Call for Papers

Proposals for papers are now being solicited: prefer-
ence will be given to papers which deal most directly
with the theme of the conference, but papers on re-
lated topics (e.g., DSSSL,HTML, PDF, SGML, XML,
etc.) are not excluded. Proposals (which should
ideally be written in English, but which may be
written in another language by prior arrangement)
should be sent to the TUG’98 Programme Commit-
tee (tug-98-papers@mail .tug.org).

Each proposal should include the title, name,
address, e-mail address and affiliation (where ap-
propriate) of the proposer, together with an ex-
tended abstract (the latter should correspond to
approximately one side of A4. In addition, there
should be an estimate of the necessary time for
verbal presentation (excluding questions: a further
five minutes will be allowed for questions after each
talk), and a further estimate of the number of
printed pages which will be required to reproduce
the full text of the article using the [1]tugproc
macros. Any special needs to process the paper
should also be stated (for example, colour pages in
the preprints/proceedings; e-TEX, pdfTEX, Omega,
etc.).

Deadlines

30 January 1998:
Deadline for receipt of proposals
20 February 1998:
Deadline for notification of acceptance/rejection
10 April 1998:
Deadline for receipt of first drafts
29 May 1998:

Deadline for receipt of final versions

For more extensive information, consult the TUG’98
website at http://www.tug.org/tug-98/, which
also includes a list of related conferences.

“Integrating TEX with the surrounding world”
Uniwersytet Mikolaja Kopernika, Torun, Poland

17-21 August, 1998

The 1998 TEX Users Group Conference will be organised and hosted
by the Polish TEX Users Group GUST. Planning is now well under
way, and enquiries may be addressed to tug-98@mail.tug.org.

Getting there

Delegates arriving from overseas will probably fly into
Warszawa (“Warsaw”) Airport: the schedule for LOT,
the national carrier, is on-line at http://www.lot.com/
schedule/. Many other carriers (e.g., British Airways,
KLM, Sabena) also fly into Warszawa.

From the airport, delegates should take the Airport
City bus to Warszawa Centralna (“Warsaw Central”)
station: this bus journey costs 4 zl (the current exchange
rate is about 5 zl to 1 pound sterling). The number 175
bus is a cheaper option (cost: 1.6 zl), but not advisable
if traveling with large quantities of luggage, exposed
wallets, documents, etc. ... Taxis can prove very ex-
pensive unless booked by telephone in advance from a
reliable company such as Wawa or Wolfra (a useful list
of taxi companies with telephone numbers can be found
at http://www.inter.com.pl/warsaw/wttt.htm.

From the station, trains run direct to Torun; the
PKP (Polish Railways) timetable is on-line at (http:
//bahn.hafas.de/bin/db.w97/query.exe/en).! Train
travel within Poland is not expensive, and delegates
should book first-class accommodation with reserved
seats if possible: couchettes and sleeping cars are avail-
able on some overnight trains. Beware of pickpockets,
and never allow yourself to be forced to pass between
two strangers in the train corridor.

If you prefer to drive to Torun, and are coming
from outside Poland, expect considerable delays at such
well-known border crossings such as Frankfurt am Oder.
Far better is to seek out the little-used local crossings
such as that at Kostrzyn. Formalities are minimal, and
you need not complete a currency declaration unless you
are carrying more than 2000 ECU. Once in Poland, pay
particular attention to speed limits, which are strictly
enforced (60 kph in towns/villages, 90 kph outside, 110
kph on expressways and motorways: any/all of these
may be overridden by signs). The alcohol limit for
drivers is zero.

! Specify Warszawa Centralna as ‘From:’ and Torun
Glowny as the destination ‘To:’; in fact, any European station
can be the starting and/or finishing point.

146 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Message from the President

Mimi Lafrenz Jett

ETP Harrison, 1466 NW Front Avenue, Suite 200, Portland OR 97209-2820 USA

mimi@etp.com

Greetings TUG Members,

The 18" Annual Meeting and Conference held this
summer in San Francisco proved to be an excit-
ing week of TEX-nology and transition. The pass-
ing of responsibilities from the outgoing board and
officers to the new was effected with tremendous
professionalism and grace, under the leadership of
Michel Goossens, our diplomatic past-President. It
is with sincere appreciation for countless volunteer
hours and selfless determination that we, the en-
tire member-body, thank President Goossens; Vice-
President Yannis Haralambous; Secretary Sebastian
Rahtz; Treasurer Mimi Burbank; and board mem-
bers Robin Fairbairns, George Greenwade, Alan
Hoenig, and Jon Radel for their service to TUG
and the TEX community. Only through the efforts
of these individuals, and many other enthusiastic
volunteers have we made progress and evolved into
the forward thinking TUG of the next century.

An obvious indication of our progress is the
restructuring of the office and support team. In
an effort to reduce costs and improve service to
our members, TUG no longer employs a staff of
personnel, but instead employs the services of three
contractors— with specific responsibilities and du-
ties— eliminating the overhead expenses tradition-
ally associated with a staff. Thanks to the ef-
forts of Art Ogawa and his incredible wife, Mar-
ian Goldeen, with the cooperation of our outgoing
Executive Director Patricia Monohon, the business
of the TUG office was attended to; analyzed; and
organized into the three key-result areas we now
utilize as our structural base: membership support
and office administration; bookkeeping; and email.
With great good luck, all three positions have been
filled by professionals with character and experience.
Lena Mohajerin, Administrative Assistant, is an
entrepreneur in the field of training seminars for
international trade, when she is not busy answering
membership queries or filling orders for the ever-
popular TEX Live 2 CD (which, of course, is a benefit
of membership). Lena keeps regular hours in the
office on Tuesdays and Fridays, with supplemental
work from her home office. (Watch our WWW site
for scheduled telephone times and other important

news from Lena.) Cindy Hansen of ABC Solutions
now handles our bookkeeping, as she does for a
handful of companies in the Portland area, including
ETP Harrison. Justin Winkler (aka Wink) is a
TEX programmer with valuable knowledge and ex-
perience in a variety of computer operating systems
and languages; he reads and forwards all email to
the proper support team and works closely with
Art Ogawa and Karl Berry to continually improve
our database and responsiveness. Lena, Cindy, and
Wink are available to support our members at the
addresses listed inside the front cover. Please do
not hesitate to contact the office with any issues or
suggestions you have. If you do not get the help
you need, or feel we could have done better, please
contact me directly at president@mail.tug.org. I
will personally respond to any mail at that address,
and I appreciate your feedback.

The best laid plans of mice and men, often
go asunder

Relocating the physical office has also been an evo-
lutionary process. Amid the upheaval of a change
in situations, Art and Marian moved swiftly to keep
us operational by moving the essential office tools
to their office in Three Rivers, California. Without
such heroic actions and open communication of the
board and conference committee, I am afraid the
meeting in San Francisco may not have been such
a success, not to mention the development of our
current plan of action. During the week of the
conference, dozens of volunteers helped pack and
move the remaining contents of our San Francisco
office out of the Flood building and into temporary
storage. It was quickly apparent that the term
‘virtual office’ is an oxymoron— there are no book-
shelves in a virtual office to stack TUGboats on, no
desk for the computer, no cabinets for our decades’
accumulation of files. So now, what to do? We
had > 60 boxes of important stuff, no staff, and
an uncertain direction. Once the election results
were finalized, it made sense to reconstitute the
office in Portland, Oregon, where two of the five
members of the newly formed Business Committee
live. Of course, the fact that we were offered space

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 147

Mimi Lafrenz Jett

for an office, free of charge, was a major determining
factor. We are now housed in the spare room of
ETP Harrison, our small publishing service business
working in TEX. As long as ETP Harrison holds the
lease on this building, the TUG office is guaranteed
a rent-free location.

The savings we are experiencing in overhead
have allowed us to purchase a new computer for
membership support, including email, web server,
and database management. A special thanks to
Karl Berry for his constant support of our electronic
communications and another enthusiastic round of
applause for our friends at DANTE for their contri-
bution of a Sparc-10 for our CTAN server.

During the chaos of two moves, new people and
the annual meeting, communications and support
have been less than adequate. We apologize for any
concern or inconvenience this has caused our mem-
bers, and promise improvement in the near term.
Your requests and applications are being processed
now, and you should have answers by the time this
issue hits your mailbox. The financial condition is
also being sorted out, and the treasurer’s report is
expected to be ready for the next issue. Thank you
for your patience during our difficult times. The
future is bright, and has finally arrived!

It is with continuing awe of the unexpected,
that I sign the President’s Message for this edition
of our journal TUGboat. Although I have hoped to
serve in this capacity for sometime, it did not seem
like a realizable goal until this year. And my Mother
used to tell me: “Be careful what you wish for, you
may get it!”

Here’s wishing happiness and hope for all of us.

148 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Mimi Burbank

148

Production Notes

We apologize for the delay of this issue. The produc-
tion team members first assumed responsibility for
the issue in mid December. An article by Han Thé
Thanh, will appear in the next issue of TUGboat,
as will an article by IATEX3 project members, David
Carlisle, Chris Rowley, and Frank Mittelbach.

Output This issue was prepared using the beta
version of the TEpX Live CD-ROM, version 3 and I
am pleased to report that everything runs smoothly!

The final camera copy was prepared at SCRI
on a UNIX platform, running AIX v3.2.5, using
the TEX Live setup (Version 3), which is based on
the Web2¢ TEX implementation version 7.2 by Karl
Berry and Olaf Weber. PostScript output at 600dpi
was produced using Radical Eye Software’s dvipsk
5.76a and printed on a QMS 860 printer. Because
of time and software requirements, Werner Lemberg
very kindly provided the final PostScript files for his
two articles.

TEX Live CD-ROM, version 3

TUG and the UKTUG are preparing a new TeX Live
CD-ROM, with an anticipated release date of mid-
March 1998.
TEX Live 3 will include:
e updated macro and font packages;
e December '97 KTEX;
e bugs fixed in install scripts;
e UNIX and Win32 binaries based on web2c 7.2;
e WIN95/NT system runnable directly from CD-
ROM;
e Omega, e-TEX and pdfTEX for UNIX and Win32;
e latest CMacTEX, OzTEX, and MikTEX distri-
butions;
e lacheck, dvidvi, dtl, psutils, tlutils, and dvise-
lect/concat for all UNIX and Win32;
e full CONTEXT macro package; and
e Joliet CD-ROM support, so that win32 users see
long/mixed-case filenames.

¢ Mimi Burbank
SCRI, Florida State University,
Tallahassee, FL. 32306 —4130

mimi@scri.fsu.edu

TUGboat, 18, Number 3— Proceedings of the 1997 Annual Meeting

TUG’97 Program

Saturday
July 26, 1997

Sunday
July 27, 1997

1:00-5:00

1:00-4:00
4:00-6:00

Monday
July 28, 1997

9:00-9:30

9:30-10:00

10:00-10:30
10:30-11:00
11:00-11:30
11:30-12:00
12:00-12:30

12:30-1:30

2:00-2:30
2:30-3:00
3:00—-3:30
3:30—-4:00
4:00—4:30
4:30—5:00

Tuesday

July 29, 1997
8:30—-9:45

10:00-10:30
10:30-11:00
11:00-11:30
11:30—12:00

12:00-1:30
1:30-2:00

2:00-2:30

1:00—4:00 Board of Directors Meeting

Tutorials
Registration 1:00—5:00

Aspects of Omega; from everyday use to development and extension of
multilingual tools / Yannis Haralambous € John Plaice

ITEX2HTML / Ross Moore

Moving from KTEX 2.09 to WTEX 2:/ Anita Hoover

Welcome Reception 6:00— 8:00 LMCC Room 100

Pictures and TEX
8:00 a.m.—4:00 p.m. Registration

Opening Convocation /Michel Goossens, Outgoing President

Picture this: the TEXxie approach to graphical illustration
Session Chair: Hans Hagen

“Xy-pic as a tool for VHL2G and how this made TEX into an animation tool” /
Kristoffer H. Rose

“A tutorial on MetaPost graphs” / Sebastian Rahtz

Break

“Drawing with DraTEX” / Eitan Gurari

“High-quality labels on included graphics, using Xy-pic” / Ross Moore

“CIRC: a package to draw flow-sheets of all types” / Sebastian Tannert

Lunch
Tooling up: where are we with TEX? Session Chair: Taco Hoekwater

“The state of e-TEX” / e-TEX member

“Omega, the full release” / John Plaice & Yannis Haralambous

“TEX Live 2—towards a fully flexible TEX on CD-ROM” / The TgX Live Team
Break

“New font tools for TEX” / Werner Lemberg

“Production of complicated and highly interactive documents” / Hans Hagen
The Web and SGML

8:00 a.m.—4:00 p.m. Registration

TUG Business Meeting

TEX and scientific publishing on the Internet Session Chair: Chris Rowley

“A new TEX math font family for Elsevier” / Yannis Haralambous
“DVIPDF and graphics” / Sergey Lesenko

“TEX to PDF direct” / Han The Thanh

“Developments in PDF, and BTEX” / Steve Zilles

Lunch

“techexplorer: Interactive scientific electronic publishing for the Internet” /
R.S. Sutor, A.L. Diaz and S.S. Dooley
“Translating SGML to HTML, with help from TEX” / Chris Hamlin

— — — Continued — — —

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 149

TUG’97 Program

———-TUG’97 Program continued — — —

TEX behind the scenes: what is our relationship to SGML?
Session Chair: Michel Goossens

2:30—-3:00 “The DSSSL style sheet language” / Jon Bosak

3:00-3:30 “The TEX backend for Jade” /Sebastian Rahiz

3:30—-4:00 Break

4:00—-4:30 “DSSSL, TEX and math” / Chris Rowley

4:30-5:00 “IATEX2HTML — past, present and future” / Ross Moore
Wednesday Publishing and TEX

July 30, 1997 8:00—4:00 Daily Registration
TEX and the real world

9:00-9:30 “The advantages of INTEX in producing electronic courseware” / Mimi Jett
10:00-10:30 “Custom legal documents for the Auto Loan Exchange” / Douglas Lovell
10:30—11:00 “What IATEX needs to make it useful to publishers” / Fred Bartlett
11:00-12:00 Panel discussion of M TEX and publishers
12:00-1:30 Lunch

1:30-2:30 Vendor presentations

KTEX —state of the art? Session Chair: Mimi Jett

2:30—-3:00 “IATEX project overview” / Chris Rowley

3:00-3:30 Break

3:30—-4:00 “IMTEX3 Programming / David Carlisle

4:00-4:30 “Breaking equations” / Michael Downes

4:30-5:30 Panel discussion on the future development of IATEX in relation to the new TEX

variants becoming available
Hornblower Dinner Cruise 7:30—10:30

Thursday ETEX, Fonts and Languages
July 31, 1997

Real Work
8:30-9:00 “Using color in TEX: an anecdotal journey” / Dan Olson
9:00-9:30 “TEX meets watermark” / Kazuhiro Kitagawa
10:00—12:00 Birds of a Feather (BOFs) concurrent
12:00-1:30 Lunch

Multilingual typography without boundaries
Session Chair: Erik Frambach

2:30—-3:00 “Developments in KTEX for multilingual documents” / Frank Mittelbach
3:00-3:30 “The multilingual interface of the ConTEXt macro package” / Hans Hagen
3:30—-4:00 Break
4:00—-5:00 “The CJK package: multilingual support beyond Babel” / Werner Lemberg
5:00 Closing ceremonies

Friday 9:00—1:00 Board of Directors Meeting

August 1, 1997

150 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Very High Level 2-dimensional Graphics with TEX and Xy-pic

Kristoffer Hogsbro Rose

BRICS, University of Aarhus (DAIMI), Ny Munkegade building 540, 8000 Arhus C, Denmark

krisrose@brics.dk
URL: http://www.brics.dk/“krisrose/

Abstract

A problem with using pictures in TEX and IATEX documents is that there is no
natural universal notation encompassing all possible diagrams, flow-charts, etc.In
this paper we argue why one should not attempt such generality but rather design
custom embedded graphic languages for classes of similar pictures.

