl ru sl sv
files

bash . s

bison . = om

clisp - .

cpio - s .

diffutils . s . .

enscript = s .

fileutils s x . . s

findutils . s . - .

flex . .

gcal . s . .

gettext s s e e s . s

grep . s = " o m ww

hello = s = wom -

id-utils . . .

indent . . .

libc . s . .

mé . s . .

make . e .

music . .

ptx S .

recode . s . .

sh-utils . = = .

sharutils . e x o .

tar L " .

texinfo - e =

textutils s = x omm .

wdiff T T .

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 297

Pretprin —a ETEX 2¢ package for pretty-printing

texts in formal languages

Marcin Wolinski

wolinski@melkor .mimuw.edu.pl

Abstract

A IMTEX 2¢ package is presented which provides tools for building lexical and
syntactical analyzers in TEX that can be used for pretty-printing. Examples of
such analyzers for the programming languages Pascal and Prolog are shown as
well as a small example of a new analyzer definition.

The problem

In most books on computer science published today,
algorithms are presented in a way known to every
TEXnician as verbatim. In some well printed books
however programs in algorithmic language Pascal
are formatted in a rather complicated way, with bold
keywords, italic identifiers and appropriate indenta-
tion on every line:

begin ¢ :=0; r := z;

while r > y do
beginr:=r—y; g:==q+1
end

end

Such a layout gives a graphical representation for
logical structure of the program. Indentation shows
control flow: one can easily see “which end matches
which begin”. Keywords are put in boldface while
other identifiers are in italic, so even a beginner
is able to recognize which elements are predefined
parts of the language. Every occurrence of a given
structure is formatted the same way, making it
easier to “navigate” in the text.

This paper is dealing with the question how to
generate such a layout with TEX.

A large amount of tedious work would be
needed to add all typesetting commands by hand.
Moreover it would be difficult to get a consistent
result in, e.g., a 200-page book.

Fortunately someone already had this problem
before. The person was Prof. Knuth, who wanted
to publish a few large programs written in Pascal
including TEX and METAFONT. Since he wanted to
get good quality printouts in a finite length of time,
he decided to teach the computer how to typeset
Pascal. This way of generating pretty-printed text
of the program became one of the WEB system
functions.

The WEB system (or rather, WEAVE, which
deals with the processing of the program’s docu-
mentation) performs syntactical analysis to recog-
nize language constructs such as if —then —else,
repeat — until, etc. This provides a layout consis-
tency that is hard to achieve with other techniques.

WEB is a really smart tool for generating
technical documentation for programs. But using
WEAVE to process a book on computer science,
containing some random pieces of code that are not
supposed to build a working program, is somewhat
unnatural. In such a case it would be preferable to
avoid using external tools. But that would mean
teaching TEX itself how to pretty-print Pascal.

That is precisely what Pretprin was meant to
do. The source for the example above in Pretprin’s
notation is:

\begin{Pascalx*}

begin q:=0;r:=x;while r>=

y do begin r:=r-y;q:=q+lend end
\end{Pascal*}

One more insight was crucial for Pretprin’s ar-
chitecture: in WEAVE (being a Pascal program),
the rules of parsing Pascal texts are expressed with
a series of complicated if — then — else constructs.
In TEX, on the other hand, it’s much easier to write
a general interpreter for such rules. But this means
language-specific rules are separated from the rest
of the program and it is relatively easy to substitute
them with other sets of rules.

So in its present shape Pretprin is mainly a tool-
box for building scanners and parsers in TEX. The
tools can be used to analyze any sufficiently regular
data, which probably includes any commonly used
formal language.

298 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Pretprin—a IXTEX 2¢ package for pretty-printing texts in formal languages

Examples of Pretprin usage

Pretprin is loaded with \usepackage commands
stating which language-specific modules should also
be loaded. For example, to typeset a document
containing pieces of Pascal and Prolog use:
\usepackage [pascal,prolog] {pretprin}

The Pascal module provides a KTEX environ-
ment named Pascal that is used to typeset dis-
played pieces of Pascal programs:

\begin{Pascal}
var i,L,w:integer; ch:char;Z:
array [1..wmax]of char;
begin L:=0;repeat w:=0;read(ch);
while (ch<>’ ’) and (ch<>eol)
do ...
until eof (input)
end.

\end{Pascal}

Note in the output shown below that spacing, in-
dentation and line-breaking was done by Pretprin,
completely ignoring the layout of the input (which,
by the way, is definitely bad). Moreover, relational
symbols such as =, < or # (which is substituted for
<>), and binary operators like +, .., and A (which
replaces and in the source), are put into TEX’s math
mode with correct spacing. The overall layout is
very similar to that generated by WEAVE.

var i, L, w: integer; ch: char; (1)
Z: array [l .. wmaz] of char;
begin L := 0;

repeat w := 0; read(ch);
while (¢h # ?,?) A (ch # eol) do
begin w :=w+ 1; Z[w] := ch;
read (ch)
end;
if w > 0 then
begin if L +w < Lmax then
begin write(’’); L:=L+1
end
else begin write(eol); L :=0;
end;
for i :==1 to w do write(z[i]);
L:=L+w
end
until eof (input)
end.
Inline pieces of code such as “Consider A being
an array [1.. N] of integer...” can be written as

Consider \pascal{A} being an
\pascal{array [1..N] of integer}...

The Pretprin module for pretty-printing Prolog
(in modern syntax) defines an environment Prolog

and a command \prolog with one parameter. Here
is an example of four Prolog clauses:
\begin{Prolog}
d(X,X,D):-atomic(X),!,D=1.
d(C,X,D):-atomic(C),!,D=0.
d(U+Vv,X,DU+DV) : -d(U,X,DU) ,d(V ,X,DV).
d (UxV,X,DU*V+U*DV) : -d(U,X,DU) ,d(V,X,DV) .
\end{Prolog}
The output is simpler than in the Pascal case, since
Prolog’s syntax is more terse. However, typograph-
ical symbols are substituted for :- and reasonable
spacing is added.
d(X, X, D) « atomic(X), !, D= 1.
d(C, X, D) « atomic(C), !, D =0.
dU+V, X, DU+DV) «
d(U, X, DU), d(V, X, DV).
d(UxV, X, DU*V 4+ UxDV) «
d(U, X, DU), d(V, X, DV).

Our last example shows a few rules of Stanistaw
Szpakowicz’s formal grammar of a large subset of
Polish. The notation used is a variation on the DCG
(Definite Clause Grammar) theme.

Nonterminals in the grammar are put in bold,
but conditions (marked with minus sign in front) are
in normal weight. In arguments, variables are set in
italic and constants in upright shape. The pretty-
printer prefers to break lines between a nonterminal
and a condition rather than between two conditions
or two nonterminals, so conditions tend to group
on separate lines. Pretprin also carefully takes into
account the space needed by rule numbers on the
right side of the column.

ZDANIETO
= ZDANIEOGR(NR, R, L, O, war, prze, NEG) (zt1)
— SPOJNIK(TO) (242)

ZDANIEOGR(nr, r, I, o, WAR, PRZE, neg) .
SZDRZ(p, r, MNO, o)

= SPOJLEWY (nr) —ALT(nr, 1.2.3) (szdrzl)
FRZ(p, r1, I1, o) PRZEC
SPOJPRAWY (nr) FRZ(p, r2, 12, 02)
—UZGR(r1, r2, r) —MIN(ol, 02, o)

= FRZ(p, r1, /11, 1) PRZEC KSPOJ(wz) (szdrz2)

—ALT(wz, (A.TAKZE).(JAK.ROWNIEZ)
(JAK.TEZ)) FRZ(p, r2, 12, 02)

—UZGR(r1, r2, r) —MIN(o1, 02, o) .

One more thing worth emphasizing here is that
it is possible to use multiple Pretprin modules in
a single document. For example, the current pa-
per contains examples in three different program-
ming languages and it was generated with a single

ETEX run.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 299

Marcin Wolinski

How to build a pretty-printer

In this section we will try to build a pretty-printer
for a very simple language of terms. Terms are
abstract expressions which logicians and computer
scientists just love to write. We will consider a basic
notation for terms which allows atoms (names built
from letters) and functors (having a name and, in
parentheses, a list of arguments, each being a term).
Here is a typical example of a term:

loves(John, and(Mary, and(Tom,Jerry)))

(No semantic interpretation please, terms are merely
abstract structures.)

Lexical analysis (scanning). The first task in
analyzing a string is to detect “words” in it. For
the string

foo(bar, baz)

the “words” are

foo bar D baz

(Note that space characters were ignored.) We can
distinguish here four “parts of speech”: sequences of
Latin letters (atoms), opening parentheses, closing
parentheses, and commas.

For splitting strings of characters into words we
use an apparatus known as a finite state automaton.
The diagram below represents an automaton for the
example language:

l

In the example language the function of any
letter is the same: letters are building-blocks for
atoms. For that reason the notion of character
groups is used. The following declarations define
in TEX parlance character groups [and w:
\DeclareGroup{1l}

{abcdefghi jklmnopqrstuvwxyz}
\DeclareGroup{w}{ ~"I""M}
\CompileGroups
Therefore the label [in the diagram denotes any let-
ter, while the label w denotes any “white character”.

Let us now trace what happens when the string

foo(bar, baz)

is being run through our automaton. The automa-
ton starts in state 1 and encounters the letter f
from the input string. Since this character belongs
to the “letters” group, the automaton performs a
transition to state 2 (remembering the f). Now,
the letter o is input, and since there is a transition
from 2 to 2, reading a letter, the automaton does
just that. Then another o comes that is handled
similarly. And now, still in state 2, the automaton
sees a (. Since there is no arrow from 2 labeled
with (, the automaton cannot consume it and stops.
State 2 is marked with a gray circle meaning that it
is an accepting state; stopping in this state means
a word has just been read. In our case, the word
is foo. The action associated with state 2 will pass
this word to the next processing stages.

Now a search is started for another word, so
the automaton returns to state 1. A transition
labeled with (leads to state 4. The next character
is a space and there is no transition from 4 labeled
with a space. The automaton stops, and a single
parenthesis is recognized as the second word.

The next “word” consists of a single space. It
is accepted in state 6, which is somewhat special in
that the action associated with it is empty. This
way spaces get gobbled.

The process continues until the whole string is
processed.

Before we actually describe this automaton in
TEX we’ll take a closer look at the actions associated
with states. These actions prepare a list of “scraps”
on which the syntax analysis will work. This list
is constructed with \AppendElem procedure. Every
scrap has a grammatical category and translation
(the actual text). These two constitute arguments
of \AppendElem. In our case, categories are just the
parts of speech mentioned earlier: atom, open, close
and comma.

The first state is not accepting, so there is
no action associated with it. The state has five
transitions:

\DeclareTransition 1-1->2.
\DeclareTransition 1-,->3.
\DeclareTransition 1-(->4.
\DeclareTransition 1-)->5.
\DeclareTransition 1-w->6.

State 2 on the other hand is accepting, words of the
category atom are recognized in it:
\DeclareState{2}{\AppendElem{atom}{#1}}
\DeclareTransition 2-1->2.

(#1 above is the string read as the automaton was
going from the start state.) The rest of the states

300 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Pretprin—a IXTEX 2¢ package for pretty-printing texts in formal languages

have no leaving transitions but are accepting. Com-
mas and parentheses are recognized in them, and in
state 6, blank characters are gobbled.

\DeclareState{3}{\AppendElem{comma}{#1}}
\DeclareState{4}{\AppendElem{open}{#1}}
\DeclareState{5}{\AppendElem{close}{#1}}
\DeclareState{6}{}

And the last declaration specifies the starting state:

\CompileScanner{1}

Syntax analysis (parsing). Now the input string
has been read and converted to the form

atom open atom comma atom close
foo (bar s baz)

The next task is to recognize the syntactical
structure of the text. We already know the parts of
speech, but now higher level grammatical categories
can emerge. This process is described with a set of
simple grammatical rules.

Our first observation will be that when an atom
is immediately followed by an open parenthesis it is
the beginning of a term. We’ll call such an entity
termhd (a term head):

atom open — termhd

In our example this rule allows us to derive that
foo(is the beginning of a term.

If there is no parenthesis after an atom it surely
is a term all by itself (this is the case with bar and
baz in the example).

atom — term

Terms can have arguments, so the next rule
describes how a termhd can grow: adding a term
and a comma to a termhd gives another well formed
termhd.

termhd term comma — termhd

And finally when after a termhd comes a term
(the last argument) and a closing parenthesis the
whole fabric can be stuffed into a new term:

termhd term close — term

(Note that we do not accept foo() as a term.)
These rules again in the TEX notation are:

\DeclareProduction{atom,open}
\ThisElem\TwoElems{termhd}
{#2#1}\ThisElem

\DeclareProduction{atom}
\ThisElem\OneElem{term}
{\textit{#1}}\PrevElem

\DeclareProduction{termhd,term, comma}
\ThisElem\ThreeElems{termhd}
{#3\formatterm{#2}#1\ }\ThisElem

\DeclareProduction{termhd,term,close}

\ThisElem\ThreeElems{term}
{#3\formatterm{#2}#1}\PrevElem

This notation is somewhat more verbose and al-
lows us to describe situations where not all elements
of the left side of a rule are to be collapsed into a
new scrap (context rules).

The first rule can be read as follows: if you are
looking at the atom scrap followed by an open scrap,
do as follows: starting from ThisElement (the open
scrap), take TwoElements and replace them with a
scrap of category termhd, the translation of which
was formed from the translations of atom (#2) and
open (#1) scraps. Then continue the process starting
from This (the inserted) Element.

The pretty-printing depends on building appro-
priate translations of complex grammatical entities.
We have ignored all spaces in the input, so now we
are responsible for putting them back in a consis-
tent manner. Moreover, in the example language
when an atom is being recognized as a term without
arguments, \textit is applied to render the atom’s
name in italics. And whenever a term is added to the
list of arguments of a term-under-construction, the
macro \formatterm is applied. In the definition of
this macro we decide what it means to pretty-print
a term. To keep things simple, we will just put a
frame around each sub-term:

\newcommand\formatterm[1]{\fbox{#1}}
With these definitions

\begin{Terms}
loves(John, and(Mary, and(Tom,Jerry)))
\end{Terms}

yields
loves({John/, ‘and(Mary),

and (Zom, [Jerry))))

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 301

Marcin Wolinski

A Appendix

302 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Pretprin—a IXTEX 2¢ package for pretty-printing texts in formal languages

Components of arrays need not be scalars—they themselves may be
structured. If they are again arrays, then the original array A is
called multidimensional. If the components of the component arrays are
scalars, then A is called a matriz. The declaration of a multidimensional
array variable follows the pattern formulated in (11.1). For example, in
the declaration

var M: array [a .. b] of array [c..d] of T (11.26)
M is declared to consist of b—a+1 components (often called matrix rows)
with indices a,...,b, each of which is an array of d — ¢ + 1 components
of type T" with indices ¢,...,d. To denote the ith component (matrix
row) of M, the conventional notation
MTi] a<i<b (11.27)
is used, and its jth component of type T is denoted by
ME)[j]] a<i<b, c<j<d (11.28)

It is customary and convenient to use the following abbreviations, which
are entirely equivalent to (11.26) and (11.28), respectively.

var M: array [a..b,c..d] of T (11.29)
M, j]
Example: Multiplication of matrices. Given the two real-valued

matrices A(m X p) and B(p X n) compute the matrix product C(m x n),
as defined by

P
C@j = ZA“C * Bkj (1130)
k=1

fori=1,...,mand j=1,...,n.
The formulation of program (11.31) follows from (11.30) in a straight-
forward manner.

var A: array [1..m,1..p] of real; (11.31)
B: array [1..p,1..n] of real;
C: array [1..m,1..n] of real;
i 1..m; j5:1..n; ke 1..p; st real;
begin {assignment of initial values to A and B}
for i :=1tom do
for j:=1ton do

begin s := 0;
for k:=1topdo s:=s+ Ali, k]« Blk, j];
Cli,j):=s
end
end.

Figure 1: A page from chapter 11 of Niklaus Wirth’s Systematic Programming: An Introduction

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 303

Marcin Wolinski

\documentclass{book}
\usepackage{pascal}

\begin{document}

Components of arrays need not be scalars---they themselves may be structured. If they are
again arrays, then the original array \pascal{A} is called \emph{multidimensional}. If
the components of the component arrays are scalars, then \pascal{A} is called a
\emph{matrix}. The declaration of a multidimensional array variable follows the pattern
formulated in (\ref{arrtype}). For example, in the declaration
\begin{Pascal}

var M: arrayla..b]of array[c..d]of T
\end{Pascal}\pplabel{abcdarray}
\pascal{M} is declared to consist of $b-a+1$ components (often called matrix rows) with
indices a,\ldots,b, each of which is an array of $d-c+1$ components of type \pascal{T}
with indices c,\ldots,d. To denote the ith component (matrix row) of \pascal{M}, the
conventional notation
\begin{equation}

\pascal{M[i]}\qquad a\leq i \leq b
\end{equation}
is used, and its jth component of type \pascal{T} is denoted by
\begin{equation}\label{ijthelem}

\pascal{M[i] [j1}\qquad a \leq i \leq b, \quad c \leq j \leq d
\end{equation}

It is customary and convenient to use the following abbreviations, which are entirely
equivalent to (\ref{abcdarray}) and (\ref{ijthelem}), respectively.
\begin{equation}
\begin{tabular}[t]{1}
\pascal{var M: array [a..b,c..d] of T}\\
\pascal{M[i,jl}
\end{tabular}
\end{equation}

\subsubsection{Example: Multiplication of matrices.}
Given the two real-valued matrices $A(m\times p)$ and $B(p\times n)$ compute the matrix
product $C(m\times n)$, as defined by
\begin{equation}\label{mmultdef}
C_{ij} = \sum_{k=1}"p A_{ik}*B_{kj}
\end{equation}
for $i=1,\ldots,m$ and $j=1,\ldots,n$.

The formulation of program (\ref{mmult}) follows from (\ref{mmultdef}) in a

straightforward manner.

\begin{Pascal}

var A:array[1l..m,1..plof real; B:array[l..p,1..n] of real; C:array[l..m,1..n] of real;
i:l..m; j:1..n; k:1..p; s:real;

begin (*assignment of initial values to \pascal{A} and \pascal{B} *)

for i:=1to m do for j:=1 to n do

begin s:=0; for k:=1 to p do s:=s+A[i,k]*B[k,j]l; C[i,jl:=s

end

end.

\end{Pascall}\pplabel{mmult}

\end{document}

Figure 2: Source code for the previous example

304 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

The Calculator Demo

Hans Hagen
pragma@pi.net

Abstract

Due to its open character, TEX can act as an authoring tool. This article demon-
strates that by integrating TEX, METAPOST, JavaScript and PDF, one can build pretty
advanced documents. More and more documents will get the characteristics of pro-
grams, and TEX will be our main tool for producing them. The example described here
can be produced with PDFTEX as well as traditional TEX.

Introduction

When Acrobat Forms were discussed at the PDFTEX
mailing list, Phillip Taylor confessed: “... they’re
one of the nicest features of PDF”. Sebastian Ratz
told us that he was “... convinced that people are
waiting for forms.”. A few mails later he reported:
“I just found I can embed JavaScript in forms, I can
see the world is my oyster” after which in a personal
mail he challenged me to pick up the Acrobat Forms
plugin and wishing me “Happy JavaScripting”.

OooDOoOoOEEER
OoOOOoOOEEE

Figure 1 The calculator demo.

At the moment that these opinions were shared, I al-
ready had form support ready in CONTEXT, so pick-
ing up the challenge was a sort of natural behaviour.
In this article I'll describe some of the experiences
I had when building a demo document that shows
how forms and JavaScript can be used from within
TEX. I also take the opportunity to introduce some
of the potentials of PDFTEX, so let’s start with in-
troducing this extension to TEX.

Where do we stand

While e-TEX extends TEX’s programming and typo-
graphic capabilities, PDFTEX primarily acts at the
back end of the TEX processor. Traditionally, TEX

was (and is) used in the production chain:

ASCII — TEX — DVI — whatever

The most versatile process probably is:

ASCII — TEX — DVI — POSTSCRIPT

or even:

ASCII — TEX — DVI — POSTSCRIPT — PDF

All functionality that TEX lacks, is to be taken care
of by the DVI postprocessing program, and that’s
why TEX can do color and graphic inclusion. Espe-
cially when producing huge files or files with huge
graphics, the POSTSCRIPT — PDF steps can become
a nuisance, if only in terms of time and disk space.
With PDF becoming more and more popular, it
will be no surprise that Han The Thanh’s PDFTEX
becomes more and more popular too among the TEX
users. With PDFTEX we can reduce the chain to:

ASCII — TgX — PDF

The lack of the postprocessing stage, forces PDFTEX
(i.e. TEX) to take care of font inclusion, graphic in-
serts, color and more. One can imagine that this
leads to lively discussions on the PDFTEX mailing
list and thereby puts an extra burden on the devel-
oper(s). Take only the fact that PDFTEX is already
used in real life situations while PDF is not stable
yet.

To those who know PDF, it will be no surprise
that PDFTEX also supports all kind of hyper refer-
encing. The version! I used when writing this article
supports:

1. link annotations

1 Currently I'm using f—version 1.12g.

304 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

The Calculator

10 from 20 using () for instance comes down (o clicking

1110 push a value on the stack and pop to remove
When i

Fthe stack.

“The lower buttons

. enter (+) and remove ()

TEX. METAPOST graphics, PDF objects and form fields as well as
time. 1 Taylor for hi

&

e

Hans Hagen, PRAGMA ADE, CONTEXT 18/2/1998

pragma@pinet

Figure 2 The help information screen.

2. screen handling
3. arbitrary annotations

where especially the last one is accompanied by:

4. form objects
5. direct objects

and of course there is also:
6. extensive font support

Be prepared: PDFTEX’s font support probably goes
(and certainly will go) beyond everything DVI
drivers as well as Acrobat supports!

