-

Adding Native Language Support to the CWEB package and the TEX program

Adding Native Language Support to the CWEB package and

the TEX program

Wiodek Bzyl

Instytut Matematyki, Uniwersytet Gdarski, Wita Stwosza 57, 80-952 Gdarisk, Poland

matwb@univ.gda.pl

Abstract

By adding National Language Support (NLS, for short) to literate programs I
propose making such changes in their text via change files, which make modified
programs aware of and able to support multiple languages. This paper describes
how the GNU libc and gettext libraries were used to add NLS to the CWEB
package and presents a possible way of bringing NLS to the TEX program.

Introduction

In 1984 D. E. Knuth wrote about the WEB system
[Literate Programming. The Computer Journal,
27]: “I made a conscious decision not to design a
language that would be suitable for everybody. My
goal was to provide a tool for system programmers,
not for high school students or for hobbyists. I
don’t have anything against high school students
and hobbyists, but I don’t believe every computer
language should attempt to offer all things to all
people.”

Now, it can be said that WEB systems are used
by a small elite of literate programmers who are able
to combine their English verbal and programming
skills. This is so, because all existing WEBs have
been created with English conventions in mind, so
these tools should not be expected to work well in
non-English environments. Having realized that, I
asked myself: does a WEB system exist that could be
untied from the English conventions and tied anew
to conventions of another language? At that time I
was experimenting with FWEB, noweb, and CWEB.
Of these systems only CWEB supported the use
of non-Latin characters in literate programs. This
feature made me believe that a CWEB adaptation
to the Polish conventions and the conventions of
other languages is possible. After some work I
had a version of CWEB usable by any programmer
literate in Polish.

When 1 was experimenting with the changed
CWEB, new GNU libc and gettext libraries ap-
peared. These libraries make it possible to write
C programs that automatically adapt to local sets
of conventions set up by the values of some en-
vironment variables. This forced me to rethink
what I had done. New functionality offered by
functions from these libraries makes it possible to

have one CWEB that could be used for writing
literate programs in English, Polish and many other
languages.

If this idea is feasible, it would make literate
programming accessible to programmers who like
to write and to explain what they are doing in
the language of their choice, or in the language
appropriate for the audience to whom they are
going to present their concepts and ideas. Moreover,
the World Wide Web would not be populated with
slightly different CWEBs and the CWEB system of
Levy and Knuth will stay open for improvements
by everyone.

Programming interface for NLS —
the ISO C model

In the ISO C model, NLS works by means of locales
divided into six categories, to be selected and
activated independently. Each category specifies a
collection of conventions — one set of conventions
for each category. Here is the list of all categories.

LC_CTYPE — specifies the character set

LC_COLLATE — specifies the conventions for sorting
order

LC_MESSAGES — specifies the language for messages

LC_MONETARY — specifies the formatting of mone-
tary quantities

LC_NUMERIC — specifies the formatting of numbers

LC_TIME — specifies the formatting of dates and
times

Each category name is both a macro name to
be used in C code and an environment variable that
a user can set. There is also a special C macro
LC_ALL used to select all sets of conventions and
there are two special environment variables.

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 293



Wiodek Bzyl

LC_ALL — if defined, its value specifies the locale
to use for all purposes

LANG — if defined, its value specifies the locale to
use for all purposes except as overridden by
any of the variables above.

In C code, the setlocale function is the main
means for specifying the categories to be used.
It does not change the program behavior directly.
Rather, the selected locale data is used by some
functions from the C library. For example, the
functions strcoll and strxfrm will use the sorting
order defined in the Polish locale whenever the
value of environment variable LC_COLLATE is pl. If
the LC_MESSAGES value is pl, then the users will
see Polish messages on their screen, supposing that
a catalog of messages with the translations of the
messages into Polish can be found.

According to the authors of the gettext manual,
bringing NLS to a C program is an easy two step
process.

1. [Internationalization.] Parameterize the pro-
gram code so that it does not include specific
cultural conventions in its output code and in
its message strings.

2. [Localization.] Specify for each locality of users
the set of cultural conventions and the catalog
of message strings to be used by the program
output code.

Although it could not be warranted that these
two steps could be successfully performed on ex-
isting code, in the next section it will be shown
how NLS can be added to the CWEB package. The
paper concludes with remarks on a possible way of
bringing NLS to the TEX program.

Adding NLS to the CWEB package

Look for special macro packages designed
for CWEB users in your language; or,
if you are brave, write one yourself.