The main argument is the usual one for markup languages: using a spe-
cialised high-level notation means that the source captures the essential properties
of the picture. Not only does this make it easier for the user, who can concentrate
on contents rather than form, but it also makes it easier to abstract out inessential
style issues such that the “picture style” can be varied without changing the
source. The main concern is that implementing a large number of such languages
is only feasible with access to a versatile and powerful drawing library such that
the amount of hacking required for each language is minimal.

As an example we survey how one can include a small “directory tree” in a
paper, and we design and implement an embedded tree drawing language useful
for this purpose. We illustrate the generality of the notation by showing how the
same source can be used to generate the tree and even to grow it (by animating
it) following the structure information. We finally present the implementation in

TEX using Xy-pic to produce the actual graphics.

Introduction

A common reason why skilled professionals working
in technical areas choose TEX (Knuth, 1988) is that
TEX makes it is easy to produce high quality drafts
and to introduce corrections based on comments
into these, making the edit-publish-feedback loop a
fast and smooth one. This is further encouraged
by the principle of “logical markup” promoted by
formats such as IWTEX (Lamport, 1994): this makes
it possible to work with manuscripts with the focus
on contents rather than form. In particular the
facility for mathematical typesetting based on the
structure of formulae means that authors can work
with notions as they think about them in man-
uscripts, using familiar notations and groupings,
deferring fine points of the typesetting until the
latest moment without compromising the quality of
drafts seriously, and —more importantly — without
compromising the quality of the final version at all.
Often it is even possible to use the same source for
typesetting and other purposes. This is a very safe
way of ensuring that the formulae appearing in a
technical report are, indeed, exactly the same used
in computations.

However, in contrast to this pleasant situation
for formulae with textual structures, the treatment
of simple, illustrative pictures is presently seriously
lacking both in convenience and in the quality of the
result. Even on the Internet there is no universally
useful standard for “logical” specification of illus-
trative diagrams.! The reason for this is probably
that it is rather easy to just compose a “quick and
dirty little picture” by throwing together some ar-
rows, boxes, lines, etc., using a small visual drawing
tool. That the result is usually excessively ugly is
largely ignored (that proper composition of pictures
was an immensely complicated task in traditional
typography is likely to play a role in this matter).

Presently the following statements are represen-
tative for the options for 2-dimensional graphics that
can be used with “portable TEX source documents”
such as submissions, etc.; the choices are listed in
approximate order of frequency in the author’s ex-
perience.

1 The situation is acceptable for complicated 3-
dimensional drawing, however, where several successful stan-
dards exist; one of these, VRML, is even becoming an Internet
standard.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 151

Kristoffer Hggsbro Rose

“Graphics is not portable!” A textual approxi-
mation will have to do.

“One can do everything with rules!” One can
do wonderful things drawing just horizontal and
vertical lines using TEX rules.

“PostScript is portable graphics!” PostScript
can be used to create the picture as an
encapsulated PostScript (Adobe, 1990) file dis-
tributed along with the article source.

“METAFONT is portable graphics!” Since TEX
is bundled with METAFONT all TEX installa-
tions should have a METAFONT engine. So
all we have to do is draw the graphics with
METAFONT (Knuth, 1986) and generate a font
containing the drawing on each platform.

“Use a custom notation!” Designing an embed-
ded language targeted at expressing the desired
graphics directly in the TEX source without any
constraints as to how the picture is actually
drawn, is the only truly portable form of pic-
ture. It is easy to provide a macro package
that makes actual pictures using the style of
the context as far as possible.

Below we will first survey the five options for a
particular ezample before we summarise the design
principles for custom embedded languages and show
how the information contained about a drawing
in a well-designed language can be used for other
purposes such as animation.

Survey by Example

Consider the following: the staff of a computing
facility writes a monthly article where tradition has
it that the “current directory structure” is included.
The article is distributed to a number of departe-
mental newsletter editors that are all published with
TEX (of course). The various newsletters are pub-
lished using a variety of styles and fonts and printed
on all sorts of equipment, so portability is a crucial
issue.

Avoiding graphics. The staff can use the first
choice easily, e.g., through the ouput of some stan-
dard tool. The UNIX tree command, e.g., produces
output as shown in figure 1. While this solution is
ugly it is certainly completely portable, and in fact
used more often than not.

Using standard TEX rules. The second choice
is almost as easy to realise and only requires a bit
of hacking. Figure 2 shows what one can produce
easily by substituting parts of the textual form with
appropriate rules and spaces in a TEX \haligns
construction. Such substitution essentially means

xy-3.4

|-- doc

| ‘-- xyguide-html
|--— mfinputs

|-- pkfonts

| |-- 1jfour600
| |-- 1jfour657
| |-- 1jfour720
| ‘-- 1jfourse4
|-- ps

| -- psfonts

|-- src

|-- texfonts

‘-- texinputs

Figure 1: UNIX tree output.

xy-3.4
L doc

L xyguide-html
| mfinputs
| pkfonts
ljfour600
lifour657
ljfour720
lifour864

| ps
| psfonts
| src

| texfonts
L texinputs

Figure 2: UNIX tree output with substitutions.

that we translate the text directly into an appropri-
ate TEX source representation which means that we
need to know how to interpret the text in order to
make a meaningful translation.

PostScript. The (encapsulated) PostScript choice
is often the most practical, and is almost portable —
only a few platforms cannot print PostScript and a
few more cannot preview files with PostScript well.
With PostScript the example tree might look as
shown in figure 3. While the size of the figure can be
changed by scaling it remains difficult to change the
“Times” (or whatever) look of the figure, however,
with an “embedded PostScript” package, such as the
very powerful PSTricks (van Zandt, 1996), one can
reduce this problem somewhat.

METAFONT. This choice is interesting in that all
TEX installations are supposed to have METAFONT
and thus compatibility is not a problem in principle.

152 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Very High Level 2-dimensional Graphics with TEX and Xy-pic

xy-3.4
doc
T xyguide-html

mfinputs

pkfonts
1jfour600
1jfour657
1jfour720
ljfour864

ps

psfonts

src

texfonts

texinputs

Figure 3: PostScript picture.

However, it turns out that not all TEX installations
can handle dynamic changes to the repertoire of
fonts gracefully, thus in practice this is less of an
option than one would hope. Two alternatives ex-
ist: using META O T instead relaxes the dynamic
font problem somewhat at the penalty of requiring
the use of PostScript, and using the mfpic pack-
age (Leathrum and Tobin, 1994) makes it possible
to mix METAFONT-generated drawing with TEX-
produced text. These are options that need to be
further invesitigated. In general TEX would benefit
greatly from a component model permitting interac-
tion between the various graphic forms— but this is
beyond the scope of this presentation.

Designing a custom embedded graphic lan-
guage. The fifth and last option is obviously
ideal —once a dedicated language exists for the kind
of graphics in question, that is. The most obvious
way to think of the directory structure is as a tree
with a node for each directory (as hinted at by the
UNIX command name). This leaves us with the
problem of coming up with a good textual notation
for trees. One possible such notation has been used
in figure 4 using parentheses to express the directory
nesting structure.

In this paper we will argue that designing such
very high level drawing languages for embedding
picture descriptions directly in the manuscript is
an option worthwhile pursuing in many cases, even
considering the initial cost of designing and imple-
menting the language.

An Embedded Language

We first explain the principal properties of embed-
ded languages and how this is reflected by our toy

\tree{
{xy-3.4} (

{doc} (
{xyguide-html} (O

)

{mfinputs} O

{pkfonts} (
{1jfour600} O
{1jfour657} O
{1jfour720} O
{1ljfours864} O

)

{ps} O

{psfonts} O

{src} O

{texfonts} ()

{texinputs} O

Figure 4: Directory as abstract tree.

directory tree sample language; we then describe the
implementation of it in TEX.

Principles. There are the two principal properties
that embedded languages should opt for:

Use generic abstract structures. Each custom
embedded language is unique. Chances are,
however, that your users will see several of your
languages. Therefore try to use generic abstract
structures as the “glue” of the language: this
eases both the design and implementation task,
and makes it easier for users to learn and later
remember several embedded languages without
despairing.

Use conservative notation. A custom embedded
language should fit smoothly in with its “host
language.” Use the host language’s notations
whenever possible.

The “abstract structure” of a directory tree is a tree.
Thus we can use standard prefix notation for trees
and write each “branch” as

label (subtree ... subtree)

where label is the text associated to each node
(for a directory this will be its name) and each
subtree is an entire tree rooted below the present
node (corresponding to subdirectories and files).
Branches with no subtrees are often called “leaves”
but we do not need to distinguish: a leaf can be
written

label ()

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 153

Kristoffer Hggsbro Rose

This constitutes the “glue.” For the nodes we should
try not to extend the TEX notation too much. A
nice and conservative approach is to use the TgX
argument notation, i.e., write the labels as

{text}

to indicate that text should be interpreted as TEX
source text. In fact this is the notation we used in
the directory tree example in figure 4.

Implementation. We will base our implementa-
tion on Xy-pic (Rose and Moore, 1997) since this is
a generic platform for 2-dimensional graphics that
works with TEX and can do what we wish to il-
lustrate without compromising the quality of the
typeset drawings. However, the technique used to
produce the actual graphics is not essential as long
as the “library” of available graphics functions is
sufficiently easy to use.

Embedded languages are implemented by writ-
ing a small interpreter that parses the language and
performs the appropriate actions, in this case calls
the appropriate Xy-pic drawing primitives. In order
to write such an interpreter we should write the
BNF? of the language. This looks as follows:

(tree) == { (text) } ((subtrees))
(subtrees) = (empty)
| (tree) (subtrees)

The interpreter is then a parser that recognises that
this format is followed and performs an appropriate
action for each recognised symbol.

This implementation will emulate the layout of
the tree command graphically: each label should be
indented relative to its parent and connected to it,
furthermore it should be below the previous label.
This can be described by actions associated to each
symbol as it is encountered: these are shown in
figure 5. This is implemented by the small (plain)
TEX file tree.tex shown in figure 6: the \parser
macro selects the appropriate action based on the
current symbol; each of the \. . .action macros im-
plements the appropriate action from figure 5 using
Xy-pic with the ‘arrow’ extension (for details on how
to use Xy-pic refer to the reference manual, Rose
and Moore, 1997). Running this on the source in
figure 4 produces the tree shown in figure 7. The
macros make use of the general font style of the
program, t.e., \baselineskip is used for distances
to fit with the line skips used. Furthermore, some

2 BNF is the notation for “meta-linguistic formulae” first
used by (Naur et al., 1960) to describe the syntax of the Algol
programming language. We use it with the conventions of the
TEXbook (Knuth, 1988): “::=” is read “is defined to be”, “|”
is read “or”, and “(empty)” denotes “nothing.”

Symbol Before = After
{text} | empty stack | = text
50
=
C e = 80 e
+ grow stack
) empty stack | = error!
I
.................. =
..... ¢
+ shrink stack

Figure 5: Tree interpreter actions.

components of the state change have been isolated
as definitions — something that is possible with a
generic macro language as TEX; a production ver-
sion of the tree language the layout style of the tree
should also be extracted into definitions. In fact, the
“PostScript” sample of figure 3 was created using
the times package with the redefinition

\def\branch{\save;s0!CD*x*x@{-}\restore}

which tells Xy-pic to make a plain line from the
center bottom of the “parent” to the “child.”

Exploiting the structured notation. Being able
to vary the style this way is useful, of course. How-
ever, a common mistake when implementing pack-
ages such as tree is, in the author’s opinion, to
implement an interpreter that is too general. It is
better to think of separate tasks as requiring sepa-
rate embedded languages, implemented by separate
interpreters, even if they happen to have the same
syntax. One can go even further with non-standard
interpretation of the information in the embedded
language. Say that we wish to interpret the notion
of “atree” in a different way. For example, one could
wish to show how a directory tree like our sample
can be grown. This is slightly more complicated in
that it requires our graphic library to include anima-
tion. This is possible in a (not yet published) module
for Xy-pic called movie. With this, animations are
composed of “scenes” within which something varies
from a starting point to an ending point. We can
show growth by having a scene with just the root,
then one level of branches, etc.; at a finer level
we can let the branches grow gradually for greater

154 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Very High Level 2-dimensional Graphics with TEX and Xy-pic

% tree.tex: Print \tree{ <tree> } as directory tree.

% Use Xy-pic, including ‘stack empty’ primitive.
\input xy

{\catcode‘\@=11 \global\let\sempty=\sempty@}
\xyoption{arrow}

% Idioms.

\def\FN{\futurelet\next}
\def\DN{\def\next}
\def\SP.{\futurelet\SP\relax}\SP. %

% <tree> parser.
\def\tree#1{\xy \beginaction \FN\parser#1l\relax \endaction \endxy}
\def\parser{%
\ifx\SP\next \expandafter\DN\space{\FN\parser}y,
\else\ifx\bgroup\next \DN##1{\textaction{##1}\FN\parserl}/,
\else\ifx(\next \DN({\openaction \FN\parser},
\else\ifx)\next \DN){\closeaction\FN\parser}’
\else\ifx\relax\next \DN\relax{l}/
\else \DN{%
\errmessage{<tree> build from (,), and {text} only: not \meaning\next}1}%
\fi\fi\fi\fi\fi \next}

% Initial action : start fresh stack frame.
\def\beginaction{\P0OS @(}

% Interpretation action for {text} : typeset node and its branch!
\def\textaction#1{\node{#1}\if\sempty\else \branch \fi}
\def\node#1{\drop+!L\txt{#1}}

\def\branch{\ar @{-} ‘1/\jot sO0+DC="sO" "sO" }

% Interpretation action for (: move left and down!
\def\openaction{\POS @+c +R+/rlem/ +/d\baselineskip/ }

% Interpretation action for) : move back below parent!

\def\closeaction{\if\sempty \errmessage{too many)s in <tree>}%
\else \POS {;p+/r/:s0;p+/d/,x}@-c \fi}

% Final action : obliterate stack frame.

\def\endaction{\if\sempty\else \errmessage{missing)s in <tree>}\fi

\P0OS @)

Figure 6: The tree.tex macros.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 155

Kristoffer Hggsbro Rose

xy-3.4
— doc
— xyguide-html
—— mfinputs
— pkfonts
ljfour600
ljfour657
ljfour720
lifour864
ps
— psfonts
src
texfonts
texinputs

Figure 7: Generated directory tree.

effect. Using the movie class of Xy-pic® one can
produce an animation of the same tree, based on
the same source, by modifying the actions for each
component to draw it in a manner dependent on the
time. The resulting animation can be found in the
electronic version of this paper (Rose, 1997); here
we can merely reproduce the (also automatically
generated) “storyboard” of the animation, shown
in figure 8. The source of the movie is shown
in figure 9: the actions have been enriched with
conditions for hiding leaves until the \1level counter
gets higher than their \nesting value, permitting
them to appear. Some extra tricks make this happen
gradually, using the \F construction of the movie
class.

Conclusions

We hope to have shown that TEX is quite naturally
extended with embedded languages and that this
can be a convenient way of
e getting nice pictures and diagrams in papers,
e permitting aesthetic integration of text and di-
agrams, and

e ensuring that the information in the pictures
can be exploited in alternate ways.

Acknowledgements. The author wishes to thank
TUG ’97 and BRICS for jointly funding my partic-
ipation in the conference.

3 Available in an experimental version with Xy-pic 3.4.

156 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

xy-3.4

Scene 1. Growing directory, level 1.

xy-3.4

Scene 2. Growing directory, level 2.

xy-3.4

doc
mfaputsyguide-html
pkfonts

ps \— ljfourB6@
psfonts

—— SIC

texfonts
texinputs

Scene 3. Growing directory, level 3.

xy-3.4

doc

“—— xyguide-html
—— mfinputs
— pkfonts

ljfour600

ljfour657

ljfour720

ljfour864
— ps

— psfonts
src

texfonts
texinputs

Scene 4. Growing directory, level 4.