TEX stands in the typographic tradition and
therefore has unsurpassed qualities. For many thou-
sands of years people have trusted their ideas to pa-
per and used glyphs for communication. The last
decades however there has been a shift towards me-
dia like video, animations and interactive programs
and currently these means of communication meet
in hyper documents.

I "
K enry.

Calculate the sine of the topmost stc}

Figure 3 The sin(z) screen.

Now what has this to do with PDFTEX. Recently
this program started to support the PDF annota-

The Calculator Demo

tions other than the familiar hyperlink ones. As
we will see later on, this enables users of TEX to
enhance their documents with features that until
now had to be programmed with dedicated tools,
which could not even touch TEX’s typographic quali-
ty. This means that currently TiEX has become a tool
for producing rather advanced documents within the
typographic and (largely paper based) communica-
tion traditions. Even better, by using PDF as medi-
um, one can produce very sophisticated interactive
documents that are not bound to ill documented
standards and programs and thereby stand a better
chance to be accessible for future generations.

The calculator demo

The document described here is produced with
CONTEXT. This document represents a full featured
calculator which took me about two weeks to design
and build. Most of the time was spend on defining
METAPOST graphics that could explain the func-
tionality of the buttons.? Extending CONTEXT for
supporting JavaScript took me a few days and the
rest of the time was spend on learning JavaScript
itself.

The calculator demo was first developed using
DVIPSONE and Acrobat. At that moment, PDFTEX
did not yet provide the hooks needed, and the demo
thereby served as a source of inspiration of what
additional functionality was needed to let PDFTEX
produce similar documents.

Throughout this article I show some of the
screens that make up the calculator demo. These
graphics are no screen dumps but just POSTSCRIPT
inclusions. Just keep in mind that when using TEX,
one does not need bitmap screen dumps, but can
use snapshots from the real document. A screen,
although looking as one graphic, consist of a back-
ground with frame, a centered graphic, some addi-
tional text and an invisible active area the size of
the gray center.

The demo implements a stack based calculator.
The stack can optionally grow in two directions, de-
pending on the taste of the user. Only the topmost
entries of about 50 are visible.

The calculator demo, called calculator.pdf,
itself can be fetched from the PDFTEX related site:

http://www.tug.org/applications/pdftex

or from the CONTEXT repository at:

2 This included writing some auxiliary general purpose
METAPOST macros.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 305

Hans Hagen

Push the standard deviation to the stack.

Figure 4 The standard deviation screen.

http://www.ntg.nl/context

The calculator is defined in one document source
file, which not only holds the TgX code, but also
contains the definitions of the METAPOST graphics
and the JavaScript’s. I considered including a movie
(video) showing an animation of our company logo
programmed in METAPOST and prepared in Adobe
Premiere, but the mere fact that movies are (still)
stored outside the PDF file made me remove this
feature.

Now keep in mind that, when viewing the calcu-
lator PDF file, you're actually working with a docu-
ment, not a program. A rather intelligent document
for that matter, but still a document.

Forms and annotations

Before I go into details, I'll spend some words on
forms and annotations in PDF. To start with the
latter, annotations are elements in a PDF file that
are not related to (typo)graphic issues, like movies
and sound, hyper things, navigation and fill-in—
forms. Formally annotations are dealt with by
drivers plugged into the graphic engine, but in prac-
tice some annotations are handled by the viewer it-
self.

Forms in PDF are more or less the same as in
HTML and once filled in can be send over the net to
be processed. When filling in form fields, run time
error checking on the input can prevent problems
later on. Instead of building all kind of validation
options into the form editor, such validations are
handled by either a dedicated plugin, or better: by
means of JavaScript. Therefore, one can attach such
scripts to all kind of events related to form editing
and one can launch scripts by associating them to
active, that is clickable, areas on the screen.

So we’ve got fields, which can be used to let
users provide input other than mere clicks on hyper

a2 nasha

“Take the minumum of the two topmost stack entries.

Figure 5 The min(z,y) screen.

links, we’ve got run time access to those fields using
JavaScript, and we can let users launch such scripts
by mouse events or keystrokes, either when entering
data or by explicit request.

Currently entering data by using the keyboard
is prohibited in the calculator. The main reason for
this is that field allocation and access are yet sort of
asynchronic and therefore lead to confusion.?

So, what actually happens in the calculator, is
that a user clicks on a visualized key, thereby launch-
ing a JavaScript that in turn does something to field
data (like adding a digit or calculating a sine), after
which the field data is updated.

JavaScript

Writing this demo at least learned me that in fact
support for JavaScript is just another sort of ref-
erencing and therefore needed incorporation in the
general cross referencing scheme. The main reason
is that for instance navigational tools like menus and
buttons must have access to all cross reference mech-
anisms.

‘Generate a random number in the range (-1

Figure 6 The random number screen.

3 Initializing a field from within JavaScript is not possible
unless the viewer has (at some dubious moment) decided
that the field indeed exists.

306 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Consider for instance . We already support-

ed:

\button{...}[the chapter on whatever]
\button{...}[otherdoc: :some topic]
\button{...}[previouspage]

\button{. ..} [PreviousJump]

Here the first reference is an internal one, often a
chapter, a table or figure or a bibliography. The
second one extends this class of references across
documents. The third reference is a predefined inter-
nal one and the last reference gives access to viewer
controls. As we can see: one scheme serves different
purposes.

Calculate the recursive multiplication of n, -1, n-2, etc.

Figure 7 The period (.) screen.

Launching applications and following threads can
quite easily be included in this scheme, but
JavaScript support is different. In the calculator
there are for instance 10 digit buttons that all do
the same action and only differ in the digit involved.
Here we want just one JavaScript to be reused 10
times. So instead of saying:

\button{0} [javascript 0]
\button{0} [javascript 1]

we want to express something like:
\def\SomeDigit#1%
{\button{0}[javascript #1]}
\SomeDigit{4}
This means that in practice we need a referencing

mechanism that:

e is able to recognize JavaScript
e is able to pass arguments to these scripts

So finally we end up with something;:

The Calculator Demo

\button{7}[JS(digit{7})]

This call tells the reference mechanism to access the
JavaScript called digit and pass the value 7 to it.
Actually defining the script comes down to just say-
ing:

\startJScode{digit}
Stack[Level] += String(JS_S_1);
do_refresh(Level); //\ E
\stopJScode

One can pass as much arguments as needed. Here
JS_S_1 is the first string argument passed. Pass-
ing cross reference arguments is also possible. This
enables us to let users jump to locations depend-
ing on their input. Such arguments are passed as
R{destination} and can be accessed by JS_R_1.

Add a digit 7 10 the current stack cntry.

Figure 8 The digit 7 screen.

In practice one will separate functions and calls
by using preambles. Such preambles are document
wide pieces of JavaScript, to be used whenever ap-
plicable.

\startJSpreamble{functions}
// begin of common functions

function do_digit(d)
{ Stack[Level] += String(d);
do_refresh(Level) }
// end of common functions //\ E
\stopJSpreamble

and:

\startJScode{digit}
do_digit(JS_S_1);
\stopJScode

//\ E

From these examples one can deduce that indeed the
actual JavaScript code is included in the document
source. It’s up to TEX to pass this information to

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 307

Hans Hagen

the PDF file, which in itself is not that trivial given
the fact that one (1) has to strip comments, (2) has
to convert some characters into legal PDF ones and
(3) must pass arguments from TEX to JavaScript.
Simple cases like the digit code fragment, can
also be passed as reference: JS(digit{1}). By de-
fault CONTEXT converts all functions present in the
preambles into such references. One can organize
JavaScripts into collections as well as postpone in-
clusion of preambles until they are actually used.

<

Erase the memory bufer.

Figure 9 The memory erase screen.

Currently the only problem with including pream-
bles lays in the mere fact that Acrobat pdfmarks?
do not yet offer a mechanism to enter the JavaScript
entries in the appropriate place in the document cat-
alog, without spoiling the collected list of named
destinations. Because CONTEXT can be instruct-
ed to use page destinations when possible, I could
work around this (temporary) Acrobat pdfmark and
PDFTEX limitation. At the time this article is pub-
lished, PDFTEX probably handles this conceptual
weak part of PDF in an adequate way.

METAPOST graphics

All graphics are generated at run time using
METAPOST. Like the previous mentioned script,
METAPOST code is included in the source of the
document. For instance, the graphic representing m
is defined as:

\startuseMPgraphic{pi}
pickup pencircle scaled 10;
draw fullcircle

scaled 150
withcolor .4white;
linecap := butt;
ahlength := 25;
drawarrow halfcircle
scaled 150

withcolor \MPcolor{action};
\stopuseMPgraphic

and called

\useMPgraphic{pi}

_/

Push 3.14159265358979 onto the stack.

Figure 10 The 7 screen.

Just like the JavaScript preamble we can separate
common METAPOST functions by defining inclu-
sions. The next one automatically loads a module
with some auxiliary macros.

\startMPinclusions
input mp-tool;
\stopMPinclusions

The mechanism for including METAPOST graphics
is also able to deal with reusing graphics and running
METAPOST itself from within TEX. In CONTEXT all
processed METAPOST graphics are automatically
translated into PDF by TgX itself, colors are con-
verted to the current color space, and text is dealt
with accordingly. Of course one needs to take care
of proper tagging, but the next macro does this well:

\def\SomeShape#1#2,
{\startreuseMPgraphic{shape:#1#2}
draw fullcircle
xscaled #1
yscaled #2
\stopreuseMPgraphic
\reuseMPgraphic{shape:#1#23}}

Now we can say:

\SomeShape{100pt}{200pt}
\SomeShape{150pt}{180pt}
\SomeShape{120pt}{110pt}

Which just inserts three graphics with different sizes
but similar line widths.

4 These are extensions to the POSTSCRIPT language.

308 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

=
-

Remove the topmost cntry from the stack.

Figure 11 The pop stack screen.

Backgrounds

Now how do we attach such shapes to the buttons?
Here we introduce a feature common to all framed
things in CONTEXT, called overlays. Such an overlay
is defined as:

\defineoverlay

[shape]

[\MPshape
{\overlaywidth}
{\overlayheight}
{\overlaycolor}]

The shape called \MPshape is defined as:

\def\MPshape#1#2#3%
{\startreusableMPgraphic{fs:#1#2#3}
path p ;
P := unitsquare
xscaled #1
yscaled #2;
color c ;
c := #3 ;
fill p
withcolor c ;
draw p
withpen pencircle scaled 1.5
withcolor .8c ;
\stopreusableMPgraphic
\reuseMPgraphic{fs:#1#2#3}}

Such an overlay is bound to a particular framed
thing by saying:

\setupbuttons [background=shape]

Here the right dimensions are automatically passed
on to the overlay mechanism which in turn invokes
METAPOST.

The calculator demo proved me that it is rather
useful to have stacked backgrounds. Therefore
the buttons, which have both a background (the

The Calculator Demo

+

Add the two topmost stack entrics.

Figure 12 The addition (+) screen.
METAPOST drawn shape) and behind that a sort
of help button that is activated by clicking on the
surroundings of the button, have their backgrounds
defined as:

\setupbuttons
[background={infobutton,shapel}]

Actually we'’re stacking from back to top: an in-
fo button, the key bound button, the background
graphic and the text. One rather tricky side effect
is that stacked buttons interfere with the way ac-
tive areas are output. In this particular case we
have to revert the order of the active areas by say-
ing \reversegototrue.

Object reuse

The button and background graphics are generated
once and used more than once. We already men-
tioned that METAPQOST graphics can be reused. In
practice this comes down to producing the graphic
once and including it many times. In PDF however,
one can also include the graphic once and refer to it
many times. In PDF such reused objects are called
forms, a rather unfortunate naming. So, in the cal-
culator demo, all buttons with common shapes as
well as the backgrounds are included only once. One
can imagine that extending TEX with such features
leads to interesting discusions on the PDFTEX dis-
cussion list.

Forms

Although still under construction, CONTEXT sup-
ports PDF fill-in—forms. The calculator demo
demonstrates that such forms can be used as a (two
way) communication channel to the user. Stack val-
ues, statistics and memory content are stored and
presented in form fields, defined by saying something
like:

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 309

Hans Hagen

\definefield[Stack.1] [line] [Results]
followed by

\field[Stack.1]

The characteristics of this line field are set by:

\setupfield
[Results]
[horizontal, frame]
[width=fit,
height=.5\ButtonWidth,
background=shape,
backgroundcolor=\MPcolor{stack},
frame=off]
[width=3.5\ButtonWidth,
frame=off]
[width=3.5\ButtonWidth,
frame=off]

The reader needs some fantasy to grab the meaning
of this rather overloaded setup. The first argument
tags the characteristics, and can be considered some-
thing like a class in object oriented languages. The
second argument tells CONTEXT how to typeset the
field when labels are used, while the last three ar-
guments specify the way fields, their labels and the
envelop that holds them both together are typeset.
In the calculator, the labels are suppressed.

i

Toggle grow mode, another way of stacking.

Figure 13 The grow mode screen.

Caleulate the recursive multiplcation of n, n-1, -2, etc.

Figure 14 The n! screen.

One reason for decoupling definition and setup, that
is, not attaching characteristics to individual fields,
lays in the fact that I have applications in mind with
thousands of fields and saving characteristics at the
field level that would definitely overload TEX.

Where do we go

The previous examples show us quite clearly that,
although being of old age in terms of computer pro-
grams, TEX is among the few applications that are
able to adapt themselves rather fast to current de-
velopments while at the same time preserving the
high quality and stability its users are accustomed
to. As TEX gave mathematicians the means of cir-
cumventing the often lousy text editing and desk
top publishing output in the early days of comput-
ing, TEX can give its users the high quality and sta-
ble authoring platform they need in this multimedia
age. As demonstrated here, TEX can do a wonder-
ful job not only in producing interactive documents,
but in producing intelligent documents too.

310 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Visual Debugging in TEX
Part 1: The Story

Hans Hagen
PRAGMA ADE
Ridderstraat 17
8061GH Hasselt NL
pragma@wxs.nl

Abstract

This article shows some features of the visual debugging module I wrote in 1996 as
part of the CONTEXT macro package. This module visualizes the low level typesetting
components, like boxes, skips, glues and fills. Although beyond the scope of this article,
they also let surface some behavior that often goes unnoticed.

Let me give you

/A short. introduction td
0
visual debugging in TEX
L
-
- pragmaluxs.n

This kind of fancy heading shows some dotted lines, rules and peculiar visual symbols. A closer
observation shows that in fact it is some endoscopic view into what is often called TEX’s stomach. For
those readers who have planned to skip the rest of this article, here is how the magic is done:

\input supp-vis \showmakeup

For those who want to take a closer look at all those kerns, skips and penalties, this article can be of some
help. Although this kind of stuff often attracts the more hacking type of reader, the module described here
can be of great help and provide a lot of fun to all TEX users, whatever macro package they use.

When TEX builds paragraphs and pages, it takes a lot into account. Even after years of writing macros
the interference of skips, kerns, penalties, boxes and rules sometimes surprises me. One must always be aware
of interline skips, top of page skips, good breaks and no breaks, either user supplied or system generated.

The idea to build some visualization macros was born while I was documenting the source of CONTEXT.
Because this package is quite complete, the full documentation will be laid down in thousands of pages.
Such technical documentation cannot go without showing how things are done. Because most macros at the
user level have some visual impact, I decided to build a visualization tool. After having written this bunch
of macros, their second purpose soon became visual debugging.

The concept is rather simple: replace the primitives \.box, \.skip, \kern, \penalty, \.glue, \.ss,
\.fil. and \.fil.neg by macros that makes them visible. Most advanced TEX tutorials give examples of
adapting the primitive \par, but somehow tampering with other TEX primitives is considered more tricky.
Although the name primitive suggests that they are somehow fixed, even primitives can be \1let’d or \def’d
to something else. Temporarily superseding the \font primitive is for instance needed when one wants to
postpone loading of fonts in Plain TEX.

One can imagine that replacing \hbox with something else can have disastrous consequences. Primitives
like \setbox expect a box and setting \hbox to \relax will surely lead to loud complaints. Some first
experiments showed however that substitution was surprisingly easy. More time was spent on finding a sort
of replacement that does not conflict visually when more primitives are given in a row.

Let’s start with a well known piece of text. We’ve blown it up a bit, so we can see what happens.

311 TUGboat, Volume 16 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Visual Debugging in TEX Part 1: The Story

X

Here we see a T, followed by a kern, a boxed E, another kern and an X. The kerns have a negative sign
and are visualized as small rectangles. Negative values are drawn left of their insertion point. The second
TEX has exaggerated cues.

The three uppercase characters that make up TEX have no descenders. The next example shows a few
more TEXed characters. This time we’ve got them boxed, so we can see what happens to the baseline of this
combination of characters. Lowering the B and Q does not influence the baseline, which is what we expect.

Vertical boxes come in two flavors. The default vertical box \vbox inherits its baseline from the last
line, while \vtop takes the baseline of the first line.

fffffffff PQR | [PQR | FgR Q
Visualization of fills is no problem either. In the centered line shown below the piece of text has some
\hfil’s around it.

—
)

The same one, showing the surround iyg box and two \hfil’s at_the left of the text, looks like:

a line centered by

When using substitutes for the primitives mentioned, keeping the spacing intact is not always trivial.
Especially the vertical spacing is very sensitive to interference. The next examples show us that at least
normal situations can be handled well.

= B

\strut typogEaphy T%X NﬁETH FONT normal
\stFrut typogﬁaphy Tﬁx NEETQ FONT normal
\stErut typogﬁ;aphy ’IW(NﬁETF\ FONT normal
\stut typogaphy Tl;; Tﬁ FONT normal
\strut typography TRX METAFONT normal

Here we see some positive vertical cues. Their negative counterparts are drawn left of the axis. Top
down we see a skip, another skip with some stretch, a kern and some glue. A penalty of 100 looks like this _ |
and can be negative too. Skips, kerns and glue, which by the way is a Plain TEX macro and not a primitive,
are shown at their natural size. Penalties are drawn in ranges, which are tuned to the most common cases.
Combinations of penalties show up all right as we can see in , where we have inserted penalties of 10000,
100 and 1.

Horizontal spacing is less sensitive than vertical spacing. Here we don’t have to take interline spacing
and previous depths into account. Just to prove that things work, we show a similar example here. As a
bonus we’ve added \hss.

TUGboat, Volume 16 (1998), No. 3— Proceedings of the 1998 Annual Meeting 312

Hans Hagen

When we are typesetting in horizontal mode we have to preserve linebreaking. The next example shows
a dummy paragraph with skips.

H E E B B S S S S S S S S S S S E N EEEEEEHRm
HE B EEEE S EEEEEEEEEEEEEEEEEEEEEEEEEEEREERERENNLNNE
LT

|

In this example it’s hard to see that the stretch is equally distributed around the skip. The next line

of text shows this feature in full glory. This feature is disabled by default.
hello .. big big world

Now look what happens when we combine two horizontal skips. This time TEX is not able to remove
the visual cues. A similar situation occurs at a pagebreak. This kind of tricky situation can only be solved
by an invisible kind of box, which is unfortunately not part of TEX. Of course we can backtrack skips, kerns

and penalties, but such a, still not perfect, solution only complicates the macros beyond understanding.
H E H S S S S S S S S S S S B N N NN EEEEERN

Mathematical spacing is implemented too, but due to the font-bound character, its visualization is the
least impressive: xqy and xgy for math kern and math skip of 7 mu.

The next set of examples shows how vertical boxes are aligned when pasted together in a horizontal box.
When I was messing around a bit with these samples, I became aware of some side effects that normally go
unnoticed probably because they are quite natural. Confronted with these effects, I first thought that the
visualization macros were somehow responsible, but additional testing proved otherwise. Of course one can
never be sure, but rereading some paragraphs in Victor Eijkhout’s “TEX by Topic” taught me that indeed
such effects occur.

The samples are built up in the following way. Here the dots stand for some trailing text and/or macros.

\hbox to \hsize

{\hss

\hsize.15\hsize

\vbox to lcm{abc\par ...}\hss
\vbox to lcm{ijk\par ...}\hss
\vbox to lcm{pqr\par ...}\hss
\vtop to lcm{abc\par ...}\hss
\vtop to lcm{ijk\par ...}\hss
\vtop to lcm{pgr\par ...}\hss}

We show both the visualized example and the natural one. The latter illustrates compatibility. When we

insert nothing, this pack of boxes looks like:
abc ijk por abc ijk par

abc ij pOr abc ijk par
J jole!

The first box has the height we expect. The second and third box also have the desired height, but
here the depth of the j and q has migrated to the surrounding box. The height and depth of the fourth box
totals to 1 cm, and we don’t recognize the 1 cm in one of those dimensions. The last two boxes behave a bit
unexpected. Here the depth is added to the height we specified. These last three situations teach us that

313 TUGboat, Volume 16 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Visual Debugging in TEX Part 1: The Story

specifying the height of a \vtop does not always make that much sense.
Now watch what happens when we add a \vss. This time the ijk and pqr boxes behave as expected

and we end up with six boxes of 1 cm. Seeing is believing.
. abcl . PAT abc ijk par

abel ijk —pqr abc ijk pqr

In most cases, one will add some kind of glue to a box, just to get rid of those underfull messages. It’s
good to be aware of the fact that adding glue does a bit more. Adding a \vskip or \kern has the same
effect.