— CWEB user manual

The purpose of the current section is to propose
a possible way of bringing NLS to the programs
ctangle, cweave, and to the TEX macro file cweb-
mac.tex; i.e., to the main components of the CWEB
package. Out of several possible ways of doing that,
I decided to use the ISO C model because of the
existing support in the newest GNU libc and gettext
libraries.

Clearly, the ISO C model could be used with
the literate CWEB programs, because they are
essentially C text. Therefore, a project of bringing

NLS to the CWEB package appears to be feasible,
but a more detailed analysis is necessary.

Let us remember what the ctangle/cweave
pair of programs actually does. In literate pro-
graming, ctangle creates a C program and cweave
creates a .tex file. The first line of the produced
.tex file tells TEX to input the file cwebmac.tex
with macros defining CWEB’s documentation con-
ventions. Finally cweave will generate a sorted
cross-reference identifier index, alphabetized lists of
the section names, and a table of contents. In case
of errors, both programs send various clues about
errors to the computer screen.

Recasting the above description in terms of the
ISO model we get the following TODO list:

LC_COLLATE — the code responsible for sorting
[§228-8239, cweave.w| should be changed. In par-
ticular, the collation mapping, based on the data
read from the LC_COLLATE locale, should be created
at runtime. A closer inspection of the code [§235,
cweave.w| reveals that LC_CTYPE data should be
used too, as the original collation mapping does not
differentiate between uppercase and lowercase char-
acters. This implies that the environment variables
LC_COLLATE and LC_CTYPE should have the same
value. Otherwise, we end up with a corrupted col-
lation table with lowercase characters not mapped
onto their uppercase equivalents. Therefore, we
only read the value of the LC_COLLATE environment
variable and use the value to read the LC_CTYPE
locale data.

LC_MESSAGES — strings to be translated should
be marked. Here, for each literate program, a
separate change file should be created, with a code
that initializes locale data and with strings to be
translated being marked. Next, everything should
be ctangled and the xgettext tool should be used to
create an initial message catalog from the produced
C sources.

LC_MONETARY, LC_NUMERIC — nothing to be done
for these categories.

LC_TIME — the \today macro should be redefined.
Otherwise, the file created by cweave and typeset by
TEX will contain English month names. This raises
the following question: how to make the expansion
of the \today macro depend on the values of
environment variables, as they are at the time when
the file is being made? This question is a particular
case of a more general one: how to characterize the
file produced by an internationalized cweave?

An admissible answer could be: the created
file should be able to instruct TEX which format
to use for typesetting. Additionally, the file should

294 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting



-

Adding Native Language Support to the CWEB package and the TEX program

redefine the cwebmac.tex macros that output the
English text together with the extra fonts being
used.

It is a little known fact that the current Web2C
implementation of TEX makes it possible to choose
the format at runtime with a %& line.! This feature
appears to provide us with a way of producing such
a file. It suffices that the first and second line of
the file created by cweave are:

%&(LC_COLLATE wariable value)
\input cweb-(value of LC_COLLATE wariable).tex

Unfortunately, the first line could not be created
automatically, because names of format files do not
reflect the language supported by the format. For
example, the name mex does not tell us that the
mex.fmt is the adaptation of the plain format to
Polish conventions. Even if it were possible to
create the first line automatically, the file would
be typeset incorrectly —almost all characters with
codes from the 128-255 range would be missing, or
they would be replaced improperly. This is due to
the fact that the encoding used for writing down a
file differs from the internal encoding of fonts used
for typesetting. For example, to typeset correctly
a Latin-2 encoded file written in Polish, the file
should be presented to TEX as PL-encoded, which
is the internal font encoding used by the Polish
Computer Modern fonts.

It should be noted, that some TEX implemen-
tors have approached the problem of such a change
of encoding. For example, Eberhard Mattes in
his emTeX enables the user to save re-encoding
mapping in format files. The EncTeX package (the
Extension of TEX for the Reencoding of the Input)
by Petr Olsék provides new primitives to be used
for creating re-encoding mapping to be saved in a
generated format.

These non-standard extensions proliferate for-
mat files and make them depend on the file en-
coding. This is not necessary, because there are
other ways of making re-encoding superfluous; for
example, by instructing the current shell to do
re-encoding. Alas, none of the shells known to the
author allow such re-encoding.