Figure 8: Growing the directory tree.

Very High Level 2-dimensional Graphics with TEX and Xy-pic

\MovieSetup{height=18em,width=18em}, -*-LaTeX-*- animation of directory tree

\newcount\level
\newcount\nesting

\def\node#1{Y%
\ifnum \level<\nesting \drop i+!L\txt{#1}/,
\else \drop+!L\txt{#1}\fi}

\def\branch{’,
\ifnum \level<\nesting
\else \ar @{-} ‘1/\jot s0+DC="x" "x" \fi \relax}

\def\openaction{¥
\POS @+c +R+/rlem/ \F\down
\global\advance\nesting by +1 \relax}

\def\down (#1){%
\ifnum \level>\nesting \P0S+/d\baselineskip/*{}%
\else\ifnum \level=\nesting \POS+/d#1\baselineskip/*{}\fi\fi \relax}

\def\closeaction{\globalladvance\nesting by -1 %
\if\sempty \errmessage{too many)s in <tree>}J
\else \POS {;p+/r/:s0;p+/d/,x}@-c \fi \relax}

\level=0 \loop
\advance\level 1 %
\nesting=1 %
\scene{%
\input{dirtree.treel}’
\caption{Growing directory, level \the\level.}},
Yh
\ifnum \level<4 \repeat

Figure 9: The dirtree.texmovie movie.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 157

Kristoffer Hggsbro Rose

References

Adobe. PostScript Language Reference Manual.
Addison-Wesley, second edition, 1990.

Goossens, Michel, S. Rahtz, and F. Mittelbach. The
KTEX Graphics Companion. Addison-Wesley,
1997.

Knuth, Donald. The TgXbook. Addison-Wesley, sec-
ond edition, 1988.

Knuth, Donald E. The METAFONTbook. Addison-
Wesley, 1986.

Lamport, Leslie. TgX—A Document Preparation
System. Addison-Wesley, second edition, 1994.

Leathrum, Thomas and G. Tobin. “The mfpic pack-
age”. Available from CTAN: graphics/mfpic,
1994.

Naur, Peter etal.. “Report on the Algorithmic
Language ALGOL 60”. Communications of the
ACM 3, 299-314, 1960.

Rose, Kristoffer H. “Very High Level 2-dimensional
Graphics with TEX and Xy-pic”. Available from
http://wuw.brics.dk/"krisrose/Xy-pic/
tug97/, 1997. Electronic version of TUG97
paper.

Rose, Kristoffer H. and R. R. Moore. “Xy~pic release
3.4”7. Available from CTAN: macros/generic/
diagrams/xypic, 1997. See also chapter 5 of
(Goossens, Rahtz, and Mittelbach).

van Zandt, Timothy. “The PSTricks package”. Avail-
able from CTAN: graphics/pstricks, 1996. See
also chapter 4 of (Goossens, Rahtz, and Mittel-
bach).

158 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

High Quality Labels on Included Graphics, using Xy-pic

Ross Moore

Mathematics Department

Macquarie University

Sydney, Australia 2109

ross@mpce.mq.edu.au

URL: http://www-math.mpce.mq.edu.au/ ross/

Abstract

The Xy-pic suite of graphics macros, through the \xyimport command, offers the
ability to easily annotate and label imported graphics using TEX’s full capabilities
for handling mathematics and special fonts.

Introduction

Many modern software applications exist for con-
structing elegant graphics to present information of
all kinds. This includes scientific data, maps, charts,
tables and business graphics. Almost without ex-
ception, the handling of text for titles and labelling
is rather limited. Typically just a single font may
be used, superscript and subscripts are often not
supported, and all but the simplest mathematical
expressions can be constructed. Questions are con-
tinually asked, on Internet newsgroups, about how
to include publication-quality typeset labels on the
graphics produced using such programs.

A common solution to this problem is to first
save the graphic in Encapsulated PostScript! (EPS)
format, then use Adobe’s lllustrator™ or other pro-
gram, to render the .eps file, and edit it to add
the annotations and labels. For many purposes this
is effective, producing high-quality results. It is a
strategy adopted with many scientific journals.

However this technique is not always sufficient
(especially for mathematics) and has several draw-
backs when the intention is to include the graphic
within a TEX or I#TEX document, quite apart from
the extra expense of a piece of commercial software.
It can be quite difficult to achieve the following:

S1 use same or similar fonts in the imported graphic
as in the surrounding typeset text, at compatible
sizes and styles;

S2 ability to resize the graphic (to fit available space
in the typeset document) while retaining font-
compatibility as in S1;

S3 inclusion of properly typeset mathematics; e.g.
for axis-labels on graphs.

L PosTScRIPT® is a registered Trademark of Adobe,
Inc. (Adobe Systems Incorporated, 1990).

Adjustment of font-sizes or style, and the overall
size of the graphic, are decisions of style which can
be quite independent of the main content of the
graphic. Such decisions should be made late in the
overall process of preparing a manuscript for type-
setting. Thus to accommodate any changes, re-
editing within lllustrator™ is required, and perhaps
even regeneration of the original graphic using the
specialised software. This may be impractical or
even impossible to achieve, once the manuscript has
been submitted for publication.

The correct place for such style-decisions to be
made is within the TEX (or I¥TEX) source of the doc-
ument within which the graphic is to appear. This
can be realised effectively using Xy-pic. Note that as
a first step to achieve font-style compatibility, the
original graphic should be created so that it con-
tains no explicit text or labelling; for these will be
added later during the TEX/KTEX processing. For
most graphs it is not even necessary to include the
axes, for these also may be added using Xy-pic, as the
examples show. (Indeed with some programs there
are distinct advantages in leaving out the axes and
any frame. We comment further about this near the
end of the article.)

The \xyimport command

To use the \xyimport command of Xy-pic, first the
xyimport feature must have been loaded. This is
done by including import among the options given
to BTEX’s \usepackage command when Xy-pic is
initially loaded, or by explicit use of \xyoption.

\usepackagel...,import,...J{xy} (HTEX2¢)
\xyoption{import} useable with any format.

The \xyimport command is used within an Xy-pic
picture or diagram in one of the following ways:

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 159

Ross Moore

\begin{xy} using BTEX
\xyimport (1,1){{graphics)}

... further Xy=pic commands ...

\end{xy}

\xy\xyimport (1, 1){(graphics)}
... further Xy=pic commands ...

\endxy

Here (graphics) denotes the TEX/IATEX command to
include a graphic within the document; e.g. BTEX’s
\includegraphics[...]{...} command, or use of
\epsbox[...]{...}from the epsf package, or use of
\psfig{...}. Actually (graphics) may be any TEX
source that creates an \hbox. In the examples below
we use \xyimport{\emptybox} with a definition:

in any format

\providecommand{\emptybox}{\hbox todcm{%

\vrule height2.5cm widthOcm\hfill}}
The (1,1) may be replaced by any pair of positive
numbers. Furthermore a second pair of numbers
may be optionally given:
\xyimport(3.2,4.5)(1.2,1.5){\emptybox}

The significance of each number is shown in figure 1.
One sees that the first pair establishes the length of
coordinate units, independently in horizontal and
vertical directions. A second pair gives the offset, in
these units, from the bottom-left corner to a point
O, which becomes the origin for the coordinate sys-
tem. When no second pair is given, O is located at
the bottom-left corner.

Figure 1: Establishing an origin and coordinates.
3.2 units

4.5 units

L
1.5
units

1.2 units

With such a coordinate system, any location on the
graphic (or even outside of it) can be specified as
a pair of numbers (x,y). Using Xy-pic kernel com-
mands, any (object) (e.g. text-strings, mathematics
or anything typeset using TEX) may be positioned
at that location.

In Xy-pic parlance, the \xyimport command
“drops an (object)”, consisting of the (graphics),
into a diagram. This specifies a (pos); i.e. a rectan-
gle with a distinguished point, usually inside or on
its boundary. This information alone is sufficient to
drop further {object)s into the diagram at locations
determined using the edges of the (graphics) object.

With the extra information provided by the number-
pairs, the coordinate basis for the Xy-pic “graphics-
state” can be adapted to whatever is most appropri-
ate for the logical meaning of the (visual) content of
the (graphics).

frames, ticks and labels

As an example, suppose the graphic displays data
collected for different days of the week. One wishes
to add labels on the axis to mark each day. The
following code produces the picture in figure 2.

$$\def\degrees{"{\circ}}\def\low{35}
\begin{xy}

\xyimport (7,50) (-.5,-\1ow) {\emptybox}*\frm{-}
, (.5,40)*@{ | }*+!R{40\degrees}

, (.5,60)*@{| }*+!R{60\degrees}

, (.5,80)*@{|}*+!R{80\degrees}
,0;/r2pc/**{} ¥ set horiz direction
, (1,\low) *@_{ | }*++!U\txt\small{Su}

, (2,\low) *@_{ | }*++!U\txt\small{Mo}

, (3,\low)*@_{ | }*++!1U\txt\small{Tu}

, (4,\1ow) *@_{ | }*++!U\txt\small{We}

, (5,\low)*@_{ | }*++!1U\txt\small{Th}

, (6, \low)*@_{ | }*++!1U\txt\small{Fr}

, (7,\low)*@_{ | }*++!U\txt\small{Sa}
\end{xy}$$

Figure 2: Axis labels on a weekly chart.

80°+

60°+

40°1

I I I I I I I
Su Mo Tu We Th Fr Sa

Note the following features which are apparent in
figure 2 and the preceding code.

e the origin of coordinates can be outside the
area of the (graphics), by having negative off-
sets from the bottom-left corner.

e a solid frame is placed using *\frm{-}; many
alternate styles of frame are possible; see the
Xy-pic Reference Manual (Rose, Kristoffer and
Moore, Ross, 1997).

e tick-marks on the frame (or axes) may be po-
sitioned above or below (inside or outside) or
through the edges. That strange combination
;pr/r2pc/**{} is a technical device to switch
the current direction to horizontal, so that the
subsequent *@_{ | } produce vertical tick-marks.

160 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

High Quality Labels on Included Graphics, using Xy-pic

(The initial direction is vertical, so then *@{|}s
come out as horizontal; i.e. rotated 90°.)

e text-labels are normally given a margin, e.g. as
in *++!1U\txt (add more +s for a wider margin),
then positioned with an appropriate edge at the
coordinate location. !U positions the U(pper)
edge of the day-name abbreviations, while 'R
positions the R(ight) edge of the temperatures.
Similarly L(eft), D(own), C(enter) and 2-letter
combinations of these, are allowable. See the
Xy-pic Reference Manual (Rose, Kristoffer and
Moore, Ross, 1997) for more details.

Also note how a coordinate may be specified from
expanding a macro rather than typing explicit num-
bers. Indeed Xy-pic kernel commands generally can
be given as expansions of macros, provided \drop
and \POS commands are used to ensure that appro-
priate parsers are activated. So if the repetition of
data in the above code is of concern, then the fol-
lowing code produces exactly the same diagram as
in figure 2.
$$\def\low{35}\def\off{.5}
\def\temp#1{\POS(\off,#1)*@{|}*+!R{#1"{\circ}}}
\def\wkday#1{\ifcase #1{}/

\or Sulor Mo\or Tulor Welor Th\or Fr\or Sa\fi}
\def\day#1{\P0S

(#1,\low) *@_{ | }*+++!U\txt\small{\wkday{#1}}}
\begin{xy}

\xyimport (7,50) (-\off,-\1low){\emptybox}*\frm{-}
\temp{40}\temp{60}\temp{80}\POS 0;/r2pc/**{}
\dayl \day2 \day3 \day4 \day5 \day6 \day7
\end{xy}$$

Rotated labels. To rotate text in TEX or W TEX re-
quires some POSTSCRIPT® trickery. It can be done
using KWTEX’s graphics package, provided an appro-
priate dvi-driver (usually dvips) is loaded. Alterna-
tively Xy=pic has a rotate feature, which similarly re-
quires support. Including an \xyoption command,
as in the first of these lines, causes the required
driver-code to be loaded and activated.

\xyoption{dvips,rotate}
\usepackage [dvips,frame,rotate,import] {xy}

Alternatively multiple features can be loaded with
a single \usepackage command in BTEX. For all
the diagrams in this article the lower line above is
sufficient to request the necessary options.

$$\def\low{35}\def\off{.5}

\def\temp#1{\POS (\off,#1)*@{|}*+!R{#1"{\circ}}}

\def\weekday#1{\ifcase#1\or Sun\or Mon\or Tues’
\or Wednes\or Thurs\or Frilor Satur\fi day}
\def\day#1{\P0OS (#1,\low)*@_{|}
*[@"]++!U\txt\small{\weekday{#1}}}

\begin{xy}

\xyimport (7,50) (-\off,-\1low){\emptybox}*\frm{-}

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

\temp{40}\temp{60}\temp{80}\POS 0;/r2pc/**{}
\dayl \day2 \day3 \day4 \day5 \day6 \day7
\end{xy}$$

Figure 3: ...with rotated labels.

80°F

60°+

40°1

Sunday
Monday —
Tuesday

Wednesday—
Thursday —
Friday
Saturday—

The [@] (modifier) rotates the text through 90°
counter-clockwise; so that that it stands vertical,
pointing upwards. Alternatively [left] achieves
the same effect. Other such modifiers are [right]
and [flip] (180°). After the rotation, adding first
the margin and then aligning (++!U) gets the text
positioned exactly as desired.

Axes and grid-lines

Grid-lines, stretching across the graph, from one side
to the other or from top to bottom, are handled us-
ing Xy=pic (connection)s Given the coordinatisation,
these are particularly easy. For example, a gridline
at 60° could be placed into figure 3 with the code:

(.5,60);(7.5,60)*x*x@{-}

Earlier code need change only slightly, using a macro
\Grline to place grid-lines, labelled either side and
without ticks. Another macro \grline places just
lines. (The \day macro is as in figure 3.)

Figure 4: ...with horizontal grid-lines.

80° 80°
60° 60°
40° 40°

Sunday—
Monday
Tuesday —

Wednesday —|
Thursday —
Friday —|
Saturday—

161

Ross Moore

$$\def\low{35}\def\off{.5}

\def\grline#1{\POS(\off,#1);(7.5,#1)**e{-}}

\def\Grline#1{\POS(\off,#1) ;p*+!R{#1"{\circ}},
(7.5, #1)xx@{-} ,*++!L{#1"{\circ}}}

\begin{xy}

\xyimport (7,50) (-\off,-\1low){\emptybox}*\frm{-}

\Grline{40}\Grline{60}\Grline{803}

\grline{50}\grline{70}\P0OS 0;/r2pc/**{}

\dayl \day2 \day3 \day4 \day5 \day6 \day7

\end{xy}$$

Coordinate Axes. The axes could be treated as a
special form of grid-line. However, as usually they
are required to pass through the origin of coordi-
nates, then in Xy-pic they can be specified logically,
without reference to coordinates at all.

Figure 5: Axes with arrows and labels.

y-axis

$$\begin{xy}

\xyimport(3.2,4.5) (1.2,1.5){\emptybox}="a"
,*\frm{.} % dotted outline

,"a"+L; "a"+R, *x{}

7(0) %@{<}; 7 (1) x@{>}**@{-} % arrow-tips
,7(1)*+1UR\txt\scriptsize{x-axis},
,"a"+D; "a"+U, #x{}
?(0)*0{<}; 7 (1) *@{>}**@{-} /) arrow-tips
,?7(1)*+1UR\txt\scriptsize{y-axis}
\end{xy}$$

After naming the (graphics) (using ="a") the idea is
to set an empty (connection) (**{}) between the left
("a"+L) and right ("a"+R) edges. This establishes
the correct direction for dropping the arrow-tips at
either end (?(0)*@{<} and ?(1)*@{>}). Then put
a solid (connection), using **@{-}. Labels are po-
sitioned along each axis using the parametrization
provided by this latter (connection). To shift the

Figure 6: ...with arrow-heads further out.

y-axis

T-axis

arrow-tips just outside the area of the (graphics),
simply replace the arrow-tips lines with these:

7(0)+/11\jot/*@{<}; 7 (1) +/r1\jot/*@{>}**x@{-}
7(0)+/d1\jot/*@{<}; 7 (1) +/ul\jot/*@{>}**e{-}

Figure 7: Original .eps graphic, with added

N
i

framed contents of file:import1.eps

Figure 8: ...with mathematical embellishments.