T T

cC abc c 1 c P abc le Pq
abc 1k PO abc ijk par
- -1 —Pq] jolet

T T

o apbc - 1 o pf abc le Paq
abc 1k PO abc ijk par
- -1 —-Pa] pqg

Adding a very large skip or kern makes no difference so we stick to these 3 pt examples. A penalty on

the other hand has no effect. Here we get the same results as in the first example.
=abc] _ 4 =PI abc ijk par

= _abe 1k DT abc ijk par
.l 1] pg

When we add some boxed text, the height and depth of the surrounding box depend on the depth of
the (last) line. Here we show what happens when we insert an \hbox.

abc 1 P abc ijk pqr
abc abc abc abc abc abc
abc ijk pOr abc ijk pqr
abc abc abc abc abc abc
abc gk P abc jk— PA
ijk ijk ijk ijk ijk ijk
abc i7k o0l abc ijk pgr
ijk ijk ijk ijk ijk ijk
abc ijk par abc ijk par
pqr | par | P9t pqr pqr Pdt
abc ik ——pqr abc ijk pgr
pqr pqr par pqar par par
When we put the characters in an \hbox and \unhbox this box, we get different results. Just take a
close look at the next set of boxes.
abc 1 b abc ijk pqr
abc abc abc abc abc abc
abc i7k o0l abc ijk pgr
abc abc abc abc abc abc

TUGboat, Volume 16 (1998), No. 3— Proceedings of the 1998 Annual Meeting 314

Hans Hagen

abc ijk P abc ijk par
ijk ijk ijk ijk ijk ijk
abc ij par abc ijk par
ijk ijk ijk ijk ijk ijk
abc ijk bt abc ijk par
par| pgr| P par pqr P4t
abc ij par abc ijk par
par par par par par par
Things looks different when we add a \vbox. Just adding one looks like this:
abc ijk pr abc ijk par
abc abc abc abc abc abc
abc ij pOr abe ijk par
abc abc abc abc abc abc
abc ijk P abc ijk par
ijk ijk ijk ijk ijk ijk
abc ij par abc ijk par
ijk ijk ijk ijk ijk ijk
abc ijk bt abc ijk par
par| pgr| P par pqr P4t
abc ij par abc ijk par
par par par par par par

Adding an \unvbox’ed one looks a bit different. This kind of test can be both very confusing and
instructive. It’s a challenge to deduce some systematic behavior from them.

apc ijk pr apc ijk par
abc 3‘3})0 abc abc é]bc abc
apc ij pOr apc ijk par
apc abc abc abc abc abc
?LH)C ijk bt abc ijk par
yk ijk ijk 1] ijk 1jk
abc i] pOr abc ijk par
1 ijk ijk yk ijk ijk

BRE e bl L R

DC 1] —————Pqgr.
r 3

par (r

he ijk par.
qr

par bar

Lo

Lo

I could show some more examples, like vertical boxes with more lines or \vtop’s. The examples shown
here at least make clear that when we start manipulating boxes, we have to be aware of side effects.

Close reading of the TEXbook teaches that the effects of the skip stretch components plus and minus
sometimes depend on the context. Take a look at the set of boxes in table 1.

Line- and pagebreaks can in no way be handled 100% perfectly. TEX clears out redundant skips and
penalties when crossing lines and pages. Making skips and penalties visible calls for the use of boxes and
rules. A more perfect visualizer can be built when two more box primitives are made available: \hnop
and \vnop. Both primitives should act like normal boxes when being manipulated, but should be kept
out of paragraph and pagebreak calculation. They should be visible in the output but invisible for TEX
itself. Lacking these primitives, visualization of sequences of skips and penalties will lead to non-compatible
results.

315 TUGboat, Volume 16 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Visual Debugging in TEX Part 1: The Story

\hbox to 5em {A\hskip 5em B} A 1B
\hbox to 6em {A\hskip 5em B} A B
\hbox to 5em {A\hskip 6em B} A1 B
\hbox to 5em {A\hskip 5em plus lem B} AreB
\hbox to 6em {A\hskip 5em plus lem B} A3
\hbox to 5em {A\hskip 6em plus lem B} (Ao B
\hbox to 5em {A\hskip 5em minus lem B} A B
\hbox to 6em {A\hskip 5em minus lem B} A
\hbox to 5em {A\hskip 6em minus lem B} A]
\hbox to 5em {A\hskip -5em B} B A]
\hbox to 6em {A\hskip -5em B} B w]
\hbox to 5em {A\hskip -6em B} B A]
\hbox to 5em {A\hskip -5em plus lem B} A B
\hbox to 6em {A\hskip -5em plus lem B} A B
\hbox to 5em {A\hskip -6em plus lem B} A B
\hbox to 5em {A\hskip -5em minus lem B} B A]
\hbox to 6em {A\hskip -5em minus lem B} B A]
\hbox to 5em {A\hskip -6em minus lem B} B A]
Table 1

Like the colored verbatim modules described in a previous article, the visual debugger module can be
used on top of Plain TEX. Both modules only use a few general system macros, which are supplied in a
small miscellaneous module. For CONTEXT users, visualization is always available, because it’s just one of
the standard features. For users of Plain TEX (or for those who use other packages) the next commands will
do the trick:

\input supp-vis

When this module is loaded, \showmakeup will turn on the visualization. Users can turn on and off some
features, like alignment of vertical cues, individual categories of cues and the visible baseline. The macros
and features are explained in detail in the documented module itself.

The supp stands for general support. The symmetrical verbatim module, which supports typesetting
of colored TEX sources that we presented in a previous article, belongs to this category too. When used
outside CONTEXT, both modules automatically fall back on a small module supp-mis, which implements
poor mans alternatives for a few system macros.

Visualization can best be used grouped. Depending on the number of primitives used, the output
can be huge when one processes whole pages. Plain TEX’s pagebody routine is both simple and effective.
Unfortunately, the more flexibility one wants, the more complicated this routine becomes. In CONTEXT for
instance this routine has to deal with multiple headers and footers, backgrounds, logos, multiple margins,
interaction menus, navigational tools and a few more. Therefore we turn off visualization as long as we are
building the page. The same goes for multi-column handling and some Plain TEX macros like \11lap and
\rlap.

In Plain TEX it’s not that hard to turn things off temporarily. Just give the next code a try:

\input supp-vis

\output
{\dontshowcomposition\plainoutput}

\showmakeup

\hbox{so much}

\eject

\hbox{for now}

\end

In CONTEXT there are some more similar facilities, like general layout, \strut and baseline visualization. At
the moment, the functionality of this module is limited to the primitives mentioned. We already visualize

TUGboat, Volume 16 (1998), No. 3— Proceedings of the 1998 Annual Meeting 316

Hans Hagen

the mathematical skips, but when needed, we will extend this module with some useful math debugging

facilities. A year from now, this module probably will be a bit more advanced anyway.
I could show some more instructive examples, but for producing those, I have to depend a bit too much

on CONTEXT for processing. For the same reason the next article, which describes the module itself, lacks
some useful functionality.

Let’s summarize the cues. Positive horizontal cues are drawn on top of and negative ones under the
baseline. The negative cues are drawn in the negative direction. Vertical cues are drawn left or right of the
current point (or halfway the \hsize) and they too honor the direction. In the table 2 next table we only
show the horizontal cues.

\hss

\hfil

\hfill

\hskip 5em

\hskip 5em plus lem
\kern 5em

\hglue 5em plus lem
\penalty 200

\mskip 50mu plus 1lmu A——=B B4
\mkern 50mu A——B B A
Table 2

Kerns and penalties are treated according to the current mode, which is horizontal or vertical. Zero cues
are a special case. A zero horizontal skip for instance shows up as | , a kern looks like | and a zero penalty
becomes _ . As far as possible, different kinds of cues add up nicely.

317 TUGboat, Volume 16 (1998), No. 3— Proceedings of the 1998 Annual Meeting

: ConTgXt Support Ma
996.10.21

ber 18, 1998

agen

MA / Hans Hagen &

Visualization

Although an integral part of ConTgXt, this module is one of the support modules. Its stand alone
character permits use in PLAIN TEX or TgX based macropackages.

Depending on my personal needs and those of whoever uses it, the macros will be improved in terms
of visualization, efficiency and compatibility. These rather low level visualization macros are supple-
mented by ones that can visualize baselines, the page layout and whatever deserves attention. Most of
those macros can be found in core-vis and other core modules. Their integration in ConTgXt prohibits
generic applications.

1 \ifx \undefined \writestatus \input supp mis.tex \fi

One of the strong points of TEX is abstraction of textual input. When macros are defined well and do
what we want them to do, we will seldom need the tools present in What You See Is What You Get
systems. For instance, when entering text we don’t need rulers, because no manual shifting and/or
alignment of text is needed. On the other hand, when we are designing macros or specifying layout
elements, some insight in TEX’s advanced spacing, kerning, filling, boxing and punishment abilities will
be handy. That’s why we’ve implemented a mechanism that shows some of the inner secrets of TgX.

2 \writestatus{loading}{Context Support Macros / Visualization}

In this module we are going to redefine some TgX primitives and PLAIN macro’s. Their original meaning
is saved in macros with corresponding names, preceded by normal. These original macros are (1) used
to temporary restore the old values when needed and (2) used to prevent recursive calls in the macros
that replace them.

3 \unprotect

4 \let\visualvrule\vrule
\let\visualhrule\hrule

\dontinter.. Indentation, left and/or right skips, redefinition of \par and assignments to \everypar can lead to
unwanted results. We can therefore turn all those things off with \dontinterfere.

5 \def\dontinterfere
{\everypar = {}
\let\par = \endgraf
\parindent = \!!zeropoint

\parskip = \!!zeropoint
\leftskip = \!!zeropoint
\rightskip = \!!zeropoint
\relax}
\dontcompl.. In this module we do a lot of box manipulations. Because we don’t want to be confronted with to

many over- and underfull messages we introduce \dontcomplain.

6 \def\dontcomplain
{\hbadness = \!!tenthousand

\hfuzz = \maxdimen
\vbadness = \!!tenthousand
\vfuzz = \maxdimen}
\normaloff.. The next hack is needed because in ConTEXt we redefine \offinterlineskip.

ConTEXt ConTgXt Support Macrossupb-vis

\normalhbox
\normalvbox
\normalvtop

\normalhskip
\normalvskip

\normalpen. .
\normalkern

10

\normalhglue
\normalvglue

11

\normalmkern
\normalmskip

12

\hfilneg
\vfilneg

13

14

\normalhss
\normalhfil
\normalhfill
\normalvss
\normalvfil
\normalvfill

15

\normalhfi..
\normalhfi..
\normalvfi..
\normalvfi..

supp-vis

Visualization

\ifx\undefined\normaloffinterlineskip
\let\normaloffinterlineskip=\offinterlineskip
\fi

There are three types of boxes, one horizontal and two vertical in nature. As we will see later on, all
three types are to be handled according to their orientation and baseline behavior. Especially \vtop’s
need our special attention.

\let\normalhbox = \hbox
\let\normalvbox = \vbox
\let\normalvtop = \vtop
\let\normalvcenter = \vcenter

Next come the flexible skips, which come in two flavors too. Like boxes these are handled with TEX
primitives.

\let\normalhskip
\let\normalvskip

= \hskip
= \vskip

Both penalties and kerns are taken care of by mode sensitive primitives. This means that when making
them visible, we have to take the current mode into account.

\let\normalpenalty = \penalty
\let\normalkern = \kern

Glues on the other hand are macro’s defined in PLAIN TgX. As we will see, their definitions make the
implementation of their visible counterparts a bit more TEXnical.

\let\normalhglue = \hglue
\let\normalvglue = \vglue

Math mode has its own spacing primitives, preceded by m. Due to the relation with the current font
and the way math is typeset, their unit mu is not compatible with other dimensions. As a result, the
visual appearance of these primitives is kept primitive too.

\let\normalmkern = \mkern
\let\normalmskip = \mskip

Fills can be made visible quite easy. We only need some additional negation macros. Because PLAIN
TeX only offers \hfilneg and \vfilneg, we define our own alternative double 11’ed ones.

\def\hfillneg
{\normalhskip\!!zeropoint \!!plus-1fill\relax}

\def\vfillneg
{\normalvskip\!!zeropoint \!!plus-1fill\relax}

The positive stretch primitives are used independant and in combination with \leaders.

\let\normalhss = \hss
\let\normalhfil = \hfil
\let\normalhfill = \hfill
\let\normalvss = \vss
\let\normalvfil = \vfil
\let\normalvfill = \vfill

Keep in mind that both \hfillneg and \vfillneg are not part of PLAIN TgX and therefore not
documented in standard TEX documentation. They can nevertheless be used at will.

ConTEXt ConTeXt Support Macros

Visualization

\let\normalhfilneg \hfilneg
16 \let\normalhfillneg = \hfillneg
\let\normalvfilneg = \vfilneg
\let\normalvfillneg = \vfillneg

Visualization is not always wanted. Instead of turning this option off in those (unpredictable) situa-
tions, we just redefine a few PLAIN macros.

17 \def\rlap#1{\normalhbox to \!!zeropoint{#1\normalhss}}
\def\llap#1{\normalhbox to \!!zeropoint{\normalhss#1}}

18 \def {\normalpenalty\!!tenthousand\ }

\makeruled.. Ruled boxes can be typeset is many ways. Here we present just one alternative. This implementation
may be a little complicated, but it supports all three kind of boxes. The next command expects a
(box) specification, like:

\makeruledbox0
\baseliner.. We can make the baseline of a box visible, both dashed and as a rule. The line is drawn on top of the
\baselinef.. haseline. All we have to say is:

\baselineruletrue

\baselinefilltrue

At the cost of some overhead these alternatives are implemented using \if’s:

19 \newif\ifbaselinerule \baselineruletrue
\newif\ifbaselinefill \baselinefillfalse

\iftoprule Rules can be turned on and off, but by default we have:

\ifbottomr. .
\ifleftrule \topruletrue
\ifrightrule \bottomruletrue
\leftruletrue
\rightruletrue
As we see below:

20 \newif\iftoprule \topruletrue
\newif\ifbottomrule \bottomruletrue
\newif\ifleftrule \leftruletrue
\newif\ifrightrule \rightruletrue

\boxrulewi.. The width in the surrounding rules can be specified by assigning an apropriate value to the dimension

used. This module defaults the width to:
\boxrulewidth=.2pt

Although we are already low on (dimensions) it’s best to spend one here, mainly because it enables
easy manipulation, like multiplication by a given factor.

21 \newdimen\boxrulewidth \boxrulewidth=.2pt

The core macro \makeruledbox looks a bit hefty. The manipulation at the end is needed because we
want to preserve both the mode and the baseline. This means that \vtop’s and \vbox’es behave the
way we expect them to do.

ConTEXt ConTgXt Support Macrossupp-vis

Visualization

test

The \cleaders part of the macro is responsible for the visual baseline. The \normalhfill belongs
to this primitive too. By storing and restoring the height and depth of box #1, we preserve the mode.

22 \def\makeruledbox#1
{\edef\ruledheight{\the\ht#1}
\edef\ruleddepth {\the\dp#1}
\edef\ruledwidth {\the\wd#1}
\setbox\scratchbox=\normalvbox
{\dontcomplain
\normaloffinterlineskip
\visualhrule
\!theight\boxrulewidth
\iftoprule\else\!!width\!!zeropoint\fi
\normalvskip-\boxrulewidth
\normalhbox to \ruledwidth
{\visualvrule
\!'height\ruledheight
\!!depth\ruleddepth
\!lwidth\ifleftrule\elseO\fi\boxrulewidth
\ifdim\ruledheight>\!!zeropoint \else \baselinerulefalse \fi

\ifdim\ruleddepth>\!!zeropoint \else \baselinerulefalse \fi
\ifbaselinerule

\ifdim\ruledwidth<20\boxrulewidth
\baselinefilltrue
\fi
\cleaders
\ifbaselinefill
\visualhrule
\!height\boxrulewidth
\else
\normalhbox
{\normalhskip2.5\boxrulewidth
\visualvrule
\!'height\boxrulewidth
\!!widthb5\boxrulewidth
\normalhskip2.5\boxrulewidth}
\fi
\fi
\normalhfill
\visualvrule
\!!width\ifrightrule\elseO\fi\boxrulewidth}
\normalvskip-\boxrulewidth
\visualhrule
\!'height\boxrulewidth
\ifbottomrule\else\!!width\!!zeropoint\fi}
\wd#1=\!!zeropoint
\setbox#1=\ifhbox#1\normalhbox\else\normalvbox\fi
{\normalhbox{\box#1\lower\ruleddepth\box\scratchbox}}

supp-vis ConTgXt ConTEXt Support Macros

\ruledhbox
\ruledvbox
\ruledvtop
\ruledvcen. .

23

24

Visualization

\ht#1=\ruledheight
\wd#1=\ruledwidth
\dp#1=\ruleddepth}

Just in case one didn’t notice: the rules are in fact layed over the box. This way the contents of a
box cannot visually interfere with the rules around (upon) it. A more advanced version of ruled boxes
can be found in one of the core modules of ConTgXt. There we take offsets, color, rounded corners,
backgrounds and alignment into account too.

These macro’s can be used instead of \hbox, \vbox, \vtop and, when in math mode, \vcenter. They
just do what their names state. Using an auxiliary macro would save us a few words of memory, but
it would make their appearance even more obscure.

\hbox
{\strut
one
one two thred four five two
\hbox{three}
four
five}
\unexpanded\def\ruledhbox
{\normalhbox\bgroup
\dowithnextbox{\makeruledbox\nextbox\box\nextbox\egroup}
\normalhbox}
\vbox
first line {\§trut .
second line first line \par
third line second line \par
fourth line third line \par
fth Tine fourth line \par
fifth line
\strut }
\unexpanded\def\ruledvbox
{\normalvbox\bgroup
\dowithnextbox{\makeruledbox\nextbox\box\nextbox\egroup}
\normalvbox}
\vtop
first.line {\étIUt .
second line first line \par
third line second line \par
fourth line third line \par
ffth Tine fourth line \par
fifth line
\strut }

ConTEXt ConTgXt Support Macrossupp-vis

25

26

\ruledbox
\setruledbox

27

28

\investiga. .
\investiga..
\investiga. .

supp-vis

Visualization

\unexpanded\def\ruledvtop

{\normalvtop\bgroup
\dowithnextbox{\makeruledbox\nextbox\box\nextbox\egroup}
\normalvtop}
alia \th x
beta {$\vcenter{\hsize.2\hsize
gamma alfa \par betal}$
ihf ara $\vcenter to 3cm{\hsize.2\hsize
cla alfa \par beta \par gamma}$
$\vcenter{\hsize.2\hsize
alfa \par beta}$}

\unexpanded\def\ruledvcenter

{\normalvbox\bgroup

\dontinterfere

\dowithnextbox
{\scratchdimen=.5\ht\nextbox
\advance\scratchdimen by .5\dp\nextbox
\ht\nextbox=\scratchdimen
\dp\nextbox=\scratchdimen
\ruledhbox{\box\nextbox}
\egroup}

\normalvbox}

Of the next two macros the first can be used to precede a box of ones own choice. One can for instance
prefix boxes with \ruledbox and afterwards — when the macro satisfy the needs — let it to \relax.

\ruledbox\hbox{What rules do you mean?}
The macro \setruledbox can be used to directly rule a box.
\setruledbox12=\hbox{Who’s talking about rules here?}

At the cost of some extra macros we can implement a variant that does not need the =, but we stick
to:

\unexpanded\def\ruledbox
{\dowithnextbox{\makeruledbox\nextbox\box\nextbox}}

\def\setruledbox#l=
{\dowithnextbox{\makeruledbox\nextbox\setbox#l=\nextbox}}

Before we meet the visualizing macro’s, we first implement ourselves some handy utility ones. Just
for the sake of efficiency and readability, we introduce some status variables, that tell us a bit more
about the registers we use:

\ifflexible
\ifzero

\ifnegative
\ifpositive

These status variables are set when we call for one of the investigation macros, e.g.

\investigateskip\scratchskip

ConTEXt ConTgXt Support Macros

Visualization

We use some dirty trick to check stretchability of (skips). Users of these macros are invited to study
their exact behavior first. The positive and negative states both include zero and are in fact non-

negative (> 0) and non-positive (< 0) .

29 \newif\ifflexible
\newif\ifzero
\newif\ifnegative
\newif\ifpositive

30 \def\investigateskip#1l
{\relax
\scratchdimen=#1\relax
\edef\!!stringa{\the\scratchdimen}
\edef\!!stringb{\the#1}

\ifx\!!stringa\!!stringb \flexiblefalse \else \flexibletrue \fi

\ifdim#1=\!!zeropoint\relax
\zerotrue \else
\zerofalse \fi

\ifdim#1<\!!zeropoint\relax
\positivefalse \else
\positivetrue \fi

\ifdim#1>\!!zeropoint\relax
\negativefalse \else
\negativetrue \fi}

31 \def\investigatecount#1

{\relax

\flexiblefalse

\ifnum#1=0
\zerotrue \else
\zerofalse \fi

\ifnum#1<0
\positivefalse \else
\positivetrue \fi

\ifnum#1>0
\negativefalse \else
\negativetrue \fi}

32 \def\investigatemuskip#1

{\relax
\edef\!!stringa{\the\scratchmuskip}
\edef\!!stringb{Omu}
\def\!!stringc##1##2\\{##1}
\expandafter\edef\expandafter\!!stringc\expandafter

{\expandafter\!!stringc\!!stringa\\}
\edef\!!stringd{-}
\flexiblefalse
\ifx\!!stringa\!!stringb

\zerotrue

\negativefalse

\positivefalse
\else

\zerofalse

\ifx\!!stringc\!!stringd

ConTEXt

ConTeXt Support Macrossupp-vis

\ifcentere. .
\normalvcue

33

34

\testrulew. .

supp-vis

Visualization

\positivefalse
\negativetrue
\else
\positivetrue
\negativefalse
\fi
\fi}

Now the neccessary utility macros are defined, we can make a start with the visualizing ones. The
implementation of these macros is a compromise between readability, efficiency of coding and process-
ing speed. Sometimes we do in steps what could have been done in combination, sometimes we use a
few boxes more or less then actually needed, and more than once one can find the same piece of rule
drawing code twice.

Depending on the context, one can force visual vertical cues being centered along \hsize or being put
at the current position. Although centering often looks better, we’ve chosen the second alternative as
default. The main reason for doing so is that often when we don’t set the \hsize ourselves, TgX takes
the value of the surrounding box. As a result the visual cues can migrate outside the current context.

