
TUGBOAT

Volume 19, Number 2 / June 1998

91 Addresses

General Delivery 93 From the President / Mimi Jett

94 Editorial comments / Barbara Beeton

Copyright protection for typefaces; More on PS fonts; CyrTUG membership
now free of charge; IBM’s techexplorer; New Omega for Mac; EuroTEX98—
The Tenth European TEX Conference

95 April Fool’s Hoax

97 CTAN CDROM series, compliments of DANTE

Typography 98 Typographers’ inn / Peter Flynn

Graphics Applications 101 pst-fill— a PSTricks package for filling and tiling areas / Denis Girou

Book Review 113 TEX Unbound, by Alan Hoenig / Michael Doob

Fonts 115 An overview of Indic fonts for TEX / Anshuman Pandey

121 Diversity in math fonts / Thierry Bouche

Hints & Tricks 135 ‘Hey — it works!’ / Jeremy Gibbons

Smart spaced macros everywhere (Robert Tolksdorf); Dashed lines
(Pedro J. Aphalo); Double-headed arrows (Jeremy Gibbons)

LATEX 137 Default docstrip headers / LATEX project team

139 LATEX News, Issue 9, June 1998 / LATEX project team

TEXNortheast 140 Conference Program

142 Final report: TEXNortheast / Stephanie Hogue

144 TEXNortheast: Workshops and additional papers

147 mathscape— Combining Mathematica and TEX / Michael P. Barnett

157 TEX and LATEX on the Web via IBM techexplorer / Robert S. Sutor and

Samuel S. Dooley

162 Real Life LATEX: Adventures of a TEX consultant / Amy Hendrickson

168 Typesetting with TEX and LATEX / Alan J. Hoenig

176 Alternatives to Computer Modern Mathematics / Alan J. Hoenig

188 Developing database publishing systems using TEX / Jeffrey McArthur

195 Presenting mathematics and languages in Web-pages, using LATEX2HTML /

Ross Moore

204 BibTEX 101 / Oren Patashnik

208 One-document scientific publishing for print and Web/CD / Peter Signell

214 TEX to HTML translation via tagged DVI files / Michael D. Sofka

Abstracts 223 Les Cahiers GUTenberg, Contents of issue 28–29

News &

Announcements

227 Calendar

92 TUG 98 – Torun, Poland, 17–21 August 1998, Preliminary program

231 Volunteers needed for LaTeX2rtf coordination and development /

Wilfred Hennings

229 TUG’99 Announcement

Late-Breaking

News

228 Production notes / Mimi Burbank

228 Future issues

TUG Business 230 Institutional members

Advertisements 231 TEX consulting and production services

232 Y&Y Inc.

c 3 Blue Sky Research

TEX Users Group

Memberships and Subscriptions

TUGboat (ISSN 0896-3207) is published quarterly
by the TEX Users Group, 1466 NW Front Avenue,
Suite 3141, Portland, OR 97209-2820, U.S.A.

1998 dues for individual members are as follows:
Ordinary members: $60.
Students: $40.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $70 a year, including air mail delivery.

Periodical-class postage paid at Portland, OR,
and additional mailing offices. Postmaster: Send
address changes to TUGboat, TEX Users Group,
1466 NW Front Avenue, Suite 3141, Portland, OR
97209-2820, U.S.A.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office.

TUGboat c© Copyright 1998, TEX Users Group

Permission is granted to make and distribute verbatim

copies of this publication or of individual items from this

publication provided the copyright notice and this permission

notice are preserved on all copies.

Permission is granted to copy and distribute modified

versions of this publication or of individual items from

this publication under the conditions for verbatim copying,

provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute transla-

tions of this publication or of individual items from this

publication into another language, under the above condi-

tions for modified versions, except that this permission notice

may be included in translations approved by the TEX Users

Group instead of in the original English.

Copyright to individual articles is retained by the

authors.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Mimi Jett, President∗+

Kristoffer Rose∗+, Vice President

Don DeLand∗+, Treasurer

Arthur Ogawa∗+, Secretary

Barbara Beeton
Karl Berry
Donna Burnette
Kaja Christiansen
Susan DeMeritt
Judy Johnson+

Ross Moore
Patricia Monohon
Cameron Smith, Volunteer Coordinator

Petr Sojka
J́ı̌ri Zlatuška
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
+member of business committee
†honorary

Addresses

All correspondence,
payments, parcels,
etc.

TEX Users Group
1466 NW Front Avenue
Suite 3141
Portland, OR 97209-2820
USA

Telephone

+1 503 223-9994

Fax

+1 503 223-3960

Electronic Mail

(Internet)
General correspondence:
TUG@tug.org

Submissions to TUGboat:
TUGboat@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

TEX is a trademark of the American Mathematical
Society.

No matter how many palettes of buttons and how many
menu options are offered, users of a program will always
want to do something the author has not foreseen. Adding
still more buttons and menus is not the answer.

B. Hayes
“Pleasures of Plication”,

American Scientist 83(6)
(November–December 1995)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 19, NUMBER 2 • JUNE 1998
PORTLAND • OREGON • U.S.A.

TUGboat

During 1998, the communications of the TEX Users
Group will be published in four issues. The
September issue (Vol. 19, No. 3) will contain the
Proceedings of the 1998 TUG Annual Meeting.

TUGboat is distributed as a benefit of mem-
bership to all members.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

The next regular issue will be Vol. 19, No. 4. The
deadline for technical items will be November 1;
reports and similar items are due by November 15.
Mailing is scheduled for early December. Deadlines
for other future issues are listed in the Calendar,
page 227.

Manuscripts should be submitted to a member
of the TUGboat Editorial Board. Articles of general
interest, those not covered by any of the editorial
departments listed, and all items submitted on
magnetic media or as camera-ready copy should be
addressed to the Editor, Barbara Beeton, or to the
Production Manager, Mimi Burbank (see addresses
on p. 91).

Contributions in electronic form are encour-
aged, via electronic mail, on diskette, or made
available for the Editor to retrieve by anonymous
FTP; contributions in the form of camera copy
are also accepted. The TUGboat “style files”, for
use with either plain TEX or LATEX, are available
“on all good archives”. For authors who have no
network FTP access, they will be sent on request;
please specify which is preferred. Send e-mail to
TUGboat@tug.org, or write or call the TUG office.

This is also the preferred address for submitting
contributions via electronic mail.

Reviewers

Additional reviewers are needed, to assist in check-
ing new articles for completeness, accuracy, and
presentation. Volunteers are invited to submit
their names and interests for consideration; write to
TUGboat@tug.org or to the Editor, Barbara Beeton
(see address on p. 91).

TUGboat Advertising and Mailing Lists

For information about advertising rates, publication
schedules or the purchase of TUG mailing lists,
write or call the TUG office.

TUGboat Editorial Board

Barbara Beeton, Editor

Mimi Burbank, Production Manager

Victor Eijkhout, Associate Editor, Macros

Jeremy Gibbons, Associate Editor,

“Hey— it works!”

Alan Hoenig, Associate Editor, Fonts

Christina Thiele, Associate Editor,

Topics in the Humanities

Production Team:

Barbara Beeton, Mimi Burbank (Manager), Robin
Fairbairns, Michel Goossens, Sebastian Rahtz,
Christina Thiele

See page 91 for addresses.

Other TUG Publications

TUG publishes the series TEXniques, in which have
appeared reference materials and user manuals for
macro packages and TEX-related software, as well
as the Proceedings of the 1987 and 1988 Annual
Meetings. Other publications on TEXnical subjects
also appear from time to time.

TUG is interested in considering additional
manuscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the TEX community in general. Provision can be
made for including macro packages or software in
computer-readable form. If you have any such items
or know of any that you would like considered for
publication, send the information to the attention
of the Publications Committee in care of the TUG
office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
MS/DOS is a trademark of MicroSoft Corporation
METAFONT is a trademark of Addison-Wesley Inc.
PC TEX is a registered trademark of Personal TEX,

Inc.
PostScript is a trademark of Adobe Systems, Inc.
techexplorer is a trademark of IBM Research.
TEX and AMS-TEX are trademarks of the American

Mathematical Society.
Textures is a trademark of Blue Sky Research.
Unix is a registered trademark of X/Open Co. Ltd.

92 TUGboat, Volume 19 (1998), No. 2

TUG98 – Toruń, Poland, 17–20 August 1998
“Integrating TEX with the Surrounding World”

Preliminary Programme

The Programme Committee has provided the follow-
ing preliminary information concerning the 19th an-
nual meeting of the TEX Users Group. Additional
information will be posted to

http://www.tug.org/tug-98/

as it becomes available.

Friday 14th August 1998:
Registration for tutorial attendees

Saturday 15th:
Registration
Tutorial: Hans Hagen, “Actually making an
electronic document”, Part I

Sunday 16th:
Registration
Tutorial: Philip Taylor and Jǐŕı Zlatuška,
“Document design, document markup and the
converging worlds of computer typesetting
and electronic publishing”

⋆ Welcome reception and buffet
Monday 17th:

Formal opening and grand welcome
Lectures (see attached list for likely speakers)

⋆ Free evening, suggest walk around old Toruń
Tuesday 18th:

TUG Annual General Meeting
Lectures (see attached list for likely speakers)

⋆ A bonfire at the Teutonic Knights’ Castle of
Golub-Dobrzyń

Wednesday 19th:
Lectures (see attached list for likely speakers)
Free afternoon, except for TUG Board and
LUG reps

⋆ Gala dinner, preceded by a string quartet
concert at the beautifully renovated Artus’
Hall

Thursday 20th:
Lectures (see attached list for likely speakers)
Formal closing and farewell

⋆ TUG Board meeting
Friday 21st:

Tutorial: Bogus law Jackowski,
“TEX & PostScript integration”

Saturday 22nd:
Tutorial: Hans Hagen, “Actually making an
electronic document”, Part II

– day; ⋆ – evening As of 30 June 1998

Tentative list of talks:

Sasha Berdnikov et al.: The paradigma of
encodings in LATEX and the Cyrillic encodings
X2/T2

Piotr Bolek: MetaPost and patterns
W lodek Bzyl: NLS/WEB/GNU/CWEB

Laurence Finston: Generating a concordance from
TEX input files

Hans Hagen, Erik Frambach, Gilbert van den
Dobbelsteen and Taco Hoekwater: TEX in the
next millenium

Hans Hagen: Visual debugging in TEX
Hans Hagen: MetaTEX: How TEX does graphics
Hans Hagen: TEX, PDF, forms and JavaScript
Hàn Thé̂ Thành: Improving TEX’s typeset layout
Taco Hoekwater: MetaFog conversion of MetaFont

fonts to Adobe Type-1
Bogus law Jackowski et al.: More TEX-PostScript

links
Richard Kinch: Developing new TEX math fonts

for the public domain
Miroslava Misáková: Typesetting with varying

letter widths
Timothy Murphy: TEX, Java and the World Wide

Web
Dick Nickalls: TEX in the operating theatre!
Janusz M. Nowacki et al.: Antykwa Toruńska – An

electronic replica of a Polish traditional type
Karel Pı́̌ska: Georgian scripts
John Plaice and Yannis Haralambous: French

guillemets in Omega
John Plaice and Yannis Haralambous: Preparing

for 16-bit math fonts with Omega
John Plaice: A TEXtoMathML translator
John Plaice: Fonts for Omega
Chris Rowley (Keynote speaker): LATEX and the

future of TEX extensions
Karel Skoupý: NTS – A new typesetting system
Petr Sojka: Adapting TEX’s hyphenation to the

needs of the surrounding world
Piotr Strzelczyk & Bogus law Jackowski: CEP –

A Ghostscript-based utility for compressing
PostScript files

Daniel Taupin: ltx2rtf: Export LATEX documents
to Word addicts

Marcin Woliński: PretPrin: A LATEX 2ε package
for prettyprinting texts in formal languages

TUGboat, Volume 19 (1998), No. 2 93

General Delivery

From the President

Mimi Jett

Greetings TUG Members!
The growth in our membership between 1997

and 1998 confirms a positive trend for TUG. After
several years of decline, our numbers have been in-
creasing steadily for two or three years now. There
are many contributing factors— an energetic, proac-
tive board; outstanding volunteerism in the mem-
bership; ongoing R&D; and of course, the strong
TEX community. At this time, we count 1856 mem-
bers representing 48 countries. Such strong mem-
bership has allowed us to return the support to our
members in many ways. For example, we publish
TUGboat quarterly; distributed TEX Live 2 in 1997
and TEX Live 3 in 1998; and 4allTEX and the CTAN

CDs in 1998; hold outstanding meetings such as
TUG’97 in San Francisco, TEX/NE in New York
and TUG’98 in Torun (Poland); provide the Techni-
cal Council; bursary funds; and training/workshops.
Benefits of membership are numerous, but the big-
gest benefit of all is the community. The ability to
share, learn, and teach each other outweighs all the
software distribution we might consider.

Growth has not been without trouble. Issues
of office staff and organization have hampered our
ability to provide great service to our members. Just
recently, we have hired an outstanding office man-
ager who is already making a difference. Dick Det-
wiler has a strong background in not-for-profit orga-
nizations, publishing, and fundraising. Dick under-
stands the importance of responsiveness from the of-
fice, and has received raving compliments from peo-
ple trying to work with us (or join us!) in the past
months. One advantage to having Dick on staff is
the instant gratification of having a live person an-
swer the telephone. Even if the caller gets our voice-
mail, Dick is paged with the message and returns
calls quickly. The biggest mess we have had is the
Institutional Memberships renewals. I apologize to
all of the fine organizations that had trouble with
their TUG renewals, and hope that we have finally
straightened out all of the kinks.

Our annual conference and meeting is coming
up this Summer in Poland, hosted by our good
friends at GUST. TUG’98 will be held in Torun,
at the Nicholas Copernicus University. How fitting
that we meet at the birthplace of the man who
first realized that the earth was not the center of

the universe, just as it is becoming obvious that,
in the universe of mathematics, TEX is the center!
OK, maybe I am a little zealous, maybe TEX is not
the core of science, but it certainly gives us a lan-
guage in which to communicate. The conference will
include many important presentations and provide
hands-on workshops in the week surrounding the
meeting. There are exciting events planned, both
cultural and recreational. Please check the Web
site, http://www.gust.org.pl/TUG98/, for more
details. We look forward to seeing you in Poland!

In the damage repair department, I would like
to stress that TEX remains freely available, as it
was intended by Professor Knuth when he created
it many years ago. One of our long-time members,
and resident jokesters, posted an April Fools’ Day
notice about Knuth selling out to Microsoft. Please
understand that this is only a joke, and although it
was published in MAPS (by NTG), with color photos
of Don and Bill, it remains a joke. What would Mi-
crosoft want with such a powerful piece of software
anyway? For more about this, please see the article
on page 95.

And finally, we would once again like to let you
know that the CTAN CDs in this issue are a gift from
DANTE e.V. and a valuable repository of the CTAN

archives. Our thanks to DANTE!

⋄ Mimi Jett

mimi@iccorp.com

94 TUGboat, Volume 19 (1998), No. 2

Editorial Comments

Barbara Beeton

Copyright protection for typefaces

In the last issue this column included an item con-
cerning the decision, finally, to allow some copyright
protection in the U.S. to computer programs which
define typefaces.

An article containing extensive background on
this topic, “Protection for Typeface Designs, A
Copyright Proposal”, by Terrence J. Carroll, can
be found on the Web at http://www.aimnet.com/
~carroll/copyright/typeface.html. It was orig-
inally published in the Santa Clara Computer and

High Technology Law Journal, Volume 10 (1994),
No. 1.

More on PS fonts

A tutorial concerning the use of PostScript fonts
with LATEX2ε has been created by David Wright
and is available at http://www.phys.washington.
edu/~wright/texfonts/.

The tutorial covers the LATEX font model, the
preparation of tfm files for PS fonts, the construc-
tion of encodings and font families, and the config-
uration of dvips to use PS fonts. It’s well worth a
look.

CyrTUG membership now free of charge

In May, Irina Makhovaia announced that CyrTUG
membership is now free of charge. Information
can be obtained from the CyrTUG Web page, at
http://www.cemi.rssi.ru/cyrtug/.

A working group under the sponsorship of Cyr-
TUG has been actively developing a new LATEX-
compatible character layout for Cyrillic fonts; re-
ports on various facets of this work were made at
EuroTEX98. The work is all but done, and the re-
sulting fonts and LATEX support should be available
soon.

IBM’s techexplorer

Shortly before this issue went to press, Bob Sutor
of IBM’s Interactive Scientific Publishing group an-
nounced the imminent availability of the new “pro-
fessional edition” of the techexplorer Hypermedia
Browser. Development of this tool began as an ex-
periment to see whether a subset of LATEX could
be extended to support interactive viewing of docu-
ments for a computer algebra system.

Experimental versions of techexplorer have been
available for about two years, and earlier this year a
version of the product was stabilized as the “intro-
ductory edition”, a no-charge version that is func-
tional in a browser environment, but doesn’t permit

certain useful options such as printing. These addi-
tional features will be available in the “professional
edition”.

The big surprise is the suggested retail price of
the “professional edition”— $29.95. At that price, it
shouldn’t be a hardship even for students and other
potential users with limited means. Congratulations
to IBM on their enlightened policy.

Details should be forthcoming at http://www.
software.ibm.com/enetwork/techexplorer/.

New Omega for Mac

In April, Tom Kiffe announced that Omega 1.5 had
finally been ported to the Macintosh, including the
entire suite of programs. However:

The programs are for PowerPC only and won’t
run on older 68k Macs. MPW tool versions will be
forthcoming later. To use these programs you will
need a complete CMacTeX 3.0 installation.

The programs and installation instructions can
be found at http://www.kiffe.com/cmacomega.

html, and they are also posted on CTAN in systems/

mac/cmactex/cmacomega/.

EuroTEX ’98—The Tenth European

TEX Conference

The 10th European TEX Conference was held in
St.-Malo, France, from March 29–April 1, as one
facet of the “Second Week on Electronic Publishing
and Typography” (WEPT’98). I was privileged
to attend, and was delighted to renew many old
acquaintances among TEX users and participants in
the other conferences as well.

Some of the “hottest” topics were fonts (partic-
ularly cyrillic and math, as well as one fascinating
study in developing, with METAFONT, fonts partic-
ularly suitable for use in telephone directories) and
tools for use on the Web and in electronic publish-
ing (pdfTEX, HTML, XML, and techexplorer). (Sum-
maries of the articles from the Proceedings appear
in this issue starting on page 222.)

My reason for attending was to carry some news
concerning an initiative to obtain Unicode assign-
ments for math symbols that are not presently in-
cluded in that collection, and are, for this and other
reasons, difficult to use in Web-based documents.
The Unicode Technical Committee has received our
proposal, and a member of the committee with quite
a bit of knowledge of technical publishing has been
assigned to work with us. I expect to report on the
outcome of this project later in the year.

⋄ Barbara Beeton

American Mathematical Society

P.O. Box 6248

Providence, RI 02940 USA

bnb@ams.org

TUGboat, Volume 19 (1998), No. 2 95

April Fool’s Hoax

Webster’s 3rd International Dictionary contains sev-
eral pertinent definitions:

April Fools’ Day April 1st, when practical jokes
are played on the unwary.

hoax to trick into believing or accepting or doing
something : play upon the credulity of [some-
one] so as to bring about belief in or acceptance
of what is actually false and often preposterous.

practical joke a joke whose humor stems from
the tricking or abuse of an individual placed
somehow at a disadvantage.

Well, the attached “news release” certainly fits this
description. For the first few paragraphs, I was in
turns curious, shocked, horrified, . . . , and laughing
out loud. The quote attributed to me a couple of
paragraphs from the end was suspicious— I don’t
think I would have phrased it quite that way. (“We
must have been out of our minds!” is perhaps closer
to the flavor.) And the date —April 1— clinched
the matter.

You may have seen this document somewhere
else, either in print (it appears in the NTG MAPS

No. 20, complete with color photos of Don and Bill),
or in electrons (comp.text.tex is one place where it
was circulated). Be reassured that it is truly a hoax,
a genuine practical joke, and indeed preposterous.

As Don —Professor Knuth — has stated on a
number of occasions, the TEX program is meant
to be freely available, but the only person who is
allowed to change the source code directly is Donald
Knuth. He says on one of his Web pages, relevant
to the CM fonts, “. . . I decided to put these fonts
into the public domain rather than to make them
proprietary, all I have asked is that nobody change
them, unless the name is changed, so that every
user can obtain equivalent results on all computer
systems, now and 50 years from now.” The same
sentiment applies to TEX itself. And to protect
his investment of time and effort, Don assigned
the ownership of the TEX logo to the American
Mathematical Society.

We don’t hold it against the perpetrator of
the present hoax—Richard Kinch— that his words
have been so successful. But we do all hope that the
rest of you, who may see this out of context, are not
fooled. Read it and laugh, but don’t believe a word

of it!!!

⋄ Barbara Beeton

Microsoft Buys TeX, Plans New Products

Stanford Professor Reaps Windfall

Palo Alto, California, USA (CNEWS/MSNBC) — In
a major move into the scientific publishing mar-
ket, Microsoft Corporation announced today that
it has purchased all rights to the computer language
and document compiler known as TeX (pronounced,
“tech”), and plans a major new product line based
on the 20-year-old software.

Stanford Professor Donald Knuth (pronounced,
“kah-nooth”), the author of the widely-used TeX
software, in a joint press conference at the univer-
sity campus with Microsoft Chairman Bill Gates,
acknowledged that the two had been negotiating for
some months. “I felt that two decades of TeX in
the public domain was enough. I am reasserting
the copyright to my original work in TeX. Microsoft
will carry the ball now, and I can get back to my
computer science research.” Knuth acknowledged
he was paid a “seven-figure sum” from Microsoft,
which he will use to finance his work on a project
he has code-named “Volume 4”.

At the press conference, Microsoft chairman
Bill Gates said the acquisition was “the kind of coop-
eration between academia and industry that builds
prosperity for both.” He added that TeX would
“finally give Microsoft a foothold in mathematical
desktop publishing” that has eluded the software
giant since its founding. Drawing gasps of surprise
from the college audience, Gates asserted that “TeX
will soon be biggest jewel in the Microsoft crown.”

Apparently the jewel metaphor will include a
hefty, unavoidable price tag for future TeX users.
Gates outlined plans whereby all existing TeX com-
pilers would be phased out, to be replaced by a new
Microsoft master implementation written in C++.
Beta versions for public testing on Windows 95 and
NT platforms are expected in late 1998, issuing from
a new 205-programmer project laboratory at Mi-
crosoft’s Redmond campus. Microsoft TeX for other
platforms, such as Unix workstations, will follow
at an as-yet unspecified date. According to Gates,
“the master TeX from Microsoft will ensure that the
incompatibilities across platforms are once and for
all eliminated.” TeX software is widely used due
its portability, although variations among operat-
ing systems have been troublesome due to uncoor-
dinated development.

96 TUGboat, Volume 19 (1998), No. 2

Unlike the technical aspects of the project,
Gates explained that pricing for Microsoft TeX has
already been firmly set. The single-user retail prod-
uct is expected to have a street price of about $600
and consist of three CDs. When heckled by an grad-
uate student complaining about a high price for a
formerly free product, Gates seemed startled, ex-
plaining that a “student edition at $299 is likely”
and that “Microsoft will use the revenue to make
TeX better.”

Most current users of TeX have paid noth-
ing for their implementations, derived from Profes-
sor Knuth’s formerly-free work. Before leaving the
podium, Gates made a final comment that “TeX
hasn’t changed in years. What kind of a product
can that be?”, and then handed the microphone to
an assistant, introduced only as the project leader
for Microsoft TeX.

The assistant displayed an overhead presenta-
tion using the current test version of Microsoft TeX.
Equations and tables could be seen dissolving into
each other in a morphing action between frames.
“No one has ever done that with TeX,” Gates an-
nounced from an audience seat at one point. “It’s
the kind of sizzle that can really enliven a dull paper
at an academic conference.” Some onlookers were
not convinced, especially when the program crashed
midway through the demonstration, resulting in a
five-minute delay while Windows 95 was restarted.
Microsoft technicians later blamed a third-party dis-
play driver.

The impact on the large base of existing TeX
users was unclear. During a question-and-answer
period, Gates said that the “TeX” trademark would
be registered as the exclusive property of Microsoft,
and could not appear in any competitive or free soft-
ware. “We are granting of our own good will until
the 3rd quarter of 1998, free use to any existing TeX
vendors or public-domain authors. That’s plenty of
time for an orderly phase-out and change-over to
Microsoft TeX, or no TeX at all. After that, our
legal department will be contacting them.”

A Microsoft attorney added that some of the
project personnel would be dedicated to searching
the Internet to find non-Microsoft TeX software.
“Archives and collections of TeX-related programs
will not be permitted. The standards must be
enforced, or they become meaningless. We are
rescuing a fine piece of work from being diluted into
worthlessness. You would not believe the number
of programs that have been based on TeX without
any central, controlling authority. We will stop this
infringement.”

Some large organizations dependent on TeX
were stunned by the announcment and had not
yet formed plans for dealing with the change. At

the American Mathematical Society, whose publi-
cations largely depend on TeX for typesetting, ed-
itor Barbara Beeton was incensed. “I can’t believe
Don [Professor Donald Knuth] sold us out like this.
We should have never based a publishing enterprise
of this scope on so-called public-domain software.
What were we thinking?” Publication schedules for
the rest of 1998 were on hold, and journal editors
scrambled to reassure their authors that deadlines
would not slip more than a few months.

Certain small businesses are also expected to
feel the impact of the Microsoft ownership of TeX.
Palo Alto restaurant owner Wu Chen appeared un-
happy at the news, stating that “for ten year I
print new menu every day with TeX, now I will pay
big time.” He displayed a crumpled, grease-spotted
take-out flyer, and with tears in his eyes explained
how multiple columns, exotic typefaces, and daily
price changes could all be printed by TeX in a multi-
lingual format. “In Wordperfect this would be a long
journey.”

Commercial vendors of TeX software stand to
lose everything in the face of the new Microsoft
monopoly. While most derivatives of TeX were
freely published, several companies had made a
business of publishing proprietary versions. One
anonymous source from a leading TeX firm said that
“publishing TeX was a gold mine while it lasted,
and the Internet let us mine it deeper and deeper.
Now this is a cave-in right on our heads. TeX was a
monumental work of beauty and utility, freely given
to the world by one of the finest and most generous
minds of the 20th century. Now it belongs to a lucky
dropout. We’re finished.”

Date of Publication 04/01/98
For further information see
http://idt.net/~truetex

/30/

Newsgroups: comp.text.tex
Date: 01 Apr 1998 09:45:12 -0800
From: Matt Austern <austern@sgi.com>

Subject: Re: Microsoft buys TeX! Knuth sells out!

Richard Kinch <truetex@IDT.NET> writes:
Did anybody else see this news item today?

I saw that, but the story is wrong— in fact, it’s
quite backward. The actual situation is that Donald
Knuth bought Microsoft. He is currently working on
rewriting Microsoft Word in Pascal, in accordance
with the principles of literate programming. The
new release will be closely integrated with Metafont.

You can expect to see The Wordbook and Word:

The Program in late 1998, shortly after the publica-
tion of volume 5 of The Art of Computer Program-

ming.

TUGboat, Volume 19 (1998), No. 2 97

CTAN CD-ROM series,

compliments of DANTE

Editor’s note: With this issue of TUGboat is in-
cluded a 3 CD-ROM collection compiled and con-
tributed by DANTE e.V., the German TEX users
group.

The Editor and production team and the TUG

Board are deeply grateful to the board and mem-
bers of DANTE for their generosity, in particular to
Marion Neubauer, the current President of DANTE,
and to Joachim Lammarsch, the past President.

The following notices, included on the CDs, are
repeated here for information.

COPYRIGHT

All copyright regulations were respected during the
creation of this CD-ROM. If there are faults con-
cerning copyright, please report them to us.

In each case, the licensing restrictions of individ-
ual software products shall apply.

The main parts of the software on this CD-

ROM are copyrighted under the GNU Public Licence
(copyleft). The text of this licence is contained on
this CD-ROM.

Neither DANTE e.V. nor the author(s) of the
software packages will be in any way liable for
maintenance or support of the software on this
CD-ROM, nor will they be in any way liable for
any damage or loss resulting from the use of this
software, no matter how caused. No guarantee or
warranty, express or implied, is offered in respect of
this CD-ROM or the software thereon.

Reproduction and/or redistribution of this CD-

ROM is prohibited as well as its use in software
servers or mailboxes without the written permission
of DANTE e.V.

Heidelberg, Germany, 25th of January 1998
DANTE, Deutschsprachige Anwendervereinigung

TEX e.V.
Postfach 101840
D-69008 Heidelberg
Germany
Phone: +49/6221/29766
Fax: +49/6221/167906
email: dante@dante.de
www: http://www.dante.de

Important information concerning the

CTAN CD-ROM series

The CTAN CD-ROM series, consisting of 3 CD-

ROMs, is a “nearly complete” copy of the CTAN

(Comprehensive TEX Archive Network) server of
DANTE e.V. The copy was made on January 25th

1998. “Nearly” means that a few parts of the archive
(containing nearly 3 GB of software) have not been
copied because of lack of space.

On each CD-ROM of this series one can find a file
named FILES.cd in the root directory. It contains
the table of contents of all three CD-ROMs. This
README and the COPYRIGHT are located there too.
On the first CD-ROM [CD-1] additionally the file
CTAN.ori can be found, which contains the complete
list of all files on the CTAN server (the result of the
command ls -r).

Almost all software can be installed directly as
described in the various packages. Only a few
subdirectories have been compressed by the program
infozip, which is compatible to the well-known pkzip

program. The infozip program can be found in the
subdirectory /tools/zip/info-zip on the second
CD-ROM [CD-2]. The source code as well as binaries
for several operating systems are stored there.

The three CD-ROMs do not contain the whole
CTAN. Some software packages which have no
relation to TEX, which are old versions or where
copyright prohibits a distribution via CD-ROM, have
not been copied.

The packages are distributed on the CD-ROMs
as follows:

CD-1 /biblio

/digests

/dviware

/fonts [zipped]
/graphics

/indexing

/info

/language

/macros

CD-2 /help

/support

/systems [only acorn, e-tex and
unix subdirectories]

/tds

/tools

/usergrps

/web

CD-3 /systems [without acorn, e-tex and
unix subdirectories]

All directories which have not been included will
be listed at the end of the [copyright] file.

The CD-ROMs have been mastered under Linux
(thanks to Linus Torvald!) to the ISO9660 standard
with Rock Ridge extensions. They should there-
fore be readable under all systems which supports
ISO9660. The (sometimes very long) directory or
file names have been automatically converted into

98 TUGboat, Volume 19 (1998), No. 2

the ISO9660 format. For reference to the original
names a file named TRANS.TBL” is stored in every
directory. The file contains the original names and
the name in ISO format. Operating systems with
Rock Ridge support can still see and use the original
names.

There exist symbolic links in the CTAN directory
structure. Such symbolic links are supported only
from relatively few operating systems and with the
distribution on three CD-ROMs many of the links
would be out of order. For that reason all symbolic
links has been deleted. In order to help searching
for distinct files, all symbolic links have been stored
in the file SYMLINKS.ori in the root directory of the
first CD-ROM [CD-1].

Have fun and success while using TEX and Co.

⋄ DANTE e.V.

Postfach 101840

D-69008 Heidelberg, Germany

http://www.dante.de

98 TUGboat, Volume 19 (1998), No. 2

Typography

Typographers’ Inn

Peter Flynn

‘C’ stands for Euro

Just to take our minds off the Year 2000 problems,
here in Europe we have a new currency on the
horizon. With effect from the beginning of 1999,
banking and commerce can be conducted in a single
currency valid throughout the European Union. The
old national currencies will continue in use until
2002, when a uniform coinage and set of notes will
replace them in most states (a few have opted out
for the moment). The whole business will entail
lots of dual- or multi-currency computing for the
transitional years, and doubtless manufacturers of
POS equipment will have a field day, but in the long
run it can only benefit the moves towards further
integration. It is, after all, only just over 200 years
since the United States of another continent re-
placed the pounds, doubloons, reales, and moidores
of their mixed English, Spanish, and French her-
itage with the pieces-of-eight of Seville and Mexico,

known from their resemblance to an older German
coinage as ‘thalers’ or ‘dollars’. However, the task of
creating a name for the new European currency was
not the only problem: a typographic one has arisen
also.

Our unelected lords and masters in the Euro-
pean Commission, ineptly supported by our elected
public representatives, demonstrated their feeble
grasp on reality by making what is perhaps the
most crass naming mistake this millenium: they
decided to call the new currency the ‘Euro’ instead
of using the well-established and perfectly adequate
ECU. The PR suits claim this was to avoid offending
the Germans, who would have been upset at the
use of an ostensibly French name (the Ecu was an
old French coin, although the modern ECU actually
stands for European Currency Unit). I am perfectly
sure the modern Germans are far too sensible to be
offended by so trivial an excuse, and I’m equally sure
many millions of us would have been very pleased to
see an historically important name revived. But it
was not to be, and we’re now lumbered with one of
the silliest and most inelegant names ever devised
for a monetary unit. End of rant.

However, the Commission have redeemed them-
selves to a small extent at least by producing an
inoffensive design for the Euro which represents a
rounded ‘E’ with a double bar through it, taking the
symbology from the double bar through the tradi-
tional versions of the £ and the $ (see Figure 1: you
can read more at http://europa.eu.int/euro/).

Microsoft, in a laudable attempt to keep their
fonts up to date and usable by Europeans, rather
missed the point, and added a symbol to their serif
font files based on a capital C with a single serif at

Figure 1: The European Commission’s design for
the Euro symbol

TUGboat, Volume 19 (1998), No. 2 99

the top (see Figure 2 and http://www.microsoft.

com/typography/faq/faq12.htm). Monotype were
apparently retained by Microsoft to make the de-
signs, which makes it all the more surprising that
they seem to have failed to grasp that the Com-
mission’s design showed a symbol with the central
bars and no serifs, and this seems to have been
misinterpreted as being a ‘C’ rather than an ‘E’. In a
seriffed font, instead of adding a serif at the bottom
to retain the same degree of symmetry, Microsoft
left it as a ‘C’ with a top serif and two lines through
it, which unfortunately fails to convey the notion
of ‘E’— which is (presumably) central to the whole
concept.

I griped about this on TYPO-L in January, and
Simon Daniels from Microsoft kindly brought it to
the attention of the people at Monotype responsible
for the outlines and hinting. The screen shot in
Figure 2 had apparently been on their site for about
five months, and no one else had noticed. I haven’t
seen any designs for Metafont fonts yet: maybe the
TEX community can be the first to get it right.

Oops

Christina Thiele and a number of others picked me
up on my remark in the Quote unquote section
of the last Typographers’ Inn about there being a
reverse-quote in the wsuipa fonts at \char’163. I
jumped the gun on that: it’s not a reverse-quote, it’s
there because it’s a standard way of representing the
Arabic letter ‘ain’. . . so it’s got zero to do with quote
marks and everything to do with transcription. The
IPA usage is that it is recommended for ‘weak aspira-
tion after voiceless stops’[1]. Sorry about that—but

Figure 2: Microsoft’s designs for the Euro symbol

I’m still no closer to finding out where this→ ’quote
(so-called) comes from.

TEX and TEXability

I said I was going to use LATEX2ε for my forthcoming
book on SGML[2] to see how it coped. The answer
was: pretty well, far better than I had expected.
My big concern, coming from nearly two decades of
using plain TEX, was that I would find myself being
almost forced to use predetermined styles because of
the notorious difficulty of making even small changes
to the LATEX defaults (if any skeptics disbelieve
that, they have only to read comp.text.tex for a
few hours and count the FAQs about how to make
modifications).

As I explained last time, there are still some
rough edges to LATEX2ε, but I didn’t hit any major
snags. My publisher provided a class file, which
was still under development at the time, so I had to
make a few changes to it. But I needed 13 packages
to enable the things I needed to do, which nicely
illustrates what Paul Anagnostopoulos pointed out
to me after my last gripe, that ‘the reason that there
is a tendency. . . to concentrate on the “borderline
cases and special parameters” rather than the daily
necessities is because most of the people working
on LATEX don’t know much about books. This is
no better witnessed than by the fact that, after 10
years of LATEX development, blank pages still have
running heads!’ While I would dispute the ‘most’—
there are several people working on LATEX2ε who
know lots about books— it is still true that book
production in LATEX needs better parameterization.
There are several style files already in existence to
do some of this, but once the current backlog is out
of the way it’s a project I’d like to look at more
closely.

While I’m riding this hobby, is there no way
we can get rid of the weird concept that reports
have chapters? Very few of them that I have ever
seen in business or research have chapters: only a
small number of very large ones do; the rest have
sections as their major division. It’s one of those em-
barrassing ‘features’ that lead new users, especially
business users, to look at LATEX numbering their first
section as 0.1, roll their eyes to heaven, and mutter
‘academics!’— a gross slur, but understandable in
the circumstances. By all means make it an option,
but not the default.

Usage and abusage

The result of my forays into LATEX has been that
I’ve started using it for many more tasks for which
I would have used plain TEX before, and I’ve even

100 TUGboat, Volume 19 (1998), No. 2

started writing a class file for my in-house memo
document type as a way of getting into it. The
regularity and consistency of macro-driven typeset-
ting makes LATEX’s use of environments an especially
attractive proposition if you deal with SGML be-
cause of the availability of public-domain packages
like jade and commercial programs like Omnimark
(which also has a free version), as these make con-
version from SGML to TEX (amongst other formats)
relatively straightforward. It’s clear that for future
development we need many more document classes
than articles, books, letters, and reports, and I’m
getting tired of seeing people doing what I did today,
writing an advertising leaflet using the article class.

This is known in markup circles as ‘tag abuse’,
and it’s surprisingly prevalent. I’m as guilty as
anyone, and I probably rant about it just as much:
it is frustrating when you want to signal something
you consider vital in a document only to find no-
one else has apparently ever considered it important
before, and has provided no control sequence to do
it. This is especially true if the something doesn’t
actually have a typographic instantiation, such as a
personal name. In the days when I wrote directly in
TEX, I often used a dummy control sequence such
as \person{...} because I use what I write as a
database, and it can be very convenient to be able
to dig back through files with a tool like grep or Perl

and use the existence or proximity of names to help
find what I’m looking for.

I’m happy to make two announcements, there-
fore: one is for a new (well, 1-year-old) organization,
SDATA, the Society for the Definitive Abolition of
Tag Abuse. There is a Web site at http://www.

ucc.ie/sdata and members can contribute lore,
suggestions, anecdotes, code, patches, and advice on
how to avoid or cope with it. I don’t know if it will
achieve any major change in the hearts of document
type designers, but it may help relieve the annoyance
of having to abuse an otherwise inoffensive control
sequence— like all those who sedulously use \emph

when they actually want italics, because someone
told them it was evil to hard-code appearance when
you ought really to be using generic encoding, and
emphasis is all you’ve got apart from \textit. In
the absence of \linnaean, \product, \citetitle,
and \foreign, can we blame them?

The other announcement is for a new journal,
Markup Languages: Theory & Practice, from MIT

Press (ISSN: 1099-6621), starting in early 1999.
This quarterly, peer-reviewed technical journal will
be the first one devoted to research, development,
and practical applications of text markup for com-
puter processing, management, manipulation, and

display. There is a Call for Papers being circulated
in the appropriate places on the network: con-
tact Tommie Usdin (btusdin@mulberrytech.com)
or Michael Sperberg-McQueen (tei@uic.edu) for
more details (doubtless there will be a Web site
soon), and get your fingers working: I’m on the
Editorial Board and I’d like to see TEX and LATEX
users writing submissions.

H&J revisited

Another point Paul A. (see above) made to me
was that some publications (PC Magazine was one
example he gave; but I’ve seen it in Byte and
Dr. Dobb’s also) have a policy that URL punctu-
ation should not fall at the end of a line, but at
the beginning of the next (I was recommending the
opposite). This is apparently because a period at
the end of the line looks like it ends the sentence,
and thus the URL. It looks ugly, but may serve a
real purpose.

Finally, has really no-one else ever hit the snag
with \path I mentioned in the last issue? It’s a great
concept (the path package), like an extended \verb

which lets you define your own set of allowable
breakpoints that can break the line without hyphen-
ation. But the list of breakpoint characters is also
the list of allowed characters for treating verbatim,
which means if you want it to handle backslashes as
they stand, but not to break a line after one, you’re
snookered. Suggestions on a Möbius Strip, please:
I’m on vacation.

References

[1] Geoffrey K. Pullum and William A. Ladusaw,
Phonetic Symbol Guide, University of Chicago
Press, Chicago, 1986, p. 216.

[2] Peter Flynn, Understanding SGML and XML

Tools, Kluwer Academic Publishers, Boston,
1998.

⋄ Peter Flynn

Computer Centre,

University College

Cork,

Ireland

pflynn@imbolc.ucc.ie

http://imbolc.ucc.ie/~pflynn/

TUGboat, Volume 19 (1998), No. 2 101

Graphics Applications

pst-fill — a PSTricks package for filling and

tiling areas

Denis Girou

Abstract

pst-fill is a PSTricks (van Zandt, 1993), (Girou,
1994), (van Zandt and Girou, 1994), (Hoenig, 1998),
(Goossens, Rahtz, and Mittelbach, 1997) package
for simple drawing of various kinds of filling and
area tiling. It is also a good example of the great
power and flexibility of PSTricks, as it is very short
(around 200 lines long) but nevertheless extremely
powerful.

The package was written in 1994 by Timothy
van Zandt but publicly available only in PSTricks 97
and without any documentation. We describe here
version 97 patch 2 of December 12, 1997, which is
the original one modified by Denis Girou to manage
tilings in so-called automatic mode. This article
serves as both reference manual and user’s guide.1

This package is available on CTAN in the
graphics/pstricks directory (files latex/

pst-fill.sty and generic/pst-fill.tex).

1 Introduction

We use filling to describe the operation which con-
sists of filling a defined area by a pattern (or a
composition of patterns), and tiling as the operation
which is like filling, but with control of the starting
point (we use the upper left corner), where the
pattern is positioned relative to this point. There
is an essential difference between the two modes, as
without control of the starting point we cannot cre-
ate the tilings (sometimes called tesselations) used
in many fields of Art and Science2.

Tilings are a wide and difficult field of mathe-
matics, and this package is limited to simple ones,
mainly monohedral tilings with one prototile (which

1 Great thanks are due to Sebastian Rahtz for his help in
correcting my English and of course to Timothy van Zandt
for his impressive development of the PSTricks package.

2 For an extensive description of tilings, and their history
and usage in many fields, see the reference book (Grünbaum
and Shephard, 1987). French readers can also find much
explanation and reference material in (André and Girou, To
appear), and especially in (Girou, To appear).

In the TEX world, very little work has been done on tilings.
There is mainly the tile extension of the XY-pic package
(Rose and Moore, 1991-1998), the article of Kees van der
Laan (van der Laan, 1996, paragraph 7) (the tiling was in
fact done directly in PostScript) and the MetaPost program
(available in graphics/metapost/contrib/macros/truchet)
by Denis Roegel for the Truchet contest in 1995 (Esperet
and Girou, To appear).

can be composite, see section 3.1). With some
experience and wiliness we can do more, and eas-
ily obtain quite sophisticated results, but obviously
hyperbolic tilings like the famous Escher ones or
aperiodic tilings like the Penrose ones are not within
the capabilities of this package. For more complex
needs, we must use low level and more painfull tech-
niques, with the basic \multido and \multirput

macros.

2 History of the package, and its two

different modes

This package was written in 1994 by Timothy van
Zandt. Two modes are defined, called respectively
manual and automatic. For both, the pattern is
generated on contiguous positions in a large area
which includes the region to fill, which is later cut
to the required dimensions by a clipping mechanism.
In the first mode, the pattern is explicitely inserted
in the PostScript output file each time. In the
second, the result is the same but with a single
insertion of the pattern and a repetition done by
PostScript. Control over the starting point was lost,
so it allowed only filling a region and not to tiling
it.

The difference between the two modes is shown

here; filling: or also where,
as you can see, the initial position is arbitrary and

depends on the current point, and tiling:
It is clear that filling is very restrictive com-

pared to tiling, as the desired effect very often
requires the possibility of controlling the starting
point. The automatic mode was therefore of lim-
ited interest, but unfortunately the manual one has
the very big disadvantage of requiring very large
resources, in disk space and subsequently in printing
time. A small tiling can sometimes require several
megabytes in manual mode! The original package
was thus not really usable in practice for tilings.

I modified the code to allow tiling in automatic
mode, also giving control over the starting point.
Most of the time, if some special options are not
used, the tiling is done exactly in the region de-
scribed, which make it faster. There is little reason
to use the manual mode, apart very special cases
where the automatic one cannot work, as explained
later – currently, we know of only one case.

To load this modified automatic mode, with
LATEX use simply:

102 TUGboat, Volume 19 (1998), No. 2

\usepackage[tiling]{pst-fill}

and in plain TEX after:
\input{pst-fill}

add the following definition:
\def\PstTiling{true}

To obtain the original behaviour, simply do not
use the tiling optional.

Users should be aware that in tiling mode, some
other changes were introduced. Aliases for some
parameter names were defined for consistancy (all
parameters begin with the fill prefix) and some
default values which were not well adapted for tilings
were changed (fillsep is set to 0 and fillsize set
to auto). fillcycle was renamed to fillcyclex,
and the normal behaviour was restored whereby the
frame of the area is drawn and all line (linestyle,
linecolor, doubleline, etc.) parameters are now
active (but not in non tiling mode). Some new pa-
rameters were introduced to control tiling, described
below.

In all the following examples, we always

use tiling mode.

To do a tiling, we just have to define the pattern
with the \psboxfill macro and to use the new
fillstyle boxfill . Note that tilings are drawn
from left to right and top to bottom, which can can
be important in some circumstances.

PostScript programmers may be interested to
know that, even in automatic mode, the iterations of
the pattern are managed directly by the PostScript
code of the package, which uses only PostScript
Level 1 operators. The special ones introduced in
Level 2 for drawing patterns (Adobe, 1995, section
4.9) are not used.

First, for convenience, we define a simple
\Tiling macro, which will simplify our examples:

1 \newcommand{\Tiling}[2][]{%
2 \edef\Temp{#1}%
3 \begin{pspicture}#2
4 \ifx\Temp\empty
5 \psframe[fillstyle=boxfill]#2
6 \else
7 \psframe[fillstyle=boxfill,#1]#2
8 \fi
9 \end{pspicture}}

2.1 Parameters

There are 14 parameters available to change the
way the filling/tiling is defined, and one debugging
option.

fillangle (real): the value of the rotation applied
to the patterns (Default: 0).

In this case, we must force the tiling area to be
noticeably larger than the area to cover, to be sure
that the defined area will be covered after rotation.

1 \newcommand{\Square}{%
2 \begin{pspicture}(1,1)
3 \psframe[dimen=middle](1,1)
4 \end{pspicture}}
5

6 \psset{unit=0.5}
7 \psboxfill{\Square}
8 \Tiling[fillangle= 45]{(3,3)}\hspace{3cm}
9 \Tiling[fillangle= -60]{(3,3)}

fillsepx (real|dim): value of the horizontal separa-
tion between consecutive patterns (De-
fault: 0 for tilings3, 2pt otherwise).

fillsepy (real|dim): value of the vertical separa-
tion between consecutive patterns (De-
fault: 0 for tilings3, 2pt otherwise).

fillsep (real|dim): value of horizontal and vertical
separations between consecutive pat-
terns (Default: 0 for tilings3, 2pt oth-
erwise).

These values can be negative, which allow the
tiles to overlap.

1 \psset{unit=0.5}
2 \psboxfill{\Square}
3 \Tiling[fillsepx= 2mm]{(3,3)}\hfill
4 \Tiling[fillsepy= 1mm]{(3,3)}\hfill
5 \Tiling[fillsep= 0.5]{(3,3)}\hfill
6 \Tiling[fillsep= -0.5]{(3,3)}

fillcyclex4 (integer): Shift coefficient applied to
each row (Default: 0).

fillcycley3 (integer): Same thing for columns (De-
fault: 0).

fillcycle3 (integer): Allow for setting both
fillcyclex and fillcycley to the
same value (Default: 0).

For instance, if fillcyclex is 2, the second row
of patterns will be horizontally shifted by a factor

3 This option was added by me. It is not part of the
original package and is available only if the tiling keyword
is used when loading the package.

4 It was fillcycle in the original version.

TUGboat, Volume 19 (1998), No. 2 103

of 1

2
= 0.5, and by a factor of 0.333 if fillcyclex

is 3, etc. These values can be negative.

1 \psset{unit=0.5}
2 \psboxfill{\Square}
3 \newcommand{\TilingA}[1]
4 {\Tiling[fillcyclex= #1]{(3,3)}}
5

6 \TilingA{ 0}\hfill
7 \TilingA{ 1}\hfill
8 \TilingA{ 2}\hfill
9 \TilingA{ 3}

10

11 \vspace{3mm}
12 \TilingA{ 4}\hfill
13 \TilingA{ 5}\hfill
14 \TilingA{ 6}\hfill
15 \TilingA{ -3}
16

17 \vspace{3mm}
18 \Tiling[fillcycley= 2]{(3,3)}\hfill
19 \Tiling[fillcycley= 3]{(3,3)}\hfill
20 \Tiling[fillcycley= -3]{(3,3)}\hfill
21 \Tiling[fillcycle= 2]{(3,3)}\hfill

fillmovex3 (real|dim): value of the horizontal
move between consecutive patterns
(Default: 0).

fillmovey3 (real|dim): value of the vertical
move between consecutive patterns
(Default: 0).

fillmove3 (real|dim): value of horizontal and verti-
cal move between consecutive patterns
(Default: 0).

These parameters allow the patterns to overlap
and to draw some special kinds of tilings. They
are implemented only for the automatic and tiling
modes and their values can be negative.

In some cases, the effect of these parameters
will be the same as that with the fillcycle? ones,
but this is not true for all values.

1 \psset{unit=0.5}
2 \psboxfill{\Square}

3 \Tiling[fillmovex= 0.5]{(3,3)}\hfill
4 \Tiling[fillmovey= 0.5]{(3,3)}\hfill
5 \Tiling[fillmove= 0.5]{(3,3)}\hfill
6 \Tiling[fillmove= -0.5]{(3,3)}

fillsize

(auto|{(real|dim,real|dim)(real|dim,real|dim)}):
The choice of automatic mode or the size of the
area in manual mode. If first pair values are
not given, (0,0) is used. (Default: auto when
tiling mode is used, (-15cm,-15cm)(15cm,15cm)
otherwise).

As explained in the introduction, the manual
mode can use up a large amount of computer re-
sources. It’s usage is therefore discouraged in favour
of automatic mode. It only seems useful in special
circumstances, when the automatic mode fails; only
one case is known, when some kinds of EPS files are
used, such as the ones produced by partial screen
dumps (see 3.2).

fillloopaddx3 (integer): number of times the pat-
tern is added on left and right positions
(Default: 0).

fillloopaddy3 (integer): number of times the pat-
tern is added on top and bottom posi-
tions (Default: 0).

fillloopadd3 (integer): number of times the pat-
tern is added on left, right, top and
bottom positions (Default: 0).

These parameters (exclusively for the tiling
mode) are only useful in special circumstances, such
as in complex patterns when the size of the rectan-
gular box used to tile the area does not correspond
to the pattern itself (there is an example in Figure 1)
and also sometimes when the size of the pattern
is not a divisor of the size of the area to fill and
when the number of loop repeats is not properly
computed, which can occur.

PstDebug3 (integer, 0 or 1): to see the exact tiling
done, without clipping (Default: 0).

This is mainly useful for debugging or to un-
derstand better how the tilings are done. It is
implemented only for the tiling mode.

1 \psset{unit=0.3,PstDebug=1}
2 \psboxfill{\Square}
3 \psset{linewidth=1mm}
4 \vspace*{7mm}
5 \Tiling{(2,2)}\hspace{1cm}

104 TUGboat, Volume 19 (1998), No. 2

6 \Tiling[fillcyclex=2]{(2,2)}\hspace{2cm}
7 \Tiling[fillmove=0.5]{(2,2)}

3 Examples

The single \psboxfill macro has many variations
and different uses. We will try here to demonstrate
many of them:

3.1 Kind of tiles

Since we can access all the power of PSTricks macros
to define the tiles (patterns) used, very complicated
ones can be created. Here we give four Archimedian
tilings (those built with only some regular polygons)
from the eleven known, first discovered completely
by Johanes Kepler at the beginning of 17th century
(Grünbaum and Shephard, 1987), the two regular
ones with the tiling by squares, formed by a single
regular polygon, and two formed by two different
regular polygons.

1 \newcommand{\Triangle}{%
2 \begin{pspicture}(1,1)
3 \pstriangle[dimen=middle](0.5,0)(1,1)
4 \end{pspicture}}
5 \newcommand{\Hexagon}{%
6 % sin(60)=0.866
7 \begin{pspicture}(0.866,0.75)
8 \SpecialCoor
9 % Hexagon

10 \pspolygon[dimen=middle]
11 (0.5;30)(0.5;90)(0.5;150)
12 (0.5;210)(0.5;270)(0.5;330)
13 \end{pspicture}}
14

15 \psset{unit=0.5}

16 \psboxfill{ \Triangle}

17 \Tiling{(4,4)}\hfill
18 % The two other regular tilings
19 \Tiling[fillcyclex=2]{(4,4)}\hfill

20 \psboxfill{ \Hexagon}

21 \Tiling[fillcyclex=2,fillloopaddy=1]{(5,5)}

1 \newcommand{\ArchimedianA}{%
2 % Archimedian tiling 3.4.6.4

3 \psset{dimen=middle}
4 % sin(60)=0.866
5 \begin{pspicture}(1.866,1.866)
6 \psframe(1,1)
7 \psline(1,0)(1.866,0.5)(1,1)
8 (0.5,1.866)(0,1)(-0.866,0.5)
9 \psline(0,0)(0.5,-0.866)

10 \end{pspicture}}
11 \newcommand{\ArchimedianB}{%
12 % Archimedian tiling 3.12^2
13 \psset{dimen=middle,unit=1.5}
14 % cos(22.5) + sin(22.5) = 1.3066
15 % cos(22.5) - sin(22.5) = 0.6533
16 \begin{pspicture}(1.3066,0.6533)
17 \SpecialCoor
18 % Octogon
19 \pspolygon(0.5;22.5)(0.5;67.5)
20 (0.5;112.5)(0.5;157.5)(0.5;202.5)
21 (0.5;247.5)(0.5;292.5)(0.5;337.5)
22 \end{pspicture}}
23

24 \psset{unit=0.5}

25 \psboxfill{ \ArchimedianA}
26 \Tiling[fillmove=0.5]{(7,7)}\hfill

27 \psboxfill{ \ArchimedianB}
28 \Tiling[fillcyclex=2,fillloopaddy=1]{(7,7)}

We can of course tile an arbitrarily defined area;
with the addfillstyle parameter5, we can easily
mix the boxfill style with another one.

1 \psset{unit=0.5,dimen=middle}
2 \psboxfill{%
3 \begin{pspicture}(1,1)
4 \psframe(1,1)
5 \pscircle(0.5,0.5){0.25}
6 \end{pspicture}}
7 \begin{pspicture}(4,6)
8 \pspolygon[fillstyle=boxfill,
9 fillsep=0.25]

10 (0,1)(1,4)(4,6)(4,0)(2,1)
11 \end{pspicture}
12 \hspace{2cm}
13 \begin{pspicture}(4,4)
14 \pscircle[linestyle=none,fillstyle=solid,
15 fillcolor=yellow,fillsep=0.5,
16 addfillstyle=boxfill](2,2){2}

17 \end{pspicture}

5 Introduced in PSTricks 97.

TUGboat, Volume 19 (1998), No. 2 105

Various effects can be obtained; sometimes
complicated ones are surprisingly easy, as in this
example reproduced from one by Slavik Jablan in
the field of OpTiles, inspired by Op-art :

1 \newcommand{\ProtoTile}{%
2 \begin{pspicture}(1,1)
3 % 1/12=0.08333
4 \psset{linestyle=none,linewidth=0,
5 hatchwidth=0.08333\psunit,
6 hatchsep=0.08333\psunit}
7 \psframe[fillstyle=solid,fillcolor=black,
8 addfillstyle=hlines,
9 hatchcolor=white](1,1)

10 \pswedge[fillstyle=solid,fillcolor=white,
11 addfillstyle=hlines]{1}{0}{90}
12 \end{pspicture}}
13

14 \newcommand{\BasicTile}{%
15 \begin{pspicture}(2,1)
16 \rput[lb](0,0){\ProtoTile}
17 \rput[lb](1,0){\rotateleft{\ProtoTile}}
18 \end{pspicture}}
19

20 \ProtoTile\hfill\BasicTile\hfill
21 \psboxfill{\BasicTile}
22 \Tiling[fillcyclex=2]{(4,4)}

It is also possible to superimpose several dif-
ferent tilings. Here is the splendid visual proof of
the Pythagore theorem done by the Arab mathe-
matician Annairizi around the year 900, given by
superposition of two tilings by squares of different
sizes.

1 \psset{unit=1.5,dimen=middle}
2 \begin{pspicture*}(3,3)
3 \psboxfill{\begin{pspicture}(1,1)
4 \psframe(1,1)
5 \end{pspicture}}
6 \psframe[fillstyle=boxfill](3,3)

7 \psboxfill{\begin{pspicture}(1,1)
8 \rput{-37}{\psframe[linecolor=red]
9 (0.8,0.8)}

10 \end{pspicture}}
11 \psframe[fillstyle=boxfill](3,4)
12 \pspolygon[fillstyle=hlines,hatchangle=90]
13 (1,2)(1.64,1.53)(2,2)
14 \end{pspicture*}

In a same way, it is possible to build tilings
based on figurative patterns, in the style of the
famous Escher ones. Following an example of André
Deledicq (Deledicq, 1997), Figure 1 shows a simple
tiling of the p1 category (according to the inter-
national classification of the 17 symmetry groups
of the plane first discovered by the Russian crysta-
lographer Jevgraf Fedorov at the end of the 19th
century).

Figure 2 shows a tiling of the pg category (the
code for the kangaroo itself is too long to be shown
here, but has no difficulties; the kangaroo is re-
produced from an original picture by Raoul Raba
and here is a translation into PSTricks from the one
drawn by Emmanuel Chailloux and Guy Cousineau
for their MLgraph system (Chailloux, Cousineau,
and Suárez, 1996)).

And now a Wang tiling (Wang, 1965),
(Grünbaum and Shephard, 1987, chapter 11),
based on very simple tiles in the form of a square
and composed of four colored triangles. Such tilings
are simply built with a matching color constraint.
Despite its simplicity, it is an important kind of
tiling, as Wang and others used them to study the
special class of aperiodic tilings, and also because it
was shown that (surprisingly) this tiling is similar
to a Turing machine.

