
Real Life LATEX: Adventures of a TEX Consultant

Amy Hendrickson
TEXnology Inc.
57 Longwood Avenue
Brookline, MA 02146
USA
amyh@ai.mit.edu

Fortunately, the life of a LATEX consultant can
be varied and the activities diverse. In my four-
teen years working with Donald Knuth’s wonderful
language, I’ve spent time teaching LATEX, writing
special-purpose macro packages for, among other
things, database publishing, tables that continue for
hundreds of pages, training slides, software docu-
mentation, and PDF production, in addition to my
major activity— writing and supporting multiuser
macro packages for publishing companies. The pro-
gramming capabilities of the language are immense,
and it has been fun exploring a tiny part of its
possible applications.

In this paper I’d like to share some observations,
especially in the areas of designing and supporting
multiuser macro packages, the use of PostScript in
design, and some of the capabilities of LATEX as a
generator of PDF.
Preparing and Supporting Multiuser Macro
Packages

The first multiuser book macro packages that I
authored were written in the early 1980s; my first
journal macro package was the original version of
RevTEX, a widely distributed macro set used by
the American Physical Society, which I wrote in the
late 1980s. Since then I’ve written many more, and
am currently supporting more than thirty journal
styles and four book styles that I’ve written for
three different publishing companies. Here are some
concepts I’ve learned in the process.

Designing the Macro Package. First of all, con-
ceptually, there are some critical differences between
preparing a macro package to be used once, and one
that is to be used by many people over a series of
years. Planning ahead is crucial for the multiuser
package, which must be both flexible and inclusive,
as well as matching the specifications of the publish-
ing company for appearance and functionality, since
it will:

• Be used by many authors on many platforms,
and even in many countries.

– Must be flexible enough to accomodate
different versions of LATEX and differing
PostScript font naming conventions.

– Must include capability for all ordinary
LATEX commands since some author will
want to use one of them.

– Must be as easy to use and document as
possible.

• Must be easy as possible to change and support.

A nontrivial set of requirements!

Desirable attributes. In addition, there are other
considerations which may not be ironclad require-
ments yet which make the macro set useful and
desirable:

• Keep commands similar to the ones used by
standard LATEX. This will mean less documen-
tation, and fewer problems for authors.

• Include commands that are not found in the
general LATEX distribution but which are gener-
ally useful, such as lettered equations, contin-
ued captions, lettered captions, and other con-
venient additions or alterations to the general
distribution form of LATEX.

Process rather than product. Conceptualizing
the package as a process rather than a product is
helpful since, in reality, the authors or publishing
company will very likely want to change the style
slightly or will request additional features.

To do this, we want, first and foremost, to keep
the code as simple and clean as possible. Comments
should be added where necessary, to help under-
stand why a command was written in a particular
way, to make it easier to make changes to it later.

Organizing the main macro set into parts ac-
cording to function, and listing the various parts
may take more time when writing the code but in
the long run it will make it easier to find the part
that needs to be changed. Examples of this are a
part for theorem environments, a part for specific
font calls, or a part for equations, each designated

TEXNorthEast Conference, March 22 – 24, 1998 162

TUGboat, Volume 19 (1998), No. 2 163

and numbered, with a numbered list near the top of
the file to make it easier to find the particular part.

Another way I have found to simplify the pack-
age and its maintainance is to have a single main
macro file which will work with either LATEX2.09 or
LATEX2ε. This means that when a change needs to
be made, it can be made to one file, which can then
be copied and distributed as both filename.sty
and filename.cls. The contents of each file are
identical, but the filename ending will satisfy the
requirements of LATEX2.09, which is looking for a
.sty file; and LATEX2ε, which is looking for a .cls
file. Here is the switch which I build into the main
macro file:

\newif\ifll

\expandafter\ifx\csname LaTeXe\endcsname\relax

% We see that LaTeXe has not been

% defined so LaTeX2.09 is being used

\else

% LaTeX2e is defined, so set ll true,

% LaTeX2e is being used.

\global\lltrue\fi

This means that we can test to see if the file is
being used with LATEX2.09 or LATEX2ε, and make
definitions in those places where the conventions for
the two forms of LATEX diverge. For instance, when
setting font family sizes:

\ifll

%% Provide font family in LaTeX2e form:

\renewcommand{\normalsize}{%

\@setfontsize\normalsize\@xpt\@xiipt

\abovedisplayskip 10\p@

....

\else

%% Provide font family in LaTeX2.09 form:

\gdef\@normalsize{%

\@setsize\normalsize{12pt}\xpt\@xpt

...