O o

AN AN
3P

_p
2P N7
1
1 i
_3p
-1 PYANT

Rational points on the elliptic curve: z3 + 7% =7

Real-world example

The graphic in figure 7 was created using the Math-
ematica (Wolfram, 1993) program and appears in
the Xy-pic Reference Manual (Rose, Kristoffer and
Moore, Ross, 1997). It is a variation of a diagram

162 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

High Quality Labels on Included Graphics, using Xy-pic

prepared for the book “Lectures on Fermat’s Last
Theorem” (van der Poorten, 1996)?, for which I was
TEX-nical editor. Many of its diagrams were typeset
using \xyimport, as discussed here.

\xy\xyimport(3.7,3.7)(1.4,1.4){\ellipA}

, ID+<2pc,-1pc>*+!U\txt{Rational points

on the elliptic curve: $x"3+y~3=7$}

, (1,00 *+1U{1}, (-1,0) *+!U{-1}

,(0,1)*+!1R{1}, (0,-1)*+!R{-1}

, (2,-1)*+1RU{P}, (-1,2) *+!RU{-P}
,(1.3333,1.6667)x+!UR{-2P}
,(1.6667,1.3333)*!DL{\;2P}
,(=.5,1.9)*++!DL{3P}, (1.9,-.5)*!DL{\;-3P}

, (-1,2.3)*+++!D{\infty}*=0{},{\ar+(-.2,.2)}
, (.5,2.3)*+++!D{\infty}*=0{},{\ar+(-.2,.2)}
, (2.3, - 1) *x+++!1L{\infty}*=0{},{\ar+(.2,-.2) }
\endxy

Warning. The appropriate numbers to use for the
required argument to \xyimport can usually be read
directly from the graphic being imported. Another
way is to refer to the actual code which was used
to generate the graphic, from its “plot range” say.
However some software packages add an extra mar-
gin to this range, in particular when there are axes
or a frame at the edges. Thus it can be necessary
to estimate (read ‘guess’) the best numbers to use,
when extreme accuracy is required in the placement
of labels. A bit of ‘trial-and-error’ can be done from
TEX or ITEX, without any need to regenerate the
graphic.

Code for Figure 1. Here is the Xy-pic code that
was used to typeset figure 1. Notice how the edges
and corners of the imported (graphics) are located
logically, and saved (e.g. "a"+R="aR") for repeated
reuse. The extended braces are placed as a special
type of “moustache” frame, on narrow rectangles
derived from these corners and edges.

\xy\xyimport(3.2,4.5) (1.2,1.5){\emptybox}
="a",*\frm{-},*=0@{*},*+!DL{0}
,"a"+L="al";"a"+R="aR"**@{.}
,"a"+D="aD"; "a"+U="aU"xxe{.}
,"a"+RD="aRD","a"+RU="aRU"
,"a"+LU="alU","a"+LD="aLD"
,"aR"+/r5pt/."aRU"."aRD"*\frm{\}}
,¥++1L\txt{4.5 units}
,"aU"+/ubpt/."aRU". "aLU"*\frm{"\}}
,*++!D\txt{3.2 units}
,"aL"+/15pt/."aLD" ! Cx\frm{\{}
,¥++1U(.2) 'R\ txt{1.5\\units}
,"aD"+/d5pt/ . "aLD" ! C¥\frm{_\}}
,k++1L(.5) 'U\txt{1.2 units}
\endxy

2 This book was awarded the prize of “Outstanding Pro-
fessional/Scholarly Title in Mathematics, for 1996” by the
Association of American Publishers.

References

Adobe Systems Incorporated. PostScript Language
Reference Manual. Addison—Wesley, second
edition, 1990.

Rose, Kristoffer and Moore, Ross. Xyzpic Reference
Manual. DIKU, University of Copenhagen,
Universitetsparken 1, DK-2100 Kgbenhavn @,
3.5 edition, 1997.

van der Poorten, Alf. Lectures on Fermat’s Last
Theorem. Canadian Mathematical Society
Series of Monographs and Advanced Texts.
Wiley Interscience, 1996.

Wolfram, Stephen. Mathematica: A System
for Doing Mathematics by Computer.
Addison—Wesley, 2nd edition, 1993.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 163

CIRC— A Package to Typeset Block Schematics

Sebastian Tannert

Harbigstrafie 14/67.02.01.06, D-14055 Berlin, Germany

tannert@albert.physik.hu-berlin.de

Abstract

The CIRC package is a tool for typesetting circuit diagrams. It defines several
electrical symbols such as resistors, capacitors, transistors, etc. These symbols
can be connected with wires in a very easy way.

To use CIRC, you only need METAFONT and I¥TEX2s. You do not need

PostScript or any drawing tool.
symbols, written in METAFONT.

I started developing CIRC in order to have a tool
for drawing electrical circuit diagrams; however, the
use of CIRC has shown that it is a useful package for
creation of a large range of block schematics.

The problem of drawing block schematics can
be divided into drawing the symbols and drawing
the connections between them. Macros exist for
both parts in CIRC. As is common in TEX, the dia-
gram should be described in an abstract and generic
way.

Step by step, I worked out macros so that you
never have to deal with distances when describing a
diagram. Distances are necessary only to determine
spaces between symbols.

The main building blocks of CIRC are so-called
pins which mark points for referencing.

Most block schematic diagrams consist of sym-
bols connected at determined points at or around
the symbols. These are called pins. Every pin gets
a name within CIRC that is composed of the name
of the symbol, a number given to the symbol in the
current diagram, and a short pin name. The last is
a specific abbreviation for the pin.

The following example will explain the ideas.

Dy
K ‘16_ A
1N1408

One pin is called cathode, the other anode. The
short pin names are K and A. (Cathode is abbre-
viated as in German with a K.) The diode has the
abbreviation D, and in the above example it is num-
bered with 1. So the pin names for this diode are
D1K and D1A.

Using CIRC, you draw in a 7 pt (= 2.5 mm) grid.

A current drawing position exists and the draw-
ing direction is specified with every symbol.

To get the example you have to type in: \D1
{1N1408} K r. The last two letters are specific for

You can expand CIRC easily with your own

the drawing direction. They mean: draw the cath-
ode (K) at the current drawing position and the
symbol to the right. After drawing, the position is
changed to the anode.

More or less, all symbols are drawn in the same
manner.

If you have to draw larger diagrams, it is neces-
sary to change the position to that of a specific pin.
This is easily done with \frompin pin name.

As you can imagine, this moves the position to
the given pin. With _ you can change by amounts
of the grid. The position will be moved by two units
of the grid downwards by _ 2 d.

Mostly you have to connect the symbols with
solid lines. Up to this point, only horizontal and
vertical lines can be drawn with CIRC. With the
command \- you can draw a solid line with a given
length.

For example: \- 3 u will draw a line of 3 units
of the grid upwards. But this method of drawing
with a given distance should only be used to draw
lines that give space between symbols. The more
generic way is to use \htopin or \vtopin.

After both of these commands, a pin name is
expected. These commands draw a line from the
current position to the position of the given pin.
The command \htopin uses only the x-part of the
given position and draws a horizontal line; \vtopin
does the same vertically.

Now you have an overview of the commands in
CIRC. Please note that all parameters are seperated
by spaces, and empty lines are like spaces.

The complete syntax and all available symbols
with their names may be obtained from the docu-
mentation. CIRC and the accompanying documen-
tation is stored on CTAN in the directory macros/
generic/diagrams/circ.

164 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

As of this issue of TUGboat, I have had no time
to update CIRC on CTAN, and hope I can do it in
February of 1998.

Finally other examples.
Ch

Il

Il
Ry

1
| |

Jnte

Produced by:

\begin{circuit}0 \P1
\-1r\.1\-1r\RL {}r

\-1r\.2\-2r\.3
\-1d\.4\-14d\R2 {} d
\-1d\.5\-14d\.6
\htopin P1

\frompin .1 \- 4 u \hcenterto R1 \C1 {} r
\htopin .2 \vtopin .2

\frompin C11 \htopin .1

\frompin .4 \- 4 r

\vcenterto R2 \C2 {} d

\vtopin .5 \htopin .5

\frompin C2t \vtopin .4

\frompin .3 \- 6 r \P2

\frompin .6 \htopin P2

\end{circuit}

CIRC— A Package to Typeset Block Schematics

As described in the opening paragraph, you can
draw more than electric circuit diagrams with CIRC.

k1

my
CIRCG

Wil

A small library with symbols for vacuum tech-
niques and commands for drawing flowcharts is also
available. Andreas Tille has also written a library
for optics.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 165

DVIPDF and Graphics

Sergey Lesenko

Institute for High Energy Physics
Scientific Information Department
142284 Protvino, Moscow Region, Russia
lesenko@mx.ihep.su

Abstract

This paper describes how the dvipdf program inserts BMP, JPEG, PNG and EPS
graphics into its output. It also discusses geometric transformations of image,

text and rule objects.

Introduction

For today’s scientific publications, we have to pro-
vide for accessibility via the Internet, and need an ef-
fective presentation format for our documents which
supports a wide range of hypertext and graphic fea-
tures. One option is the Portable Document Format
(PDF) [1], probably the most popular system for dis-
tributing complex formatted documents. PDF per-
mits us to use color, geometric transformations and
included images (vector and bitmap). This paper
describes how a document in PDF with such graphic
features may be prepared using TEX and dvipdy.

Graphic commands

Although TEX has only a limited capability to deal
with graphics, it has the wonderful property of the
\special command, which allows us to perform ar-
bitrary tasks at the level of driver programs, which
include dvipdf. This is based on dvips [2], and it
would be preferable to support the same commands.
However, dvipdf is oriented to a more confined out-
put format, and a new set of \special commands
has been introduced to permit better performance.
The syntax for these has already discussed in [8], and
all the \special commands for graphics are listed
in Table 1

Only a minimal number of parameters for the
DVI file is required, and the full set needed in the
PDF output is computed by dvipdf. This means that
writing macros or incorporating the \special com-
mands into style packages is not difficult. The color
[3], graphics [4] and graphicx [4] packages, for in-
stance, have ‘dvipdf’ drivers which make use of the
appropriate \special commands.

A particular problem with inclusion of bitmap
graphic formats like BMP, JPEG and PNG is that
the user has to provide TEX with the image size
(directly or via an additional bb file). Encapsulated

Geometric
Begin rotation pdf: /ROT angle <<
End rotation pdf: /ROT >>
Begin scaling pdf: /SC hscale vscale <<
End scaling pdf: /SC >>
Color
Begin color pdf: /C Yellow <<
End color pdf: /C >>
Page
Page color pdf: /BG Blue
Page rotate pdf: /ROTPAGE angle
EPS
Mode pdf: /IMAGE rgbl6m
Resolution pdf: /RES 600
Insertion pdf: /GRAPH file llz lly urz ury
BMP, JPEG and PNG
Insertion pdf: /GRAPH file width height

Table 1: \special commands supported by dvipdf

166 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

PostScript files have a %%BoundingBox line which
TEX can read, but it cannot (easily) read binary
formats. Scaling and rotation can use the commands
of the standard I#TEX graphics package.

For example, the following code inserts a JPEG
image, rotates it, and scales it. Note the optional
argument to \includegraphics to specify the orig-
inal image size:

\resizebox*{2in}{! %
\rotatebox{90}{/
\includegraphics[12cm,9cm]{photo.jpg}}}

Basic algorithms

Since geometric transformations in PDF are one of
its most powerful features, we will begin our descrip-
tion of dvipdf innards in this area.

To allow both single level transformations and
nested transformations, dvipdf supports a 16 level
stack. For each level eight parameters are recorded:
the initial coordinates (z, y) of the reference point
for the layer, offsets to its position after transfor-
mation (dz, dy) and factors (a, b, ¢, d) for the cur-
rent transformation matrix (CTM). Each new trans-
formation (or layer) pushes the current parameters
and calculates new parameters. Corresponding re-
turns from each layer pops the parameters. To de-
fine the coordinate of each point on current layer,
dvipdf computes its position (ddz, ddy) in relation
to the reference point and adds the coordinate of the
reference point (z + dx, y + dy).

The transformations for points apply equally to
other types of object (rule, text and image). Let us
consider the simplest object (a rule); this may be
dealt with as a rectangle or a region — a rectangle
is described with two points, and a region with four
points. To optimize the output, the two types of
rule (with rotating and without it) are treated differ-
ently. Rules without rotating are treated as rectan-
gles and described with two points A, B (Fig. 1(a)).
This requires four arguments (ulz, uly, w, h): base
point, width, and height. Rotated rules are treated
as regions with four points A, B, C, D (Fig. 1(b)).
This requires eight parameters: (llz, lly, luz, luy,
urx, ury, ule, uly)

Apart from geometric transformation, there are
other PDF objects that use the same algorithm (al-
though they are used only during interactive view-
ing and are not printed). These objects are link
annotations and bookmarks. To specify a link an-
notation, and the destination for a link annotation
or bookmark, we need to know the rectangle of the
location. To compute the rectangle, we firstly utilise
the algorithm for the definition of a region, and then

DVIPDF and Graphics

c
A B
D B
B A A
(a)
(b) (c)
Figure 1:
c A B
A B C
(a) (b)
Figure 2:

calculate a bounding box (llz, Uy, urz, ury) for
this region. This is defined using two points A, B
(Fig. 1(c)).

Now we can consider transformation of text and
images. These objects are managed using the PDF
page marking operators Tm (for text) and cm (for
images). They are supported in dvipdf in similar
ways, using the geometric figure of a parallelogram.
It is described by three points (Fig. 2(a)). The first
point is lower-left corner, the second point is the
lower-right corner and the third point is the upper-
left corner. The first point A is defined as a base
point (x, y) and other two points B, C as offsets
(a, b) and (e, d) from the base point. These six
parameters (a, b, ¢, d, x, y) allow us to do all the
transformations that are needed.

Since a BMP image has a bottom-to-top order
and it is saved during the initial parse, its parallelo-
gram is described by other points (Fig. 2(b)), where
the base point A is the upper-left corner.

Color management for text (here "text’” includes
rules t00) is nested. The Current version of the color
stack permits us to reverse the order of pages and
to produce separated pages.

Images

It is usually impossible to know exactly with which
resolution our document will be viewed or printed by
its eventual receiver. So when we deal with bitmap
image formats like BMP, JPEG and PNG, the best

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 167

Sergey Lesenko

\setres{300}
\setimage{rgb16m}
\fboxsep = 0 cm
\fboxrule = 0.6cm
\baselineskip = Opt

\def\epsm{\textcolor [named] {Green}{\fbox{%
\scalebox{-1}[11{%%
\includegraphics{tiger.eps}}}}}

\def\new{\scalebox{-1}[1]1{%
\rotatebox{30}{\resizebox*{2in}{!}{\epsm}}}%
\rotatebox{30}{\resizebox*{2in}{!}{\epsm}}}
\def\newt{\scalebox{1}[-1]{\newl}}
\resizebox*{8cm}{!}{%
\textcolor [named] {ForestGreen}{\fbox{%%
\vtop{\hbox{\new}\hbox{\newt}}}}}

Figure 3:

we can do is preserve the original resolution in the
PDF output. This allows us to avoid getting con-
cerned with intermediate conversion of resolution.
The same principle is also applied to the mode of
the image, which is simply preserved (i.e., mono,
gray, RGB, CMYK and Indexed).