1 \newcommand{\WangTile}[4]{%
2 \begin{pspicture}(1,1)
3 \pspolygon*[linecolor=#1](0,0)(0,1)(0.5,0.5)
4 \pspolygon*[linecolor=#2](0,1)(1,1)(0.5,0.5)
5 \pspolygon*[linecolor=#3](1,1)(1,0)(0.5,0.5)
6 \pspolygon*[linecolor=#4](1,0)(0,0)(0.5,0.5)
7 \end{pspicture}}
8

106 TUGboat, Volume 19 (1998), No. 2

1 \newcommand{\SheepHead}[1]{%
2 \begin{pspicture}(3,1.5)
3 \pscustom[liftpen=2,fillstyle=solid,fillcolor=#1]{%
4 \pscurve(0.5,-0.2)(0.6,0.5)(0.2,1.3)(0,1.5)(0,1.5)(0.4,1.3)(0.8,1.5)
5 (2.2,1.9)(3,1.5)(3,1.5)(3.2,1.3)(3.6,0.5)(3.4,-0.3)(3,0)(2.2,0.4)(0.5,-0.2)}
6 \pscircle*(2.65,1.25){0.12\psunit} % Eye
7 \psccurve*(3.5,0.3)(3.35,0.45)(3.5,0.6)(3.6,0.4) % Muzzle
8 \pscurve(3,0.35)(3.3,0.1)(3.6,0.05) % Mouth
9 \pscurve(2.3,1.3)(2.1,1.5)(2.15,1.7)\pscurve(2.1,1.7)(2.35,1.6)(2.45,1.4) % Ear

10 \end{pspicture}}
11

12 \psboxfill{\psset{unit=0.4}\SheepHead{yellow}\SheepHead{cyan}}
13 \Tiling[fillcyclex=2,fillloopadd=1]{(10,5)}

Figure 1: Tiling of p1 category

1 \psboxfill{\psset{unit=0.4}
2 \Kangaroo{yellow}\Kangaroo{red}\Kangaroo{cyan}\Kangaroo{green}%
3 \scalebox{-1 1}{\rput(1.235,4.8){%
4 \Kangaroo{green}\Kangaroo{cyan}\Kangaroo{red}\Kangaroo{yellow}}}}
5 \Tiling[fillloopadd=1]{(10,6)}

Figure 2: Tiling of pg category

TUGboat, Volume 19 (1998), No. 2 107

9 \newcommand{\WangTileA}{%
10 \WangTile{cyan}{yellow}{cyan}{cyan}}
11 \newcommand{\WangTileB}{%
12 \WangTile{yellow}{cyan}{cyan}{red}}
13 \newcommand{\WangTileC}{%
14 \WangTile{cyan}{red}{yellow}{yellow}}
15

16 \newcommand{\WangTiles}[1][]{%
17 \begin{pspicture}(3,3)
18 \psset{ref=lb}
19 \rput(0,2){\WangTileB}%
20 \rput(1,2){\WangTileA}%
21 \rput(2,2){\WangTileC}
22 \rput(0,1){\WangTileC}%
23 \rput(1,1){\WangTileB}%
24 \rput(2,1){\WangTileA}
25 \rput(0,0){\WangTileA}%
26 \rput(1,0){\WangTileC}%
27 \rput(2,0){\WangTileB}
28 #1
29 \end{pspicture}}
30

31 \WangTileA\hfill\WangTileB
32 \hfill\WangTileC\hfill
33 \WangTiles[{\psgrid[subgriddiv=0,
34 gridlabels=0](3,3)}]
35

36 \vspace{2mm}
37 \psset{unit=0.4}

38 \psboxfill{ \WangTiles}

39 \Tiling{(12,12)}

3.2 External graphic files

We can fill an arbitrary area with an external
PostScript image. We have only, as usual, to worry
about the BoundingBox definition if there is not one
provided or if it is inaccurate, as in the case of the

well known tiger picture (part of the Ghostscript

distribution).

1 \psboxfill{%
2 \raisebox{-1cm}{%
3 \includegraphics[bb=17 176 562 740,
4 width=3cm]{ tiger}}}

5 \Tiling{(6,6.2)}

Be warned there are some types of PostScript
file for which the automatic mode does not work,
specifically those produced by a screen dump. This
is demonstrated in the next example, where a pic-
ture was reduced before conversion to the Encap-
sulated PostScript format by a screen dump utility.
In this case, use of the manual mode is the only
alternative, at the price of real multiple inclusion
of the EPS file. We must take care to specify
the correct fillsize parameter, because otherwise
the default values are large and will load the file
too many times, perhaps just actually using a few
occurrences as the other ones are clipped away. . .

1 \psboxfill{\includegraphics{ flowers}}
2 \begin{pspicture}(8,4)
3 \psellipse[fillstyle=boxfill,
4 fillsize={(8,4)}](4,2)(4,2)
5 \end{pspicture}

108 TUGboat, Volume 19 (1998), No. 2

3.3 Tiling of characters

We can also use the psboxfill macro to fill the
interior of characters for special effects like the fol-
lowing:

1 \DeclareFixedFont{\Sf}{T1}{phv}{b}{n}{3.5cm}
2 \DeclareFixedFont{\Rm}{T1}{ptm}{m}{n}{3mm}
3 \psboxfill{\Rm In 452 days...}

4 \begin{pspicture*}(8,3)
5 \rput(4,0.2){%
6 \pscharpath[fillstyle=gradient,
7 gradangle=-45,gradmidpoint=0.5,
8 addfillstyle=boxfill,
9 fillangle=45,fillsep=0.7mm]

10 {\rput[b](0,0){\Sf 2000}}}
11 \end{pspicture*}

20002000
2

d

45
2

da
y

In
45

2
da

ys
..

...
In

45
2

da
ys

...
In

ay
s.
..

In
45

2
da

ys
...

In
45

2
da

ys
...

In
45

2
da

ys
...

In
45

2
d

da
ys

...
In

45
2

da
ys

...
In

45
2

da
y

ys
...

In
45

2
da

ys
...

In
45

2
da

ys
..

In
45

2
da

ys
...

In
45

2
da

ys
...

In

n
45

2
da

ys
...

In
45

2
da

ys
...

In
45

45
2

da
ys

...
In

45
2

da
ys

...
In

45
2

d

da
ys

...
In

45
2

da
ys

...
In

45
2

da
y

ys
...

In
45

2
da

ys
...

In
45

2
da

ys
..

In
45

2
da

ys
...

In
45

2
da

ys
...

In

n
45

2
da

ys
...

In
45

2
da

ys
...

In
45

45
2

da
ys

...
In

45
2

da
ys

...
In

45
2

d

da
ys

...
In

45
2

da
ys

...
In

45
2

da

ys
...

In
45

2
da

ys
...

In
45

2

In
45

2
da

ys
...

In
4

n
45

2
da

ys
...

I

45
2

da
ys

da

1 \DeclareFixedFont{\Rmm}{T1}{ptm}{m}{n}{2cm}
2 \psboxfill{%
3 \psset{unit=0.1,linewidth=0.2pt}
4 \Kangaroo{PeachPuff}\Kangaroo{PaleGreen}%
5 \Kangaroo{LightBlue}\Kangaroo{LemonChiffon}%
6 \scalebox{-1 1}{%
7 \rput(1.235,4.8){%
8 \Kangaroo{LemonChiffon}%
9 \Kangaroo{LightBlue}%

10 \Kangaroo{PaleGreen}%
11 \Kangaroo{PeachPuff}}}}
12 % A kangaroo of kangaroos...
13 \begin{pspicture}(7.8,2)
14 \pscharpath[linestyle=none,fillloopadd=1,
15 fillstyle=boxfill]
16 {\rput[b](4,0){\Rmm Kangaroo}}

17 \end{pspicture}

3.4 Other uses

Other uses can be imagined. For instance, we can
use tilings in a sort of degenerate way to draw
special lines made by a single or multiple repeating
patterns. It might be just a special dashed line, as
here with three different dashes:

1 \newcommand{\Dashes}{%
2 \psset{dimen=middle}
3 \begin{pspicture}(0,-0.5\pslinewidth)

4 (1,0.5\pslinewidth)
5 \rput(0,0){\psline(0.4,0)}%
6 \rput(0.5,0){\psline(0.2,0)}%
7 \rput(0.8,0){\psline(0.1,0)}
8 \end{pspicture}}
9

10 \newcommand{\SpecialDashedLine}[3]{%
11 \psboxfill{#3}
12 \Tiling[linestyle=none]
13 {(#1,-0.5\pslinewidth)
14 (#2,0.5\pslinewidth)}}
15 \SpecialDashedLine{0}{7}{\Dashes}
16

17 \psset{unit=0.5,linewidth=1mm,linecolor=red}
18 \SpecialDashedLine{0}{10}{\Dashes}

We can also use special patterns in business
graphics, as in the following example generated by
PstChart (Girou, 1993-1998) (see Figure 3).

4 “Dynamic” tiling

In some cases, tilings use non-static tiles, that is to
say the prototile(s), even if unique, can have several
forms, for instance specified by different colors or
rotations, not fixed before generation, or varying
each time.

4.1 Lewthwaite-Pickover-Truchet tiling

We present here as an example the so-called Truchet
tiling, which is in fact better called Lewthwaite-Pick-
over-Truchet (LPT) tiling, as explained in (Girou,
To appear)6.

The single prototile is just a square with two
opposing circle arcs. This tile obviously has two
positions, if we rotate it through 90 degrees (see
the two tiles on the next figure). A LPT tiling is
a tiling with randomly oriented LPT tiles. We can
see that even if it is very simple in it principle, it
draws sophisticated curves with strange properties.

Unfortunately, pst-fill does not work in a
straightforward manner, because the \psboxfill

macro stores the content of the tile in a TEX box,
which is static. So the call of the random function
is done only once, which explains why only one
rotation of the tile is used for all the tiling. Only
the one of the two rotations can differ from one
drawing to the next . . .

1 % LPT prototile
2 \newcommand{\ProtoTileLPT}{%

6 For description of the context, history and references
about Sébastien Truchet and this tiling, see (André and
Girou, To appear) and specially (André, To appear), (Esperet
and Girou, To appear) and (Girou, To appear).

TUGboat, Volume 19 (1998), No. 2 109

Fantasist repartition of kangaroos
in the world (in thousands)

0

500

1000

1500

2000

Oceania Africa Asia America Europe

Figure 3: Bar chart generated by PstChart, with bars filled by patterns

3 \psset{dimen=middle}
4 \begin{pspicture}(1,1)
5 \psframe(1,1)
6 \psarc(0,0){0.5}{0}{90}
7 \psarc(1,1){0.5}{-180}{-90}
8 \end{pspicture}}
9

10 % LPT tile
11 \newcount\Boolean
12 \newcommand{\BasicTileLPT}{%
13 % From random.tex by Donald Arseneau
14 \setrannum{\Boolean}{0}{1}%
15 \ifnum\Boolean=0
16 \ProtoTileLPT%
17 \else
18 \rotateleft{\ProtoTileLPT}%
19 \fi}
20

21 \ProtoTileLPT\hfill
22 \rotateleft{\ProtoTileLPT}\hfill
23 \psset{unit=0.5}

24 \psboxfill{ \BasicTileLPT}
25 \Tiling{(5,5)}

For simple cases, there is a solution to
this problem using a mixture of PSTricks and
PostScript programming. Here the PSTricks
construction \pscustom{\code{...}} allows us to
insert PostScript code inside the LATEX+PSTricks
one. The programming is less straightforward
than solving this problem using the basic PSTricks
\multido macro, but it has the advantage of being
noticeably faster, since all tilings operations are
done in PostScript, and we are not limited by TEX
memory (the solution without the pst-fill package I
wrote in 1995 for the colored problem was limited
to small sizes for this reason). Note also that
\pslbrace and \psrbrace are PSTricks macros
which insert the { and } characters.

1 % LPT prototile
2 \newcommand{\ProtoTileLPT}{%
3 \psset{dimen=middle}
4 \psframe(1,1)
5 \psarc(0,0){0.5}{0}{90}
6 \psarc(1,1){0.5}{-180}{-90}}
7

8 % Counter to change the random seed
9 \newcount\InitCounter

10

11 % LPT tile
12 \newcommand{\BasicTileLPT}{%
13 \InitCounter=\the\time

110 TUGboat, Volume 19 (1998), No. 2

14 \pscustom{\code{%
15 rand \the\InitCounter\space
16 sub 2 mod 0 eq \pslbrace}}
17 \begin{pspicture}(1,1)
18 \ProtoTileLPT
19 \end{pspicture}%
20 \pscustom{\code{\psrbrace \pslbrace}}
21 \rotateleft{\ProtoTileLPT}%
22 \pscustom{\code{\psrbrace ifelse}}}
23

24 \psset{unit=0.4,linewidth=0.4pt}

25 \psboxfill{ \BasicTileLPT}
26 \Tiling{(15,15)}

Using the very surprising fact (see (Esperet and
Girou, To appear)) that the coloring of these tiles
does not depend on their neighbors (even if it is
difficult to believe as the opposite seems obvious!)
but only on the parity of the value of row and column
positions, we can directly program in the same way
a colored version of the LPT tiling.

We have also introduced in the pst-fill code for
tiling mode two new accessible PostScript variables,
row and column3, which can be useful in some
circumstances, like this one.

1 % LPT prototile
2 \newcommand{\ProtoTileLPT}[2]{%
3 \psset{dimen=middle,linestyle=none,
4 fillstyle=solid}
5 \psframe[fillcolor=#1](1,1)
6 \psset{fillcolor=#2}
7 \pswedge(0,0){0.5}{0}{90}
8 \pswedge(1,1){0.5}{-180}{-90}}
9

10 % Counter to change the random seed
11 \newcount\InitCounter
12

13 % LPT tile
14 \newcommand{\BasicTileLPT}[2]{%
15 \InitCounter=\the\time
16 \pscustom{\code{%
17 rand \the\InitCounter\space sub 2

18 mod 0 eq \pslbrace
19 row column add 2 mod 0 eq \pslbrace}}
20 \begin{pspicture}(1,1)
21 \ProtoTileLPT{#1}{#2}
22 \end{pspicture}%
23 \pscustom{\code{\psrbrace \pslbrace}}
24 \ProtoTileLPT{#2}{#1}%
25 \pscustom{\code{%
26 \psrbrace ifelse \psrbrace \pslbrace
27 row column add 2 mod 0 eq \pslbrace}}
28 \rotateleft{\ProtoTileLPT{#2}{#1}}%
29 \pscustom{\code{\psrbrace \pslbrace}}
30 \rotateleft{\ProtoTileLPT{#1}{#2}}%
31 \pscustom{\code{\psrbrace ifelse
32 \psrbrace ifelse}}}
33

34 \psboxfill{ \BasicTileLPT{red}{yellow}}

35 \Tiling{(4,4)}
36

37 \vspace{2mm}
38 \psset{unit=0.4}

39 \psboxfill{ \BasicTileLPT{blue}{cyan}}

40 \Tiling{(15,15)}

Another classic example is generation of coor-
dinates and labelling for a grid. Of course, it is
possible to do it directly in PSTricks using nested
\multido commands, and it would clearly be easy
to program. Nevertheless, for users who have a little
knowledge of PostScript programming, this method
offers an alternative which is useful for large cases,

TUGboat, Volume 19 (1998), No. 2 111

because it will be noticeably faster and use less
computer resources.

Remember here that the tiling is drawn from
left to right, and top to bottom, and note that the
PostScript variable x2 contains the total number of
columns.

1 % \Escape will be the \ character
2 {\catcode‘\!=0\catcode‘\\=11!gdef!Escape{\}}
3

4 \newcommand{\ProtoTile}{%

5 \Square%

6 \pscustom{%
7 \moveto(-0.9,0.75) % In PSTricks units
8 \code{%
9 /Times-Italic findfont 8 scalefont setfont

10 (\Escape() show row 3
11 string cvs show (,) show column 3 string
12 cvs show (\Escape)) show}
13 \moveto(-0.5,0.25) % In PSTricks units
14 \code{%
15 /Times-Bold findfont 18 scalefont setfont
16 1 0 0 setrgbcolor % Red color
17 /center {dup stringwidth pop 2
18 div neg 0 rmoveto} def
19 row 1 sub x2 mul
20 column add 3 string cvs center show}}}

21 \psboxfill{ \ProtoTile}
22 \Tiling{(6,4)}

(1,1)

1
(1,2)

2
(1,3)

3
(1,4)

4
(1,5)

5
(1,6)

6
(2,1)

7
(2,2)

8
(2,3)

9
(2,4)

10
(2,5)

11
(2,6)

12
(3,1)

13
(3,2)

14
(3,3)

15
(3,4)

16
(3,5)

17
(3,6)

18
(4,1)

19
(4,2)

20
(4,3)

21
(4,4)

22
(4,5)

23
(4,6)

24

1 \newcommand{\Pattern}[1]{%
2 \begin{pspicture}(-0.25,-0.25)(0.25,0.25)
3 \rput{*0}{\psdot[dotstyle=#1]}
4 \end{pspicture}}
5 \newcommand{\West}{\Pattern{o}}
6 \newcommand{\South}{\Pattern{x}}
7 \newcommand{\Central}{\Pattern{+}}
8 \newcommand{\North}{\Pattern{square}}
9 \newcommand{\East}{\Pattern{triangle}}

10

11 \newcommand{\Cross}{%
12 \pspolygon[unit=0.5,linewidth=0.2,
13 linecolor=red]
14 (0,0)(0,1)(1,1)(1,2)(2,2)(2,1)(3,1)(3,0)
15 (2,0)(2,-1)(1,-1)(1,0)}
16

17 \newcommand{\StylePosition}[1]{%
18 \LARGE\textcolor{red}{\textbf{#1}}}
19

20 \newcommand{\SubDomain}[4]{%

21 \psboxfill{#4}
22 \begin{psclip}{\psframe[linestyle=none]#1}
23 \psframe[linestyle=#3](5,5)
24 \psframe[fillstyle=boxfill]#2
25 \end{psclip}}
26

27 \newcommand{\SendArea}[1]{%
28 \psframe[fillstyle=solid,fillcolor=cyan]#1}
29

30 \newcommand{\ReceiveData}[2]{%
31 \psboxfill{#2}
32 \psframe[fillstyle=solid,fillcolor=yellow,
33 addfillstyle=boxfill]#1}
34

35 \newcommand{\Neighbor}[2]{%
36 \begin{pspicture}(5,5)
37 \rput{*0}(2.5,2.5){\StylePosition{#1}}
38 \ReceiveData{(0.5,0)(4.5,0.5)}{\Central}
39 \SendArea{(0.5,0.5)(4.5,1)}
40 \SubDomain{(5,2)}{(0.5,0.5)(4.5,3)}
41 {dashed}{#2}%
42 % Receive and send arrows
43 \pcarc[arcangle=45,arrows=->]
44 (0.5,-1.25)(0.5,0.25)
45 \pcarc[arcangle=45,arrows=->,
46 linestyle=dotted,dotsep=2pt]
47 (4.5,0.75)(4.5,-0.75)
48 \end{pspicture}}
49

50 \psset{dimen=middle,dotscale=2,fillloopadd=2}
51 \begin{pspicture}(-5.7,-5.7)(5.7,5.7)
52 % Central domain
53 \rput(0,0){%
54 \begin{pspicture}(5,5)
55 % Receive from West, East, North and S.
56 \ReceiveData{(0,0.5)(0.5,4.5)}{\West}
57 \ReceiveData{(4.5,0.5)(5,4.5)}{\East}
58 \ReceiveData{(0.5,4.5)(4.5,5)}{\North}
59 \ReceiveData{(0.5,0)(4.5,0.5)}{\South}
60 % Send area for West, East, North and S.
61 \SendArea{(0.5,0.5)(1,4.5)}
62 \SendArea{(4,0.5)(4.5,4.5)}
63 \SendArea{(0.5,0.5)(4.5,1)}
64 \SendArea{(0.5,4)(4.5,4.5)}
65 % Central domain
66 \SubDomain{(5,5)}{(0.5,0.5)(4.5,4.5)}
67 {solid}{\Central}
68 % Redraw overlapped lines
69 \psline(1,0.5)(1,4.5)
70 \psline(4,0.5)(4,4.5)
71 % Two crosses
72 \rput(1.5,4){\Cross}
73 \rput(2,2){\Cross}
74 \end{pspicture}}
75 % The four neighbors
76 \rput(0,5.5){\Neighbor{N}{\North}}
77 \rput{-90}(5.5,0){\Neighbor{E}{\East}}
78 \rput{90}(-5.5,0){\Neighbor{W}{\West}}
79 \rput{180}(0,-5.5){\Neighbor{S}{\South}}
80 \end{pspicture}

112 TUGboat, Volume 19 (1998), No. 2

bc

bc

bc

bc

bc

bc

bc

bc

ut

ut

ut

ut

ut

ut

ut

ut

rs rs rs rs rs rs rs rs

× × × × × × × ×

+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +

N

+ + + + + + + +

rs rs rs rs rs rs rs rs

rs rs rs rs rs rs rs rs

rs rs rs rs rs rs rs rs

E

+
+
+
+
+
+
+
+

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

ut

W

+
+
+
+
+
+
+
+

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

S

++++++++

××××××××

××××××××

××××××××

Figure 4: Communication scheme to solve the Poisson equation on a distributed memory computer

4.2 A complete example: the Poisson

equation

To finish, we show in Figure 4 a complete real
example, a drawing to explain the method used
to solve the Poisson equation by a domain decom-
position method, adapted to distributed memory
computers. The objective is to show the communi-
cations required between processes and the position
of the data to exchange. The code (listed below)
also shows some useful and powerful techniques for
PSTricks programming (look especially at the way
some higher level macros are defined, and how the
same object is used to draw the four neighbors).

References

Adobe, Systems Incorporated. PostScript Language
Reference Manual. Addison-Wesley, 2 edition,
1995.

Chailloux, Emmanuel, G. Cousineau, and A. Suárez.
“Programmation fonctionnelle de graphismes
pour la production d’illustrations techniques”.

Technique et science informatique 15(7), 977–
1007, 1996.

Deledicq, André. Le monde des pavages. ACL
Éditions, 1997.

Girou, Denis. “PstChart. Business charts in (LA)TEX
+ PostScript with PSTricks”. http://www.tug.
org/applications/PSTricks/PstChart, 1993-
1998.

Girou, Denis. “Présentation de PSTricks”. Cahiers
GUTenberg 16, 21–70, 1994.

Goossens, Michel, S. Rahtz, and F. Mittelbach. The
LATEX Graphics Companion. Addison-Wesley,
1997.

Grünbaum, Branko and G. Shephard. Tilings and
Patterns. Freeman and Company, 1987.

Hoenig, Alan. TEX Unbound: LATEX & TEX Strate-
gies, Fonts, Graphics, and More. Oxford Univer-
sity Press, 1998.

Rose, Kristoffer H. and R. Moore. “XY-pic. Pat-
tern and Tile extension”. Available from CTAN,
macros/generic/diagrams/xypic, 1991-1998.

TUGboat, Volume 19 (1998), No. 2 113

van der Laan, Kees. “Paradigms: Just a little bit of
PostScript”. MAPS 17, 137–150, 1996.

van Zandt, Timothy. “PSTricks. PostScript macros
for Generic TEX”. Available from CTAN,
graphics/pstricks, 1993.

van Zandt, Timothy and D. Girou. “Inside
PSTricks”. TUGboat 15(3), 239–246, 1994.

Wang, Hao. “Games, Logic and Computers”. Scien-
tific American pages 98–106, 1965.

⋄ Denis Girou
CNRS/IDRIS — Centre National

de la Recherche Scientifique /
Institut du Développement et
des Ressources en Informatique
Scientifique

B.P. 167
91403 Orsay cedex
France
Denis.Girou@idris.fr

TUGboat, Volume 19 (1998), No. 2 113

Book Reviews

Book review: TEX Unbound, by

Alan Hoenig

Michael Doob

Alan Hoenig, TEX Unbound: LATEX & TEX Strate-

gies for Fonts, Graphics, & More. Oxford University
Press, New York, 1998, ISBN 0-19-509686-X.

It is a daunting task to try to describe in some de-
tail the principal extensions available to enhance the
typesetting abilities of TEX. Some, such as Meta-
Font, go back to the very origins of TEX; some, such
as MetaPost, are adaptations of older programs to
newer technologies; some, such as those involving
hypertext references or using TEX to create docu-
ments for use on the internet, are responses to very
current changes in methods of transmitting informa-
tion. TEX Unbound is the first book (all 600 pages
of it) that makes a serious attempt at fulfilling this
task.

Reviewing a book about TEX is necessarily a
multifaceted task. In addition to considering the
usual content, one is inevitably drawn to the type-
setting and the quality (or possible lack thereof) of
design. For TEX Unbound it is obvious that great ef-
fort has been put into producing an attractive book.

The text has been set in Adobe Garamond, a re-
freshing change from the plethora of books typeset
using Computer Modern; the style is generally at-
tractive and consistent. Nonetheless, your reviewer
did find a small pride of typographical errors, but
surprisingly few for a book of this size (in fact this re-
view came from reading the final proofs of the book;
perhaps there are even fewer typos now). This is not
to say that all is perfect: the author spends some
time describing f-words; these are defined by him to
be words that end in the letter f (just to be sure that
the reader’s imagination doesn’t run wild with any
possibly prurient thoughts). Given this emphasis,
it is surprising that whenever the phrase “of TEX”
appears, the close kerning stops the reading process
and is just plain annoying. That having been said,
the book is attractive, and this in itself is helpful as
the author gently introduces some principles of good
style. A particularly interesting example of this is
the “Rogues’ Gallery” of 28 different combinations
of mathematical fonts (Computer Modern, Math
Times, Euler, Lucida New Math, Mathematica) and
text fonts (Computer Modern, Times New Roman,
Palatino, Baskerville, Galliard, Lucida Bright, Lu-
cida Sans). The results (intentionally) range from
attractive to disastrous. Looking over these samples
carefully really clarifies many typesetting issues, es-
pecially in the cases where the math and text italic
fonts are the same. Other interesting applications of
TEX showed up from time to time in the text, e.g.
ct ligatures, and provided pleasant surprises to the
reader.

The intended audience of this book is clear
from the topics covered: installing and running TEX,
using MetaFont and MetaPost, installing new fonts,
the use (via nontrivial examples) of virtual fonts,
and various method of graphic inclusions including
the use of the LATEX picture environment, epic,
eepic, PICTEX, MetaFont, MetaPost, mfpic, and
PSTricks. A comfortable working knowledge of TEX
is generally assumed, but no higher expertise is
demanded. It must be said that there is a bias
towards the UNIX operating system, and towards
the C shell within it. This is clearly not a first-level
book, but neither does it require any system-level
knowledge of either TEX or the underlying operating
system (a somewhat more advanced knowledge is
required to understand the Perl scripts, but they
aren’t very numerous so this might be considered
“knit”-picking).

The first 10% of the book describes the main
principles of running TEX and the sources for TEX:
the internet and the CD-ROM. It also describes
newsgroups, some tools (mainly ftp), CTAN and the

114 TUGboat, Volume 19 (1998), No. 2

different TEX users groups. It is really more of a
refresher, but does describe a number of relatively
new web sites that might be of interest to the more
seasoned user of TEX.

The real nuts and bolts of TEX Unbound starts
with the discussion of MetaFont and MetaPost.
Since there are relatively few introductions to Meta-
Font, especially vis-à-vis its companion program
TEX, it is fortunate that this one starts from the be-
ginning and explains how to construct basic shapes
using lines and (Bézier) curves, how to change pen
shapes, and how to adjust the parameters of Meta-
Font; this is really welcome. The discussion of bit-
mapped versus outline fonts is also useful (although
the lack of any discussion of hinting of outline fonts
is particularly unfortunate). Many samples of Meta-
Font fonts are given; it would have been useful to
have samples of a few letters with both their control
points and MetaFont code displayed. In the latter
part of TEX Unbound there are a number of excel-
lent examples of MetaFont and MetaPost code; the
results are elegant, beautiful and reflect both math-
ematical and artistic beauty (it should be noted that
the author is clearly the Captain Ahab of the TEX
world pursuing the perfect graphic output).

TEX Unbound then proceeds with a short in-
troduction to LATEX followed by some elementary
interactions with other types of software, e.g. Math-
ematica. Along with the introduction to plain TEX
in the appendix, these seem rather out of place, hav-
ing neither the sophistication nor excitement of the
rest of the book.

On the other hand, the description of font se-
lection is excellent and fills a much-unneeded gap
in the literature. The use of fonts other than Com-
puter Modern with LATEX, especially with the new
font selection scheme (NFSS) and its extensions to
LATEX2ε, is somewhat byzantine, and having the
concepts of font selection, encodings, and naming
schemes explained in one consistent chapter is wel-
come.

The topic of virtual fonts follows naturally
from font selection. Again, the reason behind and
needs for virtual fonts and various encodings are
explained, and methods of installing them are dis-
cussed (with examples). Complete descriptions of
several projects are given: strikeout fonts, underline
fonts, and composite fonts. The examples displayed
in the accompanying figures are wonderful. (A per-
sonal steckenpferd of the reviewer: using \bar as a
math accent gives the same size accent for all let-
ters of all widths so that i and M get the same ac-
cent. Using \overline produces an accent that is
too wide. Why not a virtual overline font?) While

several useful tools for manipulating virtual fonts
are described, the basic structure of the vfl files re-
mains unmentioned. Even a brief description would
convey better the power of virtual fonts.

Want to install new math fonts? Software for
doing this (available on CTAN) is described and used
to produce the aforementioned Rogues’ Gallery.

Finally, there are descriptions and extensive ex-
amples of various methods of inserting graphics in-
clusions into TEX files. These include some that are
internal to TEX (in the sense that auxiliary macros
are input and make graphic commands available)
such as the LATEX picture envrionment, PSTricks,
PSfrag, and PICTEX; others create external files that
can then be processed by TEX such as bm2font or
mfpic. TEX Unbound is certainly the best collective
description of the various methods of adding graph-
ics. Perhaps a little more might have been said to
compare the relative strengths and weaknesses of the
various programs.

Finally, a few words must be said about the
writing style of the author. This is a highly technical
book, and such books are often somewhat unpleas-
ant to read. Sometimes it seems that an author is
trying to write a entire book without using an ad-
verb. In contrast, this book is well written using a
good deal of style and humour. Much of the mate-
rial presented in this book could have been dry and
repetitive; instead the descriptions and the exam-
ples used are attractive and interesting. Typical is
the short example about buckling of beams under
compression entitled “Necking in bars”. However,
it probably takes the condescension of a true New
Yorker to appreciate the comments about Hoboken.

All in all this is an excellent addition to the TEX
references available. Anyone who uses TEX on a day
to day basis will definitely want it. Anyone who is
even mildly interested in the limits of TEX will also
want this book. For a TEXie it’s a good read.

⋄ Michael Doob

Department of Maths and Astronomy

University of Manitoba

Winnipeg, Manitoba, Canada R3T 2N2

doob@cc.umanitoba.ca

TUGboat, Volume 19 (1998), No. 2 115

Fonts

An Overview of Indic Fonts for TEX

Anshuman Pandey

1 Introduction

Many scholars and students in the humanities have
preferred TEX over other “word processors” or doc-
ument preparation systems because of the ease TEX
provides them in typesetting non-Roman scripts, the
availability of TEX fonts of interest to them, and the
ability TEX has in producing well-structured docu-
ments.

However, this is not the case amongst Indol-
ogists. The lack of Indic fonts for TEX and the
perceived difficulty of typesetting them have often
turned Indologists away from using TEX. Little do
they realize that TEX is the foremost tool for de-
veloping Indic language/script documents. With an
increase over the past few years in the development
and availability of Indic language and font pack-
ages, the introduction of other fonts and style pack-
ages, the flexibility of the LATEX2ε system, and the
creation of TUGIndia (which may revolutionize the
typesetting of Indic scripts) there is now even more
reason for Indologists to implement TEX in their
work.

There are roughly thirteen major Indic scripts
(Tibetan is included in this list) which are used
throughout South Asia to write the major languages
and dialects of the region. As of this article all of
these major scripts can be typeset with TEX, the
exception being Assamese (see Section 6).

Not only is it fascinating that the major scripts
of South Asia can be typeset with TEX, but the ease
with which such a task can be accomplished is itself
an amazing feat. Anyone who has ever tried writing
a document with multiple non-Roman scripts and
diacritic text in an environment other than TEX un-
derstands the complexity of such a task. TEX takes
the user beyond such difficulties by facilitating the
implementation of multiple scripts without the has-
sle of worrying about various fonts and their en-
codings, manual font switching, and other such hin-
drances to productivity caused by common “word
processors”.

TEX enables the incorporation of several non-
Roman scripts within a single document through
transliterated input of the scripts. Indic scripts are
based on the phonetic template of the languages
they represent, a template which is uniform in both

the Indo-Aryan and Dravidian language families of
India. Such uniformity in phonetics is reflected in
orthography, which in turn enables all scripts to be
transliterated through a single scheme. This unifor-
mity has subsequently been reflected in the translit-
eration schemes of the Indic language/script pack-
ages.

Most packages have their own transliteration
scheme, but these schemes are essentially variations
on a single scheme, differing merely in the coding
of a few vowel, nasal, and retroflex letters. Most
of these packages accept input in one of the two
primary 7-bit transliteration schemes— ITRANS or
Velthuis —or a derivative of one of them. There
is also an 8-bit format called CS/CSX which a few
of these packages support. CS/CSX is described in
further detail in Section 3.

2 The Fonts and Packages

Figure 1 shows examples of the various fonts de-
scribed in this article. Table 1 lists the sites from
which all of the fonts and packages described in this
article are available.

3 CS/CSX

CS/CSX (Classical Sanskrit/Classical Sanskrit eX-
tended) is the closest thing to an accepted stan-
dardization of 8-bit transliteration of Indic scripts.
Adopted in 1990 at the 8th World Sanskrit Con-
ference in Vienna, CS/CSX enables Indologists to
exchange electronic data in a variety of platform-
independent media.

CS/CSX is an encoding convention based on
IBM Code Page 437. CS is a basic inventory of dia-
critic letters which are traditionally used to translit-
erate Sanskrit written in the Devanagari script. CSX

is an extension of this basic inventory to include
accented and other characters. Contrary to what
the name indicates, the inventory of CS/CSX char-
acters is not limited to Sanskrit, and may be used
to transliterate other Indic languages.

Introductory information on CS/CSX is found
in an article by Dominik Wujastyk titled Standard-

ization of Sanskrit for Electronic Data Transfer and

Screen Representation [1]. This document, as well
as supporting screen fonts and drivers for DOS-based
machines, is available from the INDOLOGY site as
well as from CTAN.

Various fonts and packages have been developed
which enable TEX to typeset documents encoded in
the CS/CSX convention. These are enumerated be-
low:

cp437csx The file cp437csx.def is an input en-
coding definition file for LATEX2ε which enables

116 TUGboat, Volume 19 (1998), No. 2

k K g G R k KÅ gÅ GÅ d
ã
û k K g G R

Devnag Devnac Devnag Pen

k Ka ga ;Ga .z @ØZ w WC Í û © Ê ×

Sanskrit ItxBengali ItxGujarati

c k g G L k K g G � � � �

Punjabi Gurmukhi Washington Tamil

G� H I� J� K � � �� � H P X C h

Telugu Malayalam Sinhala

k K g G f k K g G f
� � � � �

Konark Cuttack AAI Kannada

���� �H �H H� H. @ P Q R S T

GTibetian Naskh Washington Brahmi

Figure 1: Example of Indic Fonts

CS/CSX encoded documents to be typeset in
LATEX without need for conversion. The file is
available from CTAN as part of the csx package.

csxtimes John Smith has made available the font
metrics and virtual fonts of the commonly-used
PostScript fonts re-encoded with the CSX en-
coding. The use of these fonts enable CS/CSX

documents to be typeset directly by TEX with-
out the need for any conversions. This is facil-
itated through the csx.def file which provides
the CS/CSX input encoding definitions for stan-
dard LATEX and for the standard TEX fonts.

cscharter Dominik Wujastyk produced an exten-
sion and re-encoding of the Bitstream Charter
font according to the CS/CSX convention called
‘CS Charter’. Users should note that ‘CS Char-
ter’ supports only the characters of the Classi-
cal Sanskrit encoding and does not support the
Extended encoding. This font is available from

the INDOLOGY site and is also bundled with
the ITRANS package.

csutopia Dominik Wujastyk produced an extension
and re-encoding of the Adobe Utopia font ac-
cording to the CS/CSX convention called ‘CS
Utopia’. Users should note that ‘CS Utopia’
supports only the characters of the Classical
Sanskrit encoding and does not support the Ex-
tended encoding. This font is available from the
INDOLOGY site and is also bundled with the
ITRANS package.

wnri Thomas Ridgeway developed a package called
‘Washington Roman Indic’ which contained a
family of fonts based on Computer Modern and
which were encoded with the CS/CSX and other
supplementary conventions. I recently revised
the package for use with LATEX2ε and added
a style file and input encoding definition file
which does away with the need for the fonts.

TUGboat, Volume 19 (1998), No. 2 117

Ridgeway also developed screen fonts and driv-
ers for wnri for DOS-based machines. The up-
dated package is available from CTAN.

4 babel

Recently Jun Takashima introduced two Indic lan-
guage modules to the babel fold. These packages
enable support for Romanized Sanskrit and for Kan-
nada in both the original and Roman scripts. Please
refer to Section 5.5 for a description of Takashima’s
Kannada package.

skthyph This module provides the hyphenation
patterns for Romanized Sanskrit. As of this
article these files are not distributed with the
current version of babel but will be included
in the next release. This module is presently
available only from the developer’s FTP site.

5 ITRANS

The ITRANS package developed by Avinash Chopde
is the primary component of an on-going project to
make the typesetting of all Indic scripts possible by
means of a single tool. As of this article, ITRANS

supports the Bengali, Devanagari, Gujarati, Gur-
mukhi, Kannada, Tamil, and Telugu scripts. It also
supports the ‘CS Utopia’ diacritic Roman font.

In addition to the default TEX output, ITRANS

can produce direct HTML and PostScript output
from the input file. ITRANS versions for both DOS

and UNIX systems are available from the developer’s
website.

5.1 Bengali

arosgaon The AroSgaon package was developed
by Muhammad Masroor Ali as an extension to
the ‘SonarGaon’ HP Laserjet softfont designed
by Anisur Rahman. This package contains
an ITRANS module which provides glyphs for
certain characters not available in the original
‘SonarGaon’ font. Although this package was
designed as an supplement to the Bengali sup-
port of ITRANS, it may be used as an indepen-
dent package with LATEX2ε. The ‘SonarGaon’
font is not bundled with arosgaon or ITRANS,
and must be obtained separately.

itrans ITRANS provides support for the Ben-
gali script through the ‘ItxBengali’ PostScript
Type 1 font developed by Shrikrishna Patil.

5.2 Devanagari

devnag The Devanagari for TEX package devel-
oped by Frans Velthuis was the original package
for Devanagari. This package uses the ‘Dev-
nag’ font also developed by Velthuis which con-

tains the characters required to typeset San-
skrit, Hindi, Marathi, and any other languages
which use the Devanagari script. The font ‘Dev-
nag Pen’ developed by Thomas Ridgeway is a
variation on ‘Devnag’ which resembles Devana-
gari written with an ordinary pen and is bun-
dled with devnag.

Dominik Wujastyk, John Smith, myself, and
a few others have recently upgraded devnag for
use with LATEX2ε. The package is now NFSS-
compliant.

sanskrit The Sanskrit for LATEX2ε package devel-
oped by Charles Wikner is an extensive pack-
age which enables the typesetting of Devana-
gari text with Vedic accents and other special
characters not supported by the devnag pack-
age. Numerous options may be set in regard
to transliteration, alternate characters, inter-
character spacing, and other preferences. Only
support for the Sanskrit language is available.
The font ‘Sanskrit’, also developed by Wikner,
is bundled with the package. It is a rather com-
plete font in that it contains many complex lig-
atures and variants which enable excellent type-
setting of Devanagari. This package is available
from CTAN.

itrans Four fonts provide Devanagari support in
ITRANS: the ‘Devnag’ and ‘Devanagari Pen’
fonts described above and two more called ‘Dev-
nac’ and ‘Xdvng’. The ‘Devnac’ font is a
PostScript Type 3 font developed by Avinash
Chopde for the ITRANS package. ‘Devnac’ was
developed to enable users unfamiliar with TEX
to still produce texts in Devanagari through
the “dumb textual interface” mode of ITRANS.
‘Xdvng’ is a PostScript Type 1 font, ren-
dered by Sandeep Sibal from Velthuis’s ‘Dev-
nag’ METAFONT, which enables users to pro-
duce direct HTML output of Devanagari text in
addition to the standard TEX and PostScript
output.

jtex Developed by John Smith, Jaisalmer TEX is
a Perl preprocessor which enables Ken Bryant’s
‘Jaisalmer’ font to be used with TEX. The font
is not freely available and must be purchased
from Bryant for a nominal fee. More informa-
tion about this package is available from the
URL given in Table 1.

5.3 Gujarati

itrans Currently the only package available for Gu-
jarati is ITRANS, which uses the ‘ItxGujarati’

118 TUGboat, Volume 19 (1998), No. 2

PostScript Type 1 font developed by Shrikr-
ishna Patil. The ‘ItxGujarati’ font is bundled
with ITRANS.

5.4 Gurmukhi

gurmukhi Developed by Amarjit Singh, the Gur-

mukhi for TEX package enables support for
the Gurmukhi script in Plain TEX. The pack-
age includes a preprocessor and the ‘Gurmukhi’
METAFONT also developed by Singh. This
package has not been updated since the initial
release of gurmukhi in October 1995. This pack-
age is available from CTAN.

itrans ITRANS supports Gurmukhi through the
PostScript font ‘Punjabi’ developed by Hardip
Singh Pannu. The font metric file module used
by ITRANS for Gurmukhi was developed by me.

5.5 Kannada

kannadatex The KannadaTEX package developed
by Jun Takashima provides Kannada support
for LATEX and babel. The package includes the
METAFONT source for the ‘AA Institute Kan-
nada’ font, a preprocessor, and a hyphenation
pattern for the Kannada language. The Kan-
nada hyphenation patterns will be included in
the next release of babel. The package is avail-
able from the developer’s FTP site.

kantex The KanTEX package developed by G. S.
Jagadeesh and Venkatesh Gopinath enables the
Kannada script to be typeset with TEX. The
‘Kannada’ METAFONT is bundled with kantex.
This package is available from the developers’
website.

itrans To typeset Kannada ITRANS uses a modified
module of the kantex package. The ‘Kannada’
METAFONT is bundled with ITRANS.

5.6 Malayalam

malayalam The Malayalam-TEX package was de-
veloped by Jeroen Hellingman. The malayalam

package enables text in to be typeset in both
the traditional and reformed Malayalam scripts.
The package includes a preprocessor and fonts
in the regular, slanted, bold, and calligraphic
typefaces. This package also supports the Deva-
nagari and Tamil scripts through the ‘Devnag’
and ‘Washington Tamil’ fonts. A modified ver-
sion of the Velthuis scheme is used for translit-
erated input. This package is available from
CTAN.

5.7 Oriya

oriyatex The Oriya-TEX package is being devel-
oped by Jeroen Hellingman. The oriyatex pack-
age currently provides the two fonts ‘Cuttack’
and ‘Konark’ designed by Hellingman. The first
is a regular face while the second is a calli-
graphic variation of the former. The prepro-
cessor is still being developed. Oriya-TEX uses
a modified version of the Velthuis scheme for
transliterated input. The beta-version of this
package is available from CTAN.

5.8 Perso-Arabic

In South Asia the Perso-Arabic script is used pre-
dominantly to write the Urdu, Sindhi, and Kashmiri
languages. Each language has distinct forms for cer-
tain letters, but the character shapes are generally
identical.

arabtex ArabTEX was developed by Klaus La-
gally and functions through a system of style
files, eliminating the use for a preprocessor.
ArabTEX supports the typesetting of almost all
languages whose orthography is based on the
Perso-Arabic system. As concerns South Asian
orthography ArabTEX currently supports Urdu
and Sindhi; the extensions for Kashmiri are be-
ing developed.

Currently only the font ‘Naskh’ is supported.
‘Naskh’ is a METAFONT designed by Lagally
and is based on the naskh̄ı style of Arabic cal-
ligraphy. A font based on the nast‘al̄ıq style,
used predominantly for Urdu, has not yet been
developed.

A variety of both 7- and 8-bit input encoding
schemes are supported, yet the ArabTEX encod-
ing itself (based on the transliteration scheme
of the Zeitschrift der Deutschen Morgenländ-

ischen Gesellschaft) is the only scheme which
fully accommodates the extended Perso-Arabic
script used by Indic languages.

This package is available from Lagally’s FTP

site as well as from CTAN.

5.9 Sinhalese

sinhala The Sinhalese TEX package has two dif-
ferent versions. The first and original package
was developed by Yannis Haralambous. The
second version is a modification of the first by
Prasad Dharmasena to accommodate a second
transliteration scheme called ‘Samanala’. Both
versions require the use of the Indica prepro-
cessor, bundled with the package. The second
version includes a DOS executable of the Indica

TUGboat, Volume 19 (1998), No. 2 119

program. The original package is available from
the INDOLOGY site and from CTAN; and the
second version from Dharmasena’s FTP site.

5.10 Tamil

tamilize Tamilize is a preprocessor developed by
Thomas Ridgeway for the ‘Washington Tamil’
METAFONT. This font was designed at the for-
mer Humanities and Arts Computing Center1

at the University of Washington for a Tamil-
English dictionary project. It is no longer sup-
ported by the University of Washington. The
tamilize package is available from CTAN.

itrans The interface provided by ITRANS for type-
setting Tamil makes it easier to use than the
Tamilize program. ITRANS makes use of the
Washington Tamil font as well.

5.11 Telugu

telugutex The TeluguTEX package was developed
Lakshmi V. S. Mukkavilli. It uses the ‘Telugu’
METAFONT also developed by Mukkavilli. The
package is available from CTAN.

itrans ITRANS supports Telugu through a modified
module of the telugutex package. ITRANS uses
the ‘Telugu’ METAFONT.

5.12 Tibetan

The three Tibetan packages for TEX are essentially
revisions and enhancements of the original package.
These three packages are called sparkes, sirlin, and
steiner after their developers and are all available
from CTAN.

sparkes Tibetan LATEX was the original Tibetan
package written by Jeff Sparkes. The package
includes a preprocessor and the ‘Tibetan’ font.

sirlin Sam Sirlin fixed minor bugs in the sparkes

package and provided an improved preproces-
sor. This package uses a METAFONT devel-
oped by Sirlin called ‘GTibetan’ and requires
the sparkes package.

steiner TEXTib or Tibetan Transcript Translator,
developed by Beat Steiner, introduces a major
overhaul of the first two packages. Steiner cre-
ated an improved preprocessor enabling sup-
port for different input schemes, better han-
dling of ligatures, and more logical typesetting
of Sanskrit in the Tibetan script. The steiner

package uses the ‘GTibetan’ font and requires
the sirlin package.

1 The Humanities and Arts Computing Center was re-

placed by the Center for Advanced Research in the Arts and

Humanities.

6 What’s Next?

1. TEX support is currently being developed for
the following Indic scripts.

Assamese A LATEX package for Assamese
is currently being developed by Jugal Kalita.
Information about the font design and package
is available from the URL given in Table 1.

Brahmi The Brahmi script is the ancestor
from which all scripts mentioned in this arti-
cle are derived. This script was employed by,
and perhaps even developed under, the Mau-
ryan king Aśoka to have his edicts inscribed
during the third century BCE. I am design-
ing a METAFONT of the Brahmi script called
‘Washington Brahmi’. The style is an approxi-
mation of the early Mauryan Brahmi style and
based upon the characters found on the inscrip-
tions at Gı̄rnār. The font is not yet complete,
however a brief description and examples of the
font are available from my website.

2. ISO/TC46/SC2/WG12 (the Working Group for
the Transliteration of Indic Scripts) is progress-
ing toward a standardized 7- and 8-bit scheme.
Perhaps all Indic TEX packages will support this
standard.

3. Unicode? Will there be a need for these pack-
ages once Unicode is firmly established?

References

[1] Wujastyk, Dominik. Standardization of Roman-

ized Sanskrit for Electronic Data Transfer and

Screen Representation [results of a session held
at the 8th World Sanskrit Conference, Vienna,
1990], in Sesame Bulletin 4(1), 1991, pp. 27-29.
Also available as a PostScript document from
CTAN/fonts/csx/csx-doc.ps.

⋄ Anshuman Pandey
University of Washington
Department of Asian Languages

and Literature
225 Gowen Hall, Box 353521
Seattle, WA 98195
apandey@u.washington.edu

http://weber.u.washington.edu/

~apandey/

120 TUGboat, Volume 19 (1998), No. 2

arabtex ftp://ftp.informatik.uni-stuttgart.de/pub/arabtex/

CTAN/language/arabtex/

arosgaon CTAN/language/bengali/arosgn/

assamese http://www.acsu.buffalo.edu/~talukdar/assam/language/assamlang.html

brahmi http://weber.u.washington.edu/~apandey/texts/

csx CTAN/fonts/csx/

csxtimes ftp://bombay.oriental.cam.ac.uk/pub/john/software/fonts/

devnag CTAN/language/devanagari/

gurmukhi CTAN/language/gurmukhi/

itrans http://www.aczone.com/itrans/

jtex ftp://bombay.oriental.cam.ac.uk/pub/john/software/jtex/

kannadatex ftp://ftp.aa.tufs.ac.jp/pub/tool/TeX/languages/kannada/

kantex http://langmuir.eecs.berkeley.edu/~venkates/

malayalam CTAN/language/malayalam/

oriyatex CTAN/language/oriya/

sanskrit CTAN/language/sanskrit/

sinhala ftp://ftp.mq.edu.au/home/vsaparam/sinhala_tex/

CTAN/language/sinhala/

sirlin CTAN/language/tibetan/sirlin/

skthyph ftp://ftp.aa.tufs.ac.jp/pub/tool/TeX/languages/sanskrit/

sonargaon http://www.winsite.com/info/pc/win3/fonts/sgaon.zip

sparkes CTAN/language/tibetan/original/

steiner CTAN/language/tibetan/steiner/

tamilize CTAN/language/tamil/tamilize/

telugutex CTAN/language/telugu/

wnri CTAN/fonts/wnri/

‘bombay’ ftp://bombay.oriental.cam.ac.uk/pub/john/

INDOLOGY http://www.ucl.ac.uk/~ucgadkw/indology.html

CTAN ftp://ftp.tex.ac.uk/tex-archive/

ftp://ftp.dante.de/tex-archive/

ftp://ftp.tug.org/tex-archive/

Table 1: Package Sites

TUGboat, Volume 19 (1998), No. 2 121

Diversity in math fonts

Thierry Bouche

Abstract

We will examine the issues raised when modifying
(LA)TEX fonts within math environments, and at-
tempt to suggest effective means of accessing a larger
variety of font options, while avoiding typographic
nonsense.

“Don’t mix faces haphazardly when special-
ized sorts are required”

— Robert Bringhurst [9]

1 Stating the problem

The advent of LATEX2ε has resulted in a type of
‘standardizing’ of font selection schemes (NFSS, in
other words). The advantages are many, but the
main one for me is this: unlike other software that’s
more expensive and of poorer quality, changing fonts
is as easy as changing your socks. In fact, the ‘heroic’
days of plain are just a memory, where changing
from the default \textfont0 meant generating a new
format, not to mention various encodings . . . The
temptation to play is therefore very great, especially
if you want to break with the monotony of countless
preprints and other (LA)TEX documents.1 I won’t
say much about anything other than PostScript

fonts, mainly because I can only test my hypotheses
on them. Sebastian Rahtz’ psfonts now allows
anyone equipped with a PostScript printer to
choose their text fonts for use with LATEX: Times,
Bookman, New Century Schoolbook, Palatino. You
can ftp to ctan sites to pick up everything you need
to use a wide variety of commercial fonts. Alan
Jeffrey’s fontinst program makes it easier to create
the interface needed to use PostScript fonts with
LATEX. The choices are almost limitless, with some
20,000 fonts to choose from for your document.2

Unfortunately, if your document has equations,
this diversity is pretty much an illusion. There are
actually very few math fonts, and of these, only
a few are designed to work with TEX. To my

1 Note that ‘LATEX’ can be understood as having two
relatively independent meanings: it’s a program to typeset
scientific texts, and it’s also a standard in the electronic
exchange of documents. This article is concerned with the
former: producing documents which are to be printed and
thereby benefit from typographic programs adapted to the
purpose.

2 This count, based on Unique IDs, is relatively outdated,
as recent fonts IDs would imply that we’ve reached a count
approaching 90,000!

knowledge, here are the font collections that provide
a significant set of mathematical glyphs:

The native TEX fonts: these are, of course, cmmi/
cmsy/cmex, with the addition of the AMS sym-
bol fonts (msam/msbm);

Some non-native TEX fonts: initially developped in
MetaFont format to complement the Concrete
text fonts by Knuth, are the Euler fonts, which
aren’t coded in quite the same way as the stan-
dard TEX fonts, and do not really provide a re-
placement, as so many extra symbols are miss-
ing. There is an option available on CTAN, eu-
ler.sty by F. Jensen and F. Mittelbach, which
makes installing the Euler fonts easier. How-
ever, the Eulers weren’t designed to be com-
bined with any particular text fonts— the best
you can say is that they ‘work’ with Bitstream
Charter or, of course, Concrete. Karl Berry has
recently used Euler with Palatino, a valid com-
bination since both font families were designed
by Hermann Zapf. U. Vieth designed a math
font based on Knuth’s Concrete fonts. It is also
missing many variants and glyphs, but enjoying
an NFSS support package;

MathTime: this family is a full alternative to the
CM collection, but is missing some glyphs from
the AMS collection;

Lucida New Math: this family is as comprehensive
as possible;

PostScript Symbol font: almost as widespread as
Courier, it yields upright Greek letters, and in-
cludes a number of basic math symbols;

Mathematical Pi: usually used by (photo)typeset-
ting software, this is a collection of six fonts
whose glyph set is rather extensive;

and some more: let us also notice that many scien-
tific software programs use proprietary fonts to
display equations on-screen or print them on
paper.3 Not to mention the specific proprietary
fonts used by some publishers.

In current (LA)TEX, a math font family needs
to have at least three members: math italic (cmmi
is the default), symbols (cmsy), and extensions for
building different-sized symbols (cmex). Taking de-
sign consistency and glyph set exhaustivity into ac-
count, of the fonts listed above, we are effectively
left with with three font families, alternatives which
are both complete and unified (well, one less so than
the others):

3 Among them, Mathematica provides a font set with a
rather rich set of glyphs. U. Vieth has made TEX virtual fonts
for them, along the lines of mathptm; see below.

122 TUGboat, Volume 19 (1998), No. 2

Conjecture 1.— Let x, y, z, be integers; for α ∈ N, denote by Ωα ⊂ N the set of
prime integers p (called p-primes in the sequel) such that the following equation (known as
Frimas’ last equation) xp + yp = zp admits infinitely many solutions divisible by α. We
conjecture:

• Ωα �= ∅ (Ωα is not empty),
• more precisely, cardΩα > w where w is the well-known Whylles' constant.

Evidence for the conjecture.— Denoted by A, M, O, the famous inferior constants of
Whylles, the three following formulae are very instructive:

x = 2πz ⇐⇒ cardΩα | M and ϕ(t) =
1√
2π

∫ t

0

e−x2/2dx(1)

∏

j�0




∑

k�0

fjkzk



 =
∑

k�0

zn







∑

k0,k1, ... �0

k0+k1+ ···=n

f0k0
f1k1

. . .







(2)

Look at the product ffi, {
k g

︷ ︸︸ ︷

g, . . . , g,

ℓ h
︷ ︸︸ ︷

h, . . . , h
︸ ︷︷ ︸

k+ℓ elements

} taken in the basis (�ı,�).(3)

±

√
√
√
√
√

∣
∣
∣
∣
∣
∣

x1 − x2 y1 − y2 z1 − z2

l1 m1 n1

l2 m2 n2

∣
∣
∣
∣
∣
∣

> 0.Moreover, eq. (1) yields

Figure 1: The (LA)TEX default: Computer Modern.

� the standard fonts based on Knuth’s CM4

� Lucida, a slightly more complete set from Bige-
low and Holmes, is now quite extensive

� MathTime,5 an alternative from Michael Spi-
vak; nevertheless can’t be as general as the pre-
vious two, since it wasn’t designed to comple-
ment anything beyond the Times text font (the
Times was never seen as the roman version of a
family with sans serif, and typewriter versions).
The current situation, where combining Times
with Helvetica and Courier is seen as ‘natural’,
is more the result of commercial suppliers mak-
ing this combination available in most word-
processing programs and in printers.

4 As I am primarily interested here in font design rather
than implementation, I won’t spend much time distinguish-
ing fonts from various vendors, or in various formats. For
instance, here I don’t distinguish between Knuth’s CM fonts
and Knappen’s EC, which is largely based on the former. The
slanted CM smallcaps are from the EC font.

5 Linotype’s Mathematical Pi, which has no arrows or
italics, is insufficient for use with TEX; we only consider it
as a complement to MathTime.

From this point on, I will take it as a given6

that these three font families offer everyone a profes-
sional level of quality and consistency of style. The
remainder of this article is for adventurous spirits or
dissatisfied putterers, especially for those who have
become jaded by the over-use of the currently avail-
able options. One way to describe the problem we
face is “What can I do if I want to use a different
font for the text, without spending a lot of time and
energy designing the corresponding math symbols?”

2 Typographic limitations

There are three main features or characteristics
which limit font combinations: color, style, and
proportions. For two fonts to work together in-
obtrusively, these three traits should be as close
as possible. This doesn’t mean avoid contrasting
fonts— just use contrasts with care. For example,
you may want chapter titles to be clearly separate
from the text, or have visually obvious heading lev-
els (of course, such a contrast should not be used

6 This view is shared by Berthold Horn[6], whose article
in TUGboat provides useful details on TEX math fonts.

TUGboat, Volume 19 (1998), No. 2 123

Conjecture 1. — Let x, y, z, be integers; for α ∈ N, denote byΩα ⊂ N the set of prime
integers p (called p-primes in the sequel) such that the following equation (known as
Frimas’ last equation) xp+yp = zp admits infinitely many solutions divisible by α. We
conjecture:

• Ωα ≠∅ (Ωα is not empty),

• more precisely, cardΩα > w where w is the well-known Whylles’ constant.

Evidence for the conjecture.— Denoted byA,M, O, the famous inferior constants of

Whylles, the three following formulae are very instructive:

x = 2πz⇐⇒ cardΩα | M and ϕ(t) = 1√
2π

∫ t

0
e−x

2/2dx(1)

∏

j�0




∑

k�0

fjkz
k



 =
∑

k�0

zn








∑

k0,k1, ... �0
k0+k1+···=n

f0k0f1k1 . . .








(2)

Look at the product ffi, {
k g

︷ ︸︸ ︷

g, . . . , g,

ℓ h
︷ ︸︸ ︷

h, . . . , h
︸ ︷︷ ︸

k+ℓ elements

} taken in the basis (�ı,�).(3)

±

√
√
√
√
√
√

∣
∣
∣
∣
∣
∣
∣

x1 − x2 y1 −y2 z1 − z2
l1 m1 n1

l2 m2 n2

∣
∣
∣
∣
∣
∣
∣

> 0.Moreover, eq. (1) yields

Figure 2: The same example as Figure 1, done in Lucida.

within paragraphs). We shouldn’t forget that com-
bining similar fonts was common practice in printing
and publishing. Printers of lead type had far fewer
font typefaces available to them than our comput-
ers usually provide: a 17pt Caslon in the title com-
bined with Garamond for the text, or bold italic
Plantin used with Granjon were perfectly reason-
able— if you had no other choice! The first example
is a deliberate attempt to startle the reader of today,
when vendors pretend that their fonts are infinitely
scalable: it’s better to use a 17pt font at its design
size than to scale the text font up, which is sure to
yield something too bold, too round, and with too
large an x-height.

2.1 Color

A font that is more or less bold or condensed deter-
mines the grayness or ‘color’ of a page of text. Other
parameters— interline space, interword space, mar-
gins—all affect color. Keep in mind that the LATEX
default page makeup parameters assume CM fonts.
Using another font family may require adjustments
to some of these parameters. Grayness is determined

Let x, y, z ∈ Z ; for f, α

Figure 3: Text done in Times, math in Computer
Modern.

by the white spaces, which are therefore important
parameters for typography. Variations in color are
often inevitable in math: equations, for example,
can change the interline spacing or force large white
spaces. At the same time, though, in-line equations
should have a minimum effect on the surrounding
text.