\fi

Another example shows how options may be used,
whether the author is using LATEX2.09 or LATEX2ε:

\ifll \let\dooptions\ProcessOptions

\else

\let\dooptions\@options\fi

\dooptions

There are many parts of the code where this switch
is not necessary, but for those parts where it is, this
branching innovation definitely makes maintaining
and redistributing the macro package easier.

Making a Flexible PostScript Font File

It is a major nuisance that PostScript font names
are not identical across TEX implementations. Karl
Berry’s naming system is helpful but, unfortunately,
it isn’t universally used. So, the best solution I’ve
found is to

1. Have a separate PostScript font file that can be
used for final production but doesn’t need to
be used by the author who is not willing to go
to the trouble of customizing it. The document
will then be printed in ComputerModern for the
author, but translated to PostScript in the final
production process.

2. For those authors willing to modify the Post-
Script font file, make it as easy as possible to
do so.

Near the top of the PostScript font file the author
will read instructions and then see the font names
that need to be changed:

% You may need to rename these fonts to match

% the names of the .tfm files on your system.

% If you look at the directory where the .tfm

% files are stored you should be able to make

% the appropriate substitution.

% Some TeX implementations, such as TeXtures,

% will show you the available fonts when you

% click on the correct menu item.

%

% You may write in the name your system uses

% if you don’t find it already written below.

%

% Change the definitions below,

% if necessary ====>

% Times-Roman

%% the Berry names:

\def\timesroman{ptmr}

\def\timesbold{ptmb}

\def\timesitalic{ptmri}

\def\timesbolditalic{ptmbi}

%% Another possibility:

%\def\timesroman{Times}

%\def\timesbold{TimesB}

%\def\timesitalic{TimesI}

%\def\timesbolditalic{TimesBI}

...

(Similar for Helvetica and Courier,

or other special font names)

...

%% <==== End of changes needed.

%% Please do not make changes below this point.

%% !!!!!!!!!

%%%

TEXNorthEast Conference, March 22 – 24, 1998

164 TUGboat, Volume 19 (1998), No. 2

The authors should not have too difficult a time
making this modification. We can then use the
definition later in the file, after adding \space to
the end of the font definition:

%% Times-Roman

\xdef\timesroman{\timesroman\space}

\xdef\timesbold{\timesbold\space}

... and similar xdef for other fonts names

And then we can use them for all the special use
fonts that are necessary, without the author having
to be at all aware of these commands:

\font\titlefont= \helvetica at 16pt

\font\titlethanksfont=\helvetica at 8pt

\font\cccfont=\timesroman at 7pt

\font\subtitlefont= \helvetica at 12pt

\font\specialsectionfont= \universebold at 18pt

\font\affilfont=\timesitalic at 8pt

\font\emailfont=\timesroman at 8pt

\font\communicatedfont=\timesitalic at 8pt

...

Macro Package Distribution

Perhaps this is obvious, but the macro packages are
typically distributed from an ftp or Web site. Au-
thors are directed to a site by their publishing com-
pany and then download the files. A readme.txt
file can explain the function of each of the files.
This system has many advantages, including the fact
that the macro set can easily be changed and a new
set of macros or documentation dropped into the
ftp or Web site. The authors can be instructed to
download the files at the time that they do their
book or article so that they are sure to have the
current versions.

Supporting multiuser macro packages

The complete macro package typically will include
a sample file demonstrating every command that
is unique to the package, and options which the
user may have, as well as a template file with the
commands listed in correct order so that the user
may copy it and fill in the arguments to at least start
his/her paper or book. The final set of files, which
are very important to the success of the package, are
the documentation files.

Documentation. Frankly, I don’t like to read doc-
umentation, and I bet you don’t either. However, we
need to be able to get the information somehow, or
transmit the information if we are writing a macro
package.

My method, which I hope is helpful to authors,
is to provide many examples of code and results:

show rather than tell. I believe that this makes
it easy for the author to see what command to
use, by comparing their needs to the examples of
typeset text, and then examining the code needed
to produce that text. The author downloads the
documentation file, runs LATEX on it, and can print
it on their own printer.

Another helpful technique is to provide the doc-
umentation file in PDF form. Since one of the main
problems is getting people to read the documenta-
tion, having it presented in attractive PDF form with
color and hypertext-linked table of contents, book-
marks, and index, helps authors get started using
the package. They may view the PDF file before
they have figured out what the various parts of the
package are used for, and even, perhaps, before they
have figured out how to run LATEX on the .tex form
of the documentation. The PDF file can sit on the
publisher’s Web site, and the author can read it with
a Acrobat Reader enabled browser program.

Offering Author Support. Authors of the com-
plex technical material that is usually typeset with
LATEX are undoubtedly very smart, but not nec-
essarily very familiar with LATEX. Often they are
motivated to use it for their book or article, and are
quite reassured to know that they can ask a question
or modify the macro set to their liking. That is one
reason for offering TEXnical support.