Another possibility, based on a commented out
TCX-code in Web2C, would be to add the following
option to the %& line

-translate-file=(LC_COLLATE variable value)

! This notation is analogous to the #! notation
used in shell scripts to tell the kernel which shell
runs the script.

which tells tex to do input re-encoding defined in
the translate file. Unfortunately, this line would
be ignored by the tex program, as the user is not
allowed to put anything on the %& line except just
the format name.

As 1 am generally against the unnecessary
proliferation of format files, yet another approach
has been chosen. This approach does not yield, as
described above, a self-contained file. The format
and the re-encoding name must be written whenever
tex is run. For example, the following command

tex -fmt=mex -translate-file=pl foo

initiates the typesetting of foo.tex with character
codes re-mapped by a table read from the pl.tcx
translate file. This command should be used to
invoke tex on a Latin-2 encoded file written in
Polish.

To get the behavior just described, it suffices to
output the second line (from the two lines displayed
on the left and above), where the file being input
consists of two lines:

\input cwebmac.tex
\input (LC_COLLATE wariable value)-cweb.tex

Here, the second input file should redefine the
macros that output English text. Moreover, this file
could be used to add and to redefine extra fonts,
because all text fonts being used share the same
internal encoding.

Literate programmers should have the option
of using any 8-bit character code, even in identifiers
of the C program. Because there is no international-
ized C compiler around, which, by definition, would
allow the use of all character codes as identifiers,
the authors of CWEB made ctangle to recognize
character codes from the forbidden range 128-255
and to replace them by strings read from a default,
or user-constructed, transliteration table.

All the described changes have been imple-
mented. The result is the CWEB-NLS package.
The change files of the package could be used
for converting ctangle and cweave into programs
that easily adapt to local conventions. Switching
between different languages is achieved by setting
the LANG environment variable to the appropriate
language prior to using internationalized programs.
For example, let’s presume that the Polish language
is requested. At the shell prompt, or from the
users’ startup files the following command should
be executed

export LANG=pl

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 295



Wiodek Bzyl

(in bash, or an equivalent command in other shells).
If users prefer to see English messages on their
screen, they should execute

export LC_COLLATE=pl

and all NLS magic will happen automatically.

Let’s conclude this section with some statistics.
The CWEB-NLS package consists of 9 orthogonal
change files, where each file implements a different
functionality. These change files could be applied
with other change files extending ctangle and
cweave in other ways. The total number of changed
sections, from the total of 406, is 110 (around 20, if
not counting the trivial changes). The 112 different
messages output by ctangle and cweave have been
translated into Polish. Two TEX macro files have
been written to make possible a mechanical creation
of localized macro files. Finally, 36 different strings
output by the cwebmac.tex macros were translated
and 7 fonts were changed too.

TEX and NLS

In this section I am going to concentrate on the
possible ways of implementing message catalogs.
The proposed implementation applies also to META-
FONT and METAPQOST. This section will conclude
with a list of proposed changes to the Web2C code
to make it more NLS friendly.

“Free software is going international! The Free
Translation Project is a way to get maintainers of
free software, translators, and users all together, so
that they will gradually become able to speak many
languages.” — this is how the ABOUT-NLS file begins.
I consider this GNU project very important for the
reasons explained above and I am glad to see many
GNU packages already speaking in Polish (see Ap-
pendix B for the current state of the project). But
it came as a surprise to find traces of NLS support
in Web2C. In the file texmfmp.c, which is a part
of tex, etex, pdftex, omega, mf, metapost code,
I found the statement setlocale(LC_CTYPE,"").
Unfortunately, this statement makes programs de-
pend on the values of the LC_CTYPE, LANG, LC_ALL
environment variables. In particular, the follow-
ing C functions are affected: isgraph, isspace,
isprint, islower, isdigit. Another unpleas-
ant surprise came, when I executed the following
command

LANG=pl tex -format-file=mex foo
It showed the following strange output

tex: nieznana opcja ‘-format-file=mex’
Try ‘tex -help’ for more information.

—a mixture of Polish and English. Generally, 1
do not like to be surprised by software in this way.
Therefore 1 decided to examine the code. TgX
is assembled from literate sources combined with
various change files and hand-coded routines spread
among several C source files. These files are not
localized and the non-localized code is responsible
for the appearance of the untranslated messages.