Dealing with EPS images is a different matter.
This type of vector image is inserted after processing
with GhostScript [6]. Ghostscript allows us to create
a bitmap image, with appropriate settings of mode
and resolution. How do we establish those settings?
To work them out, we need to set the appropriate
resolution (R)and mode via \special commands.
dvipdf can then compute the real resolution R, and
R, for Ghostscript:

Wactual
R, = R. —cctual
Woriginal
Hactual
R, = R. —uctual
Horig:
original

where Woriginat and Horigine: are the width and
height, (as derived from the BoundingBox in the
EPS file), and Wyetuar and Hyepuar are the sizes of
the parallelogram sides. In some images the form
may not be a rectangle, so they are calculated as
the distance between corners.

Using the current version of Ghostscript, bitmap
images are produced corresponding to the page size,
so the possibility has been added of producing them
with the rectangle as the BoundingBox.

At present we ask Ghostscript to produce tem-
porary files, and these are then placed in the output
(in future versions it should be possible to merge
Ghostscript’s output stream directly into dvipdf’s
output). We can select an option to save the tem-
porary files and to re-use them for the next run of
dvipdf, if the same parameters are used for images.
The unique parameters for each image are recorded
as EPSF structured comments (file name, date, time
and file size, and parameters for for Ghostscript pro-
cessing, i.e., mode and X, Y resolutions). We can
generate these parameters and compare them during
the next processing by dvipdf, and name temporary
files accordingly. We adopt the simple solution of
computing a Cyclic Redundancy Check value (CRC)
[7] on the basis of the parameter set and use this
CRC as the basis for naming temporary files. We
can thus avoid calling Ghostscript wherever possi-
ble, and so reduce the time taken to prepare our
PDF document.

Repeated images (for example a logo on every
page of a document) are organized as references to a
common object with just one instance. For bitmap
images the basis of deciding if something can be
stored as a common object is just the name of graph-
ics file—rotating and resizing are done at the time
of the object instance. For EPS images, we also need
to consider resolution and mode. To illustrate this
use of common objects, four tigers are placed to-
gether in Fig. 4, with the TEX code used to produce

168 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

the picture. Only one copy of the graphics file is
included in the output.

Acknowledgements

I would like to thank Michel Goossens and Mimi
Burbank for their support of this project, Laurent
Siebenmann for test samples, David Carlisle and Se-
bastian Rahtz for adapting their graphics and hy-
pertext packages to dvipdf, and Sebastian Rahtz for
editing this paper and helping with the English.

I am very grateful to Tim Bienz for his patient
explainations of PDF, and Peter Deutsch for his use-
ful remarks.

Finally thanks to Tomas Rokicki for his won-
derful dvips which has been the starting point for
this project.

References

[1] Tim Bienz and Richard Cohn, Portable Doc-
ument Format Reference Manual, Adobe
Systems Incorporated, 1993, Addison-
Wesley Publishing Company. ISBN 0-201-
62628-4. This document is available from
http://www.adobe.com/supportservice/
devrelations/PDFS/TN/PDFSPEC.PDF

DVIPDF and Graphics

[2] Tomas Rokicki, Dvips: A TgX Driver, dis-
tributed with dvips, version 5.58, 1994. elec-
tronic distribution from labrea.stanford.
edu.

[3] David Carlisle, The color package (on CTAN)

[4] David Carlisle and Sebastian Rahtz, The graph-
ics package (on CTAN)

[5] David Carlisle and Sebastian Rahtz The graph-
icx package (on CTAN)

[6] L. Peter Deutsch, Aladdin Ghostscript ver-
sion 4.03, 1996 electronic distribution ftp.cs.
wisc.edu://pub/ghost/aladdin

[7] L. Peter Deutsch, RFC 1952: GZIP 4.3 spec-
ification, ftp://ftp.uu.net/graphics/png/
documents/zlib/zdoc-index.html

[8] Sergey Lesenko, The DVIPDF Program, TUG-
boat 17, 3, September 1996, pages 252-254.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 169

From SGML to HTML with help from TEX

Christopher B. Hamlin

American Institute of Physics, 500 Sunnyside Boulevard, Woodbury, New York 11797

chamlin@nassau.cv.net

Introduction

At this time there is still no fast and standard way
of presenting mathematics in HTML pages. Various
ideas have been tested and the W3C has just released
a draft math markup proposal. When combined
with freely available fonts containing the required
mathematical characters, we can see much potential
for the future.

For now it seems that there is only one common
denominator suitable for quickly browsing HTML
with lots of math: preprocess the mathematics into
images and embed links in the HTML that call in
the images.

The following describes work at AIP in convert-
ing physics research articles from SGML to HTML,
creating the needed images for math. This allows
us to present abstracts or full articles on the web.
The tools used are TEX, ApMS-ETEX, dvips, Image
Alchemy (for image processing), various PostScript
(PS) fonts, gcc, and perl.

Source SGML

AIP uses a DTD based on the 1SO 12083 DTD for
its abstracts and articles. Math is basically in the
12083 model, though there are minor extensions in
the AIP DTD. The AIP DTD also includes another,
simpler math model for backward compatibility with
older data. Deviations from standard 12083 math
are handled by transforming them into 12083 for-
mat, so they can be ignored for now.

Though it might be possible to just set all math
as GIFs, it seems that it should be possible to use the
ability of HTML in setting bold, italic, superscripts,
and subscripts, along with a handful of special char-
acters. First we look to see what the SGML math
looks like. Note that this discussion may include
some interpretation specific to the AIP use of SGML
math, but the ideas will probably be similar to other
uses. We will be mainly focusing on inline math; dis-
played equations will be set as single images using
the same techniques.

The 12083 math model can be simplistically
viewed as a string of items to be set. Each item con-
sists of a base followed by optional embellishments.
The base can be a character, entity, or element. The

embellishments can be a sup (superscript), inf (sub-
script), top, bottom, or middle. Together, sups and
infs will be called “scripts”. A script may be set ei-
ther before the base (the location attribute is “pre”)
or after the base (the location attribute is “post”).
Top embellishments are set over the base, bottoms
are set below, and middles are set as overprints on
the base.

It should also be noted that while sups and infs
can only be set explicitly with the use of the sup
or inf elements, there are a number of entities that
are implicit embellishments, either top, bottom, or
middle. Also, the order of the embellishments in
the SGML is used in rendering them: scripts are set
left to right, while top and bottom are set from the
inside out.

Here are a few examples to show how embel-
lishments work.

scripts:

a² gives a’

a² gives a
a²<inf>1</inf> gives ai
a²<inf arrange="stagger">1</inf> gives

a21

top (explicit, with <top> tag):
a<top>*</top> gives a

top (implicit, with entities):
a˙ gives a

aémacr;˙ gives a

middle:
a<middle>*</middle> gives &

bottom:
a<bottom>*</bottom> gives a
*

combination:
a¯ ; ²<top>*</top><inf>1</inf>

gives a2

In considering the interactions between the base
and its embellishments, it can be seen that there
are three areas that can be set separately: the pre
scripts; the base and any tops, bottoms, or middles;
and the post scripts. There is little or no interac-
tion among these three zones other than using the

170 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

height /depth of the base for setting the script base-
line. We will ignore this effect for in-line math since
it rarely has much effect. (Remember that the res-
olution of a computer screen is 72 dots per inch, so
the smallest unit on a screen is ~1 pt.) We set dis-
play equations as a unit so this question does not
arise there.

Reading and processing the SGML

The controlling program in the SGML to HTML
translation is a C program called s2h. There are
three stages in the translation: read and parse the
SGML, apply transformations to the SGML, and fi-
nally produce the desired output. Splitting the pro-
cess up into these parts gives s2h some flexibility.
Input may come from standard input, a file, or a
database query. Tranformations may be applied de-
pending on the output desired or the type of input.
Output can be to standard output, a file, or to a
string for database insertion and can be in various
formats (ASCII, HTML, TEX).

The SGML input is read by s2h and parsed into
a simple tree structure that directly represents the
structure of the SGML. Nodes are elements, char-
acters, or entities. After the tree has been created,
several transformations are applied.

For example, the equation

b+ 222, +3d

could be input in SGML as

<bold>b</bold>+2x²
<inf arrange="stagger">1</inf>±3a¨

and would create a tree with <bold>, +, 2x,
<sup>, <inf>, ±, 3a, and ¨, on the first
level. Only the content of the elements would be on
a lower level.

Some transformations would normally be ap-
plied to the tree at this point:

1. Character transformations to normalize the in-
put. This is mainly to identify accented char-
acters that can be set in HTML.

2. The math is normalized to represent the older,
simpler AIP math model in the newer 12083
math model.

3. An older AIP font model is normalized to the
the 12083 model.

4. The structure of the tree is changed to directly
attach the embellishments to their bases and
to separate the various types of embellishments
into different lists. This takes the embellish-
ments out of the normal tree structure and as-
sociates them strictly with the base.

From SGML to HTML with help from TEX

5. Contiguous character data is normally kept in
long strings rather than split up into separate
nodes, but it may need to be split up so that
a single character can be used as a base for an
embellishment.

In the transformed tree, 2x would be split up and
the sup and inf would be attached to the x on its
post script list. The 3a would also be split and the
a and ¨ would be combined into ä.

Now we have a tree where the top level consists
of just bases. The embellishments are out of the
normal structure and attached to the bases. They
are also sorted into separate lists for pre scripts, post
scripts, tops, middles, and bottoms, retaining their
relative ordering within each such list since this will
determine the order in which they are set.

Now, some output

To start, we look at how to output to HTML for
math that doesn’t need GIFs. This means there can
be no tops, bottoms, or middles, and complicated
bases—e.g., fractions or roots — are impossible.

To output to HTML we just move along the top
level of the SGML structure. For each base, first do
the pre list, then do the base, then do the post list.
In doing the base we can first do work on reaching
the base, then we output the base’s content, and fi-
nally we can also do work on leaving the base. When
we work on the content of the base (or an embellish-
ment) we just apply the same idea to the first level
of its contents. In other words, this simple left-to-
right processing just works recursively to format a
transformed SGML tree or subtree.

In outputing the bold element, the HTML tag
for starting bold () is output at the start and the
HTML for ending bold () is output at the end.
Whatever the contents are, they will be output in
between these tags and so will end up bold.

Here is our “simple” example output in HTML:

b+2<i>x</i>²
<inf>1</inf>±3<i>ä</i>

Notice that there is already the complication
of setting Latin letters in italic when they are in
math. This can be controlled because any math in
an article would be inside an SGML formula element.
When outputing character or entity data it is nec-
essary to check to see if you are in a formula, and if
S0 to put the character in italic if it is a Latin-based
letter.

We see that a fair amount of math can be set
with just the normal HTML facilities. However, even
the simplest math will run aground because of the

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 171

Christopher B. Hamlin

limited character set available in HTML. This is the
beginning of the use of TEX in the project.

GIF interlude

When including GIF images in-line in HTML text
there arises the problem of vertical alignment. By
using the alignment attribute of the HTML img tag,
one can align an image on the baseline by either
its bottom or middle. When setting a character or
math image that does not extend below the baseline
we just align the image by its bottom. For example,
. However, what do we do if we wish to set a
£?7 Aligning by its bottom gives . Aligning by its
middle gives B One compromise is to align by its
middle after making sure that the top and bottom
halves of the GIF are equalized by adding in white
space. This gives Note that this can have a

very bad effect on the leading. However, leading
is already bad in HTML, and any in-line images or
superscripts just make it worse, so this may not be
such a high price to pay.

Setting special characters

Let us now work on creating simple GIFs to repre-
sent special characters (entities in the SGML).

1. First we keep a control table for all legal enti-
ties. This table will contain ASCII, TEX, and
(possibly) HTML translations of all entities.

2. When translating, if there is no HTML repre-
sentation then we use the TEX translation to
create a TEX file.

3. Since TEX knows the width, depth, and height
of all the boxes it sets, have TEX typeset the en-
tity and check the depth. If it is >1 pt, say, bal-
ance the height and depth by setting the lesser
of the two equal to the greater. Alignment info
is written to the log file to tell the translator
whether the final GIF should be bottom or mid-
dle aligned. The translator reads the log file
after TEX runs and sets the GIF alignment via
the align attribute of the HTML img tag.

4. dvips is run to create a PS file from the dvi
file. The PS file can then be rendered into GIF
format using Image Alchemy. But it’s a prob-
lem to keep the extra white space needed to
balance the top and bottom of the GIF for mid-
dle alignment. Image Alchemy can autocrop a
PS file when creating a GIF, but then it (cor-
rectly) throws away the white space. dvips can
be told to create an EPS file with a Bounding-
Box comment. This comment gives the lower-
left and upper-right points of a box that con-
tains all the printing on the page. This com-

ment can be used by Alchemy for cropping if
present. Unfortunately, dvips (correctly) does
not include white space in the bounding box.
But TEX knows the height, depth, and width
of the box being output, including white space.
Since each GIF is set separately, and all we care
about is the one piece of math we are setting,
we can further customize the TEX run:

(a) Have TEX write into the log file the dimen-
sions of the math output box.

(b) Override \output to do nothing but ship
out the box, which then comes out with
the upper-left point of the box 1 inch in
and down from the upper-left corner of the
dvi page.

From this information accurate bounding-box
values are calculated and then inserted into the
PS BoundingBox comment. Telling Alchemy to
clip to the bounding-box dimensions then gives

(fairly) accurate clipping and lets us retain the

white space inserted by TEX.

Reusing stock GIFs for special characters

Since we don’t want to recreate character entities
each time, we can create them before creating any
HTML. Then the same GIF will be called in each
time the character is shown on the screen and no
computation needs to be done at translation time.
We can do this as follows:

1. Go through the control file to get all the entity
names and their TEX translations.

2. Render all the characters to GIFs. Collect the
names of all the entities that need to be middle
aligned.

3. When translating, call in the stock GIF with an
img tag. Set the alignment using the informa-
tion collected in the preceding step.

How we store and recall the GIF files may change ac-
cording to the final product requirements, but stor-
ing them according to entity name is convenient
since it is already a unique identifier in ATP’s SGML.

In building the s2h program the alignment in-
formation is stored in an alignment control file as a
simple list of entities that are to be middle aligned.
In creating the s2h executable this control file is run
through a perl script that creates C source code.
This code is then compiled into s2h so that it knows
how to align all the stock entity GIFs when it calls
them in.

Scripts complicate the use of stock GIFs since
the GIFs we have created will be the wrong size for a
script. Therefore we create scriptsize versions of all
the characters and using these smaller versions when

172 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

characters are set in scripts. The use of images in
scripts works well in HTML, fortunately. For ex-
ample, the SGML x^{α} would be
translated to x<sup><img align = "bottom" src =
"alpha-script.gif"></sup>in HTML.

Custom GIFs for math

We have seen that all the special characters can be
created beforehand and much can be done with stan-
dard HTML tagging. What can’t be done, and how
does the translator actually decide what to do in
HTML and what to send through TEX at transla-
tion time?

Certain elements cannot be done in HTML at
all. This includes roots, overlines, fractions, and
arrays. We call these bad elements. Entities that
can normally be shown using our stock GIFs can
present a problem if occurring inside bold or bold
italic. Such entities are called bad entities. When
scripts are kerned or contain bad elements or enti-
ties, they are bad scripts.

With the preceding definitions, and remember-
ing our notion of a base with various attached em-
bellishments, we can now define an algorithm:

When translating SGML, move along the top
level of the tree. For each item you encounter, do
the following:

1. If any of the pre script embellishments are bad
scripts, do all the pres with TEX. Otherwise do
them all via HTML.

2. If the base is a bad element or entity, or if it
has top, bottom, or middle embellishments, do
the base and its embellishments and contents in
TEX. Otherwise do the base element in HTML
and apply this algorithm on the contents of the
base.

3. Apply rule 1 to the post embellishments.

Note that the alignment mechanism outlined
for special characters works fine for more compli-
cated math. Display math (the <dformula> ele-
ment) is simply defined as a bad element so that
the entire equation is done as a GIF. GIFs for dis-
play math are always bottom aligned with no height
or depth adjustment.