Another is that authors may be stuck on one
small problem, which they can work out easily with
a little help. Typical of this kind of problem is
the author who can’t figure out how to get the
PostScript font file to work on his system. Another
very common sticking place is the use of BibTEX,
which is often troublesome, but yields with the help
of a few suggestions.

Some authors totally refuse to read the docu-
mentation. This is aggravating to the person doing
support, but the author usually can be directed
politely into performing this reasonable task.

Many authors want additional capabilities. If
you have not made all the normal LATEX commands
available, you will very likely hear about it, and
have requests to make a command like, for instance,
\thanks{} work in all kinds of unlikely places.

Many also want some new environment or fea-
ture. If your contact at the publishing company
thinks that it is worthwhile to provide this new
capability for the author, then a decision needs to
be made if this would be generally useful. If so,
add it to the general macro package and to the
documentation; otherwise make a special version of
the macro file for that particular author.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 165

Finally, sometimes an author may discover a
bug in the macros or documentation. Of course,
we try our best to avoid this, but it does happen.
In this case, we must change the macro file and/or
documentation, and drop it back onto the ftp site
so that subsequent users don’t experience the same
problem.

A Plea For Good Design

Many books and articles done in LATEX use, to
be charitable, a timid design. Some publishing
companies distribute books done with the standard
distribution LATEX book style. Anyone who values
handsome typesetting and understands the capabili-
ties of LATEX will find these books painful to behold,
knowing that they are totally unnecessary.

No excuse for the techie look! First of all, even
if the author submits his book in the default LATEX
book style, the publishing company can supply a
macro file which will reinterpret the marked up
commands, re-run LATEX on the file, and, with
minimum effort, produce a book with a handsome,
professional appearance. Second, as far as I am
aware, there are no limitations in implementing any
design when using the combination of LATEX and
PostScript.

TEXnical Capabilities: Using PostScript
with LATEX

The possibility of combining LATEX and PostScript
code in the same macro package opens up many
more options for the book designer who, without
the knowledge of this potential, might be much more
conservative in their design choices.

How it is done. Since we usually print books
and journal articles done with LATEX by converting
them to PostScript with a driver program, we can
also include raw PostScript commands in the macro
file, which can then be passed, unchanged, by the
driver program to the final PostScript file. As well
as allowing us to add PostScript graphic effects to
a macro file, there is also the capability of writing
a macro which will include PostScript code which
may be altered according to arguments given to the
macro.

Here is a rather trivial example, but it demon-
strates the principle of using LATEX information to
produce PostScript code. Once you understand that
this will work you might imagine many other uses
for what is essentially building PostScript code on
the fly.

A LATEX-PostScript macro can be written to
position a PostScript grey or colored screen behind

a particular area of text. The text is picked up as a
macro argument, set in a box to be measured, and
the results passed to the PostScript code, which will
form a screen of the correct size, which can then be
positioned underneath the given text.

First, a definition using PostScript code, de-
signed to be used within another LATEX macro:

\def\printbluescreen#1#2{%

\hbox to\hsize{\vbox to#1pt{\vss

\special{language "PS", literal

"/ChartCheckPoint save def

newpath

0 0 moveto

0 #1 rlineto %up

#2 0 rlineto %over

0 -#1 rlineto %down

closepath

0.8 0.99 0.99 setrgbcolor %% lt blue

fill

ChartCheckPoint restore

"}% end special

}}}

\printbluescreen is used in the second part of a
two-part macro: the first part begins a box and
the second part ends the box. This gives us a box
containing the text found between the two macros
which we can then measure. The results can be used
as the first argument of \printbluescreen:

....

\printbluescreen{\the\boxht}{\the\pagewidth}

....

where \boxht is a manipulated version of the height
of the test box, and \pagewidth is a manipulated
version to the width of the text.1 Each time the
macro is used, a new dimension for the \boxht
may be used, changing the PostScript commands to
exactly fit the space behind the given text, in effect
making PostScript code on the fly.

We can also have a normal LATEX macro call,
something like \chapter{}, for instance, and pro-
duce a graphic effect written in PostScript, when
the macro for chapter titleblocks includes raw Post-
Script code that can be altered depending on the
argument given to \chapter{}.

One of the most interesting designs I’ve imple-
mented was for documentation of toolbox software
packages published by The Mathworks. It had
normal chapter titles but also a bar that would

1 We need to manipulate the dimensions because the
PostScript code is expecting a number and assuming that it
means that number of points. Supplying a LATEX dimension
will produce a number followed by ‘pt’, i.e., 25.0pt, when
what we need is 25.