A typical example would be a math article set
with times.sty: since Times is a very “black” font,
the material in math mode quite literally gives the
impression that there’s a hole in the page! Fig. 3

shows this, to a certain extent. Other than the
perennial Times, books are often set with less dense
fonts, such as Baskerville, Plantin, Minion, or Gara-
mond. Depending on which one is used, these fonts
have a color which is slightly darker than CM, while
still being lighter than either Times or Lucida. It is

124 TUGboat, Volume 19 (1998), No. 2

CONJECTURE 1. — Let x, y, z, be integers; for α ∈ �, denote by �α ⊂ � the set of prime integers

p (called p-primes in the sequel) such that the following equation (known as Frimas’ last equation)

x p + y p = z p admits infinitely many solutions divisible by α. We conjecture:

• �α �= ∅ (�α is not empty),

• more precisely, card �α > w where w is the well-known WHYLLES’ constant.

Evidence for the conjecture. — Denoted by �, �, �, the famous inferior constants of WHYLLES,

the three following formulae are very instructive:

x = 2π z ⇐⇒ card �α | � and ϕ(t) = 1√
2π

∫ t

0

e−x2/2dx(1)

∏

j�0

(

∑

k�0

f jk zk

)

=
∑

k�0

zn







∑

k0,k1, ...�0
k0+k1+ ···=n

f0k0
f1k1

. . .







(2)

Look at the product f f i, {
k g

︷ ︸︸ ︷

g, . . . , g,

ℓ h
︷ ︸︸ ︷

h, . . . , h
︸ ︷︷ ︸

k+ℓ elements

} taken in the basis (�ı, �).(3)

±

√
√
√
√
√

∣
∣
∣
∣
∣
∣

x1 − x2 y1 − y2 z1 − z2

l1 m1 n1

l2 m2 n2

∣
∣
∣
∣
∣
∣

> 0.Moreover, eq. (1) yields

Figure 4: Again the same example, done in MathTime.

the use of such font families that is at the heart of
our problem.

2.2 Style

Font style is what I call the design specifics of a
font’s characters. It’s not a quantifiable feature or
trait—although, one can consult classifications such
as the one by Maximilien Vox to identify fonts of
relatively similar styles. Strictly speaking, CM is
a “Didone” font, although it has more in common
with fonts of the Century/De Vinne type than with
Bodoni; considered Transitional Mécane (a hybrid
category between Mécane and Didone, which isn’t
itself in the Vox AtypI classification). That’s as far
as any classification can help— nothing can replace
education and experience. All the same, character
design can be a significant obstacle to combining
fonts. In particular, if we follow the standard prac-
tice of using italics in math and theorems, we run
the risk of having two different styles in the same
sentence, the proximity causing a rather jarring con-
trast, an effect which can be heighted since italics are
often where design idiosyncracies are most obvious.
Fig. 5 shows that it’s not a simple problem.

afghkmpwyz, afghkmpwyz,

afghkmpwyz, afghkmpwyz,

afghkmpwyz,

afghkmpwyz, afghkmpwyz,

afghkmpwyz, afghkmpwyz.

Figure 5: Apollo, Baskerville, Computer Modern,
Adobe Garamond, Lucida, Minion, Plantin, Times,
and Utopia (all at 21pts).

2.3 Proportions

The last of the three features concerns character
proportions. A font style establishes the relation-
ships of the various dimensions of its face: x-height,
height of uppercase letters, ascenders, descenders.
For PostScript fonts, dimensions are specified in

TUGboat, Volume 19 (1998), No. 2 125

CONJECTURE 1. — Let x, y, z, be integers; for α ∈ N, denote by Ωα ⊂ N the set of prime integers

p (called p-primes in the sequel) such that the following equation (known as Frimas’ last equation)

xp + yp = zp admits infinitely many solutions divisible by α. We conjecture:

• Ωα �= /0 (Ωα is not empty),

• more precisely, cardΩα > w where w is the well-known WHYLLES’ constant.

Evidence for the conjecture. — Denoted by A ,M , O , the famous inferior constants of WHYLLES,

the three following formulae are very instructive:

x = 2πz ⇐⇒ cardΩα |M and ϕ(t) =
1√
2π

∫ t

0
e−x2/2dx(1)

∏
j�0

(

∑
k�0

f jkzk

)

= ∑
k�0

zn





 ∑

k0,k1, ...�0
k0+k1+ ···=n

f0k0
f1k1

. . .







(2)

Look at the product f f i, {
k g

︷ ︸︸ ︷

g, . . . ,g,

ℓ h
︷ ︸︸ ︷

h, . . . ,h
︸ ︷︷ ︸

k+ℓ elements

} taken in the basis (�ı, j�).(3)

±

√
√
√
√
√

∣
∣
∣
∣
∣
∣

x1 − x2 y1 − y2 z1 − z2

l1 m1 n1

l2 m2 n2

∣
∣
∣
∣
∣
∣

> 0.Moreover, eq. (1) yields

Figure 6: Again the same example, done with Mathptm (& dotlessj).

the afm file7 in terms of 1000pts for each given char-
acter, referring to, respectively, the XHeight, Cap-
Height, Ascender, and Descender.

Each of these parameters can vary indepen-
dently of the others, as a quick glance through any
font catalogue will prove. French printing tradition,
going back to Garamont and Granjon, favors what
are called ‘humanist’ characteristics: a fairly small
x-height, with uppercase letters below the height of
the tallest ascenders, and with generous descenders.
In contrast, twentieth-century faces typically have
short descenders, ascenders that seem almost atro-
phied and reduced in size, for what appear to be
reasons of efficiency, rationalization of paper sav-
ings. . . In the italic examples in Fig. 5 (all fonts are
in the same size), Adobe Garamond and Lucida rep-
resent diametrically opposed concepts. Clearly, one
shouldn’t mix fonts with x-heights that vary too
widely, especially in mathematics material, where
alignments must default to precise positions (super-
scripts, for example). You can always bring two

7 A good qualitative description of what should be ex-
pected from the metrics of a font is provided in [10]. For a
more technical approach, see [1].

Mixing italic fonts
draws attention to
their differences.

Figure 7: Garamond and Lucida scaled to the
same x-height as Lucida at 20pts.

fonts of different x-heights together by changing the
scale but the results can be unpleasant if their re-
spective proportions are too divergent. The example
in Fig. 7 demonstrates yet another factor: the slope
of the italic characters (ItalicAngle).8

8 TEX is satisfied with slightly less specific information,
which is stored in the tfm file, for its seven \fontdimen values:
the value of an em (the size of a given font, implicit in
the afm), the value of an ex (XHeight), and the tangent
of ItalicAngle. The remaining dimensions concern spacing,
whereas a PostScript afm file specifies the width of the space
character, but does not control the elasticity of an interword
space.

126 TUGboat, Volume 19 (1998), No. 2

C 1. — Let x, y, z, be integers; for α ∈ N, denote by Ωα ⊂ N the set of prime integers

p (called p-primes in the sequel) such that the following equation (known as Frimas’ last equation)

xp + yp = zp admits infinitely many solutions divisible by α. We conjecture:

• Ωα �= ∅ (Ωα is not empty),

• more precisely, cardΩα > w where w is the well-known W’ constant.

Evidence for the conjecture. — Denoted by A, M, O, the famous inferior constants of W,

the three following formulae are very instructive:

x = 2πz ⇐⇒ cardΩα | M and ϕ(t) =
1√
2π

∫ t

0

e−x2/2dx(1)

∏

j�0




∑

k�0

fjkzk



 =
∑

k�0

zn







∑

k0,k1, ... �0

k0+k1+ ···=n

f0k0
f1k1

. . .







(2)

Look at the product ffi, {
k g

︷ ︸︸ ︷

g, . . . , g,

ℓ h
︷ ︸︸ ︷

h, . . . , h
︸ ︷︷ ︸

k+ℓ elements

} taken in the basis (�ı,�).(3)

±

√
√
√
√
√

∣
∣
∣
∣
∣
∣

x1 − x2 y1 − y2 z1 − z2

l1 m1 n1

l2 m2 n2

∣
∣
∣
∣
∣
∣

> 0.Moreover, eq. (1) yields

Figure 8: Text in Apollo, math in Computer Modern.

3 Customizing a suitable math font

In light of these negative aspects to the problem,
we will discuss two methods which each provide a
“solution”. The examples have been tested, in that
they provide a reasonable level of quality in doc-
uments containing mathematics. However, neither
can pretend to address either the reliability or the
quality of the three math font families discussed in
our first section. Keeping in mind the remarks at-
tached to its presentation, I would be willing to print
a book using the second method (§ 3.3), but I’d only
make photocopies if the first method (§ 3.1) had
been used. In order of increasing difficulty in imple-
mentation, we’ll start with Alan Jeffrey’s mathptm
option, then we’ll examine how simple NFSS com-
mands or a virtual font created via fontinst allows
us to choose, character by character, each font used
within a math environment.

3.1 Mathptm

The mathptm distribution includes virtual fonts cre-
ated by using fontinst, as well as the style option
mathptm.sty, which makes it possible to use the

glyphs of Times in math mode with LATEX. The
font is a marvel in that it manages to simulate
the majority of the 384 glyphs found in the three
math font families, by accessing the Times and
Symbol fonts available on any PostScript printer
(the calligraphic uppercase letters, accessed via the
\mathcal command, come out in Zapf Chancery); as
a last resort, some characters are taken from Com-
puter Modern. The style option modifies the LATEX
defaults by invoking these various math font fam-
ilies, adjusting spacing parameters in math mode,
and modifying the size of the type body for first-
and second-order exponents. This last operation
is interesting, because it pushes the ‘standard’
PostScript fonts to their limits for typesetting
mathematics. At 10pts, (LA)TEX uses fonts at point
sizes 10, 7, and 5, for normal text, super- and sub-
scripts, and second-order super- and sub-scripts, re-
spectively. Each of these sizes corresponds to a dis-
tinct font in the Knuth distribution, since it’s nec-
essary to make optical corrections in a 5pt font so
that it’s readable. PostScript printers have only
one font (designed at a 12pt size) for each variant in
the Times family. This means the only way to get a

TUGboat, Volume 19 (1998), No. 2 127

5pt Times font is by applying a scaling but without
optical correction, which in turn means the char-
acters are difficult to read. Mathptm.sty redefines
these sizes to 10, 7.4 and 6pts, which reduces—but
does not eliminate— the visual problems. Mathe-
matical Pi, Lucida, and MathTime will all show this
flaw, hence the user will always have to adapt type
body sizes with reference to readability. A few of the
PostScript Multiple-Master fonts address the optical
scaling issue, and while support for use with TEX is
a bit tentative, I am convinced that within a few
years, expert sets for these fonts will include all the
refinements one could wish for.9

Mathptm is a free alternative to the MathTime
fonts, but there are some drawbacks to it. The most
obvious is that the Symbol font, which may be ad-
equate for showing the characters available in the
more popular word-processing programs, is decid-
edly smaller than the needs and possibilities avail-
able with TEX. For example, cmex has large expand-
able delimiters (the ones accessed via \big or \left)
whereas Symbol only has the regular parentheses,
and the elements needed to create large parentheses;
other expanded characters are simply scaled versions
of the Symbol character. The other problem is that
the lowercase Greek characters are upright. Now,
almost all letters inside math mode are presented in
italics: upright lowercase Greek letters may require
italic corrections, which is fairly bizarre. Generat-
ing a slanted version of Symbol (using the SlantFont
operation in dvips for example), might work, but the
result wouldn’t be very good, especially if the slant
was pushed to the values usually assigned to true
italic fonts (roughly 15° vs. less than 10 for slanted
fonts, to get something one could call ‘acceptable’).
Moreover, this would introduce yet another slope in
math equations, which should be avoided as much
as possible.

In summary, then, mathptm doesn’t really of-
fer a solution to the problem as outlined initially,
but it does contain the kernel of two possible ap-
proaches to it: (1) a style option relying on NFSS
commands to modify math fonts, and (2) creating
(via fontinst) virtual math fonts which address spe-
cific requirements. As I study the mathptm virtual
fonts, I am convinced that there is no other satisfac-
tory alternative to symbol and extension fonts: for
such fonts, the issues of style, color, and proportion
are not present, so the point is to ensure that their
design is consistent and of good quality. My own
approach is to use members of one of the three ba-

9 Provided someone feels the urge to produce the missing
mathematical symbols . . .

sic families in terms of what works best—using the
serifs of \prod as a guide, for example. The Com-
puter Modern versions are adequate for the majority
of cases I’ve run into. The problem of uniformity
of typographic characteristics is crucial for alpha-
bets (letters, in other words) such as the Roman
and Greek italic letters in the math italics fonts,
and then on to the uppercase calligraphic letters,
located in the symbol fonts, and uppercase Greek
letters, which should appear in OT1-encoded text
fonts (such as cmr). For example, for a professional-
looking text, one might prefer to use \mathcal to
access the uppercase cursive characters in the rsfs
font or the Commercial Script font (as shown in the
examples on figures 11–13). It seems obvious to me
that the preference will always be to choose the italic
version of the text font for use in math mode. Below
are two methods of achieving that goal.

3.2 Mathfont

I call mathfont.sty a ‘generic’ extension to access the
necessary glyphs in math mode (its main features
are discussed here, while the details are left for the
reader to study).10 The essentials are covered in
the LATEX Companion. LATEX (essentially NFSS)
introduces two concepts for fonts in math mode:
alphabets and symbols. An alphabet is explicitly
invoked by commands such as \mathbf. Assuming
one has a text font, the math version of \mathbf can
always be defined by means of a declaration such as:

\def\ED{\encodingdefault}% shorter!

\DeclareMathAlphabet{\mathbf}{\ED}%

{\rmdefault}{b}{n}.

In this fashion, you can redefine \mathcal to access
the ornamented letters one prefers. Additionally, if
you want alphabets defined in this way to respond
to the \boldmath command (to put mathematics
material into boldface), you could do the following:

\DeclareMathAlphabet{\mathsf}{\ED}%

{\sfdefault}{m}{n}

\SetMathAlphabet{\mathbf}{bold}{\ED}%

{\rmdefault}{b}{n}

\SetMathAlphabet{\mathsf}{bold}{\ED}%

{\sfdefault}{b}{n}.

We’re more interested in symbols, but note that
\mathversion already exists (\boldmath is the same
as saying \mathversion{bold}). All fonts used in
math mode can have a different version, depending
on what is specified by \mathversion: for example,
a textmathitalics or textmathupright version could be

10 It should be noted that a ready-to-use minimal adap-
tation of math italic for text italic can be found at:
ftp://fourier.ujf-grenoble.fr/pub/contrib-tex.

128 TUGboat, Volume 19 (1998), No. 2

CONJECTURE 1. — Let x, y, z, be integers; for α ∈ N, denote by Ωα ⊂ N the set of prime in-
tegers p (called p-primes in the sequel) such that the following equation (known as Frimas’
last equation) xp +yp = zp admits infinitely many solutions divisible by α. We conjecture:

• Ωα �= ∅ (Ωα is not empty),
• more precisely, cardΩα > w where w is the well-known WHYLLES’ constant.

Evidence for the conjecture. — Denoted by A, M, O, the famous inferior constants of
WHYLLES, the three following formulae are very instructive:

x = 2πz ⇐⇒ cardΩα | M and ϕ(t) =
1√
2π

∫ t

0

e−x2/2dx(1)

∏

j�0




∑

k�0

fjkzk



 =
∑

k�0

zn







∑

k0,k1, ... �0

k0+k1+ ···=n

f0k0
f1k1

. . .







(2)

Look at the product ffi, {
k g

︷ ︸︸ ︷

g, . . . , g,

ℓ h
︷ ︸︸ ︷

h, . . . , h
︸ ︷︷ ︸

k+ℓ elements

} taken in the basis (�ı,�).(3)

±

√
√
√
√
√

∣
∣
∣
∣
∣
∣

x1 − x2 y1 − y2 z1 − z2

l1 m1 n1

l2 m2 n2

∣
∣
∣
∣
∣
∣

> 0.Moreover, eq. (1) yields

Figure 9: Text in Utopia, math in Computer Modern.

defined so that math italics would be accessed in
a font invoked after \mathversion{textmathitalics}.
This means it’s possible to have several versions co-
existing in the same document, just as it’s possi-
ble to have several encodings for the text material.
However, you have to be careful of TEX’s limita-
tions in this area: \mathversion can only be changed
outside math mode, but never within an equation.
Fonts invoked via this method must therefore be ac-
ceptable for such usage: if you’ve created a textmath-
upright version which replaces math italics by up-
right characters, these latter must be in a OML-
encoded font in order to access such characters as
lowercase Greek.

The following declarations introduce the four
default symbol fonts:

\DeclareSymbolFont{operators}%

{OT1}{cmr}{m}{n}

\DeclareSymbolFont{letters}%

{OML}{cmm}{m}{it}

\DeclareSymbolFont{symbols}%

{OMS}{cmsy}{m}{n}

\DeclareSymbolFont{largesymbols}%

{OMX}{cmex}{m}{n}

\SetSymbolFont{operators}{bold}%

{OT1}{cmr}{bx}{n}

\SetSymbolFont{letters}{bold}%

{OML}{cmm}{b}{it}

\SetSymbolFont{symbols}{bold}%

{OMS}{cmsy}{b}{n}

\DeclareSymbolFontAlphabet{\mathrm}%

{operators}

\DeclareSymbolFontAlphabet{\mathnormal}%

{letters}

\DeclareSymbolFontAlphabet{\mathcal}%

{symbols}.

To obtain the results we want, we select the most
suitable symbols font (or largesymbols) font which
works the best. What concerns us here are the
operators and letters. By default, LATEX uses the
cmr operators font for:

1. digits 0–9

2. small delimiters (parentheses, brackets, etc.)

3. punctuation, including ; :

4. uppercase Greek letters

5. most accents

6. the + = signs

TUGboat, Volume 19 (1998), No. 2 129

C 1. — Let x, y, z, be integers; for α ∈ N, denote by Ωα ⊂ N the set of prime integers p

(called p-primes in the sequel) such that the following equation (known as Frimas’ last equation)

xp + yp = zp admits infinitely many solutions divisible by α. We conjecture:

• Ωα �= ∅ (Ωα is not empty),

• more precisely, card Ωα > w where w is the well-known W’ constant.

Evidence for the conjecture. — Denoted by A, M, O, the famous inferior constants of W,

the three following formulae are very instructive:

x = 2πz ⇐⇒ card Ωα | M and ϕ(t) =
1√
2π

∫ t

0

e−x2/2dx(1)

∏

j�0




∑

k�0

fjk zk



 =
∑

k�0

zn







∑

k0,k1, ... �0
k0+k1+ ···=n

f0k0
f1k1

. . .







(2)

Look at the product ffi, {
k g

︷ ︸︸ ︷

g , . . . , g ,

ℓ h
︷ ︸︸ ︷

h, . . . , h
︸ ︷︷ ︸

k+ℓ elements

} taken in the basis (�ı,�).(3)

±

√
√
√
√
√

∣
∣
∣
∣
∣
∣

x1 − x2 y1 − y2 z1 − z2

l1 m1 n1

l2 m2 n2

∣
∣
∣
∣
∣
∣

> 0.Moreover, eq. (1) yields

Figure 10: Text in Utopia, with the mathfont option.

This extensive use of text characters in math
mode is one of TEX’s pitfalls (font changes are
therefore very risky, particularly in plain).11 While
it may be natural to use the digits from the default
text font, it’s not likely that uppercase Greek letters
will be found there. Parentheses and the + and =
signs warrant a brief detour. Parentheses should be
consistent with their larger versions, and thus should
come from the text font and matching extension
font, all within the same font family (just as cmr
and cmex are part of the CM family). The = sign
is rather critical in that it joins the combinations
⇐ and ⇒ to produce ⇐⇒. Thus, it’s really part of
math characters; unfortunate that it’s not part of a
specific math font (the − sign has the same function
in simple arrows such as ←→ even though it’s part
of the symbols font).

What mathfont does is define a second set of op-
erators, called textoperators, and then it tells LATEX

11 This can only be addressed by the development of new
font encodings, clearly differentiating text fonts (T1, for
example) from text symbol complements (as in TS1) and
math symbols (MC, MSP, currently being worked on by a
TEX Users Group Technical Working Group).

to take the digits and accents from there (which is
a bit risky if you’re accenting letters in math mode
that aren’t from the same font . . .). This yields:

\DeclareSymbolFont{textoperators} {\ED}%

{\rmdefault}{m}{n}

\SetSymbolFont{textoperators}{normal}{\ED}

{\rmdefault}{m}{n}

\SetSymbolFont{textoperators}{bold} {\ED}%

{\rmdefault}{b}{n}

\DeclareMathSymbol{0}{\mathalpha}%

{textoperators}{‘0}

(...)

\DeclareMathSymbol{;}{\mathpunct}%

{textoperators}{"3B}

(...)

% Attention: only in OT1 encoding

\DeclareMathAccent{\hat}{\mathalpha}%

{textoperators}{"5E}

(...)

Thus, using fontmath.ltx as a guide, it’s possible to
create a new symbols font, selecting the characters
that will be in it.

130 TUGboat, Volume 19 (1998), No. 2

The math italic font can be copied in the same
way. By default, LATEX uses the letters font (cmmi)
for the following:

1. regular letters (without accents)

2. a few punctuation signs, such as , .

3. the italic Greek letters

4. some letter-type symbols that are very use-
ful, such as \imath (ı), \jmath (), \ell (ℓ),
\partial (∂), some of the “harpoons” (e.g.,
\leftharpoonup (↼)

5. some of the relatively useless symbols, such as
\smile (⌣);

6. the only ‘accent’ that’s not in a text font: \vec
(�)

If the selected font is a standard PostScript font,
it will only include letters and punctuation signs—
the rest have to be found elsewhere. For example,
in mathfont.sty:

\DeclareSymbolFont{textletters}{\ED}%

{\rmdefault}{m}{it}

\SetSymbolFont{textletters}{normal}{\ED}%

{\rmdefault}{m}{it}

\SetSymbolFont{textletters}{bold}{\ED}%

{\rmdefault}{b}{it}

\DeclareMathSymbol{a}{\mathalpha}%

{textletters}{‘a}

(...)

\DeclareMathSymbol{A}{\mathalpha}%

{textletters}{‘A}

(...)

\DeclareMathSymbol{,}{\mathpunct}%

{textletters}{"3B}.

A word on the specific case of \imath and \jmath:
the first is standard in PostScript fonts (under
the name dotlessi), whereas the second is absent.12

Using the base (�ı,�) as a reference, it’s clear that
you can’t use characters that are too different. As
well, a word of warning about my decision to use
a text font family with its default encoding —the
choice was made purely as a way of limiting the
amount of memory TEX would allocate to the font
metrics. Unlike the other characters modified up to
this point in the article, ı without a dot does not

12 The ‘successful’ examples presented here demonstrate
three reasonable alternatives for dotlessj . (1) Since Utopia’s
ı is fairly similar to the  in Lucida, I used these two glyphs
(of different origins) in Fig. 11. (2) This ruse is not possible
for Apollo, so I simply edited the Apollo font and created
a new character, copying j and removing the dot. (3) For
Fig. 13, I was able to directly parameterize the PostScript

fonts, using a header that Bernard Desruisseaux graciously
provided, and thus magically removed the dot from the j and
made it the same height as a virtual .

occupy the same slot in T1 or OT1 encodings. This
method raises two additional problems:

� the number of font families declared at the same
time is limited to sixteen. Each new declaration
takes up one of these slots, so the method is not
economic and carries certain risks.

� Math fonts and text fonts do not adhere to
the same imperatives. We have to keep in
mind that our initial problem revolves around
the aesthetic impressions some glyphs have over
others, whereas TEX doesn’t really care about
glyphs, just their ‘metrics’, via the tfm file. In
math mode, each character is an atom, which
must be placed relative to other such charac-
ters, according to its type (relation, delimiter,
etc.). This is why \fontdimens 2, 3, 4 and 7 have
a zero value in cmmi.13 Although one can mod-
ify these global parameters dynamically from
the (LA)TEX source (in the .fd file, for exam-
ple), they would be attached to the font being
loaded once only, which means it’s not possible
to call up the same font twice, using two differ-
ent names, and assigning each one different pa-
rameters. Thus, to preserve the normal italics
for text, the mathfont option produces atypical
italics for math. The \fontdimen issue isn’t too
troubling since TEX suppresses spaces in math
mode; at the same time, though, it’s not pos-
sible to suppress kerning or ligatures between
letters, which can lead to some odd results for
something like Te or ffi: Te ffi. Similarly,
TEX assumes that the side bearings (the lateral
space which a designer adds to ensure that two
characters of the same font don’t touch) are as
generous as those of its default fonts, which isn’t
really the general case. Super- and subscripts
can end up looking like they’re touching. If you
use mathfont, you have to keep these points in
mind: don’t hesitate to include explicit kern-
ing instructions (\mkern) to avoid inopportune
ligatures and adjust the spacing.

The only way to get a math font, in terms of
glyphs, similar to the one I’ve tried to obtain with
mathfont (but uniform in terms of its metrics and
independent of coding hazards) is to create a virtual
font by using the same scheme, but making it more
solid—and thus less flexible.

13 Respectively, these \fontdimen establish the space to put
between words, the maximum space to add or take away, and
the special spaces after punctuation (as used in Anglo-Saxon
typography).

TUGboat, Volume 19 (1998), No. 2 131

C 1. — Let x, y, z, be integers; for α ∈ N, denote by Ωα ⊂ N the set of prime integers p

(called p-primes in the sequel) such that the following equation (known as Frimas’ last equation)

x p + y p = z p admits infinitely many solutions divisible by α. We conjecture:

• Ωα ≠ ∅ (Ωα is not empty),

• more precisely, cardΩα > w where w is the well-known W’ constant.

Evidence for the conjecture. — Denoted by A , M , O , the famous inferior constants of W, the

three following formulae are very instructive:

x = 2πz ⇐⇒ cardΩα | M and ϕ(t) =
1

√
2π

∫ t

0

e−x2/2d x(1)

∏

j�0






∑

k�0

f jk zk




 =

∑

k�0

zn









∑

k0,k1, ... �0
k0+k1+ ··· =n

f 0k0 f 1k1 . . .









(2)

Look at the product f f i, {
k g

︷ ︸︸ ︷

g, . . . , g,

ℓ h
︷ ︸︸ ︷

h, . . . , h
︸ ︷︷ ︸

k+ℓ elements

} taken in the basis (�ı,�).(3)

±

√
√
√
√
√
√
√

∣
∣
∣
∣
∣
∣
∣
∣

x1 − x2 y1 − y2 z1 − z2

l1 m1 n1

l2 m2 n2

∣
∣
∣
∣
∣
∣
∣
∣

> 0.Moreover, eq. (1) yields

Figure 11: Text in Utopia, math fonts based on Lucida and Computer Modern.

3.3 Virtual fonts

Creating a virtual font with fontinst [7] (see [5] for
many concrete examples similar to the ones pre-
sented here) essentially comes down to understand-
ing the \installfont command. This generates a vpl
file, which is a human-readable equivalent of the vir-
tual font (vf). The following shows how the two
fonts we’re using from the mathptm distribution are
created:

\installfamily{OT1}{ptmcm}{}

\transformfont{ptmr8r}{\reencodefont{8r}%

{\fromafm{ptmr8a}}}

\installfont{zptmcmr}%

{ptmr8r,psyr,latin,zrhax,kernoff,cmr10}%

{OT1}{OT1}{ptmcm}{m}{n}{}

\installfamily{OML}{ptmcm}%

{\skewchar\font=127}

\transformfont{ptmri8r}{\reencodefont{8r}%

{\fromafm{ptmri8a}}}

\installfont{zptmcmrm}

{kernoff,cmmi10,kernon,unsetalf,%

unsethum,ptmri8r,psyr,mathit,%

zrmhax}%

{OML}{OML}{ptmcm}{m}{it}{}.

As you can see, the \installfont command has
eight arguments:

� the first is the name (for the tfm and vf files for
the font being generated)

� the second argument contains the set of file
names (with extension .mtx) needed for creating
metrics for each character

� the third indicates the internal coding used by
fontinst for the font in question

� the next four arguments specify the parameters
which allow LATEX to identify the font via the
fd file, created by the \installfamily command

� the last argument makes it possible to configure
the declaration contained in the fd file. This ar-
gument can be very useful for installing several
virtual fonts that address optical scaling.

It’s now possible to see that mathptm will install
its operators font (replacing cmr in math) by using
characters taken from ptmr8r, psyr and cmr10 (that
is, Times Roman re-encoded as 8r for all the glyphs,
Symbol, and Computer Modern roman). The order
of these is important because all the glyphs required

132 TUGboat, Volume 19 (1998), No. 2

C 1. — Let x, y, z, be integers; for α ∈ N, denote by Ωα ⊂ N the set of prime integers

p (called p-primes in the sequel) such that the following equation (known as Frimas’ last equation)

xp + yp = zp admits infinitely many solutions divisible by α. We conjecture:

• Ωα �= ∅ (Ωα is not empty),

• more precisely, cardΩα > w where w is the well-known W’ constant.

Evidence for the conjecture. — Denoted by A , M , O, the famous inferior constants of W,

the three following formulae are very instructive:

x = 2πz ⇐⇒ cardΩα | M and ϕ(t) =
1√
2π

∫ t

0
e−x2/2dx(1)

∏

j�0




∑

k�0

fjkzk



 =
∑

k�0

zn







∑

k0,k1, ... �0
k0+k1+ ···=n

f0k0f1k1 . . .







(2)

Look at the product ff i, {
k g

︷ ︸︸ ︷

g, . . . , g,

ℓ h
︷ ︸︸ ︷

h, . . . , h
︸ ︷︷ ︸

k+ℓ elements

} taken in the basis (�ı,�).(3)

±

√
√
√
√
√

∣
∣
∣
∣
∣
∣

x1 − x2 y1 − y2 z1 − z2

l1 m1 n1

l2 m2 n2

∣
∣
∣
∣
∣
∣

> 0.Moreover, eq. (1) yields

Figure 12: Text in Apollo, math fonts based on Computer Modern.

by an OT1 font are present in cmr10, yet fontinst
follows the order in which it finds the glyphs needed
for the encoding: letters are thus acquired from
Times or, if they aren’t there, they have to be
‘simulated’, thanks to macros in the file latin.mtx;
the Greek uppercase letters come from the Symbol
font. However, as mentioned previously, it can be
risky using some Times glyphs, such as () [] +

=, so the zrhax.mtx file removes them from fontinst’s
memory so that they’re selected from cmr10 instead.
The kernoff.mtx file in turn suppresses the kerning
that comes from cmr10; the resultant zptmcmrm font
which is thus created will therefore be an ersatz
font, providing symbols usable as operators without
risk. The characters are accessed by the following
declaration (which appears in mathptm.sty):

\DeclareSymbolFont{operators}%

{OT1}{ptmcm}{m}{n}

The font zptmcmrm which replaces cmmi is ob-
tained in the same way: you take all the glyphs from
cmmi10 (but leave their kerning behind), the unsetalf
and unsethum files remove the lowercase Greek let-
ters, and the italics provided by Symbol and Times

Italic (respectively), mathit plays the role of latin
for the OML fonts, and zrmhax adjusts certain spac-
ing parameters which would not be acceptable if
this font were nothing but a regrouping of char-
acters from different sources. For the same rea-
sons as we saw with mathfont, the side-bearings,
which are distinctly more restricted in Times than in
Computer Modern, are enlarged; accent positions in
math mode, which are controlled through a special
mechanism: pseudo kern pairs, with the so-called
\skewchar, are enhanced. Thanks to fontinst, it’s
possible to correct all the shortcomings of the math-
font option, i.e., by specifically using glyphs chosen
for aesthetic reasons (but arranged in the standard
LATEX encoding), and by adjusting all the metric pa-
rameters (kerning, side-bearings, etc.), so they can
be made to work optimally in mathematics. The
only thing missing from these examples is the com-
mand scaled, which makes it possible to adjust to
the same value the x-heights of the various fonts
mixed into a single font. Another advantage not to
be discounted with the ‘virtual font’ solution: since
it yields fonts which can replace the ‘original ver-
sions’ of Computer Modern, it is also very easy to

TUGboat, Volume 19 (1998), No. 2 133

use with all TEX dialects or formats (even plain).
On the other hand, one could say that adjusting
metric parameters is a subtle business, and should
be left to a true typographer . . .

The examples I’ve presented throughout this ar-
ticle were produced with a certain degree of haste—
they are far from being optimal. It’s not really fea-
sible for me to distribute the virtual fonts I’ve been
describing, because most are just the result of com-
bining various bits of commercial fonts—which is
why a finished package is not available. On the other
hand, I will try to share the skills I’ve acquired with
difficulty. I don’t believe in a set of macros that
can systematically generate virtual math fonts for,
say, Palatino, Times, and New Century Schoolbook.
These fonts are too different: it’s impossible for any
given symbol not to clash with any one of them. As
well, there are problems adjusting the x-heights and
side-bearings that simply can’t be dealt with in a
generic way.

I’ll finish off this presentation with a concrete
demonstration (used in plain TEX by the secretaries
at the Fourier Institute). The text font is T1
Utopia Expert scaled down to the x-height of cmr10.
Utopia, which has a dark color to it, doesn’t really
work with cmmi, although the symbols in cmsy/cmex
don’t clash once they’ve been scaled down. After a
few attempts, I finally chose Lucida for the upper-
and lowercase Greek letters, Utopia Italic for math
italics, and Utopia Expert for oldstyle digits. This
yields the following:

\installfamily{OML}{putluc}%

{\skewchar\font=127}

\transformfont{putri8r}{\reencodefont{8r}%

{\fromafm{putri8a}}}

\installfont{zputlucm}%

{kernoff,hlcrim scaled 804,kernon,%

unsetalmf,unsetos,putri8r scaled 880,%

putr8x scaled 880,utmathit,zrmuthax}%

{OML}{OML}{putluc}{m}{it}{}

\installfamily{OT1}{putluc}{}

\transformfont{putr8r}{\reencodefont{8r}%

{\fromafm{putr8a}}}

\transformfont{hlcr7t}{\reencodefont

{OT1luc}%

{\fromafm{hlcr8a}}}

\installfont{zputluc7t}

{putr8r scaled 880,putr8x scaled 880,%

hlcr7t scaled 840,latin,zrhax,%

kernoff,cmr10}%

{OT1}{OT1}{putluc}{m}{n}{}

You can see that I’ve modified a few mathptm
files, and have introduced a new unsetos to suppress

the oldstyle digits, so that they come from the expert
font rather than from cmmi.14 One final example
with Apollo. Since this is a lighter face, I decided to
plunder Computer Modern for all the math symbols
that don’t exist in Apollo.

\installfamily{OML}{mapcm}%

{\skewchar\font=127}

\transformfont{mapri8r}{\reencodefont{8r}%

{\fromafm{mapri8a}}}

\installfont{zmapcmm}

{kernoff,cmmi10,kernon,unsetalmf,%

unsetos,mapri8r scaled 1067,%

mapr8x scaled 1067,apmathit,zrmaphax}%

{OML}{OML}{mapcm}{m}{it}{}

\installfamily{OT1}{mapcm}{}

\transformfont{mapr8r}{\reencodefont{8r}%

{\fromafm{mapr8a}}}

\installfont{zmapcm7t}

{mapr8r scaled 1067,mapr8x scaled 1067,%

cmlatin,zrhax,kernoff,cmr10}%

{OT1}{OT1}{mapcm}{m}{n}{}

4 Conclusion

I’ve illustrated different possible solutions in the
above examples for Utopia and Apollo.15 The prin-
ciple behind these various illustrations has been the
following: maintain the identical text each time, and
change only the preamble, which takes care of mod-
ifying the fonts to be used via ‘standard’ NFSS (the
equivalent of times.sty; see Fig. 8, 9), macros such
as mathfont (Fig. 10), and ending up with compos-
ite virtual fonts, as described above (Fig. 11, 12).
While the defects in mathfont are obvious enough
(poor spacing around parentheses, the ffi ligature
problem), you have to keep in mind that they can
be fixed manually, which is a do-able operation in
a document without a lot of math formulae and
typeset by someone who knows what they’re doing.
After demonstrating the three comprehensive font
systems available—Computer Modern (Fig. 1), Lu-
cida (Fig. 2) and MathTime (Fig. 4), plus Mathptm
(Fig. 6)— I have shown what you can get, start-
ing from two text fonts of incompatible design with
math characters from either Computer Modern or
Lucida.

The Apollo example, although somewhat margi-
nal (I don’t see it used that often), does show the
benefits of the approach I use. Its style is wildly

14 This manoeuver doesn’t really have any bearing on
LATEX but it does allow the plain TEX \oldstyle command
to work.

15 A related discussion can be found in [2]. The task there
was to modify not only the typography but also the layout of
a LATEX book.

134 TUGboat, Volume 19 (1998), No. 2

C 1. — Let x, y, z, be integers; for α ∈ N, denote by Ωα ⊂ N the set of prime integers
p (called p-primes in the sequel) such that the following equation (known as Frimas’ last equation)
xp + yp = zp admits infinitely many solutions divisible by α. We conjecture:

• Ωα �= ∅ (Ωα is not empty),
• more precisely, card Ωα > w where w is the well-known W’ constant.

Evidence for the conjecture. — Denoted by A , M , O , the famous inferior constants of W, the
three following formulae are very instructive:

x = 2πz ⇐⇒ card Ωα | M and ϕ(t) =
1√
2π

∫ t

0

e−x2/2dx(1)

∏

j�0




∑

k�0

f jkzk



 =
∑

k�0

zn







∑

k0,k1, ... �0

k0+k1+ ···=n

f0k0
f1k1

. . .







(2)

Look at the product f f i, {
k g

︷ ︸︸ ︷

g, . . . , g,

ℓ h
︷ ︸︸ ︷

h, . . . , h
︸ ︷︷ ︸

k+ℓ elements

} taken in the basis (�ı,�).(3)

±

√
√
√
√
√

∣
∣
∣
∣
∣
∣

x1 − x2 y1 − y2 z1 − z2

l1 m1 n1

l2 m2 n2

∣
∣
∣
∣
∣
∣

> 0.Moreover, eq. (1) yields

Figure 13: Text in Minion MM, math fonts based on Computer Modern.

incompatible with Computer Modern yet its pro-
portions and, above all, its color, are quite similar:
once you remove the style incompatibility between
them by using text italics in math, you get an unde-
niable uniformity and quality. Here’s a list of fonts
often used in books, which seem to me to lend them-
selves, without too much damage, to the games I’ve
been playing with Apollo: Bembo, Adobe Gara-
mond, Garamond Three, Granjon, Plantin Light,
Times Light. Also possible, but probably without
the same degree of uniformity, are Adobe Caslon,
Galliard, or Baskerville. To complement Palatino,
Melior, Stempel Schneidler, New Century School-
book, I’d think of Lucida. While Stone or Rotis
could prefer MathTime symbols.

To conclude on a more pessimistic note: the
French version of this article [3] was typeset in
Minion— for me, one of the most beautiful fonts
currently available, remarkably readable and elegant
at the same time.16 Today, I would choose it without
hesitation for a good-quality journal. Unfortunately,
the Minion design displays its acknowledgement of

16 They say that Minion’s on its way to becoming the
‘Times of the 21st century’, which is why I’m in a hurry to
use it now before it becomes too passé!

the Italian and French Renaissance too clearly. The
initial version of this article had been prepared
with the Single Master version (used by the journal
Libération), which gave the page a relatively dark
color, but not as dark as either Times or Lucida.
And for this reason, none of the three basic fonts
can complete it, even though MathTime is probably
the least problematic. Just as this article was being
finished, I installed the Multiple Master version of
Minion, which makes it possible to incrementally
vary the thickness, the width, and the optical size
yet still maintain a consistent design. As we’ve seen,
this last property is crucial for the readability of
smaller point sizes (superscripts, for example), and
it’s one of this font’s undeniable advantages.

I’ve tried to experiment with the thinnest and
widest instances so that color and proportion con-
verged as much as possible with those of Com-
puter Modern.17 It’s interesting to note that Hilmar
Schlegel reports getting quite satisfactory results by

17 The complete interface for production of the French
version of this article will eventually become available on
CTAN, as an example. A pre-version is already somewhere
on my home site: see ftp://fourier.ujf-grenoble.fr/pub/

contrib-tex/psfonts/adobe.

TUGboat, Volume 19 (1998), No. 2 135

using a similar method, but with a combination of
a fairly bold and slightly narrowed Minion face with
MathTime. Fig. 13 shows how this “works” quite
respectably under ‘real’ conditions. Nevertheless,
one can see that each glyph from the Computer
Modern family is a surprise to the eye, and that
there really is no alternative to it, at least regarding
Greek letters.

Thanks— I went into this article without any
idea where it would all end. Since I’m neither a
programmer nor a typographer, nor a (LA)TEX guru
(much less one in PostScript), a certain number
of unexpected roadblocks came up along the way.
I’d like to thank everyone who helped me over these
hurdles. In particular, I’d like to mention Jacques
André, Bernard Desruisseaux and Hilmar Schlegel
for their constructive criticisms and technical help,
which made it possible for me to write this paper.
Last but not least, it’s a pleasure to thank Christina
Thiele who undertook the present translation with
patience & skill.

References

[1] Jacques André, Font metrics, Visual and Tech-
nical Aspects of Types (Roger D. Hersch, ed.),
Cambridge University Press, 1993, pp. 64–77.

[2] Thierry Bouche. Approximation of one
of Henri CARTAN’s books: first try,
http://www.loria.fr/tex/fontes/maths/

cartan-english.html. The LATEX Navigator,
Nancy, France, 1995.

[3] Thierry Bouche. Sur la diversité des fontes
mathématiques, Cahiers GUTenberg 25 (1–24)
novembre 1996.

[4] Michel Goossens, Frank Mittelbach, & Alexan-
der Samarin. The LATEX Companion. Addison-
Wesley, Reading, USA, 1994.

[5] Aloysius G. Helminck. Contributions to
fontinst, on ctan. 1994.

[6] Berthold K.P. Horn. Where Are The Maths
Fonts ?, TUGboat Vol. 14 3, 282–284, 1993.

[7] Alan Jeffrey. The fontinst package, documenta-
tion accompagnying the software distribution
(the paper in TUGboat 14/3 is obsolate). June
1994.

[8] Alan Jeffrey. PostScript Fonts in LATEX2ε,
TUGboat Vol. 15 3, 263–268, 1994.

[9] Robert Bringhurst. The Elements of Typo-
graphic Style. 2nd ed. Hartley & Marks, Van-
couver. 1996

[10] Lewis Blackwell. Twentieth Century Type. Cal-
man & King, London. 1992

TUGboat, Volume 19 (1998), No. 2 135

Hints and Tricks

‘Hey — it works!’

Jeremy Gibbons

Welcome to ‘Hey — it works!’, a column devoted
to (LA)TEX tips, tricks and techniques. In this issue,
we have an article by Robert Tolksdorf, on auto-
matically inserting or avoiding spaces after macros
that expand to text (such as the macro \TUB, which
generates ‘TUGboat’); this is based on a macro by
Donald Arseneau in an earlier column in TTN . We
also have an article by Pedro Aphalo on generating
dashed lines of various kinds in LATEX.

I have decided to expand the scope of the col-
umn to include also METAFONT and METAPOST

techniques, prompted by a recent question on the
METAFONT mailing list. To get the ball rolling, this
issue concludes with an article of mine on drawing
double-headed arrows in METAPOST. Please send
me any more little METAFONT or METAPOST snip-
pets you might have, along with the usual TEX and
LATEX ones.

⋄ Jeremy Gibbons

CMS, Oxford Brookes University

Gipsy Lane, Headington

Oxford OX3 0BP, UK

jgibbons@brookes.ac.uk

http://www.brookes.ac.uk/

~p0071749/

1 Smart spaced macros everywhere

The article Italic correction everywhere by Donald
Arseneau in TTN 3,1:15 addresses the issue of in-
serting an italic correction automatically, if there is
no punctuation following the italicized text.

A similar problem is the generation of spaces
after a macro that generates text, such as the \TUB

macro from the TUGboat document class. Con-
sider the sentence “TUGboat uses the macro \TUB

to generate ‘TUGboat’.” The source for this sen-
tence reads:

\TUB\ uses the macro \verb"\TUB"

to generate ‘\TUB’.

What one would like to avoid is the manually in-
serted \ after the first \TUB. The following lines in-
troduce the macro \smartspace that automagically
inserts it when no punctuation follows the macro:

% smart insertion of space

% Robert Tolksdorf (tolk@cs.tu-berlin.de)

% Following Donald Arseneau,

% Italic correction everywhere, TTN 3,1

136 TUGboat, Volume 19 (1998), No. 2

\def\smartspace#1{{\protect

\aftergroup\smartspaceit#1}}

\def\smartspaceit{\futurelet\spta\sptest}

\def\sptest{\ifcat\noexpand\spta,\else\ \fi}

Now, we can define a macro \TUGboat by

\def\TUGboat{\smartspace{\TUB}}

and use

\TUGboat uses the macro \verb"\TUGboat"

to generate ‘\TUGboat’.

And hey, to quote Donald Arseneau, this works for
9944/100% of the time only, as ‘\TUGboat --’ shows.
Someone tell me why!1

⋄ Robert Tolksdorf

Technische Universität Berlin

tolk@cs.tu-berlin.de

2 Dashed lines

Sometimes, for example when including data plots,
it is necessary to include in the caption to a fig-
ure different dashed or entire line segments used to
identify different lines, like this:

A (), B ()

The size and location of these line segments should
match the surrounding text. After reading Norbert
Schwarz’s ‘Introduction to TEX’ book, I wrote a very
small package which I have been using for some time
with LATEX. It is based on a command which can
generate most commonly used dashed lines.

\def\dashedrule#1#2#3{{%

% #1 is length of dash

% #2 is length of gap between dashes

% #3 is number of dashes

\dimen1=#2 \divide\dimen1 by 2

\def\@ruledash{%

\rule{\dimen1}{0pt}%

\rule[0.5ex]{#1}{0.4pt}%

% line is 0.5ex above the baseline

% and 0.4pt thick

\rule{\dimen1}{0pt}}%

\count1=0

\loop%

\ifnum\count1<#3%

\advance\count1 by 1%

\@ruledash%

\repeat}}

How does it work? \@ruledash draws a single
dash plus half a gap in front of it, and half a gap
after it. A loop draws as many dashes, surrounded

1 Note that if you make the macro \TeX smart-spaced,

then ‘\TeX book’ no longer works as it used to!

by half gaps, as indicated by the third argument.
Using this command it is extremely easy to define
different dashed line segments of equal length, as the
example below shows for 3em-long line segments.

% length of line segment is (#1 + #2) * #3

\def\longdashes{\dashedrule{.8em}{.2em}{3}}

\def\mediumdashes{\dashedrule{.3em}{.2em}{6}}

\def\shortdashes{\dashedrule{.1em}{.1em}{15}}

\def\solidline{\dashedrule{3em}{0em}{1}}

\def\sparsedashes{\dashedrule{.5em}{.5em}{3}}

‘ ’
‘ ’
‘ ’
‘ ’
‘ ’

⋄ Pedro J. Aphalo

Faculty of Forestry

University of Joensuu

pedro.aphalo@joensuu.fi

http://cc.joensuu.fi/~aphalo/

3 Double-headed arrows

A recent request on the METAFONT mailing list was
for help in drawing double-headed arrows. One cor-
respondent provided the following definition of a
macro to draw a path with an arrowhead at each
end:

def draw_dbl_arrow text t =

path p, q;

p := t;

q := subpath (0,.5) of p;

drawarrow reverse q;

q := subpath (.5,1) of p;

drawarrow q

enddef;

For example,

draw_dbl_arrow (0,0){right} .. {right}(50,25);

produces:

This definition can be improved in several ways.
For one thing, there is no need to use assignments
like this. METAPOST

2 has a powerful expression
language, and in particular you can use an expres-
sion as the argument to drawarrow:

def draw_dbl_arrow text t =

drawarrow reverse (subpath (0,.5) of p);

drawarrow subpath (.5,1) of p

enddef;

2 Although we use the term ‘METAPOST’ to refer to the

language, everything in this article applies equally to the

METAPOST and METAFONT systems.

TUGboat, Volume 19 (1998), No. 2 137

For another thing, that ‘1’ should be ‘length p’,
otherwise the macro will only work for a path of
length 1.

Indeed, there is no need to draw just subpaths
of p; there is no harm in drawing p itself twice:

def draw_dbl_arrow text t =

drawarrow reverse p;

drawarrow p

enddef;

In fact, the original poster asked for a triple-
headed arrow, with two arrow heads at (for the sake
of argument) the end of the path. If you can pick
the right small value of e, you can achieve this by
just drawing the path three times:

def draw_trp_arrow text t =

drawarrow reverse p;

drawarrow p;

drawarrow subpath (0, length p - e) of p

enddef;

But what value to pick for e? You could just experi-
ment, but different values will be needed for different
paths to get consistent results. A better approach is
to find the time at which a point traversing path p

is a certain fixed distance (namely, the length of an
arrow head, ahlength) from the end of p, and to
draw the corresponding subpath of p. You can find
that time using intersectiontimes, intersecting p

with a circle of the appropriate size centred on the
end of p.

def draw_trp_arrow text t =

drawarrow reverse p;

drawarrow p;

path q;

q := fullcircle scaled (2*ahlength)

shifted (point (length p) of p);

numeric tp, tq;

(tp,tq) = p intersectiontimes q;

drawarrow subpath (0, tp) of p

enddef;

On the same path as before, draw_trp_arrow gives

It is assumed that p is suitably well-behaved, that
is, that it crosses the small circle just once.

(Again, it is possible to do it without those
assignments, but then the argument to the third
drawarrow gets rather unwieldy.)

⋄ Jeremy Gibbons

Oxford Brookes University

jgibbons@brookes.ac.uk

~i""""

TUGboat, Volume 19 (1998), No.2

\,
!
I
I

Fe,. another thing, that '1' should be 'length p',
otherwise the macro will only work for a path of

length_I.

Indeed, there is no need to draw just subpaths

of p; there is no harm in drawing p itself twice:

def draw_dbl_arrow text t =

drawarrow reverse p;

drawarrow p

enddef;

In fact, the original poster asked for a triple-

headed arrow, with two arrow heads at (for the sake

of argument) the end of the path. If you can pick

the right small value of e, you can achieve this by

just drawing the path three times:

def draw_trp_arrow text t =

drawarrow reverse p;

drawarrow p;

drawarrow subpath (0, length p - e) of p

enddef;

But what value to pick for e? You could just experi-

ment, but different values will be needed for different

paths to get consistent results. A better approach is

to find the .time at which a point traversing path p

is a certain fixed distance (namely, the length of an

arrow head, ahlength) from the end of p, and to
draw the corresponding subpath of p. You can find

that time using intersectiontimes, intersecting p

with a circle of the appropriate size centred on the

end of p.

def draw_trp_arrow text t =
drawarrow reverse p;

drawarrow p;

pathq;

q := fullcircle scaled (2*ahlength)

shifted (point (length p) of F);

numeric tp, tq;

(tp,tq) = p intersectiontimes q;

drawarrow subpath (0, tp) of p

enddef;

On the same path as before, draw_trp_arrow gives

/
It is assumed that p is suitably well-behaved, that

is, that it crosses the small circle just once.

(Again, it is possible to do it without those

assignments, but then the argument to the third

drawarrow gets rather unwieldy.)

0 Jeremy Gibbons
Oxford Brookes University

jgibbonsObrookes.ac.uk

137

It\TEX

Default Docstrip Headers

~'lEX3 project team

Many ~'lEX users now distribute packages in docu-

mented source form using the docstrip system. Doc-

strip allows a header to be placed on generated pack-

age files, suitable for copyright information or dis-
tribution conditions.

If the docstrip install file distributed with a

package does not provide an explicit header, the

docstrip system will add a default header to all gen-

erated files. Previously the default header was the

following text:

This is file 'myfile.sty',

generated with the docstrip utility.

The original source files were:

myfile.dtx (with options: 'package')

IMPORTANT NOTICE:

For the copyright see the source file.

You are *not* allowed to modify this file.

You are *not* allowed to distribute this file.

For distribution of the original source see the terms

for copying and modification in the file myfile.dtx.

Unfortunately the above conditions make it il-

legal to distribute the generated file, even if the full

sources are included, thus making it impossible to

include the package in 'ready to run' distributions

such as the 'lEX Live CD.

Starting with the 1998/06/01 release of ~'lEX

the default header has been changed to allow such

usage; it is now as follows:

This is file 'myfile.sty',

generated with the docstrip utility.

The original source files were:

myfile.dtx (with options: 'package')

IMPORTANT NOTICE:

-For the copyright see the source file.

Any modified versions of this file must be renamed

with new filenames distinct from myfile.sty.

For distribution of the original source see the terms

for copying and modification in the file myfile.dtx.

r
~~-- - - -------

138

This generated file may be distributed as long as the

original source files, as listed above, are part of

the same distribution. (The sources need not

necessarily be in the same archive or directory.)

Note: This change does not affect any distri-

bution that sets an explicit preamble in the docstrip

install file. In particular it does not result in any

changes to the distribution conditions placed on files

generated from the base :g\'IE;Xdistribution.

If you currently distribute a package on a public

archive which does not specify a docstrip preamble

(with the \preamble or \usepreamble commands in

the docstrip install file) then this change will affect

you.

. We hope that you will prefer the new default,
which allows your package to be used in many

of the more popular 'IE;Xdistributions.

. However, if you prefer the more restrictive dis-

tribution conditions in the previous releases then

you will need to update your install file to spec-

ify the command

\usepreamble\originaldefault

before the commands generating the affected

package file.

We apologise that this change potentially re-

quires package authors to update their files on the

TUGboat, Volume 19 (1998), No.2

public archives, but the old default text caused great

problems for many distributors and there was no

way to change the default behaviour without affect-

ing existing files using that default.

References

[1] Frank Mittelbach, Denys Duchier, Johannes
Braams, Marcin Wolinski, and Mark Wooding.

The docstrip program. Part of the :g\'IE;Xdis-
tribution as file docstrip. dtx.

[2] Michel Goossens, Frank Mittelbach and Alexan-
der Samarin. The W'EX Companion, chapter 14.

Addison- Wesley, Reading, Massachusetts, 1994.

0 H\1EX3 project team
Johannes Braams

David Carlisle

Alan Jeffrey
Frank Mittelbach

Chris Rowley

and Rainer Schopf

latex-l~relay.urz.uni-heidelberg.de

Editor's note: To join the mailing list for the

:g\'IE;X3project, send email to listserv~relay.

urz. uni-heidelberg.de. The body of the message
should contain one line:

subscribe latex-l firstname lastname

nr-

TUGboat, Volume 19 (1998), No. 2 139

LATEX News
Issue 9, June 1998

New math font encodings

A joint working group of the TEX Users Group and the
LATEX3 Project is developing a new 8-bit math font
encoding for TEX. It is designed to overcome several
limitations and implementation problems of the old
math font encodings and to simplify switching between
different sets of math fonts, much as the LATEX font
selection interface has simplified switching between text
fonts.

Since the work on this project relies entirely on
volunteer work, we cannot give a specific release date
yet. However, a prototype implementation already
exists. This contains several sets of virtual fonts, some
LATEX packages and a kernel module; we hope to
integrate it into the main LATEX distribution for the
next release.

Documents using only standard LATEX commands for
math symbols should not be affected by switching to
the new math font encodings However, documents,
classes or packages making specific assumptions about
the encoding of math symbol fonts are likely to break.

Further information about the Math Font Group
may be found on the World Wide Web at
http://www.tug.org/twg/mfg/.

A new math accent

A new math accent, \mathring, has been added. This
is a math mode version of the ring accent (˚) which is
available in text mode with the command \r.

Extended \DeclareMathDelimiter

The command \DeclareMathDelimiter has been
extended. Normally this command takes six arguments.
Previously, when being used to declare a character
(such as [) as a delimiter, a variant form was used with
only five arguments. The argument specifying the
default ‘math class’ was omitted. Now the full
six-argument form may be used in this case. The extra
information is used to implicitly declare the character
via \DeclareMathSymbol for use when the symbol is
not used with \left or \right.

The old five-argument form is detected and will work
as before.

Tools distribution

The multicol package now supports the production of
multiple columns without balancing the last page. To
get this effect use the multicols* environment.

The layout package was partly recoded by Hideo
Umeki to display page layout effects in a better way.

As suggested by Donald Arseneau, the calc package
was extended to support the new commands
\widthof{text}, \heightof{text}, and \depthof{text}

within a calc-expression. At the same time we
modified a few kernel commands so that
calc-expressions can now be used in various useful
places such as the dimension arguments to the tabular

environment and the \rule command. For many other
standard LATEX commands this was already possible.

Support for Cyrillic encodings

We are very pleased that, after a lengthy period of
development, a set of fonts, encodings and support files
for using LATEX with Cyrillic characters will soon be
available.

Test versions of the ‘LH’ fonts for these Cyrillic
encodings, based on the Computer Modern design, are
available from CTAN archives in the directory
fonts/cyrillic/lh-test. The LATEX support files (by
Werner Lemberg and Vladimir Volovich) are also
available from CTAN archives in
macros/latex/contrib/supported/t2

Default docstrip header

Many LATEX users now distribute packages in
documented source form using the docstrip system.
Docstrip allows a header to be placed on generated
package files, suitable for giving copyright information,
or distribution conditions.

We have changed the default version of this header so
that it allows stripped files to be distributed in
ready-to-run installations such as the TEXLive CD. If
you use the default header for distributing your files you
should check that the new copyright text is acceptable
to you. The file docstrip.dtx explains how to produce
your own header if you wish to do so.

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 1998, all rights reserved.

142 TUGboat, Volume 19 (1998), No. 2

TEXNortheast Conference

TEXNortheast Conference: Final Report

Stephanie Hogue

Last March, the penthouse suite of the Loews
New York Hotel was the site of U.S. TUG “history
in the making”. TEX users gathered for a non-
annual-meeting, three-day conference. Held Sun-
day, March 22, through Tuesday, March 24, the
TEXNortheast Conference was positioned both to
follow the Seybold conference (held the preceding
week) and to attract the local publishing commu-
nity. With the theme “TEX/LATEX Now”, the Con-
ference promised— and delivered— practical infor-
mation for those whose working lives revolve around
TEX and LATEX.

The TEXNortheast Conference grew from a gen-
eral discussion at the 1997 Annual Meeting in San
Francisco, concerning a decline in U.S. membership
and the needs of people utilizing TEX and LATEX
in their jobs. A group of people attending the San
Francisco meeting stepped forward to take on the
task of organizing a conference for March 1998; they
were later joined by several more volunteers. Serving
in various capacities on the conference committee
were:

Nancy Chien Texas A&M University
Don DeLand Integre Technical Pub. Co.
Susan DeMeritt IDA/CCR La Jolla
Alan Hoenig Program Co-Chair, CUNY

Anita Hoover Program Co-Chair, University
of Delaware,

Stephanie Hogue The TypeWright
Mimi Jett ICC Oregon
Cheryl Ponchin IDA/CCR Princeton
Stacey Sensenig Cadmus Journal Services/

TAPSCO

Heidi Sestrich Carnegie Mellon University

Due to the time crunch (about three months
to arrange the program) and the practical theme
of the conference, a different approach to soliciting
papers was adopted. The committee gathered a list
of suggested topics and surveyed the membership
for their responses, as well as more suggestions.
The final topic list was then incorporated into the
“Call for Papers”. Additionally, committee mem-
bers actively recruited potential speakers to present
specific topics and to offer workshops. Several com-

mittee members agreed to give presentations and/or
workshops themselves, in order to ensure that the
conference met attendees’ expectations.

The conference committee also approached com-
mercial vendors of TEX implementations, offering
scheduled times for each to demonstrate the “latest
and greatest” features of their products.

Lance Carnes and
Ed Lajarza Personal TEX Inc.

Richard Kinch TrueTEX Software
Barry Smith Blue Sky Research

accepted the committee’s invitation. Don DeLand
also offered to demonstrate Scientific Word/Work-
place on behalf of TCI/Brooks Cole. In addition to
the vendors giving presentations, several providers
of TEX-related services also had display tables:

Integre Technical Pub. Co.
Interactive Composition Corp.
TEXnology, Inc.