Reusing custom GIFs

After all this, it would be nice to be able to reuse the
GIF for M, or for the script combination i. In fact,
using just a few base and script GIFs can produce
a lot of different math since the bases may be used
with any of the script GIFs or with HTML scripts,
and the script GIFs may be used with any of the
base GIFs or with HTML bases.

From SGML to HTML with help from TEX

In order to track the GIFs an array of pointers
into the SGML tree is maintained. Before render-
ing a subtree it is checked against the subtrees in
the array and a previously rendered GIF is used if
one exists. It is also necessary to compare the font
contexts since this can have an important effect on
the subtree’s rendered appearance (see following sec-
tion).

The ideal solution would be to “stringize” the
SGML subtree (along with its font context) into a
key that uniquely describes the GIF. Then com-
monly used math fragments could actually be reused
for many articles, producing further efficiency. This
idea has not been implemented.

Font handling

s2h sets all TEX fragments in math mode. This was
done because it was rare to set nonmath through
TEX. Only a few text-mode accents and a hyphen
had to be provided in order to set all the usual TEX
characters in math mode. Font-style changes are
used in AIP’s SGML instead of entities for each let-
ter. For example, script M is input as <script>M
</script>, not &scrM;, and bold script M is set as
<bold><script>M</script></bold>.

It took a little while to realize how easy it is
to implement this font scheme in IMTEX 2¢, thanks
to its designers’ forethought. Everything maps sim-
ply: math is set with \mathnormal (the default), ro-
man with \mathrm, italic with \mathit, script with
\mathcal (using Y&Y’s MathTime script, which
includes lowercase letters), etc. Bold is set with
\boldsymbol. If bold in math implies upright
Latin letters, as it does for AIP’s SGML, merely use
\boldsymbol{\mathrm{...}}. Note that the differ-
ence between math and italic is obvious in TEX —
in HTML it is necessary to look at characters and
entities output from math to see if they must be set
in italic with HTML’s <i> tag, while leaving num-
bers, punctuation, and other characters and entities
in the default roman.

The algorithm for deciding what needs to go
through TEX seems to work generally but its re-
cursive nature means that we may be several lev-
els deep before TEX is invoked. So small pieces of
math may be set without their normal font con-
text. For example, a small piece of math may be
<bold>x−α</bold>. There is no need
to set the x or minus via TEX, but the bold alpha
cannot be set with HTML and so must be set with
TEX (it is a bad entity, according to our algorithm).
But it is not enough to set α since it will not
be set bold. It is necessary to create a font context in
TEX that matches that of the small piece of math we

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 173

Christopher B. Hamlin

are setting. In the case of the above we would need
to set $\boldsymbol{\mathrm{\alphal}}$. The
\mathrm is not needed for this case but would be
necessary if a Latin letter occurred.

A special case is the occurrence of special ac-
cents outside math; for example, for names. The
character Z is not uncommon but is not available in
HTML. If this occurs in an author’s name then it
should not be set in italic. Thus it is necessary to
assume a roman font context if the math fragment
being set is not inside math in the SGML. So if you
had z˙ outside math you would set the z˙
in TEX as follows: $\mathrm{\Dot{z}}$.

A further complication is that the HTML tag-
ging can impose a font context that may or may not
be known when the SGML is converted. Perhaps the
authors’ affiliation will be set italic in HTML, per-
haps not. It may be possible to control this effect
when known beforehand.

Customizing TEX

As mentioned, INTEX 2¢ is an excellent base for such
work, especially in its font handling. Though the
number of fonts and families is a potential prob-
lem, it never has been in practice. Using the Az S-
IMTEX package for its math and font handling pro-
vides most of what one needs for math typesetting.
The \underset and \overset macros can be used
to implement bottom and top embellishments, re-
spectively. ApS-ETEX also does a nice job of set-
ting combinations of the most common accents. The
amssymb package provides many predefined sym-
bols from the AMS Fonts.

After using the AMS packages a few hundred
characters were still missing, about half of which
were phonetic characters. These characters already
existed in PS fonts used by AIP’s composition sys-
tem so two virtual fonts were created — one for pho-
netic characters and one for other characters. Sev-
eral characters were created with TEX macros (e.g.,
lambda-bar).

After the fonts were created there was still some
work to do in defining accents that TEX doesn’t nor-
mally provide. A simple overprinting macro was
defined for middle embellishments. \mathaccent
was used for overaccents where actual accent char-
acters already existed in fonts. \overset was used
to implement overaccents where only normal-sized
characters exist (e.g., harpoon overaccents). Simi-
larly, underaccents were implemented by using ei-
ther \ooalign (e.g., for a math-mode cedilla) or
\underset.

Though the interaction between top, middle,
and bottom embellishments could be a factor, it
never really is. The different types rarely get used
together, and the quality that can be achieved via
GIFs is already generally low.

174 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Custom Legal Documents for the IBM AutoLoan Exchange

Douglas Lovell

IBM T. J. Watson Research Center
30 Saw Mill River Road
Hawthorne, NY 10532
dcl@watson.ibm.com

Introduction

Our group at the IBM T. J. Watson Research center
develops transaction-oriented systems which reduce
the processing barriers between businesses and their
customers. We do this by developing advanced,
computationally active user-interfaces, reengineer-
ing business processes, and building interfaces di-
rectly to existing data processing systems.

Early in 1996 we faced the task of providing
document support for a pilot project we were under-
taking with Chase Manhattan Automotive Finance
Corporation (hereafter “Chase”) a subsidiary of The
Chase Manhattan Bank. The project would connect
automobile dealers to the Chase automobile loan
decision system via the internet. It would give
dealers a loan decision in minutes for most credit
applications. It would replace a system of data
entry from faxes that produced loan decision times
measured in hours to days.

Dealers know that customers generally do not
return to the dealership a second time. If they say
they’ll be back, they won’t. When a customer leaves
without buying a car, odds are there will be no sale.
Quick financing approval for customers with good
credit would allow dealers to give approved financing
and sell an automobile to a customer on the crucial
first visit.

In addition to an electronic credit application,
the system would allow dealers to submit an elec-
tronic loan contract. The electronic contract would
enable the financial institution to almost immedi-
ately provide funds, thus reducing the “float” time
between the dealer’s payment for the automobile
and the bank’s payment to the dealer.

The first lenders on the system would anticipate
growing market share due to increased service to the
dealer. All lenders on the system would enjoy lower
costs for approving loans.

In spite of the electronic nature of this reengi-
neering effort, lenders, dealers, and purchasers
would (for the forseeable future) need printed credit
applications, contracts, and other documents related
to the legal terms, conditions, disclosures, and obli-

gations understood by all parties. In particular,
purchasers must drive away from the dealership in
their new automobiles with a copy of the agreements
they have made to pay for them.

Our Decision to use TEX

We knew we needed to print, at a minimum, credit
applications and financing contracts. Given this
broad requirement we began exploring in greater
detail what the document printing requirements
would be, what the documents look like, and what
our document objectives were. We generated and
analyzed several technical approaches and selected
one for further development.

Characterization of the document problem
Our first move was to gather as many of these
documents as we could to learn what they were like.
Chase was able to provide us with a sampling of
their financing contracts from various states.

Figure 1 shows a representative example for
New York.

We made the following observations:

1. The documents were printed front and back

2. They were standard width but lengths varied
up to 28 inches, all longer than 14 inches

3. They were bound at the top with carbons (or
carbonless), as white, yellow, and pink copies
for the lender, purchaser, and dealer.

4. The copies were usually identical, however; in
some cases the purchaser copy was missing the
section used by the lender or dealer to assign
the contract to another party

5. There was a large variety of type sizes and
weights, but not a large variety of typefaces

6. There was a large variety of layout and graph-
ics features— boxes, rules, brackets, columns,
paragraph styles, bullets, enumerated lists at
multiple levels, etc.

7. The documents were primarily printed with a
single color. There was some use of shading
using screens. There was rare use of a second
color.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 175

Douglas Lovell

Figure 1: First Page of A Chase Retail Contract

RETAIL INSTALLMENT CONTRACT
1. NATURE OF CONTRACT: C I this box is checked, this s a simple interest contract WITH a "Balloon Payment” as the last scheduled payment.
If this Box is not checked. this s a simple interest contract WiTHOUT a “Balloon Payment” as the fast scheduled payment.
Buyer (and Co-Buyer) Name and Address Creditor — Seller ‘

(Include County and Zip Code) Name and Business Address

|

2. WHO 1S BOUND: You, the Buyer (and Co-Buyer, if any), may buy the vehicle described below for cash or on credit, By signing below, you choose

ta buy the vehicle on credit under the terms of this Cantract and are individually liable (jointly and severally if both 2 Buyer and Co-Buyer sign below) for

any amount due. In this Cantract, "we", “us” and “our” mean the creditor named above and. after assignmenL, the creditor's assignee, Chase Manhattan

Bank USA, N.A., and/for any other assignee.

3. DESCRIPTION OF VEHICLE: You agree to buy and we agree to sel the following vehicle

New, Used, Weight Bady Key
or Demo Year {lbs.) Make and Model | Type

Use for Which
Vehicle Identification No. [No. Purchased

personal, family, |
— or household
husiness

— agricultural

If truck — Describe body, gross vehicle weight and major items of equipment sold:

4. NOTICE TO BUYERS OF USED OR DEMONSTRATION VEHICLES: The information you see on the window form for this vehicle is
part of this Contract. Information on the windaw form overrides any contrary provisions in the contract of sale.

. FEDERAL TRUTH:IN-LENDING DISCLOSURES
ANNUAL FINANCE
PERCENTAGE AMOUNT FINANCED | TOTAL OF PAYMENTS | TOTAL SALE PRICE
RATE CHARGE
The cost of your credit s @ | The dollar amount the The amount of credit The amount you will have | The tatal cost of your
yearly rate, credit will cost you. provided to you or on your | paid after you have made urchase on credit, includ-
behalf. all payments a6 scheduled. | ing. your down payment of
$
% s $ $ $
PAYMENT SCHEDULE: Your payment schedule wil be manthly payments of §

each, due on the same day of each
month startingon "

BALLOON PAYMENT: Ifthis Contract i checked with *Balloan Payment” sbove, your payment schedule wil be
. S —

monthly payments of
. due on the same day of each month starting on

and then your last payment will be

$ ue an
PREPAYMENT: You have the right to pay off this Contract early. If you do so, you will not have to pay a penalty

SECURITY: You are giving us a security interest in the vehicle being purchased.

LATE FEE: If a payment is more than 10 days late, you will pay us 5% of the unpaid amount of that payment.

OTHER TERMS: Please read this Contract for additional information on security interests, nonpayment, delault, and our right to require repayment
in full before the scheduled maturity date.

6. [TEMIZATION OF THE AMOUNT FINANCED:

L Cash Pric (ncuding any accessore, instlltion of accesories, and taxes) $
2 Domnpayment
A Net Tr s
L
Year Make Model
B. Cash Dx s
. Total
Unpaid Balance of Cash Price (1 minus 2C)
Other Charges Including Amounts Paid ta Others on Your Behalf
A. Cost of Optional Credit Insurance for the Terms) Specified in Paragraph 10 of this
Contract Paid to the Insurance Cotnpany named in Paragraph 10:
Disability,
ccider
and Health § $
5. Sl Fees P e Covermmart Age H
Government License andor Registration Focs (iemnze) H
D. Government Certificate of Title Fees $
§
§
§
E

- Other Charges (Describe who will receive payinert sid purposc)
For .

Tu Fov

o
). $
5. Amount Financed (Unpaid Balance) (3 pius 4F) H
*+ We may retain, or receive, a portion of these amounts.

F. Toto Other Charges and Amounts Paid to Giters o Vour Bellt TA plus B plus C plus D plus

7. PROMISE TO PAY: You promise 10 pay us the Amount Financed shown above, plus a Finance Charge determined by applying a daily rate of 1/365th
(1/366th in a leap year) of the Annual Percentage Rate shown above: to the unpaid balance of the Amount Financed each day.
B PAYMENTS BEFORE OR AFTER DUE DATE: This s 2 simpla interest contract. This means that the amount of the Finance Charge
hown above may vary depending upon when your payments are received. If no late fee is owed, we credit each payment first to accrued Finance
Chirge and then to the urpsid balence of the Amount Financed. I a late fec s s we. it snch peyment 14k to agenied Finance. Charge. shen
1o the scheduled unpad baance of the Amount Financed. then 10 the anpald et ee, a1 then 16 110 orparl baiance of the Amount Finscsd. e
compute your Finance Charge each day on the unpaid balance of the Amount Financed. The earlier you make payments before their due dates, the less
Finance Charges you will owe. The later you make payments after they are ue, the greater the Finance Charge. the Total of Payments and the Total
Sale Price. 1f you make any payments after they are duc, including if we allow yoi to extend the term of this Contract, your final payment miay be higher
than originally scheduled. We will send yot, a chieck (r a1y amOuSE we owe you after you make your last payment (i & $1.00 of more). We wil aduse
o ol N additional amount you owe us (if i is $1.00 or marc)

ON PAYMENT: IF THIS CONTRACT IS CHECKED WITH "BALLOON PAYMENT" ABOVE, THIS PARAGRAPH APPLIES. THIS
o RATO oY PAYABLE IN INSTALLMENTS OF EQUAL AMOUNTS. THE 1 AST SCHEDULED PAYMENT 5 SUBSTANTIALLY LARGER
THAN EACH OF THE OTHER SCHEDULED PAYMENTS. T he due date and amount of this last scheduled payment are shown above. Paregraph 12
applies and the following are the readings and/or charges referred to in Paragraph 12: (1) maximu allowable adameter reading is —
(2) charge per each excess mile over the maximum allowable mileage s —__*: and (3) disposition fee is $

Copyright © 1996 Chase Manhattan Bank USA. N.A

CHNYRA 8/16/95
AR rights reserved

Page 1 of 4
Oraft

8. There was some variation in in presentation
from state to state.

9. There was some variation in content from state
to state; but, much of the content was the same.

At the dealerships, the documents are stored in
boxes as they came from the printing company. The
financing agent at the dealer puts the preprinted
document into an impact printer which blindly types
data at given coordinates. A successful print results
when the program doing the printing has coordi-
nates which match the form, and when the form is
aligned correctly in the printer.

We learned that the business of supplying the
preprinted forms and the software coordinates to
print the data on them is lucrative for the printing
company and expensive for the banks. The business
is somewhat painful for the dealer, who has to keep
all of the forms stocked. It is also wasteful of
resources. The dealers and suppliers discard all of

the preprinted forms whenever a bank releases a
revision, or when a state or federal law changes and
all of the banks release revisions.

We thought we could improve on this by print-
ing the documents from a laser printer. The dealer
could stock blank legal paper and get document
revisions from us at a fraction of what the printers
charge to add a new preprinted form to their form
printing program.

We had to begin by redefining features of the
preprinted forms that we could not reproduce on a
laser printer. One of these was the format. There
is no ready supply of laser printer paper in 28 inch
lengths, nor are there any acceptably priced printers
which will handle this. One possibility was to use
a laser printer that supported a ledger format. We
hoped to avoid this due to the expense of installing
such a specialized printer at each dealer site. We
wanted to use a standard office printer.

Does a “single document law,” stating that the
agreement must be one document, mean that the
document must be a single sheet of paper? It turns
out that multiple page contracts are acceptable to
the financial institutions, provided they are num-
bered in a “Page n of m” format. The format of the
preprinted forms as long, single sheets was a con-
venience for shipping, handling, and feeding into an
impact printer. It ensured that the entire document
was present without introducing a need for stocking
multiple sets of carbon-duplicated pages.

Another feature we could not readily produce
on a laser printer was the second color. A second
color was used on the Chase contracts for the states
of California and Virginia, which have laws requiring
that specific features of the contract be highlighted.
Whether the highlighting must be achieved with
a second color or whether it could be addressed
by some other graphic mechanism— bold and big
typeface, white space surrounding, bold frames sur-
rounding —was an open question for some time. We
investigated a color ink-jet printer in case the color
features could not be redesigned; but, we made a
decision not to let a few two-color contracts scuttle
the whole printing project.