TEXNorthEast Conference, March 22 – 24, 1998

166 TUGboat, Volume 19 (1998), No. 2

appear in the margin, with a short version of the
chapter title running sideways in a colored block,
topped by the chapter number printed upright. This
graphic effect would also change position depending
on the chapter of the book, starting at the top of
the page and gradually moving down. This striking
effect was produced with a combination of LATEX
macros and PostScript code, in which information
was passed from LATEX to the PostScript code used
to form the graphic.

Looking Forward: The Basic Wonderfulness
of PDF

Many of you are already familiar with the Adobe
Acrobat program that produces and reads PDF files.
Its cross-platform and hypertext abilities, and easy
user interface, make it an attractive way to dis-
tribute on-line journals and books, either on a CD
or over the Web. However, we in the LATEX world
are especially fortunate when it comes to using this
program because:

1. The program that produces PDF, the Acrobat
Distiller, processes PostScript files. Since most
LATEX documents are translated to PostScript
routinely, that means that they are ready to be
distilled with no extra effort, other than being
sure to use outline fonts, and a driver program
run on the .dvi file to produce a .ps file.

2. The Acrobat pdfmark commands can be added
to the LATEX file, passed through the driver
program unchanged, to be used by the Dis-
tiller program. This allows pre-linking of any
appropriate material, as well as other features,
such as generating Acrobat bookmarks auto-
matically, changing colors of specific parts of
the document, and controlling many other as-
pects of the final PDF file.

Examples of passing LATEX information to PDF

include the possibility of prelinking the Table of
Contents, List of Tables, and List of Figures. The
viewer can then click on any item in one of these
environments and pop to the page listed. Simi-
larly, cross-references, bibliography citations, and
footnotes can by colored and hypertext-linked au-
tomatically, as can indices. Graphics can be added
to every page, if desired, and be linked to the Table
of Contents and to the Index, to make it easy for
the viewer to access either of these sections of the
document. Graphics can be used in specific cases
and linked to the appropriate referant. For instance,
a printed question might appear in the margin of

a document— ‘Need more information?’ — and the
user who clicks there would be sent to an appropri-
ate appendix or other source of information. An-
other possibility for complex technical documents
would be to have links to a glossary, so that the first
time a term is used it would be highlighted and the
user could click on it to jump to the appropriate
glossary entry.

Color is free. Usually book publishers are con-
cerned about adding color to their books because
of the added cost, understandably, since each color
makes the conventional printing process substan-
tially more expensive. When using PDF, the cost of
adding color is no longer an issue, so escaping from
dreary black and white becomes a no-cost option.
Pdfmark commands to set a particular color may
also be inserted into a LATEX macro file, so that
particular parts of the document will appear in the
chosen color automatically. There is tremendous po-
tential for LATEX/PDF book and journal production
used for on-line distribution, database publishing,
and many more applications.

An example of an application of LATEX-PDF

which I prepared recently was for a company that
uses LATEX for the over 400-page documentation of
their statistical software package. They asked me
to provide macros to produce a PDF form of their
documentation for on-line help for their software.

The user of their software will now be able to
click on the correct entry in the ‘help’ menu to
access a PDF version of the documentation without
leaving the original program. The Acrobat Reader
program will pop up with the PDF file containing
the full version of the printed documentation. When
the user has found the bit of information that they
need they can return to the original program which
continues running in the background.

This means that instead of using only the
usual RoboHelp files that must be written by the
company separately from the documentation, and
which would necessarily be a subset of the complete
printed documentation, users will now have access to
the complete documentation, with hypertext linking
in the complete index, table of contents, and glos-
sary. Graphics at the top of the page will allow
users to easily jump to the contents or the index.
This would seem to be a very attractive method of
producing on-line help for those software companies
that use LATEX to produce their documentation.

Another innovative use of TEX and PDF can
be seen in the University of Akron mathematics

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 167

professor David Story’s online Calculus Tutorial,
and Algebra Review. You will find them at
Home Page:

http://www.math.uakron.edu/~dpstory/

e-Calculus:

http://www.math.uakron.edu/

~dpstory/e-calculus.html

An Algebra Review in 10 Lessons:

http://www.math.uakron.edu/

~dpstory/mpt_home.html

e-mail:

dpstory@uakron.edu

I consider PDF production the cutting edge of
the LATEX world, and I look forward to exploring its
potential, as I expect you will too.

Happy TEXing!

� Amy Hendrickson
TEXnology Inc.
57 Longwood Avenue
Brookline, MA 02146
USA
amyh@ai.mit.edu

TEXNorthEast Conference, March 22 – 24, 1998