Unfortunately, the literate part of TEX does all
of its string processing by “home-grown methods”
[§38, tex.web| and string handling in TEX could not
be localized with the GNU tools because format files
play a role of message catalogs. To see this, let’s
recall the relevant facts. All the strings output by
tex are contained in the tex.pool file with a check
sum appended at the end. The check sum replaces
the place-holder $@ in tex.p—the tangled Pascal
source of tex. When the tex program is preparing
itself to dump a format file it reads the strings
from the pool file and writes these strings on the
format file. The tex program reads these strings
from format files. Whenever tex is run it examines
the check sums and gives up when the check sums
do not match. The above description shows that
removing the messages from format files requires
considerable changes in the code. For that reason,
I propose another approach for how to handle the
translated strings.

If we ignore the check sums, then it suffices to
translate all the 1309 strings from the tex.pool file
and to update the string lengths. Now, tex.pool
with translated strings could be used to build a
format with the command?

tex -ini -translate-file=pl mex

It is essential to use the translation file and to
recode the strings into the internal encoding of the
fonts being used. Otherwise, these strings would
not be re-encoded correctly when written back onto
the computer screen. It should be noted that the
produced format does not depend on the encoding
of the TEX file. For example, it could be used
to typeset CP852 encoded TEX sources written in
Polish. The actual command to be used should
begin with

tex -fmt=mex -translate-file=cp852

where we assume that cp852.tcx file contains an
appropriate translation table.

It is not particularly difficult to extend the
above approach to preserve the examining of check

2 Actually, due to the way TCX files are imple-
mented, the pool file has to be translated to the
internal font encoding by other means.

296 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting



-

Adding Native Language Support to the CWEB package and the TEX program

sums. This would require changes in three sections
of tex.web (§53, §1307, §1308).
Let’s conclude with the promised WISH LIST:
« extend the syntax of the %& line to allow

including user options

localize all C sources in the Web2C directory

« implement the mapping file, analogously to
texfonts.map, which will allow one to rename
format files; the file will allow automatic gener-
ation of fully internationalized files as described
above.

= translate tex.pool

References

Drepper, Ulrich. “Internationalization in the GNU
project”, 1997.

Drepper, Ulrich, Jim Meyering and Francois Pinard.
“GNU gettext tools”, May 1998.

Knuth, Donald E. “Literate Programming”, The
Computer Journal 27 (1984), pp. 97-111.
Knuth, Donald E., and Silvio Levy. “The CWEB

System of Structured Documentation”, version
3.0. cwebman.tex file from the CWEB package.
ABOUT-NLS, file available on most GNU archive sites.

Appendix A

Someone writes in tex.ch: ,,TCX files are probably
a bad idea, since they make TEX source documents
unportable. Try the inputenc I#TEX package.”

I think that inputenc package does not pro-
vide the functionality offered by TCX files for the
following reasons:

« the \uppercase primitive does not work

» commands names which use diacritical charac-
ters could not be defined

« the inputenc package is usable for IATEX
only —other formats are not supported (there
are already 42 different formats on the TEX

Live 3 CD-ROM)

» the log file and terminal are not readable
because unreadable ‘~~’ notation is used —see
the example below.

Niewypelnione \hbox (licho$é 10000)
znaleziono w linii 2

\rm kos§é

\hbox (6.88889+0.0)x44.0

Arm k

.\kern-0.27779

A\rm o

A\rm

A\rm €

[

(11 )

Wyjscie zapisane do foo.dvi

(1 strona, 212 bajtéw)

Niewype~“c2nione \hbox (licho”~c9""b8 10000)
znaleziono w linii 2

\tenrm ko~ "b1~"a2

\hbox (6.88889+0.0)x44.0

.\tenrm k

.\kern-0.27779

.\tenrm o

.\tenrm ~~bi

.\tenrm ~~a2

(11 >
Wyj~"c9cie zapisane do foo.dvi
(1 strona, 212 bajt~"f3w)

Appendix B

The following matrix shows, for several countries,
the current state of internationalization in the GNU
project, as of May 1998. The following matrix
shows, with regard to each package listed, the
languages in which message catalogs have already
been submitted.

Ready PO cs de fr nl no pl ru sl sv
files

bash . s

bison . = om

clisp - .

cpio - s .

diffutils . s . .

enscript = s .

fileutils s x . . s

findutils . s . - .

flex . .

gcal . s . .

gettext s s e e s . s

grep . s = " o m ww

hello = s = wom -

id-utils . . .

indent . . .

libc . s . .

mé . s . .

make . e .

music . .

ptx S .

recode . s . .

sh-utils . = = .

sharutils . e x o .

tar L " .

texinfo - e =

textutils s = x omm .

wdiff T T .

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 297