We learned that the multiple carbons do not
have to be printed on differently colored sheets. It
was sufficient to print multiple copies provided we
identified each copy in the footer, e.g. “dealer copy,”
“customer copy.”

Printing objectives Given the capability to re-
produce the documents on a laser printer, we pro-
duced the following requirements:

176 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Custom Legal Documents for the IBM AutoLoan Exchange

1. Provide a means to model all of the layout and
graphics features of the printed contracts.

2. Provide a means to print the documents with
or without data in the spaces provided for data.

3. Provide a means to re-use portions of a docu-
ment in other documents. We felt this would be
important for efficiency and consistency given
that much of the document content was re-
peated in multiple documents.

4. Provide a means to display portions of a docu-
ment in the user interface.

5. The process for adding data to the document
and printing must run without any special user
actions, other than pressing a “print” button
on the user interface.

6. Find a solution that can be realized quickly at
reasonable cost.

Part of the variation in the content of the fi-
nancing contracts was in the disclosures and notices
which appear above the signatures on the docu-
ments. One of our goals was to transmit an elec-
tronic contract, including signature, from the dealer
to the bank. This implied that we might need
to display part or all of the contract in the user
interface — at least the disclosures — before taking
the purchaser’s and dealer’s signature.

We believed that we should consider extracting
parts of the document content for display in the user
interface.

As we would print each document specifically
for each financing agreement. The following addi-
tional capabilities seemed reasonable:

1. Omit (or include) specific portions of the doc-
ument as applicable to the agreement.

2. Reformat paragraphs and boxes to fit the data.

The first additional capability allows us to elim-
inate paragraphs pertaining to options, such as “op-
tional credit life insurance” or “balloon payment
options,” which are not exercised for a particular
agreement.

The second solves the classic problem we’ve all
encountered when completing forms— blank spaces
too small or grossly oversized for the data we need
to write into them.

Technical alternatives Having worked with ATEX
in the past, I believed that TEX could carry the
project where we needed to go. Before settling on
TEX, we explored a set of other strategies. We
separate these strategies into two classes— overlay
and template.

Overlay strategies use a static image of the form
with blank spaces for data. The static image is

typically obtained by scanning a paper original, or
by using a preprinted form. The overlay process
prints the data over the static image using a map
which matches data items with locations of the
blank spaces.

Overlay strategies faithfully reproduce features
of the printed document. When the image quality of
a faxed document is acceptable, the image file can be
acceptably small. The data maps may be produced
fairly quickly without much skill.

Overlay strategies fail to meet the two addi-
tional capabilities we hoped to incorporate in our
system. Given a static image of the form, there is
no stretching of spaces too small for the data, no
shrinking of spaces too large, and no capability to
eliminate unneeded paragraphs and repaginate the
document.

Overlay strategies do not readily lend them-
selves to extraction of content for the user interface,
or to re-use of content in multiple documents. An
overlay has no internal structure that may be taken
apart and reassembled in new ways.

When an overlay document changes the entire
document must be rescanned and the data map
rebuilt with new data locations. There is also a
trade-off with overlays between image quality and
file size. High quality text requires very large image
file sizes.

We found that the overlay strategy is accept-
able for some documents which do not require high
quality text, sharp lines, or reformatting. We use
it to print credit applications, for example. We
did not find the overlay strategy acceptable for our
contract printing requirements. For those we turned
to template strategies.

Template strategies represent the document as
a series of layout and graphics controls with text.
Place-holders in the document mark positions for
the data values. A merge process that we call
“data injection” replaces the data place-holders with
actual data. The typesetting system reformats the
document with the data in place.

A number of word processors and page compo-
sition systems have formatting and data injection
capabilities; however, we eliminated these immedi-
ately because they were not designed as unattended
background processes and use mostly proprietary
data formats.

This left us with text markup languages which
have typesetting engines on the PC platforms we
run. We briefly considered SGML, but the high-level
markup must still be translated into some lower-
level typesetting commands, like TEX. The full
generalization of SGML was more than our needs

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 177

Douglas Lovell

Figure 2: Portion of the Federal

Truth-In-Lending Disclosure
5. FEDERAL TRUTH-IN-LENDING DISCLOSURES:

ANNUAL :
PERCENTAGE FINANCE AMOUNT FINAI
e CHARGE |

The amount of cre
provided to you or
behalf.

The cost of your credit as a | The dollar amount the
yearly rate. credit will cost you.

% |$ $
PAYMENT SCHEDULE: Your payment schedule will be
b ciontl

monthly p

required. While we were concerned with high-level
markup, we were more immediately concerned with
using a typesetting engine that could reproduce all
of the graphic features of the contracts. We also
had IATEX as an example of higher-level markup
implemented using TEX.

After some exploration my initial inclination
to try TEX seemed justified. Feeling reasonably
assured, we set out to prove to ourselves that we
could build our contract printing solution using TEX
as the typesetting engine.

Proof of Concept

Given a decision to use TEX, we had to show that
we could reproduce the contracts in TEX and that
TEX could support our need to inject data into and
extract content from them. In a project like this it
is important to get something working quickly, then
improve upon the working prototype. We decided on
a two phase campaign to prove our template printing
approach using TEX. First we would produce the
contract document needed for the Chase pilot using
TEX markup. Second, we would implement a small
program to inject data into the document.

The first document The task of creating the first
document was assigned to me. Prior to this project
I had used XTEX to typeset papers and letters. The
contract documents we had to duplicate presented
a new set of challenges. Knowing that the ITEX
standard formats were not appropriate for these
documents, I began immediately using plain TEX.

I began with the basic page layout and a para-
graph of text, then tackled the parts of the docu-
ments that had a large number of rules and align-
ments. We determined that these were the most
difficult portions of the documents to reproduce and
chose to work on these first to demonstrate that TEX
could reproduce them.

The section which gave the most difficulty
was the “Federal Truth-In-Lending Disclosures” (see
fig. 2).

The challenging features were center-justified
text, text centered vertically as well as horizon-
tally, paragraphs within columns, and rules which
changed weight going across the page. I had to fully
understand the way TEX builds boxes in its various
modes and how to control an \halign.

Learning TEX was a great deal of fun. The
TEX layout model of boxes, glue, and springs was a
delight to learn. Most confusion came from under-
standing the modes— the difference between vertical,
horizontal, and restricted horizontal modes— and
more, when the transitions occur between modes.
Controlling vertical space on the transition from
horizontal back to vertical mode was a puzzle.

It took two weeks to code the first page of
the contract (fig. 1) given a study of the first few
chapters of Knuth’s TEXBook (Knuth, 1994), and
using the task to direct further reading and experi-
mentation. Most of the rest of the contract was text
supplied by a fast typist. We were now well satisfied
that we could faithfully reproduce the contract using

TEX.

Data injection The second task was to develop a
method to get our data values into the document.
Our data comes to the document printing subsystem
as a stream of characters which we parse into named
“tables” and “lists.”

A table contains a set of named “fields,” each of
which has a value. A list contains an array of such
sets. We refer to a table field using the name of
the table and the name of the field, e.g. “AutoCon-
tract.CashPrice.” We refer to a list field by adding
an index, e.g. “AutoOtherCharges[0].Amount”

We have a set of functions written in the C
programming language which return values from the
data stream given table, list, and field names.

We initially develped data macros to support
table values only. We designed the first macro,
“\DataTarget” with three arguments’

1. Table name — the name of the table,
2. Field name — the name of the field from which
to take the value, and

3. Default width — the size of the blank to leave
when there is no value.

This macro output an \hrule on the baseline
using the given width. It completely ignored the
first two arguments. This provided a reasonable
default behavior which enabled us to process the
documents without any data present and produce a
usable blank document.

To get data into the document I wrote, in C,
a simple text filter which accepted a document file
and a data file. It output a copy of the document file

178 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Custom Legal Documents for the IBM AutoLoan Exchange

with data in place. The filter passed all characters
until encountering the string, “\DataTarget.” It
then parsed the three arguments— table, field, and
width. The filter used the first two arguments to
find a data value. If there was a data value it output
the value inside of a macro, “\DataValue.” If there
was no value, the filter output the width inside of a
macro, “\DataBlank.”

The \DataValue and \DataBlank macros could
format their arguments in any way we chose. We
chose to format the value of \DataValue in the \tt
font. \DataBlank output an \hrule on the baseline
with width given in the third parameter.

The preprocessing filter did its job very satis-
factorily. We had proved TEX and our data injec-
tion process to be a viable, capable solution to our
document printing needs. We had not yet tested
reading a portion of a document or displaying a
portion in the user interface; however, given that
the TEX sources were all ASCII text files and given
our experience with the preprocessor, we believed
there would be no serious obstacles to implementing
those functions.

Pilot

The user interface for gathering credit application
data and the electronic submission and approval
process was well under way before we began work
on printing contract documents. We were able to
integrate the Chase contract into the system before
giving a preview of the system, with Chase, to the
National Automobile Dealers’ Association (NADA)
convention in February 1996.

The then unnamed IBM AutoLoan Exchange
system created a small sensation at NADA ’96.
Dealers and financial institutions were excited about
what we had done and were anxious to take part. It
was clear that we had made a significant advance
with high impact and significant benefit in an area
that had been neglected by technology providers.
The industry response demonstrated considerable
promise for our system.

The success was not primarily due to docu-
ments. Dealers were impressed that the system
could give quick loan approvals and promised to
close financing contracts and enable rapid delivery
of payment for the cars they sold. It didn’t hurt
that we could produce a completely filled-in contract
from a laser printer— one more thing they hadn’t
seen done before.

What the success meant for documents was that
the document portion of the system had to grow
fast. We had to scale it to multiple states and
multiple products. Given a successful pilot project

with Chase, we would need to produce documents
for multiple financial institutions as well. We had
to produce hundreds of documents. We needed to
build a document creation team.

The first problem was finding people skilled
with TEX. It appears that TEX is primarily used
by professionals as a tool for doing their other work,
or publishing their work. These are not people who
are available to write automobile finance contracts.

Another niche for TEX is in the scientific and
technical publishing business. We did identify a few
people from this community who bid to do the work.

It was amusing to try to explain needed skills
to representatives from personnel agencies. None
had heard of “tech.” Giving the spelling and saying
“tex” as in “Texas” helped some; but, searches in
their databases for the keyword “tex” yielded few
potential candidates. Queries for markup skills—
SGML or GML —met with little better success.

Fortunately, one vendor was willing to dig
deeper to find the skills we needed. He began with
the listings in the back of TUGboat, and with a ref-
erence supplied from an email inquiry to TEX Users
Group. He did the phone calling and followed leads
to identify people who could code the documents
and experts who could write the macros.

The backgrounds of the people who worked on
our documents is indicative of the problem of finding
skilled document production help for TEX. They
were:

1. a Physicist turned TEX expert,

2. a Crystolographer turned IS department man-
ager,

3. a former secretary to a large university mathe-
matics department, and

4. me, a computer programmer.

In addition, while we preferred to find people
who could come to work with us on-site, it became
clear that we would have to settle for a distributed,
electronic, virtual workplace. We coordinated by
telephone and shared files by ftp transfer. I had to
act as administrator and librarian to keep synchro-
nized the hundreds of files we generated.

Many of the TEX experts who bid for the macro
work focused on the data injection portion of the
problem, perhaps because we had explained this
most clearly. In fact, this was the problem we felt
most confidently we had solved.

The part of the problem less clearly expressed,
but of greatest concern to us was the problem of
efficiently producing the full, large variation in page

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 179

Douglas Lovell

layouts and typographic features of automobile fi-
nance contracts. We felt that a flexible, extensible,
high-level markup was needed to meet our goals of

1. having administrative level document produc-
tion staff quickly produce fifty to seventy doc-
uments for a new financial institution,

2. faithfully reproducing the style and content of
those documents, and

3. quickly tooling for a new style by reusing as
much as possible the work done to produce pre-
vious styles for previous financial institutions.

The TEX expert we selected understood this
problem and directly addressed it with a syntax
for extensible markup and a framework for TEX
macro development and reuse (Ogawa, 1994; Bax-
ter, 1994).

Rollout

At this time we have complete contracts for most of
the fifty states for Chase, and a few dozen states’
documents for three other financial institutions.
Chase has begun using the documents for actual,
legally binding financing contracts at dealerships
using the ALX system.

The help we got from an expert TEX “insider”
was crucial to our success with these documents.
He was able to code some of the features which were
giving us a hard time, such as page numbering and
footers, section cross-references, and two-column
layout. More importantly, he was able to capture
features as separate elements which could be applied
repeatedly as needed in the many documents we
produced. He was also able to develop content-
level commands we used to code the structure of the
document. He configured the appearance of these
for each document style. Where the appearance
varied within a document, he provided attributes
we could code to guide the presentation.

Consider the case with sections. The presen-
tation of the section number and title varies from
document to document. Figure 3 shows examples.

Those of us coding the documents wrote a
\section command with a title and label at-
tribute. Where there was a box around the section
we could specify framing. The document style took
care of the font change of the title position of the
title, and position of the text relative to the section
number.

All of this meant that the document coders
could focus on producing the content of the docu-
ments using fairly high-level markup. The details
of presentation, the hard and messy typesetting
considerations, were taken care of by lower-level

Figure 3: Section style variations

|_in full before the scheduled maturity date.
6. ITEMIZATION OF THE AMOUNT FINANCED:

1. Cash Price (including any i of
2. Downpayment:
A. Net Trade-in: -~ ...
Your Trade-in is a

fes, and taxes):

nght o require in tull betore the maturity date.
6 ITEMIZATION-OF THE AMOUNT FINANCED
1. Cash Price (including any i ion of andsales taxesof N
2. Downpayment:
A. Net Trade-in $.
right to require repayment in full before the scheduled maturity date.
6. ITEMIZATION OF THE AMOUNT FINANCED
1. Cash Price (including any ies, i ion of ies, and taxes):
2. Downpayment:
A. Net Trade-in: $
to require repayment in tull before the scheduled matunty date.
ITEMIZATION OF THE AMOUNT FINANCED
1. CashPrice (i i ies, services,
2. Downpayment:
A. NetTrade-in $
.
Figure 4: Style change
To For
To For $
F. Total Qther Charges and Amounts Paid to Qthers on Your Behalf
(A+B1CIDE) $.

5. Amount Financed - Unpaid Balance (3 + 4F): $

To For 3

F. Total Other Charges and Amounts Paid to Others on Your BeRalf (A plus B plus C plus D plus £): ..
5. Amount Financed (Unpaid Balance) (3 plus 4F): R

** We may retain, or receive, a portion of these amounts.

presentation code. This allowed us to specify a
large lead time for first-of-a-kind documents and
realize a short turn-around time for n’th-of-a-kind
documents.

The only drawback was that I no longer well un-
derstood the formatting code. We became reliant on
the consultant. When we wanted a change quickly
we had to appeal to him to give our work priority,
or resort to low-level commands to implement the
change ourselves, locally in the document.

One example occurred when a client added a
footnote within an itemization section (see fig. 4).

The consultant was not able to implement this
immediately; so, we had to revert the \item markup
to an \halign.

We believe that, as we do more and more
documents, fewer and fewer of these new typesetting
needs will arise. As we add each new feature to our
toolkit we will be able to produce new document
styles with less new coding effort. We have had some
encouragement in this belief in our experience with
adding new financial institutions. The second and
third financial institution required considerably less
work due to the large amount of code reused from
the Chase pilot.

Conclusion

The IBM AutoLoan Exchange has delivered on
much of its promise. We now deliver rapid loan
decisions and contract funding for dealers subscribed

180 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Custom Legal Documents for the IBM AutoLoan Exchange

to the system through Chase. with many other
finance institutions and dealers to follow. The appli-
cation has defined a new direction for the business of
automobile financing unforseen by existing vendors
in the field.