This behavior is accomplished by a small but effective auxiliary macro, which behavior can be influ-
enced by the boolean \centeredvcue. By saying

\centeredvcuetrue
one turns centering on. As said, we turn it off.
\newif\ifcenteredvcue \centeredvcuefalse

\def\normalvcue#l
{\normalhbox \ifcenteredvcue to \hsize \fi {\normalhss#1\normalhss}}

We could have used the more robust version

\def\normalvcue
{\normalhbox \ifcenteredvcue to \hsize \fi
\bgroup\bgroup\normalhss
\aftergroup\normalhss\aftergroup\egroup
\let\next=}

or the probably best one:

\def\normalvcue},

{\hbox \ifcenteredvcue to \hsize
\bgroup\bgroup\normalhss
\aftergroup\normalhss\aftergroup\egroup

\else
\bgroup

\fi

\let\next=}

Because we don’t have to preserve (catcodes) and only use small arguments, we stick to the first
alternative.

We build our visual cues out of rules. At the cost of a much bigger DVI file, this is to be prefered over
using characters (1) because we cannot be sure of their availability and (2) because their dimensions
are fixed.

ConTEXt ConTeXt Support Macros

Visualization

As with ruled boxes, we use a (dimension) to specify the width of the ruled elements. This dimension
defaults to:

\testrulewidth=\boxrulewidth

Because we prefer whole numbers for specifying the dimensions, we often use even multiples of
\testrulewidth.

\visiblest.. A second variable is introduced because of the stretch components of (skips). At the cost of some
accuracy we can make this stretch visible.

\visiblestretchtrue

35 \newdimen\testrulewidth \testrulewidth=\boxrulewidth
\newif\ifvisiblestretch \visiblestretchfalse

\ruledhss = We start with the easiest part, the fills. The scheme we follow is visual filling — going back — normal
\ruledhfil fi]ling. Visualizing is implemented using \cleaders. Because the (boz) that follows this command is
\ruledhfil.. o .hotricted only once, the \copy is not really a prerequisite. We prefer using a \normalhbox here

\ruledhfill .
\ruledhfil. . lnStead Of a \thX.

36 \def\setvisiblehfilbox#1\to#2#3#4
{\setbox#1=\normalhbox
{\visualvrule
\!'!width#2\testrulewidth
\!'height#3\testrulewidth
\!!depth#4\testrulewidth}
\smashbox#1}

37 \def\doruledhfiller#1#2#3#4
{#1#2
\bgroup
\dontinterfere
\dontcomplain
\setvisiblehfilboxO\to{4}{#3}{#4}
\setvisiblehfilbox2\to422
\copy0\copy2
\bgroup
\setvisiblehfilbox0\to422
\cleaders
\normalhbox to 12\testrulewidth
{\normalhss\copyO\normalhss}
#1
\egroup
\setbox0=\normalhbox
{\normalhskip-4\testrulewidth\copyO\copy2}
\smashbox0
\box0
\egroup}

The horizontal fillers differ in their boundary visualization. Watch the small dots. Fillers can be
combined within reasonable margins.

ConTEXt ConTgXt Support Macrossupp-vis

Visualization

N TS — test)
N S oo — test
NBE 1L oo test]
NBELINRE S LB St \hfil

NBELLIOE, oo ST

NRE L LIIN@E, ..o test

Although leaders are used for visualizing, they are visualized themselves correctly as the next example
shows.

All five substitutions use the same auxiliary macro. Watch the positive first — negative next approach.

38 \unexpanded\def\ruledhss
{\doruledhfiller\normalhss\normalhfilneg{0}{0}}

39 \unexpanded\def\ruledhfil
{\doruledhfiller\normalhfil\normalhfilneg{10}{-6}}

40 \unexpanded\def\ruledhfill
{\doruledhfiller\normalhfill\normalhfillneg{18}{-14}}

41 \unexpanded\def\ruledhfilneg
{\doruledhfiller\normalhfilneg\normalhfil{-6}{10}}

42 \unexpanded\def\ruledhfillneg
{\doruledhfiller\normalhfillneg\normalhfill{-14}{18}}

\ruledvss The vertical mode commands adopt the same visualization scheme, but are implemented in a slightly

\ruledviil djifferent way.
\ruledvfil..

\ruledvfill \gof\getvisiblevfilbox#1\to#2#3#4
\ruledvfil..
{\setbox#1=\normalhbox
43 {\visualvrule
\!!width#2\testrulewidth
\!'height#3\testrulewidth
\!!depth#4\testrulewidth}
\smashbox#1}

44 \def\doruledvfiller#1#2#3

{#1#2

\bgroup
\dontinterfere
\dontcomplain
\normaloffinterlineskip
\setvisiblevfilbox0\to422
\setbox2=\normalvcue

{\normalhskip -#3\testrulewidth\copyO}

\smashbox2

supp-vis ConTgXt ConTeXt Support Macros 10

Visualization

\copy2
\bgroup
\setbox2=\normalvcue
{\normalhskip -2\testrulewidth\copy0}
\smashbox2
\copy2
\cleaders
\normalvbox to 12\testrulewidth
{\normalvss\copy2\normalvss}
#1
\setbox2=\normalvbox
{\normalvskip-2\testrulewidth\copy2}
\smashbox2
\box2
\egroup
\box2
\egroup}

Because they act the same as their horizontal counterparts we only show a few examples.

\vss . viil . vfill . Vfilneg vfillngg

i N

ast line ast line ast line ast. line ast line

Keep in mind that \vfillneg is not part of PLAIN TEX, but are mimmicked by a macro.

45 \unexpanded\def\ruledvss
{\doruledvfiller\normalvss\normalvfilneg{2}}

46 \unexpanded\def\ruledvfil
{\doruledvfiller\normalvfil\normalvfilneg{-4}}

47 \unexpanded\def\ruledvfill
{\doruledvfiller\normalvfill\normalvfillneg{-12}}

48 \unexpanded\def\ruledvfilneg
{\doruledvfiller\normalvfilneg\normalvfil{8}}

49 \unexpanded\def\ruledvfillneg
{\doruledvfiller\normalvfillneg\normalvfill{16}}

\ruledhskip Skips differ from kerns in two important aspects:

e line and pagebreaks are allowed at a skip
e skips can have a positive and/or negative stretchcomponent

ConTEXt ConTeXt Support Macrossupbkvis

Visualization

Stated a bit different: kerns are fixed skips at which no line or pagebreak can occur. Because skips
have a more open character, they are visualized in a open way.

one

\hskip +30pt plus 5pt
two

\hskip +30pt

\hskip ~10pt plus 5pt

bne. . two . ;hgpp¢0nru five three
\hskip Opt
four
\hskip +30pt
five

When skips have a stretch component, this is visualized by means of a dashed line. Positive skips
are on top of the baseline, negative ones are below it. This way we can show the combined results.
An alternative visualization of stretch could be drawing the mid line over a length of the stretch, in
positive or negative direction.

50 \def\doruledhskip
{\relax
\dontinterfere
\dontcomplain
\investigateskip\scratchskip
\ifzero
\setbox0=\normalhbox
{\normalhskip-\testrulewidth
\visualvrule
\!!width4\testrulewidth
\!'theight16\testrulewidth
\!!depthi6\testrulewidth}
\else
\setbox0=\normalhbox to \ifnegative-\fi\scratchskip
{\visualvrule
\!lwidth2\testrulewidth
\ifnegative\!!depth\else\!'height\fil6\testrulewidth
\cleaders
\visualhrule
\ifnegative
\!!depth2\testrulewidth
\!'height\!!zeropoint
\else
\!'height2\testrulewidth
\!!depth\!!zeropoint
\fi
\normalhfill
\ifflexible
\normalhskip\ifnegative\else-\fi\scratchskip
\normalhskip2\testrulewidth
\cleaders
\normalhbox
{\normalhskip 2\testrulewidth

supp-vis ConTgXt ConTEXt Support Macros

12

Visualization

\visualvrule
\!!width2\testrulewidth
\!theight\ifnegative-7\else9\fi\testrulewidth
\!!depth\ifnegative9\else-7\fi\testrulewidth
\normalhskip 2\testrulewidth}
\normalhfill
\fi
\visualvrule
\!lwidth2\testrulewidth
\ifnegative\!!depth\else\!'height\fil6\testrulewidth}
\setbox0=\normalhbox
{\ifnegative\else\normalhskip-\scratchskip\fi
\box0}
\fi
\smashbox0
\ifvisiblestretch \else
\flexiblefalse
\fi
\ifflexible
breaks ok but small displacements can occur
\skip2=\scratchskip
\advance\skip2 by -1\scratchskip
\divide\skip2 by 2
\advance\scratchskip by —\skip2
\normalhskip\scratchskip
\normalpenalty\!!tenthousand
\box0
\normalhskip\skip2
\else
\normalhskip\scratchskip
\box0
\fi
\egroup}

51 \unexpanded\def\ruledhskip
{\bgroup
\afterassignment\doruledhskip
\scratchskip=}

The visual skip is located at a feasible point. Normally this does not interfere with the normaltype-
setting process. The next examples show (1) the default behavior, (2) the (not entirely correct)
distributed stretch and (3) the way the text is typeset without cues.

test test testtest test testtest test testtest test testtest test testtest test
testtest test testtest test testtest test testtest test testtest test testtest test
testtest test testtest test testtest test test

ConTEXt ConTeXt Support Macrossupf3vis

Visualization

\ruledvskip = We are less fortunate when implementing the vertical skips. This is a direct result of interference
between the boxes that visualize the skip and skip removal at a pagebreak. Normally skips disappear
at the top of a page, but not of course when visualized in a \vbox. A quite perfect simulation could
have been built if we would have had available two more primitives: \hnop and \vnop. These new
primitives could stand for boxes that are visible but are not taken into account in any way. They are
there for us, but not for TEX.

first line first line
\vskip +30pt plus 5pt
] second line
second line _ \vskip +30pt
\vskip ~10pt plus 5pt
1 third line
third line i \par
fourth line - fourth line
\vskip +30pt
fifth line
fifth line — \vskip ~ Opt
. . sixth line
sixth line

We have to postpone \prevdepth. Although this precaution probably is not completely waterproof,
it works quite well.

52 \def\dodoruledvskip
{\nextdepth=\prevdepth
\dontinterfere
\dontcomplain
\normaloffinterlineskip
\investigateskip\scratchskip
\ifzero
\setbox0=\normalvcue
{\visualvrule
\!!width32\testrulewidth
\!lheight2\testrulewidth
\!!depth2\testrulewidth}
\else
\setbox0=\normalvbox to \ifnegative-\fi\scratchskip
{\visualhrule
\!!widthi16\testrulewidth
\!'theight2\testrulewidth
\ifflexible
\cleaders
\normalhbox to 16\testrulewidth
{\normalhss
\normalvbox
{\normalvskip 2\testrulewidth
\visualhrule
\!!width2\testrulewidth
\!'height2\testrulewidth
\normalvskip 2\testrulewidth}
\normalhss}
\normalvfill

supp-vis ConTgXt ConTEXt Support Macros

14

53

\else
\normalvfill
\fi
\visualhrule
\!!widthi16\testrulewidth
\!lheight2\testrulewidth}
\setbox2=\normalvbox to \htO
{\visualhrule
\!lwidth2\testrulewidth
\!'height\htO}
\ifnegative
\ht0=\!!zeropoint
\setbox0=\normalhbox
{\normalhskip2\testrulewidth /. will be improved
\normalhskip-\wdO\boxO}
\fi
\smashbox0
\smashbox2
\setbox0=\normalvcue
{\box2\box0}
\setbox0=\normalvbox
{\ifnegative\normalvskip\scratchskip\fi\box0}
\smashbox0
\fi
\ifvisiblestretch
\ifflexible
\skip2=\scratchskip
\advance\skip2 by -1\scratchskip
\divide\skip2 by 2
\advance\scratchskip by —\skip2
\normalvskip\skip2
\fi
\fi
\normalpenalty\!!tenthousand
\box0
\prevdepth=\nextdepth 7 not \dpO=\nextdepth
\normalvskip\scratchskip}

\def\doruledvskip

{\endgraf \par
\ifdim\pagegoal=\maxdimen
\ifinner
\dodoruledvskip
\fi
\else
\dodoruledvskip
\fi
\egroup}

ConTEXt

Visualization

We try to avoid interfering at the top of a page. Of course we only do so when we are in the main
vertical list.

ConTeXt Support Macrossupibvis

54 \unexpanded\def\ruledvskip
{\bgroup
\afterassignment\doruledvskip
\scratchskip=}

Visualization

\ruledkern The macros that implement the kerns are a bit more complicated than needed, because they also serve
the visualization of glue, our PLAIN defined kerns with stretch or shrink. We’ve implemented both

horizontal and vertical kerns as ruled boxes.

one
\kern +30pt
two
\kern +30pt
one ———two ——three four ———five \kern -10pt
— three
\kern Opt
four
\kern +30pt
five

Positive and negative kerns are placed on top or below the baseline, so we are able to track their added
result. We didn’t mention spacings of 0 pt yet. Zero values are visualized a bit different, because we

want to see them anyhow.

55 \def\doruledhkern
{\dontinterfere
\dontcomplain
\baselinerulefalse
\investigateskip\scratchskip
\boxrulewidth=2\testrulewidth
\ifzero
\setbox0=\ruledhbox to 8\testrulewidth
{\visualvrule
\!!width\!!zeropoint
\!'height16\testrulewidth
\!!depthi6\testrulewidth}
\setbox0=\normalhbox
{\normalhskip-4\testrulewidth\box0}
\else
\setbox0=\ruledhbox to \ifnegative-\fi\scratchskip
{\visualvrule
\!lwidth\!!zeropoint
\ifnegative\!!depth\else\!'height\fil6\testrulewidth
\ifflexible
\normalhskip2\testrulewidth
\cleaders
\normalhbox
{\normalhskip 2\testrulewidth
\visualvrule
\!lwidth2\testrulewidth
\!lheight\ifnegative-7\else9\fi\testrulewidth

supp-vis ConTpXt

ConTgXt Support Macros

16

Visualization

\!!depth\ifnegative9\else-7\fi\testrulewidth
\normalhskip 2\testrulewidth}
\normalhfill
\else
\normalhfill
\fi}
\testrulewidth=2\testrulewidth
\setbox0O=\ruledhbox{\box0}/ \make...
\fi
\smashbox0
\normalpenalty\!!tenthousand
\normalhbox to \!!zeropoint
{\ifnegative\normalhskipl\scratchskip\fi
\box0}
\afterwards\scratchskip
\egroup}

56 \unexpanded\def\ruledhkern#l
{\bgroup
\let\afterwards=#1\relax
\afterassignment\doruledhkern
\scratchskip=}

After having seen the horizontal ones, the vertical kerns will not surprise us. In this example we use
\par to switch to vertical mode.

first line first line

\par \kern +30pt
second line

\par \kern +30pt
\par \kern -10pt
third line

\par

fourth line

\par \kern +30pt
fifth line

fifth line \par \kern Opt
sixth line

second line

third line
fourth line

l—|;—|I—|

sixth line

Like before, we have to postpone \prevdepth. If we leave out this trick, we got ourselves some wrong
spacing.

57 \def\dodoruledvkern
{\nextdepth=\prevdepth
\dontinterfere
\dontcomplain
\baselinerulefalse
\normaloffinterlineskip
\investigateskip\scratchskip
\boxrulewidth=2\testrulewidth
\ifzero
\setbox0=\ruledhbox to 32\testrulewidth
{\visualvrule

ConTEXt ConTeXt Support MacrossupbFvis

Visualization

\!!width\!!zeropoint
\!'height4\testrulewidth
\!!depthé\testrulewidth}
\else
\setbox0O=\ruledvbox to \ifnegative-\fi\scratchskip
{\hsizel6\testrulewidth
\ifflexible
\cleaders
\normalhbox to 16\testrulewidth
{\normalhss
\normalvbox
{\normalvskip 2\testrulewidth
\visualhrule
\!'!width2\testrulewidth
\!'height2\testrulewidth
\normalvskip 2\testrulewidth}
\normalhss}
\normalvfill
\else
\visualvrule
\!!width\!!zeropoint
\!lheight\ifnegative-\fi\scratchskip
\normalhfill
\fi}
\fi
\testrulewidth=2\testrulewidth
\setbox0=\ruledvbox{\box0}/, \make...
\smashbox0
\setbox0=\normalvbox
{\ifnegative\normalvskip\scratchskip\fi

\normalvcue
{\ifnegative\normalhskip-16\testrulewidth\fi\box0}}
\smashbox0
\normalpenalty\!!tenthousand
\box0

\prevdepth=\nextdepth} 7, not \dpO=\nextdepth

58 \def\doruledvkern
{\ifdim\pagegoal=\maxdimen
\ifinner
\dodoruledvkern
\fi
\else
\dodoruledvkern
\fi
\afterwards\scratchskip
\egroup}

59 \unexpanded\def\ruledvkern#l
{\bgroup
\let\afterwards=#1\relax
\afterassignment\doruledvkern
\scratchskip=}

supp-vis ConTgXt ConTeXt Support Macros 18

Visualization

60 \unexpanded\def\ruledkern
{\ifvmode
\expandafter\ruledvkern
\else
\expandafter\ruledhkern
\fi
\normalkern}

A a bit more TgXnice solution is:

\unexpanded\def\ruledkerny
{\csname ruled\ifvmode v\else h\fi kern\endcsname\normalkern}

\ruledhglue The non-primitive glue commands are treated as kerns with stretch. This stretch is presented as a
\ruledvglue dashed line. I have to admit that until now, I'’ve never used these glue commands.

one
\hglue +30pt plus 5pt
two

\hglue +30pt

\hglue ~10pt plus 5pt

one two T‘PP unfO]lI‘ ——five three
\hglue Opt
four
\hglue +30pt
five

62 \def\doruledhglue
{\leavevmode
\scratchcounter=\spacefactor
\visualvrule\!!width\!!zeropoint
\normalpenalty\!!tenthousand
\ruledhkern\normalhskip\scratchskip
\spacefactor=\scratchcounter
\egroup}

63 \unexpanded\def\ruledhglue
{\bgroup
\afterassignment\doruledhglue\scratchskip=}

ConTEXt ConTeXt Support Macrossupi-vis

Visualization

first line first line
E \vglue +30pt plus 5pt

second line

second line _ \vglue +30pt
\vglue ~10pt plus 5pt
third line

third line [l \par

fourth line _ fourth line
\vglue +30pt
fifth line

fifth line _ \vglue — Opt

sixth line sixth line

64 \def\doruledvglue
{\endgraf 7, \par
\nextdepth=\prevdepth
\visualhrule\! 'height\!!zeropoint
\normalpenalty\!!tenthousand
\ruledvkern\normalvskip\scratchskip
\prevdepth=\nextdepth
\egroup}

65 \unexpanded\def\ruledvglue
{\bgroup
\afterassignment\doruledvglue\scratchskip=}

\ruledmkern = Mathematical kerns and skips are specified in mu. This font related unit is incompatible with those
\ruledmskip of (dimensions) and (skips). Because in math mode spacing is often a very subtle matter, we've used
a very simple, not overloaded way to show them.