Blue Sky Research announced Textures’ newest
feature —Synchronocity between input and .dvi

files — at the conference, and provided a Macintosh
running a demonstration. The glass-walled vendor
display area quickly became the center of activity
for conference participants.

The “recruitment” of speakers and vendors
resulted in three information-packed, albeit long,
days, each devoted to a specific topic:

Sunday, “All About TEX” The conference opened
with vendor demonstrations and, for those who
brought laptops, the opportunity to install
a trial copy of PCTEX, Scientific Workplace,
Textures, or the new TEX Live 3 CD, to “test
drive” during the conference. Talks on general
TEX issues and virtual fonts by Alan Hoenig
and a BibTEX discussion with Oren Patashnik
completed the morning session. Workshops
filled the afternoon, with sessions on moving
from LATEX 2.09 to 2ε, using the amsmath

package, customizing LATEX lists, and using
packages that extend the tabular environment.

Monday, “WWW and Interactive TEX” The sec-
ond day featured TEX in combination with
other packages and on the Web. Presentations
of TCI’s EXP, IBM’s techexplorer, PCTEX’s new
graphics features, Mathscape, and Mike Sofka’s

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 143

talk on tagged DVI files (not for the faint-
hearted!) occupied the morning. In the after-
noon, Ross Moore presented his LATEX2HTML

package, and Michael Downes reported on his
work to develop an environment that will au-

tomatically break long equations. The day fin-
ished with a LATEX2HTML workshop.

Tuesday, “TEX in Publishing” The closing day
was devoted to issues of professional publish-
ing with TEX. Designing books, supporting
multiuser macro packages, developing database
publishing systems, and designing for the Web
as well as print were discussed during the morn-
ing session. The final session covered custom-
designing a legal document with TEX, control-
ling white space in TEX, and using alternative
math fonts, and concluded with an overview of
John Hobby’s METAPOST language for produc-
ing PostScript graphics.

Each day during lunch, participants divided
into groups for informal discussions of TEX/LATEX
issues and the future direction of TUG. On the final
day, participants’ names were drawn at random,
and, thanks to the generosity of Personal TEX
and TCI/Brooks Cole, copies of the latest versions
of PCTEX, Scientific Workplace, and EXP were
awarded. Other winners received advance copies
of the TEX Live 3 CD, thanks to the efforts of
Sebastian Rahtz and Anita Hoover, and the support
of the University of Delaware.

The total number of participants for the full,
three-day conference was 57. One-day registrations
were also accepted; attendance was highest on Tues-
day (63). Ross Moore undoubtedly traveled the
farthest—all the way from Macquarie University in
Australia! The enthusiastic responses of the partic-
ipants, some attending their first TUG conference,
made it clear that the TEXNortheast Conference was
a “hit”. The most frequently heard question was,
“When’s the next one?”

If you missed the conference, you can check out
the Web page:

http://lib.stat.cmu.edu/~heidi/tug97.html

or click on the link from TUG’s home page (http:
//www.tug.org). The daily agendas, brief abstracts
of presentations, and the list of participants are still
available.

Several of the committee members have “re-
enlisted” to help plan the 1999 Annual Meeting. We
intend to continue some of the innovations which
made the TEXNortheast Conference a success:

• Recruiting speakers for specific topics: The
suggested topic list had more material than we

could cover in three days; we will use the list
to help design presentations and workshops for
the 1999 meeting.

• Surveying the membership: Feedback from
the survey respondents enabled us to design a
program that people wanted to attend; we hope
for an even bigger response to the next survey.

• Parallel sessions: Although we were not able
to arrange them at this conference, we think
parallel sessions would allow us to accommo-
date those who need practical, how-to sessions,
as well as those who prefer more theoretical
discussions.

• Using laptops: While the use of laptops will
require more technical support, it was apparent
that this approach could lower the cost of
providing hands-on workshops.

The TEXNortheast Conference Committee wants to
thank everyone who helped to make this conference
such a success, especially the speakers and vendors
who put together terrific presentations and work-
shops on very short notice. We particularly appre-
ciate the developers’ efforts to explain their packages
in layman’s terms and to provide concrete examples.
No one present at Michael Barnett’s Mathscape pre-
sentation will soon forget his helpful and hilarious
explanation of three-dimensional math.

While the committee planned to impart prac-
tical information to users, we were pleasantly sur-
prised by developer Ross Moore’s comment that
he, too, learned something from the workshops. It
seems he found helpful information about how some
of the packages are applied by users in actual work
situations. We look forward to making the 1999
Annual Meeting an even more valuable exchange of
information and ideas.

⋄ Stephanie Hogue
The TypeWright
801 Highland Road
Lansdale,PA 19446 USA
shogue@typewright.com

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 1 143

TEXNortheast:
Workshops and additional papers

Summaries follow for workshops as well as for papers
which have been published elsewhere, or for which
no final text was received by the TEXNortheast
Program Committee.

Workshops

Moving On: LATEX2.09 to LATEX2ε

Anita Z. Hoover

Prerequisites: Little or no experience in LATEX2ε

and most familiar with LATEX2.09 conventions.

Description: Learn the basics to convert a docu-
ment from LATEX2.09 to LATEX2ε. The focus was
on

1. Discuss the differences between LATEX2.09 and
LATEX2ε;

2. New features in LATEX2ε;

3. Standard classess, packages, and options; and

4. Custom packages.

⋄ Anita Z. Hoover

University of Delaware

anita@udel.edu

More Multiline Equation Environments

Stephanie Hogue

Prerequisites: Basic knowledge of standard LATEX
math environments, including eqnarray and array.

Description: This workshop was an introduction
to the multiline equation environments of the ams-

math package for LATEX2ε, which supersedes the
amstex package. The following environments were
discussed:

• gather, multline: environments without align-
ment across lines;

• split, align, flalign, alignat: environ-
ments with one or more alignments across lines.

The discussion included guidelines for breaking
equations, according to the AMS. Enhancements
to equation numbering were also addressed.

This was not an exhaustive presentation of the
amsmath package. Complementary material on font
issues in amsmath was presented in Anita Hoover’s
workshop “Moving On: LATEX2.09 to LATEX2ε”.

⋄ Stephanie Hogue

The TypeWright

shogue@typewright.com

Customizing LATEX Lists

Donald W. DeLand

Prerequisites: Intermediate LATEX2ε for Authors
workshop, or solid understanding of LATEX funda-
mentals.

Description: The \list mechanism is the basic
building block of most non-sectioning LATEX en-
vironments. This workshop reviewed the generic
LATEX environments that use \list, and how they
are constructed. The following more advanced top-
ics were covered in detail:

1. Changing default indents, labels, and vertical
spacing using \list parameters and localized
definitions of \makelabel.

2. Adding an optional argument to
\begin{enumerate} to “clear for widest
label” by using \@ifnextchar and linking the
\leftmargin to the \labelwidth.

3. Using \newcounter and \refstepcounter to
write theorem-like environments without using
\newtheorem.

4. Tricks of the trade and aside comments:

(a) Adding design elements using \item

(b) Marking “optional” list items (e.g., in
exercises or sections)

(c) Boxing a theorem or definition

(d) Enumerating horizontally rather than ver-
tically

(e) Why \hangindent and \hangafter don’t
work within a \list

⋄ Donald W. DeLand

Integre Technical Publishing Co.

deland@cs.unm.edu

Beyond Tabular

Stephanie Hogue

Prerequisites: Basic knowledge of standard LATEX
tabular environment.

Description: This workshop was an overview of
several packages which provide enhanced features
for tabular material. The following packages were
presented:

• array: provides some new preamble options
in addition to those found in the tabular

environment;

• tabularx: automatically calculates column widths
for a table of specified width;

• longtable: automatically breaks a long table
across pages;

TEXNorthEast Conference, March 22 – 24, 1998

144 TUGboat, Volume 19 (1998), No. 1

• dcolumn: provides a new column type for
specifying a decimal-aligned column.

⋄ Stephanie Hogue

The TypeWright

shogue@typewright.com

“WYSIWYG” LATEX: EXP and
Scientific Word/Workplace/Notebook

Donald W. DeLand

Two WYSIWIG applications—Simon Smith’s EXP

and TCI’s Scientific Word/Workplace/Notebook—
allow authors to create LATEX documents without
learning LATEX. This talk reviewed and demon-
strated the major features of both programs, and
explored some of their limitations with respect to
document design, user interface, and LATEX compat-
ibility.

EXP is a “scientific word processor” whose
word-processing features are easy to learn, but EXP

documents need to be set up in a particular way to
guarantee a smooth transition to LATEX. Although
EXP is easy to use, its automatic numbering mecha-
nisms, lack of macro support, and inability to handle
large tables or import non-EXP documents make it
cumbersome to work with.

One major strength of TCI’s Scientific Work-
place is its built-in support for Maple, a popular
computer-algebra system. Scientific Workplace also
includes a style editor that lets the user customize
numerous design elements, then process the docu-
ment via LATEX for outputting. There is a great deal
of confusion, however, as to what the relationship is
between Scientific Workplace and LATEX. Workplace
uses LATEX as its output (print) engine, but it does
not generate a “clean” LATEX document.

⋄ Donald W. DeLand

Integre Technical Publishing Co.

deland@cs.unm.edu

Making Web Sites using LATEX2HTML

Ross Moore

LATEX2HTML is an extremely flexible tool for creat-
ing Web pages. Indeed it is best used when requiring
technical information to be presented as a ‘Web’ of
linked HTML pages.

One immediately encounters questions like:

• How many HTML pages?
• How much information should go on each page?
• How to link pages for easy access to related

pieces of information?
• Indexing, Table-of-Contents and other Naviga-

tion aids.

The aim of this workshop was to get some
familiarity with the way LATEX2HTML tackles these
issues, using configuration variables and command-
line switches.

The LATEX source provides the information
presented, but there are many options available
to affect the appearance and arrangement of the
resulting Web pages.

⋄ Ross Moore

ross@mpce.mq.edu.au

Presentations not included in this issue

Virtual Fonts

Alan Hoenig

TEX makes special demands on the fonts that it
works with. Although this presents no problem
for fonts (like Computer Modern) that were created
explicitly for use by TEX, what do we TEX users do if
we want to use any of the hundreds of beautiful fonts
provided by mainstream digital foundries? The con-
cept of virtual fonts provides this mechanism— for
this and much more, as this talk will demonstrate.
Discussion will center about available virtual font
tools and some simple virtual font projects.

Editor’s note: This article appeared in TUG-

boat 18 (2) pp. 113–121.

⋄ Alan Hoenig

ajhjj@cunyvm.cuny.edu

Breaking Equations

Michael Downes

Some flaws in the way TEX and LATEX han-
dle displayed equations are of such long standing
that they are scarcely noticed any more except
by beginning users— for example, the fact that
\left ... \right constructs cannot span multiple
lines, if an equation must be broken into more than
one line. Other flaws that have to do with relatively
subtle typographical issues go unnoticed by most
users— for example, the fact that in multi-line equa-
tions \abovedisplayshortskip isn’t applied when
applicable, and intra-line shrink isn’t used when
available.

This is a report on a new LATEX package called
“breqn” that substantially eliminates many such
problems. One of its main goals is to support
automatic linebreaking of displayed equations, to
the extent possible within the current limitations of
TEX and LATEX.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 1 145

Editor’s note: This paper appeared in TUG-

boat 18 (3), pp. 182–194.

⋄ Michael Downes

mjd@math.ams.org

Designing Books with TEX in Mind

Donald W. DeLand

This paper presents an overview of TEX’s structure
and how that structure impacts the implementation
of book designs. Most book designs cannot be
implemented using only TEX’s internal components;
rather, design implementation usually involves a
combination of TEX and PostScript, and further de-
pends on the specific font encodings and PostScript
drivers used by the operating system and TEX im-
plementation being used. The programmability of
TEX combined with the flexibility of PostScript can
be powerful. On the other hand, TEX predates
PostScript, so the two do not always merge grace-
fully.

Specific design issues covered here include se-
lecting fonts for use with math, using graphics as
design elements, limitations in setting multicolumn
text, and a discussion of how TEX’s paragraph-
building and page-breaking mechanisms impact
marginal text and color usage. In addition, this
paper presents some examples of how TEX’s pro-
grammability can be used to automate or simplify
design elements that could only be handled manu-
ally in other typesetting or desktop systems.

⋄ Donald W. DeLand

Integre Technical Publishing Co.

deland@cs.unm.edu

Custom Legal Documents
for the Auto Loan Exchange

Douglas Lovell

The Auto Loan Exchange is a project of IBM Re-
search which connects automobile dealerships di-
rectly to lenders and credit bureau reporting services
for rapid approval and funding of automobile loans.
We have used TEX to typeset the loan contract and
related documents required to complete the loan and
close the automobile purchase.

In many ways, TEX was the perfect choice to
satisfy our document needs. We have been able to
eliminate the preprinted forms stocked by dealers
and instead, print complete contract documents
customized for each loan. We will discuss the unique
document requirements of this internet commerce
application and describe our TEX-based solution.

Editor’s note: This article appeared in TUG-

boat 18 (3), pp. 175–181.

⋄ Douglas Lovell

dcl@us.ibm.com

Hops, Skips, and Jumps: White Space

Joe Weening

An important part of the appearance of a document
is the proper use of white space. Obeying well-
established traditions of typography helps the reader
to understand the document better. Failing to
follow these rules may cause confusion and draw
the reader’s attention away from the content of the
document.

TEX tries to insert the proper amount of white
space wherever it can, but it sometimes gets it
wrong. It is then up to the author of the document,
or someone else editing the TEX file, to find and
correct these errors.

In this talk we will explain TEX’s rules for
inserting white space, describe cases in which they
don’t work correctly, and explain how to get TEX to
insert the right amount of space. We will include ex-
amples from TEX’s horizontal mode, vertical mode,
and math mode.

⋄ Joe Weening

jweening@ccrwest.org

Introducing METAPOST

John Hobby

METAPOST is a picture-drawing language very
much like MetaFont except with PostScript output.
I will give a brief overview of the METAPOST

language and discuss drawing and filling, dashed
lines, using TEX and LATEX output, and the graph-
drawing package.

⋄ John Hobby

hobby@research.bell-labs.com

TEXNorthEast Conference, March 22 – 24, 1998

mathscape — Combining Mathematica and TEX

Michael P. Barnett
Department of Chemistry,
Princeton University,
Princeton, N.J. 08540
michaelb@princeton.edu

http://www.princeton.edu/~allengrp/ms

Preliminaries

Millions of mathematical formulas are typeset an-
nually. Most of the numbers we see in print are
produced by computer. So are the indexes and
catalogs issued by database publishers. Charts and
diagrams and other products of computer graphics
have replaced manually drafted copy. But most
of the formulas in mathematics, engineering and
science publications are still derived and coded by
hand.

The TeXForm function in Release 2 of Math-
ematica [1], and some more extensive resources in
Release 3 [2], provide a bridge between symbolic
computation and computer composition. The au-
thor’s mathscape system was designed to strengthen
the bridge. Written in Release 2 of Mathematica, it
is in ongoing use by the author, and it has produced
several hundred typeset pages of heavily mathemat-
ical material already. It subsumes work reported
previously as bilo and forTeX [3]. It produces a
document from a control file containing:

• statements that Mathematica evaluates for in-
clusion in the output,

• formatting information and other statements to
be executed silently, flagged by the # symbol,

• text coded in LATEX, with each record flagged
with an *, or in a text environment between
beginText and # endText markers.

Then, within a Mathematica session, the mathscape

package is loaded, and the mathscape statement
autorecord[controlFileName]:

• makes Mathematica read the control file and
convert its contents to the LATEX coded repre-
sentation of the document that is being created,

• invokes LATEX to convert this to a dvi file,

• invokes a preview program, and

• prints the typeset product if requested.

In this way, the document can be crafted interac-
tively. Graphics can be incorporated with ease.

The system was started to meet some major
needs of research publication. The production of
problem sets and worked examples for teaching has

been addressed extensively. So has the production
of tables of formulas for reference. A tutorial intro-
duction to mathscape and a systematic review are
available [4].

The production of the following boxed output
illustrates the control file conventions.

y2 − x2

is converted by Factor to:

(y − x)(y + x)

Here, formatting is needed to override the default
arrangement −x2 + y2 and (−x+ y)(x+ y) imposed
by Mathematica. mathscape converts the immediate
result v of a Mathematica evaluation to prep[v].
prep is initialized to Identity and reassigned dy-
namically, in the present case to a function that
reverses every Plus. The portion of the input that
produced the contents of the preceding box is:

prep = toEach[Plus][reverse]

s = y^2 - x^2

* is converted by \verb|Factor| to:

s // Factor

mathscape supports a large open-ended class of func-
tions, typified by toEach[Plus], that “target” par-
ticular portions of an expression. This can be iden-
tified by head, e.g., toEach[Plus], toEach[log],
as a Mathematica pattern e.g., toThe[_Integer+_],
by part name, e.g., toTheLhs, toTheNumerator or,
as in to[Plus][containing[x], outermost], by
head and criterion, or by pattern and criterion.

Playing through to TEX

mathscape passes elementary algebraic expressions
to the Mathematica TeXForm function for conver-
sion to corresponding TEX code. Greek letters, the
names of all the special symbols in the TEX vocab-
ulary and some other unparameterized objects, e.g.,
strut, are denoted by the TEX control sequence
names without the \. The names of binary oper-
ators (e.g., oplus) are given appropriate mathemat-
ical properties, too. Function expressions are used

147 TEXNorthEast Conference, March 22 – 24, 1998

148 TUGboat, Volume 19 (1998), No. 2

for parameterized objects, e.g., hat[x], rule[rise]
[width, height], overbrace[tag][expr] that map
into TEX codes in just a few simple ways.

Other names can be used in the body of a
calculation and then changed to the TEX names by
replacement rules assigned to prep. The statement
newSymbol[v] makes mathscape append v to the
list of identifiers for unparameterized TEX codes.
Symbols can be appended to the lists of other control
sequence names by further functions that write the
definitions to the output.

The built-in Mathematica names and the low-
ercase names, e.g., Cos, cos, for the typographically
“cos-like” functions are converted to TEX sequences
that provide the conventional omission/inclusion of
parentheses and placement of exponent, as in:

cos[x], cos[x]^2, cos[x+y]
resp
⊲ > cosx , cos2 x , cos(x + y)

(We use the ⊲ > and
resp
⊲ > symbols between single

or multiple verbatimized input expressions and the
typeset products.) In the output, parentheses are
put around the arguments of functions that do not
have special typographic status. Thus:

f[x], g[u,v]
resp
⊲ > f(x), g(u, v)

Special bracketing is illustrated by:

enbr[x], f[enbr[x]]
resp
⊲ > [x], f [x]

enpr[enpr[x]], f[ompr[x]]
resp
⊲ > ((x)), fx

ensp["|", ">"][x, y] ⊲ > |x, y >

sapr[x/y] ⊲ >

(
x

y

)

Further en and sa functions provide other fixed-size
and self-adjusting bracketing symbols. Typically,
these are introduced after the body of a symbolic
computation by targetting expressions in prep.

The infix treatment of binary operators, rela-
tionship symbols and arrows in the output, is shown
by:

otimes[x, oplus[u,v,w]] ⊲ > x ⊗ (u ⊕ v ⊕ w)

ll[a,b,c] ⊲ > a ≪ b ≪ c

not[prec][u,v] ⊲ > u≺/v

rightarrow[a,b,c] ⊲ > a → b → c

arrowoo[u,v] ⊲ > u> >v

The conventions for single and multiple subscripts
and superscripts, on the right and/or left of a symbol
are illustrated by:

x@sub@1, x@sup@enpr[m@sub@1], P@subsup[n, m]
resp
⊲ > x1, x(m1), Pm

n

x@subscriptSequence[a,b]
resp
⊲ > xa,b

E@lsub@r, E@lsubsup[r, epsilon]
resp
⊲ > rE, ǫ

rE

The conventions for decorations, ties, rules and com-
posites are illustrated by:

hat@x, breve@Psi, widetilde@enpr[tilde@A]
resp
⊲ > x̂, Ψ̆, (̃Ã)

underline[x+underline[y]] ⊲ > x + y

f[u] + overbrace["time\ dependent"][

g[t,u] + g[t,w]]

⊲ > f(u) +

time dependent︷ ︸︸ ︷
g(t, u) + g(t, w)

rule[5pt][30pt, 1pt] ⊲ >

atop[a, b], above[1pt][a, b]
resp
⊲ >

a

b
,

a

b

stackrel[F, "="], ddrel[arrowcc, a, b]

resp
⊲ >

F
=,

a
⊲ ✄

b

overlay[vee, wedge] ⊲ > ∧∨
The effects of some simple catenation functions are
shown by:

sequence[a, b, c, d] ⊲ > a, b, c, d

catenation[X, scriptscriptstyle[path], Y]

⊲ > XpathY

markedCatenation[cdots][a, b, c]

⊲ > a · · · b · · · c
Fonts styles and sizes are specified by TEX names.
Also, sizedFont[1], . . . alias tiny, Thus,

rm[a b^2], bf[a b^2], sansSerif[a b^2]

resp
⊲ > ab2, ab2, ab2

boldmath[a b^2], boldmath[cal[ABCD]]

resp
⊲ > ab

2, ABCD

tiny[a b], sizedFont[3][a b]

resp
⊲ > a b, ab

mathscape uses TEX primitives in the basic
alignment process, too. Every display is built us-
ing hbox, vbox, hboxTo, vboxTo, hspace, vspace,
newlength, addtowidth, newbox, phantom, setbox,
copy, wd, ht, dp, and related constructs that trans-
late directly to TEX or to local macros.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 149

Varying the style

Alternative notations often exist for the same math-
ematical expression. mathscape lets the user change
these freely. Thus, logical expressions are set in &|¬
notation by default. The assignment logicStyle=2
changes this to the ∧ ∨ − notation. logicStyle=1

restores the default.
Square roots introduce a more general tactic.

Following the action of prep, sqrt[z] is converted
to style[sqrt, defaultSqrtStyle][z]. Initially,
the style parameter is 1, giving the radical notation√

z. Changing it to 2 and 3 give z1/2 and z
1

2 re-
spectively. In general, useStyle[n] converts f[z]
to style[f, n][z]. It is used to mix styles within a
single expression, as in the production of:

(1 −
√

δ)1/2

from

prep = to[sqrt][1][useStyle[2]]

sqrt[1 - sqrt[delta]]

Fractions are built up, with the numerator and
denominator of just the outermost fractions in the
displaystylemode, when defaultFractionStyle

is 1. Style 2 puts all the numerators and denomina-
tors in displaystyle. Styles 3 and 4 give shilling
and reciprocal notations. Styles 1.1, 1.2, . . . , and
2.1, 2.2, . . . strengthen the fraction bar and lengthen
the shilling slash. For powers, style 2 gives radical
notation, e.g., 3

√
x, when the exponent is a fraction.

Representations

We represent derivatives, integrals, matrices, sums
and many other composite mathematical objects in
a way that facilitates mechanical operations and
allows flexible styling in the typeset output. The
handling of partial derivatives, shown next, is typi-
cal.

D$[x][y], D$[x, 2][y], D$[x,y,z][phi]

resp
⊲ >

∂y

∂x
,

∂2y

∂x2
,

∂3φ

∂x∂y∂z

mathscape contains extensive suites of procedures to
manipulate expressions represented by “compound
heads”, such as D$[x], Dt$[x] (for a total deriva-
tive), sum[i, j, k], integral[x, 0, infinity],
and matrix[m,n,M,N]. Style is controlled by the
setOptions[D$, placement -> subscript] state-
ment and its counterparts. These create intermedi-
ate style[. . .][. . .] expressions, that for the cur-
rent D$ example, leads to subscript placement of the
variables of differentiation, as in φx,y,z.

Environments

By default, mathscape centers the typeset Mathe-
matica statements in a field that is widthForMath

wide. The commands alignLeft, alignRight and
alignCenter are put in # statements to change the
alignment. leftIndent and rightIndent control
the indentions. The displayBoth command pro-
duces verbatimized input and conventionally styled
output. pairHorizontally makes the output run-
on, and pairVertically makes it start a new line.
The commands displayInput and displayOutput

display just the input and output, respectively. The
input can be modified before evaluation and/or be-
fore display, by actions that the user specifies.

Within an alignOnEvalSym environment, be-
gun and ended by appropriate begin. . . and end. . .
statements, all the displays, containing input and

output are aligned on the ⊲ > and
resp
⊲ > symbols.

The arrows are placed at the middle of the print
region, by default. This is overridden by assigning
a value to inputField.

Consecutive tags are created in the tagging en-
vironment. By default, these are parenthesized un-
divided Arabic numerals, i.e., (1), (2), In gen-
eral, the tag consists of the left marker, tagPrefix,
tagSeparator, tagNumber, and the right marker.
tagStyle, e.g., letter, roman, Letter, determines
the style of the sequence number. The markers are
combined in tagMarker. tagDown uses the present
prefix, separator and tag number to prefix the sub-
ordinate sequence numbers that start again at 1.
tagUp restores all the tagging parameters in force
before tagging down. tagSide defaults to right,
and can be reassigned to left.

The alignOnEqual environment aligns on the
first = symbol in the concomitant displays. These
may be separated by text. The left and right fields
have equal width by default. This is overridden by
assignment to leftWidth. The environment is an
alias for alignOnRelSym, which treats all the rela-
tionship symbols and Infix operators as equivalent.

The aligningItems environment is used in:

beginAligningItems; itemWidth = 25pt;

leftIndent = sequenceGap = 0pt;

itemsPerLine = 6; itemAlignment = right;

bar = rule[10pt, 0.2pt]

* Fill in the blanks, in this list:

Table[Prime[Prime[n]], {n, 12}] //

ReplacePart[#, bar, {{1},{2},{6},{9}}]&

* and in this:

{14, 34, bar, 59, bar, 125}

endAligningItems;

TEXNorthEast Conference, March 22 – 24, 1998

150 TUGboat, Volume 19 (1998), No. 2

This produced:

Fill in the blanks, in this list:
11 17 31

59 67 109 127 157

and in this:

14 34 59 125

The runOnGroup and tabbedRunOnGroup envi-
ronments can be used in a variety of ways. The
following simple example

∑

i

si

k∑

i=j

si

k∏

i=j

si

(
1 2
4 5

) (
1 2 3
4 5 6

)

is produced by

beginRunOnGroup; runOnStyle = compressed;

continuationSymbol = "";

sum[i][s@sub@i]

sum[i,j,k][s@sub@i]

prod[i,j,k][s@sub@i]

turnRunOnGroup

matrix[{1,2},{4,5}]

matrix[{1,2,3},{4,5,6}]

endRunOnGroup;

In a runOnGroup, space between items on each line
may be compressed or expanded. In runOnGroup

and tabbedRunOnGroup, items may be tagged left or
right, or untagged. Each group may be tagged left
or right, or untagged, independent of item tagging.
continuationSymbol defaults to ”,”. We set it to
an arrow when successive items trace a reduction.

The next display shows another tracing tactic.
pipe generalizes composition, so as to allow rules.

newBinaryOperator[lplus, "+"];

continuationSymbol = "rightArrow";

s = lplus[a, times[b, c]];

cm = toThe[times][Reverse];

ca = toThe[lplus][Reverse];

markWithAction;

prep = pipe[toEach[_String][

StringReplace[#,

{"(cm)" -> "{\\cal C}_m",

"(ca)" -> "{\\cal C}_a"}]&],

List -> catenation]

s // pipeList[cm,ca]

⊲ >

a + b × c
Cm−→ a + c × b

Ca−→ c × b + a

texTab[lcrString][{lineData}]plays through
to the tabular environment. hline and cline

symbols and multicolumn heads are wrapped into
the data, using prep, to form the lineData list.

The boxedPair environment creates TEX files
consisting of the codes for verbatimized input and
the fully processed output. By default, these are
input to frameboxes joined by an ⊲ >. An option
defers this to later input statements in the text.

The textExpansion and runOnMath environ-
ments embed evaluated results in the run-on text.

Interactive development

autorecord is recursive. A lengthy mathscape doc-
ument is developed, typically, by writing separate
control files for the successive parts, and invoking
these from an overall control file. Optional argu-
ments omit the xdvi step, convert to PostScript,
invoke ghostview or xpsview, and print. The recur-
sivity is used by boxedPair.

The bypass environment and autobreak func-
tion facilitate incremental testing. By conditional-
izing the beginBypass and endBypass statements,
different versions of a document, e.g., terse and
detailed, can be produced from the same file. The
silentExecution environment is used to set up
variables and operators which are taken for granted
in the printed exposition. The evaluation environ-
ment, in which work usually is conducted, is exited
to allow the output of statements without execution.

The Mathematica graphics shell script psfix

has been modified to omit boilerplate. New shell
scripts wrap ghostscript and dvips to compensate.

Restructuring

The rearrangement and abbreviation of mathemat-
ical expressions is extremely important. reverse,
used earlier, belongs to an extensible suite of proce-
dures for these purposes. Several are used to form
the next display from an equation that was saved
in ordinary Mathematica style from a previous run.
They all suspend Orderlessness of Plus and Times

and encase the final result in HoldForm.

∞∑

n=0

∞∑

l=0

∞∑

m=0

[4ǫmAl,m,n−1Ll(u)Lm−2(v)−

4ǫm2Al,m,n−1Ll(u)Lm−2(v)+

<< 361terms >> −
4(n + 1)ǫm2Al,m,n+1Ll(u)Lm+2(v)

]
×

Ln(w) = 0

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 151

This is produced by

alignLeft; turnIndent = 1pc;

prep =

toTheLhs[

to[Plus][outermost][

showTerms[{1, 2, -1}]],

toEach[_Integer + _][

sortByAbsence[_Integer]],

allowFurtherSorting,

to[Times][outermost][

splitBeforeFactor[2, times]],

allowFurtherSorting,

to[Plus][outermost][

toTerms[containing[v]][

sortByAbsence[v]],

splitBeforeTerm[4,, "\\left."],

splitBeforeTerm[3],

splitBeforeTerm[2, "\\right."], sabr],

disallowFurtherSorting,

A[l_, m_, n_] ->

A@subscriptSequence[l, m, n],

L[n_, x_] -> L[sub[n]][x], e -> epsilon]

eqn[4.13]

The functions and rules in the arguments list of
toTheLhs are executed consecutively, just like those
of pipe. All the targetting functions act this way.

The two procedures sortByAbsence[v1, v2, . . .]
and sortByPresence[v1, v2, . . .] meet many needs.
These wrap sortByCriteriawhich works by select-
ing subsequences that satisfy the successive criteria
instead of repeated swapping.

splitBeforeTerm[n][s] and the correspond-
ing After, Factor, Element and Equal expressions
can specify continuity symbols, e.g., ×, and codes
to balance stretchable brackets.

The procedure showTerms[{indices][s] and
the similar Factors, Elements, Arguments proce-
dures are used for Plus, sum, Times and prod ex-
pressions, and lists, matrices and arbitrary func-
tions. Optional arguments control the depiction of
of omitted items.

allowFurtherSorting removes Orderlessness
and any HoldForms. disallowFurtherSorting im-
poses HoldForm and restores Orderlessness.

Numerous situations arise that can be handled
by adapting the general principles used in the pro-
cedures of this section, e.g., forcing the expressions
that Mathematica ordinarily returns as −u − v and
z1−m into −(u + v) and 1/zm−1.

Because ease of understanding is our objective,
mathscape contains substantial suites of procedures
for convenient cross referencing between statements,
and for fine-tuned factoring, distribution and collec-
tion. Graphics provides a powerful supplement in

many ways. The abstract shows a depiction of a
class of sparse matrices, that occur in an electronic
energy calculation. Zero and non-zero elements are
displayed as spaces and dots, respectively. Sym-
bolic computation, graphics and typesetting come
together in the production of diagrams and the
synthesis of text throughout scholarly publication.

Past, present, future

The production of readable copy from the numer-
ically represented results of symbolic computation
motivated some of the earliest work on electronic
typesetting. Formulas, produced by simple array
manipulation were converted mechanically to the
code of a paper tape driven photo-mechanical type-
setter, for work in theoretical chemistry and plane-
tary theory [5].

mathscape, started about six years ago, has
gone through a few name changes, but has not
undergone any structural change in the last three
years. Its application to a variety of material has
highlighted the need for the resources it provides.
By enabling the mechanical production of readable
discourse, this kind of work gives a fresh incentive
to the formal study of mathematical derivation.

Acknowledgements

This work is part of the research program of the L.C.

Allen Theoretical Chemistry Group. The author is

grateful to Professor Allen for his support, and to K.D.

Alexander and K.R. Perry of ICGL (now MECA) for

their assistance during its development.

Bibliography

1. S. Wolfram, Mathematica, A system for doing math-

ematics by computer, Addison-Wesley, Reading, MA,
1991.

2. S. Wolfram, The Mathematica Book, Cambridge Uni-
versity Press, New York, 1996.

3. M. P. Barnett and K. R. Perry, Symbolic calculation
for electronic publishing, TUGboat 15 (3) 285 – 292,
Nov. 1994, and papers cited therein.

4. M. P. Barnett, Symbolic Calculation for Electronic

Publishing, http://www.princeton.edu/~allengrp/
ms/scep.ps, 1997.

5. M. P. Barnett, Computer Typesetting, Experiments

and Prospects, MIT Press, Cambridge, MA, 1965,
and papers cited therein.

Appendix

The main account [5] of mathscape contains numer-
ous examples produced in the boxedPair environ-
ment. The TEX files for a selection of these were
reset separately, converted to PostScript, and input

to construct this Appendix.

TEXNorthEast Conference, March 22 – 24, 1998

152 TUGboat, Volume 19 (1998), No. 2

The helium calculation

This page shows a summary of an automated check
and extension of Pekeris’ classical calculation of
the electronic structure of helium like atoms. An
autorun session produced a detailed narrative of
both the conventional mathematical activity and its
mechanization. Intermediate results were written
out for subsequent computational use. The sum-
mary was produced from these.

The calculation involved partial differential
equations, changes of variable, infinite series ex-
pansion, special functions of mathematical physics,
determinants, and multiple integrals. Part of the
calculation carried expressions that run to hundreds
of terms. At several points, lengthy equations were
broken into sets of smaller equations of specified
form, for display and manipulation, using further
mathscape procedures.

Graphics was used to plot numerical results con-
ventionally, and to display the structure of a matrix
as mentioned earlier. Also, the published version of
a very lengthy formula was scanned, the image dis-
sected, and the pieces imported as pictures between
the corresponding pieces of the newly calculated re-
sult, for visual comparison. Some are shown in [3, 4].

We begin with the Schr�odinger equation for a 2-electron atom with nuclear charge Z.

@2

@r21
+

2

r1

@

@r1
+
@2

@r22
+

2

r2

@

@r2
+ 2

@2

@r212
+

4

r12

@

@r12
+
r21 � r22 + r212

r1r12

@2

@r1@r12
+

r22 � r21 + r212
r2r12

@2

@r2@r12
+ 2(E +

Z

r1
+
Z

r2
� 1

r12
) = 0 (1)

This is in standard texts. It is converted to the perimetric coordinates (2) where � =
p�E.

u = �(r2 � r1 + r12); v = �(r1 � r2 + r12); w = 2�(r1 + r2 � r12) (2)

We use the equation for @(u; v; w)=@(r1; r2; r12) and the consequent equations for the @2=@r21; : : :
in terms of the @2=@u2. Hence:

4�2
�
u(2uv + 2v2 + 2uw + 2vw + w2) uu + << 6 terms >>+ 2(2u2 + 2v2 � w2) w

	
+

fE(u+ v)(2u+ w)(2v + w)� 2�(2u+ w)(2v + w) + 8�Z(u+ v)(u+ v + w)g = 0 (3)

The wave function is written as:

 = e�(u+v+w)=2F (u; v; w) (4)

Substitution in (3) gives an equation for F that is, in abbreviated form:

f4Z(u+ v)(u+ v + w)� (2u+ w)(2v + w)gF+
2�
�
u(2uv + 2v2 + 2uw + 2vw + w2)Fuu + << 6 terms >>+

(4u2 + 4v2 � 2u2w � 2v2w � 2w2 � uw2 � vw2)Fw � 2F (u+ v)(u+ v + w)
	
= 0 (5)

F is expanded as a triple series in Laguerre functions of u; v; w.

F =
X

fl;m;ng�0

Al;m;nLl(u)Lm(v)Ln(w) (6)

Hence (8). The coe�cient of each A contains Laguerre functions and their �rst two derivatives.
X

fl;m;ng�0

[�4�(u+ v)(u+ v + w)Ll(u)Lm(v)Ln(w) + << 8 terms >>+

4�w(2u2 + 2v2 + uw + vw)Ll(u)Lm(v)L
00
n(w)

�
Al;m;n = 0 (7)

Occurrences of Ll(u) and its derivatives times u and u2 are converted to terms in Ll+�(u); j�j � 2,
using simple recurrence formulas. Terms containing v and w are treated correspondingly, giving
a summand that contains (u; v; w) only as arguments of undi�erentiated Laguerre functions.

X

fl;m;ng�0

[nLl(u)Lm(v)Ln�2(w) + << 234 terms >>� 4Ln(w)Ll+1(u)Lm+1(v)+

<< 127 terms >>� n2Ll(u)Lm(v)Ln+2(w)
�
Al;m;n = 0 (8)

Occurrences of Ll(u) and its derivatives times u and u2 are converted to terms in Ll+�(u); j�j �
2, using simple recurrence formulas. Terms containing v and w are treated correspondingly, giving
a summand that contains (u; v; w) only as arguments of undi�erentiated Laguerre functions.

X

fl;m;ng�0

[nLl(u)Lm(v)Ln�2(w) + << 234 terms >>� 4Ln(w)Ll+1(u)Lm+1(v)+

<< 127 terms >>� n2Ll(u)Lm(v)Ln+2(w)
�
Al;m;n = 0 (9)

The coe�cients of Ln+�(w) are collected for each v = �2; : : : ; 2. The summation is split into 5
parts corresponding to the di�erent �. These are re-indexed and combined, to give:

1X

n=0

1X

l=0

1X

m=0

�
4�mAl;m;n�1Ll(u)Lm�2(v)� 4�m2Al;m;n�1Ll(u)Lm�2(v)+

<< 361 terms >>� 4�m2(n+ 1)Al;m;n+1Ll(u)Lm+2(v)
�
Ln(w) = 0 (10)

The dependences on v and u are treated similarly, to give:

1X

n=0

1X

m=0

1X

l=0

�
4�lAl�2;m;n + << 362 terms >>+ 4l2ZAl+2;m;n

�
Ll(u)Lm(v)Ln(w) = 0 (11)

Orthogonality of the Laguerre functions gives a 33-term recurrence formula for the Al;m;n.

4(l + 1)(l + 2) f�Z + �(1 +m+ n)gAl+2;m;n + << 31 terms >>+

2mn f1� 2Z + �(2l+ n+ 1)gAl;m�1;n�1 = 0 (12)

Let (lj ;mj ; nj) be the j'th triple in the sequencing (12), where wj = lj +mj + nj and j < k.

wj � wk; nj � nk if wj = wk ; lj < lk if wj = wk and nj = nk (13)

In symmetric states, Al;m;n = Am;l;n, so we write Bk = Alk ;mk;nk , where flk;mk; nkg is the kth
triple in the sequence that also satis�es lk � mk. The restriction l +m+ n <= q gives the q'th
approximation to wave function and energy. q = 1 takes the �rst 10 A's in the sequence (12).
These map into B1; : : : ; B7. The equations formed from (11) for these by setting the Bk = 0; k > 7
require the following determinant in � = Z � � to be zero.

5�16� �4+4� �6+28� 1 2�4� �8� 2�4�

�4+4� 15�48�+24Z 2+8��12Z �12+16��8Z �10+60��24Z �8�+8Z 0

�6+28� 2+8��12Z 26�144�+32Z �4�+4Z �12+16� �12+104��16Z �14+72��28Z

1 �12+16��8Z �4�+4Z 31�96�+64Z 4+20��28Z 0 0

2�4� �10+60��24Z �12+16� 4+20��28Z 54�336�+192Z 4+32��40Z 2+4��8Z

�8� �8�+8Z �12+104��16Z 0 4+32��40Z 34�320�+96Z 8�24�+8Z

2�4� 0 �14+72��28Z 0 2+4��8Z 8�24�+8Z 25�208�+104Z

(14)

In terms of the normalizing factor N , the �rst approximation to the wave function is:

 1 =
e�(u+v+w)=2

N1
[B1L0(u)L0(v)L0(w) +B2L0(u)L0(v)L1(w)+

B3 fL1(u)L0(v)L0(w) + L0(u)L1(v)L0(w)g + << 3 terms >>+B7L1(u)L1(v)L0(w)] (15)

Expansion of the determinant followed by some simple rearrangement leads to:

� = 0:3125 +
1

Z
(0:808039� 7:07288� + 14:0571�2) + << 4 terms >>+

1

Z6
(0:000735782+ << 6 terms >>� 100:288�7) (16)

For helium, Z = 2, and numerical solution gives � = 0:2961 for the lowest root, whence �. Given
�, the Bj are determined relative to an arbitrary scaling factor. B1 is set to 1, and the equations
that led to 13 are solved numerically. Hence:

B1 = 1; B2 = 0:03859; B3 = �0:04876; B4 = 0:002969; : : : (17)

We replace the Laguerre functions in (14) by explicit polynomials in (u; v; w), and replace these
coordinates by (r1; r2; r12, by reference to (1). Hence the wave function in the form:

 1 =
e�(�r1�r2)

N1

�
d1 + d2(r1 + r2) + d3(r

2
1 + r22) + d4r1r2 + r12 fd5 + d6(r1 + r2)g+ d7r

2
12

�
(18)

where the di are linear combinations of the Bs.

d1 = B1 +B2 + 2B3 +B4 + 2B5 + 2B6 +B7; d2 = �2�(B2 + 2B4 + 2B5); : : : (19)

The normalizing factor is found from the volume integral
R
 2d� = 1, using:

Z
f d� =

�2

32�6

Z
1

u=0

Z
1

v=0

Z
1

w=0

(u+ v)(2u+ w)(2v + w)f du dv dw (20)

whence

N1 =
�

2�3
(4B2

1 � 5B1B2 + << 22 terms >>+ 52B6B7 + 55B2
7)

1

2 (21)

The radial density distribution is found from:

�(r1) = 8�2
�Z r1

r2=0

Z r1+r2

r12=r1�r2

 2r1r2r12 dr2 dr12 +

Z
1

r2=r1

Z r1+r2

r12=r2�r1

 2r1r2r12 dr2 dr12

�
(22)

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 153

Some formulas for reference

Table 1: Sq =

nX

k=1

kq

q Sq q Sq

1
�
n2 + n

�
/2 2

�
2n3 + 3n2 + n

�
/6

3
�
n4 + 2n3 + n2

�
/4 4

�
6n5 + 15n4 + 10n3 � n

�
/30

5
�
2n6 + 6n5 + 5n4 � n2

�
/12 6

�
6n7 + 21n6 + 21n5 � 7n3 + n

�
/42

7
�
3n8 + 12n7 + 14n6 � 7n4 + 2n2

�
/24 8

�
10n9 + 45n8 + 60n7 � 42n5 + 20n3 � 3n

�
/90

9
�
2n10 + 10n9 + 15n8 � 14n6 + 10n4 � 3n2

�
/20

10
�
6n11 + 33n10 + 55n9 � 66n7 + 66n5 � 33n3 + 5n

�
/66

Problem sets and worked solutions

Fold this worksheet, factor the expressions and check your answers

1: 54n2 + 3fn� 77f2 (11f + 9n)(6n� 7f)

2: 70m2� 83mu+18u2 (10m� 9u)(7m� 2u)

3: 30i2 + 59ip� 56p2 (10i� 7p)(3i+ 8p)

4: 35p2 + 34kp� 33k2 (11k + 7p)(5p� 3k)

...
...

...

Consider the thermal decomposition of a sample of H2O2. The temperature is 22� C. The
pressure is 773 torr. The volume of gaseous product is 6.01 liter. Calculate the mass of the
sample.

Answer : moles of gas =
pressure� volume

gas constant� temperature Kelvin
=

=
(773 torr)� (6:01 liter)

(62:36 liter torr= deg mol)� (295 deg)
= 0:253 mol;

Hence : mass of sample =
molecular mass� number of moles of gas

mole factor
=

=
(34 gm)� (0:253)

(0:5)
= 17:2 gm:

0.103 mol of CaCO3 undergoes thermal decomposition. The pressure is 795 torr. The
temperature is 24� C. Compute the volume of gaseous product.

Answer : moles of gas = mole factor�moles in sample =

= (1)� (0:103 mol) = 0:103 mol;

Hence : volume =
gas constant�moles of gas� temperature Kelvin

pressure
=

=
(62:36 liter torr= deg mol)� (0:103 mol)� (297 deg)

(795 torr)
= 2:4 liter:

This ruled table was pro-
duced in an experimental
reconstruction of portions
of the reference work com-
monly known by the names
of the authors Gradshteyn
and Ryzhik. The entire
first section of indefinite al-
gebraic integrals has been
derived anew — many of the
citations in the monograph
are unhelpful or inaccessi-
ble. The process of mech-
anization provided several
useful prototype derivations
and new insights of wider
application.

The factoring example, like
many others in [5] was pro-
duced by working back from
the solutions. These were
formed by random choice
of the letters used to name
the variables. The coef-
ficients also were random,
within a limited range, and
rejected if the expanded ex-
pression would contain co-
efficients outside a particu-
lar range.

The gas law example is
part of a much larger set.
The procedure accepted a
sequence of n-tuples that
specified the property to be
found (e.g. pressure, num-
ber of moles), the com-
pound undergoing decom-
position, the units, the val-
ues of the given variables,
within acceptable ranges,
the sentence order, and cer-
tain words and phrases.
This work is in direct line
with an earlier project of
the author sponsored by the
NSF under their CAUSE

initiative some years ago.

TEXNorthEast Conference, March 22 – 24, 1998

154 TUGboat, Volume 19 (1998), No. 2

The envelope examples

� Example 1: Plot the family of lines y = m4 + 2mx and its envelope. The canonical and
derivative equations are, respectively,

y �m4
� 2mx = 0 (1.1) 2(2m3 + x) = 0 (1.2)

The parametric form of the discriminant is

x = �2m3 (1.3) y = �3m4 (1.4)

-2 2

-3

-2

-1

1

-2 2

-3

-2

-1

1

Figure 1a Figure 1b

The existence of an envelope is shown by inspection of

Fx = �2m; Fy = 1; Fmx = �2; Fmy = 0 (1.5)

Fmm = �12m2;

���� Fx Fy
Fkx Fky

���� = ���� �2m 1
�2 0

���� = 2 (1.6)

� Example 4: Plot the family of parabolas y2 = a(x � a) and its envelope. The canonical and
derivative equations are, respectively,

a(a� x) + y2 = 0 (4.1) �2a+ x = 0 (4.2)

The direct form of the discriminant has the two solutions

y = �

x

2
(4.3a) y =

x

2
(4.3b)

-4 -2 2 4

-2

2

-4 -2 2 4

-2

2

Figure 4a Figure 4b

The existence of an envelope is shown by inspection of

Fx = �a; Fy = 2y; Fax = �1; Fay = 0 (4.4)

Faa = 2;

���� Fx Fy
Fkx Fky

���� = ���� �a 2y
�1 0

���� = 2y (4.5)

Envelopes have long been
of interest in popular
mathematics and educa-
tion. mathscape was used
to produce graphically il-
lustrated worked solutions
to the exercises on this
topic in a problem book
that was widely used in
the former Soviet Union.
Each example begins with
the generic equation for
a family of curves. The
problem is to determine
whether the family has an
envelope and, if it does,
to find the equation and
to plot it. The first
step finds the “discrimi-
nant equation.” Some-
times, this is best found
in direct form, in other in-
stances parametrically. It
may have one or more so-
lutions. Direct, implicit or
parametric plotting may
be optimal for the enve-
lope.

The process was
encapsulated in a single,
heavily conditionalized
control file. The data for
each example consisted of
the noun that identified
the members of the family
(e.g., “line”, “curve”), the
generic equation, and the
choices needed to navigate
the alternative paths.

The work was done
by Artur v. Solecki, as
an undergraduate project
in a computer graphics
course that the author
taught.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 155

1.

0
B@

1 2

3 4

1
CA :

0
B@

5 6

7 8

1
CA =

0
B@

1� 5 + 2� 7 1� 6 + 2� 8

3� 5 + 4� 7 3� 6 + 4� 8

1
CA=

0
B@

19 22

43 50

1
CA

2.

0
B@

3 4

1 2

1
CA :

0
B@

5 6

7 8

1
CA =

0
B@

3� 5 + 4� 7 3� 6 + 4� 8

1� 5 + 2� 7 1� 6 + 2� 8

1
CA=

0
B@

43 50

19 22

1
CA

3.

0
B@

1 2

3 4

1
CA :

0
B@

6 5

8 7

1
CA =

0
B@

1� 6 + 2� 8 1� 5 + 2� 7

3� 6 + 4� 8 3� 5 + 4� 7

1
CA=

0
B@

22 19

50 43

1
CA

4.

0
B@

5 7

6 8

1
CA :

0
B@

1 3

2 4

1
CA =

0
B@

5� 1 + 7� 2 5� 3 + 7� 4

6� 1 + 8� 2 6� 3 + 8� 4

1
CA=

0
B@

19 43

22 50

1
CA

Compare the starting matrices and the results in examples 1 and 2.

Make the corresponding comparisons for examples 1 and 3, and for examples 1 and 4.

XO

Y

P

X´

O

Y´

θ
XO

Y

X´

O

Y´

θ

X´´

O

Y´´

P

φ

XO

Y

P
X´´

O

Y´´
θ+φ

Rationalize the denominator in:
p
x� y �

p
x+ y

p
x� y +

p
x+ y

(1)

Multiply the numerator and the denominator by the numerator,
and expand.

(
p
x� y)2 � 2

p
x� y

p
x+ y + (

p
x+ y)2

(
p
x� y)2 � (

p
x+ y)2

(2)

Use (
p
a)2 = a and

p
a
p
b =

p
ab.

�
2x� 2

p
(x� y)(x+ y)

2y
(3)

Simplify:
p
x2 � y2 � x

y
(4)

Consider the geometric series:

S(n) =

nX

i=0

x
i (1)

Multiply throughout by x and restructure the right hand side.

xS(n) =

nX

i=0

x
i+1 =

n+1X

i=1

x
i =

nX

i=0

x
i + x

n+1 � 1 (2)

Subtract (2) from (1).

S(n)� xS(n) = 1� x
n+1 (3)

Solve for S(n).

S(n) =
1� x

n+1

1� x
(4)

This depiction of a matrix mul-
tiplication illustrates the use of
fonts to show “where things come
from” in a derivation. The en-
tire set of four traced multipli-
cations is parameterized on the
eight starting matrix elements,
enabling the rapid production
of further examples of numerical
and symbolic matrix operations.
In teaching a course on mathe-
matics for humanists some years
ago, the author found it helpful to
use worked examples of two-step
linear transformations, expressed
in terms of verbal matrix ele-
ments, e.g., the number of loco-
motives (coaches) per starter (ad-
vanced) train set, and the num-
ber of nuts (bolts) per locomotive
(coach), and the corresponding
product elements.

The axis diagrams are part of
an explanation of rotation matrix
multiplication, that uses symbolic
calculation to generate the asso-
ciated equations. Diagrams and
associated matrix equations are
used, too, in the connectivity
matrix treatment of n-step path
counts in a directed graph.

The next few examples illus-
trate different styles of discourse.
The displays may be expressions
or statements (in mathematical,
not Mathematica, terminology).
They may be joined by text or
relationship symbols, such as =
or >, or by arrows.

In the rationalization exam-
ple, the identities embedded in
the explanatory sentence are ap-
plied mechanically, as an example
of the avoidance of possibly in-
consistent results and narrative.

In the geometric series ex-
ample, the referencing between
equations also is performed me-
chanically by mention of the tag.
This uses the implied rule forma-
tion feature of mathscape.

TEXNorthEast Conference, March 22 – 24, 1998

156 TUGboat, Volume 19 (1998), No. 2

(1) De�nition : A � B i� x 2 A implies x 2 B:

(2) Suppose A � B and B � C:

(3) Then x 2 A implies x 2 B and x 2 B implies x 2 C:

(4) Hence x 2 A implies x 2 C:

(5) Consequently A � C:

f1g (1) A) B _ C P

f2g (2) B) �A P

f3g (3) D) �C P

f4g (4) A P

f1; 4g (5) B _ C law of detachment(4; 1)

f2; 4g (6) �B modus tollendo tollens extended(4; 2)

f1; 2; 4g (7) C modus tollendo ponens(6; 5)

f1; 2; 3; 4g (8) �D modus tollendo tollens extended(7; 3)

f1; 2; 3; 4g (9) A) �D c:p:(4; 8)

Alignment and tags: some more examples

Items can be labelled collectively and individually. The Legendre functions of degrees
0{3 of the �rst and second kinds follow.

5.7.1. (a) 1 (b) x

(c)
3x2 � 1

2
(d)

5x3 � 3x

2

5.7.2. (a)
1

2
log

1 + x

1� x

(b) �1 + x

2
log

1 + x

1� x

(c) �3x

2
+
3x2 � 1

4
log

1 + x

1� x

(d)
�15x2 + 4

6
+
5x3 � 3x

4
log

1 + x

1� x

The outer horizontal lines are itemWidth long and the central line is runOnGap long.

1 + x (1) 1 + 2x+ x
2 (2)

1 + 3x+ 3x2 + x
3 (3) 1 + 4x+ 6x2 + 4x3 + x

4 (4)

The centering allows for the tags and the runOnGap.

Items can be labelled collectively:

(5.7.1)

Z
e
x

x
2
dx ! e

x

x
2
� 2

Z
e
x

x dx !

e
x(�2x+ x

2) + 2

Z
e
x

dx ! e
x(2� 2x+ x

2)

(5.7.2)

Z
cos2 x dx !

2x+ sin 2x

4

The successive examples of simple algebraic opera-
tions in the display below this paragraph were formed
by a single assignment to prep followed by the pairs
{Expand, (1+x)^2},

1. Expand : (1 + x)2: Answer : 1 + 2x+ x2:

2. Factor : x2 � y2: Answer : (x � y)(x+ y):

3. Cancel :
x2 + 2xy + y2

x2 � y2
: Answer :

x+ y

x� y
:

The production of the proof of tran-
sitivity of the ⊆ operator (above left)
involved the conversion of functional ex-
pressions to sentence form. Both this ex-
ample and the logic proof (left) can serve
as prototypes for quite large classes of
application.

The examples on the left show
grouped items tagged individu-
ally and/or collectively, and vari-
ations in the tag style. The exam-
ples below show multi-expression
bracing, and alignment on single
and multiple relationship sym-
bols.

(1 + x)2 = 1 + 2x+ x
2

(1� x)2 = 1� 2x+ x
2

(1� x)(1 + x) = 1� x
2

9>>>>>>=
>>>>>>;

(1)

(1 + x)2 = 1 + 2x+ x
2 (1)

2x4 � x
4 (2)

1 < 2 (3)

a+ b ,! c+ d (4)

For x > 1,

ex
2

> ex > x > logx

For 0 <= � <= �=2,

0 � sin2 � � sin �

TEXNorthEast Conference, March 22 – 24, 1998

TEX and LATEX on the Web via IBM techexplorer

Robert S. Sutor
Interactive Sci. Publishing Group
IBM T. J. Watson Research Center
P.O. Box 218, Yorktown Heights, NY 10598 USA
sutor@us.ibm.com

Samuel S. Dooley
Interactive Sci. Publishing Group
IBM T. J. Watson Research Center
P.O. Box 218, Yorktown Heights, NY 10598 USA
dooley@watson.ibm.com

Abstract

The IBM techexplorer Hypermedia Browser
TM

is an
application for the interactive publication of scientific
and technical documents. The original project started
as an experiment at IBM Research to see how an im-
plementation of a subset of TEX, LATEX, and AMS-
LATEX could be extended to support interactive viewing
of documents for a computer algebra system. This
interactivity is accomplished via support for hypertext,
multimedia, user-defined pop-up windows and menus,
and a modular architecture that allows connections with
other applications and Java applets. IBM’s techexplorer

provides an alternative to HTML-based solutions for pre-
senting scientific and technical documents on the World
Wide Web and is being used for scientific journals, and
educational courseware and textbooks.

The Intorductory Edition of techexplorer operates
as a Netscape Navigator Plug-In and is available for sev-
eral platforms, including Windows 95/NT, Sun Solaris,
and IBM AIX. In addition to being able to display full
documents using the supported LATEX language, techex-

plorer also implements the new Mathematical Markup
Language being prepared by the HTML Working Group
of the World Wide Web Consortium. In this paper we
will give an overview of techexplorer and detail how it
can be used to deliver mathematical articles, books and
course materials via the World Wide Web. Future direc-
tions regarding our plans for opening the architecture of
techexplorer and how that relates to the authoring of
scientific and technical documents for the Internet will
also be discussed.

−− ∗ −−

Introduction

The World Wide Web provides one of the greatest
opportunities that the publishing industry has seen
in this century, as well as one of its most perplexing
challenges: how to produce interactive electronic

alternatives to printed textbooks and journals that
take advantage of the unique characteristics of elec-
tronic media and of the Internet in a way that is
both intellectually engaging and economically vi-
able. This challenge is even more rewarding in the
arena of scientific and technical publishing, where
the complexities of mathematical layout and the
richness of the information contained in technical
documents cause special problems not encountered
with other kinds of documents, but also give rise
to exciting possibilities for creating truly interactive
materials that are useful for distributed and distance
learning, interactive courseware, and electronic jour-
nals.

However, until recently the publication of doc-
uments containing a high degree of technical con-
tent on the World Wide Web has been extremely
awkward, due to the absense of HTML support for
mathematical notation. While TEX and LATEX have
become a widely accepted standard for publishing
scientific and technical documents, authors and pub-
lishers have had no convenient way of electronically
disseminating documents written in this form. As a
result, we have had to make compromises in various
ways as authors to allow our materials to take ad-
vantage of the possibilities of the Internet, either
by using tools for converting TEX/LATEX markup
into HTML, or by using static images (GIF, PDF,
etc.) for mathematical notation. Such conversions
result in documents of poor visual quality, that fail
to adapt well to a wide range of display and printer
hardware, and that fail to preserve the rich semantic
information present in technical documents.

While the browser development and Internet
standards communities have long acknowledged the
shortcomings of HTML for the presentation of math-
ematical notation, early efforts to extend HTML

157 TEXNorthEast Conference, March 22 – 24, 1998

158 TUGboat, Volume 19 (1998), No. 2

with additional primitives to address the needs of
the technical publishing community (such as HTML

3.0, as well as early versions of HTML Math) have
been largely unsuccessful, due to the relatively spe-
cialized nature of mathematical notation. The ap-
proach now being used in more recent efforts is to
have the Internet community support XML as a
general extension mechanism for HTML, and allow
the technical publishing community to define the
Mathematical Markup Language (MathML) as an
XML application. This alternative holds greater
promise for the future, but it will be some time
before this approach can be fully supported by soft-
ware developers.

The IBM techexplorer Hypermedia Browser
TM

provides an alternative to HTML-based solutions by
dynamically rendering a large subset of TEX and
LATEX markup without converting the original doc-
ument source to an alternative markup or binary
format. Instead, when techexplorer reads a LATEX
document, it parses the original document source
into an internal object-oriented representation that
mirrors the visual structure of the document. Such
a representation enables high-quality dynamic ren-
dering at varying screen resolutions and sizes, rapid
document reflow and redisplay, and the opportunity
to implement various extensions to the language
that facilitate the use of hypertext and the inclusion
of multimedia content.