66 \def\dodoruledmkern#1
{\dontinterfere
\dontcomplain
\setbox0=\normalhbox
{$\normalmkern\ifnegative-\fi\scratchmuskip$}
\setbox0=\normalhbox to \wd0
{\visualvrule
\!'height16\testrulewidth
\!!depthi6\testrulewidth
\!!width\testrulewidth
\leaders
\visualhrule
\!'height\ifpositivel6\else-14\fi\testrulewidth
\!!depth\ifpositive-14\elsel6\fi\testrulewidth
\normalhfill
\ifflexible
\normalhskip-\wdO
\leaders
\visualhrule
\!'height\testrulewidth
\!!depth\testrulewidth

supp-vis ConTgXt ConTEXt Support Macros

20

67

68

69

70

\penalty

Visualization

\normalhfill
\fi
\visualvrule
\!'height16\testrulewidth
\!!depthi6\testrulewidth
\!!width\testrulewidth}
\smashbox0
\ifnegative
#1\scratchmuskip
\box0
\else
\box0
#1\scratchmuskip
\fi
\egroup}

$a \mkern3mu = \mkern3mu
b \quad
\mkern-2mu + \mkern 2mu
\quad c$

hH::ﬂh_%4_%JC

\def\doruledmkern
{\investigatemuskip\scratchmuskip
\flexiblefalse
\dodoruledmkern\normalmkern}

\unexpanded\def\ruledmkern
{\bgroup
\afterassignment\doruledmkern\scratchmuskip=}

$a \mskip3mu = \mskip3mu
b \quad
@ = b \mskip 2mu + \mskip 2mu
\quad c$
\def\doruledmskip
{\investigatemuskip\scratchmuskip
\flexibletrue

\dodoruledmkern\normalmskip}

\unexpanded\def\ruledmskip
{\bgroup
\afterassignment\doruledmskip\scratchmuskip=}

After presenting fills, skip, kerns and glue we’ve come to see penalties. In the first implementation —
most of the time needed to develop this set of macros went into testing different types of visualization
— penalties were mere small blocks with one black half, depending on the sign. This most recent
version also gives an indication of the amount of penalty. Penalties can go from less than —10000 to

ConTEXt ConTeXt Support Macrossuppkvis

Visualization

over +10000, and their behavior is somewhat non-lineair, with some values having special meanings.
We therefore decided not to use its value for a lineair indicator.

one
\penalty +100
two
\penalty +100
\penalty -100

bne two three four five
— o —

three
\penalty 0
four
\penalty +100
five

The small sticks at the side of the penalty indicate it size. The next example shows the positive and
negative penalties of 0, 1, 10, 100, 1000 and 10000.

test test fest fest fest fest test
test test test fest test test test
This way stacked penalties of different severance can be shown in combination.

test pest test fest

71 \def\setruledpenaltybox#1#2#3#4#5#6
{\setbox#1=\normalhbox
{\ifnum#2=0 \else

\ifnum#2>0
\def\sign{+}
\else
\def\sign{-}
\fi
\dimen0=\ifnum\sign#2>9999
28\else
\ifnum\sign#2>999
22\else
\ifnum\sign#2>99
16\else
\ifnum\sign#2>9
10\else
4
\fi\fi\fi\fi \testrulewidth
\ifnum#2<0

\normalhskip-\dimenO
\normalhskip-2\testrulewidth
\visualvrule
\!!width2\testrulewidth
\!'height#3\testrulewidth
\!!depth#4\testrulewidth
\fi
\visualvrule
\!!width\dimenO
\!theight#5\testrulewidth

supp-vis ConTgXt ConTEXt Support Macros

22

Visualization

\!!depth#6\testrulewidth
\ifnum#2>0

\visualvrule
\!'!width2\testrulewidth
\!lheight#3\testrulewidth
\!!depth#4\testrulewidth

\fi
\fi}
\smashbox#1}

72 \def\doruledhpenalty
{\dontinterfere
\dontcomplain
\investigatecount\scratchcounter
\testrulewidth=2\testrulewidth
\boxrulewidth=\testrulewidth
\setbox0=\ruledhbox to 8\testrulewidth
{\ifnegative\else\normalhss\fi
\visualvrule
\!!depth8\testrulewidth
\!lwidth\ifzeroO\else4\fi\testrulewidth
\ifpositive\else\normalhss\fi}
\setruledpenaltybox{2}{\scratchcounter}{0}{8}{ 3.5}{4.5}
\normalpenalty\!!tenthousand
\setbox0=\normalhbox
{\normalhskip-4\testrulewidth
\ifnegative
\box2\box0
\else
\box0\box2
\fi}
\smashbox0
\box0
\normalpenalty\scratchcounter
\egroup}

73 \unexpanded\def\ruledhpenalty
{\bgroup
\afterassignment\doruledhpenalty
\scratchcounter=}

ConTgXt ConTeXt Support Macrossup?3vis

74

supp-vis

Visualization

The size of a vertical penalty is also shown on the horizontal axis. This way there is less interference

with the often preceding or following skips and kerns.

first line
\par \penalty +100
second line
first hne‘ = \par \penalty +100
se§ond'hne . \par \penalty 100
third line = third line
gzﬁfﬁiine = \par \penalty 0
fourth line
\par \penalty +100
fifth line
\def\doruledvpenalty

{\ifdim\pagegoal=\maxdimen
\else
\nextdepth=\prevdepth
\dontinterfere
\dontcomplain

\investigatecount\scratchcounter
\testrulewidth=2\testrulewidth
\boxrulewidth=\testrulewidth
\setbox0=\ruledhbox
{\visualvrule
\!lheight4\testrulewidth
\!!depth4\testrulewidth
\!'!width\!!zeropoint
\visualvrule
\!'height\ifnegative.b\elsed\fi\testrulewidth
\!!depth\ifpositive.5\elsed4\fi\testrulewidth
\!!lwidth8\testrulewidth}
\setruledpenaltybox{2}{\scratchcounter}{4}{4}{.5}{.5%}
\setbox0=\normalhbox
{\normalhskip-4\testrulewidth
\ifnegative
\box2\box0
\else
\box0\box2
\fi
\normalhss}
\smashbox0
\normalpenalty\!!tenthousand
\nointerlineskip
\dpO=\nextdepth not \prevdepth=\nextdepth
\normalvbox
{\normalvcue{\box0}}

\fi
\normalpenalty\scratchcounter
\egroup}

ConTEXt

ConTgXt Support Macros

24

75

76

\showfils
\dontshowf. .
\showboxes
\dontshowb. .
\showskips
\dontshows. .
\showpenal. .
\dontshowp. .

78

79

80

81

\unexpanded\def\ruledvpenalty
{\bgroup
\afterassignment\doruledvpenalty
\scratchcounter=}

\unexpanded\def\ruledpenalty
{\ifvmode
\expandafter\ruledvpenalty
\else
\expandafter\ruledhpenalty
\fi}

At the cost of some more tokens, a bit more clever implementation would be:

\unexpanded\def\ruledpenalty¥
{\csname ruled\ifvmode v\else h\fi penalty\endcsname}

Visualization

For those who want to manipulate the visual cues in detail, we have grouped them.

\def\showfils
{\let\hss = \ruledhss
\let\hfil = \ruledhfil
\let\hfill = \ruledhfill

\let\hfilneg = \ruledhfilneg
\let\hfillneg = \ruledhfillneg

\let\vss = \ruledvss
\let\vfil = \ruledvfil
\let\vfill = \ruledvfill

\let\vfilneg = \ruledvfilneg
\let\vfillneg = \ruledvfillneg}

\def\dontshowfils
{\let\hss = \normalhss
\let\hfil = \normalhfil
\let\hfill = \normalhfill

\let\hfilneg = \normalhfilneg
\let\hfillneg = \normalhfillneg

\let\vss = \normalvss
\let\vfil = \normalvfil
\let\vfill = \normalvfill

\let\vfilneg = \normalvfilneg
\let\vfillneg = \normalvfillneg}

\def\showboxes
{\baselineruletrue
\let\hbox = \ruledhbox
\let\vbox = \ruledvbox
\let\vtop = \ruledvtop
\let\vcenter = \ruledvcenter}
\def\dontshowboxes
{\let\hbox = \normalhbox
\let\vbox = \normalvbox
\let\vtop = \normalvtop
\let\vcenter = \normalvcenter}
ConTEXt

ConTeXt Support Macrossupbvis

82

83

84

85

\showingco. .
\showcompo. .
\dontshowc. .

86

87

88

\showmakeup
\defaultte..

supp-vis

\def\showskips
{\let\hskip = \ruledhskip
\let\vskip = \ruledvskip
\let\kern = \ruledkern
\let\mskip = \ruledmskip
\let\mkern = \ruledmkern
\let\hglue = \ruledhglue
\let\vglue = \ruledvglue}

\def\dontshowskips
{\let\hskip = \normalhskip
\let\vskip = \normalvskip
\let\kern = \normalkern
\let\mskip = \normalmskip
\let\mkern = \normalmkern
\let\hglue = \normalhglue
\let\vglue = \normalvglue}

\def\showpenalties

{\let\penalty = \ruledpenalty}

\def\dontshowpenalties
{\let\penalty = \normalpenalty}

Visualization

All these nice options come together in two macros. The first one turns the options on, the second
turnes them off. Both macros only do their job when we are actually showing the composition.

\showingcompositiontrue
\showcomposition

Because the output routine can do tricky things, like multiple column typesetting and manipulation of

the pagebody, shifting things around and so on, the macro \dontshowcomposition best can be called
when we enter this routine. Too much visual cues just don’t make sense. In ConTgXt this has been

taken care of.
\newif\ifshowingcomposition

\def\showcomposition
{\ifshowingcomposition
\showfils
\showboxes
\showskips
\showpenalties

\fi}

\def\dontshowcomposition
{\ifshowingcomposition
\dontshowfils
\dontshowboxes
\dontshowskips
\dontshowpenalties

\fi}

Just to make things even more easy, we have defined:

\showmakeup

ConTEXt

ConTgXt Support Macros

26

89

90

91

Visualization

For the sake of those who don’t (yet) use ConTEXt we preset \defaulttestrulewidth to the already
set value. Otherwise we default to a bodyfontsize related value.

\def\defaulttestrulewidth{.2pt}
Beware, it’s a macro not a (dimension).

\ifx\korpsgrootte\undefined
\edef\defaulttestrulewidth{\the\testrulewidth}
\else
\def\defaulttestrulewidth{.02\korpsgrootte} still dutch
\fi

\def\showmakeup
{\testrulewidth=\defaulttestrulewidth
\showingcompositiontrue
\showcomposition}

\protect

Lets end with some more advanced examples. Definitions and enumerations come in many flavors.
The next one for instance is defined as:

\definedescription[test] [place=left,hang=3,width=6em]

When applied to some text, this would look like:

visual...... I would be very pleased if TgX had two more primitives: \vnop and \hnop. Both should
debugger, _act and show up as normal boxes, but stay invisible for TgX when it’s doing calculations.

The \vnop for instance should not interact with the internal mechanism responsible
for the disappearing skips, kerns and penalties at a pagebreak. As long as we don’t have these two
boxtypes, visual debugging will never be perfect.

the index to this section looks like:

Nbaselinefill. {3 \iftoprule
\baselineruleLJQ \investigatecount
\boxrulewidth |3 \investigatemuskip
[n . . .

L }1nvest1gatesk1ppﬁﬁ

'—f’\defaulttestrulewidt}n_@ —
\dontcomplainLT! Fif\makeruledbox_;g
\dontinterfere_ (I
\dontshowboxes. | 4
\dontshowcomposition;#é@ Fi\normalhb?Xwn
\dontshowfils \normalhfil |
\dontshowpenalties Qigizziiiiiineg
}dontshowsklpsL{ZQ \normalhfilneg

. \normalhglue

Fi\hfilneg;#g \normalhskip
| \normalhss

—

Fi\ifbottomrule;#% t22§221§§22n| >
\ifcenteredvcue;#@ \normalmskip.
Qiii:;;i;ﬁi;ﬂ%a \normaloffintgrlineskipLTI

ConTEXt ConTeXt Support MacrossupdFvis

Visualization

7\norma1pena1typﬁg \ruledvbox
\normalvbox. {2 \ruledvcenterL#E
\normalvcue | \ruledvfil
\normalvfil. |3 \ruledvfill
\normalvfill \ruledvfillneg [I
\normalvfillneg \ruledvfilneg I
\normalvfilneg \ruledvglueLJ&g
\normalvglue \ruledvskip. {1
\normalvskip \ruledvss
\normalvss \ruledvto;jgg
\normalvtop :
=
— —#setruledbox
'—f\penalty \showboxes
| \showcomposition;{é@
:;\ruledboxLﬁé \showfils -
\ruledhbox 3 \show1ngcomp051t10nL4:§
o \showmakeup
\ruledhfil. {9 - =
o \showpenalties
\ruledhflll_ﬂ \showskips @
\ruledhfillneg r
\ruledhfilneg —
\ruledhglue. {I Fi§testrulewidthL#@
\ruledhskip. {11
\ruledhss ::;vfilne
\ruledkern_ {1 B &
\ruledmkern 2] \VlslblestretchL#@
Nruledmskip 2(]

Although not impressive examples or typesetting, both show us how and where things happen. When
somehow the last lines in this two column index don’t allign, then this is due to some still unknown
interference.

92 \endinput

supp-vis ConTgXt ConTgXt Support Macros 28

\baselinefill 3
\baselinerule 3
\boxrulewidth 3

\defaulttestrulewidth 26
\dontcomplain I
\dontinterfere 1
\dontshowboxes 25
\dontshowcomposition 26
\dontshowfils 25
\dontshowpenalties 25
\dontshowskips 25

\hfilneg 2

\ifbottomrule 3
\ifcenteredvcue 8
\ifleftrule 3
\ifrightrule 3
\iftoprule 3
\investigatecount 6
\investigatemuskip 6
\investigateskip 6

\makeruledbox 3

\normalhbox 2
\normalhfil 2
\normalhfill 2
\normalhfillneg 2
\normalhfilneg 2
\normalhglue 2
\normalhskip 2
\normalhss 2
\normalkern 2
\normalmkern 2
\normalmskip 2
\normaloffinterlineskip I
\normalpenalty 2
\normalvbox 2
\normalvcue &8
\normalvfil 2
\normalvfill 2
\normalvfillneg 2

ConTEXt

\normalvfilneg 2
\normalvglue 2
\normalvskip 2
\normalvss 2
\normalvtop 2

\penalty 21

\ruledbox 6
\ruledhbox 5
\ruledhfil 9
\ruledhfill 9
\ruledhfillneg 9
\ruledhfilneg 9
\ruledhglue 19
\ruledhskip 11
\ruledhss 9
\ruledkern 16
\ruledmkern 20
\ruledmskip 20
\ruledvbox &
\ruledvcenter &
\ruledvfil 10
\ruledvfill 10
\ruledvfillneg 10
\ruledvfilneg 10
\ruledvglue 19
\ruledvskip 14
\ruledvss 10
\ruledvtop &

\setruledbox 6
\showboxes 25
\showcomposition 26
\showfils 25
\showingcomposition 26
\showmakeup 26
\showpenalties 25
\showskips 25

\testrulewidth 8§

\vfilneg 2
\visiblestretch 9

ConTeXt Support Macrossup?f-vis

Visualization

N7TS: a New Typesetting System

Karel Skoupy

Faculty of Informatics
Botanicka 68a

602 00 Brno, Czech Republic
Phone: +420-5-752-040
skoupy@informatics.muni.cz

Abstract

NTS represents one possible radical approach to the idea of making a successor
for TEX. Its underlying them is the complete re-implementation of TEX: The
Program in Java. The first version will be compatible with TEX but the struc-
ture of the new program will be as open and modular as possible. At the time
when TEX: The Program was written, computer performance and programming
technology were very limited in comparison with today. Object orientation and
the many other modern features of Java will make many problems easier to solve
and will allow for far greater generality. Polymorphic objects will handle different
font or output formats directly without affecting the rest of the system. The new
implementation will provide a platform on which further experimentation can be
conducted; such experimentation may aim, for example, to improve typographic
quality (e.g. page break optimization) and/or facilitate integration with other

systems.

When considering the future of TEX and its po-
tential successor(s), there were five options available
[9]. They ranged from the most conservative—to
leave TEX exactly as it is— to the most radical —to
design quite a new typesetting system for the next
century. The N77S project started with a relatively
conservative approach to add some extensions and
enhancements to the current TEX which resulted in
e-TEX. It was agreed that the design of a new sys-
tem from scratch is worthy but it had to be post-
poned until the N7S project had adequate financial
resources.

The funds allocated to the NTS project by
DANTE e.V. enabled the radical approach to ATS
to get off the ground. The first meeting of the N7S
group was held in Zeuthen (during a regular DANTE
meeting) between October 8-11 1997. Although the
current author (who was to be employed as a full-
time programmer) was busy with another project, it
was planned that he could start work on A7S near
the beginning of 1998. It of course did not prevent
the working group from thinking about the problem.

Fundamental Desiderata

It had been already decided that A7S should not be
designed from scratch entirely — TEX: The Program
(or more precisely e-TEX) was chosen as the starting
point. What had to be done from scratch was a com-

plete re-implementation. Such a re-implementation
has to be compatible with current TEX, and ideally
it should pass the TRIP test (unless there are really
good reasons for not passing it). This constraint
has its advantages. As TEX is considered (by the
working group) to be the best typesetting system
on the world, compatibility will prove that N7S is
at least as good as its predecessor. Also TEX: The
Program is an extremely well designed application
full of inspiring ideas and it would not be wise to
drop them.

On the other hand the structure of the new sys-
tem should be made as open as possible. It should
be partitioned into relatively independent modules
with well defined interface. It will eventually al-
low for great changes by only local intervention to a
particular module without affecting the rest of the
system. Although the functionality will be compat-
ible with TEX, both the structure of the program
and the data structures should be ready for such a
changes and extensions that are likely to be desir-
able for N7S (Properties of a potential new type-
setting system were discussed in [7, 3, 2]). For this
purpose an object oriented design seemed to be the
most suitable.

Implementation language The first task of the
group was to choose a programming language for
the implementation. Several high level languages

318 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

for fast prototyping had been taken into account in
the past. Eventually three well known object ori-
ented languages were considered: Common Lisp Ob-
ject System (CLOS), C++ and Java. Although each
of these languages has its specific advantages, after
careful comparison of them Java was chosen.

Some of its characteristics follow. Java as the
youngest of these languages could learn from them.
It has a very advanced implementation of objects
and their interfaces are orthogonal to the class hi-
erarchy. Classes are compiled into so-called byte
code and can be dynamically combined at run time.
The built in garbage collector is very convenient and
prevents the programmer from causing many mem-
ory violation errors. Types and their checking can
also catch many errors, from trivial to serious. Ex-
ception handling requires precise declarations which
prevent forgetting of boundary situations. Java is
completely portable even at the level of compiled
byte code. Although the standard interpretation by
the Java Virtual Machine is not as efficient as machine
code, there are compilers to native code available.
There is also a wide range of standard libraries for
networking, graphic, graphical user interfaces and
others.

One very important point is Java’s Internet
awareness. You can imagine that you will be able
to (automatically) download new modules and NTS
plug-ins, share fonts and input texts over the Inter-
net and use JavaBeans ! to tailor the system for your
needs interactively. We also anticipate good support
for Java in future. This is now very popular and
many new applications are being implemented in it.
It is quite possible that a Java interpreter will even-
tually be burned onto a silicon chip at some point
in the not-too distant future.

Design of NTS

During the Spring of 1998 there were two more meet-
ings of the N7S working group. Mainly discussed
were the features of M7S which will not be imple-
mented in the first version but which the design has
to anticipate. Gradually the specification for the
first version was set.

The first task of real work on the implementa-
tion was to make a design with proposed structure of
the N7S. Tt was ready by May 2 1998 and reviewed
by Philip Taylor and Jii{ Zlatuska. The presenta-
tion of the main design decisions will follow. We do
not want to go into very implementation-specific de-
tails, it will instead be a rather informal description

1 JavaBeans is a component architecture that helps inde-
pendent vendors write classes that can be treated as compo-
nents of larger systems assembled by users.

NTS: a New Typesetting System

of things which might be of interest. Comments are
of course welcome.

General notes The specification for re-implemen-
tation is rather simple. The main source of informa-
tion is TEX: The Program itself. The task is not to
design something with a different philosophy, it is
rather to take used principles and make them more
open and general. It seems that there were two main
constraints at the time of the creation of TEX — the
low performance of machines and the programming
technology available.

The first problem related to these constraints is
memory management. On the one hand the memo-
ries of computers at that time were very small com-
pared with today, whilst on the other hand there was
probably no standard support for dynamic mem-
ory management. Knuth decided to create his own
memory management based on preallocated buffers.
Today we are much less constrained in using mem-
ory. The physical memories of today’s computers
are much bigger and current operating systems pro-
vide even larger virtual memories.

The second problem was concerned with the
data structures. It is apparent from the source code
that Knuth tried to use memory in the most effec-
tive way. He did not accept the standard Pascal
records and pointers and rather used preallocated
arrays in a very compact way. This was good for
performance but it would be very painful to add
new data structures to existing scheme. The sym-
bolic names for structure items are maintained using
WEB macros and therefore their types are not distin-
guished and checked by compiler.

Fortunately Java provides us with very ad-
vanced memory management with garbage collec-
tion. It is very natural to accept Java objects as
data structures, not to take special care about mem-
ory at all and not to impose any explicit limits to
the size of internal buffers.

WEB preprocessor We believe that Knuth took the
best programming language available for his pur-
pose at the time. But even standard Pascal was not
enough and he made the WEB preprocessor mainly
for three reasons: literate programming, macro def-
initions and rearranging the source text.

Pascal serves well for the structured program-
ming paradigm. But if you peek into TEX: The
Program you can recognize steps towards an object
oriented paradigm supported by WEB. The code deal-
ing with particular data structures— mainly the rel-
evant parts of switches in general procedures as (for
example) symbolic printing or of course the main_
control —is usually gathered in one place. In an

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 319

Karel Skoupy

object oriented language such processing is imple-
mented by virtual methods of objects and there is
no need for rearranging the order of source code and
for most of the switches any more.

The need for macro definitions is very much re-
duced, too. In C++ the usage of macros was signif-
icantly replaced by templates. Unfortunately stan-
dard Java does not provide any of these facilities
(there are other implementations which have tem-
plates and operator overloading as an extension, e.g.
jump?). This should not impact too badly on N7S:
templates are mostly used in general frameworks.

We certainly want the new program to be well
documented, but we are still not concerned to make
a book of it. Java has its own source documentation
facility. The documentation is in the form of prag-
matic comments and is supposed to be in HTML or
a similar SGML-based format. It seems sufficient to
us now. Well, it may change in future but in such a
case it is not necessary to change the program code
itself.

Character set, fonts and hyphenation. In cur-
rent TEX the input encoding, hyphenation pattern
encoding and font encoding must be the same. Also
there are only 256 character codes. It may be suffi-
cient for English but it makes usage of TEX harder
for other languages. There are ways around it (vir-
tual fonts, pattern sources independent of character
encoding), the thing just can be made much easier.

Fonts and hyphenation tables will be imple-
mented as object providing methods under a well de-
fined interface. It is possible that objects for differ-
ent formats provide the same interface and for exam-
ple PostScript font metrics can be used directly. We
can make the interface to such objects independent
of encoding using character names. Internally the
characters will be represented by numbers but there
will be a module for mapping to external names. In
case the font does not know the names (pk fonts),
the process will default to numeric codes. The codes
can possibly be re-mapped by tables for different en-
codings and independent of fonts.

Diagnostics. TEX uses terminal and log files for di-
agnostic purposes. It can be made much more gen-
eral by polymorphic log objects. Some users might
prefer some windowed output (strange but possible),
but mainly it can be used by some wrapping appli-
cation having TS as a processor inside.

Basic types. Numbers, dimens and glues will be
in TS as well. Their semantics will be the same

2 jump is a free Java compiler with mentioned capa-
bilities, see: http://ourworld.compuserve.com/homepages/
DeHoeffner/jump.htm

as in TEX. Maybe in future we will add other types
for some extended typesetting tasks.

Language. In TEX the input characters are trans-
formed to tokens and they are after macro expan-
sion transformed to primitive commands which are
handled by the chief executive. In N7S the process
will be similar but our aim is to separate different
layers as much as possible. The input, tokenization
and macro expansion will be a straightforward re-
implementation using objects.

Although in TEX there are dependencies be-
tween the macro language and typesetting (the di-
mensions of boxes in registers, named typesetting
parameters, output routine) we will try to make
these dependencies clear and handled via well de-
fined interface. This might allow us to provide some-
time in the future an alternative input language
(procedural, object oriented, ...) without any in-
compatible change (extensions might be necessary)
to the typesetting engine driven by primitive com-
mands.

Modes. The meaning of a primitive command may
depend on the current mode. There are three main
modes (vertical, horizontal, maths) in TEX each with
two submodes. In ATS it will be much more gen-
eral. The modes will not be just codes but poly-
morphic objects. They will provide methods such as
adding the next character, kern or glue and so on. In
some cases the method will issue an error message
("You can’t ... in ... mode"), in other cases
it will push another object onto the stack of modes.
Each command will know how to apply itself when
meeting with a mode.

This will allow for making new specialized
modes derived from existing ones. We will try (for
example) to implement alignments in this way. Com-
mands not aware of any specialization will pass in
the usual way but specialized commands can test the
current mode and invoke some extra method not in-
cluded in the base mode interface. This approach
may make non-textual modes for chemical formuleae,
pictures or music notes more easy and efficient.

Lists and boxes. The objects in lists will be poly-
morphic so the formatting algorithms will handle
each object uniformly. They will invoke only the
appropriate methods to get information about size,
stretchability, ...

In TEX the lists are static once created. After
breaking a paragraph into lines there is no easy way
to reformat it. Also the parameters used by the
paragraph breaking algorithm (such as \tolerance
or \hyphenpenalty) are lost after processing. In

320 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

NTS the lists will remain dynamic and keep all the
information necessary for reformatting later.

One application might be a WYSIWYG interac-
tive program which needs to reformat a paragraph
after a user’s change to it. We do not plan such a
program to be part of M7S but A7S might be used
by someone else as an internal engine and we will
try to make it possible. Provided that the modules
of N78§ are independent, they can be used by such
applications directly. In such case the applications
can also employ lists as their own data structures.

But there is a more important reason from the
point of view of high quality typesetting— global
page break optimization. Actually this was one of
the main challenges to N7S. For solving this prob-
lem we will need to keep the whole main vertical
list and try to find a satisfactory (or optimal) se-
quence of page breaks. Then reformatting of para-
graphs might be helpful. If we allow the page layout
(\hsize) to change for different pages it will become
a necessity. Even without global optimization the
changing page layout is a problem and more general
shapes of paragraphs (than defined by \hsize and
\parshape) will be useful.

Maths formulae. TEX is excellent in the typeset-
ting of mathematics. The formulse have their own
representation which is transformed to usual boxes
when contributed to the parent list. The difference
in A7S approach is that the objects for formulae will
be descendants of the same base class as the ordi-
nary text. It will not need transformation and will
be kept dynamically in the same way as lists.

Output. You might guess that also the output will
be shipped out by a polymorphic object. It will
have methods for setting characters, rules, images
or some graphic objects. The objects in the list will
know which method to invoke. One implementation
can produce DVI, others can generate PostScript or
PDF.

Algorithm parameterization. TEX’s algorithms
are parametrized in many ways. There are a lot of
numeric parameters to the paragraph breaking algo-
rithm, page output and page breaking is influenced
by a user defined output routine. We can make pa-
rameterization more general. Beside an enriched set
of variable parameters we will prepare void virtual
methods which can (for example) add extra demer-
its to two consecutive broken lines in a paragraph
or to a whole sequence of potential line breaks. By
supplying some smart code to such methods, it will
be possible to avoid “rivers” and other subtleties
not solved by TEX. Such parameterization will be
done by making a specialized version of N78 with

NTS: a New Typesetting System

overridden methods or by more convenient plug-ins.
The possibility of giving access to internal lists in
the input language and user supplied methods from
the input file should be discussed.

Conclusion

We described the current state of the initial phase
of the MTS project aiming at re-implementing TEX
in Java so that the internal structure of the pro-
gram will allow for experiments and modifications of
the algorithms used or the actions taken when type-
setting using TEX. Basic design decisions behind
the choice of the implementation language and the
object-oriented programming paradigm have been
exposed and the overall structure of the resulting
program has been outlined.

The first version of the A7S is now under de-
velopment and should be available by the beginning
of 1999.

The author wishes to express thanks to Don
Knuth for making TEX available, the N7S group
for fruitful discussions, contributors to the NTS-L
list for many interesting ideas, and DANTE e.V. for
continuing support in this endeavor.

References

[1] Ken Arnold, James Gosling: “The Java Pro-
gramming Language, Second Edition”, Ad-
dison-Wesley Publishing Company, Reading,
Mass., December 1997.

[2] Michael Barr: “TEX wish list”, in TUGboat,
Vol. 13, No. 2, pp. 223226, July 1992.

[3] Nelson H. F. Beebe: “Comments on the future
of TEX and METAFONT”, in TUGboat, Vol. 11,
No. 4, pp. 490-494, November 1990.

[4] Roger Hunter: “A future for TEX”, in TUG-
boat, Vol. 14, No. 3, pp. 183-186, October 1993.

[5] Donald E. Knuth: “The future of TEX and
METAFONT”, in TUGboat, Vol. 11, No. 4,
pp. 489-489, November 1990.

[6] Donald E. Knuth: “TEX: The Program”, Ad-
dison-Wesley Publishing Company, Reading,
Mass., 1986.

[7] Frank Mittelbach: “E-TEX: Guidelines for
future TEX”, in TUGboat, Vol. 11, No. 3,
pp. 337-345, September 1990.

[8] Philip Taylor: “TEX: The next generation”,
in TUGboat, Vol. 13, No. 2, pp. 138-138,
July 1992.

[9] Philip Taylor: “The future of TEX”, in TUG-
boat, Vol. 13, No. 4, pp. 433-442, Decem-
ber 1992.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 321

Karel Skoupy

[10]

[11]

[12]

[13]

322

Philip Taylor: “NTS: the future of TEX”, in
TUGboat, Vol. 14, No. 3, pp. 177-182, Octo-
ber 1993.

Philip Taylor: “NTS update”, in TUGboat,
Vol. 14, No. 4, pp. 381-382, December 1993.

Philip Taylor: “Report of the 2nd meeting of
the NTS group, February 1994 in TUGboat,
Vol. 15, No. 2, pp. 96-97, June 1994.

Philip Taylor: “Minutes of the NTS meeting
held at Lindau on October 11/12th 1994”, in
TUGboat, Vol. 15, No. 4, pp. 434-437, Decem-
ber 1994.

[14] Philip Taylor: “NTS & e-TgX: a status re-

port”, in TUGboat, Vol. 18, No. 1, pp. 6-12,
March 1997.

[15] Zlatuska, Jit{ (ed): EuroTEX ’92 Proceedings,

pp. 235-254, September 1992. Published by
&TUG, Czechoslovak TEX Users Group, ISBN
80-210-0480-0.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

TEX in 2003: Part I

Propositions and Conjectures on the Future of TEX"*

NTG TgX future working group
P.O. Box 394

1740 AJ Schagen

The Netherlands
ntg-toekomsttex@ntg.nl
http://www.ntg.nl

Introduction

In the last year, there has been a lively discussion
within the Dutch TEX Users Group about the future
of TEX. This discussion was initialized by a couple
of posts to the TEX-NL e-mail list by Hans Hagen
and Taco Hoekwater, but it soon spread to a much
larger group of correspondents.

Eventually, this resulted in a meeting of the
most interested people in December 1997. The
current articles are a re-working of the long-term
proposals and requests formulated by this group of
people. The short-term requests were passed on to
the e-TEX team.

Our views on current work

At the moment, there are at least three distinct
projects available to current TEX users that are
working to extend TEX: Q, PyfIEX and e-TEX.

The first two of these are in a sense niche prod-
ucts: If you don’t need either non-latin language
typesetting or PDF output, there is little point in
learning how to use these two programs. The third
project, e-TEX follows the more general approach,
and is potentially of interest to every current user of
TEX.
The work done in e-TEX is nicely thought out,
and the result is both stable and virtually bug-free,
but it is hardly ever used in real applications. The
reason is simple: package writers will not use e-TEX
primitives until they can be certain that e-TEX is in-
deed available everywhere. On the other side, e-TEX
cannot develop without input from package writers
that intent to use e-TEX. There is a chicken—egg
situation, and it leads to the following conclusion:

1. & TgEX is a nice idea with too little momentum
to make a difference.

Another important problem is the fact that people
that need the functionality of either e-TEX or PgfIEX

* Published in MAPS 21, Najaar 1998, pages 13-19.

or Q and one of the other two extensions, cannot do
so from within one document. All three have their
own specific syntax extensions that are hard to fake
in one of the other extensions. This is unsolvable in
the current situation, and leads us to the following
statement:

2. Q, ByfTEX and e-TEX should be merged as
soon as possible.

Then there is a fourth project that has just started:
the New Typesetting System (NTS).

The NTS development group hopes to increase
the chances of general acceptance of NTS by guar-
anteeing compatibility with TEX for a number of
years to come. We feel that this is a error, be-
cause most of the more fundamental issues that
NTS should deal with to live up to the ‘New’ in
it’s name cannot be done without sacrificing that
compatibility. Issues like grid-based typesetting and
better insertion control are very likely to require a
completely new algorithm, resulting in a completely
new implementation. Of course it is possible to do
these things in parallel, but trying to implement
something new while having to be really careful
not to break the old implementation unnecessarily
complicates development: people that want to use
TEX should stay with TEX anyway.

Therefore, we urge the NTS group to reconsider
their decision to stay compatible with TEX for at
least the next five years.

3. NTS will be pointless if it intends to be
compatible with TEX82

The next remark we have deals with the proposed
modularity of the system, which is facilitated by the
use of Java:

4. NTS is a step forward and a step backward
at the same time.

A great feature of NTS will be its extensibility. This
is similar in many ways to current IXTEX packages,
albeit much more advanced. Since NTS will be

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 323

NTG TgX future working group

written in Java, one can easily extend NTS with
it’s own classes. We presume there will be an easy
interface to extend NTS (if not, someone will just
hack the sources).

In all likelyhood, this will result in precisely the
same problems that current IXTEX has:

e Users are not aware of the packages available,
and so keep asking questions like: How can I
make this work in BTEX?

e Furthermore, the portability of source docu-
ments (the .tex or .nts? input file) will be
seriously endangered. We expect to see things
like:

Error: this .nts style-file requires
module x.y which has not been
installed on your system.

The NTS team should give very strict rules for these
extensions, otherwise we’ll end up with another
\special- similar situation. A central registry and
a “head maintainer” are needed to keep track of ex-
tension modules in order to prevent these problems.
It would be wise to turn this work into a full-fledged
job under the control of (probably) TUG.

5. We need time to experiment and must not
fall into the “every year a new version” trap.

An interesting common aspect in all current work
is that only experience can lead to useful functional
specifications. It is likely that NTS functionality will
follow the same track.

This means that when we deal with the next
generation TEX programs, common users must be
patient until the developers of extensions and macro
packages trust the new features and can guarantee
upward compatibility. It also means that it will
take some years until e-TEX as well as NTS will be
accepted as descendants.

We have to keep in mind Knuth completely
rewrote his first TEX!

Packaging of Distributions

Over the last 5 years TEX has become a lot easier
to install. The most important reasons for this are:

e (Cd-roms have become available at large. These
can easily hold a complete TEX system. The
old-fashioned piles of diskettes gave far too
much trouble, and tape is only for professionals.

e Recently hard disk space has become so cheap
that complete installations on hard disk are not
unusual anymore.

e Installation scripts were made to shield users
from tedious setup and configuration issues.

Still a number of problems remain because they are
inherent to the way that TEX systems work:

e A typical TEX system consists of an incredible
number of files (more than 31,415). No one re-
ally knows which parts are essential and which
parts are not. In other words: every system is
too large.

e “Everything” can be found on CTAN but only
the most recent version. Old versions can be
necessary to run old documents. Old CTAN
dumps on cd-rom can be used to track down
older versions, but we really need more profes-
sional version control.

e Maintenance is only feasible for professionals.
Others are better off replacing the entire sys-
tem, even though this will undoubtedly cause
problems. The draw-back of ‘plug & play’ sys-
tems is that users have no idea anymore of the
inner workings of the system. Is that a good
thing or a bad thing?

e There is no such thing as an easy upgrade path.
It’s usually very hard if not impossible to simply
add some files to a system and make them
cooperate.

e Initial configuration can be automated, but
reconfiguring is usually very hard. Any typical
TEX system contains dozens of configuration
files in almost as many completely different
flavours. As a rule they are scattered all over,
and only an absolute expert can deal with this.

This leads to a number of conjectures:

6. The number of files in a typical TEX system
should be reduced by a factor 100.

We can achieve this by redefining the way any pro-
gram finds its resources. A central database should
be queried for any resource. This database should
physically contain all resources. And of course it
should be able to report (in any required level of de-
tail) what’s available. The database may eventually
connect to CTAN (another database application) to
retrieve resources not available locally.

This setup would allow for a minimal local
installation to grow as necessary using Internet.

7. Configuration of a TEX system should be
centralized and automated.

If we can realize the previous issue this one will
not be too hard. Programs should specify formal
descriptions of the configuration details they need.
These could then be generated through menus or
automatically by scanning the current setup, i.e.,
querying the database.

324 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

TEX in 2003: Part I Propositions and Conjectures on the Future of TEX

8. Installation and maintenance should require
far less expertise.

The database may occasionally query CTAN for
any updates. The administrator would get short
descriptions of these, with links to complete doc-
umentation. He/she could then select which ones
should be installed. This could even be done silently
(overnight) if you want an up-to-date system all the
time. If necessary, programs will be signaled to
reconfigure themselves.

This setup should also take care of the endless
problems with non-portable DVI files. We should all
be using the same resources and if we are not, the
system should warn us about possible mismatches.
If we decide to make TEX produce DVI files that
require no virtual fonts at all (i.e., TEX reads VF’s
itself instead of the DVI driver) an important source
of problems can be eliminated.

9. CTAN should have a complete index with
descriptions of everything and cross-links to
anything related to anything.

This is obvious now if we want the systems to
interact. Uploads to CTAN will have to be checked
more carefully: descriptions, specifications, version
number, relations to other packages, dependencies
on other resources, etc. must be supplied. Any item
that doesn’t comply to this convention should be
moved out (‘not supported’) and deleted after a
certain period.

We realize that this might cause a cultural
shock in the TEX world, but we feel this is necessary
to keep TEX alive & kicking in the next millenium:

10. Anarchy is what made TEX great, and it’s
anarchy again that will kill TEX.

Let’s try to prevent this!

On-line Publication Wishlist

With the increasing growth of the internet, a whole
new branch of documents has appeared: documents
that are only or primarily intended for screen view-
ing. The used formats differ, but it is easy to
see that there are some common issues involved in
all of those: file download sizes, hyperlink support
and ease-of-use are important points for all of these
formats.

11. TgX is rather well suited to cater for those
needs as it is, but some extensions are needed
to make sure that TEX will stay/become in
the leading position in this arena

For about 15 years TEX was only capable of pro-
ducing DVI output. The limitations in both TEX

and the DVI format mainly concerned direct graphic
support and color typesetting, but color printers
were rare and the lack of graphics support could
be worked around.

Although originally TEX was more or less sup-
posed to handle everything itself, those 15 years of
use have demonstrated that many applications, like
color and graphic inserts, heavily depend on the
DVI postprocessing stage. To a large extent, this
is not feasible nor desired in on-line publication.
On-line formats are all rather device independent
themselves: otherwise people would have to publish
several versions of the same document.

Theoretically, both FyfTEX the current trajec-
tory using and DVI to PDF processing through dvips
and the Acrobat Distiller can offer similar func-
tionality, given that postprocessors are available to
help out in the second case, but we can imagine
both methods drifting apart, and we feel that the
use of external programs to solve intrinsic problems
adds a great deal of unnecessary complexity to the
system.

12. On-line publishing needs primitive support

In fact, most of the conceptual extensions like
hyper-referencing can be implemented using DVI
and \specials. However, usage can be far more ro-
bust in, e.g., current ByfIEX, simply because hyper-
referencing is built in, and there is no longer a need
to run various programs in turn. The same goes
for object reuse, fill-in forms, scripting (Java), and
graphic inclusion.

But systems like FjfIEX also create new prob-
lems. Take for instance graphics inclusions: where
originally TEX macros only had to bother with the
dimensions of the needed box, on-line publishing
backends have to include the file directly.

Although clever tricks can give acceptable re-
sults, all approaches to hyper-referencing based on
current TEX interfere with either the explicit wishes
of the author or the line- and paragraph-breaking
mechanisms present in TEX.

13. TEX objects should be easily re-usable

When we look at object reuse, we see that this
concept never surfaced in DVI (using \specials).
This is probably due to the fact that specially
screen-designed documents need these features, and
it hardly matters for paper output.

From the users point of view, reuse may look
rather straightforward (a sort of variant on copying
boxes), but from the implementors eyes, object defi-
nitions are just another interfering kind of (whatsit).
And why is it interfering? Simply because TEX has

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 325

NTG TgX future working group

no particular mode which suppresses all interference.
Yes, we can use a box, and we can let things happen
at certain locations in the document that don’t do
any harm, but the situation is far from optimal.

When applied to for instance figure inclusion,
reuse can quite easily be implemented in original
TEX (pure DVI, using Gilbert’s DVIview), the tra-
ditional DVI-dvips—Acrobat trajectory or Thanh’s
PyfTEX. But PDF fill-in fields support demands for
more.

To give you a real life example where objects
are needed: in PDF one can define a check field
with several appearances like on, off, mouse down,
etc. Technically this means something like this (in
PYfTEX syntax):

\setbox0=\hbox{$\star $} \pdfformO
\edef\on {\the\pdflastform}
\setbox0=\hbox{\bullet} \pdfformO
\edef\off {\the\pdflastform}
\setbox0=\hbox{$\times $} \pdfformO
\edef\down{\the\pdflastform}

When defining the check field, we then can refer to
\on, \off and \down, as in the following code:

\pdfannot{ ... /0On \on\spaceO R ...}

Currently PyfTEX only flushes forms to the output
file when are accessed. (this feature is needed be-
cause we want to be able to try out things, without
ending up with redundant objects, like in a macro
that tries three different methods and takes the best
result).

Back to the three objects, these won'’t end up in
the file when we refer to them in the field definition
above, because the field definition is handled like
a \special: FjfIEX just passes the information
through.

Therefore, we end up with invalid references:
the object is referred to, but never passed to the
file. What do we learn from this:

14. TgX needs a real object model.

One with immediate as well as deferred definitions,
that do not interfere with the internal lists that
TEX builds and that permits forward and backward
referencing.

Another typicality that surfaces often in on-
line documents is the fact that screen layouts tend
to use a lot more page decorations and colors than
traditional typesetting. This is an area where a lot
of disagreement is possible, but in the real world
there are lots of practical applications of this.

At TUGI7 there were several presentations on
graphics. The related discussions invoked a BOF
session on graphic primitives. Direct inclusion of

METAPOST output (in ByfTEX) had already proven
that a relatively small subset of PostScript primi-
tives could be used for advanced graphics and there-
fore the discussion focussed on those primitives.

These graphic primitives in TEX are not meant
for drawing free hand graphics like one would do
in programs like Illustrator, Corel Draw, or indeed
Freehand. Instead, they are most often (to be) used
for things like visualizing statistical results, plotting
functions and drawing almost-mathematical shapes
that can be used to emphasize certain layouts. In
these graphics, text plays a important role, and this
text must preferably be typeset by TEX. It follows
that inclusion of an external file will not do, and the
conclusion is:

15. TEX needs a reliable system for in-line graph-
ics and colors

The most important outcome of the 97 BOF session
was an agreement on the way to go: define a set
of extensions that permit direct METAPOST output
inclusion. It was felt that this set could also suffice
the needs of the mainstream graphic macro packages
written in TEX.

During the NTG ‘future of TEX meeting’ the
participants made the exact specification of these
graphic primitives (currently to be implemented as
\specials) one of its main goals. To this end, we
had to create a formal specification of the syntax
involved, and that put us right in the middle of the
\special problems.

Our final proposal on that matter will appear
somewhere else in these proceedings, but Gilbert
has already done some of the groundwork. Below
is his explainatory text on the \specials that are
currently included in DVIview. This text is kept
here because it demostrates very well that only a
few primitive commands are enough to give almost
full in-line graphics capabilities.

To allow for instance METAPOST drawings te be
inlined in TEX you need several things:

e A macro to interpret METAPOST’s PostScript
output. Hans Hagen wrote a set of macros for
PDFTEXusing \pdfliteral commands. These
macros are easy to adapt to another standard
using \special syntax

e A primitive sub-set of PostScript commands is
needed. METAPOST uses only a few PostScript
commands to draw it’s figures.

To actually test the inline graphics standard we
needed a viewer where this support was easy to
include. DVIview was coming to life at that time so

326 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

TEX in 2003: Part I Propositions and Conjectures on the Future of TEX

it was logical to use that as a test and development
environment.