This object-oriented approach allows techex-

plorer to support a much richer model of active
mathematical content. When a mathematical ex-
pression appears in the text of a document, techex-

plorer can represent both the visual appearance of
the expression and the underlying semantic mathe-
matical content being presented by the visual nota-
tion. This capability allows techexplorer to support
interactive mathematical manipulations within a
document that operate not on the visual appearance
of the document, but on the underlying structure
of the mathematical expressions it contains. Using
this capability, we have used techexplorer to develop
interactive courseware that supports symbolic prob-
lem solving and intelligent graphical exploration, on
a platform that allows interactive technical docu-
ments to be delivered over the Internet.

Project history

techexplorer is our second generation TEX-based
hypertext system. The original application, known
as HyperDoc, was developed as a viewer for docu-
ments for the computer algebra system now known
as Axiom and now distributed by the Numerical
Algorithms Group, Ltd. (NAG) Axiom is a sophisti-

cated system for performing mathematical computa-
tion that offers two- and three-dimensional graphics,
a hypertext help package, and various forms of out-
put, including LATEX and Fortran. HyperDoc was
developed in the late 1980s for Unix platforms, and
serves as Axiom’s hypertext front end for viewing
text intermixed with the results of computations.
The Axiom/HyperDoc link enabled users to open a
workspace by clicking on Axiom input, or start a
graphics manager by clicking on a graphic.

The first challenge we faced when extending
HyperDoc was that it accepted a non-standard di-
alect of LATEX, and so our initial efforts were directed
toward improving HyperDoc to support standard
LATEX. However, HyperDoc still did not render
many common TEX/LATEX control sequences, and
what is perhaps most surprising, it had very weak
support for displaying mathematics. Some early im-
plementation choices made adding such support very
difficult and hindered porting HyperDoc to other
platforms such as Microsoft Windows. Although
HyperDoc had excellent connectivity to Axiom and
to the graphics manager, there was no way to update
a document in-place with the results of a computa-
tion or with a modification to a graph. For these
reasons, in 1994 we embarked on developing a com-
pletely separate implementation of a large subset of
standard TEX and LATEX, with extensions to support
the interactive viewing of documents.

That project’s efforts resulted in an early ver-
sion of techexplorer (then known as “Saturn”) that
produced familiar output from TEX/LATEX source.
Our approach to orthogonally extending TEX and
LATEX with control sequences for hyperlinking, mul-
timedia, and interaction with mathematical software
ensured techexplorer’s compatibility with TEX and
LATEX markup for printed documents. An early
version of this standalone edition of techexplorer is
used as the front end for NAG’s Axiom for Windows
product.

Our decision to provide a Windows 3.1 and later
a Windows 95/NT implementation of techexplorer

was prompted by the sophisticated set of available
tools geared toward rapid C++ code development, a
rich set of user interface components, a robust imple-
mentation of interprocess communication via Object
Linking and Embedding (OLE), and a potentially
large user community. Our aim was to leverage these
technologies and quickly develop a framework for
rendering and interacting with mathematical docu-
ments.

It became evident in early 1996 that we could
augment our core technology to deliver interactive
scientific and technical documents over the World

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 159

Wide Web via the Netscape Navigator plug-in in-
terface. The first version for Windows 95 was made
publicly and freely available in May 1996. This
“Introductory Edition” of the techexplorer Plug-In
allows authors and publishers to effectively expand
the reach of their articles, books, and journals by
making them available on the Internet. As the
community of techexplorer users began to grow,
we realized that a UNIX edition of the plug-in was
a high priority for our colleagues in the scientific
community. In September 1997, we released our
first “Preview Release” of techexplorer on a UNIX

platform on IBM alphaWorks.
In parallel to the work on the core TEX/LATEX

technology, we realized early on that the dynamic
rendering and object-oriented representation used in
techexplorer could provide an excellent framework
for an interface for active mathematical documents
such as interactive textbooks. Combined with the
group’s earlier expertise in computer algebra system
development, we felt that the creation of an elec-
tronic textbook for linear algebra would be a natural
application of the techexplorer technology. As a re-
sult, a stand-alone version of techexplorer was used
as the framework for an electronic version of the
textbook Linear Functions and Matrix Theory by
Bill Jacob, that will be appearing as the first volume
of the forthcoming Springer Interactive CourseWare
Series. This interactive textbook combines techex-

plorer’s dynamic document model with the powerful
symbolic computation facilities of Axiom and with
a collection of Java graphical exploration tools to
allow a reader to interact with the course material
in a number of novel ways.

Today, the Interactive Scientific Publishing Re-
search Group at IBM Research continues to dis-
tribute the techexplorer Plug-In, Introductory Edi-
tion for Windows 95/NT, IBM AIX 4.1 and SUN

Solaris 2.5, with more platforms planned for the
future. The techexplorer product line will continue
to evolve as we create new tools and technologies
for the Internet delivery of scientific and technical
journals, reports, textbooks, and courseware.

techexplorer overview

In creating techexplorer, we set out to implement
a majority of the standard LATEX control sequences
and environments, as well as a substantial collection
of the commonly used features from plain TEX. Sup-
port for these features, especially during the early
development stages of the introductory edition of
techexplorer, has traditionally been user and appli-
cation driven. At the time of this writing, virtually
all of the standard LATEX commands are available;

the techexplorer user guide lists the LATEX and TEX
commands that are supported, as well as the techex-

plorer extensions that have been added. In addition
to the support for standard LATEX, full support for
AMS-LATEX is planned for the near future. Parsers
for subsets of SGML, XML, and MathML presenta-
tion tags have also been implemented that produce
the same object-oriented representation used by the
LATEX parser. As a result, markup written in these
languages can be embedded in LATEX documents,
and vice versa, and rendered using techexplorer.

When techexplorer parses a document, an in-
ternal tree structure of objects is created that rep-
resents the document contents. Thus when the
user clicks on the display screen, techexplorer has
enough information to identify the object in the
structure hierarchy under the position of the mouse
cursor. This means, in particular, that techexplorer

can provide hypertext links or maintain status mes-
sages that are updated as the cursor passes over
different objects in the document. Different flavors
of techexplorer links can:

• navigate to another location, either in the cur-
rent document or in a different document, pos-
sibly in a different frame;

• start an application;

• play an audio or video clip from a URL;

• pop up various kinds of dialog boxes for user
input;

• display fully-formatted text in a pop-up win-
dow;

• display one or the other of two expressions; or

• send input to another application, and place
any output generated as a result into the cur-
rent document.

Documents delivered over the World Wide Web
are easier to navigate if they are broken up into
reasonably sized sections with a rich collection of
hyperlinks. For many documents, this creates a nat-
ural tree hierarchy. The commands \aboveTopic,
\previousTopic, and \nextTopic allow the reader
to move up, left or right, respectively, in this hierar-
chy, as it is defined by the document author. When
these commands are defined in a document, the de-
fault document context menu (produced by clicking
the right mouse button) allows the reader to jump
quickly to the corresponding sections. Commands
on the document context menu also allow the reader
to navigate forward and backward in the dynamic
sequence of sections visited in the current session.
All of these commands are also available from the
techexplorer toolbar.

TEXNorthEast Conference, March 22 – 24, 1998

160 TUGboat, Volume 19 (1998), No. 2

Color support is very important for high quality
on-screen display and so techexplorer implements
the commands \color, \textcolor, \colorbox,
\fcolorbox, \rgb, \pagecolor, as well as the tech-

explorer extension \colorbuttonbox. We also pro-
vide the \includegraphics command to embed im-
ages in either GIF or JPEG format in a document.
The \backgroundimage command is a techexplorer

extension that allows the author to set the image
displayed behind the text in a window.

Pop-up menus, also known as context menus,
are very useful for making selections. Within an
electronic version of a large textbook, for example, it
is relatively straightforward to define context menus
that can be used to easily navigate from section to
section with the book, or within smaller sub-sections
of the current section. As an example, here is a menu
definition from section 3.2 of Linear Functions and

Matrix Theory:

\newmenu{theorem-menu-3.2}{

\labelLink{theorem-3}{Theorem 3}
}

\newmenu{section-menu-3.2}{
\labelLink{sec-3.2}{Section 3.2}

\hrule
\usemenu{theorem-menu-3.2}{Theorems}
\hrule

\labelLink{sec-3.2.1}{Elementary Operations}
\labelLink{sec-3.2.2}{The Augmented Matrix of a System}

\labelLink{sec-3.2.3}{Equivalent Systems of Equations}
\labelLink{sec-3.2.4}{Gaussian Elimination}
\labelLink{sec-3.2.5}{Echelon Form Systems}

\labelLink{sec-3.2.6}{Solutions to Echelon Form Systems}
\labelLink{sec-3.2.7}{Row-Echelon Matrices}

\labelLink{sec-3.2.8}{Two Remarks About Parameters}
\hrule

\labelLink{section-3.2.problems}{Problems for 3.2}
\hrule
\docLink{lfmttoc.tex}{Book Contents}

}

The \hrule commands put separator lines in
the menu. Most of the menu selections are hypertext
links within the section, but there is one submenu
that lists the theorems in the section. (In this case,
there is only one theorem.) The \usemenu command
is used in menus to create submenus as above, but
it is also used within the text to associate a menu
with a particular piece of text.

An interesting and sometimes controversial sub-
ject is how techexplorer deals with fonts. On
Windows 95 and Windows NT, techexplorer uses
TrueType fonts directly, while under UNIX, tech-

explorer uses PostScript fonts. METAFONT fonts
are not currently supported. The user can select
any TrueType or PostScript font under Windows
or UNIX, respectively, for use with \rm, \bf, \it,
\tt, etc. Special symbols are obtained from various
font collections that may be available from other
sources, such as the Monotype Math fonts shipped
with Lotus SmartSuite, the WordPerfect math fonts,

or the Lucida fonts sold by Microsoft. For UNIX

we derived several symbol fonts from the Computer
Modern and AMS Symbol fonts created by BlueSky
Research and Y&Y and placed in the public domain
under the auspices of the American Mathematical
Society. In 1998, we plan to release TrueType ver-
sions of these derived symbol fonts for use under
Windows. Eventually we expect to open the font
model to allow authors to map a symbol to an
arbitrary character in a font of their choice.

Authoring

The Introductory Edition of the techexplorer Hy-
permedia Browser

TM

is available for free download
via the IBM techexplorer web site.1 This version
contains all the core TEX/LATEX parsing and ren-
dering features, and can be used to rapidly dis-
tribute scientific and technical documents on the
World Wide Web. techexplorer’s compatibility with
standard LATEX means that these documents can
be developed in the most natural markup language
for mathematical notation and disseminated directly
without major modification and without translation
into another format. The techexplorer extensions
to LATEX provide a gentle upgrade path that allows
authors to incrementally include hypertext and mul-
timedia extensions to their documents as time and
resources allow.

Several options are available for increasing the
interactivity of electronic versions of LATEX docu-
ments using the techexplorer extensions. A tech-

explorer document can be used as an interface to
other programs. Depending on the nature of the
application, the integration between the document
and the application can range from a model where
the document is used merely to launch the external
application, as in the Introductory Edition, to one
where there is a much higher degree of active math-
ematical information being communicated from the
document to the application and vice-versa, as in
the upcoming Springer Interactive CourseWare.

For those authors comfortable with Java pro-
gramming, Java applets can also be incorporated
into LATEX documents using the techexplorer exten-
sions, either by invoking stand-alone Java programs
using the more general application link, or by using
the techexplorer extension command \javaLink to
invoke a Java method directly. In the future, we
plan to expose more of the underlying techexplorer

document model to provide a consistent interface
for external Java methods to manipulate and script
techexplorer document contents.

1 www.software.ibm.com/techexplorer

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 161

Conclusions

Our primary goal for the techexplorer technology
is to create a set of publicly available interfaces
that allow techexplorer to serve as the “glue” for
developing novel interactive scientific and technical
documents. By using techexplorer, such documents
will be able to leverage Internet programming lan-
guages, as well as specialized programs from a wide-
range of scientific software applications.

Clearly, with the continued growth of the World
Wide Web and increased investments in scientific

and educational content, traditional scientific and
technical markup languages will play a central role
in online dissemination. The deployment of in-
teractive scientific and technical documents using
enhanced versions of these languages will be central
to the success of the next generation of technical
publishing. We in the Interactive Scientific Pub-
lishing group at IBM plan to continue enhancing
the techexplorer products to support and to define
professional quality scientific online publishing in
this next generation.

TEXNorthEast Conference, March 22 – 24, 1998

Real Life LATEX: Adventures of a TEX Consultant

Amy Hendrickson
TEXnology Inc.

57 Longwood Avenue

Brookline, MA 02146

USA

amyh@ai.mit.edu

Fortunately, the life of a LATEX consultant can
be varied and the activities diverse. In my four-
teen years working with Donald Knuth’s wonderful
language, I’ve spent time teaching LATEX, writing
special-purpose macro packages for, among other
things, database publishing, tables that continue for
hundreds of pages, training slides, software docu-
mentation, and PDF production, in addition to my
major activity— writing and supporting multiuser
macro packages for publishing companies. The pro-
gramming capabilities of the language are immense,
and it has been fun exploring a tiny part of its
possible applications.

In this paper I’d like to share some observations,
especially in the areas of designing and supporting
multiuser macro packages, the use of PostScript in
design, and some of the capabilities of LATEX as a
generator of PDF.
Preparing and Supporting Multiuser Macro

Packages

The first multiuser book macro packages that I
authored were written in the early 1980s; my first
journal macro package was the original version of
RevTEX, a widely distributed macro set used by
the American Physical Society, which I wrote in the
late 1980s. Since then I’ve written many more, and
am currently supporting more than thirty journal
styles and four book styles that I’ve written for
three different publishing companies. Here are some
concepts I’ve learned in the process.

Designing the Macro Package. First of all, con-
ceptually, there are some critical differences between
preparing a macro package to be used once, and one
that is to be used by many people over a series of
years. Planning ahead is crucial for the multiuser
package, which must be both flexible and inclusive,
as well as matching the specifications of the publish-
ing company for appearance and functionality, since
it will:

• Be used by many authors on many platforms,
and even in many countries.

– Must be flexible enough to accomodate
different versions of LATEX and differing
PostScript font naming conventions.

– Must include capability for all ordinary
LATEX commands since some author will
want to use one of them.

– Must be as easy to use and document as
possible.

• Must be easy as possible to change and support.

A nontrivial set of requirements!

Desirable attributes. In addition, there are other
considerations which may not be ironclad require-
ments yet which make the macro set useful and
desirable:

• Keep commands similar to the ones used by
standard LATEX. This will mean less documen-
tation, and fewer problems for authors.

• Include commands that are not found in the
general LATEX distribution but which are gener-
ally useful, such as lettered equations, contin-
ued captions, lettered captions, and other con-
venient additions or alterations to the general
distribution form of LATEX.

Process rather than product. Conceptualizing
the package as a process rather than a product is
helpful since, in reality, the authors or publishing
company will very likely want to change the style
slightly or will request additional features.

To do this, we want, first and foremost, to keep
the code as simple and clean as possible. Comments
should be added where necessary, to help under-
stand why a command was written in a particular
way, to make it easier to make changes to it later.

Organizing the main macro set into parts ac-
cording to function, and listing the various parts
may take more time when writing the code but in
the long run it will make it easier to find the part
that needs to be changed. Examples of this are a
part for theorem environments, a part for specific
font calls, or a part for equations, each designated

TEXNorthEast Conference, March 22 – 24, 1998 162

TUGboat, Volume 19 (1998), No. 2 163

and numbered, with a numbered list near the top of
the file to make it easier to find the particular part.

Another way I have found to simplify the pack-
age and its maintainance is to have a single main
macro file which will work with either LATEX2.09 or
LATEX2ε. This means that when a change needs to
be made, it can be made to one file, which can then
be copied and distributed as both filename.sty

and filename.cls. The contents of each file are
identical, but the filename ending will satisfy the
requirements of LATEX2.09, which is looking for a
.sty file; and LATEX2ε, which is looking for a .cls

file. Here is the switch which I build into the main
macro file:

\newif\ifll

\expandafter\ifx\csname LaTeXe\endcsname\relax

% We see that LaTeXe has not been

% defined so LaTeX2.09 is being used

\else

% LaTeX2e is defined, so set ll true,

% LaTeX2e is being used.

\global\lltrue\fi

This means that we can test to see if the file is
being used with LATEX2.09 or LATEX2ε, and make
definitions in those places where the conventions for
the two forms of LATEX diverge. For instance, when
setting font family sizes:

\ifll

%% Provide font family in LaTeX2e form:

\renewcommand{\normalsize}{%

\@setfontsize\normalsize\@xpt\@xiipt

\abovedisplayskip 10\p@

....

\else

%% Provide font family in LaTeX2.09 form:

\gdef\@normalsize{%

\@setsize\normalsize{12pt}\xpt\@xpt

...

\fi

Another example shows how options may be used,
whether the author is using LATEX2.09 or LATEX2ε:

\ifll \let\dooptions\ProcessOptions

\else

\let\dooptions\@options\fi

\dooptions

There are many parts of the code where this switch
is not necessary, but for those parts where it is, this
branching innovation definitely makes maintaining
and redistributing the macro package easier.

Making a Flexible PostScript Font File

It is a major nuisance that PostScript font names
are not identical across TEX implementations. Karl
Berry’s naming system is helpful but, unfortunately,
it isn’t universally used. So, the best solution I’ve
found is to

1. Have a separate PostScript font file that can be
used for final production but doesn’t need to
be used by the author who is not willing to go
to the trouble of customizing it. The document
will then be printed in ComputerModern for the
author, but translated to PostScript in the final
production process.

2. For those authors willing to modify the Post-
Script font file, make it as easy as possible to
do so.

Near the top of the PostScript font file the author
will read instructions and then see the font names
that need to be changed:

% You may need to rename these fonts to match

% the names of the .tfm files on your system.

% If you look at the directory where the .tfm

% files are stored you should be able to make

% the appropriate substitution.

% Some TeX implementations, such as TeXtures,

% will show you the available fonts when you

% click on the correct menu item.

%

% You may write in the name your system uses

% if you don’t find it already written below.

%

% Change the definitions below,

% if necessary ====>

% Times-Roman

%% the Berry names:

\def\timesroman{ptmr}

\def\timesbold{ptmb}

\def\timesitalic{ptmri}

\def\timesbolditalic{ptmbi}

%% Another possibility:

%\def\timesroman{Times}

%\def\timesbold{TimesB}

%\def\timesitalic{TimesI}

%\def\timesbolditalic{TimesBI}

...

(Similar for Helvetica and Courier,

or other special font names)

...

%% <==== End of changes needed.

%% Please do not make changes below this point.

%% !!!!!!!!!

%%%

TEXNorthEast Conference, March 22 – 24, 1998

164 TUGboat, Volume 19 (1998), No. 2

The authors should not have too difficult a time
making this modification. We can then use the
definition later in the file, after adding \space to
the end of the font definition:

%% Times-Roman

\xdef\timesroman{\timesroman\space}

\xdef\timesbold{\timesbold\space}

... and similar xdef for other fonts names

And then we can use them for all the special use
fonts that are necessary, without the author having
to be at all aware of these commands:

\font\titlefont= \helvetica at 16pt

\font\titlethanksfont=\helvetica at 8pt

\font\cccfont=\timesroman at 7pt

\font\subtitlefont= \helvetica at 12pt

\font\specialsectionfont= \universebold at 18pt

\font\affilfont=\timesitalic at 8pt

\font\emailfont=\timesroman at 8pt

\font\communicatedfont=\timesitalic at 8pt

...

Macro Package Distribution

Perhaps this is obvious, but the macro packages are
typically distributed from an ftp or Web site. Au-
thors are directed to a site by their publishing com-
pany and then download the files. A readme.txt

file can explain the function of each of the files.
This system has many advantages, including the fact
that the macro set can easily be changed and a new
set of macros or documentation dropped into the
ftp or Web site. The authors can be instructed to
download the files at the time that they do their
book or article so that they are sure to have the
current versions.

Supporting multiuser macro packages

The complete macro package typically will include
a sample file demonstrating every command that
is unique to the package, and options which the
user may have, as well as a template file with the
commands listed in correct order so that the user
may copy it and fill in the arguments to at least start
his/her paper or book. The final set of files, which
are very important to the success of the package, are
the documentation files.

Documentation. Frankly, I don’t like to read doc-
umentation, and I bet you don’t either. However, we
need to be able to get the information somehow, or
transmit the information if we are writing a macro
package.

My method, which I hope is helpful to authors,
is to provide many examples of code and results:

show rather than tell. I believe that this makes
it easy for the author to see what command to
use, by comparing their needs to the examples of
typeset text, and then examining the code needed
to produce that text. The author downloads the
documentation file, runs LATEX on it, and can print
it on their own printer.

Another helpful technique is to provide the doc-
umentation file in PDF form. Since one of the main
problems is getting people to read the documenta-
tion, having it presented in attractive PDF form with
color and hypertext-linked table of contents, book-
marks, and index, helps authors get started using
the package. They may view the PDF file before
they have figured out what the various parts of the
package are used for, and even, perhaps, before they
have figured out how to run LATEX on the .tex form
of the documentation. The PDF file can sit on the
publisher’s Web site, and the author can read it with
a Acrobat Reader enabled browser program.

Offering Author Support. Authors of the com-
plex technical material that is usually typeset with
LATEX are undoubtedly very smart, but not nec-
essarily very familiar with LATEX. Often they are
motivated to use it for their book or article, and are
quite reassured to know that they can ask a question
or modify the macro set to their liking. That is one
reason for offering TEXnical support.

Another is that authors may be stuck on one
small problem, which they can work out easily with
a little help. Typical of this kind of problem is
the author who can’t figure out how to get the
PostScript font file to work on his system. Another
very common sticking place is the use of BibTEX,
which is often troublesome, but yields with the help
of a few suggestions.

Some authors totally refuse to read the docu-
mentation. This is aggravating to the person doing
support, but the author usually can be directed
politely into performing this reasonable task.

Many authors want additional capabilities. If
you have not made all the normal LATEX commands
available, you will very likely hear about it, and
have requests to make a command like, for instance,
\thanks{} work in all kinds of unlikely places.

Many also want some new environment or fea-
ture. If your contact at the publishing company
thinks that it is worthwhile to provide this new
capability for the author, then a decision needs to
be made if this would be generally useful. If so,
add it to the general macro package and to the
documentation; otherwise make a special version of
the macro file for that particular author.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 165

Finally, sometimes an author may discover a
bug in the macros or documentation. Of course,
we try our best to avoid this, but it does happen.
In this case, we must change the macro file and/or
documentation, and drop it back onto the ftp site
so that subsequent users don’t experience the same
problem.

A Plea For Good Design

Many books and articles done in LATEX use, to
be charitable, a timid design. Some publishing
companies distribute books done with the standard
distribution LATEX book style. Anyone who values
handsome typesetting and understands the capabili-
ties of LATEX will find these books painful to behold,
knowing that they are totally unnecessary.

No excuse for the techie look! First of all, even
if the author submits his book in the default LATEX
book style, the publishing company can supply a
macro file which will reinterpret the marked up
commands, re-run LATEX on the file, and, with
minimum effort, produce a book with a handsome,
professional appearance. Second, as far as I am
aware, there are no limitations in implementing any

design when using the combination of LATEX and
PostScript.

TEXnical Capabilities: Using PostScript

with LATEX

The possibility of combining LATEX and PostScript
code in the same macro package opens up many
more options for the book designer who, without
the knowledge of this potential, might be much more
conservative in their design choices.

How it is done. Since we usually print books
and journal articles done with LATEX by converting
them to PostScript with a driver program, we can
also include raw PostScript commands in the macro
file, which can then be passed, unchanged, by the
driver program to the final PostScript file. As well
as allowing us to add PostScript graphic effects to
a macro file, there is also the capability of writing
a macro which will include PostScript code which
may be altered according to arguments given to the
macro.

Here is a rather trivial example, but it demon-
strates the principle of using LATEX information to
produce PostScript code. Once you understand that
this will work you might imagine many other uses
for what is essentially building PostScript code on
the fly.

A LATEX-PostScript macro can be written to
position a PostScript grey or colored screen behind

a particular area of text. The text is picked up as a
macro argument, set in a box to be measured, and
the results passed to the PostScript code, which will
form a screen of the correct size, which can then be
positioned underneath the given text.

First, a definition using PostScript code, de-
signed to be used within another LATEX macro:

\def\printbluescreen#1#2{%

\hbox to\hsize{\vbox to#1pt{\vss

\special{language "PS", literal

"/ChartCheckPoint save def

newpath

0 0 moveto

0 #1 rlineto %up

#2 0 rlineto %over

0 -#1 rlineto %down

closepath

0.8 0.99 0.99 setrgbcolor %% lt blue

fill

ChartCheckPoint restore

"}% end special

}}}

\printbluescreen is used in the second part of a
two-part macro: the first part begins a box and
the second part ends the box. This gives us a box
containing the text found between the two macros
which we can then measure. The results can be used
as the first argument of \printbluescreen:

....

\printbluescreen{\the\boxht}{\the\pagewidth}

....

where \boxht is a manipulated version of the height
of the test box, and \pagewidth is a manipulated
version to the width of the text.1 Each time the
macro is used, a new dimension for the \boxht

may be used, changing the PostScript commands to
exactly fit the space behind the given text, in effect
making PostScript code on the fly.

We can also have a normal LATEX macro call,
something like \chapter{}, for instance, and pro-
duce a graphic effect written in PostScript, when
the macro for chapter titleblocks includes raw Post-
Script code that can be altered depending on the
argument given to \chapter{}.

One of the most interesting designs I’ve imple-
mented was for documentation of toolbox software
packages published by The Mathworks. It had
normal chapter titles but also a bar that would

1 We need to manipulate the dimensions because the

PostScript code is expecting a number and assuming that it

means that number of points. Supplying a LATEX dimension

will produce a number followed by ‘pt’, i.e., 25.0pt, when

what we need is 25.

TEXNorthEast Conference, March 22 – 24, 1998

166 TUGboat, Volume 19 (1998), No. 2

appear in the margin, with a short version of the
chapter title running sideways in a colored block,
topped by the chapter number printed upright. This
graphic effect would also change position depending
on the chapter of the book, starting at the top of
the page and gradually moving down. This striking
effect was produced with a combination of LATEX
macros and PostScript code, in which information
was passed from LATEX to the PostScript code used
to form the graphic.

Looking Forward: The Basic Wonderfulness

of PDF

Many of you are already familiar with the Adobe
Acrobat program that produces and reads PDF files.
Its cross-platform and hypertext abilities, and easy
user interface, make it an attractive way to dis-
tribute on-line journals and books, either on a CD
or over the Web. However, we in the LATEX world
are especially fortunate when it comes to using this
program because:

1. The program that produces PDF, the Acrobat
Distiller, processes PostScript files. Since most
LATEX documents are translated to PostScript
routinely, that means that they are ready to be
distilled with no extra effort, other than being
sure to use outline fonts, and a driver program
run on the .dvi file to produce a .ps file.

2. The Acrobat pdfmark commands can be added
to the LATEX file, passed through the driver
program unchanged, to be used by the Dis-
tiller program. This allows pre-linking of any
appropriate material, as well as other features,
such as generating Acrobat bookmarks auto-
matically, changing colors of specific parts of
the document, and controlling many other as-
pects of the final PDF file.

Examples of passing LATEX information to PDF

include the possibility of prelinking the Table of
Contents, List of Tables, and List of Figures. The
viewer can then click on any item in one of these
environments and pop to the page listed. Simi-
larly, cross-references, bibliography citations, and
footnotes can by colored and hypertext-linked au-
tomatically, as can indices. Graphics can be added
to every page, if desired, and be linked to the Table
of Contents and to the Index, to make it easy for
the viewer to access either of these sections of the
document. Graphics can be used in specific cases
and linked to the appropriate referant. For instance,
a printed question might appear in the margin of

a document— ‘Need more information?’ — and the
user who clicks there would be sent to an appropri-
ate appendix or other source of information. An-
other possibility for complex technical documents
would be to have links to a glossary, so that the first
time a term is used it would be highlighted and the
user could click on it to jump to the appropriate
glossary entry.

Color is free. Usually book publishers are con-
cerned about adding color to their books because
of the added cost, understandably, since each color
makes the conventional printing process substan-
tially more expensive. When using PDF, the cost of
adding color is no longer an issue, so escaping from
dreary black and white becomes a no-cost option.
Pdfmark commands to set a particular color may
also be inserted into a LATEX macro file, so that
particular parts of the document will appear in the
chosen color automatically. There is tremendous po-
tential for LATEX/PDF book and journal production
used for on-line distribution, database publishing,
and many more applications.

An example of an application of LATEX-PDF

which I prepared recently was for a company that
uses LATEX for the over 400-page documentation of
their statistical software package. They asked me
to provide macros to produce a PDF form of their
documentation for on-line help for their software.

The user of their software will now be able to
click on the correct entry in the ‘help’ menu to
access a PDF version of the documentation without
leaving the original program. The Acrobat Reader
program will pop up with the PDF file containing
the full version of the printed documentation. When
the user has found the bit of information that they
need they can return to the original program which
continues running in the background.

This means that instead of using only the
usual RoboHelp files that must be written by the
company separately from the documentation, and
which would necessarily be a subset of the complete
printed documentation, users will now have access to
the complete documentation, with hypertext linking
in the complete index, table of contents, and glos-
sary. Graphics at the top of the page will allow
users to easily jump to the contents or the index.
This would seem to be a very attractive method of
producing on-line help for those software companies
that use LATEX to produce their documentation.

Another innovative use of TEX and PDF can
be seen in the University of Akron mathematics

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 167

professor David Story’s online Calculus Tutorial,
and Algebra Review. You will find them at

Home Page:

http://www.math.uakron.edu/~dpstory/

e-Calculus:

http://www.math.uakron.edu/

~dpstory/e-calculus.html

An Algebra Review in 10 Lessons:

http://www.math.uakron.edu/

~dpstory/mpt_home.html

e-mail:

dpstory@uakron.edu

I consider PDF production the cutting edge of
the LATEX world, and I look forward to exploring its
potential, as I expect you will too.

Happy TEXing!

⋄ Amy Hendrickson

TEXnology Inc.

57 Longwood Avenue

Brookline, MA 02146

USA

amyh@ai.mit.edu

TEXNorthEast Conference, March 22 – 24, 1998

Typesetting with TEX and LATEX

Alan Hoenig
17 Bay Avenue

Huntington, NY 11743

ajhjj@cunyvm.cuny.edu

(This presentation appears in a considerably ex-
panded form as chapter 1 of my book TEX Unbound:

LATEX and TEX Strategies for Fonts, Graphics, and

More published just this year by the Oxford
University Press.)

By typesetting, we mean the ability to place el-
ements of a document on a page according to gen-
erally accepted principles which most people seem
to agree look best and make it easiest to read and
comprehend the document. It’s surprisingly diffi-
cult to do that— a typesetter has to decide how
best to break paragraphs into lines, how to hyphen-
ate words, how to leave space for footnotes, how to
prepare indexes and the other detritus of scholarly
publishing, and provide the optimum space between
elements on the page (among many other things).
The spacing issue is particularly critical for techni-
cal documents. Formulas make extensive use of ar-
cane symbols which have different appearances and
spacing depending on context. Consider, for exam-
ple, how the placement and spacing of the ordinary
numeral ‘2’ changes in

2x x2 e−x
2

and how the spacing surrounding minus sign changes
in

x − y and −x + y

Other symbols may change depending upon whether
the equation appears in text ‘

∫
xdx’ or display

mode: ∫
xdx.

Furthermore, if a computer system is going to con-
trol the typesetting, we expect more of it than from
a mere human. We may expect, for example, to be
able to label an equation in some logical way and
then refer to it later by this label in our source doc-
ument. It would be up to the typesetter to resolve
these labels and references and replace the labels by
properly formatted label numbers.

The TEX system has been freely available since
the mid-80s or so and accomplishes all of the above
tasks (and more) in a particularly effective manner.
TEX is the creation of Donald E. Knuth of Stanford
University, who has placed all the source code for

TEX in the public domain. The logo ‘TEX’ is related
to the Greek root ‘τǫχ’ from whence come words
like ‘technology’. If pronounced properly, the face
of your listener may become slightly moist (but no
one complains if you say ‘tek’).

The purpose of this survey is to acquaint read-
ers with the aspects of the TEX cycle necessary to
produce handsome papers and books. This presen-
tation should not be regarded as a be-all-and-end-
all tutorial, since (like many other mature and so-
phisticated software systems) lengthy books are not
enough to do full justice to it.

The TEX production cycle

Why is ‘typesetting’ not the same thing as ‘word
processing’? Typically, a word processor allows edit-
ing of the document, but in its impatience to display
the results immediately onscreen (most word proces-
sors are aggressively wysiwyg in behavior), certain
niceties are sacrificed. These niceties — fine control
of spacing, word placement, hyphenation, and so
forth — are never ignored in TEX.

It’s useful to consider the TEX production cycle
by comparing it with that of word processors. In a
word processor, the program assists you in preparing
the document, after which it is printed. TEX relies
on three steps.

1. We use a text editor to prepare the source docu-

ment— the document file which consists of the
text and data of your document together with
the TEX formatting commands. Let’s suppose
this file is called myfile.tex.

2. We run myfile.tex through the TEX program.
If all goes well, this generates a file in which the
typesetting commands are made explicit using
a generic printer description language indepen-
dent of any particular printer; it is device inde-

pendent. TEX names this file myfile.dvi. Just
like a computer program source file with syn-
tax errors, if there are any errors, we return to
step 1 and correct them before continuing.

3. Finally, we need the assistance of a special de-

vice driver customized to the printer. It’s the

TEXNorthEast Conference, March 22 – 24, 1998 168

TUGboat, Volume 19 (1998), No. 2 169

driver’s task to translate the generic dvi com-
mands into the form the printer understands.

The advantages of creating a .dvi file are that
we can print the document on any printer (at least,
any printer for which device drivers exist) and rest
assured that the output is identical on each device
(except for raster resolution).

Macros; logical document design

TEX has been called an assembly language for type-
setting. This means that there are plenty of primi-
tive commands to control fine points, but these com-
mands may not be entirely appropriate for creating
a new section head or aligned equation. As a re-
sult, TEX has a rich and powerful macro creation
facility. It’s possible (as we will see later) to string
primitive commands and pre-existing macro com-
mands together to create new, custom typesetting
commands.

Remember that the TEX production cycle
means that we prepare a source file which is fed
into TEX at a later point. This plus the nature of
the macros means that TEX supports the notion of
logical document design. We can embed components
of the document by means of tags which can be
defined or redefined depending upon context. One
example suffices. Here’s a theorem.
Theorem There is no royal road to typesetting.

Computer typesetting is a surprisingly
complex task.

This was typeset by means of inserting

\theorem There ...

in the source document. It may happen that it is
more appropriate to display that theorem as

Theorem There is no royal road

to typesetting. Computer typeset-

ting is a surprisingly complex task.

The same command string will accomplish this pro-

vided that only the macro definition of \theorem

needs be changed. The implications are enormous—
we can design our document so that it will properly
printed for any set of particular formatting require-
ments provided only that we change the particular
definitions of the macros. Many strategies exist for
facilitating this use of definitions.

A first TEX document

The “steps” for generating a TEX document are well-
defined, but there are sufficiently idiosyncratic im-
plementations of TEX floating around so that it may
be necessary to adapt these procedures to a local
adaptation. By the way, some readers may be inter-
ested in the TEX dialect called ‘LATEX’; as we will

see, LATEX is the same as TEX, so these procedures
follow for a LATEX document as well.

1. Use a text editor to create the source document

for subsequent processing by TEX. The source
document is the document file — text and type-
setting commands. Take care not to use a word
processor. These programs aim to do the for-
matting themselves, and tend to do so by insert-
ing non-Ascii characters into the document file.
Quite apart from the fact that TEX (or LATEX)
needs no help with the typesetting, these binary
characters will only confuse TEX. (If it is neces-
sary to use a word processor, make sure to save
the document in some way so as not to include
the word processing formatting information.)

2. Run this source file through the TEX program.
the simplest form of the command to do that is

tex myfile

where the source file has the name myfile.tex.
LATEX users will use the command

tex &lplain myfile

(Unix users may have to enter the ampersand
as \&.)

As in any compilation process, TEX may un-
cover errors. (Warnings may be ignored, at
least at this stage.) Return to step 1 to cor-
rect these errors, and re-run it through TEX.
Repeat this process until all errors have been
dealt with (or until there is enough of a docu-
ment to print.)

The result of a successful TEX compilation is
a new file with a dvi extension. In this example,
we would have a new file myfile.dvi.

3. With the document in hand, it can be printed or
previewed on screen. In each case, appropriate
device drivers are necessary to properly render
the document on screen or on paper.

As we see, the TEX process is actually a con-
certed action between several programs in addition
to TEX— a text editor, a device driver, and a
screen previewer. Many implementations of TEX
may merge several or all of these into one integrated
module.

The TEX document: input conventions

Although it is not practical or possible to deal with
all or even a completely useful subset of all TEX (or
LATEX) commands in this article, it is possible to
summarize the keyboard conventions that any TEX
typesetting must adhere to.

TEXNorthEast Conference, March 22 – 24, 1998

170 TUGboat, Volume 19 (1998), No. 2

White space. TEX normally regards all white
space as equivalent, where we include carriage re-
turns, tabs, and of course spaces in this category.
Furthermore, multiple spaces are generally equiva-
lent to a single space. Important exception: we
signal the end of one paragraph and the beginning of
another by skipping a line in the source file; that is,
we enter two hard carriage returns in a row. (But
three or more consecutive carriage returns is still
equivalent to a pair of carriage returns.)

Once in a while, spaces are special in that we
don’t want a line broken between two words or
word groups. For example, in a discussion of World
War I, it would look silly if a line broke between
‘World War’ and ‘I’; it would be too confusing to
the reader. To guarantee that the line break won’t
happen at that point, we replace the space with
the tilde character ~. If this conditional space is
typeset in the middle of a line, it appears as a
regular space. Aspiring TEX typists should develop
the habit of typing things like King Henry~VIII,
Dr.~Knuth, and pages~44--55 to protect the
manuscript from unwarranted line breaks. Note
that whereas Henry~VIII will work as advertised,
Henry ~ VIII will not. Here is one instance where
users need to be careful.

Characters. We generate most characters by sim-
ply entering the character in the source document.
That is, we type

Oh! What a beautiful morning.

to get

Oh! What a beautiful morning.

See below for exceptions to this; certain special char-
acters need be entered in a special way.

But TEX is smarter than that. Certain charac-
ter pairs are replaced by special glyphs. For exam-
ple, if we type ‘‘ or ’’ we get true “quotes.” With
its special attention to details, TEX will replace cer-
tain character combinations such as fi, fl, and ff

by the ligatures fi, fl, and ff (provided these ligatures
are present in the current font).

TEX does a similar thing with hyphens and
dashes. We can type -, --, or --- to put -, –,
or — in our documents. (And we will see later
that the mathematical minus sign— yet a different
dash— can be gotten using the hyphen character in
mathematics mode.)

By the way, no user should ever put an explicit
line-break hyphen in a word which has to be split
at the end of a line. TEX’s hyphenation algorithm
takes care of such should a word break be necessary.

In summary, we type

‘‘Oh, the selfish shell-fish---that

lobster mobster---tasted

best when basted west,’’ quoth Aaron

while reading

pages~12--33 of his cookbook.

to typeset

“Oh, the selfish shell-fish — that lobster mob-
ster — tasted best when basted west,” quoth
Aaron while reading pages 12 – 33 of his cookbook.

TEX formatting instructions and commands.

TEX is very good about applying default typesetting
parameters to text, but there will be many times
when you wish to actively control the printed ap-
pearance of your document by issuing commands to
TEX. Since the entire file must contain Ascii charac-
ters only, TEX has decided to reserve the meanings
of certain characters to itself. The tilde ~ is one such
special character. To typeset an actual tilde ˜ in the
document, you must enter a short command to do
so.

These characters

\ # $ % ^ & ~ { }

have special meanings to TEX. The backslash \

is TEX’s escape character — it escapes the normal
meaning of the following bit of text. This character
generally begins all of TEX’s commands. For exam-
ple, to typeset an ampersand &, you would type \&.
Typesetting commands for some of these symbols
are formed in the same way. (All the symbols can
be typeset, but for some, addtional TEX expertise is
needed.)

TEX can do àçc̈éñṫs. as well. If you need them,
check your main manual. We can get the Spanish
punctuation marks ¿ and ¡ by typing ?‘ and !‘.

We will discuss the special TEX characters bit
by bit, but commands generally begin with the es-
cape character. The escape character can be fol-
lowed one single non-letter, or by an arbitrary se-
quence of letters, terminated by a space. Exam-
ples of commands from the first category include
\&, \1, \$, and \". Examples of the second cat-
egory include \TeX, \L, \noindent, \vskip, and
\futurelet. Note that TEX is case sensitive, so
the command \TeX (which typesets the TEX logo) is
different from the (nonsense) commands \tex and
\TEX.

These rules lead to our first piece of TEXarcana.
As part of TEX’s digestive process, it is smart
enough to know that when a non-letter follows an
escape character (the backslash), the command
name consists only of a single letter. Hence, any-
thing following that command, such as a space, is

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 171

typeset as you expect. To get the sequence, ‘& &’,
type \& \&.

The situation is subtly different when a com-
mand name follows the backslash. For now, TEX
has no way a priori to know the length of the com-
mand name. It reads your file, and terminates the
command name when it encounters a space or a new
command. Consequently the space following a com-
mand is ‘eaten up’ by TEX— it serves not introduce
a space into the document but rather to delimit the
command. But since at other times, spaces typed in
the document file do generate a space, it’s easy to
see why newcomers are easily confused.

Anyway, to illustrate the point, suppose you
wanted to typeset ‘TEX TEX’. The way not to do it
would be by entering \TeX \TeX into the source, for
the interior space terminates the initial \TeX com-
mand and is therefore eaten alive. (\TeX \TeX type-
sets as TEXTEX.) Since multiple spaces count as a
single space to TEX, the solution is not to insert ad-
dtional spaces. The following list, which suggests
several ways out of the impasse, also hones your be-
ginning TEX skills.

1. Use the TEX command which explicitly gener-
ates an interword gobber of space. This control

space command is \ , and so your source should
like \TeX\ \TeX if you use this method.

2. Terminate the command by inserting some
command which does not print anything. The
empty group {} is one such; thus, we could
type \TeX{} \TeX.

3. Simply surround the command in its own
group: {\TeX} \TeX is one appropriate way to
do this.

A working TEX system

A complete TEX system is actually a concert be-
tween several different component pieces of hard-
ware and software. There are at least three different
but necessary pieces of software.

First is a version of TEX for a particular com-
puter and operating system. At this time, there are
versions of TEX available for every reasonable com-
puter. In the unlikely event that there isn’t, it’s
possible to customize TEX by doing a reasonable
amount of spade work yourself. The TEX program
is in the public domain (and in electronic form), and
all you need to do is make whatever changes (if any)
are called for and recompile the TEX source code in a
robust Pascal compiler that works on your system.
(Most likely, you will translate the original Pascal
WEB source to a C source program using the freely
available web2c utility, and then use a robust C com-

piler to compile TEX.) TEX was originally written
in Pascal, and depending on how you “pretty print”
the listing, it amounts to between 20,000 and 30,000
lines of code. TEX exercises all the dark corners of
any compiler, so you need a compiler that has it-
self been thoroughly debugged. (There is a white
lie of omission in this account. All this source code
is written in WEB, so some mastery of this WEB

system must be acquired.)
Do we need a special version of LATEX to match

our hardware? The core LATEX files, which “sit”
on top of TEX, are ASCII files, and we can easily
transfer ASCII files from one computer to another.
However, proper behavior of LATEX will require us to
install LATEX and in that process to create a special
binary format file for use by our computer. In gen-
eral, binary files may not be transferred from one
type of hardware to another (but format files are
easy to construct).

Next is a text editor . This was discussed earlier
and is necessary for preparing the document source
file.

Finally there are the device driver and screen

previewer . TEX’s output is a file containing com-
mands to typeset all the letters, rules, and special
symbols in the document. Unfortunately, differ-
ent printers obey distinctly different sets of such
commands. Therefore, TEX employs a generic,
no-frills, device-independent language in which to
express these commands. That’s why the output
file from TEX has the extension dvi, to suggest
device-independence. In this way, the TEX program
is relevant to virtually any hardware setup, but it
does mean that we need yet another program, a
so-called device driver. The purpose of this pro-
gram is simply to translate TEX’s generic, device
independent typesetting commands into commands
that our particular printer understands.

Everybody will want to arm themselves with
a screen previewer , a special-purpose device driver.
Remember, TEX is not wysiwyg, and we frequently
want to see what the TEX document will look like
without going to the bother of printing it out. (This
may be because we share printing facilities in some
computer center, or because your printer takes a
long time to deliver a single page. Anyone who has
tried generating TEX output on a dot matrix printer
knows that feeling.) A video monitor is just a special
purpose printing device, and it is usually a straight-
forward matter to write a device driver to paint the
image of the page on a monitor screen.

It makes sense to choose hardware on the
basis of TEX software. For example, you’ll want to
make really sure that the printer is one for which

TEXNorthEast Conference, March 22 – 24, 1998

172 TUGboat, Volume 19 (1998), No. 2

a device driver exists. (Or else make sure that
the printer is one that will emulate —imitate —a
supported printer. For example, there are many
laser printers for sale, each with its own protocol for
generating printed images. There are relatively few
laser printer device drivers available. Among these
few with support are the Hewlett-Packard laser
printers, which many other laser printers emulate
well. Since there are several Hewlett-Packard laser
printer drivers available, an HP-like laser printer
may be a safe bet.)

TEX also runs well on printers that understand
the PostScript page description language. This
PostScript language is another means for creating
device-independent files, because the mechanism
for rendering the PostScript document resides in
the printer itself. Consequently, we need a special
PostScript printer in order to take advantage of the
PostScript technology. (That there are hundreds of
beautiful digital PostScript fonts is another induce-
ment to use PostScript.) Special dvi-to-PostScript
postprocessors translate a dvi file to a PostScript
equivalent. Many such programs are available from
any number of vendors. Fortunately, one of the
best, dvips by Tomas Rokicki, is freely available.

Getting TEX

Although the TEX software is “free”— within the
public domain — it often takes work to port it to
a particular computer. This is true of implemen-
tations for the original IBM PC and for the Apple
Macintosh, for example. In any case, device drivers
and screen previewers were never part of the origi-
nal TEX package. Consequently, some firms sell their
implementations for TEX.

An interesting recent phenomenon is the avail-
ability of several public domain TEX implementa-
tions for microcomputers. One or more such im-
plementations exist for all kinds of personal com-
puter, including IBM-type computers, Apple Mac-
intosh, Amiga, Atari, and Acorn. Some of them may
even be as good or better than commercial products.
Of course, when we use a public domain version, we
are on our own. Companies have “helplines” for
users who find themselves in trouble. With rare ex-
ceptions, no such lifelines exist for users of public
domain TEXs. Public domain implementations are
available from user groups (TUG, Dante, GUT, and
so on), from Internet archives, and from special TEX
CDROMs.

When acquiring a TEX “package,” make sure
it’s complete. In addition to the TEX executable,
the associated ancillary files TEX needs, various im-
portant input files, and the latest version of im-

portant macro packages, we must make sure ad-
ditional utilities are part of the suite even if your
current plans don’t include using them. I have in
mind here the Metafont program (and the MP

program if possible), various TEXware utilities (of
which tftopl, vftovp and their inverses pltotf and
vptovf are probably the most important), and the
Metafontware utilities. The TEX program should
be version 3.1415 or higher, and the Metafont pro-
gram should be version 2.71 or higher.

Unique TEXs. Although each implementation of
TEX is typographically equivalent to any other, a
few are worthy of special notice by virtue of some
distinguishing feature. A few of these special TEXs
are worthy of mention here.

The em-TEX software collection is especially in-
teresting — it’s a complete implementation of TEX,
Metafont, all TEXware and MFware programs,
printer drivers, previewers, and documentation (in
English and German) for PC-DOS and OS/2 oper-
ating systems, and it’s all free. Several executables
of TEX and Metafont are provided, from “small”
to “huge” versions. (These designations refer to
the speed and/or the amount of material these
TEXs and Metafonts can process.) Eberhard
Mattes is the man behind this prodigious effort, but
there are those who wonder if “Eberhard Mattes”
doesn’t refer, like the fictional “Nicolas Bourbaki,”
to a dedicated group of workers. In any case,
this material is all available free for downloading
from any CTAN site, and some user groups make
it available to their members for a nominal fee.
Furthermore, there is a special em-TEX Internet
list, so this is one important instance where public
domain software does have some support. Over
the last several years, Mattes has proven to be a
conscientious developer, providing bug fixes in a
timely way and keeping up with the latest master
source files of TEX, Metafont, and their friends.

Tom Rokicki is well-known in TEX circles for
his dvips post-processor (it converts dvi output to a
form suitable for rendering on a PostScript printer).
Less well known but just as impressive is TEXView,
his version of TEX for the NextStep operating sys-
tem. NextStep, which runs on the Intel-486 archi-
tecture among others, is a flavor of Unix (BSD 4.2)
onto which has been grafted a very convenient win-
dowing system. NextStep contains a version of Dis-
play PostScript, which means that TEX documents
that incorporate PostScript graphics and PostScript
fonts may be previewed effortlessly (including color).
Because Unix is a multitasking system, an author

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 173

can run a document through TEX, begin the pre-
viewing process, and continue editing. One odd fea-
ture has proven invaluable— the ability to measure
actual distances on a page with clicks of a mouse.
It’s surprising how often it is possible to fix a bug
in a TEX file by simply knowing how much extra
or missing space there is. Most of the TEXView
enhancements can be found incorporated into the
web2c TEX kits for Unix platforms. (As a result
of various corporate acquisitions, NextStep is now
called OpenStep.)

Lightning Textures, by Blue Sky Research, is a
version of TEX for the Macintosh. Its distinguish-
ing feature is its ability to show TEX output pro-
duced simultaneously as text is keyed in. (And look
for its newly-arrived sibling “Synchronicity.”) The
freely available InstantTEX for NextStep (originally
by Dmitri Linde and now maintained by Gregor Hof-
fleit) provides the same functionality— it’s great for
debugging macros. InstantTEX is freely available
from the ftp site peanuts.leo.org and others, in
the area

pub/comp/platforms/next/Text/tex/apps

and its mirrors. The file will have a name like
InstantTeX.3.11d.NIHS.b.tar and there is an
accompanying “readme” file as well.

AucTEX is not an implementation, but an
editing enhancement available to Unix users of
the Emacs editor. With it, Emacs becomes highly
TEX-aware, making available a large number of
shortcuts, command completion, automatic inden-
tation, special outlining, online documentation, the
ability to customize (provided you can program
in Lisp, the language in which it is programmed),
and a good bit more. Kresten Krab Thorup is its
author, and it is available from any CTAN site.

Inking the page

Neither TEX nor LATEX (nor any other macro pack-
age) actually paints the page. TEX simply creates a
file, the dvi file, which precisely records the position
of each character, rule, and other graphic element in
the document. Other programs take responsibility
for using this information to place ink on the page.
Remember, the TEX program needs only to know
how much space is required for each character, rule,
and typographic element on the page.

The characters of a font. It’s the province of
the device driver (or previewer, just another type of
device driver) to deal with the characters of a digital
font. Information in the dvi file tells it where to
position each character, and then the driver paints
each character where it is supposed to be.

Bitmap fonts. How does the driver know these
shapes? One way to store shape information is
within a collection of pixel files. Computer printers
generate their shapes by putting lots of tiny dots
next to each other in such a way that they form
patterns which our eyes resolve into letters and
graphs. Office laser printers, for example, are
capable of placing as many as 600 dots per inch (or
more) to the left or right and up or down. Only
the dots needed to create a character are printed,
and the human eye smoothes out any jaggedness as
it perceives the image. Pixel files, or bitmap fonts ,
provide instructions as to which dots to blacken
and which to leave blank.

There are lots of pixel files because TEX needs
a different file for each font of “type” at each size
and at each magnification. What’s the difference
between the size of a font and the magnification of
a font? Type designers of old took care to slightly
redesign each font of type at different sizes. Subtle
issues of spacing require that the proportions be-
tween thick and thin strokes, the size of the white
areas within some letters, and so on be readjusted
at each size. The TEXbook makes this point early
on, on page 16, which shows the difference between
10-point type and 5-point type magnified two hun-
dred percent. That and the following demonstra-
tions have members from the Computer Modern Ro-
man families. Computer Modern Roman type at a
10-pt design size (type size or just size) is referred
to as cmr10.

Although TEX has been designed to appreci-
ate this subtle difference in type sizing, many com-
puter typesetting systems do not . Therefore, pre-
vailing electronic fonts of type construct different
type sizes by taking a single font and magnifying it
by whatever amount necessary to get the size you
want. That is, there is generally no difference be-
tween type size and magnification unless you work
with Computer Modern types. (Recently, there are
some indications that the non-TEX world may be be-
ginning to perceive the importance of this distinc-
tion. Adobe’s Multiple Master technology is one
sign of this trend.)

The many different font files that normally
come with TEX often confuse users, but now we
know why they are necessary. TEX does distinguish
between size and magnification, and TEX’s ability
to make this distinction calls this diversity into
being.

On DOS systems (and any others that impose
rigid lengths on possible file names), the necessity
for having many different fonts at different sizes and
magnifications calls an intricate directory structure

TEXNorthEast Conference, March 22 – 24, 1998

174 TUGboat, Volume 19 (1998), No. 2

into being. All cmr10 fonts at any magnification
have the name cmr10.pk. The magnification is dis-
tinguished by creating different directories to hold
pixel files with like magnifications. For fonts ren-
dered to print on a 300 dpi printer, fonts at mag-
nification 1000 (normal size) appear in directories
named something like

\tex\fonts\dpi300

while for 120% magnification, since 360 = 1.2×300,
the directory will be

\tex\fonts\dpi360

Scalable fonts and a PostScript postscript.

PostScript technology has come to dominate
the world of computer typesetting and desktop
publishing. Files fully (and carefully) prepared in
PostScript are device-independent and are generally
ASCII (so they can be freely transferred across com-
puter platforms). “Device independence” means
any PostScript device. (With the Level 2 enhance-
ment, PostScript supports some binary encoding,
so such files may no longer be pure ASCII. Such
files may still be moved across platforms as Adobe
took great care to ensure this.)

Since PostScript files are independent of the
printer resolution, fonts for PostScript cannot rely
on bitmap descriptions, which are inherently tied
to a printer’s resolution. Each character in a Post-
Script font is given by a mathematical description
of the outline of that character (hence, the appel-
lation ‘outline font’); this description is not depen-
dent on any printer resolution. Nevertheless, any
raster printing device is, in the final analysis, a set
of bitmap images, but it’s the job of the special Post-
Script printer to resolve the outline descriptions to
their bitmap equivalents.

PostScript fonts are called scalable fonts be-
cause the technology scales these outline descrip-
tions up or down to get different sizes.

TEX and PostScript technology coexist quite
companionably. To render a dvi file on a Post-
Script printer, the dvi file must be translated to the
PostScript language. A variety of dvi-to-PostScript
converters exist for this purpose; one such, and one
of the most highly regarded, is the freely available
dvips by Tomas Rokicki. (It has been compiled for
virtually every computer platform.) The end prod-
uct of the translation is a series of statements in the
PostScript language, which are either transmitted
immediately to the printer or saved to a special file
with a ps extension.

Beware— these dvi postprocessors are savvy
enough to embed bitmap descriptions into the out-
put .ps file in the proper format for printing on

a PostScript printer. Only now the file has be-
come device-dependent— it will print properly only
on the printer for which the bitmaps were created.
PostScript does try to scale the bitmap image, but
an inevitable loss of quality accompanies this oper-
ation. Thus, if you plan to print the document later
via phototypesetter, you’ll have to regenerate the
.dvi and .ps files with the proper bitmaps.

Document files

What do TEX commands look like? TEX re-
serve ten characters for their own use. Otherwise,
when TEX encounters a letter or symbol such as an
“A” or “9” it interprets the symbol as a command
to typeset that symbol (to typeset an uppercase A
or the numeral 9). We call the character that alerts
TEX to an immediately following command the es-

cape character , but this character bears no relation
to the key marked “escape” or “esc” on many key-
boards.

We issue explicit commands to TEX by means
of one of several hundred commands beginning with
the backslash, the usual escape character for TEX.
Immediately following the backslash are one or more
characters, which may be followed by additional in-
formation that the command needs. For example,
the command

\noindent

suppresses indentation at the beginning of a para-
graph while

\vspace{1in}

instructs LATEX to skip one inch of vertical space.
It’s important that special reserved characters

begin or introduce special formatting instructions,
because you never know when you might want to
include the word “noindent” or “vspace” within the
document. By the way, there are special commands
to typeset any of the reserved symbols, so it is pos-
sible (and easy) to typeset a backslash or a dollar
sign within the document.

TEX contains a rich set of several hundred or
so commands. Although by themselves they do just
about anything we might wish, their real strength
flows from the ability to string commands together
to form new commands for special typesetting pur-
poses.

We might create our own personal \newchapter
command to begin a new page, skip down a third of
the page, center the chapter title, skip a quarter of
an inch, suppress indentation on the first paragraph,
and set the first two words of the chapter in a small
caps font. These new commands are called macros .

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 175

Creating a macro is a lot like writing a com-
puter program. TEX possesses several commands
to test conditions and perform action on the basis
of the test, to perform looping, and to handle in-
put/output operations. Tricky macros can take a
long time to write and test, but more often than
not, it’s possible to write simple macros on the fly
that make typesetting much easier.

TEX lets us place all our personal macro defini-
tions into a separate style file. The document would
contain special instructions for TEX to read and
assimilate those macros before typesetting. Pub-
lishers, for example, could exploit this by making
generic style files available to their authors while
commissioning a designer to prepare a style file to
implement a specialized book layout. The typeset
document file remains the same, and only the macro
definitions change. LATEX exploits this philosophy
to the hilt.

Learning and joining

Although the numbers of users of TEX are (as of
yet) dwarfed in magnitude by users of famous com-
mercial products, the growth in use of TEX is as-
tonishing. For consider this: an idiosyncratic prod-
uct, passed along by word of mouth, has no public-
relations dollars behind it. The reaction of users
learning it was “free” was often the same— if it is
so good, why isn’t anyone selling it?

But as these words are written, it has become
clear that there will always be a prominent place for
TEX. Although there is widespread perception that
TEX may be difficult to use well, no desktop pub-
lishing package is particularly easy. Furthermore,

TEX has been able to perform certain nice things
from the beginning that some famous commercial
programs are still struggling over, and this has won
the hearts of several mainstream publishers. Scien-
tists the world over will never relinquish TEX — how
else will they unambiguously capture on the page
their technical expressions? Furthermore, the many
millions of pages of LATEX and TEX electronic man-
uscript already in existence require TEX’s continued
presence.

Joining the TEX community. TEX, Meta-

font, and their friends form a rich set of tools.
Many workers have spent many happy hours adapt-
ing TEX to various specialized tasks or to creating
special front ends that might be just what you were
looking for. Although the many computer networks
form a platform for the communication of this news,
the various user groups provide a more formal forum
for the exchange of important news. Not only do the
larger of these groups publish their own newsletters,
but they often sponsor annual meetings.

The TEX Users Group —TUG — is the original
user group organization. Originally an offshoot of
the American Mathematical Society, it is now an
independent organization. TUG serves as a clear-
inghouse for all information on TEX, and members
receive the journal TUGboat, the transactions of the
TEX User Group.

Other user group organizations have since
arisen. New user groups, particularly behind the
former Iron Curtain, are constantly being formed.
(The attention of English-speaking readers must
certainly be drawn to UK TUG, whose journal
Baskerville is well worthwhile.)

TEXNorthEast Conference, March 22 – 24, 1998

Alternatives to Computer Modern Mathematics

Alan Hoenig
17 Bay Avenue
Huntington, NY 11743
ajhjj@cunyvm.cuny.edu

TEX users early on hustled to do everything with
TEX that was available to other publishing software.
It has long been possible to use all kinds of graphics
and fancy fonts with TEX. One hole remains in this
scenario, and that is the ability to use fonts other
than Computer Modern for scientific typesetting.
This is a real puzzle, when you consider that the
whole reason for TEX in the first place was scientific
typesetting. In the accompanying discussion, we
attempt to fill in this hole by presenting several
strategies for non-CM mathematical typesetting.

Näıvely, you might wonder why we just can’t
replace the Computer Modern text fonts of a doc-
ument by some other fonts for a brand-new look.
If we combine Computer Modern math with Times
Roman text (or something comparable), the vari-
ables look too anemic and thin compared with the
text letters, and in an extended document this in-
compatible contrast between text and math grates
on the reader. You may find that some differences
between math and text are acceptable—after all,
math is different from prose—but these variations
are somehow too disparate.

This article, drawn from the more extended
discussion found in chapter 10 of my book TEX

Unbound (1998, Oxford University Press), contains
the results of some experiments showing how to use
TEX to generate technical documents using many
handsome fonts. We will be creating series of virtual
fonts to do the typesetting for us.

We will discuss several strategies for mathemat-
ical typesetting:
• replacing Computer Modern Roman by Mono-
type Modern;

• the use of commercial and other math fonts
that can then be integrated with text fonts.
Although vendors may supply macro and style
files to perform this integration, we will explore
virtual font approaches. The four special sets
of raw math fonts include MathTime, Euler,
Lucida New Math, and Mathematica fonts; and

• using variations of the usual Computer Mod-
ern bitmap math fonts whose parameters have

been adjusted so they more closely match their
accompanying text fonts.

Computer Modern math plus new text fonts

It may be typographically dangerous to willy-nilly
change the text font of a document while retaining
Computer Modern math, but it is possible to choose
a font that does blend well with Computer Modern.
Computer Modern fonts were designed using Mono-
type Modern No. 8A as a model. The digital font
most resembling these fonts is Monotype’s Modern
font, widely available from digital font vendors.

You should install the fonts as per the usual
procedures. Then, LATEX users should add the
command

\renewcommand{\rmdefault}{mmo}

where mmo is the Berry name for the Modern font
family. No changes need be made to the math
font declarations, as we shall continue to use the
Computer Modern math fonts.

New math raw fonts

In an ideal world, math fonts would be 100% com-
patible with text fonts. For the math fonts available
to TEX, this statement is true only when Computer
Modern fonts are selected, when Times Roman is
used with MathTime or the Mathematica fonts, or
when Lucida Bright is used with Lucida New Math.
However, if reasonable compromises are permitted,
a much wider selection of font matches is available.

The x-height is the dominant physical feature
of a font, since so much of a document is lowercase.
In our math fonts, we take pains to match the x-
height of the math fonts with that of the text types.
Moreover, it makes more sense to scale the math to
the text, rather than vice versa, since there is almost
always more text than math in a paper. Presumably,
the 10-pt size for a text font is the optimal size for
that font.

TEXNorthEast Conference, March 22 – 24, 1998 176

TUGboat, Volume 19 (1998), No. 2 177

The MathInst utility

One way to install math fonts is via MathInst, writ-
ten by me. MathInst creates an entire font envi-
ronment for typesetting. At the moment, Math-

Inst knows about four math fonts, the MathTime,
Lucida, Euler math, and Mathematica math fonts.
MathInst consists of a Perl script, and several ad-
ditional files needed by fontinst. The main purpose
of these Perl scripts is to match a designated text
family with a set of math fonts to create new math
virtual fonts.

MathInst produces lots of output. First are
the fonts themselves which combine the given math
fonts with a family of text fonts. In case an author
has provided the names of other fonts, such as

• a sans serif family of fonts;

• a typewriter font;

• a calligraphic font;

• a fraktur font;

• an uppercase bold Greek font; and

• a blackboard bold font,

MathInst will make them available as well (the
uppercase Greek bold font will be used to create bold
math fonts). In all cases, MathInst takes great care
to size all fonts against the text fonts to make sure
that all lowercase alphabets are visually compatible.

It’s not enough to be provided fonts—they must
be integrated into a set of macros for easy use by
an author. For LATEX authors, MathInst provides
a new package file that performs this integration
and makes new commands available for the specialty
fonts (Fraktur, blackboard bold, etc.) if these fonts
are available.

Authors using plain will find a new style per-
forming this same integration. These authors will
need to make sure Damian Cugley’s pdcfsel font
selection macros are available. (They can be down-
loaded from the macros/plain/contrib/pdcmac

area of any of the ctan archives.)
Two test files are also provided—one for LATEX

and one for plain—so authors can see examples of
the new font selection commands at work. Finally,
a log file records information about the virtual font
process, including scale factors, to make it easy to
rerun the process using override values of the scale
factors if necessary.

Installation MathInst itself is found on ctan in
the fonts/utilities/mathinst area. To install
it, follow the detailed instructions that are part of
the package. You will also need the pdcfsel font
selection scheme for plain TEX mentioned above,
and the text and math fonts themselves. You’ll also

need fontinst, version 1.5 or greater. Also, make sure
the Perl executable appears on one of your system’s
path directories.

The raw math fonts consist of a series of outline
font files plus the associated afm files. It’s easy to
install these fonts. Here are the steps appropriate
for traditional systems. The same steps apply to
TDS systems, but it will be necessary to be more
specific about the paths for the files.

1. Place the math font files with the other scalable
fonts.

2. Place the afm files with your other afm files.

3. Make sure a proper entry exists for each math
font in the map file for your dvi postprocessor.

Only the last point requires additional comment.
For example, for the dvips psfonts.map file for a
traditional TEX system, we need entries like
%% MathTime fonts...
mtsy MTSY <mtsy.pfb
mtex MTEX <mtex.pfb
rmtmi RMTMI <rmtmi.pfb

%% Lucida New Math fonts...
lbma LucidaNewMath-Arrows <lbma.pfb
lbme LucidaNewMath-Extension <lbme.pfb
lbms LucidaNewMath-Symbol <lbms.pfb
lbmi LucidaNewMath-Italic <lbmi.pfb
lbmo LucidaNewMath-AltItalic <lbmo.pfb

%% Mathematica Math fonts...
Math1 Math1 <Math1.pfb
Math2 Math2 <Math2.pfb
Math3 Math3 <Math3.pfb
Math4 Math4 <Math4.pfb
Math5 Math5 <Math5.pfb

Note that these fonts are proprietary; please
respect the licenses under which these fonts are sold
or distributed.

Alone of the special math fonts, the Euler fonts
are in the public domain. In the 1980s, the American
Mathematical Society commissioned Hermann Zapf
to draw a set of alphabets suitable for mathematical
typesetting. The Society has since graciously made
these beautiful alphabets available for free. The first
major use of these fonts was to typeset the book
Concrete Mathematics.

These fonts were implemented by METAFONT,
and proper installation consists in placing the tfm

and pk with their mates on your system. However,
we will often be scaling these slightly to match
various text fonts, and rather than regenerate many
new bitmap fonts, it may be easier to use the
scalable versions of these fonts, also available for free
(courtesy of Basil Malyshev; they may be found in
the fonts/cm/ps-type1/bakoma section of ctan—
but there are certain licensing conditions). In this
case, these fonts will also need entries in your map

TEXNorthEast Conference, March 22 – 24, 1998

178 TUGboat, Volume 19 (1998), No. 2

file. These entries on a traditional TEX system
should look something like

%% Euler fonts...

euex10 euex10 <euex10.pfb

eufb10 eufb10 <eufb10.pfb

eufb5 eufb5 <eufb5.pfb

eufb7 eufb7 <eufb7.pfb

eufm10 eufm10 <eufm10.pfb

eufm5 eufm5 <eufm5.pfb

eufm7 eufm7 <eufm7.pfb

eurb10 eurb10 <eurb10.pfb

eurb5 eurb5 <eurb5.pfb

eurb7 eurb7 <eurb7.pfb

eurm10 eurm10 <eurm10.pfb

eurm5 eurm5 <eurm5.pfb

eurm7 eurm7 <eurm7.pfb

eusb10 eusb10 <eusb10.pfb

eusb5 eusb5 <eusb5.pfb

eusb7 eusb7 <eusb7.pfb

eusm10 eusm10 <eusm10.pfb

eusm5 eusm5 <eusm5.pfb

eusm7 eusm7 <eusm7.pfb

Note that the Euler fonts come in a variety of
weights and sizes; m and b represent medium and
bold weights, and f, r, and s the fraktur, roman,
and symbol fonts.

Installing text fonts The MathInst utilities ex-
pect the text font family (and the sans serif fonts
too) to be installed using the Berry font-naming
scheme. One way to do this is via my vfinst util-
ity or via the PSNFSS files. These text fonts must

be installed using the original OT1 TEX encoding.

Running MathInst Once the MathInst software
has been properly installed, you execute a mod-
ule by switching to a MathInst work directory like
mathinst/work and issuing a command like

../mathinst mt mbv

This command installs a MathTime family of math
fonts. If your computer doesn’t seem to understand
this command, issue the wordier incantation

perl ../mathinst mt mbv

instead. Then, follow the further instructions that
appear on the computer screen.

New math virtual fonts with MathInst

MathInst uses the two-character designations
mt MathTime
lu Lucida New Math
eu Euler
ma Mathematica

to refer to the various math fonts. The new
math font families use the z naming convention,

whereby the font family name for the new math
fonts uses the two-character math designations to-
gether with the text font family designation. Sup-
pose we combine MathTime (mt) with Baskerville,
whose family designation is mbv in the Berry scheme.
The new fonts will be described in macro files
zmtmbv.tex and zmtmbv.sty (for users of plain or
LATEX). Baskerville plus Euler or Baskerville plus
Lucida would form the z-names zeumbv and zlumbv.
The z-name zmambv describes a marriage between
Baskerville and the Mathematica math fonts.

The fonts themselves follow the Berry scheme,
but you don’t need to keep track of this, since the
MathInst style files load the fonts for you automati-
cally and establish their correspondence either with
familiar nicknames (\it, \bf) or with the NFSS.
But if you find yourself poking about your font di-
rectories, here’s a quick key to the many new fonts
you’ll see.

Additional font variants m, e, l, or a indicate
a math font, while variants m, y, or v following the
encoding digit denote the math italic, symbol, or
extension fonts. For Monotype Baskerville, the four
math fonts at text size have names

• mbvrm7t, the math Roman font;

• mbvrm7m, the math italic font;

• mbvrm7y, the symbol font; and

• mbvrm7v, the extension font.

(The presence of the “7” in the font name reminds
us we are using the original OT1 TEX encoding.)
A math Roman font connecting Baskerville and
Euler or Baskerville and Lucida would be called
mbvre7t or mbvrl7t. A similar math Roman font
for Baskerville plus Mathematica would be mbvra7t.

MathInst does its best to “fake out” new fonts
at script and scriptscript sizes. You will see as
many as three fonts for each of the above varieties
listed above. In addition to mbvrm7t, the math Ro-
man font for text sizes, you’ll see mbvrm7t7 and
mbvrm7t5, the same fonts fine-tuned for use in script
and scriptscript contexts. (The suffixes “7” and “5”
recall the sizes of seven and five points that Com-
puter Modern typesetting uses for these designa-
tions.) There is only a single math extension font
for any family.

Using the new fonts Whether you use LATEX or
plain TEX, you’ll only need to remember the z-name
for your new fonts. One purpose of theMathInst test
files is to provide living examples showing just how
the new fonts are invoked.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 179

In a LATEX document, all the work is done by
the package file whose first name is precisely the z-
name for the math fonts. As with all package files,
its extension is sty. If you add a line like

\usepackage{zmtmbv}

following \documentclass{...} then all the usual
LATEX font-switching mechanisms will now apply to
the zmtmbv fonts rather than to the default Com-
puter Modern fonts.

To typeset mathematics in a plain document,
simply place a statement like

\input zmtmbv

very near the beginning of your file. Thereafter, all
the usual plain font commands like \it, \rm, \tt,
$, $$, and so on, refer to the new math fonts. The
pdcfsel package itself provides more flexibility than
plain users are used to, and it would be well worth
any (plain) reader’s time to gain familiarity with this
package.

The MathTime fonts Michael Spivak developed
the MathTime math fonts to be used with the Times
family of text fonts in a TEX document;Y&Y is the
vendor. Many authors will find these fonts the most
useful for math typesetting. Their “Times Roman-
y” look goes well with many other Roman fonts.

The package consists of three fonts—an exten-
sion font, a math italic font, and a symbol font.
The extension font mtex is directly analogous to
cmex10 (the same characters are in the same posi-
tions), but the remaining fonts have slightly different
layouts from their Computer Modern counterparts.
These differences are largely due to the elimination
of the oldstyle digits and the calligraphic alphabet
from the italic and symbol fonts. The slots opened
up by these omissions have been filled with upper-
case Greek letters and redesigned operator symbols.
(The documentation that accompanies the fonts dis-
cusses the differences in greater detail.)

Users can also create MathTime math fonts in
a second way—by following the instructions that ac-
company these fonts. This approach is not so heavily
dependent on virtual fonts as is the MathInst way
and relies on a well-written macro file accompanying
this package.

The Euler fonts Euler fonts consist of math liter-
als (neither Roman nor italic, but a unique upright
font which is a compromise between the two forms),
symbols (with a compatible uppercase calligraphic
alphabet), Fraktur, and extension fonts. Because
they predate virtual fonts, and because the font ta-
bles themselves follow slightly quirky layouts, they
have not been as useful heretofore as they might

have been. The extension font is quite sparse, but
we can add virtual flesh using Computer Modern
glyphs to fill in the blanks of the font table.

Lucida New Math The Lucida math fonts for
TEX were designed by to follow normal TEX type-
setting conventions and yet be compatible with the
extensive Lucida and Lucida Bright font families,
and are available for purchase from Y&Y.

This Lucida New Math family consists of five
fonts. Because each contains the full complement
of 256 characters, these fonts are crammed with all
kinds of additional glyphs. These additions include
all the special symbols that occur in the additional
symbol fonts commissioned and made available by
the American Mathematical Society and include a
Blackboard Bold font. The three fonts useful for
standard TEXnical typesetting are the symbol, math
oblique, and math extension fonts. A math italic
font doesn’t follow the original math italic font quite
as closely as the oblique font. Finally, a math arrow
font contains many, many new symbols plus the
Blackboard Bold alphabet.

Lucida math extension differs from other ex-
tension fonts in that it contains many new glyphs
in its upper half. With this font properly in place,
you can use a new extensible set of open brackets,
additional wide accents, newly sized integral sym-
bols, and a fully extensible integral. The font also
contains the uppercase Greek alphabet, which we al-
ready use to construct the math Roman font. Math-

Inst style files contain commands (where necessary)
to use these new features.

The wide accent symbols are automatically
in place; simply continue to use \widetilde and
\widehat as before.

There are new kinds of square brackets that
grow to enclose filler material. These brackets, are
amenable to the usual “growth” mechanisms that
govern \left, \right, \bigl, and so on.

The several new integral signs include new sur-
face integrals, a new size for the regular and con-
tour integrals, and pieces for a generally extensible
integral. The new command \surfint and the ex-
isting integral commands \int and \oint work as
expected. In addition, there are large variants, sum-
moned into play by \lint, \loint, and \lsurfint.
These control sequences ensure that the various in-
tegral signs change their size depending on a text or
display context.

You might like to have TEX select the right size
integral for you. For that reason, there are three
variant integral commands, \varint, \varoint, and

TEXNorthEast Conference, March 22 – 24, 1998

180 TUGboat, Volume 19 (1998), No. 2

\varsint (for regular, contour, and surface inte-
grals) that try to do that for you. Each of these
takes as argument the contents of the integrand.
Figure 1 shows that this mechanism works poorly
for the surface and contour integrals when the total
height of the integrand is taller than the largest of
the available integrals.

MathInst automatically places the TEX-hackery
necessary in the Lucida style files it writes. You
could type

$$
\overbrace{\vphantom{\lint}

\hbox{$\int\lint\oint\loint\surfint
\lsurfint$\ }}%
^{\hbox{text}}

\overbrace{\int\lint\oint\loint\surfint
\lsurfint}%
^{\hbox{display}}

$$
$$\varint_{-\infty}^{+\infty}{\setlimits
\left\Lbrack

\vcenter{\halign{\strut\hfil${#}$\hfil\cr
\widehat 1\,\widehat{23}\,\widehat{456}\,
\widehat{7890}\,\widehat{12345}

\cr
\widetilde{67890}\,\widetilde{1234}\,
\widetilde{567}\,
\widetilde{89}\,\widetilde{0}

\cr
\varoint{\short}\,\varoint{\med}\,
\varoint{\tall}\,
\varoint{\Tall}\,\varoint{\Talll}\,
\varoint{\VTall}

\cr
\varsint{\VTall}\,\varsint{\Talll}\,
\varsint{\Tall}\,
\varsint{\tall}\,\varsint{\med}\,
\varsint_{\scriptscriptstyle\partial C}%
{\setlimits\omega}

\cr
\left\Lbrack x\right\Rbrack\
\left\Lbrack\med\right\Rbrack
\left\Lbrack \tall \right\Rbrack\
\left\Lbrack \Tall \right\Rbrack\
\left\Lbrack \Talll\right\Rbrack\
\left\Lbrack \ontop{42pt}\right\Rbrack

\cr
\varint_0^9{\Talll}\

\varint_{-1}^{+1}{\Tall}\
\varint{\tall}\
\varint^{+\infty}_{-\infty}{\med}\

\varint{x}\cr
}}\right\Rbrack\,dx
}$$

to get figure 1, which combines the Lucida math
and Lucida Bright Roman fonts. Here, \short,
\med, \tall and so on are simply temporary control
sequences to generate arguments of various relative
heights.

Mathematica math fonts TheMathematica math
fonts were in development as this book was written,
but Wolfram Research graciously made their interim
fonts available to me. The fonts in their eventual re-
lease may have different names, different characters,
and a different ordering.

These fonts consist of five font series compris-
ing all of the characters that TEX normally expects,
a calligraphic and a Blackboard Bold alphabet, and
many more additional characters. Each series con-
sists of four variants, normal, bold, typewriter, and
typewriter bold. As far as TEX is concerned, the
characters in these fonts are scrambled in a funny
order, so we first create raw fonts, each of which ap-
pears more meaningfully ordered to TEX. You can
do this with the script makemma.tex, part of Math-

Inst. Running this script, and then creating virtual
fonts in the usual way, creates three fonts mmami,
mmasy, and mmaex (math italic, symbol, and exten-
sion), which are themselves suitable components for
virtual font shenanigans. Although these three are
in fact virtual fonts, we will treat them as raw fonts
in the creation of additional virtual fonts.

Fine tuning the new math fonts

Adding special-purpose fonts Authors may want
to add special fonts to their math style. Here’s what
MathInst allows you to add:

• a sans serif font family,

• a typewriter font,

• a blackboard bold font,

• a Fraktur font,

• a calligraphic font, and

• a bold Greek font (suitable for setting bold
math).

You may add any, all, or none of these. If any
of these fonts are present on your system, Math-

Inst adds high-level font-switching commands to the
style and macro files it creates that recognize the
presence of these fonts.

Where do these fonts come from? Many of them
are proprietary, but a large number of them reside in
the public domain, albeit in unlikely or unsuspected
places.

As far as typewriter type is concerned, I strongly
recommend the freely available Computer Modern
typewriter font cmtt10, which blends well with al-
most every other digital face. There are alterna-
tives. The Pandora typewriter font pntt10 is also
free from ctan, and of course the printer-resident
Courier font is widely available. There are several
other variants of cmtt10 in the TEX suite that some
users may prefer, and proprietary typewriter fonts

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 181

text︷ ︸︸ ︷∫ � ∮ � � �
display︷ ︸︸ ︷� ∫ � ∮ � �

+∞⌠
⌡
−∞

�
�����������������������������

1̂ 2̂3 4̂56Æ7890 Æ12345

È67890È1234 5̃67 8̃9 0̃

∮
x

�
x

x

∮
x...
x

∮
x......
x

∮
x.........
x

∮
x...............
x�

x...............
x

�
x.........
x

�
x......
x

�
x...
x

�
x

x

�
∂C

ω

�
x
� �

x

x

��x...
x

� �x......
x

� �x.........
x

� �
��

x...............
x

�
��

⌠
⌡

9

0

x.........
x

⌠
⌡
+1

−1

x......
x

∫
x...
x

�
+∞

−∞

x

x

∫
x

�
�����������������������������

dx

Figure 1: New Lucida math extension characters in action.

include offerings in the Lucida Bright families and
ITC American Typewriter. Other authors may use
a monowidth sans serif font (such as Letter Gothic)
or some other contrasting face entirely.

A wide choice exists for sans serif families.
Common choices will be Computer Modern sans
serif, and the Helvetica fonts resident in all Post-
Script printers. I am personally partial to Gill
Sans (from Monotype) and the Lucida Sans fonts
(Bigelow & Holmes), but both of these are commer-
cial fonts.

A calligraphic uppercase alphabet is necessary
to make the \mathcal or \cal commands work
properly. MathInst can add this alphabet (in a
virtual way) to the math symbol font. Among the
widely available candidates are alphabets from the
Computer Modern symbol and Euler symbol fonts,
and the printer-resident Zapf Chancery font. Several
bitmap script fonts in the fonts area of ctan (such
as Calligra, the RSFS fonts, script fonts, and twcal)
may be appropriate. Many commercial fonts are
suitable, but authors should refrain from choosing
too fancy a script.

There is less choice for a Blackboard Bold
and Fraktur font. In ctan, we find the bbold

fonts (by Alan Jeffrey) and the msbm fonts devel-
oped and provided by the American Mathemati-
cal Society; both of these are in the fonts area

of ctan, the latter being in its ams subdirectory.
Commercial sources include the Lucida New Math
family (the “arrows” font contains the Blackboard
Bold glyphs) and Adobe’s Math Pi fonts (the sixth
of these contains the Blackboard Bold). Choices
on ctan for fraktur include Euler fraktur eufm in
fonts/ams (a scalable version is part of the BaKoMa
collection, also on ctan) and the yfrak fonts in
fonts/gothic/yfrak. Commercial choices include
the Math Pi package from Adobe (check out the sec-
ond font in the series for Fraktur) and a font called
Fraktur from Bitstream.

Mathematicians often want formulas in bold
type. MathInst will create bold math fonts for you,
but the sticking point might be bold variants of
the uppercase Greek letters. Computer Modern,
Euler, and Mathematica fonts contain bold Greek
alphabets, but neither Lucida nor MathTime do.
If a bold version of the Greek letters is available,
MathInst would like to know about it. There seems
to be nothing available that exactly matches the
Lucida Greek types, but bold Greek Times fonts can
be purchased.

To make these fonts visible to MathInst, you’ll
need to enter the names of the font files to the right

TEXNorthEast Conference, March 22 – 24, 1998

182 TUGboat, Volume 19 (1998), No. 2

of the equal signs in the statements making assign-
ments to $tt_, $sansserif_, and so on. Don’t for-
get to remove any comment characters from the be-
ginning of the line! Thus, to use pmp6 as the source
for Blackboard Bold, we need the line

$bbold_ = "pmp6";

in the parameter par file. Note that font names in
these statements need double quotes fore and aft.
Note too that these changes need to be part of all
the par files (or at least all the ones you’ll be using).

MathInst produces test files testmath.tex for
LATEX and testmatp.tex for plain. These files
show how to implement the fonts you’ve just cre-
ated and exercises these fonts in some reasonably
complete manner. The files themselves are closely
modeled after a similar test file originally designed
by Alan Jeffrey. (The original of this file appears on
ctan in the fonts/utilities/fontinst area.) It
is a good idea to compile these tests and print one
out each time you create a new math font family.

New math fonts via Metafont

Think of the reasons that Computer Modern math
fonts clash with other text fonts—they are somehow
too skinny, the wrong height and depth, and their
shapes may not harmonize well with text fonts. Be-
ing that they are meta-fonts, can we not alter the
parameters to generate math fonts that more closely
approximate text fonts we may be using? This strat-
egy lies behind the MathKit scripts I have devel-
oped. MathKit aids in the creation of math fonts
that may be compatible with a text font family. It
consists of a Perl script and some auxiliary files to
help an author—even one ignorant of virtual fonts or
of METAFONT—to perform these tasks. This mate-
rial can be found in the fonts/utilities/mathkit
area of ctan.

MathKit takes METAFONT parameters that are
appropriate to an outline font family and uses these
to create math fonts. The symbols and other spe-
cial characters look pretty good—and are compati-
ble with your outline fonts—but the italics and nu-
merals look ghastly. Using TEX’s virtual font mech-
anism, we create math fonts that combine the new
special symbols with letters and numerals from the
outline fonts. MathKit does some of this work for
you, and provides scripts for the remaining steps
(described in the accompanying documentation). It
also provides style files for plain TEX and for the
NFSS of LATEX for you to use these fonts in your
documents.

The current version of MathKit comes with
three sets of font templates. Since Palatino and

Times-Roman are so common, I prepared templates
for these fonts. For fun, I prepared a template for
Monotype Baskerville. Times comes in regular and
bold series, and Baskerville in regular and semibold;
Palatino is regular only.

MathKit itself produces a number of scripts and
batch files. Once these are properly executed, you
get the following:

1. Virtual fonts for math and text typesetting.
You will also get fonts for bold math if you
have supplied a template containing bold pa-
rameters.

2. Style files for plain TEX and LATEX (NFSS) .
These files support bold math if bold parameter
templates were present.

The main MathKit script requires three param-
eters. These are:

1. The name of the parameter template. ‘tm’
refers to Times-like parameters, ‘pl’ to Palatino-
like, and ‘bv’ to Baskerville-like.

2. The name under which text fonts are installed.
This is apt to be something like ptm or mnt

for Adobe Times or Monotype Times New Ro-
man, ppl for Palatino, and mbv for Monotype
Baskerville (which is quite different from ITC
New Baskerville).

3. The encoding your fonts follow. Only OT1 or
ot1 (original TEX encoding) are allowed.

For example, I type

perl ../mathkit tm ptm OT1

in my work directory to create Times-like fonts
following the original TEX encoding. (If your system
supports the #! syntax for specifying the name of
an interpreter, then put the proper path at the
very top of mathkit, make sure the execute bit is
set, and type the simpler injunction ../mathkit tm

ptm OT1 from the work directory.)
I’ve had success matching bv (Baskerville-like)

parameters to other Roman fonts. For example, I
typed

../mathkit bv mjn OT1

to generate a nice-looking set of fonts combining
Monotype Janson text with Baskerville-like math
fonts.

The following steps complete the font creation.
Perform them all within the MathKit work direc-
tory.

1. Use the mkdirs script to create any missing
directories.

2. Execute the file makegf.bat to have META-
FONT create the pixel fonts for your fonts. This
step will take some time.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 183

3. You’ll need to pack all the pixel files. The file
called makepk.bat that may be helpful in this
regard. Caution: before executing this script,
it may be necessary to edit it.

4. Execute the script makepl.bat to create some
property list files needed by the next step.

5. Run the file makevp.tex through TEX. That
is, execute the command tex makevp or some-
thing appropriate for your system. This step
will take some time. Along with lots of super-
fluous files, this creates many “virtual property
list” files with extension vpl.

6. Create the actual virtual files by running every
vpl file through the program vptovf; execute
the file makevf.bat which MathKit creates for
you.

7. Execute the file putfonts.bat to place the font
and other files where they belong.

This sequence is summarized for you again on the
computer screen when you execute MathKit.

Using the new fonts MathKit produces two style
files, one for LATEX and one for plain. Their file
names are formed according the naming scheme

z〈mock-family〉〈font-family〉

Here, 〈mock-family〉 is the two-character designation
for one of the font parameter templates (such as
tm, pl, or bv); the word “mock” refers to the fact
that these fonts imitate but don’t equal the actual
fonts in this family. 〈font-family〉 is the Berry family
designation. Thus, if I create a Times-like set of
fonts for use with font family ptm, I would find
files ztmptm.sty (LATEX) and ztmptm.tex (plain).
In the same way, the style files for mock-Palatino
and mock-Baskerville fonts are named zplppl and
zbvmbv (with the appropriate extensions).

At the top of a plain file, include the statement

\input ztmmnt

(or whatever the style file name is). Then, standard
font nicknames like \bf and \it and math toggles
like $ and \(will thenceforward refer to these new
fonts.

If bold fonts have been generated, a com-
mand \boldface typesets everything in its way
in boldface—prose, mathematics, whatever. Bold
math may be appropriate for bold captions, sections
heads, and the like. Like any other font changing

command, this command should be placed within
grouping symbols.

In LATEX documents, you simply need to include
the style name as part of the list of packages that
you use in the document. Thus, a typical document
would have a statement like

\usepackage{ztmptm,epsf,pstricks,...}

at the outset.
If MathKit has created bold math fonts, a

boldface environment will typeset everything in
that environment as bold, including all mathemat-
ics.

If your outline fonts have been installed using
expert fonts, you may need to alter the \rmdefault
command. It might be necessary, say, to type

\rmdefault{ptmx}

instead of \rmdefault{ptm}.

Preparing parameter files It was surprisingly
easy to prepare these parameter files. I prepared
a test document in which individual characters are
printed on a baseline at a size of 750pt. It’s (rela-
tively) easy to measure the dimensions of such large
characters, and METAFONT can be asked to divide
by 75 to compute the proper dimension for 10-pt
fonts. It was particularly easy for me to make these
measurements, as I use Tom Rokicki’s superior im-
plementation of TEX for NextStep. This package
contains on-screen calipers, which take all the work
out of this chore.

If you plan to create your own parameter files
for other font families, please use the supplied files
as models (those files with extensions mkr, mks, or
mkb). Make sure all measurements are given in terms
of “pt#”; MathKit looks for this string. And please
consider placing this information in ctan.

Rogues’ gallery

The following displays show the results of mixing
and matching various math families to many text
fonts. vfinst installed all the text fonts, and Math-

Inst or MathKit generated all the math+text fonts.
These displays should be regarded as experi-

ments only. I showed these pages to several people,
and all concluded that some of the experiments are
successful and others are failures. However, no one
agreed which were the successes and which were the
failures!

TEXNorthEast Conference, March 22 – 24, 1998

184 TUGboat, Volume 19 (1998), No. 2

Computer Modern math + Monotype Modern

Unbound Orbits: Deflection of Light by the Sun

Consider a particle or photon approaching the sun from very great dis-

tances. At infinity the metric is Minkowskian, that is, A(∞) = B(∞) = 1,

and we expect motion on a straight line at constant velocity V

b ≃ r sin(ϕ − ϕ∞) ≃ r(ϕ − ϕ∞)

−V ≃ d
dt (r cos(ϕ − ϕ∞)) ≃ dr

dt

where b is the “impact parameter” and ϕ∞ is the incident directions. We

see that they do satisfy the equations of motion at infinity, where A = B =
1, and that the constants of motion are

J = bV 2 (1)

E = 1 − V 2. (2)

(Of course a photon has V = 1, and as we have already seen, this gives

E = 0.) It is often more convenient to express J in terms of the distance

r0 of closest approach to the sun, rather than the impact parameter b. At

r0, dr/dϕ vanishes, so our earlier equations give

J = r0

(

1

B(r0)
− 1 + V 2

)1/2

The orbit is then described by

ϕ(r) = ϕ∞ +

∫

∞

r



















A
1

2 (r) dr

r2

(

1
r2

0

[

1
B(r)−1+V 2

] [

1
B(r0)−1+V 2

]

−1

− 1
r2

)
1

2



















.

The total change in ϕ as r decreases from infinity to its minimum value r0

and then increases again to infinity is just twice its change from ∞ to r0,

that is, 2|ϕ(r0) − ϕ′

∞
|. If the trajectory were a straight line, this would

equal just π;

∆ϕ = 2|ϕ(r0) − ϕ∞| − π.

If this is positive, then the angle ϕ changes by more than 180◦, that is, the

trajectory is bent toward the sun; if ∆ϕ is negative then the trajectory is

bent away from the sun.

Reprinted by permission of John Wiley & Sons, Inc. from Weinberg, Gravitation and Cosmology c© 1972, John Wiley & Sons, Inc.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 185

MathTime math + Times New Roman (Monotype)

Unbound Orbits: Deflection of Light by the Sun

Consider a particle or photon approaching the sun from very great distances.

At infinity the metric is Minkowskian, that is, A(∞) = B(∞) = 1, and we

expect motion on a straight line at constant velocity V

b ≃ r sin(ϕ − ϕ∞) ≃ r(ϕ − ϕ∞)

−V ≃ d

d t
(r cos(ϕ − ϕ∞)) ≃ d r

d t

where b is the “impact parameter” and ϕ∞ is the incident directions. We see

that they do satisfy the equations of motion at infinity, where A = B = 1,

and that the constants of motion are

J = bV 2 (1)

E = 1 − V 2. (2)

(Of course a photon has V = 1, and as we have already seen, this gives

E = 0.) It is often more convenient to express J in terms of the distance

r0 of closest approach to the sun, rather than the impact parameter b. At r0,

dr/dϕ vanishes, so our earlier equations give

J = r0

(

1

B(r0)
− 1 + V

2
)1/2

The orbit is then described by

ϕ(r) = ϕ∞ +

∫ ∞

r























A
1
2 (r) dr

r2

(

1
r2

0

[

1
B(r)−1+V 2

] [

1
B(r0)−1+V 2

]−1
− 1

r2

)
1
2























.

The total change in ϕ as r decreases from infinity to its minimum value r0 and

then increases again to infinity is just twice its change from ∞ to r0, that is,

2|ϕ(r0) − ϕ ′
∞|. If the trajectory were a straight line, this would equal just π ;

1ϕ = 2|ϕ(r0) − ϕ∞| − π.

If this is positive, then the angle ϕ changes by more than 180◦, that is, the

trajectory is bent toward the sun; if 1ϕ is negative then the trajectory is bent

away from the sun.

TEXNorthEast Conference, March 22 – 24, 1998

186 TUGboat, Volume 19 (1998), No. 2

Euler + Palatino (Adobe)

Unbound Orbits: Deflection of Light by the Sun

Consider a particle or photon approaching the sun from very great dis-
tances. At infinity the metric is Minkowskian, that is, A(∞) = B(∞) = 1,
and we expect motion on a straight line at constant velocityV

b ≃ r sin(ϕ−ϕ∞) ≃ r(ϕ− ϕ∞)

−V ≃
d
dt (r cos(ϕ− ϕ∞)) ≃

dr
dt

where b is the “impact parameter” and ϕ∞ is the incident directions. We
see that they do satisfy the equations of motion at infinity, where A = B =

1, and that the constants of motion are

J = bV2 (1)

E = 1 −V2 . (2)

(Of course a photon has V = 1, and as we have already seen, this gives
E = 0.) It is often more convenient to express J in terms of the distance
r0 of closest approach to the sun, rather than the impact parameter b. At
r0 , dr/dϕ vanishes, so our earlier equations give

J = r0

(

1
B(r0)

− 1+V2

)1/2

The orbit is then described by

ϕ(r) = ϕ∞ +

∫

∞

r



















A
1
2 (r)dr

r2
(

1
r2
0

[

1
B (r)−1+V 2

] [

1
B (r0)−1+V 2

]

−1

− 1
r2

)1
2



















.

The total change in ϕ as r decreases from infinity to its minimum value
r0 and then increases again to infinity is just twice its change from ∞ to
r0 , that is, 2|ϕ(r0)−ϕ′

∞
|. If the trajectory were a straight line, this would

equal just π;
∆ϕ = 2|ϕ(r0) −ϕ∞| − π.

If this is positive, then the angle ϕ changes by more than 180◦, that is, the
trajectory is bent toward the sun; if ∆ϕ is negative then the trajectory is
bent away from the sun.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 187

Lucida New Math + Lucida Sans (Bigelow & Holmes; 8/10)

Unbound Orbits: Deflection of Light by the Sun

Consider a particle or photon approaching the sun from very great distances. At
infinity the metric is Minkowskian, that is, A(∞) = B(∞) = 1, and we expect motion

on a straight line at constant velocity V

b ≃ r sin(ϕ −ϕ∞) ≃ r(ϕ −ϕ∞)

−V ≃
d
dt

(r cos(ϕ −ϕ∞)) ≃ dr
dt

where b is the “impact parameter” and ϕ∞ is the incident directions. We see that

they do satisfy the equations of motion at infinity, where A = B = 1, and that the
constants of motion are

J = bV 2 (1)

E = 1−V 2. (2)

(Of course a photon has V = 1, and as we have already seen, this gives E = 0.) It is

often more convenient to express J in terms of the distance r0 of closest approach
to the sun, rather than the impact parameter b. At r0, dr/dϕ vanishes, so our

earlier equations give

J = r0

(
1

B(r0)
− 1+V 2

)1/2

The orbit is then described by

ϕ(r) =ϕ∞ +

∫∞

r





A
1
2 (r)dr

r2

(
1

r2
0

[
1

B(r)−1+V 2

][
1

B(r0)−1+V 2

]−1

−
1
r2

) 1
2





.

The total change inϕ as r decreases from infinity to its minimum value r0 and then

increases again to infinity is just twice its change from ∞ to r0, that is, 2|ϕ(r0) −
ϕ′∞|. If the trajectory were a straight line, this would equal just π;

∆ϕ = 2|ϕ(r0) −ϕ∞| −π.

If this is positive, then the angleϕ changes by more than 180◦, that is, the trajec-

tory is bent toward the sun; if ∆ϕ is negative then the trajectory is bent away from
the sun.

TEXNorthEast Conference, March 22 – 24, 1998

Developing Database Publishing Systems Using TEX

Jeffrey McArthur
ATLIS Publishing Services

jmcarth@atlis.com

Abstract

Many directories and publications are created and maintained using “off the
shelf” desktop publishing systems. Producing a publication may take months of
hard work. Some publications can be converted to a database publishing system
which is capable of producing a finished book in a matter of hours. This paper
looks at some of the issues involved in developing a database publishing system
that uses TEX as the typesetting system.

The Key Features of a Content

Management System

Content management systems store information in
a database. The list below enumerates some of
the benefits of developing a system to maintain
information using TEX as the typesetting engine:

1. Consistency: The typesetting is regular and
predictable. Books that are typeset using desk-
top publishing are often broken into sections.
Each section is done by a different person.
Each person has control over the layout of their
section. This can result in subtle differences
between sections of a publication. A content
management system using TEX removes the
possibility of undesirable differences between
sections.

2. Timeliness: Document preparation no longer
takes days or months. Pushing a key can gen-
erate an up-to-date publication reflecting the
state of the data in the system. A complete
publication can be finished in a matter of hours
using TEX. Information constantly changes and
last minute changes will automatically be incor-
porated in the final output with no additional
effort. The predictable nature of publication
generation allows for tighter scheduling of pro-
duction.

3. Indexing: Automatic generation and extraction
of index information are part of the typeset-
ting process. A content management system
using TEX as the typesetting engine provides
the capability to create indexes that would be
impossible to do using desktop publishing in a
timely manner.

4. Repeatability: The ability to generate a book
over and over again with different data is a
key feature of content management systems.

Multiple books can be quickly created using
different subsets of the information contained
in the system.

This paper focuses on using TEX as the back
end or typesetting engine in a content management
system. The choice of TEX as the typesetting
system provides many benefits but also affects the
development and implementation.

Limitations of Desktop Publishing Systems

Desktop publishing systems are designed around the
WYSIWYG paradigm. It is easy to create great
looking pages but there are no integrity checks on
the data. Without validation on the input data it
is possible to have dates like “February 31”, or to
have a two letter state abbreviation like “23”. Errors
of this type are amazingly common. Spelling and
grammar checking will not detect errors of this type.
In a desktop publishing system the information is
just textual data. If a person changes his email
address, all the documents in the system must be
searched and a replacement done to each and every
instance. In content management systems each
person is an entity. All calls to the person are by
reference. If the email address of the person changes,
then all references to the person are automatically
updated.

One of our clients took three months with up to
fifteen people to generate the index to one of their
books. That index can be generated in a matter of
hours with a content management system developed
for them.

Desktop publishing systems are not designed
for publishing large quantities of data quickly. TEX
works hand in hand with the content management
system to quickly and accurately generate printed
or electronic documentation.

TEXNorthEast Conference, March 22 – 24, 1998 188

TUGboat, Volume 19 (1998), No. 2 189

Most desktop publishing systems provide tools
to import database information. The WYSIWYG

paradigm means that the user is prompted to “flow”
the data into the system. Style sheets provide only
limited capabilities over club and widow control.
Import capabilities are usually limited to importing
a single table, query, or view of the data. Content
management systems do not have this limitation.

Database Development Must Work

Hand-in-hand with TEX

All successful content management systems must
keep the goal of producing the output documents
in mind during all phases of development. TEX as a
typesetting engine places demands on the database
design.

Sorting. It is possible to sort in TEX, but the
macros to do this are complex and difficult to use.
Database systems are designed for sorting and each
system should be used for its strengths. Thus, all
sorting should be done by the database system and
not in TEX.

Accents. Many database systems in the United
States are not able to accurately store accented
data. Some database systems translate accented
characters to some other form internally. This can
cause problems when the data is output for TEX to
typeset. The database system must be configured
so that it is easy for the user to enter accented data,
and be able to get that data back out into a file that
can be typeset by TEX.

Publication order. Normalized databases have
an implicit order. This seldom matches the order
that is desired in the printed or electronic output.
TEX can rearrange data. It is easy to exceed the
capacity of TEX by trying to store large quantities
of data internally so that they can be rearranged
on output. The database should be designed to
allow quick generation of the data in an order which
closely resembles the final output. This makes the
job of typesetting the data with TEX easier.

Line lengths. One limitation of TEX is that the
input file must be broken into lines. Most imple-
mentations of TEX only allow one to two thousand
characters on a line. This is a serious limitation with
database publishing. The database system must
separate the data into lines that are less than the
input-line limit of TEX.

Special characters. Publishing data from a
database places some requirements on the macros
developed in TEX. A common requirement is that
all printable characters must be usable. If the user

can enter a character, they want that character
to output in the finished document. If the user
enters a backslash, the resulting output needs to
print the backslash. Although this causes difficulties
with TEX, there are several methods for solving the
problem. One solution is to have the database filter
the data for input into TEX. This is quite slow
since it requires the database system to check every
character to see if it needs to be “escaped”. Another
approach is to change the way TEX reads the data by
using verbatim macros such as are commonly used
for listings. The composition file generated by the
database system does not need to be editable by
a human since it is only a temporary file used to
transfer data from the content management system
into TEX.

This approach allows many of the control char-
acters normally used by TEX to have their \catcode
changed to that of a letter. Macro packages used
to typeset databases often end with the following
sequence:

\catcode‘\$=\other

\catcode‘\%=\other

\catcode‘\&=\other

\catcode‘\#=\other

\catcode‘_=\other

\catcode‘\^=\other

\catcode‘\{=\other

\catcode‘\}=\other

The lines above allow most characters to be printed.
The tilde character, — —, however, is a special case.
Internet URLs often contain a — —. The problem
with typesetting internet URLs is that the — —
character should be typeset as ∼ and not as — —.
Using a —∼— instead of a — — is more consistent
with the way the information looks when keyed or
when viewed in a browser. The simplest solution
to changing the typesetting of — — is to do the
following:

\def\Tilde{\hbox{\sim}}

\catcode‘\~=\active

\let~=\Tilde

Changing the \catcode of —— and —— means
that grouping cannot be done using them. This is
usually not a problem. The parameter text rules of
TEX provide a mechanism to specify the boundaries
of the input parameters.

Typesetting \ is a bit more challenging. One
solution is to change the escape character to one
that is non-printable. One choice is character 255.
Very few typefaces define a glyph for character 255.
On the PC, character 255 prints as a space. The
character is non-printable, so it is difficult to give an

TEXNorthEast Conference, March 22 – 24, 1998

190 TUGboat, Volume 19 (1998), No. 2

example how to use it. Below is a set of macros that
use character 255 as the escape character. In the
example below, character 255 has been replaced by
the sequence M-^? so that the macros are readable.

\chardef\other=12

\def\QuoteBS{

\begingroup

\catcode‘\\=\other

\EndQuoteBS}

\begingroup

\catcode‘\M-^?=0

\catcode‘\\=\other

M-^?gdefM-^?EndQuoteBS#1\End{

M-^?line{M-^?hfil***#1***M-^?hfil}

M-^?endgroup}

M-^?endgroup

There is a problem with macros like the one
above: they are difficult to read and maintain.
Few texts, other than ones on TEX, use a lot of \
characters. A more rational approach is to restrict
the input of data into the content management
system to disallow entering a \ except in those few
fields that actually require it. This simplifies writing
the macros, makes the macros much more readable,
and more maintainable.

Index generation. TEX has the ability to cre-
ate auxiliary output files that list the page number
where the write occurred. TEX can extract infor-
mation that can be used to form an index. We have
used two different methods of creating extracted
indexes. One method is for TEX to be responsible
for outputting a file suitable for composition with
TEX. That is, TEX creates a file that can be run
through TEX. The file is sorted prior to running
through TEX, using a simple sort program. One
major disadvantage to this method is that the re-
sulting code is very difficult to read because many
characters have their \catcode changed. Another
difficulty is in sorting the resulting index. Care must
be taken to allow the file to be sorted properly. It is
usually easier for the database program to export a
“sort key” into the data stream for TEX to pass on
to the extracted index file than to try and create the
“sort key” in TEX. This is particularly true if the
index contains entries like 3M which need to sort
under M (Minnesota Mining and Manufacturing).
Accented characters are a problem. Care must be
taken to allow accented characters to pass through
TEX without any change.

A second approach is for TEX to only output the
“record id” and page number. The auxiliary file is
read into a database program and a new composition

file is generated with the page number data. This
method has a couple of advantages:

1. The database provides the tools to sort the
information.

2. Indexes where an entry may occur under many
headings are much easier to handle.

Extraction from the Database

The information in the database or content man-
agement system must be exported for use by TEX.
For simple database projects it is possible to use
standard database export utilities. Typesetting di-
rectly from the quote-delimited format can be done
by making the double quote character active to start
the input, and then using a form of tail-recursion to
call macros for the next field.

For each field there are three macros. One to
start the input, one to store or typeset the data, and
one to finish the field and call the macro to start
the next field. If the database contained only three
fields: first name, last name, and phone extension,
then an exported quote-delimited file would look like
this:

"Jeffrey","McArthur","4253"

"Jeannine","McArthur","1234"

"Bilbo","Baggins","5678"

The following macro would typeset the data,
moving the first name after the last name and setting
the name left-justified on the line and the extension
right-justified on the line.

\chardef\other=12

% These assume " is active

\def\BegFirstName{

\begingroup

\catcode‘\"=\other

\MidFirstName}

\def\BegLastName{

\begingroup

\catcode‘\"=\other

\MidLastName}

\def\BegExtension{

\begingroup

\catcode‘\"=\other

\MidExtension}

% These assume " is other.

% They pull in the parameter

% and store or set it

\def\MidFirstName#1","{

\gdef\ValFN{#1}

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 191

\EndFirstName}

\def\MidLastName#1","{

\gdef\ValLN{#1}

\EndLastName}

\def\MidExtension#1"{

\line{

\ValLN,

\ValFN

\hfil

#1

}

\EndExtension}

% these assume " is other

% they reset the catcode and

% call the next field

\def\EndFirstName{\endgroup\BegLastName}

\def\EndLastName{\endgroup\BegExtension}

\def\EndExtension{\endgroup}

\catcode‘\"=\active

\let"=\BegFirstName

There are several problems with typesetting
quote delimited files. TEX can only work with
files that do not exceed its input buffer line length,
usually one to two thousand characters. Databases
with large record structures can generate lines longer
than this. If the database adds a new field to
the table, then the output file would be a different
structure and TEX would no longer typeset the file
properly.

Generation of composition files. The approach
we have taken to preparing the data for use with
TEX is to write a program that generates a com-
position file. The program processes each record in
the database and tags and outputs each field. This
gives full control over the order of the data and can
provide any special processing required.

We have used a descriptive tagging scheme
which allows the same extracted data to be used
for more than one purpose. The data file can be
composed with different sets of macros producing
different output. Using the same data file for mul-
tiple outputs has various advantages. For instance,
the generation of a composition file can be a time-
consuming process. TEX can process the data two to
ten times faster than the data file can be generated.
For example it can take up to four hours to extract
a sixty megabyte composition file; TEX can compose

that file into about twelve-hundred pages in less than
half an hour.1

SGML. Content management systems that use
SGML encoding can be typeset using TEX. Valid
SGML document instances are stored as memo fields
in relational databases. The document instances
are extracted into composition order and “stitched
together” using TEX macros. With proper care TEX
can directly typeset the SGML document instances.
This requires that all the tags follow consistent cas-
ing scheme, or preferably a change to the SGML dec-
laration to make the tags case-sensitive. If no output
processing or filtering on the SGML is required, the
composition file can be quickly generated. This is
one of the few cases we have encountered where the
composition file can be generated faster than TEX
can compose it.

SGML tables. SGML tables using the SoftQuad
table model are computationally expensive to do in
TEX. Some of the SGML tables we have typeset
extend beyond four pages. Our implementation of
macros in TEX to typeset SoftQuad SGML tables
uses \halign. This has proven to be very memory
intensive. Large tables require a version of TEX that
can use more than 20 Meg of RAM. TEX normally
processes pages quickly, but on slower hardware2

TEX can take up to ten minutes to process a single
table. During that time no pages are output.
Once the table processing has finished, TEX resumes
quickly outputting pages.

Entity and table validation. During our imple-
mentation of SGML content management systems
we ran into some problems with tables. A valid
SGML document instance can have an invalid table.
That is, the table can define three columns and
actually have four or more columns of data. The
SGML parser is not designed to catch this type of
problem. Typesetting SGML document instances
that have malformed tables causes TEX to generate
an error message. The content management system
hides most of the details from the end users. Error
messages generated by TEX are helpful to those well
versed in TEX, but to an average user they are total
gibberish. To avoid this problem we developed a
small program using a variant of Lex3 that compares
the number of column definitions with the number of
actual columns. We further enhanced the program
to process the ampersand character & and make

1 Using a Pentium 166 running on a Novell 4.11 network

with Paradox tables.
2 486DX33 with 32 Meg of RAM.
3 TPLexYacc 3.01, this version of Lex emits Pascal code

instead of C.

TEXNorthEast Conference, March 22 – 24, 1998

192 TUGboat, Volume 19 (1998), No. 2

sure that it was only used as the start of an entity
and that all entities were followed by semicolons.
Making & active and using \csname and \endcsname

allowed TEX to process the SGML entities. The
macros below show how to do this:

\catcode‘\&=\active

\def{\csname ENTITY#1\endcsname}

Push-button Book Generation

Any time the user wants to generate a book, or see
what a book will look like, we can push a button
and have the finished book in a few hours. We have
used TEX to generate completely turn-key database
publishing systems in which the user does not need
to know anything about TEX.

The content management systems we have de-
veloped provide the user with the ability to select
what sections or documents to print. We have also
implemented systems where the user has some lim-
ited capabilities to change how the book is typeset.
For instance, we have developed systems where the
user can select the number of columns, the font sets
to use, the point sizes to use, and the overall page
size. The user cannot enter arbitrary combinations
since the selection is limited to combinations that
would work.

Test and Fit

Push-button generation means that the user does
not need to make any decision on the fly about how
the program is to typeset the book.

However, the measuring capabilities of TEX do
allow for runtime calculations. For example, in a
common directory style the phone numbers should
fit into a right-hand column, with the text on the
left. If the phone numbers follow a regular pattern,
as they do in the United States and Canada, then
the width of the phone number column can be
calculated at run time. This is done by setting a
test phone number in an hbox and taking its width.
The advantage of this method is that the fonts can
be changed and TEX will recalculate the column
widths.

Test and fit can also be used in another phone
number situation. Although phone numbers in the
United States and Canada follow a 3-3-4 pattern,
e.g. 301-578-4200, other countries do not follow that
pattern. TEX can measure a foreign phone number
to see if it will fit. This is accomplished by placing
the phone number into an hbox. The width of the
hbox can then be compared to the space allowed on
the line for phone numbers. If the phone number
is larger than the allowed space, the data can be

re-typeset using a smaller or condensed font. This
capability should be used judiciously or the pages
will be aesthetically displeasing.

Widow and Club Control

TEX provides two penalties \clubpenalty and
\widowpenalty that control how paragraphs break.
The paragraph-breaking capability of TEX can be
used for more than just simple lines. One common
rule is to “leave and carry two” entities. That is,
if the book is a list of people, then the require-
ment is that there are always at least two people
prior to and following a column break. The in-
formation for a person may actually take several
output lines. If each person is eventually placed
in a \line and the list of people is typeset as a
paragraph, then setting \clubpenalty=10000 and
\widowpenalty=10000 means that TEX will always
“leave and carry two” people.

One of the limitations of TEX is that its
paragraph-breaking algorithm does not provide mech-
anisms for doing things like “leave and carry three”
or higher. In cases like this the database extraction
program must provide the information to TEX on
where to allow it to break. One way to do this is to
output each entity as a vbox. If TEX is in vertical
mode then a series of vboxes cannot break if there is
no glue between them. Let the database extraction
program count the number of records and insert the
glue and penalty commands at the allowed break-
points. Another option is for the database program
to only output the number of records and let TEX
count the records as it processes them add glue at
the appropriate points. So even though TEX does
not provide the capability to “leave and carry three”
this can easily be done in a content management
system by having the database extraction program
work with TEX.

Suppression and Selection

The macro capabilities of TEX provide powerful se-
lection capabilities allowing TEX to act as a filter.
For example, one application we developed typeset
a large directory of phone and fax numbers. The
sorting was complicated and the extraction from
the database took several hours. We were able to
produce two different books from the same compo-
sition file. The first book listed all the entries. The
second book listed only those entities that had fax
numbers. Because the books were generated from
the same data file it was guaranteed that the order
of the records in the books could not change.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 193

TEX can also filter out visually redundant in-
formation. Normalization is the process of removing
redundant information from a database. Extracting
the information from a database will denormalize
the data. Consider the following simple example.
The database contains three tables: a department
table containing the id number of the department
and the name of the department, a person table con-
taining the name and phone number of the person
and a link table that connects the department and
person tables. The SQL statement to select all the
records from the tables for composition could look
something like this:

SELECT DISTINCT

D0.DeptId,

D0.Department,

D2.PersId,

D2.First,

D2.Last,

D2.PersPhone

FROM

"Department.DB" D0,

"Link.db" D1,

"Person.DB" D2

WHERE

(D1.DeptId = D0.DeptId) AND

(D2.PersId = D1.PersId)

ORDER BY

D0.Department,

D2.Last,

D2.First

When the resulting answer table is output using
descriptive tags the result would be a file looking like
this:

\StartRecord

\DeptId{2}

\Department{Medlars}

\PersId{3}

\FirstName{Bilbo}

\LastName{Baggins}

\PersPhone{5678}

\EndRecord

\StartRecord

\DeptId{2}

\Department{Medlars}

\PersId{2}

\FirstName{Jeannine}

\LastName{McArthur}

\PersPhone{1234}

\EndRecord

\StartRecord

\DeptId{1}

\Department{Programming}

\PersId{1}

\FirstName{Jeffrey}

\LastName{McArthur}

\PersPhone{4200}

\EndRecord

All the fields are output into the composition
file with a start and end tag for each record. It is
usually undesirable to reprint duplicate information.
Using combinations of \def, \let, and \ifx, TEX
can filter out the duplicate information. Doing this
type of filtering, or deduping, in TEX simplifies the
generation of the composition file.

TEX can also do simple rearrangement of the
data. Below is a set of simple macros that demon-
strate these capabilities.

\let\StartRecord=\empty

\let\LastDept=\empty

\def\DeptId#1{\def\ValDeptId{#1}}

\def\Department#1{\def\ValDepartment{#1}}

\def\PersId#1{\def\ValPersId{#1}}

\def\FirstName#1{\def\ValFirstName{#1}}

\def\LastName#1{\def\ValLastName{#1}}

\def\PersPhone#1{\def\ValPersPhone{#1}}

\def\EndRecord{

\ifx\LastDept\ValDeptId\else

\let\LastDept=\ValDeptId

\medbreak

\line{\bf\ValDepartment\hfil}

\fi

\line{\ValLastName,

\ValFirstName

\hfil

\ValPersPhone}

}

TEX could also be used to select which entries
to typeset. The same data file could be used
to generate a complete directory, and a separate
directory for each department. For the complete
directory TEX would set each record. For the
department records TEX could test the department
id.

Various Output Options

TEX generates DVI files. None of our end users
were interested in DVI files. Using tools like DVIPS,
and recently pdfTEX we have created PostScript and
PDF files for our clients, as well as finished camera
ready pages and film. We have used TEX to generate
questionnaires to be programmatically faxed.

TEXNorthEast Conference, March 22 – 24, 1998

194 TUGboat, Volume 19 (1998), No. 2

TEX generated faxes. The process of using TEX
to fax questionnaires is outlined below:

1. The application generates a composition file.

2. The application executes TEX which composes
the file and generates a DVI file. TEX generates
an auxiliary file listing the account number,
starting page

and ending page of each questionnaire.

3. The application reads in the auxiliary file.

4. The application executes DVIPS to extract each
questionnaire using the starting and ending
page number from the auxiliary file. The name
of the resulting PostScript file is based on the
account number.

5. Acrobat Distiller converts the PostScript File
into a PDF file and embeds all the needed
graphics and fonts.

6. A second application watches the output di-
rectory from Acrobat Distiller. The file name,
which is based on an account number, is used
to look up the fax number. Using OLE, Ac-
robat Exchange is executed and the PDF file
is opened. Using DDE and WinFax, the fax
number is set. Using OLE, Acrobat Exchange
is told to print the PDF to the Fax.

Caveats

Developing macros for database publishing requires
a full understanding of all of the capabilities of
TEX. Macro packages like LATEX are designed for
authoring and they were not designed for database
publishing. The macro writer must understand how
to write output routines, use \mark, and even the
list capabilities of TEX as described in Appendix D
of The TEXbook. Compared to desktop publishing
systems this is a very high threshold. Finding and
training people to write macros of this complexity
is a difficult task.

All the logic to typeset the pages must be
programmed into TEX. The rules for when to break,
when to kern, and so on must be incorporated into

the macros. This means that the output pages are
very regular. One often-heard complaint is “can’t
you change the typesetting in just this one case?”
TEX is not WYSIWYG. This means that the user of
a turn-key system that uses TEX as its typesetting
engine may not allow any visual fine-tuning of the
pages.

Although TEX is very robust, many DVI trans-
lation programs have problems with complex pages.
We have seen numerous implementations fail try-
ing to process large complex pages. Many DVI

translation programs are “fussy” about the types
of graphics they will use. Integration of “off-the-
shelf” versions of TEX is relatively easy. Integration
of “off-the-shelf” DVI translation programs has been
problematic.

Most implementations of TEX and the related
DVIware for the PC use environment variables. The
tools assume that there is only one implementation
of TEX being used. Configuration management is
much more difficult than it should be.

The most serious disadvantage to using TEX as
the back end system is the difficulty finding people
with the aptitude to learn and understand how
to write complex macros. It is relatively easy to
find someone to use a desktop publishing system.
Finding someone who can write the macros for a
content management system is a lot harder. We
are always looking for qualified people. The lack of
qualified people is part of the overall shortage in the
computer industry.

Conclusion

TEX has proven to be a valuable tool in developing
content management systems, but it cannot be
quickly adopted. It takes time and commitment to
find, hire, and train the people needed to develop
the macros. There are disadvantages to using TEX
as the typesetting engine, but the disadvantages are
compensated for by the quality and speed of the
resulting system.