All primitives are easy to interpret, except for a
few things like clipping and the like. The syntax will
probably change in the future when the new special
syntax is standarized. Converting these specials to
PostScript output (e.g., modifying dvips) is easy to
do, since the commands hardly need any translation.
Specials and stuff for inline graphics in DVIview:

\special{dv:startgraphic}
\special{dv:stopgraphic}
\special{dv:moveto x y}
\special{dv:lineto x y}
\special{dv:curveto x1 yl x2 y2 x3 y3}
\special{dv:stroke}
\special{dv:setlinejoin j}
\special{dv:setlinecap c}
\special{dv:setdash offset values}
\special{dv:setlinewidth w}
\special{dv:setmiterlimit m}
\special{dv:rotate r}
\special{dv:translate x y}
\special{dv:concat x1 y1 x2 y2 x3 y3}
\special{dv:newpath}
\special{dv:closepath}
\special{dv:clip}

\special{dv:fill}

\special{dv:gsave}
\special{dv:grestore}

As you can see the amount of commands needed to
support METAPOST output is in fact quiet small.
Some explanations:

dv:startgraphic Starts a graphics figure. It saves
the current position and context of the DVI inter-
preter. The current location is marked as (0,0). As
in PostScript positive z,y draws to the right and up.

dv:stopgraphic Stops a graphics figure and re-
stores the context.

dv:moveto x y Moves the current position to x,y.

dv:lineto x y Draws a line to z,y. This does
not actually draw the line but only remembers the
coordinates. The actual drawing is performed by
stroke.

dv:curveto x1 yl x2 y2 x3 y3 Draws a Bézier
curve starting at the current point to (x3,y3). The
control points are given as (z1,y1) and (22, y2).

dv:stroke Performs the actual drawing using the
current pen-style, color and width.

dv:setlinejoin j How lines are joined. j can be 0,
1or 2.

dv:setlinecap ¢ How the line-endings will look
like. ¢ can be 0 1 or 2.

dv:setdash offset vals Sets the pen-style. vals
is any number of values and specifies how long the
pen is on and how long the pen is off. offset can be
used to specifiy a starting offset in the vals pattern.

dv:setlinewidth w Sets the thickness of the cur-
rent pen.

dv:setmiterlimit m Sets the miterlimit.

dv:rotate r Modifies the current transformation
matrix so that everything following this is rotated
r degrees.

dv:translate x y Modifies the current transforma-
tion matrix so everything following this is translated

(z,9).

dv:concat x1 yl x2 y2 x3 y3 Multiplies the
current transformation matrix with the given values.

dv:newpath Discards any present paths and start
a new path.

dv:closepath Closes the current path. After this
you can use fill to fill the closed path.

dv:clip Selects the current path as the clipping
path. All subsequent fills and strokes are clipped
to the this path. The clipping path may contain
one or more closed paths.

dv:fill Fills the current path with the current color.
dv:gsave Saves the graphics state.
dv:grestore Restores the graphics state.

dv:setrgbcolor r g b Sets the current color. r, g,
and b are specified from 0 to 1.

dv:setcmykcolor ¢ m y k Sets the current color.

dv:setgray g Sets the current gray-level. 0 means
black, and 1 means white.

Though it is easy to extend this set and include
much more PostScript operators, this is not the
intention. It should be noted that complex graphics
which require the full PostScript set of commands
should be done by including the EPS file and let
PostScript do the work.

Language extension wishlist

Removal of limitations regarding fonts The
font limitations that are inherent in the TFM format
should be dropped. One fairly simple way to achieve
this is to make TEX read .pl or .vpl files instead of
TFMs, but it is also possible to adopt a new format

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 327

NTG TgX future working group

like 2's OFM files or even create a completely new
specification.

An overview of limitations in current TEX shows
limits in almost all places: the amount of char-
acters present in a TFM, The number of separate
width / height / depth / italics-corr values, the num-
ber of ligatures and kerning pairs, math sizing stuff,
etc. Almost all of these limitations are not really
needed anymore; most of them were born out of
Knuth’s desire to use as small an amount of memory
as possible.

In particular, t he current implementation of
math mode places some really weird demands on
used fonts (some characters get really weird place-
ment in the glyph container, e.g., integrals and de-
limiters are all below the baseline, and the height
of the \sqrt sign is used to decide the width of
the extension bar). This should be fixed so that it
becomes possible to use non-METAFONT math fonts
in a reliable way, and to facilitate the creation of
new math font sets. The current situation makes
it impossible to use non-TEX math fonts from, e.g.,
Mathematica without lots of vf trickery.

These things are all very easy to fix in the
executable, but it won’t do any good at the moment,
because we are still stuck with the TFM format.

16. The way TFM and VF formats are defined
and implemented is the primary cause of the
current font chaos

If we want to adopt a new format, the extensibility of
the syntax of PL files is to our advantage, even allow-
ing new features to be added in the future while re-
maining backward-compatible. But, although there
no longer is a real reason for binary file input as
speed or disk space optimization, binary files do have
the advantage of being non-editable (meaning that
the chances of a user accidently breaking them is
very small).

17. We need symbolic names for characters

TEX currently uses encoding instead of glyph names.
Encoding is old-fashioned and merely a speed opti-
mizing thing. The coupling of glyph-name—char-
acter should be a TEX internal operation.

The used named characters from the fonts
should be deductible from the output (DVI) file, to
prevent reencoding issues in postprocessing applica-
tions. To reach this goal, it is very likely that TEX
needs an internal naming scheme for glyphs that
does not depend on font encoding. Work in this
area is already being done by the e-TEX team. It is
considered unlikely that using UNICODE will solve
the problem, but it might well be that a solution

based on the predefined set of unicode names (the
road taken by) is the right way to go.

18. Ligatures and kern info should be indepen-
dent of the character metrics

Ligatures can be present in the current font defini-
tions, but we would like to be able to modify the
lig-table internally from within TEX. This request
has already be passed on to the e-TEX group, but
it needs a more general solution than the prim-
itives that were proposed to eTEX(\noligs and
\nolig(char)). Likewise for the kerning tables.

The mechanism by which a user loads fonts into
TEX’s memory is much too simple. It should be pos-
sible to specify encodings, kerning info and ligature
tables separate from the actual glyph dimensions.
The ligature problem actually comprises two very
different problems.

The simple case is most noticeable in type-
setting verbatim stuff in non-tt fonts, something
that is often needed for textbooks on programming
languages.

The hard case comes from the fact that liga-
tures depend on the language, not on the used font
itself. The Spanish quotation, e.g., is never needed
outside of Spain, and we are all stuck with it now.
Ideally, every language should have it’s own ligature
table, that is part of the language attributes just like
\patterns are.

19. METAFONT is becoming outdated, even if
TEX itself isn’t

A new version of METAFONT is needed that can
generate acceptable outline fonts instead of the now
used .pk format, and the use of non-METAFONT
fonts (PostScript, TrueType) should be simplified.
As stated in a previous article, TEX should take care
of the virtuality of fonts itself. But that does not
have to imply using .vf files. There are some other
possible solutions that may not be as powerful as
.vE, but are a lot less confusing: The only widely
used applications of virtual fonts are reencoding and
creation of composite characters.

User interface

Currently, TEX shows a weird duality: while mostly
a batch tool, there are still a number of places where
user intervention is needed.

On one side, if TEX wants to survive as a batch
tool (either as a stand-alone typesetter or as back-
end for, e.g., SGML processing systems), it will need
extensions so that it is 100% safe to run the program
unattended. Thinks like breaking math formulas

328 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

TEX in 2003: Part I Propositions and Conjectures on the Future of TEX

and placement of figures cannot be left to TEX on
its own.

On the other end of the spectrum, TEX needs a
real-time graphical user interface to satisfy interac-
tive users (maybe this can be a partial implemen-
tation, like having GUI-based equation- or table-
editors). This goal can only be reached if the GUI-
based tools have a foolproof TEX input format that
they can rely on.

There are two probable roads we envisage:

e Moving a large number of current macros into
the executable itself will avoid confusion of
macro formats, but there are still problems to
be solved relating to redefined primitives.

e Allowing a tokenized input in a pre-compiled
format would probably be better since it cir-
cumvents these problems. The idea is that,
assuming we are an external program that tries
to generate TEX code, we want to be very sure
that \par really means \par.

But there are some other idiosyncracies in TEX’s
language that needs to be dealt with as well —some-
times optional, sometimes not optional keywords
and characters like equal signs; arguments with
braces versus arguments that are space-delimited;
confusing rules for spaces; etc.

20. In all events, the language should be cleaned
up drastically.

The syntax should definately be cleaned out. Any-
body who has ever tried to write a non-trivial macro
will know that even if your approach in itself is
correct, chances are that the macro still won’t work,
because of a stupid mistake with \expandafter or
extra / too few spaces. Solutions that use markup in

the style of SGML or lisp would be vastly preferable
over the current situation. The current syntax often
justifies the following statement:

21. TgX’s macro language encourages writing
garbage

We can safely say that many sources look awful in
terms of formatting, just take a look at the sources of
the style used to typeset this article. (Or look at the
sources of the TEXbook: the output is beautiful, the
input is just ugly.) In the hands of common users,
bad input becomes bad output.

22. We would profit from better programming
primitives

Finally, experience shows that format files are never
simple and small, like Knuth presumed they would
be. Instead, format files are complex programs with
numerous interactions between the various parts.
TEX’s macro language was never supposed to sup-
port this, and as a result has virtually no program-
ming support. Among the missing things are data
structures like lists and queue’s; name spaces; con-
trol structures (like cases and while loops); signals;
and reliable \if tests.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 329

TEX in 2003: Part II
Proposal for a \special standard*

NTG TgX future working group

P.O. Box 394, 1740 AJ Schagen, The Netherlands
ntg-toekomsttex@ntg.nl

http://www.ntg.nl

Abstract

The text of this article is a proposal for an “endorsed” \special specification,
to be voted on by the assembly of the TUG98 meeting. Portions of this text are
reworks of an original article by Nelson Beebe, and indeed large portions of the
proposal itself are also based on original work done by Beebe.

Introduction

Most existing drivers have chosen an arbitrary syn-
tax for the \special strings they support. This is
undesirable, for at least these reasons:

e The chosen syntax is usually unique to a par-
ticular driver, and therefore seriously compro-
mises document portability.

e The syntax is usually not extensible in an easy
way.

e The syntax cannot always be unambiguously
parsed.

e The output device, or driver, to which the
\special applies is not determinable.

e The capabilities are weak, and fail to address
many of the potential uses of the \special
command.

The \special syntax that we have developed, which
is really an extension and modification on the work
done by Nelson Beebe, resolves these objections. It
has the following features:

e The \special string is defined to contain a pro-
gram written in a small language that consists
of an identification string and a command, fol-
lowed by sequences of assignment statements,
possibly with embedded comments.

e The \special language is rigorously defined by
a programming language grammar (available on
request).

e The language is extensible. An assignment
statement consists of a keyword/value(s) pair.
Several keywords are already defined, and new
ones can be added without invalidating existing
uses of the language.

* Published in MAPS 21, Najaar 1998, pages 20-27.

e Keywords are typed, and constant values as-
signed to them must be of the correct type. The
supported types are names, strings, numbers,
and dimensions.

e Value string concatenation is supported in the
style of ANSI C, avoiding the often severe line
length limitations of text editors, operating sys-
tems, and file systems.

e Provision is made for encoding all 8-bit char-
acters in the host character set, so that, e.g.,
binary printer control sequences can be incor-
porated as printable, and portable, text in TEX
documents.

o A particular keyword, language, is provided
to permit the user to specify the output de-
vice language, or the DVI driver, to which the
\special command is directed.

By suitable abstractions, it is possible to create a
recursive-descent parser for the language in which
commands, keywords and value storage locations are
provided in a table passed to the parser. The parser
code is therefore completely portable, and indepen-
dent of the commands and keywords in the language
it parses.

We will write a table-driven parser that will ac-
cept all the commands and keywords we have de-
fined, and this parser, written in the C language,
will be included in the DVIview program that will
serve as a reference implementation. The parser it-
self will be available in the public domain soon, and
patches will be made to at least dvips and xdvi to
support this proposed standard.

A proposed syntax for the \special
command

What does the language look like? Some examples
will give the general flavor before we describe the

330 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

TEX in 2003: Part IT Proposal for a \special standard

details of the grammar. Here are some fragments
of hypothetical TEX input which show some of the
\special commands:

% Display a picture with the upper-left
% corner at the current point
\special{**include pict.eps}

% Display a picture at its original

% absolute page position

\special{**overlay "pict.001",
filetype metapost}

% Display a figure at half size
\special{**include "pict.eps",
scale 0.5 0.5}

% Switch to a different colour
\special{**colour .09 .06 .6,
model rgb}

Naturally, the details of a \special command in-
vocation should be hidden away in suitable macros
that are easy to use.

The language grammar

Nelson Beebe presented a formal grammar for his
language in the article (give citation and ...). For
the purposes of the current proposal, that grammar
is not repeated, we provide a textual explanation.

We will start by defining the various primitive
types that are supported:

Spaces. White space is ignored except as delimit-
ing characters, so the specification can be formatted
for readability, or for compactness. Token may not
contain embedded blanks (except strings of course).

Comments. Comments are from percent to end-
of-line, like in TEX. Comments cannot occur inside
of strings or keywords, so this is not a comment:

\special{**message "Here % is some text"}
and this is in fact illegal:

\special{*#*mes’, neat eh?
p
sage "Here) is some text"}

Names. The grammar states that an extended
letter is a digit, letter, hyphen, dot, or underscore.
These are the characters that are allowed in com-
mands, keywords, alternative values and unquoted
strings. Lettercase is not significant in these cases.

The characters permitted are chosen such that,
for instance, simple filenames can be used with-
out surrounding quotes (see below for more info on
strings and alternative values).

An “alternative value” is actually a string with
some predefined values.

Numbers. Numeric constants are parsed by the
ANSI C library routine, strtod (), which expects to
see numbers in the form:

[whitespace] [sign] [digits][. digits]
[{el|E}[signldigits]

Dimensions. Dimensions can be given in any ab-
solute unit known to TEX (bp cc cm dd in mm pc
pt sp). Note that the font-specific em and ex are
not allowed. Since tokens may not contain embed-
ded blanks, 210mm is legal input, but 210, ,mm is
not.

Any keyword that accepts dimensions as argu-
ments will also accept numbers. In the absence of a
dimensional unit, a default value will be used. This
default can be defined with a separate \special (see
below under defaultunits for important usage in-
formation), or, in the absence of that \special, the
driver will presume scaled points (sp).

Strings. The grammar supports unquoted strings
and two kinds of quoted strings.

An unquoted string has to be one word only
(since there are no spaces allowed), and can only
use the characters that are legal extended letters
as defined above.

The normal kind of quoted string is delimited
by double quotes, and inside it are recognized all the
escape sequences supported by the C language. The
row kind is delimited by single quotes; only escape-
single-quote pairs are recognized inside it. This is
more convenient when it is necessary to have strings
with several backslashes, since it then avoids having
to double all of them. Once normal and raw strings
are parsed, they are stored identically.

Backslashes in literal strings and filenames pose
a small problem for the user, because TEX will ordi-
narily try to interpret control sequences triggered
by backslashes in the argument of the \special
command. Although it would have been possible
to choose another escape character than backslash
for such strings, this would likely prove confusing to
those users who are used to C and UNIX, where the
backslash escape character is firmly entrenched.

Fortunately, the solution is not difficult, be-
cause TEX does not have backslash hardcoded as
a control sequence prefix; you can change it by al-
tering TEX’s catcodes.

In the descriptions of the \specials below, the char-
acters n and m are used to indicate a value from a
fixed set of alternatives, s is used to indicate all sorts

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 331

NTG TgX future working group

of strings, x, y and z (possibly with numeric tags)
are used for dimensions, and a through j are used
for numbers.

Now let us move to the portions of a \special
that actually define things. The structure of a
\special command is as follows:

ID bytes. The first 2 characters in every \special
are to be the two tokens **. The rationale behind
this is that a convention like this makes it easier
to adjust programs that have to remain backward-
compatible with their old private syntax. As far as
we know, this particular sequence of tokens is never
used in current \specials.

Command. The next word is the principal com-
mand for this \special. Depending on the com-
mand itself, it may have arguments or it may be a
single command.

Assignments. Optionally, the command can be
followed by a series of keywords that supply extra
information. Keywords follow the same syntax as
commands, so there can be zero or more arguments
to a keyword.

In a series of assignment statements, the order
of the keywords is not significant, except that if du-
plicate keywords are specified, the value of the last
one is used.

Every keyword-value group needs to be sepa-
rated from the previous one by a separator, which
may be either a semicolon or a comma. This is cor-
rect:

\special{**include "pict.eps";
scale 0.5 0.5}

And this is not:

\special{**include "pict.eps"
scale 0.5 0.5}

Separating items. Finally, the assignment state-
ment may use either the equals or colon operator,
or the operator may be omitted altogether. This
supports the common forms:

\special{**include=pict.eps}
\special{**include:pict.eps}
\special{**include pict.eps}

Because the values have very limited syntactical pos-
sibilities, there is no ambiguity created by this.

The \special language

The preceding section defined the grammar for the
\special language. We now need to define what
commands and keywords will be recognized. As em-
phasized above, the language is extensible, and the
parser that we will implement for it makes it easy to

add new commands and keywords without touching
a single line of the parser code itself.

However, we presume that there will be a main-
tainer or maintenance group assigned to take care of
this specification, and this person has the right to
refuse to accept extensions that do not fit in.

Generic keywords. The full set of commands
and keywords that are recognized is given below,
but we will start off with some general keywords.
These keywords can be used within any \special,
and also be used as a command. They will not be
mentioned separately in the descriptions of the other
\specials:

Keyword Value Action

message s Supply an operator mes-
sage to be sent to the
terminal and log file.

id n Supplies a name that
uniquely identifies this
\special.

use n Supplies a name that

identifies a previously
defined \special.

The message string provides a means for oper-
ator communication; for example,

message "Thesis bond paper for this job"

The message is sent verbatim to the terminal and
the log file.

The id allows identification of the \special
it occurs in. The command and the keywords and
values associated with this \special, are saved and
available for later reuse through use. The current
location in the file is also saved, for later retrieval
by one of the cross-link \specials.

The usage of use is as follows: first, all of the
data from the \special to which it refers, minus the
id value, are inserted in the current \special, and
any other values that occur in the current \special
are used to override the inherited options. An ex-
ample is probably the best way to show this. After
\special{**include "picl.eps";

scale 0.5 0.5;

id mypic}
The following command re-does precisely the same
in a later portion of the document,

\special{**use mypic}
and

\special{**use mypic;
scale 1 1;

332 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

TEX in 2003: Part IT Proposal for a \special standard

id mypic2}
inserts the same figure, but at a different scale. It

also assigns a new id to this current \special. The
following is also allowed

\special{**include "pic2.eps";

use mypic;

id mypic2}
but it is not legal to switch to an entirely different
command, like overlay.

Drivers are allowed to set an upper limit to the
number of distinct ids that can be used in a docu-
ment, but this limit should not be lower than 256.
There is never a point to limit the total amount
of ids, since later definitions will just overwrite the
previous one with the same name.

There is at the moment exactly one command
that affects the \special parser itself:

Keyword Value Action

Sets the default units
to one of the defined
dimension types instead
of sp.

defaultunits n

Commands for graphics inclusion. There are
three possible ways of including a graphic figure file
from disc:

Keyword Value Action

include S Insert file contents with
relative page positioning.

overlay S Insert file contents with
absolute page positioning.

underlay S Insert file contents with

absolute page positioning.

The filename string can be used for normal local
files, but it can also be used for URLs, following
the normal rules for URL specification. If no ex-
plicit protocol (like http or £tp) is given, the name
is assumed to be a local file. Even non-networked
drivers are required to correctly handle one protocol:
file://.

In all these three cases, drivers can opt to give a
default search path for figure files with relative path
names, but this is not required nor encouraged. The
driver is not required to include any file type except
dvi.

overlay and underlay are supposed to start
from the lower-left corner of the physical page, with

coordinates as in PostScript: up and right are pos-
itive values for x and y. In cases where there is no
obvious lower-left corner (as may be the case for on-
line backends), the lower-left corner is defined to be
at the end of the output medium.

include places the top-left corner of the image
at TEX’s current point. Here coordinates are as in
DVI: down and right are positive values for x and y.

The difference between overlay and underlay
should be clear: overlays can actually obstruct other
images and text on the page (depending on where
precisely on the page the \special was given), un-
derlays can never do this, but a second underlay
might be on top of the previous one.

If the file cannot be opened, or for relative po-
sitioning, the bounding box cannot be determined,
a warning message is issued and the \special com-
mand is ignored.

There is also a \special command available for
the inclusion of literal drawing commands:

Keyword Value Action

Execute the graphics prim-
itives in string (defined
below).

graphics S

The graphics keyword value is used to insert simple
generic graphics commands in one of the existing
(mini-)languages for graphics. These are properly
handled by using the graphics and type keywords
together.
\special{**graphics = "...",
type = tpic }

The driver will issue an error if there is a graphics
command without a type specified as well, and the
corresponding \special will be ignored. The driver
is not required to execute graphics unless the type
is dvi.

All four graphics \specials accept the follow-
ing options:

Keyword Value Action

x1 y1 x2 y2
Defines the four dimen-
sions of the lower-left and
upper-right corners of the
box which bounds the
figure.

x1 y1 x2 y2
If present, clipping to the
specified four dimensions
should occur.

boundingbox

clipbox

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 333

NTG TgX future working group

Specify the reference point
on an inserted figure which
is to be mapped to the
current page position.
three values that are ab-
solute dimensions for the
size of the figure.

gives a way to specify the
type for files with non-
standard extensions.

position nm

size Xy z

type S

Defines two dimensions
that shift the figure’s
reference point from the
default value.

one or two numbers that
are relative to the ‘normal’
size of the figure.

rotation angle in degrees.
Counterclockwise is posi-
tive.

translate Xy

scale ab

rotate a

boundingbox also applies to graphics, since it can
be used to decide whether and where clipping should
occur. Note that this is essentially the same value as
the PostScript BoundingBox for (E)PS figures. For
clipping purposes, this statement overrules the in-
file version of such a BoundingBox. In the absence
of a boundingbox keyword, (E)PS and similar file
formats where it is legal to draw outside the box
should always be clipped to the in-file values.

The position keyword specifies two values.
The first should be one of top, middle, or bottom,
and the second should be one of left, center, or
right. These words may be abbreviated to a single
letter if desired. Together, they select on the bound-
ing box one of nine points (four corners, four edge
centers, and the box center) which is to be placed at
the TEX current point. If this keyword is not given,
the default is
position = top left
The point selected by this keyword (or by default)
will be the reference point for the insertion of the
graphic file.

In the values of size, a negative dimension
means that size in that direction should be ignored.