TEXNorthEast Conference, March 22 – 24, 1998

Presenting Mathematics and Languages in Web-pages, using LATEX2HTML

Ross Moore
Mathematics Department

Macquarie University

Sydney, Australia 2109

ross@mpce.mq.edu.au

http://www-math.mpce.mq.edu.au/~ross/

Introduction

LATEX2HTML is a very flexible tool for creating Web
pages to display the information contained in a man-
uscript prepared using LATEX. As of July 1998, the
current version is LATEX2HTML v98.2. It runs un-
der Unix, Linux, Windows NT, Windows’95, OS/2
and DOS. The latest released version, with online
manual for browsing, can be obtained from its dis-
tribution site1, in the USA or the European mirror2.
On CTAN, look under support/latex2html. There
is a developers repository3 for minor updates and
(α- or β-) development versions.

In the following sections we first discuss some
general considerations for Web pages using HTML,
including some pragmatic tips for authors wishing
to use the LATEX2HTML translator. This is followed
by a study of the different ways that are available for
the presentation of mathematics using LATEX2HTML,
discussing the available options and when a partic-
ular approach may be most appropriate. Further
examples are presented on how to use LATEX2HTML

to produce multi-lingual documents.

General considerations: Why HTML?

For distribution of text-like data on the Internet
the HTML formats, in their various versions, are
very efficient and widely supported in Web browser
software on all computing platforms. Thus a con-
verter that produces documents using HTML can
guarantee that the information to be presented is
accessible to the widest possible audience. Further-
more, there is no requirement for ‘plug-in’ modules
or other special software, beyond what is normally
available with a Web browser.

Since an .html file contains just editable text, it
is easily modified in any editor. This property alone
adds a significant level of flexibility to any transla-

1 http://www-dsed.llnl.gov/files/programs/unix/

latex2html/
2 ftp://ftp.rzg.mpg.de/pub/software/latex2html/
3 http://cdc-server.cdc.informatik.tu-darmstadt.de/ la-

tex2html/

tion tool. If the result of the automatic translation
is not quite what is desired, it is a simple matter to
find the place where a correction is necessary and
do it ‘by hand’.

Even if the translation is flawless, at some time
in the future there may be a change desired in the
information being presented. For example a name
or address may change, or a different graphic image
may be desired, or a hyperlink to some external site
may become invalid so needing to be replaced by an-
other. Such minor alterations and updates can be
done without the need to reprocess the whole docu-

ment from the original LATEX source (which may no
longer even be available).

Another flexible aspect of HTML is that the
reader has control over the browser window’s char-
acteristics. This includes size, style and colour of the
text-font in which most of the information is to be
presented, as well as the location and shape of the
viewing window. The reader can customise these
properties to suit personal requirements and pref-
erences. This is a feature not available with other
data formats, such as .dvi, .pdf or PostScript.

Mathematics with LATEX2HTML

Figure 1 shows how pieces of mathematics may be
presented, using LATEX2HTML’s default settings for
the versions released during 1997 and 1998. This is
a ‘screen-shot’ of a portion of a Web page generated
using LATEX2HTML. Fuzziness in the image is due
to the lower resolution for on-screen display than is
typically used with a printed version. Furthermore
“anti-aliasing” is used with the font characters, to
avoid a jagged appearance.

The LATEX code for this example is given at
the end of this article. It displays many common
features of typeset mathematics:

• Greek letters and calligraphic (script) symbols;

• superscripts, subscripts, fractions and deriva-
tives;

• large operators, such as
∫

and
∑

with limits;

195 TEXNorthEast Conference, March 22 – 24, 1998

196 TUGboat, Volume 19 (1998), No. 2

Figure 1: Some mathematics in a Web document produced by LATEX2HTML, using the default settings.

• aligned arrays of equations (in particular the
subequations environment from the amsmath
package);

• extended brackets and parentheses.

Notice how most of the mathematics looks just like
it has been typeset in TEX, because that is precisely
what has happened. These expressions are actually
images, in gif format.4 This is achieved by typeset-
ting each mathematical expression on a single page,
processing the .dvi-file using dvips, then rendering

4 Alternatively images can be generated using the png

graphics format.

the resulting PostScript5 files using Ghostscript.6

For a better quality on-screen appearance in these
low-resolution images, the ‘anti-aliasing’ technique
is employed to soften the edges of otherwise ‘blocky’
font characters. For readability on-screen, images
of mathematical expressions are normally made to
correspond to a 14 pt font-size. Like most choices in
LATEX2HTML, this can be altered.7

5 PostScript is a registered trademark of Adobe Systems
Inc.

6 Ghostscript is a product of Aladdin Enterprises, Menlo
Park, CA. Version 4.02 or later is required for ‘anti-aliasing’
effects.

7 . . . by adjusting the value of the $MATH SCALE FACTOR

configuration variable.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 197

‘Simple math’. Some of the mathematical expres-
sions in figure 1 do not use an image; e.g., the inline
expression y = B(x) and most of the ‘=’ signs in
the first alignment. For these the whole expression
can be represented using ordinary font characters,
so this is what is done—with names set in italics, of
course.

If any special symbol, indeed any macro (apart
from those listed below), occurs within a mathemati-
cal expression then an image is made of the whole ex-
pression. To LATEX2HTML users this is known as the
“simple math” strategy. Superscripts, subscripts
and some simple type-face macros are handled ap-
propriately. Allowable macros include \mathbf,
\mathrm, \mathtt, \mathit and \boldsymbol, as
well as the recent \mb addition to LATEX. Further-
more \textbf, \textrm, \texttt, \textit are al-
lowable, but not recommended.

Although the appearance of expressions pre-
sented using ‘simple math’ are generally not as at-
tractive as with an image, the benefit is that less
information needs to be transferred across the net-
work. For example, the expression N (A) = R(B)
results in HTML code:

<!-- MATH: $\mathcal{N}(A) = \mathcal{R}(B)$ -->

<IMG

WIDTH="104" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"

SRC="img14.gif"

ALT="$\mathcal{N}(A) = \mathcal{R}(B)$">

Notice how the TEX source is included as a com-
ment. This ensures that the information is available
in the .html file, in case the image fails to load suc-
cessfully. When sufficiently short, the source is also
included within the ALT attribute of the tag.
This allows a textual representation to be shown by
browsers which do not support images (e.g., lynx) or
when image support has been deliberately disabled.

Compare this with the amount of code gener-
ated for y = B(x), using ‘simple math’:

when <I>y</I>=<I>B</I>(<I>x</I>) then one has

It is not difficult to appreciate the advantages to
this ‘simple math’ approach. Furthermore, in the
previous paragraph there was no mention of the
actual size of the file img14.gif that needs to be
transferred to show the image, and the extra server-
connection required to request it be sent. In prac-
tice these are more significant than the extra text
required within the .html file. Furthermore images
do not rescale automatically when the font-size is
changed within the browser.

It is clear that ‘simple math’ is a good strategy
when a Web document contains only simple mathe-
matical expressions, for then the overhead to request
and transfer images is minimal. However when a lot

of quite complicated mathematics is to be presented,
this approach is not ideal. We later discuss alterna-
tive strategies available with LATEX2HTML.

Alignment environments. Equation alignments
are achieved using HTML’s <table> tag. Such tags
became available as a standard part of HTML with
the version 3.2 recommendation in early 1997. Some
browsers provided support earlier than this.

Each cell in the table is treated as a separate ex-
pression, for deciding whether to use “simple math”
or to make an image. Compare the different size of
the ‘=’ signs in the equation beginning γ′ = . . . in
figure 1. The first uses the browser’s font whereas
the second one is part of an image.

Notice also that equation numbers are placed in
a separate column of cells within the <table>. The
leqno document-class option causes numbering to be
put on the left-hand side, as with LATEX.

Overriding ‘simple math’. The default ‘simple
math’ strategy can be turned-off using the -no math

command-line switch. That is, run LATEX2HTML on
the LATEX source file using the command:

latex2html -no_math ... myfile.tex

where the ‘. . . ’ indicate the possible presence of
other command-line switches. This will provide a
consistent style for the mathematical expressions in
all parts of the environment, as in an on-paper type-
set version. This can be seen in figure 2, showing the
inline mathematics portion of figure 1.

Figure 2: Inline mathematics, without using the
‘simple math’ strategy. An opaque background
shows the size of images; extra space is included
to allow correct alignment. (Normally image
backgrounds are transparent.)

There will be more images than when ‘simple
math’ is used. An appropriate situation for this
strategy might be when the complete HTML doc-
ument is available on the local machine or network
(LAN), so that expensive file-transfers are not an
issue.

Normally images are created with transparent
backgrounds.8 In figure 2, an opaque background
has been used to show the size and alignment of the
images, with respect to the surrounding text. Notice

8 This is overridden by the -no transparent command-
line switch.

TEXNorthEast Conference, March 22 – 24, 1998

198 TUGboat, Volume 19 (1998), No. 2

that when there is a ‘descender’ the image contains
extra white space below the baseline. This allows
the attribute to
position the image correctly. With no descender
 is appropriate.

The extra height causes wide line-spacing in
older browsers. This anomaly can be fixed for more
recent browsers, by using the .css stylesheet[7] that
LATEX2HTML produces automatically. One needs to
set the line-height property to a fixed amount; e.g.,

P.INLINE { line-height : 20pt }

Now within the .html pages, change the <p> tag
to <p class="inline"> for paragraphs containing
over-sized images. The technique was used with fig-
ure 8. Future versions of LATEX2HTML will handle
this automatically, at least when preparing code ac-
cording to HTML 4.0 specifications.

Images of aligned environments. In earlier ver-
sions of LATEX2HTML an image was made of whole
eqnarray and equation and other environments.
Before <table> tags were recommended within the
HTML 3.2 standard, this was necessary and equa-
tion numbering was included as part of the image.
Now this effect can be achieved, when desired, in
several different ways.

Easiest is to request that LATEX2HTML produce
HTML code conforming to the version 2.0 standard,
using the command-line option:

latextohtml -html_version 2.0 ... myfile.tex

However this will disallow other constructions; e.g.
forcing images also of tabular environments. Using
also -no math ensures images of all inline formulae
as well.

Alternatively, images can be forced selectively
by including an \htmlimage command within the
environment. This command takes an argument
which allows extra graphic effects to be specified for
the image; see the User Manual[1] for the available
effects:

\begin{eqnarray}

\htmlimage{}

...

...

\end{eqnarray}

Finally, the makeimage environment creates an
image of whatever LATEX code it contains. Both
this and the \htmlimage command require the html
package be loaded within the document preamble.

\begin{makeimage}

\begin{eqnarray}

...

...

\end{eqnarray}

\end{makeimage}

Image Reuse and Reduction Strategies

A document such as a research paper, thesis or class
notes, can require a lot of mathematics. This can
lead to many images. LATEX2HTML automatically
detects when LATEX code is essentially identical to
that used for an image already occurring within the
document. A single image serves all such instances.
However, even with this ‘image reuse’ the total num-
ber of images can still be large, giving significant
loading delays.

math extension. One way to reduce these effects
is to create more images, but of smaller pieces of
mathematics. The idea is to extend the ‘simple
math’ idea to use the text-font whenever possible.
Only when a symbol or sub-expression cannot be
represented adequately using the text-font is an im-
age made. Any given HTML page can be expected
to contain more images this way, however the same
image may occur in many places on that page. The
total size (in bytes) needed for images is reduced
significantly, compared to when images are made of
complete expressions.

Typically the first page is slow to load, as the
images are downloaded across the network. Later
pages in the same document require less download
time as most of the required images will have been
cached locally by the browser, from being present
within earlier pages.

To activate the extra processing required for
this strategy one must load LATEX2HTML’s special
math extension, as follows:

latex2html -no_math -html_version 3.2,math ...

UNICODE fonts. Further reduction in the number
of images is obtained by presuming that the browser
will provide at least limited support for the unicode

font encoding9. In particular there should be sup-
port for Greek letters, both upper and lower-case,
and some extra mathematical symbols.

To activate this, append the unicode extension
to the -html version command-line switch (don’t
leave any spaces):

... -no_math -html_version 3.2,math,unicode ...

Compare figure 4 with figure 3 to see the effect. This
strategy is not yet ideal; notice the different styles of
ǫ with and without the overline accent in the lower
equations. Use of \varepsilon within the LATEX
source alleviates this discrepancy; alternatively it
may become possible for browsers to render accented
unicode characters.

9 This is the case with the most recent versions of the
Netscape Navigator and Microsoft’s Internet Explorer

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 199

Figure 3: With the math extension loaded extra parsing of mathematics produces a mix of
font-characters and smaller images. Opaque image backgrounds are used here only to show clearly
which parts are images. In normal use these backgrounds are transparent.

Figure 4: When the unicode extension is also loaded, Greek letters and other symbols can use
font-characters also. This requires the browser to have some support for unicode.

Browser inadequacies. The commonly available
Web browsers are continually improving, as more of
the HTML 4.0 recommendations[7] are implemented.
However some aspects of less advanced effects still
create difficulties.

Look at the placement of superscripts and sub-
scripts within figure 6. In mathematics these should
be positioned above one another, as in Bα

ij . Further-
more the browser places extra space after italiced
text. This is clearly evident in figure 5.

Figure 5: A browser’s placement of multiple
superscripts and subscripts is not always ideal for
mathematical usage.

Figure 6: Some browsers place extra space after
italiced text, over-compensating for the slope. This
is particularly awkward for placing subscripts.

Such details should be fixed in future releases of
browser software. Alternatively it may become pos-
sible to overcome these deficiencies within the HTML

code, by specifying ‘box-like’ placement properties
with a CSS style-sheet[7]. This requires browsers to
support these advanced features.

Future support for MathML. As support for the
new XML[7] (similar to HTML but more versatile)
is incorporated into Web-browsers, it will become
appropriate to extend the translation capabilities of
LATEX2HTML. In particular, an ability to prepare

TEXNorthEast Conference, March 22 – 24, 1998

200 TUGboat, Volume 19 (1998), No. 2

Figure 7: Bibliography entries using images for text of non-Latin based alphabets.

mathematics according to the MathML[7] markup
scheme is a goal for future development.

Multi-lingual documents

Representing different languages within the same
Web document presents problems similar to those
with mathematics. There is no real difficulty when
the languages are all based on the latin alphabet,
provided any required accented letters are all avail-
able within a single font encoding.

The ISO-8859 encodings contain complete char-
acter-sets for various languages. Modern browsers
provide support for Web pages having some of these
as the designated character-set. LATEX2HTML has
specific support to produce pages using Latin-1, . . . ,
Latin-6 (i.e. ISO-8859-1, 2, 3, 4, 9 and 10). A par-
ticular character set is specified using an extension
to the \html version command-line switch. This is
fully compatible with other extensions; e.g.

... -html_version 3.2,latin2,math,unicode ...

Images of special fonts. A single encoding rarely
suffices when non-Latin languages are also required.
Using images is a convenient strategy. Figure 7
shows some bibliographic entries10 using characters
from the cyrillic alphabet and sinhalese script.

LATEX2HTML recognises TEX’s \font command
as declaring a macro that will require an image to
be made of enclosing environment. For example the
cyrillic text was produced using:

\font\wncyr = wncyr at 10pt

...

...

{\wncyr Bel\char126koviq, A.A.} ...

Pre-processing for exotic scripts. The sinhalese
script in figure 7 was generated in a similar way

10 These are taken from a LATEX2HTML conversion of
the ‘Sinhala-TEX’ documentation[3], available at: http://

www-texdev.mpce.mq.edu.au/l2h/indic/Sinhala/lreport/

to the cyrillic, but only after the source is filtered
through Haralambous’ Indica preprocessor, part of
‘Sinhala–TEX’[3]. After pre-processing, the LATEX
source contains parts like:

{\SHb\char29a\char8}{\SHb\-\char69i}{\SHb...

in which each grouping generates an image for the
appropriate letter or syllable. This is acceptable for
small pieces of text in the exotic script. However
many images are needed when there are whole para-
graphs and pages of the script.

Automatic pre-processing. In figure 8 we see a
portion in which each paragraph is presented as a
separate image. One way is to use the makeimage

environment, as was done with mathematics.
A better way is to use LATEX2HTML on the

manuscript, before pre-processing with Indica. Since
the alphabets do not map one-for-one with the latin
alphabet, a transliteration or transcription scheme
is employed. Multi-letter combinations correspond
to single letters or syllables in the exotic language.
Portions of the manuscript using such schemes are
included with the other parts to be rendered as im-
ages, just as with pieces of mathematics. The dif-
ference is that these portions need not be valid TEX
code, requiring pre-processing first. This is done as
an extra step prior to image-generation.

Systems have been devised for the typesetting
of various languages using TEX, after first using such
a pre-processing step. A suite of packages for LATEX
and appropriate implementations for LATEX2HTML,
known as IndicTEX/HTML[4], automate this process
with some of the pre-processors available for In-
dic languages and traditional scripts. This includes
support for Avinash Chopde’s ’ITRANS’ preproces-
sor [5] which handles many different languages and
transliteration schemes.

The pre-processor was used this way for the
page from which figure 8 was extracted. Some of

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 201

the HTML coding is shown in figure 9. Notice how
the original transliteration is included as a comment.
Just as with mathematics, this ensures the informa-
tion is available even when the image fails to render.

UNICODE fonts, Ω and Λ . As unicode becomes
more widely used, it should become possible to use
its extensive range of characters, instead of images.
Furthermore, it should become possible to employ
Ω[2][6], via its LATEX variant Λ, in conjunction with
LATEX2HTML. It could be used for several tasks:

• as the pre-processing engine;

• replacing LATEX for the typesetting necessary
when producing images;

• to generate unicode font-entities.

References

[1] Nikos Drakos & Ross Moore, “The
LATEX2HTML Translator”. Documentation and
User Guide accompanying the software; on-
line version at http://www-dsed.llnl.gov/

files/programs/unix/latex2html/manual .

[2] Yannis Haralambous & John Plaice, “ΩTimes
and ΩHelvetica Fonts Under Development:
Step One”, TUGboat, The Communications of
the TEX Users Group, Volume 17, No. 2 (1996)
pp. 126–146.

[3] Yannis Haralambous & Dominik Wujastyk,
“A Sinhalese TEX System”, documentation
for ‘Sinhala–TEX’ and the Indica preproces-
sor, 1994; available at http://ctan.tug.org/
ctan/tex-archive/languages/sinhala/.

[4] Ross Moore, “IndicTEX/HTML, Traditional
Scripts within Web-pages”, to appear in:
TUG–India, volume 1, 1998; online ver-
sion available at http://www-texdev.mpce.

mq.edu.au/indic/IndicHTML/ .

[5] Avinash Chopde, ITRANS ”Indian Language
Transliteration Package”, A package for print-
ing text in Indian Language Scripts, available
from http://www.aczone.com/itrans/.

[6] John Plaice & Yannis Haralambous, “The Lat-
est Developments in Ω”, TUGboat, The Com-
munications of the TEX Users Group, Volume
17, No. 2 (1996) pp. 181–183.

[7] World Wide Web Consortium, online site at
http://www.w3c.org/Consortium/ ;
HTML 4.0: http://www.w3c.org/Markup/
Stylesheets: http://www.w3c.org/Style/
MathML: http://www.w3c.org/Math/
XML: http://www.w3c.org/XML/

TEXNorthEast Conference, March 22 – 24, 1998

202 TUGboat, Volume 19 (1998), No. 2

Figure 8: Single images are made of whole paragraphs, when pre-processing is delayed until the
image-generation phase.

<!-- INDICA S

‘‘e~ka nambuyine putha~’’ vi~rase~kara katha~va patan gaththe~ nodhannekuta

yamak kiya~ dhena paridhdheni.

-->

<P><IMG

WIDTH="554" HEIGHT="45" ALIGN="BOTTOM" BORDER="0"

SRC="img4.gif"

ALT="\lq\lq e~ka nambuyine putha~’’ vi~rase~kara katha~va patan gaththe~ nodhannekuta

yamak kiya~ dhena paridhdheni."></P>

<!-- INDICA S

‘‘e~ka nambuyi. koLa"mba ugannanava kiyandath puLuvan. i~tath koLa"mba loku

isko~lavalata enne loku lokkange Lamayi. e~ Lamayi thama~ issarahata ho"ndha

tha^nakata enne. i~tath e~ Lamayinge ma~rgayen puLuvan e~ Lamayinge

tha~ththalagen o~na^~ va^dak karava ganna’’

-->

<P><IMG

WIDTH="558" HEIGHT="108" ALIGN="BOTTOM" BORDER="0"

SRC="img5.gif"

ALT="\lq\lq e~ka nambuyi. koLa’’mba ugannanava kiyandath puLuvan. i~tath koLa’’mba lo

ku...

...ma~rgayen puLuvan e~ Lamayinge tha~ththalagen o~na^~ va^dak karava ganna’’"></P>

<!-- INDICA S

‘‘ballata dha~mu. ballata. ballata’’ baladhe~va sina~suNe~ya.

-->

<P><IMG

WIDTH="433" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"

SRC="img6.gif"

ALT="\lq\lq ballata dha~mu. ballata. ballata’’ baladhe~va sina~suNe~ya."></P>

Figure 9: HTML code produced for some of the paragraphs of Sinhalese shown in figure 8, using a
standard transliteration and preprocessed by Indica.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 203

LATEX code for figure 1

The following LATEX code is adapted from pieces of coding provided by Michael Hall11 and Michel Goossens,12

for testing during the development of certain aspects of the mathematics support within LATEX2HTML.

\documentclass[a4paper]{article}

\usepackage{html, amsmath, array, alltt}

\usepackage[dvips]{color}

% ensure \bm is defined if not latest LaTeX

%begin{latexonly}

\providecommand{\bm}[1]{\mathbf{#1}}

%end{latexonly}

\begin{imagesonly}

\providecommand{\bm}[1]{\mathbf{#1}}

\end{imagesonly}

\newcommand{\Range}{\mathcal{R}}

\newcommand{\Ker}{\mathcal{N}}

\newcommand{\Quat}{\vec{\mathbf{Q}}}

\renewcommand{\d}{\partial}

\begin{document}

\htmlhead[center]{section}{Math examples}

\begin{eqnarray}

\phi(\lambda)&=& \frac{1}{2 \pi i}\int^{c+i\infty}_{c-i\infty}

\exp \left(u\ln u+\lambda u \right)du \hspace{1cm}\mbox{for } c\geq 0\\

\lambda & = & \frac{\epsilon -\bar{\epsilon}}{\xi}-\gamma’ -\beta^2 -\ln\frac{\xi}{E_{\rm max}} \\

\gamma & = & 0.577215\dots \mathrm{\hspace{5mm}(Euler’s\ constant)}\\

\gamma’ & = & 0.422784\dots = 1 - \gamma \\

\bar{\epsilon}& = & \mbox{average energy loss} \\

\epsilon & = & \mbox{actual energy loss}

\end{eqnarray}

Since~\eqref{bgdefs} or~\eqref{gdef} should hold for arbitrary

$\delta\bm{c} $-vectors, it is clear that $\Ker(A) = \Range(B)$ and

that when $y=B(x)$ then one has ...

\begin{eqnarray}\label{eqn:stress-sr}

V \bm{\pi}^{sr} & = & \left<

\sum_i M_i \bm{V}_i \bm{V}_i + \sum_i \sum_{j>i} \bm{R}_{ij} \bm{F}_{ij} \right> \\

\nonumber & = & \left< \sum_i M_i \bm{V}_i \bm{V}_i

+ \sum_{i} \sum_{j>i} \sum_\alpha \sum_\beta \bm{r}_{i\alpha j\beta} \bm{f}_{i\alpha j\beta}

- \sum_i \sum_\alpha \bm{p}_{i\alpha} \bm{f}_{i\alpha} \right>

\end{eqnarray}

\begin{subequations}\label{bgdefs}

\begin{align}

B_{ij}^\alpha & = \left(B_{ij}^\alpha\right)_0 + \left(B_{ij}^\alpha\right)_a \label{bdef} \\

\left(B_{ij}^\alpha\right)_0 & = \frac{1}{2}\left(

\frac{\d N_i^\alpha}{\d X_j} + \frac{\d N_j^\alpha} {\d X_i} \right)\label{b0def} \\

\left(B_{ij}^\alpha\right)_a & = H_{ij}^{\alpha \beta} a^\beta \label{budef} \\

H_{ij}^{\alpha \beta} & = \frac{1}{2}\left(

\frac{\d N_k^\alpha}{\d X_i} \frac{\d N_k^\beta}{\d X_j}

+ \frac{\d N_k^\beta}{\d X_i} \frac{\d N_k^\alpha}{\d X_j} \right)\label{gdef}

\end{align}

\end{subequations}

\end{document}

11 Dr. Michael L. Hall, Los Alamos National Laboratory.
12 Dr. Michel Goossens, IT Division, CERN, Geneva

TEXNorthEast Conference, March 22 – 24, 1998

BIBTEX 101

Oren Patashnik

10388 Rue Riviere Verte

San Diego, CA 92131

opbibtex@cs.stanford.edu

Abstract

This paper introduces BIBTEX to those having little or no previous BIBTEX ex-
perience but having at least some familiarity with TEX or LATEX. It also answers
some frequently asked BIBTEX questions, from complete novices as well as from
experienced users.

Introduction

BIBTEX is the bibliography program designed origi-
nally to accompany Leslie Lamport’s LATEX; it now
works with other incarnations of TEX, too. BIBTEX
removes the tedium, and adds some flexibility, in
producing a reference list.1 When BIBTEX creates
your reference list, it’s BIBTEX, not you, minding
the minutiae like ensuring that your reference-list
entries are in the correct order, that every comma
is in place, and that the information is formatted
consistently across entries. Furthermore, a single,
simple, change of bibliography-style name lets you
convert your reference list from style A (which might
order the entries alphabetically, spell out journal
names in full, and list all authors as first-name then
last-name), to a completely different style B (which
might order the entries according to their order of
mention in the text, abbreviate journal names), and
invert just the first author’s first and last names).

The next section of the paper explains how to
use BIBTEX. The final section answers some fre-
quently asked BIBTEX questions.

Getting Started with BIBTEX

To use BIBTEX, you first put your bibliographic in-
formation into a bibliography database file. For ex-
ample, your file mybib.bib (all database file names
end with .bib) might contain an entry like:

@BOOK{knuth:tex,

author = "Donald E. Knuth",

title = "The {{\TeX}}book",

publisher = "Addison-Wesley",

year = 1984,

}

1 Throughout this paper, the term ‘reference list’ is used
generally to refer to what might also be called a ‘bibliography’
or a ‘list or sources’ or anything similar.

The @BOOK tells BIBTEX that this is a book entry
type. The knuth:tex is the database key, which is
a sequence of characters to be used as the name for
this entry. And the rest of the entry comprises four
〈field〉 = 〈field-value〉 pairs appropriate for a BOOK

entry type. In general you will have many such en-
tries in a database file; you might also have multiple
database files.

Once you’ve entered the bibliographic informa-
tion into the database file(s), the hard part is done.
For the easy part, you put into your (LA)TEX2 source
file citations like

... in the \TeX{}book~\cite{knuth:tex} ...

The \cite command’s argument here, knuth:tex,
is called a cite-key, and must match the correspond-
ing database-key. (LA)TEX might typeset this \cite
command as

. . . in the TEXbook [23] . . . or

. . . in the TEXbook23 . . . or

. . . in the TEXbook (Knuth, 1984) . . .
depending on the citation style. (LA)TEX’s default ci-
tation style uses a number in brackets, and for that
citation style, together with an appropriate bibliog-
raphy style, the corresponding reference-list entry
might look like:

23. Donald E. Knuth. The TEXbook. Addison-
Wesley, 1984.

Besides the citation commands, you also put into
your (LA)TEX source file two BIBTEX-related com-
mands:

\bibliography{mybib}

\bibliographystyle{plain}

The \bibliography command does two things; it
tells (LA)TEX to put the reference list at that spot in
your document, and it tells BIBTEX which file(s) to

2 The term ‘(LA)TEX’ is used to mean either LATEX or plain
(or other variations of) TEX.

TEXNorthEast Conference, March 22 – 24, 1998 204

TUGboat, Volume 19 (1998), No. 2 205

BIBTEX

.aux .bst .bib

.bbl .blg

❅
❅

❅
❅❅❘ ❄

�
�

�
��✠

✁
✁

✁
✁✁☛

❆
❆
❆
❆❆❯

Figure 1: BIBTEX’s input and output files.

use for the bibliographic database, here just the sin-
gle file mybib.bib. The \bibliographystyle com-
mand tells (LA)TEX nothing, but tells BIBTEX which
bibliography style to use, here the standard style
plain; bibliography style file names end with .bst,
thus the relevant file is plain.bst in this case.

So with your database file(s) and your (LA)TEX
source file structured appropriately, your citations
are formatted according to the citation style, and
your reference list is formatted according to the bib-
liography style.

To actually produce the typeset document, you
run (LA)TEX, BIBTEX, (LA)TEX, (LA)TEX. The first
(LA)TEX run writes, to an .aux file, information for
use by BIBTEX— which bibliography style to use,
which database file(s) to use, and which database
entries to include. The BIBTEX run reads all that
information from the .aux file, reads the specified
database (.bib) file(s), formats the reference list
according to the instructions in bibliography style
(.bst) file, and writes its output onto a .bbl file.
The next (LA)TEX run reads the .bbl file and incor-
porates the reference list into the document. The
final (LA)TEX run fixes the references into the refer-
ence list. Figure 1 shows the files that BIBTEX uses.
The .blg file is BIBTEX’s log file, in which BIBTEX
records any warning or error messages.

To try using BIBTEX with LATEX, put the six-
line BOOK entry shown on the previous page into a
file called mybib.bib, and then, into a file called
mypaper1.tex, put these six lines of LATEX:

\documentclass{article}

\begin{document}

The \TeX{}book~\cite{knuth:tex} is good.

\bibliography{mybib}

\bibliographystyle{plain}

\end{document}

Exactly how you run LATEX and BIBTEX is system-
dependent, but on my system I type four commands:

latex mypaper1

bibtex mypaper1

latex mypaper1

latex mypaper1

To try using BIBTEX with plain TEX, create the file
mybib.bib as above, and then put into a file called
mypaper2.tex these seven lines of plain TEX:

\input btxmac

The \TeX{}book~\cite{knuth:tex} is good.

\medskip

\leftline{\bf References}

\bibliography{mybib}

\bibliographystyle{plain}

\bye

To run mypaper2 through TEX and BIBTEX on my
system I simply type

tex mypaper2

bibtex mypaper2

tex mypaper2

tex mypaper2

But mypaper2 \inputs the file btxmac.tex, which
contains the macros that make BIBTEX work with
plain TEX. Those macros are a standard part of
most TEX distributions, but if they’re not a part of
yours, you’ll have to go fetch a copy from CTAN in
tex-archive/macros/plain/contrib/.

That’s a brief introduction to BIBTEX. The fol-
lowing sources provide further details. Leslie Lam-
port’s LATEX manual [3] explains how to use BIBTEX
with LATEX. In particular, section B.1 describes the
.bib-file format in detail. The file btxmac.tex [1]
documents its own use, with or without Karl Berry’s
eplain.tex package (for which the btxmac macros
were originally written). The “BIBTEXing” docu-
ment [4], which is distributed along with BIBTEX
itself, contains further hints for BIBTEX users. The
“Designing BIBTEX Styles” document [5], also dis-
tributed with BIBTEX, explains the postfix stack-
based language used to write BIBTEX bibliography
styles (.bst) files. The LATEX Companion [2], by
Michel Goossens, Frank Mittelbach, and Alexander
Samarin, summarizes much of the information con-
tained in the sources above, and it describes some
of the tools available for helping with BIBTEX bib-
liographies. Norman Walsh’s Making TEX Work [7]
also describes such tools. (Many users find the tools
for managing bibliographic database files to be par-
ticularly useful.) BIBTEX’s standard bibliography
styles, like plain, are based on Mary-Claire van Le-
unen’s A Handbook for Scholars [6]. That book is

TEXNorthEast Conference, March 22 – 24, 1998

206 TUGboat, Volume 19 (1998), No. 2

worthwhile reading for anyone wanting to design a
bibliography style.

Frequently Asked BIBTEX Questions
(FABQs)

The questions in this section are ordered, roughly, by
user sophistication, with the earlier questions com-
ing from the least experienced users.

FABQ: Can I include an entry in the reference list
without having to give an in-text citation for it?

Answer: Yes. If there’s a \nocite{my-ref} in
your (LA)TEX source file, the entry whose database-
key is my-ref will appear in the reference list but
without a corresponding in-text citation.

FABQ: Can I include all the entries in my database
in the reference list without my having to \cite or
\nocite all of them explicitly?

Answer: Yes. Putting a \nocite{*} command in
your (LA)TEX source file has the effect of putting in
that spot of your source file a \nocite command for
each entry in your database.

FABQ: If I can’t find a bibliography style to my
liking, how can I make my own bibliography style
(.bst) file?

Answer: The .bst language is fairly flexible, but
it’s meant to be programmed, except for simple
changes, by reasonably experienced programmers.
Patrick Daly’s custom-bib/makebst package, on
the other hand, allows nonprogrammers, too, to cre-
ate their own bibliography styles.

FABQ: How can I have two different database files
use the same set of abbreviations without duplicat-
ing the abbreviations?

Answer: If you put all your abbreviations, like

@STRING{A-W = "Addison-Wesley"}

into a database file, say abrvs.bib, containing just
abbreviations, and if you list that file first in the
\bibliography command, then all other .bib files
listed in that command may use the abbreviations
in abrvs.bib. For example, two files cs-books.bib
and math-books.bib may have entries that use the
field

publisher = A-W,

if the \bibliography command looks like

\bibliography{abrvs,cs-books,math-books}

FABQ: How can I keep BIBTEX from converting all
my journal-article titles to lower case?

Answer: Technically, it’s the bibliography style
file, not BIBTEX itself, that’s doing the case conver-
sion. Many bibliography styles (The Chicago Man-

ual of Style, for example) say that a reference-list
entry for a journal article should have the article ti-
tle converted to lower case, because it is a smaller
thing inside a bigger thing, but should have the title
of the bigger thing — the journal title itself— left in
uppers-and-lowers form (in which you capitalize the
first word, and, in most styles, the first word after
a colon— which indicates a subtitle — and all other
words except articles and unstressed conjunctions
and prepositions). But if you don’t like that style,
it’s a simple change to the .bst file to eliminate the
case conversion. For example, many .bst files will
have something like:

FUNCTION {format.title}

{ title empty$

{ "" }

{ title "t" change.case$ }

if$

}

That’s the function that converts the titles of, for ex-
ample, journal articles, from uppers-and-lowers form
to lowercase. Changing that function to

FUNCTION {format.title}

{ title field.or.null

}

will eliminate the case conversion.

FABQ: How can I change the citations from using
brackets to using parentheses or superscripts.

Answer: Certain bibliography style (.bst) files
have accompanying (LA)TEX style files; make sure
you are using the accompanying (LA)TEX style file
if it’s required. For example, if you are using
the apalike bibliography and citation style, which
uses parentheses rather than brackets in its cita-
tions, you need, in addition to apalike.bst, either
apalike.sty (under LATEX) or apalike.tex (under
plain TEX). You invoke those files with a

\usepackage{apalike}

command under LATEX, or a

\input apalike

command under plain TEX. If there is no such ac-
companying (LA)TEX style file for your .bst file, you
must redefine \cite and any other relevant citation
command yourself.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 207

FABQ: Sometimes I enter an author in my database
file as

author = "D.E. Knuth",

but in my reference list the author appears without
the middle initial, as just ‘D. Knuth’ —what’s going
on?

Answer: Probably you are using a bibliography
style that automatically abbreviates first names to
just initials. In this case, BIBTEX thinks that ‘D.E.’
is a single name, rather than two initials, because
there is no space between the initials, and the style
abbreviates this to ‘D.’ The solution is to, in the
database file, insert a space between the initials:

author = "D. E. Knuth",

If you really want to close up the space between
initials in the output, it’s a simple matter to change
the bibliography style file to do that.

FABQ: How can I have other BIBTEX questions
answered?

Answer: Post them to the comp.text.tex news-
group; I’ve been known to send private email replies
to questions that seem to receive inadequate answers
in that newsgroup.

References

[1] Karl Berry and Oren Patashnik. btxmac.tex.
Macros to make BIBTEX work with plain TEX;
current version 0.99k, 13 November 1995.

[2] Michel Goossens, Frank Mittelbach, and Alexan-
der Samarin. The LATEX Companion. Addison-
Wesley, 1994.

[3] Leslie Lamport. LATEX: A Document Prepara-

tion System. Addison-Wesley, second edition,
1994.

[4] Oren Patashnik. BIBTEXing. General documen-
tation for BIBTEX users, contained in the file
btxdoc.tex, 8 February 1988.

[5] Oren Patashnik. Designing BIBTEX styles. Doc-
umentation for BIBTEX style designers, con-
tained in the file btxhak.tex, 8 February 1988.

[6] Mary-Claire van Leunen. A Handbook for Schol-

ars. Oxford University Press, revised edition,
1992.

[7] Norman Walsh. Making TEX Work. O’Reilly
& Associates, 103 Morris Street, Suite A, Se-
bastopol, CA 95472, 1994.

TEXNorthEast Conference, March 22 – 24, 1998

One-Document Scientific Publishing for Print and Web/CD

Peter Signell
Physics and Astronomy Department

Michigan State University

East Lansing, MI, 48824

signell@physnet.pa.msu.edu

One-content document, several auxilliaries

When a document must be published in more than
one version and must also undergo periodic revi-
sion, the use of a different stored manuscript for
each version may easily result in the versions get-
ting out of step with each other, so it is consid-
ered good practice to make arrangements to have
just one stored master version. This is especially
important if the different versions vary greatly in
the order in which the content elements are pre-
sented, as they are likely to do when one version
is for the print medium and another for the Web
or for CD-ROM. With all versions sharing the same
master content document, each version must have
its own auxiliary non-content documents specify-
ing the version’s unique architecture and formatting.
Then any content revisions are made only to the
master content document and any format revisions
for a particular version are made only to the docu-
ment which specifies the formatting of that partic-
ular version. This process is quite familiar to LATEX

document managers who often separate formatting
from content in order to maintain uniform format-
ting throughout a document, throughout a product
line, or across revisions. In LATEX, the formatting
information is usually placed in one or more auxil-
iary “style files”, some of which are shared among
different printed versions of the material or between
different documents, a kind of “inheritance.” In this
paper we discuss some experiences with extending
that publication model, of one master content doc-
ument and auxiliary architecture and content doc-
uments, to the case of simultaneous print and Web
publication. Along the way, we discuss the differ-
ences between the screen and print media and the
implications for the auxiliary files, new linking op-
portunities in the Web version, and ways to move
the content document toward compatibility with the
new Extensible Markup Language, XML.1

1 Commented links to documents on XML can be found
at www.sil.org/sgml/xml.html and there are answers to fre-
quently asked questions at www.ucc.ie/xml.

Overview of media differences

When a document is to be published both in print
and on the Web, the formatted print and Web ver-
sions are likely to take rather different forms. This
is because of the differing characteristics of the two
media. For our present purposes, there are four
main ways in which print presentation differs from
computer-screen presentation: (1) the print medium
has much higher resolution then the computer screen
so scientific text can be packed much more densely
in a print version; (2) the effective dimensions of
the computer user’s browser window can vary over a
wide range, even at the whim of the user, in contrast
to the totally controlled dimensions of book paper;
(3) the computer is able to instantly present hidden
material whenever the user asks to see it; and (4)
the computer can have virtually unlimited amounts
of material available for instant presentation.

Resolution-related differences

The limited resolution of the computer screen re-
quires an increase in font size, particularly for the
display of equations and math symbols, and this
makes screen real estate particularly valuable. For
example, one does not want to take up valuable
space with task bars, sticky pads, and icons. In the
computer-screen version, these functions can be pro-
vided through menus of choices that pop up when
the right mouse button is pressed on a PC or when
the shift key accompanies the mouse click on a Mac.

The fact that a very limited amount of material
can be on the screen at any one time means that a
figure should not float to the top or bottom of the
page, as in LATEX, but should instead be displayed
next to the first reference to it in the text. The
figure must also be available to be displayed at any
point where it is referenced, since the small amount
of material on the screen means that the figure is
unlikely to still be on the screen at the time the user
reads the reference. Also, because of the limited
resolution, the user must be able to click on any
figure to see an enlarged view that shows details
with clarity sufficient to satisfy the user. A similar

TEXNorthEast Conference, March 22 – 24, 1998 208

TUGboat, Volume 19 (1998), No. 2 209

kind of availability is necessary for equations and
definitions: they must be actually on display at the
first reference to each, and they must be available
for display by the user at all further references.

Dimensional differences

We know quite well the size of paper on which a text-
book will be printed, but we do not know the size of
a computer user’s browser window. Even if we know
the dimensions of a particular user’s screen, the user
may shrink or expand the browser window at will in
one or both dimensions. The user may increase the
font size because of poor eyesight or limited screen
capabilities. Any change in width or font size will
produce a change in the number of characters al-
lowed per line and so will require that the material
on the screen be instantly and transparently refor-
matted. Another effect of a user narrowing the effec-
tive width of the browser window is that it will cause
a figure caption to the right of a fixed-width narrow
figure to be partially “off the screen to the right” un-
less the caption alone is instantly and transparently
reformatted into lines of a narrower width along-
side the figure. If the window is made too narrow,
the caption must be seamlessly moved to a position
underneath the figure and reformatted for that posi-
tion. For equations, a good line-breaking algorithm
must be used to allow equation formatting and re-
formatting to make the equation fit the screen size
of the moment.2

Information-hiding differences

The computer has the unique ability to pop up in-
formation at the user’s discretion, and this affects
the placement of material in the flow of the docu-
ment. For example, in printed textbooks the answer
to a homework problem is never printed at the end
of the problem because it would then be too eas-
ily seen by a user working the problem. Instead,
in textbooks the printed answers to problems and
exercises are almost always collected at the ends of
the books. Other “optional” materials are collected
away from the points at which they will be needed
by some users but not needed by others. In the com-
puter version, each of these elements can be made to
pop up at the relevant point if the user so desires. In
our case, these optional pop-up elements consist of
specifically targeted help sequences and additional
skill-based instructional elements and practice prob-

2 See Michael Downes, Breaking Equations, TUGboat 18,
3, September 1997, pages 182-194. A new release of the soft-
ware is expected in early August, 1998 (private communica-
tion from M. Downes). We hope that this work, so important
for the Web, can eventually be made available for use in XML.

lems as well as the usual problem and exercise an-
swers. Thus the computer-screen and print versions
are very different in the flow and user-activated flow
of document elements. In addition, there are pro-
posals for “information that knows about me (my
needs and preferences)” and this would require a
multitude of possible paths through the kinds of in-
formation that may be available to construct a cus-
tom document. Finally, we note that a print version
is limited in the amount of material that can be in-
cluded because more information results in a higher
price and a heavier weight, and sufficient amounts
of different kinds of optional material can make the
user navigate what seems to be a gigantic maze. No
such problem occurs in the Web version.

Next year’s solution: XML

Both print and Web versions of books have recently
been produced from content-only documents, plus
version-specific non-content documents, using the
World Wide Web Consortium’s “Extensible Markup
Language,” universally called XML.3 However, very
few of XML’s eventual capabilities have been used
because parts of the XML specification suite are still
under development by working groups of the World
Wide Web Consortium (hereafter “the W3C”). The
basic specification for XML was “recommended” by
the W3C in February and full approval is expected in
the fall. The math markup language is in the “rec-
ommended” stage and may also be approved this fall
by the members of the W3C. The specification for
the XML formatting (“style”) language, XSL, may
emerge from the XSL working group this summer.
As for XML browsers, Microsoft’s Internet Explorer

4.0 already includes some XML tools and Netscape
Navigator is scheduled for significant XML compli-
ance in version 5.0. IBM has produced XML tools
and Sun has put its extensive Solaris documentation
into XML.

The power and relative simplicity of XML have
led to its endorsement by IBM, Netscape, Microsoft,
Sun, Adobe, and a host of other institutions and
individuals prominent in the information industry.
Developers are creating XML tools and XML work-
shops are being held around the country. It is ex-
pected that XML will be used instead of HTML for
many Web pages and will be used for many printed

3 A publishing house use of XML to produce both HTML

and RTF versions, the former for a Web version and the latter
for the commercial printed-book version, can be seen in some
detail at www.mcp.com/info/1-57521/1-57521-334-6. That
example is also interesting because it includes use of TEI,
the Text Encoding Initiative, and because it treats XML as
a special case of SGML, the Standard Generalized Markup
Language.

TEXNorthEast Conference, March 22 – 24, 1998

210 TUGboat, Volume 19 (1998), No. 2

publications. LATEX may turn out to be an appli-
cation of choice for printing XML documents, es-
pecially those involving math. The feeling of some
XML working groups and developers seems to be
that true XML Web browser and print applications,
including math, formatting, linking, data, pointer,
and document architecture, will gradually become
usable starting next spring.

Math in XML

The XML math markup language, called MathML,
has already been incorporated into several tools.4

Although MathML makes sense in terms of the am-
bitious goals of the MathML working group, it is
rather laborious to write and difficult to proof-read.
In an example from IBM,5 markup for the quadratic
root formula, LATEX takes one line while the Presen-
tation form of MathML takes 35 lines:

LaTeX: $$x=-b\pm\sqrt(b^2-4ac)/(2a)$$

MathML:

<mrow>

<mi>x</mi>

<mo>=</mo>

<mfrac>

<mrow>

<mrow>

<mo>-</mo>

<mo>b</mo>

</mrow>

<mo>±</mo>

<msqrt>

...(22 lines)...

</frac>

</mrow>

As a result of this complexity, it has been proposed
that LATEX or another math markup language might
be used in XML documents with “helper applica-
tions” converting it “on the fly” to MathML for
processing by the user’s XML browser. It is as-
sumed that LATEX is exactly equivalent to Presen-
tation MathML.6

4 A list of tools incorporating MathML is available at
http://www.w3.org/Math/.

5 Download techexplorer from www.software.

ibm.com/techexplorer Install it as a plug-in to
Netscape Navigator, then display, in the Navigator:
Netscape/Communicator/Program/Plugins/techexplorer/

Examples/MathML/mml002.html.
6 Another set of MathML markup, without any format-

ting, is called Content MathML. In contrast to Presentation
MathML, Content MathML is strictly generic (formatless)
markup. To see an example, display the file mml002.html

referenced in Footnote 5.

Meanwhile: LATEX and techexplorer

While waiting for XML to become usable for doc-
uments that contain math, we are using LATEX and
IBM’s techexplorer7 to produce Web and print ver-
sions of a physics textbook. The LATEX compiler
combines its own style files and the one master file to
produce the .dvi file for the printed version. tech-

explorer is a plug-in for current browsers that com-
bines its own “macro” style file with the one master
file, on the user’s machine and in real time, to pro-
duce the on-screen version. The LATEX compiler and
the techexplorer interpreter can work from the same
master file because techexplorer uses LATEX’s com-
mand structure and also because it recognizes many
LATEX commands. Thus many formatting macros
in the LATEX style file can be taken over directly to
techexplorer’s macros file. techexplorer simply ig-
nores the LATEX commands in the master file that
are not in its repertoire. In addition to the many
LATEX commands that it understands, techexplorer

has commands that are useful for Web browser dis-
play and which provide some of the capability ex-
pected in XML. While we are using techexplorer

and LATEX, we are also using a specific LATEX markup
scheme that is designed to capture the information
needed for a future conversion to XML. It is for-
tunate that one of XML’s strongest requirements is
also a requirement of LATEX; namely, that scopes be
nested (which makes possible the description of ele-
ments as distinct objects).

techexplorer’s new “user-embed” link

We make considerable use of techexplorer’s imple-
mentation of XML’s new “user-embed” link.8 The
techexplorer command is “\altLink” and it allows
us to specify two hot elements (elements that are
visually identifiable as clickable links) which alter-
nate as the user clicks on them. For example, the
default hot element can be the word “help” and the
alternate element can be a long sequence of help

7 See the techexplorer reference in Footnote 5.
8

XML specifies a suite of six pre-defined links and al-
lows for custom-designed links. The built-in types are the six
combinations produced by combining the “show” attributes
“auto” and “user” with the “actuate” attributes “replace,”
“new,” and “embed.” Here “auto” and “user” indicate who
controls activation of a link, while “replace,” “new,” and “em-
bed” indicate the action to be taken when a link is activated.
Whereas “replace” and “new” switch to a different flow of in-
formation, one in the current browser window and the other
in a new window, “embed” causes the link-targeted object
to be seamlessly incorporated into the current flow of infor-
mation at some designated spot just as though the targeted
element had always been there. Another part of the XML

specification says that the element to be embedded need only
be an identifiable element, not a complete file.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 211

that includes text, graphics, and interactive com-
puter programs. When the user clicks on the hot
word “help,” that word is instantly replaced by the
actual help sequence which is sometimes quite long.
The insertion is downward from the point of the de-
fault element, with the elements above the point of
insertion remaining fixed in position on the screen.
The actual help sequence, no matter how long, is
also visually identified as a hot element so the user
can click on it and cause it to disappear and be re-
placed by the first alternative, the single hot word
“help.”

Our use of user-embed links

We use techexplorer’s version of the user-embed link
to let the user bring in objects that in print would
only be referred to, not displayed, after their first
occurrence. For example, the first time Figure 6 is
referred to in a print version, it is displayed. There-
after, however, the print version will merely show
the words “. . . Figure 6 . . . ” and it is up to the
reader to turn back and find the appropriate page to
see the figure. Using the user-embed link, however,
the screen version has all references beyond the first
as hot elements that can bring in the actual figure,
complete with caption, and then take it out again,
all at the user’s discretion. Similarly, the displayed
figure can be clicked on to be exchanged with an en-
larged version for detailed examination. References
to previously-encountered equations and definitions
are also shown as user-embed links that will alter-
nate the reference to the object, usually hot words,
with the actual object. Finally, we use user-embed
links for objects that are not displayed at all un-
less or until the user wants to see them: answers to
problems, helpful hints at specific points in the dis-
cussion or in homework problems, additional prob-
lems to practice specific skills, tutorials that provide
additional instruction for students that need it, an-
swers to problems in the tutorials, and items in the
chapter summaries.

Separating form from content

The feedback we have received over the years from
students and instructors, along with insights from
research, have led to a never-ending stream of al-
terations of the contents of the book we have been
converting for print and Web. These continuous al-
terations have led us to the removal of all formatting
commands from the content files and the placing of
them in a separate style file, a procedure long advo-
cated by experts and which is advocated by virtually
all XML developers. One justification for this sepa-

ration becomes evident when even a small revision
upsets the formatting for the entire remainder of an
unseparated document. It is best to save time and
frustration by letting the the LATEX compiler handle
the reformatting using a style file. To make the deci-
sions involved, the LATEX compiler must be informed
of the type of each element in the content file. This
is accomplished by making each element be the ar-
gument of a LATEX command whose name labels the
type of the element. Thus, for example, the title of
a book could be the argument of a “\BookTitle”
command in the content file and this might be con-
verted to a “\textit” command in the style file. In
general, the style file should give LATEX all the infor-
mation it needs to make an appropriate formatting
decision for each type of element that occurs in the
book and for each type of formatting situation in
which LATEX might have to format that type of ele-
ment. The complete separation of the content from
the format instructions has the added benefit of en-
forcing 100% conformity with the publisher’s and
author’s desired format for each of the various types
of elements in the book. This enables the user to
immediately and reliably recognize the intent of an
element just from its appearance. It also allows the
author or publisher to easily change the format of
all members of a particular class of element.

Problems in separating the content

It is well known that one cannot completely separate
content from style within the confines of the cur-
rent LATEX compiler used for print versions of books,
but our experience is that such separation can eas-
ily be made complete for the screen version within
the confines of the current techexplorer. The reason
for this difference is mainly that the screen version
has no page ends (techexplorer ignores page-end
commands) whereas a number of page-end format-
ting “tweaks” must be put into the content file for
the print version. Even experts have this problem.
In The LATEX Companion, Goosens, Mittlebach, and
Samarin remark that they inserted 237 commands
in the book’s content files to over-rule formatting
decisions that were made by the LATEX compiler as
it followed the instructions the authors had placed
in the book’s style file.9 We hope that the table of
tweaks shown in that book can sometime be used
by a LATEX expert to give us some commands which
will cover the situations the authors (and we) have
encountered.

9 See The LATEX Companion, M. Goosens, F. Mittlebach,
and A. Samarin, Addison-Wesley, Reading, MA, 1994, second
page after page 528.

TEXNorthEast Conference, March 22 – 24, 1998

212 TUGboat, Volume 19 (1998), No. 2

Moving the markup toward XML

Eventually we will be able to encode our content
files in XML to produce both the print and screen
versions, and we are moving toward that capability
by capturing some of the necessary information in
our master content documents. To move our files in
that direction while retaining our LATEX and tech-

explorer capabilities, we followed these procedures:
(1) We removed all formatting instructions from the
content (“.tex”) files. (2) We made each content el-
ement’s type identifier be a “backslash” command
with braces around its argument. Here are some ex-
amples using names that seemed reasonable to us:

$. . . $ ⇒ \m{. . . }

%. . .⇒ \rem{. . . }
each paragraph ⇒ \p{. . . }.

(3) We put, near the head of the style file, each
content type identifier in a single line with either
a simple format definition or the name of a more
complex formatting macro (the third case below):

\newcommand{\m}[1]{$#1$}

\newcommand{\BookTitle}[1]{\textit{#1}}

\newcommand{\Def}[2]{\DefF{#1}{#2}}.

(4) We put, near the head of the content file, defini-
tions of elements that may be used more than once
such as figures, definitions, and equations. Here is
an example of a definition which appears in a box
that is labeled “C-1” in the right margin of both the
print and screen versions:

\newcommand{\DefWrdC1}{mass}

\newcommand{\DefDefC1}{Mass is...};

Each figure contains a graphic and a caption.
The graphic part is an eps file for LaTeX and a gif

file for techexplorer. These graphics files are called
“external entities” in XML and they require special
markup in both LaTeX and techexplorer.

Markup of figures, without \ifthenelse

At the present time, techexplorer does not have the
\ifthenelse and \equal commands that come with
the LATEX IfThen package. This forces us to write
out figure references in messy detail.

Here is a fragment of the list of figure cap-
tions and figure graphics files that we put at the
head of the content document (with \nc indicating
\newcommand):

...

\nc{\figEbGrap...

\nc{\figEcCapt}{Fig. E-3. This fig...}

\nc{\figEcGrap}{m407gr19}

\nc{\figEdCapt...

...

This shows data for parts or all of figures 2, 3, and
4 in the document’s Section E. Numbers are not al-
lowed in LATEX command names so lower case letters
have been used instead: b in place of 2, etc.

Here is an XML equivalence for the figure graph-
ics command:

<!ENTITY figEcGrap SYSTEM "m407gr19.gif"

NDATA GIF>

where the first pair is the object data (type and
name), the second pair is entity-retrieval data (at-
tribute and value), and the third pair is application
data (type and application). Here “NDATA” indi-
cates “notation data.”

Here is the markup at the place the figure is
first mentioned in the document, the place where
the figure will naturally appear:

\Fg{\figEcCapt}{\figEcGrap}

Next we have the markup to be placed at suc-
ceeding references to the figure. During LATEX pro-
cessing for print, the third argument, the reference
to the figure, will simply be printed. During techex-

plorer processing for the Web, reference to the figure
will be a hot word whose selection will cause its re-
placement by the actual figure as a hot object (click
on the figure and it instantly goes back to being the
third-argument hot word):

\FgRef{\figEcCapt}{\figEcGrap}{Fig. E-3b.}

To finish the markup, here are the LATEX style
file definitions for the print version of the document,
with \nc again indicating \newcommand and with a
period on each side of the figure caption indicating
code that is unrelated to the issues being discussed:

\nc{\Fg}[2]{.#1.\epsfig{file=#2.eps}}

\nc{\FgRef}[3]{#3}

Finally, here are the techexplorer style file def-
initions for the Web/CD version of the document,
with more code being shown because it may be less
familiar:

\nc{\Fg}[2]{

\fcolorbox{black}{green}{

\begin{tabular}{l p{0cm}}

\fbox{\includegraphics{#2.gif}} & #1\\

\end{tabular}

}

}

\nc{\FgRef}[3]{\altLink{\Fg{#1}{#2}}{#3}}

Note the tabular attribute p{0cm} which tells tech-

explorer to format the figure caption using all of the
remaining horizontal space in the browser window
at the moment. Also note the \altLink command
that displays the third \FgRef argument, the figure
reference, as a hot word. Its selection by the user

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 213

will cause the reference to be replaced with the first
and second \FgRef arguments, the actual figure, as
a hot object. Subsequent selection of the figure will
cause it to change back to being just the reference.

Markup of figures, with \ifthenelse

If and when \ifthenelse and \equal are imple-
mented in techexplorer, the figure references can be
made simpler in two ways: (1) we can use the usual
LATEX simulation of associative arrays to identify a
figure by a simple ID; and (2) we can write the first-
and consecutive-figure references as one command,
branching inside the associated macro on whether
the hot-word argument is empty or not. Here is a
fragment of the set of figure data at the head of the
document, simulating an associative array:

\nc{\fig}[2]{

...

\ifthenelse...{E2}...

\ifthenelse

{\equal{#1}{E3}}

{\Fg{Fig. E-3...}{m407gr19}{#2}}{}

\ifthenelse...{E4}...

...

}

Here is the first text reference to the figure,
where the empty second argument indicates that the
figure is to appear here and there is to be no user
choice:

\fig{E3}{}

Finally, here is the subsequent reference which
will appear to the user as the hot word contained
in the second argument and whose activation by the
user will instantly replace the hot word with the ac-
tual figure as a hot object (click on the hot figure and
it instantly goes back to being the second-argument
hot word):

\figRef{E3}{Fig. E-3b.}

Dealing with our upgrade-process errors

During the rather lengthy upgrading toward XML,
our LATEXfiles were also undergoing continual con-
tent revision and had to be continuously available
for the usual LATEX printing. We found this to be
workable providing: (1) we first made any markup
change to one element and then checked that the
change had occurred properly before applying it to
all occurrences of the same type of element; (2) af-
ter each markup change to all elements of the same
type, we checked the changes in somewhat random
places through visual checking of appropriate .dvi

files; (3) we kept a log of the markup changes made
each day, recording them in a lab notebook; and (4)
we had our office server make backup copies of all
files in the middle of each night. The main use of the
“markup changes log” was in handling cases where
the markup changes we made were irreversible and
turned out to be erroneous. When that happened,
and it did happen, we could bring back the previous
day’s backup files and then repeat the good changes
noted in the log (we saved the code used for each
change). However, we did learn the hard way to
check that the correct backup tape was in the DAT

drive before we went home each night.

The software we used

For search and examination through the file system
we used the programmer’s editor called TextPad,10

and for making changes to all items having a com-
mon pattern of characters we used Perl.11 Our Perl
script used macros that find elements delineated by
braces that may themselves contain arbitrary num-
bers and levels of nested elements. We intend to
use Perl to convert from LATEX braces to XML angle
brackets when the proper time arrives.

10 See www.textpad.com.
11 See www.ActiveState.com.

TEXNorthEast Conference, March 22 – 24, 1998

TEX to HTML Translation via Tagged DVI Files ∗

Michael D. Sofka
Computing Information Services

Rensselaer Polytechnic Institute

Troy, New York 12180-3590

sofkam@rpi.edu

http://www.rpi.edu/~sofkam/

Abstract

This paper describes dvihtml, a program under development for translating a
tagged DVI file into HTML. A common problem when translating TEX into an-
other format is handling unexpected macros. Fortunately, TEX’s macro language
is flexible enough to pass markup information to the DVI file in the form of
\special’s, fonts and small horizontal or vertical movements. Translating the
resulting DVI file thus allows TEX itself to serve as the macro parser for transla-
tion. This technique can be extended for writing smarter DVI viewing programs,
including viewers that can perform common layout editing.

A common typesetting request is the ability to place
copies of books and articles on the Web in HTML,
or to provide files in SGML or common word pro-
cessor format. To aid in this task, many translators
have been written that read TEX or LATEX files and
write the appropriate output. Translators that read
TEX files directly, however have the common limi-
tation of not understanding TEX’s macro language,
or even being fooled by macros that simply redefine
a common command already known to the transla-
tor. Add to this the inconsistency with which some
authors (and typographers under the pressure of a
deadline) code TEX files, and a uniform and univer-
sal translator seems a hopeless task.

TEX authors commonly write new macros that
generate content or important layout not under-
stood by the translator. In order to handle ar-
bitrary macros the translator must be updated, or
new translation tables supplied. Even then, a macro
writer could fool the best translators by redefining
the input syntax to better suit idiosyncratic work
habits. For this reason most TEX translators have
targeted specific input languages, usually LATEX.
This is the method used by LATEX2html and Sci-
entific Word, which are both discussed elsewhere
in these proceedings (Deland, 1998, Moore, 1998).
It is also the method used by IBM Techexplorer,
which understands LATEX and a wide range of TEX’s

∗ I would like to thank Sebastian Rahtz and Eitan Gurari

for their helpful comments on an early draft of this paper. I

would also like to thank my managers at RPI, Gary Schwartz

and Katherine Bursese, for the quiet time at work to finish

this article, and for allowing me attend the Northeast TUG

Conference.

math primitives and plain TEX macros (Sutor and
Dooley, 1998).

Alternatively, one could write a translator that
understood TEX’s primitives and macro language.
This, however, is a daunting task given the many
special cases embodied in TEX’s expansion rules.
Fortunately, a readily available TEX translator ex-
ists which is guaranteed to understand and correctly
interpret any TEX file. The program is, of course,
initex, the TEX executable itself. The only prob-
lem is that the output of TEX is a low-level DVI file
in which most of the high-level document structure
is lost.

Using the \special command and some other
macro tricks, however, TEX can translate a docu-
ment into a “tagged” DVI file. A tagged DVI file
is a DVI file which encodes information about the
higher-order coding which produced the lower-level
DVI output. This tagging, along with the hierar-
chical structure of the DVI file, can be used to cre-
ate HTML or other output according the user spec-
ifications. Depending on the specific restrictions
required by the target language, the tagging need
not even be complete. For example, HTML encodes
headers as:
<H1>LaTeX and Postmodern Typesetting:

Hermeneutics and the Tyranny

of Documentclass Structure.</H1>

with no regard to specific font, size or line breaks.
Indeed, this information should be left to the dis-
play program when standard HTML is the desired
outcome. The only information required in the DVI

TEXNorthEast Conference, March 22 – 24, 1998 214

TUGboat, Volume 19 (1998), No. 2 215

file is a “tag” identifying which characters are in the
header.2

Such is the flexibility of TEX’s macro language,
that the original author coding may not need to be
modified. A LATEX package file, for example, could
redefine common commands to produce tags. The
same package could further redefine primitives and
definition commands so that all new macros will ei-
ther be tagged, or will at the least not interfere with
the translation process. Problem commands which
do not generate content important for HTML dis-
play (such as running heads, page breaks, etc) can
be disabled or tagged and ignored during transla-
tion.

The DVI File

While most TEX users are aware that the output
of TEX is something called a “DVI” file, fewer have
ever had the opportunity to study this file in detail.
Indeed, this task is difficult since the file is binary
and displays poorly in most editors. I suspect this
is one reason various flavors of TEX input files have
been the source language of choice for translation
(the other being the lack of high-level information
within the DVI file).

DVI files, however, are really simple. As de-
scribed in Knuth (1986b) they consist of a series of
1-byte commands and parameters which compactly
describe how characters and rules should be placed
on a page. There are 250 DVI commands in all, but
most are for setting characters and changing fonts.
In addition, many commands come in four flavors
depending on if the parameter is 1, 2, 3 or 4-bytes
long. Full details on the DVI file format, along with
sample code for reading DVI files, can be found in
dvitype.web (Stanford University, 1995).

Depending on how you group the commands
there are about 11 categories of DVIoperation codes
(or op-codes, as they are called). The entire set of
op-codes is shown in Table 1.

There are a few items to note from Table 1.
First, fully 136 of 250 DVI op-codes are used to
print characters, and another 68 are used to select
a font. Likewise, there are 14 horizontal and 14 ver-
tical movement commands. Font definitions, which
provide a mapping between an external font name
and a DVI file font number, take another 4 bytes.
This profligate consumption of op-codes for setting
characters is done for efficiency. The letter ‘G’ in
Computer Modern, for example, can be typeset with
the DVI op-codes

2 There are additional issues such as handling simple math

in a header, and finding correct word boundaries. These are

addressed below.

Category op-codes

Print Character set char0 . . . set char127,
set1, set2, set3, set4,
put1, put2, put3, put4

Select Font fnt num0 . . . fnt num63,
fnt1, fnt2, fnt3, fnt4

Define Font fnt def1 . . . fnt def4

Print rule set rule, put rule

Horizontal right1 . . . right4, w0,
Movement w1 . . .w4, x0, x1 . . . x4

Vertical down1 . . . down4, y0,
Movement y1 . . . y4, z0, z1 . . . z4

Header pre, post, post-post

Page bop, eop

Stack push, pop

Special xxx1, xxx4

Undefined/nop nop, 250–255

Table 1: DVI op-codes by category. Note that 136
commands are used to print characters, another 68
for fonts and 28 for moving within the DVI file.

fnt num0set char71

which is only two bytes in the file. The word “Gen-
tle” can be typeset using a total of 7 bytes, plus three
bytes for a right2 command (one for the command,
and two for the parameter) which kerns between ‘n’
and ‘t’.

Second, there are a number of commands of the
form op〈n〉 where 〈n〉 is the value 1, 2, 3 or 4. For
example, right1, or fnt2. These are variations of
a single op-codes which take a 1, 2, 3 or 4 byte pa-
rameter. TEX tends towards using the more efficient
op-code to represent a value.

Third, the movement parameters w1–4, x1–4,
y1–4 and z1–4 are register commands. They move
the given distance and set the value of the corre-
sponding w, x, y or z register. These register values
can then be recalled using the one byte w0, z0, y0

or z0 commands. TEX tends to use the horizontal
registers for word spaces and kerns, and the verti-
cal registers for movement between lines and para-
graphs.

Fourth, the push and pop commands store and
retrieve the current values of the w, x, y or z regis-
ters and the current horizontal and vertical position
on the DVI page. TEX uses these to slightly optimize
parameter setting. More important for translating
tagged DVI files, TEX outputs push/pop pairs which
correspond to boxes in the original TEX file. This

TEXNorthEast Conference, March 22 – 24, 1998

216 TUGboat, Volume 19 (1998), No. 2

correspondence is not 100%. Particularly, TEX opti-
mizes the output of lines from paragraphs so that
most boxes are removed from common baselines.
But in math-mode and tables most of the boxes re-
main.

Finally, the xxx1 and xxx4 are how TEX out-
puts \special’s to the DVI file. The literal (macro
expanded) text of the \special is placed in the file.
The single parameter of the xxx command is the
length of the special. It is entirely left to the DVI

translator program to interpret what a \special

means, and the macro writer to be sure the con-
tents of a \special are correct, and correctly lo-
cated within the DVI file.

Tagging a DVI File

How can information in the DVI file be used to re-
cover high-level coding? The trick is to use TEX’s
superlative macro language to send markup infor-
mation, embedded in the DVI file, to the transla-
tor. The markup information can be indicated in
at least three ways: distance, fonts and \special’s.
Further, much of the marking can be accomplished
by redefining existing TEX macros and primitives,
reducing intervention into the authors coding.

Tagging using distance. One source of tagging
information in a DVI file is the size of horizontal and
vertical movements. TEX use the w and x registers
for movement between words, but the amount of a
move will vary from line to line. Likewise, movement
between lines and paragraphs is accomplished with
the y and z register commands. A typical DVI se-
quence (simplified) representing two lines in a para-
graph is:

push

right3 〈n1 〉fnt num0

set char71set char101set char110right2 〈n2 〉
set char116set char108set char101w3 〈n3 〉
set char114set char101set char97set char100

set char101set char114set char115w0

. . .
pop

y3 〈m〉
push

set charn. . .
pop

That is, each line is nested in a push/pop pair.
Within this pair the w register is used for inter-
word spacing, while a right or the x register is used
for kerns. Each line is separated by a y register
command. In addition, paragraphs are usually sep-

arated by a z register command if \parskip is non-
zero.

The problem is that while words are typically

separated by w register commands, not all w com-
mands are the result of word spaces. When gener-
ating the DVI file, TEX will optimize horizontal and
vertical movements within boxes by using the w, x, y

and z registers. A kern might be a right, or it could
be a x command if a kern of the same amount ap-
pears later in the same line (a frequent occurrence).
The details of this optimization are in Knuth, 1986b.

Fortunately, TEX’s macro language can help us
out. Consider the following TEX code.

\spaceskip=1sp

\xspaceskip=1sp

\hsize=\maxdimen

\baselineskip=1sp

\lineskip=0pt

\lineskiplimit=-16383pt

\parskip=0pt

The first two lines set the value of word spaces to
one scaled point (sp). A scaled point is 1/65536th of
a point, and is the smallest unit that TEX can move.
Under normal circumstances there are no distances
of 1 sp in a DVI file. Typical distances actually found
are measured in at least 1/10 of a point units.

The third line sets the width of a paragraph
to the value of \maxdimen, which is 16383.9999 pt
or about 18.9 ft—longer than a typical paragraph.
The combined effect is to turn off line breaks making
each paragraph a single line, and move exactly one
scaled point between each word.

The next three lines adjusts TEX’s vertical list
building so that one scaled point is placed between
each line (each paragraph) of text. This is accom-
plished by first setting \baselineskip to 1 sp then
turning off other interline glue by forcing TEX to
never use \lineskip glue.

Finally, \parskip is set to 0 pt so that no addi-
tional glue is added between paragraphs. The same
overall effect could be accomplished by setting:

\cs{baselineskip=0pt}

\cs{parskip=1sp}

The sum effect is that one can be reasonably sure
that all 1 sp horizontal movement in the DVI file rep-
resent word spaces, and all 1 sp vertical movement
represents paragraphs. All other movement can be
ignored, unless it to is being used for tagging.3

3 Variations on the above allow for normal hyphenation

and justification, but mark lines and paragraphs with one

and two scaled point vertical movements. Recovering exact

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 217

A potential problem remains in that a later
macro might be expected to set the \baselineskip,
\parskip or other values, or even restore \hsize
something under 8 inches. Fortunately this can be
prevented with the following commands.

\newskip\junkskip

\let\spaceskip=\junkskip

\let\xspaceskip=\junkskip

\let\baselineskip=\junkskip

\let\lineskip=\junkskip

\let\parskip=\junkskip

\newdimen\junkdim

\let\lineskiplimit=\junkdim

\let\hsize=\junkdim

To be thorough we should also disable vertical and
horizontal movement commands such as \vskip and
\hskip. Care must be taken, however, to ensure the
semantics of such commands otherwise remains the
same.

Tagging using fonts. A second method of send-
ing tagging information to the DVI file is by fonts.
There are two ways a font can be used to indi-
cate output format: name and size. For exam-
ple, in a particular document the font Palatino at
16 point might only be used in one-heads. This is a
clear indication that during translation all 16 point
Palatino and intervening rules should be set within
<H1>/<H2>.

What if the design includes a three head in
10 point Optima, but 10 point Optima is also used
for figure captions. How can the two be distin-
guished based only on fonts? One method would be
to increase the font size by one scaled point. The dif-
ference between Palatino at 655360 sp and Palatino
at 655361 sp is will have no discernable affect on ap-
pearance, but they will be two different fonts in the
DVI file.

There are two drawbacks to using fonts to tag
markup information. First, it uses more fonts. TEX
has a limit of 256 fonts per DVI file, so any method
that makes extensive use of fonts will need to care-
fully select which fonts are actually loaded and used.
Second, each font can only carry one tag. Setting,
for example, \it\bf will result in only the bold-
faced font being used.

Tagging using specials. Nearly any tagging in-
formation can be included in a DVI file by using
TEX’s \special command. The \special com-
mand causes TEX to out insert the literal, macro
expanded argument, into the DVI file as an xxx1

word boundaries would be more difficult, but the resulting

paragraphs would be legible and formatted by TEX.

or xxx4 command, depending on the length of the
string. This is among the more heavily used and
abused features of TEX since specials are used for
all rotation, color, figure inclusion and PostScript
commands.

The major disadvantage of specials is that they
require DVI interpreters which understand the spe-
cific specials used—interpretation of specials is out-
side the purview of TEX. As a result, there appeared
a number of drivers which understood only specific
sets of specials. Some of these drivers were commer-
cial or were used internally by typography compa-
nies, and made use of \special’s which were not in
general use. Others were freely available, but as a
result lagged behind in the special sets accepted.

In 1997 Tom Rokicki (Rokicki, 1994) proposed a
set of specials to be supported by his dvips program.
This was recomended with modification by the TUG
Technical Working Group on DVI Driver Implemen-
tation and Standardization Issues(Rokicki, 1995).
While the proposed standard has inherent flexibility,
it cannot be used for all \special needs. Specifi-
cally, it doesn’t cover markup tagging, and its stack
scheme doesn’t allow for DVI file re-writing (as de-
scribed below). It does, however, propose a standard
method of writing non-standard macros which will
be followed in dvihtml. See Sofka (1995) for more
details of the standardization process.
Delimited tags. In principle, markup via the
\special primitive is easy. To mark a section, for
example, would require:4

\catcode‘\@=11

\let\t@gsection=\section

\def\section#1{%

\special{::tag begin(section)}%

\t@gsection{#1}%

\special{::tag end(section)}}

\catcode‘\@=12

assuming the macro \section had previously been
defined.

The \let primitive is used to preserve the true
definition of \section. The new definition is same
as the old, except \special places tags around it.

The :: identifies the special as being experi-
mental according to the draft standard. The type of
special is a “tag”, which means it is providing high-
level information for an interpreter. The begin and
end indicate that the high-level element is delimited
by two specials. section is the name of the tag.

4 My examples are in plain TEX to keep them simple. The

same can be done in LATEX by suitably redefining basic gen-

erator macros such as \@startsection, \new@command, etc.

TEXNorthEast Conference, March 22 – 24, 1998

218 TUGboat, Volume 19 (1998), No. 2

Block scoped tags. Not all tag-able elements can
be delineated using begin and end markers. Some-
times the the range of an element is implicit in the
coding, but not explicitly marked. For example,
when processing:

$$ABCE\over DEFG$$

“ABCD” is in the numerator, while “DEFG” is in

the denominator. It would be awkward to require plain

TEX users type

$$\special{::tag begin(numerator)}

ABCE

\special{::tag end(denominator)}

\over

\special{::tag begin(denominator)}

DEFG

\special{::tag end(denominator)}$$

when inputing math—even if suitable shorthand
tagging macros were defined. However, a tag can
be inserted into the scope of the numerator and
denominator by redefining the \over primitive as:

\def\tag#1{\special{::tag block(#1)}}

\catcode‘\@=11

\let\t@gover=\over

\def\over{\tag{num}\t@gover\tag{den}}

\catcode‘\@=12

$${ABCE \over EFGH}$$

This is output in the DVI file roughly as:

push

set char65 . . .
xxx1 〈16 〉::tag block(num)

pop

right4 〈n〉
down3 〈m〉
putrule〈a〉〈b〉
down3 〈m〉
push

xxx1 〈16 〉::tag block(den)
set char69 . . .

pop

Note that the contents of the numerator and denom-
inator are each contained within a push/pop pair.
The block type of ::tag affects the entire block
within which it is contained.5

Nested tags. The ::tag specials can be nested.
For example, a tag for italic text (assuming this
were not indicated using a font) might be nested
within the tag for a section. There is an ambiguity,

5 There is an annoying rule between the two tags in this

example. If rules are being translated, this one can be re-

moved by redefining \over using the \atop. If the rules used

in \over need special treatment they can be set with a 1 sp

width using \above.

however, when a delimited tag and a block tag in-
teract. How, for example, should the following be
interpreted?

push

xxx1 〈17 〉::tag begin(list)
set char71set char101 . . .
xxx1 〈18 〉::tag block(quote)
set char108set char111 . . .
xxx1 〈15 〉::tag end(list)

pop

Is the quote contained within the list, or the list
within the quote? When the order of application
matters, the resulting output will be different for
each interpretation.

By default this will be resolved by assuming
that block tags are delimited by begin/end tags, as
well as push/pop pairs. That is, internally, dvihtml
or other ::tag aware translator should convert the
above into:

push

xxx1 〈17 〉::tag begin(list)
xxx1 〈18 〉::tag begin(quote)
set char71set char101 . . .
set char108set char111 . . .
xxx1 〈16 〉::tag end(quote)
xxx1 〈15 〉::tag end(list)

pop

Why does the end() tag specify the element be-
ing ended? Wouldn’t a simple end with no argument
be enough to end the current tag? Unfortunately no.
The problem is TEX’s asynchronous output routine.
This means that in the middle of a paragraph of
quoted material you may suddenly find yourself in
the middle of page layout. The result is the following
sequence in the DVI file:

push

xxx1 〈18 〉::tag begin(quote)
set charn1 . . . nx

pop

xxx1 〈15 〉::tag end(page)
pop

eop

bop〈c0, . . . , c9, p〉
right3 〈4736286 〉
push

xxx1 〈17 〉::tag begin(page)
push

set charnx+1 . . . nz

xxx1 〈16 〉::tag end(quote)
pop

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 219

If the output routine were also tagging elements
(e.g., top of columns, crop-marks, running head, and
so on), they would all appear between and inter-
laced with the quote. Explicite end statements with
matching parameters helps the above be rewritten
as:

push

xxx1 〈18 〉::tag begin(quote)
set charn1 . . . nx

xxx1 〈16 〉::tag end(quote)
pop

xxx1 〈15 〉::tag end(page)
pop

eop

bop〈c0, . . . , c9, p〉
right3 〈4736286 〉
push

xxx1 〈17 〉::tag begin(page)
push

xxx1 〈18 〉::tag begin(quote)
set charnx+1 . . . nz

xxx1 〈16 〉::tag end(quote)
pop

The problem is knowing exactly where in the
DVI file to insert matching begin and end tags.
There are at least three ways to resolve this. The
first is the method shown above, which uses ex-
plicit tags in the output routine to delimit pages and
columns. All that is necessary for correct rewrite is
inserting
textend tags at the same nesting level as the match-
ing begin, but before the end of page is marked.
Likewise for begin tags at the top of the page. The
assumption is that all begin/end pairs should per-
fectly nest in the rewritten DVI file.

A second method of resolving this problem, ap-
plicable only to a translator, is to redefine macros so
that page breaks do not occur at inopportune times.
For example, setting spacing and paragraph param-
eters as given above guarantees that page breaks will
not occur in the middle of a paragraph. By further
defining \output to be simply \ other interrupted
tags can be reconstructed. Alternatively, the tech-
niques discussed in Appendix D of Knuth (1986a)
can be used to signal the output routine about bad
break points.

Finally, it is possible to reconstruct the orig-
inal nesting of the begin/end pair by merging all
intervening push/pop pairs nested at the same level
as the interrupted tags. This method works, how-
ever, only if it is assumed that push/pop pairs and
begin/end perfectly nest—a condition that requires

careful macro writing since TEX has no way of en-
forcing the rule.

All three of the methods are used in dvihtml.
Macro and simplification will be used when possible,
tag nesting will be encouraged and nesting rewrites
will be used whenever it can simplify the coding.
The goal is a minimal re-write of author macros, so
the translator must make use of all the information
available in the DVI file.
Overriding scope. There are times when it may
be necessary to override the default scope of a ::tag
special (for example, if a block tag should be moved
outside of a delimited tag. This can be done using
the scope() option, which takes a single parame-
ter indicating what the scope for the current tag
should be. There are special cases for global scope
and page scope, to affect the entire DVI file or the
page on which the tag appears. stack specifies the
current push/pop pair. Otherwise, the parameter
should be label of a delimited tag which encloses
the new tag at any level.
What about alignments? The alignments com-
mands used by TEX present a mixed bag of difficul-
ties. Redefining & and \cr to provide block-level
tagging is trivial, but this breaks the \halign align-
ment template. While scanning the alignment tem-
plate TEX is expecting category 4 characters to in-
dicate tabs, and a real \cr (or \endline, which is
defined in virtex) to end the template. So, while
pre-defined math alignments such as \eqalign can
be handled via:

\def\tag#1{\special{::tag block #1}}

\catcode‘\&=\active

{\catcode‘|=4\gdef&{\tag{AMP}|}}

\catcode‘\==\active

\def={\tag{EQ}\char‘\=}

\def\cr{\tag{CR}\endline}

$$\eqalign{A&=B\cr

B&=D}$$

This same code breaks any future \halign at-
tempts. Tagging alignment entries requires some-
thing slightly more convoluted. An example of how
to do this is in figure 1, which redefines \halign so
that & is a tab character while the template is being
scanned, but is an active character while the body
of the alignment is being read. The active character
inserts tag specials.

Dvihtml and Tagged DVI Files

An outline of the proposed tagging \specials is in
figure 2.

TEXNorthEast Conference, March 22 – 24, 1998

220 TUGboat, Volume 19 (1998), No. 2

\catcode‘\@=11

\def\tag#1{\special{::tag block #1}}

\def\makebraceother{\catcode‘\{=12 }

\def\makebracenormal{\catcode‘\{=1 }

\def\maketabactive{\catcode‘\&=\active}

\def\maketabtab{\catcode‘\&=4 }

{\maketabactive \catcode‘|=4\gdef&{\tag{lamp}|\tag{ramp}}}

\let\t@ghalign=\halign

% Remove the { from \halign

{\makebraceother \catcode‘[=1 \catcode‘]=2

\gdef\@halign{[\makebracenormal\@@halign]}

% Collect alignment template and call halign primitive

\def\@@halign#1\cr{\t@ghalign\bgroup#1\cr\global\maketabactive}

% set catcodes and start halign

\def\halign{\makebraceother\maketabtab\@halign}

\catcode‘\@=12

Figure 1: Redefining \halign so that & is category code 4 (tab) while the alignment template is being
read, but active characters while the body of the \halign is read. The above introduces a potential
problem in that & remains active between \halign’s. This is okay for most macros built using \halign

because the alignment template was read when the macro was defined. This macro also breaks plain
TEX’s tabbing macros.

The dvihtml translator understands these spe-
cials, and uses them to re-write the DVI file so that
hierarchical information is preserved, and tagging
applied to the appropriate elements. It will op-
tionally write out a new DVI file, or a translated
tagged output file (HTML by default). Translation
is guided by a configuration file specifying conver-
sions for horizontal and vertical movements, fonts
and ::tag specials. By default, tags labels will be
converted verbatim so that in the absence of addi-
tional information the ASCII output file will have
intelligible markup. A sample dvihtml configura-
tion file is in figure 3.

In the case of LATEX files, a package can be writ-
ten which redefines the standard commands to pro-
duce tagged output. Plain TEX is, of course, trickier
since there is no way of knowing in advance what an
author will call a macro. Adding a couple \special
calls, however, is relatively easy and by default the
translation will pick up changes in font size, para-
graphs, simple math, etc, without needing to know
the individual macros which produced the DVI file.

Smart DVI Viewers

The approach of translating a tagged DVI file was
been used in at least two private translators (Rahtz,

1995, Sofka, 1993). It is also the approach used
by TEX4ht (Gurari, 1997b, Gurari, 1997a), which is
used to author hypertext documents. The method
is robust, and it is hoped that a pseudo-standard set
of tagging \special’s will encourage macro writers
to voluntarily pre-tag their code.

Once a DVI file is tagged, however, a number of
additional translation possibilities arise. For exam-
ple, complex page layout is notoriously difficult us-
ing TEX. Usually, by the time a book is printed, the
source code is filled with hard-coded page-breaks,
\vskip’s to balance columns, and so on. For some
designs, all glue stretch is removed to prevent TEX
from “fixing” layout attempts. This is tedium at it’s
worst.

On the other hand, the actual task—moving a
block of text a couple points up or down, or cutting
and pasting a figure—are trivial in WYSIWYG en-
vironment. The typographer knows exactly what he
or she wants to do, the difficulty is conveying that
information to TeX. What if the DVI viewer knew
how to edit TEX files? What if there were a way to
go from the image on the screen to the source file
that generated the image?

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 221

::tag := 〈tag〉 [scope(〈scope〉)]
| line: 〈file:lineno〉

〈tag〉 := begin(〈label〉) 〈op-codes〉 end(〈label〉)
| block(〈label〉)

〈label〉 := [,a-z,A-Z,0-9] | 〈quoted-string〉
〈scope〉 := global | page | stack | 〈label〉
〈quoted-string〉 := "〈printable ASCII 〉"
〈op-codes〉 := 〈any DVI op-codes〉

Figure 2: Specials recognized by dvihtmlfor
tagging a document.

Translate fonts to bold, italic, etc.

font cmit10: scope(<I>, </I>);

font cmb10: scope(,);

font cmr17 at 28pt:

insert(header,

scope(<TITLE>, </TITLE>)),

scope(<H1>, </H2>);

...

hdimen 1sp: translate(" ");

vdimen 1sp: translate(<P>);

...

tag section: scope(<H1>, </H1>);

tag subsection: scope(<H1>, </H1>);

tag enumerate: begin();

tag enumerate: end();

tag list_item: translate();

...

Figure 3: Sample dvihtml configuration file.
The elements are choose to display the range of
translation possibilities.

\nopagenumbers

\def\sb#1{\special{before #1}}

\def\sa#1{\special{after #1}}

\gdef\numberlines{\special{line: \jobname:\number\inputlineno}%

\immediate\write-1{line: \jobname:\number\inputlineno} }

{\catcode‘\^^M=\active%

\gdef\startnumbering{\catcode‘\^^M\active \let^^M=\numberlines}%

\global\let^^M=\numberlines} % this is in case ^^M appears in a \write

\startnumbering

Misc paragraph: This is a normal line ending, while

this line ends with the macro \TeX

and this one ends with a hyphenated-

word broken across lines. This last line%

ends with a \%.

Figure 4: Macro to number input lines in the DVI file. Note that this macro modifies TEX’s end-of-line
semantics slightly.

TEXNorthEast Conference, March 22 – 24, 1998

222 TUGboat, Volume 19 (1998), No. 2

This style of editing has been dubbed “two-
view” by Kenneth Brooks (Brooks, 1988). In a two-
view editor both the source language and the WYSI-
WYG image can be modified with changes being re-
flected in both views. This approach is used in Lilac
(Brooks, 1991), which uses a non-TEX boxes-n-glue
language to typeseting (short) documents. Brooks’
choice of language was to avoid TEX global scoping,
lack of key-words, and modifiable syntax. Contrast
Lilac with Blue-Sky’s Lightning TEXtures(Hampson
and Smith, 1992), which repeatedly reads the entire
TEX file from the beginning while the user types.
Inbetween these two extremes, Chen, Harrison, and
Minakata (1988) and Harrison (1989) have discussed
some of the problems associated with incremental
formatting in the VorTEX project.

A tagged DVI file offers another intermediate
approach. Tags can be inserted into the DVI file to
aid two-view editing. For an extreme example, con-
sider the macro in figure 4, which inserts a \special
into the DVI file at the end of each input line. A
two-view editor could count input lines to find the
TEX code that produced the DVI output. An exam-
ple of the viability of this approach can be seen in
Asher (1992), who used specials to mark pagination
points within a DVI file, and the push/pop structure
of the DVI file to find good breakpoints within para-
graphs. The resulting file was processed, paged and
printed automatically.

The problem of efficiently parsing TEX’s input,
however, will require the cooperation of macro writ-
ers and users. It would be nice, for example, if
in LATEX3 all the relevant state information could
be inferred by the environment nesting, and com-
mands which altered expansion or redefined control-
sequences were unavailable to the user. This would
greatly reduce the amount of processing required by
a two-view TEX editor. The goal for dvihtml, be-
yond document conversion, is to serve as a testbed
for using tagged DVI files in smarter, if not true two-
view, TEX editing systems.

References

Asher, Graham. “Inside Type & Set”. TUGboat

13(1), 13–22, 1992.

Brooks, Kenneth P. A Two-View Document Editor

with User-Definable Document Structure. Ph.D.
dissertation, Stanford University, 1988.

Brooks, Kenneth P. “A Two-View Document Edi-
tor”. Computer 24(6), 7–19, 1991.

Chen, Pehong, M. A. Harrison, and I. Minakata.
“Incremental Document Formatting”. In Pro-

ceedings of the ACM Conference on Document

Processing, page 93–100. ACM, NY, 1988.

Deland, Donald. “WYSIWYG LATEX” 1998. work-
shop presented at TEXNorthEast conference,
March 1998.

Gurari, Eitan M. “A Demonstration of TeX4ht”.
1997a. URL: http://www.cis.ohio-state.

edu/~gurari/tug97/tug97-h.html.

Gurari, Eitan M. “TeX4ht: TeX and LaTeX for
Hypertext”. 1997b. URL: http://www.cis.

ohio-state.edu/~gurari/TeX4ht/mn.html.

Hampson, Steve and B. Smith. “A High Perfor-
mance TEX for the Motorola 68000 Processor
Family”. TUGboat 13(3), 269–271, 1992.

Harrison, Michael A. “News from the VorTEX
Project”. TUGboat 10(1), 11–15, 1989.

Knuth, Donald E. The TEX Book. Addison-Wesley,
Reading, MA, 1986a. TEX version 3.0, 1994, 14th
printing.

Knuth, Donald E. TEX: The Program. Addison-
Wesley, Reading, MA, 1986b. Reprinted with
corrections May, 1988.

Moore, Ross. “Making Web Sites using
LATEX2HTML” 1998. Workshop presented
at TEXNorthEast conference, March 1998.

Rahtz, Sebastian. “Another Look at LATEX to SGML

Conversion”. TUGboat 16(3), 315–324, 1995.

Rokicki, Tomas G. “Driver Support for Color in
TEX: Proposal and Implementation”. TUGboat

15(3), 205–212, 1994.

Rokicki, Tomas G. “A Proposed Standard for Spe-
cials”. TUGboat 16(5), 395–401, 1995.

Sofka, Michael D. “dvitag Users Guide”. 1993. In-
ternal document, Publication Services, Inc.

Sofka, Michael D. “DVI Driver Implementation and
Standardization Issues.”. 1995. URL: http://

www.rpi.edu/~sofkam/dvi.html.

Stanford University. The DVIype processor. Stan-
ford University, 1995.

Sutor, Robert S. and S. S. Dooley. “TEX and LATEX
on the Web Via IBM Techexplorer”. TUGboat

19(2), 157–161, 1998.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 223

Abstracts

Les Cahiers GUTenberg

Contents of Double Issue 28–29

Proceedings of the tenth European TEX

conference

Numéros 28–29— mars 1998

Michel Goossens, Éditorial : dix ans
de collaboration [Editorial: Ten years of
collaboration]; pp. vi–vii

These proceedings contain most of the presen-
tations made at the EuroTEX ’98 Conference, which
took place from March 29th to April 1st in Saint
Malo (France) in the framework of the “Second
Week on Electronic Publishing and Typography”
(WEPT’98).

EuroTEX’98 was the tenth in a series of Eu-
ropean conferences dedicated to the latest develop-
ments around TEX. . . . It is noteworthy that several
of [the other European TEX] organizations, just like
GUTenberg, also celebrate their tenth anniversary
in 1998.

. . . I would like to stress how the enthusiasm of
the participants at the Conference has transformed
EuroTEX ’98 into a real TEX fiesta, proving once
more that the Lion and Friends are well-prepared
and ready to enter the next millenium with confi-
dence and limitless energy!

[Excerpts from the English editorial]

Bruno Bachimont and Jean Charlet,
PolyTEX : un environnement pour l’édition
structurée de polycopiés électroniques
multisupports [PolyTEX: an environment for
structured editing of multi-purpose electronic
documents]; pp. 1–16

PolyTEX is a prototype editorial working envi-
ronment to facilitate production of materials from

a single source for multimedia: specifically, course
notes, Web pages, and transparencies for distri-
bution via electronic means (computer screens) or
hardcopy. Initially for the Mac and UNIX platforms,
it uses programs currently available for free or at low
cost. The article presents the project from initial
course design (the conceptual stage) to final imple-
mentation (the teaching and materials distribution).

A. Berdnikov, O. Lapko, M. Kolodin,

A. Janishevsky and A. Burykin, [The encoding

paradigm in LATEX2ε and the projected X2
encoding for Cyrillic texts]; pp. 17–31

This paper describes the X2 encoding which
is designed to support Cyrillic writing systems for
the multilanguage mode of LATEX2ε. The restric-
tions of the LATEX2ε kernel, the specific features
of Cyrillic writing systems and the basic principles
used to create X2 are considered. This projected X2
encoding supports all the Cyrillic writing systems
known to us, although the majority of the accented
letters need to be constructed from pieces. The
general scheme of the X2 encodingh was approved
at CyrTUG-97 (the annual conference of Russian-
speaking TEX users) and its final form was agreed
on the cyrtex-t2 mailing list.

[authors’ abstract]

A. Berdnikov, O. Lapko, M. Kolodin,

A. Janishevsky and A. Burykin, [Alphabets
necessary for various Cyrillic writing systems
(Towards X2 and T2 encodings)]; pp. 32–43

Characters, accents, modifiers, punctuation
and stress symbols, etc., necessary to support mod-
ern Cyrillic texts are considered. The list of glyphs
that we present supports all [Cyrillic] writing sys-
tems we know of. The paper also describes the
peculiarities of several writing systems which are
essential for TEX.

[authors’ abstract]

A. Berdnikov and O.A. Grineva, Some
problems with accents in TEX: Letters with
multiple accents and accents varying for
uppercase/lowercase letters ; pp. 44–55

The problems of using the internal command
\accent as a tool for support of some Cyrillic
writing systems is investigated. It is shown that the
internal features of \accent prevent construction of
some Cyrillic letters which require several accents
simultaneously. A special macro which emulates
the work of \accent by some other commands is
suggested.

The accents for I/i and J/j, which are different
for uppercase and lowercase letters, are also consid-
ered. If-then-else structures by use of which correct
accents can be placed, depending on the letter case,
are proposed. A similar technique can be used for
case change in the Cyrillic “capital form” ligatures
ǈ and ǋ.

[authors’ abstract]

Marcia J. Bossy, WWW-TED : thesaurus
évolutif et dynamique pour bases de liens HTML

224 TUGboat, Volume 19 (1998), No. 2

[WWW-TED: dynamic thesaurus for database
management of HTML links]; pp. 56–71

We consider the need for a database manage-
ment tool in Web-based scientific research. We then
propose an approach using WWW-TED, a dynamic
thesaurus for use with medium-sized (300 to 3,000
links) HTML pages. The audience for such a tool in-
cludes researchers and research groups which require
precise management of their database collections.

[from author’s résumé and introduction]

Šarūnas Burdulis and Vytas Statulevičius,
[Real-life application of TEX and Adobe Acrobat
for electronic publishing: A handbook for algebra
and a journal archive]; pp. 72–81

A classical way of using TEX in printed typeset-
ting was enhanced for use of the same TEX source to
publish electronically. A handbook of algebra and a
4-year journal archive (280 articles) were electroni-
cally published using the same TEX source files to
produce both the PDF in a form for reading on-
screen and a version for printing a hard copy. A
package written in plain TEX provided the mark-
up of the logical structure, cross-references, bibli-
ographical references, author names, keywords and
symbols. The hypertext contents, index pages and
a complete navigation system are also made in PDF

and were pre-programmed at the TEX level. Being
completely a PDF product the same publications are
thus usable on any computer system for which a PDF

viewer exists.
[from authors’ abstract]

Janka Chleb́ıková, [The Euromath system—
The structured editor for mathematicians];
pp. 82–93

The Euromath system is the result of a project
funded through the SCIENCE programme of the Eu-
ropean Commission and administered through the
European Mathematical Trust. Its aim is to create
a homogeneous computer working environment for
mathematicians, based on a uniform data model,
and to stimulate interchange among them based on
modern information technolotg.

The core of the system is a powerful SGML

structured editor, Grif, combining the advantages
of a WYSIWYG approach and structured editing.
SGML is rapidly becoming the standard for pub-
lishing and for full-text databases. The Euromath
system is at the forefront in exploiting the benefits
of SGML for scientific documentation and also the
typesetting qualities of the TEX system.

[from author’s abstract]

Matthias Clasen and Ulrik Vieth, [Towards a
new math font encoding for (LA)TEX]; pp. 94–121

This paper presents a snapshot of ongoing work
towards a prototype implementation of new 8-bit
math font encodings for (LA)TEX, based on the ‘As-
ton’ proposal, presented at the TUG ’93 conference.
The design goals and technical considerations that
have led to the present font table layouts are sum-
marized and the contents and organization of the
individual encodings are presented in detail. Finally,
some alternative approaches and some remaining
open problems are discussed.

[authors’ abstract]

Thomas Esser, [The teTEX system: Concepts
of installation, configuration and maintenance];
pp. 122–130

teTEX is a complete TEX distribution for UNIX

platforms that claims to be easy to install, to
configure, to maintain and to use. This article
describes the underlying basic concepts and design
decisions that have been used to achieve this goal.

[author’s abstract]

Jean-Daniel Fekete, Expérience de codage
de document à intérêt graphique à l’aide de
TEI [Encoding a graphics document using TEI];
pp. 131–142

While encoding text documents is now well in
hand, documents with graphics still pose several
problems. In this article, we describe the use of
SGML in combination with the TEI DTD, to encode
the encyclopedia, La chose imprimée. . . . Normally,
SGML documents are processed by DSSSL, which
does not, however, currently have any mechanisms
for documents with graphics components. We there-
fore used PERL to devise the necessary translation
programs.

[from author’s résumé]

Bernard Gaulle, Comment peut-on
personnaliser l’extension french de LATEX ?
[How to customize the french package for LATEX];
pp. 143–157

The french package for LATEX presents users
with a large number of basic options which they
can customise to suit their exact requirements. This
customisation can be performed at various points in
the document, and can be temporary or permanent.
Some parameters affect the macro-typography of the
document (such as page layout), whilst others are
relevant to the micro-typography (such as spacing
around punctuation). Possible actions are, for
example, to add new functionality, to mix styles and
even to define new languages or dialects.

TUGboat, Volume 19 (1998), No. 2 225

This article describes the various ways of cus-
tomising the french package, either for personal use
or as part of a workgroup.

[author’s abstract]

Denis Girou and Sebastian Rahtz, [Verbatim
revisited— the ‘fancyvrb’ package]; pp. 158–179

This talk introduces Timothy van Zandt’s
fancyvrb LATEX package, which provides very so-
phisticated facilities for reading and writing verba-
tim TEX code. Users can perform common tasks
like changing font family and size, numbering lines,
framing code examples, colouring text and condi-
tionally processing text. The main part of this
paper is a set of tutorial examples of how to create
customized verbatim environments, and it concludes
with a description of how fancyvrb was used in the
typesetting of the LATEX Graphics Companion.

[authors’ abstract]

Michel Goossens, XML et le futur du Web
[XML and the future of the Web]; p. 180

Late in 1996, the W3C and several major soft-
ware vendors decided to define a markup language
specifically optimized for the Web: XML (eXtensible
Markup Language) was born. It is a simple dialect of
SGML, which does not use most of SGML’s seldom
used and complex functions, and does away with
most limitations of HTML. After an introduction
to the XML standard, we briefly describe XLL (eX-
tensible Linking Language) for hyperlinks and XSL

(eXtensible Style Language) for style sheets. We
also discuss some of the many applications based on
XML.

[author’s abstract]

[The author then notes that the complete text of the

article will appear in an upcoming thematic issue of the

Cahiers GUTenberg, to be devoted to XML.]

Michel Goossens and Jean-Yves Le Meur,
Afficher les documents scientifiques sur le Web
[Posting scientific documents to the Web];
pp. 181–196

Every day CERN handles a large number of
research documents, mostly marked up in LATEX and
coming from many Internet servers. Our aim is to
make them easily locatable on the Web with the help
of the CERN Library’s Preprint Catalogue in several
formats (PostScript, PDF, GIF). We review the
conversion procedures and give some details on some
massive production trial runs to directly generate
HTML from the TEX sources. We conclude with a
discussion of recent developments in the framework

of the XML (and MML) efforts which should ease the
support of mathematics formulae in Web browsers.

[author’s abstract]

Hàn Th´̂e Thành, The pdfTEX Program ;
pp. 197–210

pdfTEX is an extension to TEX which allows
the user to generate either DVI or PDF as the
primary output format The current feature set of

pdfTEX is discussed, and further extensions which
are currently under consideration for adoption are
reviewed.

[author’s abstract]

Hirotsugu Kakugawa, [VFlib — A general
font library that supports multiple font formats];
pp. 211–222

VFlib is a font library written in C which
provides several functions for obtaining bitmaps of
characters (i.e. a rasterizer). VFlib hides the font
format of font files and provides a unified API for
all supported font formats. Thus, programmers
of application software need not worry about font
file formats. Instead, any software using VFlib

can support various font file formats immediately.
In addition to this, when a new font format is
supported by VFlib, application software need not
be modified to use such new fonts.

VFlib has been developed not only for Latin
fonts but also Asian scripts such as Chinese,
Japanese, and Korean. Since it is designed as a
general font module, it can be used in DVI drivers
for TEX and LATEX. In this paper we explain the API

of VFlib, a font database file called vflibcap, and the
internal structure of VFlib.

[author’s abstract]

Roger Kehr, [x̊ındy — A flexible indexing
system]; pp. 223–230

Whilst MakeIndex is an index processor which is
suitable for the production of indexes in conjunction
with many text formatters, its support for non-
English langauges is weak and a new version called
International MakeIndex was presented for processing
international documents. The improvements con-
centrated on the internationalization of the sort-
ing process for keywords in an index. Though
it substantially improves the possibility of sorting
new languages, there are still weaknesses in the
processing model largely inherited from MakeIndex.
Through the experience gained from the Interna-

tional MakeIndex project we have implemented a
new index processor x̊ındy that (a) improves the
sorting of index entries at a finer granularity than
International MakeIndex, (b) offers new mechanisms
for processing structured location references besides

226 TUGboat, Volume 19 (1998), No. 2

page numbers and roman numerals, and (c) allows
for complex mark-up schemes.

[author’s abstract]

Sergey Lesenko, [DVIPDF and Embedded PDF];
pp. 231–241

We explain how the current version of the
DVIPDF program manages to integrate external
multipage PDF files into its own PDF output.

[author’s abstract]

Marie-Louise Munier and Ahmed Mahboub,
Expérience de TEX (LATEX) dans la châıne
éditoriale [TEX (LATEX) experiences in the editorial
process]; pp. 242–251

Our aim is not to address current topics in
typography or the quality of electronic documents,
but to describe our experience with LATEX and
other public domain software in a publishing house.
Following a brief historical overview of our ex-
perience with LATEX, the electronic submission of
manuscripts, instructions for authors, stylesheets,
LATEX2ε and AMS-LATEX assets will be addressed.
The last part of this report will be devoted to the
EDP Sciences Web server.

[author’s abstract]

Christophe Pythoud, Français–GUTenberg :
un nouveau dictionnaire français pour ISPELL

[French–GUTenberg: A new French dictionary for
ISPELL]; pp. 252–275

This paper presents choices made in elaborat-
ing a new French dictionary for the ISPELL spell
checker. How to augment the dictionary is also
explained. The ad hoc tools to do this are demon-
strated.

[author’s abstract]

Petr Sojka, [An experience from a digitization
project]; pp. 276–282

An experience from the process of adding logi-
cal markup to visually tagged scanned data is pre-
sented. The method of gradual markup enhance-
ment is shown. Methods of navigation in a large
hypertext document based on typesetting from log-
ical markup are suggested—physical, logical and
semantic user views. Their application on a 28,000-
page project to create an electronic encyclopædia is
described and problems faced when using Adobe’s
Acrobat technology for publishing are discusssed.

[author’s abstract]

Richard Southall, [Prototyping
telephone-directory pages with TEX]; pp. 283–294

The development of a prototype formatter for
telephone-directory pages, written in TEX and us-
ing fonts made with Metafont, is described. The

formatter was used to decide the detailed typogra-
phy of directory entries. Issues connected with the
markup language used in the directory data files are
discussed.

[author’s abstract]

Robert S. Sutor and Angel L. Dı́az, [IBM

techexplorer: Scientific publishing for the
Internet]; pp. 295–308

The IBM techexplorer Hypermedia Browser is
an application for the interactive publication of
scientific and technical documents. The original
project started as an experiment at IBM Research to
see how a from-scratch implementation of a subset of
TEX, LATEX, and AMS-LATEX could be extended to
support interactive viewing of documents for a com-
puter algebra system. This interactivity is accom-
plished via support for hypertext, multimedia, user-
defined pop-up windows and menus, and a modular
architecture that allows connections with other ap-
plications and Java applets. The primary version of
techexporer operates as a Netscape Navigator plug-
in and is available for several platforms, including
Windows 95 and NT, IBM AIX, and Sun Solaris.
In addition to being able to display full documents
using the supported TEX subset, techexplorer is
being extended to support the new “Mathematical
Markup Language” from the HTML Math Working
Group of the World Wide Web Consortium. In this
paper, we provide an overview of techexplorer and
detail how it can be used to deliver mathematical
articles, book, and course materials via the World
Wide Web. We also discuss our intended use of the
OpenMath standard to allow documents to contain
reusable semantically attributed math objects.

[authors’ abstract]

[Compiled by Christina Thiele]

Articles from Cahiers issues can be found in Post-
Script format at the following site:
http://www.univ-rennes1.fr/pub/GUTenberg/

publicationsPS

1998

Aug 17– 20 TUG’98— The 19th annual
meeting of the TEX Users
Group, Torun, Poland:
“Integrating TEX with the
surrounding world”. For information
see the call for papers,
TUGboat 18(4), p.314, or visit
http://www.tug.org/tug-98/.

Sep 4 First meeting of l’Association AsTEX,
CNRS, Orleans, France.
For information,
contact Michel Lavaud
(Michel.Lavaud@univ-orleans.fr)
or retrieve the informational
files posted at
ftp://ftp.univ-orleans.fr/pub/tex/

PC/AsTeX/Readme/.

Sep 21 UKTUG annual general meeting,
University Centre, Cambridge:
“TEX in its diversity”.
For information, visit
http://www.tex.ac.uk/UKTUG/.

Oct 1 – 2 DANTE, 19th meeting, Katholische
Universität Eichstätt, Germany.
For information, contact
dante98@ku-eichstaett.de.

Oct 7 – 12 Frankfurt Book Fair, Frankfurt,
Germany. For information, contact
press@book-fair.com or visit
http://www.frankfurt-book-fair.com/.

Oct 25 NTG, Graphics and TEX
course, Utrecht, Netherlands.
For information, visit
http://www.ntg.nl/bijeenkomsten.html.

Oct 30 –
Nov 1

TypeCon ’98, Society of
Typographic Aficionados,
Westborough, Massachusetts.
Principal speaker: Matthew Carter.
For information, contact Bob Colby
(sota@tjup.truman.edu) or visit
http://tjup.truman.edu/sota.

TUGboat, Volume 19 (1998), No. 2 227

Calendar

1999

Feb ?? DANTE’99, 20th meeting,
“10 years of DANTE e.V.”,
Ruprecht-Karls-Universität
Heidelberg, Germany.

Aug 8 – 13 SIGGRAPH, Los Angeles,
California. For information, visit
http://www.siggraph.org/s99/.

Aug 15 – 20 TUG’99— The 20th annual meeting
of the TEX Users Group, Vancouver,
Canada. Information will be posted
to http://www.tug.org/tug99/

as plans develop.

For additional information on TUG-sponsored events
listed above, contact the TUG office (+1 503 223-
9994, fax: +1 503 223-3960, e-mail: tug@tug.org).
For events sponsored by other organizations, please
use the contact address provided.

Status as of 30 June 1998

228 TUGboat, Volume 19 (1998), No. 2

Late-Breaking News

Production Notes

Mimi Burbank

Well, I first must apologize for the missing page
numbers in my last set of notes. Trying to stan-
dardize usage for production of files in both LATEX
and TEX is sometimes distracting, and I miss lit-
tle things. I’ve been told that I’m suffering from
“Halfzheimer’s” (not full-blown Alzheimer’s) so I’m
going to use this as my excuse. For this issue, we
had files written on multiple platforms, one of which
(see Girou’s article on page 101) could only be run
on one computer because of 8-bit characters. They
simply were not interpreted correctly on any of the
other machines here at SCRI.

Shipping mixup. Some of our members received
the wrong CDs with the last issue of TUGboat:
some members received no CDs, and some mem-
bers received duplicates of one CD. This set of
circumstances occurred at the printer, who had re-
ceived shipments from The Netherlands, Germany
and England over a period of time, and somehow
the mistake was made during the insertion of the
CDs into the issue. We were told that, after 200 is-
sues were stuffed, they noticed the error and tried
to correct it, but evidently missed some.

Check your TUGboat and CD combinations
against the following list and contact the TUG office
(office@tug.org) in case of discrepancies:

TUGboat 19, no. 1 4AllTEX (2 CDs)
TEX Live 3 (1 CD)

TUGboat 19, no. 2 CTAN (3 CDs)

Fonts, fonts and more fonts! An EPS file writ-
ten by dvips, and then re-included in a TEX file,
seems to call on dvips to reload the fonts it already
embedded. This means that a) the font is loaded
twice, and b) it must reside on the production sys-
tem. Why this happens is still under investigation.
But the interim procedure was to convert the EPS to
PDF using Acrobat Distiller (after setting the page
size to be that of the BoundingBox using the fitps
technique), then use the ExportPS plug-in for Acro-
bat Exchange to create a new, clean, EPS file (speci-
fying ‘Embed all fonts’ in the plug-in dialogue). This
was necessary to process the articles by Bouche (see
page 121) and Hoenig (see page 176).

Output The final camera copy was prepared at
SCRI on the following UNIX platforms: IBM rs6000s

running AIX v4.1.4.0, and v4.2 using the TEX Live

setup (Version 3), which is based on the Web2c TEX
implementation version 7.2 by Karl Berry and Olaf
Weber. PostScript output, using outline fonts, was
produced using Radical Eye Software’s dvips(k) 5.78,
using the dvips -Pem option, and printed on an HP
LaserJet 4000 TN printer at 1200dpi.

Coming In Future Issues The next issue of TUG-

boat will be the TUG’98 Proceedings issue. For more
on the topical information, please visit the TUG’98
Programme web site: http://www.gust.org.pl/

TUG98/progr.html. For the December issue, we
have a very nice article by Claudio Beccari on new
Greek fonts and the greek option of the babel pack-
age. As well, we still hope to provide the listing
of acronyms, promised in a previous issue, and an
article entitled “METATEX” by Ramón Casares on
METAFONT graphics in TEX.

Visit TUGboat’s Web pages TUGboat is rep-
resented on the TUG Web pages at the following
locations; we invite you to visit our site:

http://www.tug.org/TUGboat/tugboat.html

http://www.tug.org/TUGboat/announce.html

http://www.tug.org/TUGboat/Contents.html

http://www.tug.org/TUGboat/errata.html

The “Contents by year” pages, beginning with 1995,
have articles linked to the entries. Information
regarding delays and shipment dates is posted on
the “Announcements” page; this is the most current
source of information for those of you wondering if
your issue of TUGboat has been mailed yet. In
the coming months, many more of our articles will
become available in PDF format. As time permits
(or volunteers help us), we would like to make older
articles available as well.

If you would like to volunteer to help us with
this project, send email to TUGboat@tug.org. Also,
if you have not been contacted by us regarding
permission to post your articles to the Web, send us
email and let us know if we may post your article.

⋄ Mimi Burbank

SCRI, Florida State University,

Tallahassee, FL 32306 – 4130

mimi@scri.fsu.edu

TUGboat, Volume 19 (1998), No. 2 229

TUG’99

Vancouver, British Columbia

August 15 – 19, 1999

The TEX Users Group is proud to announce the twentieth annual meeting will be held
at the University of British Columbia, Vancouver, British Columbia, August 15 – 19, 1999.

The theme for the meeting has not been decided. There will be a contest held for the
best theme and the winner will be announced at TUG ’98, Toruń, Poland.

The Program Committee is interested in focusing on “state-of-the-art” TEX/LATEX, pro-
viding practical information on using macro packages, installing and using existing soft-
ware tools, announcing new macro packages, new software tools or new approaches using
TEX/LATEX. We are committed to making this conference one in which each presentation
or workshop adds value for the publishing professional— author, publisher, consultant, and
developer. To better serve the TUG community, the Program Committee would like to pro-
vide parallel sessions. For example, a paper may be presented about “LATEX2ε: Improving
Table/Figure Macros”, which would go into technical detail about these macros. At the
same time a workshop could be provided with step-by-step instructions for placing your
tables and figures in the best location.

We encourage everyone to consider attending and presenting, especially publishers, com-
mercial vendors of TEX, and consultants. We intend to provide a time for each to discuss or
display their services and/or products.

We plan to provide full courses the week before the conference. Topics, dates, instructors
to be announced later.

Deadlines

October 17, 1998: (maximum 1 page each; 12pt fonts)
Submit abstracts for paper presentations
Submit workshop description, objectives,

and prerequisites

December 18, 1998: Notification of acceptance

March 12, 1999: Preliminary papers due

July 16, 1999: Preprint deadline

August 15 – 19, 1999: TUG’99 Meeting

Please send all information regarding paper/workshop submissions to:
tug99-pc@zebra.us.udel.edu.

Institutional

Members

Academic Press,

San Diego, CA

American Mathematical Society,

Providence, Rhode Island

CERN, Geneva, Switzerland

College of William & Mary,

Department of Computer Science,

Williamsburg, Virginia

CSTUG, Praha, Czech Republic

Elsevier Science Publishers B.V.,

Amsterdam, The Netherlands

Florida State University,

Supercomputer Computations

Research, Tallahassee, Florida

Hong Kong University of

Science and Technology,

Department of Computer Science,

Hong Kong, China

Institute for Advanced Study,

Princeton, New Jersey

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Iowa State University,

Computation Center,

Ames, Iowa

Kluwer Academic Publishers,

The Netherlands

Los Alamos National Laboratory,

University of California,

Los Alamos, New Mexico

Marquette University,

Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czechoslovakia

Mathematical Reviews,

American Mathematical Society,

Ann Arbor, Michigan

New York University,

Academic Computing Facility,

New York, New York

Princeton University,

Department of Mathematics,

Princeton, New Jersey

Space Telescope Science Institute,

Baltimore, Maryland

Springer-Verlag,

Heidelberg, Germany

Stanford University,

Computer Science Department,

Stanford, California

University of California, Irvine,

Information & Computer Science,

Irvine, California

University of Canterbury,

Computer Services Centre,

Christchurch, New Zealand

University College,

Computer Centre,

Cork, Ireland

University of Delaware,

Computing and Network Services,

Newark, Delaware

230 TUGboat, Volume 19 (1998), No. 2

Universität Koblenz–Landau,

Fachbereich Informatik,

Koblenz, Germany

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

University of Stockholm,

Department of Mathematics,

Stockholm, Sweden

University of Texas at Austin,

Austin, Texas

Uppsala University,

Computing Science Department,

Uppsala, Sweden

Information about these services can be obtained

from:

TEX Users Group

1466 NW Front Avenue, Suite 3141

Portland, OR 97209-2820, U.S.A.

Phone: +1 503 223-9994

Fax: +1 503 223-3960

North America

Loew, Elizabeth

President, TEXniques, Inc.,
362 Commonwealth Avenue, Suite 5E, Boston, MA
02115;
(617) 670-1916; FAX: (617) 670-1916
elizabeth@texniques.com

Long-term experience with major publisher in preparing
camera-ready copy or electronic disk for printer. Complete
book and journal production in the areas of mathematics,
physics, engineering, and biology. Services include
copyediting, layout, art sizing, preparation of electronic
figures; we keyboard from raw manuscript or tweak TEX
files.

TUGboat, Volume 19 (1998), No. 2 231

TEX Consulting & Production Services

Ogawa, Arthur

40453 Cherokee Oaks Drive,
Three Rivers, CA 93271-9743;
(209) 561-4585
Email: Ogawa@teleport.com

Bookbuilding services, including design, copyedit, art,
and composition; color is my speciality. Custom TEX
macros and LATEX2ε document classes and packages.
Instruction, support, and consultation for workgroups and
authors. Application development in LATEX, TEX, SGML,
PostScript, Java, and ßC++. Database and corporate
publishing. Extensive references.

Outside North America

DocuTEXing: TEX Typesetting Facility

43 Ibn Kotaiba Street
Nasr City, Cairo 11471, Egypt
+20 2 4034178
Email: main-office@DocuTeXing.com

DocuTEXing provides high-quality TEX and LATEX
typesetting services to authors, editors, and publishers. Our
services extend from simple typesetting and technical
illustrations to full production of electronic journals. For
more information, samples, and references please visit our
web site: http://www.DocuTeXing.com or contact us by
e-mail.

TUGboat, Volume 19 (1998), No. 2 231

Announcements

Volunteers needed for LaTeX2rtf

coordination and development

Wilfried Hennings

In our daily tasks, we have to handle LATEX doc-
uments as well as, e.g., MS Word or WordPerfect
documents — like it or not, it’s a fact. And there
is a permanent need to convert between LATEX and
one of the PC wordprocessors.

There are already some converters available (see
my FAQ list at http://www.kfa-juelich.de/isr/
1/texconv.html), however none of them satisfies all
needs. One of these converters is LaTeX2rtf.

Ralf Schlatterbeck, the author of LaTeX2rtf,
cannot maintain it any longer, because he is now
working somewhere else. I cannot either, because I
am not familiar with C and have not enough time
to make myself acquainted with it and work on
programming. Really, that’s not my job; I am just
a Word and LATEX user who desperately needs good
converters, so I am collecting information about
them which one day resulted in the FAQ list men-
tioned above.

Some weeks ago, Georg Lehner mailed me some
enhancements he added, and now we are in touch
with Ralf for joining Ralf’s latest enhancements and

Georg’s, to get a new development version. But
also Georg can not do everything alone, so we are
searching for volunteers to join us for programming
and testing.

Following a posting of this request in comp.

text.tex and de.comp.text.tex, I have already
received some responses, so at the moment there is
already some development work going on.

Georg is willing to coordinate the work for
some time, but it seems that in the long run we
will need another volunteer willing to coordinate
further developments. This does not mean she/he
has to do all the programming her/himself, but
collecting, selecting, coordinating and encouraging
developments done by other people.

Maybe by the time this article is published we
will have already found a coordinator, but in case
we have not, anyone willing to do that please mail
me at: <W.Hennings@fz-juelich.de>. Of course
people with brillant ideas and the capability and
time to implement them are always welcome.

Still on the to-do-list:

• support LATEX2ε (the current version is based
on LATEX 2.09)

Waiting for volunteers. . .

⋄ Wilfried Hennings
Förschungszentrum (Research Center)
Jülich GmbH, ISR D-52425
Jülich, Germany
W.Hennings@fz-juelich.de

Y&Y TeX System.

The Ult imate

Problem Solver.

Concord, MA USA

800-742-4059

But that ’s just part of the whole formula.

For more information about

Y&Y TeX System, check out our

web site at http://www.YandY.com

or e-mail sales-help@YandY.com
Y&Y Inc.

http:// www.YandY.com

The M ost Powerful

Mathemat ical Typeset t ing

Software

Y&Y TeX System

There’s no better mathematical typesetting language than

TEX, and there’s no better software for implementing it

than Y&Y TeX System. Y&Y TeX System simplifies TEX while

maximizing its unsurpassed typesetting capabilities.

Here’s how: ■ On-the-fly font re-encoding lets you

specify unencoded characters otherwise

inaccessible in Windows.

■ Partial font downloading dramatically

speeds up printing.

■ Web publishing capabilities let you prepare

documents in Acrobat PDF which appear

on screen exactly as you designed them.

■ Customizable TEX menu lets you link to

an editor, spell-checker or any other DOS

or Windows program.