The string argument to type is used to give in-
formation about the type of file or graphics. This
value should be either the ‘normal’ three-letter ex-
tension for this type of file or the name of a graph-
ics description language. The following language
names are predefined: dv, dvi (ordinary binary
dvi commands), epic, encapsulated postscript
(also eps), eepic, emtex, fig, metapost (also mp),
pcl, pdf, postscript (also ps), tektronics, tpic,
xpic.

Generic graphics keywords. There are three
keywords that define transformations. Actually
these belong to the graphics language, but they
can also appear inside figure \specials, which is
why they are explained here.

Keyword Value Action

These three keywords can be used as stand-alone
commands, in which case they apply until explicitly
stopped by means of one of the commands we will
define below, or they can be included inside one of
the four \specials for figure inclusion, in which case
they only apply to the subject of that \special.

The keyword size is processed before tak-
ing any transformation commands within the same
\special into account.

Rotations, etc., that were in force at the time
the figure \special was encountered, are taken into
account before the calculations for inclusions are
done. Here is a small example that demonstrates
possible usage:

\special{**gsave}
\special{**scale=2 2}

Some large text here
\special{**rotate=45}

Large and rotated text

\special{**include test.eps,

rotate = 45}

This figure is rotated 90 deg CCW

and twice as large.
\special{**grestore}

Back to normal

Command for colour specifications. There
is only one command defined for colour specifica-
tion (well, actually two, since the American spellling
“color” is also accepted), and one optional keyword:

Keyword Value Action

colo(u)r ? The value should be the
numbers or tokens that
specify the color in the
defined colour model.

model S The value should be a

recognizable color model
name.

Every driver is required to recognize the following
six named values for the option string of model.

334 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

TEX in 2003: Part IT Proposal for a \special standard

These are the ones that define the four most com-
monly used colour models: rgb, cmyk, gray, (also
known as grey) and mono (bitmap).

For all these predefined colour models, a colour
is defined as one or more real numbers between 0 and
1. In the absence of a model keyword, drivers should
take the following guess as default action: if there
is one number in colour’s value, the colour model
is grey. If there are three numbers, the model is
rgb, and if four, the model is cmyk. All other non-
qualified values signify a syntax error.

Commands for the in-line graphics language.
First there are the commands that change the state
of the graphics system’s default values:

Keyword Value Action

Select method of joining
lines.

setlinejoin n

setlinecap n Selects the line ending
method. One of butt,
round, square.
setdash offset values

Select the dashing pattern
for drawing lines.

Selects the line-width.
Sets the miter limit for
drawing.

Value is yes or no.

Value is yes or no.

setlinewidth x
setmiterlimit a

setoverprint n
setvisible n

Note that the commands scale, translate, rotate
and colour also belong to this category.
setvisible and setoverprint are supposed to
compensate for overlays and underlays as well as for
the background colour of the page (defined below in
the section on paper settings).
Then there are commands that draw stuff:

Keyword Value Action

moveto Xy Moves the cursor position
to (x,y).

lineto Xy Draws a line to (x,y).

curveto x1 y1 x2 y2 x3 y3

Draws a Bézier curve
where (x1,y1) and (x2,y2)
are the control points and
(x3,y3) is the end-point.

All three commands draw relative to the current
point, and in fact, they even move the driver’s idea
of ‘current point’ just like the regular DVI com-

mands do. If this side-effect is undesirable, the com-
mands should be part of an explicit drawing, which
is defined and drawn with one of the following com-
mands:

Keyword Value Action

startgraphic Indicates the beginning of
a graphic.

stopgraphic Analogously ends a
graphic.

Inside one of those explicit figures, the drawing com-
mands do not actually draw anything. Instead, one
of the following commands should be used:

Keyword Value Action

newpath Discards any present paths
and start a new one.

closepath Closes the current path.

stroke Draws all the lines with
the current selected pen.

clip Selects the current path as
the clipping path.

fill Fills the current path with

the current selected color.

Of course you are allowed to use the other com-
mands too, and there might be intermixed text.
Page breaks are not allowed though, since the en-
tire graphics state will be restored to it’s default
state at the beginning of the page. Usage of these
commands is analogous to PostScript.

Alternatively, the graphics state can be saved
and restored explicitly, again as in PostScript:

Keyword Value Action

Saves the graphics state.
Position, current color,
current path, current clip-
ping path, current trans-
formation matrix, and the
current pen-type is saved.
Restores the graphics
state.

gsave

grestore

Commands for hyper-referencing. There are
not that many keywords explicitly involved with hy-
perlinks, since they can use the keyword id to mark
either pages or locations within the document. The

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 335

NTG TgX future working group

link specification decides whether the specific id in-
dicates a location marker or a page marker.

Linking re-uses the option keywords position,
size, filename and type that are defined elsewhere
in this paper.

Keyword Value Action

linktopage n The name has to be defined
though an id elsewhere.

linktoloc n The name has to be defined
though an id elsewhere.

linkend Ends an HTML style link.

position nm Specify the reference point
of the link area.

size xy z Three dimensions that are
width, height and depth of
the link area.

filename S This is the URL for the
case of an external file
link.

type S Gives a way to specify the

type for files with non-
standard extensions. The
value should be the ‘nor-
mal’ three-letter extension
for this type (like pdf or
dvi).

The value of size, if available, gives the borders of
the ‘clickable area’. An example:
\special{**id=1}This is a
\special{**linktoloc=1,
size=16pt 6pt lpt}link.

If size is not explicitly given, linkto... func-
tions analogous to the HTML style syntax, and
linkend is used to stop the area. Here is an ex-
ample of the this approach:
\special{**id=1}This is a

\special{**linktoloc 1}1ink}

\special{**linkend}.

It is a syntax error to end a link with linkend if
that link was started with an explicit size, and the
entire link specification will be ignored by the driver.

It is not an error if there is a line or even
line break in the case that is supposed to end with
linkend. These cases have to be handled correctly
by the driver (the clickable area will probably have
to be split into separate parts).

Commands for meta-information. A num-
ber of keywords is available to pass information to
the processing application. This information can be
used to fill (meta) tags or for debugging purposes.

Keyword Value Action

info n Value can be either meta,
debug, or comment.

title s Name of the current docu-
ment.

subject s Subject of the document.

author s The (probably human)
author.

creator S The generating program.

version S Version information.

keywords s Keywords for this docu-
ment.

abstract s Short abstract for this
document.

filename s Original filename.

lineno a Records original line num-
ber in source.

charno a Records character location
in line.

byteno a Records location in file.

date abc Date in a fixed format (dd
mm yyyy).

time ab Generation time in fixed

(hh mm) format, assumed
to be GMT.

The meanings should be clear from the names.
These commands can all be used inside of any other
\special in this same group, and they can be used
in the optional part of the three figure file inclu-
sion \specials and as part of the linktoloc and
linktopage commands if they refer to an external
file, where they can be used to request a specific
version of a file. (The driver does not have to hon-
our these latter cases in order to comply, but it is
required to give the usual warning about failing to
process the \special entirely).

Handling paper. Device initialization can be a
complicated business, so it will usually require the
language keyword as well (see below), but some of
the more common keywords can be defined without
problems. Paper is fairly simple. There are two
commands available, paper and screen.

Keyword Value Action

paper s Paper form name.
screen S Screen form name.
height X Paper or screen height.
width y Paper or screen width.
colo(u)r ? The value should be the

numbers or tokens that

336 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

TEX in 2003: Part IT Proposal for a \special standard

specify the color in the
defined colour model.

The paper and screen keywords define a name that
is used to tag the collected parameters. If the form
name already exists, assignments will replace pre-
vious values. Otherwise, a new form is created.
screen is intended for on-line formats, and is a syn-
onym for paper that feels more natural in this case.

The use of colour here defines the background
colour of the paper or screen. Printer drivers (or
any other driver where execution of this command
might lead to very expensive output) are supposed
to ask confirmation from the user before executing
this \special.

Other processing options. are

Keyword Value Action

The type of imaging that
is applied.

Gives the required reso-
lution for device where
there are more possible
resolutions.

Tray number for devices
with more then one input
tray.

Either on or off.

imaging type n

resolution X

tray n

duplex n

The imaging type can be one of the words normal,
negative, mirror or mirrornegative.

The commands are used for for instance type-
setter output, and they always apply to at least one
full page (the page the \special appeared one)

Other device options. Certain drivers might
require certain extra commands that only they un-
derstand. There is one command reserved to handle
these things.

Keyword Value Action

language n Name the output-device
language for which this
\special is intended.

literal S Insert literal output device
code.

options S Insert driver option.

The language keyword determines whether the DVI

driver will process this \special, or ignore it.
Drivers are not required to understand any kind

of language special, and are free to ignore that

\special right after it has seen the language com-
mand. However, any driver that is willing to sup-
port this \special, even in a very minor way, must
recognize a generic language choice relevant to its
output device, such as PostScript or Epson. Also,
each driver that tries to handle this \special must
recognize its own name as a language value.

literal is allowed to occur only in combination
with language, and is used to insert literal portions
of the command language used by the language in
question.

The options keyword can be used to supply
device-dependent information to the driver; this is
only allowed if the language is the name of a driver.

Correct driver behaviour

Drivers are supposed to correctly interpret and exe-
cute all of the \specials defined in this document,
except were we specifically indicated that this is not
needed.

If the program that processes the DVI file does
not know how to handle a specified \special (other
than those defined in this document), it is allowed
to issue, at most, one warning to the user per unrec-
ognized \special type.

Since there is a reasonable chance that this DVI
file at hand should have been processed by another
program alltogether, one warning seems prudent,
but that should be enough. This rule prevents the
appearance of miriads of “unknown special” warn-
ings in documents that have parallel \specials for
various drivers.

If the program that processes the DVI file does
know how to handle a certain \special, it is allowed
to issue messages, warnings or errors as it sees fit.
It is always required to give warnings in the case of a
\special that can only be partly obeyed. It is also
required to give the user errors for all \specials that
have syntax errors (assuming the driver is aware of
the right syntax, which may not always be the case,
but is definately the case for the \specials defined
here).

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 337

338 TUGboat, Volume 19 (1998), No. 3
Calendar

1998 1999

Oct 1-2 DANTE, 19*" meeting, Feb/Mar ~ DANTE’99, 20" meeting,
Katholische Universitat Eichstatt, “10 years of DANTE e.V.”,
Germany. For information, visit Ruprecht-Karls-Universitat Heidelberg,
http://www.dante.de/dante/DANTE19/. Germany. For information, visit http://

Oct 7-12 Frankfurt Book Fair, Frankfurt, www.dante.de/dante/Tagungen.html.
Germany. For information, contact May GUTenberg’99, Lyon, France.
press@book-fair.com or visit For information, visit
http://wuw.frankfurt-book-fair.com/. http://www.ens.fr/gut/manif/.

Oct 22 NTG, 22"% meeting, Leuven, Aug 8-13 SIGGRAPH, Los Angeles, California.
Belgium. Topic: Fonts. For information, visit
For information, visit http:// http://wuw.siggraph.org/s99/.
www.ntg.nl/bijeen/bijeen22.html. Aug 15-20 TUG’99 — The 20" annual meeting of

Oct 30— TypeCon '98, Society of Typographic the TEX Users Group, Vancouver,

Nov 1 Aficionados, Westborough, Massachusetts. Canada. Information will be posted to

Principal speaker: Matthew Carter. http://www.tug.org/tug99/ as plans
For information, contact Bob Colby develop.
(sota@tjup. truman. edu) or visit Sep 20-23 EuroTEX '99, the XIth European TEX
http://tjup.truman.edu/sota. Conference, Heidelberg, Germany.

Oct 30— ABECEDARIUM: A traveling exhibition Tutorials will precede and follow the main

Dec 1999 of contemporary North American conference. For information, visit

work in binding, letterpress printing,
calligraphy and artists’ books, depicting
the work of Guild of Book Workers
members. First stop: Greensboro, NC.
Sites and dates are listed at http://
palimpsest.stanford.edu/byorg/gbw.

Status as of 1 October 1998

http://www.dante.de/eurotex99.

For additional information on TUG-sponsored events
listed above, contact the TUG office (+1 503 223-9994,

fax: +1 503 223-3960, e-mail: office@tug.org).

For

events sponsored by other organizations, please use the

contact address provided.

TUGboat, Volume 19 (1998), No. 3 339

Hug The Lion!
Martin Schroder

Figure 1: TEX’s soft “ware” lion

Here he comes — the “Independent TEXnical Work-
ing Group on TEX Merchandising” proudly presents
the one and only TEX lion as soft “ware”. This teddy
lion is available for about 53 German marks from one
of the following companies (among others):

e Liebscher & Partner,
Am St. Niclas Schacht 13,
D-09599 Freiberg/Sachsen,
Tel. (+49)03731 /781386,
Fax (4+49) 03731 /781377,
E-Mail info@freibergnet.de,
http://www.freibergnet.de
e J.F. Lehmanns Buchhandlung,
Hardenbergstrasse 11,
D-10623 Berlin,
Tel. (+49)030/617911-0,
Fax (4+49)030/617911-60,
E-Mail info@lehmanns.de,
http://www.jfl.de

TEXies outside of Germany should contact their lo-
cal TEX user groups to save handling charges by
combining orders.

For every soft toy sold, 3 marks are transferred
to the TEX Merchandising Fund. This fund serves
for financing further articles to be merchandised,
and encouraging TEX projects and user groups all
over the world. It is administered by DANTE e.V.

¢ Martin Schréder
Criisemannallee 3
D-28213 Bremen
Germany
Martin.Schroeder@ACM.org
http://www.dream.kn-bremen.de

Production Notes

Mimi Burbank
SCRI, Florida State University,
Tallahassee, FL 32306 —-4130

mimi@scri.fsu.edu

Well, this issue has been most interesting, and
instructive—you really learn how to use (I)TEX
when you actually do production on a issue like this
one—containing METAPOST, METAFONT, Post-
Script, CONTEXT, and pdfTEX! Articles were
received from the TUG’98 editors by ftp, along with
necessary format and font files for production of
special articles.

Working with CONTEXT has been particularly
challenging, and time was spent in understand-
ing/translating Dutch to English, and then making
changes. CONTEXT is a relatively powerful macro
package —similar to I TEX. Having speedy access
to the authors is the greatest help though, and I
appreciate the quick response I've received.

Learning how to run and update files for
pdfTEX has been a lot of fun—more so because
I also have Adobe Acrobat3.0 on my PC. After
using pdfTEX so much with this issue, I'm convinced
it is one of the most important tools that we
TEXxies have today. I'm looking forward to the next
installment and further development along this line.

Output The final camera copy was prepared at
SCRI on IBM rs6000 workstations running AIX v4.2,
using the TEX Live setup (Version 3), which is based
on the Web2c TEX implementation version 7.2 by
Karl Berry and Olaf Weber, pdfTEX, version 0.12h,
and CONTEXT version 3.2. PostScript output,
using outline fonts, was produced using Radical
Eye Software’s dvips(k) 5.78, and printed on an HP
LaserJet 4000 TN printer at 1200dpi.

Coming In Future Issues Several articles from
the conference were delayed until the December is-
sue — Miroslava Misdkovd’s article about typeset-
ting with varying letter widths; Laurence Finston’s
article about typing a concordance from TEX input
files. The next issue will also have a Cahiers sum-
mary, an article by Claudio Beccari on new Greek
fonts and the greek option of the babel package, an
article by Anshuman Pandey entitled “Romanized
Indic and ATEX”, and several other goodies.
Because of the lateness of the current issue, we
hope to have the December issue to you very shortly!

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 339

TUG'99 : TEX Online—Untangling the Web and TEX
THE 20TH ANNUAL MEETING OF

The TEX Users Group
August 15-19, 1999

UNIVERSITY OF BRITISH COLUMBIA ¢ VANCOUVER ¢ BC * CANADA

PAST ANNUAL MEETINGS
& CONFERENCES

1980 Stanford CA

1981 San Francisco, CA; Stanford, CA
1982 Cincinnati, OH; Stanford, CA
1983 Stanford, CA

1984 Stanford, CA

1985 Stanford, CA

1986 Medford, MA

1987 Seattle, WA

1988 Montreal, Canada

1989 Stanford, CA

1990 College Station, TX; Cork, Ireland
1991 Dedham, MA

1992 Portland, OR

1993 Birmingham, England

1994 Santa Barbara, CA

1995 St. Petersburg, FL

1996 Dubna, Russia

1997 San Francisco, CA

1998 New York City, NY; Torun, Poland

MEMBERS AROUND THE WORLD

Argentina * AUSfra/,-a
‘ot ,

e qely peyun . %, %,
\\\)(\' . ceece HOng 4 <. S O)'
v o U . &
Qo 9.) %
& My Y
o pes * Elssny B %
S © QAN . ‘g, 3 04, @
S & o ourg* Mag, %, . [
S« . P au, "4, ~ = @
= 2 O @ < > = &N
S g I » D e s B
F 5 & oESle, 2 s 52 N
Q = S @ .) ¢ 2 a3 o
2E §§ e %5 L3 S
. 5 =2 & . = — 3 < D
T 9 = g O < 5 S Q
& © ®© = S & N & e o o @
-5 5] < 29 %he RN . o .
s < -3 S 9 =~
g2 2g 3% S g8 §
> = S (ST) S & =
RE Y S we & g F 8
. . o o S —
$8 %%, Cuwg.pot® T e 2
> 6\\9 e, > & &Q G)QQ
o, Sp, 7 o\’ @ .
%, %o M, e 0P o O
2. %, P gpa® &
. &O outh Africa* 0.
7 o°
ez g’)\?a

&% Y08z « Ble0ID *

CALL FOR PAPERS

Abstracts Oct 17, 1998
Papers Preliminary Mar 12, 1999
Papers Preprint Jul 16, 1999

PRE-CONFERENCE
WORKSHOPS
August 9-13, 1999

FOR INFORMATION
CONTACT

EMAIL tug99@tug.org

URL http:/ /www.tug.org/tug99/

TeX
I@“ﬁ 1466 NW Naito Parkway, Suite 3141, Portland, Oregon 97209, USA e Tel +1 503 223-9994 ¢ Fax +1 503 223-3960

TUGboat, Volume 19 (1998), No. 3

341

Institutional Members

Academic Press,
San Diego, CA

American Mathematical Society,
Providence, Rhode Island

CERN, Geneva, Switzerland

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

CSTUG, Praha, Czech Republic

Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands

Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

Hong Kong University of

Science and Technology,
Department of Computer Science,
Hong Kong, China

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

Towa State University,
Computation Center,
Ames, Towa

Kluwer Academic Publishers,
The Netherlands

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan

Max Planck Institut
fiir Mathematik,
Bonn, Germany

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag,
Heidelberg, Germany

Stanford University,
Computer Science Department,
Stanford, California

University of California, Irvine,
Information & Computer Science,
Irvine, California

University of Canterbury,
Computer Services Centre,
Christchurch, New Zealand

University College,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Universitat Koblenz—Landau,
Fachbereich Informatik,
Koblenz, Germany

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

University of Stockholm,
Department of Mathematics,
Stockholm, Sweden

University of Texas at Austin,
Austin, Tezas

Uppsala University,
Computing Science Department,
Uppsala, Sweden

TUGboat, Volume 19 (1998), No. 3

343

TEX Consulting & Production Services

North America

Hargreaves, Kathryn

135 Center Hill Road,

Plymouth, MA 02360-1364;

(508) 224-2367;

letters@cs.umb.edu
I write in TEX, IMTEX, METAFONT,
MetaPost, PostScript, HTML, Perl,
Awk, C, C++, Visual C++, Java,
JavaScript, and do CGI scripting. I
take special care with mathematics. 1
also copyedit, proofread, write
documentation, do spiral binding,
scan images, program, hack fonts, and
design letterforms, ads, newsletters,
journals, proceedings and books.
I’'m a journeyman typographer and
began typesetting and designing
in 1979. I coauthored TEX for
the Impatient (Addison-Wesley,
1990) and some psychophysics
research papers. I have an MFA in
Painting/Sculpture/Graphic Arts and
an MSc in Computer Science. Among
numerous other things, I'm currently
doing some digital type and human
vision research, and am a webmaster
at the Department of Engineering
and Applied Sciences, Harvard
University. For more information, see:
http://www.cs.umb.edu/ kathryn.

Loew, Elizabeth
President, TEXniques, Inc.,
362 Commonwealth Avenue,
Suite 5E, Boston, MA 02115;
(617) 670-1916;
FAX: (617) 670-1916
elizabeth@texniques.com
Long-term experience with
major publisher in preparing
camera-ready copy or electronic
disk for printer. Complete book
and journal production in the
areas of mathematics, physics,
engineering, and biology. Services
include copyediting, layout, art sizing,
preparation of electronic figures; we
keyboard from raw manuscript or
tweak TEX files.

Ogawa, Arthur

40453 Cherokee Oaks Drive,

Three Rivers, CA 93271-9743;

(209) 561-4585

Email: Ogawa@teleport.com
Bookbuilding services, including
design, copyedit, art, and
composition; color is my speciality.
Custom TEX macros and IATEX 2¢
document classes and packages.
Instruction, support, and consultation
for workgroups and authors.
Application development in IATEX,
TEX, SGML, PostScript, Java, and
BC++. Database and corporate
publishing. Extensive references.

Outside North America

DocuTgXing: TEX Typesetting
Facility
43 Ibn Kotaiba Street
Nasr City, Cairo 11471, Egypt
+20 2 4034178; Fax: +20 2 4020316
Email: main-office@DocuTeXing.com
DocuTgXing provides high-quality
TEX and IATEX typesetting
services to authors, editors,
and publishers. Our services
extend from simple typesetting
and technical illustrations to full
production of electronic journals.
For more information, samples, and
references, please visit our web site:
http://www.DocuTeXing.com or
contact us by e-mail.

Information about these services
can be obtained from:
TEX Users Group
1466 NW Naito Parkway,
Suite 3141
Portland, OR 97209-2820,
U.S.A.
Phone: +1 503 223-9994

Fax: +1 503 223-3960

Email: office@tug.org

URL: http://www.tug.org/
consultants.html