The document capabilities of the system form
a small, but essential part of the overall success
of the IBM AutoLoan Exchange in defining a new
paradigm for the business of making and clos-
ing automobile financing. Out go truck-loads of
preprinted, carbonless forms in quadruplicate. In
come laser printers and reams of fresh, blank, legal-
sized laser printer paper.

Dealers print only the documents they need,
when they need them, complete with the data values
for each particular financing deal. When a form
changes there are no bundles of preprinted, obsolete
forms to discard.

Our world is a networked, distributed world of
electronic commerce where complex legal documents
are delivered from a server and customized by a
client at the point of delivery. We have shown that
TEX can provide the capability needed to typeset
these documents transparently, without recourse to
a page-layout or word-processing system.

The TEX typesetting system was vital to the
success of the printing subsystem of the IBM Au-
toLoan Exchange. TEX can play a vital role wher-
ever custom legal documents are needed in the world
of the Net.

Acknowledgements

Thank you to Stephen Boies and Lauretta Jones,
visionary leaders of the IBM AutoLoan Exchange
project.

Thank you to Arthur Ogawa and his many
helpers in the TEX community who provided the
advanced TEXnology to make the IBM AutoLoan
Exchange documents really work.

Thank you to Alan Bednowitz and Catherine
McGinnis for their detailed and dedicated work to
produce nearly one hundred contracts to date for
the IBM AutoLoan Exchange.

References

William Erik Baxter An object-oriented program-
ming system in TEX TUGboat, 15(3):331-338,
September 1994

Knuth, Donald E. The TgXbook. Addison Wesley,
Reading, Massachusetts, 1994.

Ogawa, Arthur. “Object-oriented programming, de-
scriptive markup, and TEX”. TUGboat 15(3),
325-330, 1994.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 181

Breaking equations

Michael Downes

American Mathematical Society
PO Box 6248

Providence, RI 02940

USA

mjd@ams.org

Introduction

Some of the inconvenient aspects of writing dis-
played equations in TEX are of such long standing
that they are scarcely noticed any more except by
beginning users. For example, if an equation must
be broken into more than one line, \1eft ... \right
constructs cannot span lines. This is a report on
a new ITEX package called breqn that substan-
tially eliminates many of the most significant prob-
lems (described at length in the next section). Its
main goal is to support automatic linebreaking of
displayed equations, to the extent possible within
the current limitations of TEX and ITEX. Such line-
breaking cannot be done, however, without substan-
tial changes under the hood in the way math formu-
las are processed. Some of the changes are radical
enough that it would be more natural to do them in
IMTEX3 than in TEX2e —e.g., for ATEX3 there is
a standing proposal to have nearly all nonalphanu-
meric characters be active by default; having ~ and
_ active this way would have eased some implemen-
tation problems. Using the package in ETEX2e is
possible, with some extra care.

Current shortcomings in BTEX equation
handling

Hindrances for authors The following difficulties
affect authors using the standard IXTEX equation
and egnarray environments. Some of them are
ameliorated by the use of the amsmath package.
(The first four also apply for plain TEX; and the
main reason the next three don’t apply as well is that
plain TEX replaces them with a more substantial
shortcoming: no automatic numbering at all.)

1. Line breaks must be inserted by hand.

2. Breaks are sensitive to changes in fonts or
column width; and altering them is onerous.

3. A break within \left-\right delimiters re-
quires extra work, especially if there is any dif-
ficulty getting the sizes to match.

4. Use of \halign freezes available shrink. Thus,
for example, suppose that a given formula

10.

11.

fits within the column when done with an
equation environment; the exact same formula
may fail to fit when done with an eqnarray
environment, because eqnarray uses \halign
internally.

Punctuation at the end of an equation logically
belongs with the surrounding text but it must
be entered with the body of the equation in
order to print in the right place. This discord is
especially noticeable when promoting formulas
from inline math to display.

A numbered equation that takes several lines
in an eqgnarray requires awkward use of
\nonumber to keep from getting a number on
each line.

Numbers may overlap the equation body with-
out warning (in egnarray and similar struc-
tures).

There is no easy way to specify a variant
equation number for an individual equation.

The space around equal signs in eqnarray is
noticeably larger than the normal spacing for
such symbols. This looks bad when adjacent
equations are done one with equation and one
with eqnarray.

There is no easy way to center an equation num-
ber across multiple lines of a broken equation.
Some users manage to infer that array is the
natural approach for this, but a plain array
has various spacing faults for this purpose, and
uses text style instead of display style for the
contents.

There is no easy way to add a frame around the
body of an equation (with or without including
the equation number). You can just about
do it with a one-line equation if there’s no
number and if you know about \displaystyle.
But with multiline equations it’s rather more
difficult (use of array is again indicated, but it
brings all the deficiencies cited in the preceding
item).

182 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

The bosonic part of the action takes the form
I'=1Iopo+Ior + 1o+

where

(27)°

Ipop =
0/2

/ d®zv—Ge™® [Rg + GMN 0y @ON D

1
— EGMQGNRGPSHMNPHQRS

where M, N =0, ..., 5 are spacetime indices.

\begin{egnarray}\nonumber

I_{00}&=& \frac{(2\pi)“3}{\alpha~{\prime 2}}
\int d"6x \sqrt{-Gre {-\Phi} \left[R_G+G~{MN}
\partial_M\Phi\partial _N\Phi\right.\\

Breaking equations

(14)

(15)

&& \left.-\frac{1}{12}G"{MQ}G~{NR}G"{PS}H_{MNP}H_{QRS}\right]

\end{eqnarray}

Figure 1: Typical equation problems in ordinary WTEX: (a) different spacing around the equals signs
in (14) and (15) because one uses equation and the other uses eqnarray; (b) equation (15) is a single
equation but because it covers two lines \nonumber must be used on the first line; (¢) and then the
number is not vertically centered on the entire equation; (d) the sizes of \left [in the first line and
\right] in the second line don’t match (they could be made to match, with extra work); and (e) the
minus sign at the beginning of the second line is getting (wrong) unary spacing. This example is from
(Duff, Minasian, and Witten, 1996), with only a couple of minor adaptations.

Issues of typeset quality

1.

Symbol spacing tends to go wrong at the start
of continuation lines (cf (Kopka and Daly, 1995,

Features

1.

The split and multline structures match up
better with the logical structure of individual

§5.4, p 136)). When a line break is taken equations and equation groups.

before a binary infix operator, the operator will 2. The multiple-equation environments align,
typically get unary operator spacing, though it gather, etc., use the correct spacing for equal
shouldn’t. (See Figure 1.) signs.

2. Use of \halign (as in eqnarray) keeps the 3. The \tag command makes it easy to get variant
display short spaces from ever being .appli.ed, equation numbers.
even when a sroup of equations begins with 4. Overlap of the equation number on the equation
a short equation that would get the reduced bodv i il ted

o) ody is mostly prevented.
spacing if it occurred by itself. . .

3. No distinction is made between consecutive, > The?e is more control over page breaking.
separate equations and lines of a single, broken 6. Environments aligned, cases, etc., can be
equation. used as build?ng blocks in building up more

4. Standard methods for reducing the type size complicated displays.
of an individual equation all have adverse side Misfeatures
effects; typically, the wrong line-spacing gets 1. For technical reasons, abbreviations like \bal,
used for the text preceding the equation. \eal for \begin{align}, \end{align} don’t

5. When a multiline block of text is displayed work.
and numbered like a formula, the base-to-base 2. There are inconsistencies between the multline
spacing above and below doesn’t work quite and split environments; for example, the
right. equation number for multline does not get

Features and misfeatures of the amsmath centered the way it does for split.
package 3. The equation environment is implemented as

As compared with the standard I TEX facilities for
equations, the amsmath package addresses some of
the problems mentioned above, but introduces a few
new misfeatures of its own.

a subcase of the gather environment, which
means that it inherits the \halign deficiencies
mentioned above: horizontal shrink isn’t used;
the short skip possibility is disregarded; and

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 183

Michael Downes

it also is rendered unabbreviable, as described
above. (Although work-arounds exist, they
aren’t particularly well known and deviate from
canonical ITEX syntax.)

TEXnical difficulties Looking at the above lists
of deficiencies, one may well wonder why they have
not been better addressed before now, more than
ten years after BTEX (and AMS-TEX) were first
developed (1983-1985). One of the contributing
reasons, however, is surely the intransigence of the
TEXnical difficulties involved.

e TEX lacks low-level support for typical display-
breaking conventions; for example, break penal-
ties are provided only on the right side of math-
bin and mathrel symbols.

e Math/text defaults for $$ and \eqno are
backwards. If TEX’s display structure had been
envisioned as a purely typographical device and
started out in text mode rather than in math
mode, a number of difficulties would never
arise. The same can be said for \eqno. Thus
providing a simple way such as $$ to start a
math display would have been better relegated
to the macro level, not hardwired into the
primitive display mechanism.

e \left—\right subformulas are wrapped in an
unbreakable box.

e Displayed equation macros have been mainly
written towards the typographical structure
embodied in TEX’s $$ mechanisms, instead
of towards the actual logical structure of the
material (distinguishing single equations from
equation groups, intra-equation punctuation
from external punctuation and so on).

Features of the breqn package

O Overlong equations can be broken automati-
cally to the prevailing column width following
standard conventions. There will always be
some equations that need special line-breaking
attention from the author, but for those that
don’t, the process is highly automated, includ-
ing standard indention conventions, avoiding
overlap with the equation number, and so on.

O Line breaks can be specified in a natural
way even within \left ... \right delimiters.
Preferred but nonmandatory breakpoints can
be specified within equations by \linebreak
with an optional argument, as usual.

O Separate equations in a group of equations are
written as separate environments instead of

being bounded merely by \\ commands. This
simple change dispels, as a side effect, the
problem of wrong math symbol spacing at the
beginning of continuation lines.

Horizontal shrink is made use of whenever
feasible (most other equation macros are unable
to get at it when it occurs between \left ...
\right delimiters or in any sort of multiline
structure). (However, shrinkable space inside
fractions, square roots, overlined quantities,
etc., is not unfrozen by this package. That is a
less tractable problem.)

The \abovedisplayshortskip is used when
applicable (other equation macros fail to apply
it in equations of more than one line).

Displayed ‘equations’ that contain mixed math
and text, or even text only, are handled
naturally by means of a dtext environment that
starts out in text mode instead of math mode.

The punctuation at the end of a displayed
equation can be handled in a natural way that
makes it easier to promote or demote formulas
from/to inline math, and to apply special effects
such as omitting the punctuation, as favored by
some of the more progressive book designers.

Equation numbering is handled in a natural
way, with all the flexibility of the amsmath
package (features like \tag and subequations
are provided under different guises) and with
no need for a special \nonumber command.

Unlike the amsmath equation environments, the
bregn environments can be called through user-
defined abbreviations such as \beq ... \eeq.

It is easy to set local options for a single
equation environment, e.g., changing the type
size or adding a frame.

It is possible to specify different vertical space
values for the space between lines of a long, bro-
ken equation and the space between separate
equations in a group of equations.

Page breaking before, within, and after dis-
played math formulas is subject to more so-
phisticated control than it is with other extant
equation macros.

A rather noteworthy ‘feature’: as it pushes the
envelope of what is possible within the context
of IMTEX2e, the breqn package will tend to
break other packages when used in combination
with them, or to fail itself, when there are any
areas of internal overlap; successful use may in
some cases depend on package loading order.

184 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Environments and commands All of the follow-
ing environments take an optional argument for ap-
plying local effects such as changing the typesize or
adding a frame to an individual equation.

dmath Like equation but supports line breaking
and variant numbers.

dmath* Unnumbered; like displaymath but sup-
ports line breaking

dtext Like equation but starts out in text mode

dtext* Unnumbered variant of dtext

dgroup Like the align environment of amsmath,
but with each constituent equation wrapped in
a dmath, dmath*, dtext, or dtext* environ-
ment instead of being separated by \\. The
equations are numbered with a group num-
ber. When the constituent environments are
the numbered forms (dmath or dtext) they au-
tomatically switch to ‘subequations’-style num-
bering, i.e., something like (3a), (3b), (3¢), ...,
depending on the current form of non-grouped
equation numbers. See also dgroupx.

dgroup* Unnumbered variant of dgroup. If the
constituent environments are the numbered
forms, they get normal individual equation
numbers, i.e., something like (3), (4), (5),
Numbered and unnumbered forms can be mixed
in the natural way, as needed.

darray Similar to eqnarray but with an argument
like array for giving column specs. Automatic
line breaking is not done here.

darray* Unnumbered variant of darray, rather like
array except in using \displaystyle for all
column entries.

Restrictions on the use of the breqn package

math symbol setup In order for automatic line
breaking to work, the operation of all the math
symbols of class 2, 3, 4, and 5 must be altered
(relations, binary operators, opening delimiters,
closing delimiters). This is done by an auxiliary
package flexisym. If you use anything other
than the standard TEX set of math symbols
from the fonts cmex, cmsy, cmmi, you will prob-
ably need to do some configuration of the load
process for the flexisym package.

subscripts and superscripts Because of the changes
to math symbols of class 2-5, writing certain
combinations such as "+ or _\pm or "\geq with-
out braces will lead to error messages; in gen-
eral, except for letters and digits, any single
math symbol must be enclosed in braces when
sub or superscripted: “{+}, _{\pm}, “{\geq}.
Actually, there is no visible sanction in the

Breaking equations

ITEX book for omitting such braces: it uni-
formly shows braces in all sub and superscript
examples—perhaps because the problem de-
scribed here already exists in standard ITEX
to a lesser extent, as you may know if you ever
tried ~\neq or ~\cong (in the case of \neq the
symbol simply prints incorrectly, without giving
an error message).

Grinchuk (Grinchuk, 1996) encountered the
same sort of technical complications regarding
braces around superscripted math symbols in
his efforts to support Russian-style formula
breaks as I did, and thinks (as I do) that turning
the ~ and _ characters into active characters

might be the best user-friendly solution.

Breaking long equations

Let’s begin by reviewing some first principles.
Some facets of the typesetting task for displayed
equations are so ‘self-evident’ that they rarely
receive any explicit attention, but only by paying
explicit attention to everything can we be sure of
getting a strong grasp of the whole picture, and of
the relative significance of various constraints.

Displayed mathematical expressions A dis-
played mathematical expression, commonly referred
to as a displayed formula or displayed equation, is
a sentence fragment whose nucleus is some sort of
math formula— not necessarily containing an actual
equals sign—and that stands by itself in the text
column with extra space above and below. The pur-
pose of treating the expression this way might be

e to emphasize it
e to facilitate reference to it

e to suggest its structure by the way the lines are
broken and indented, or

e simply to avoid breaking it, if it contains no
acceptable break points and leaving it in-line
cannot be done without adversely affecting the
inter-word spacing of the text.

On the subject of breaking equations, there is a
statement in The TEXbook (Knuth, 1986, Chapter
19, p 195) suggesting (with all the weight of Knuth’s
mathematical typesetting knowledge behind it) that
attempting to do it automatically would be, er, well,
foolish:

It’s quite an art to decide how to break
long displayed formulas into several lines;
TEX never attempts to break them, because
no set of rules is really adequate. The
author of a mathematical manuscript is
generally the best judge of what to do, since

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 185

Michael Downes

break positions depend on subtle factors of
mathematical exposition. For example, it
is often desirable to emphasize some of the
symmetry or other structure that underlies
a formula, and such things require a solid
understanding of exactly what is going on
in that formula.

My motivation, however, for seeking to provide
automatic linebreaking in the breqn package is the
observation that among the 10% or so of equations
that need to be broken, two-thirds have entirely
conventional breaks, and many of the remaining can
be handled nicely by having the author indicate
preferred line breaks instead of forcing line breaks.
And indeed, the continuation after the above quote
is less pessimistic:

Nevertheless, it is possible to state a few

rules of thumb about how to deal with long

formulas in displays

Fitting a displayed equation into the available
text width In the following examples the gray
blocks demarcate the nominal column width within
which the displayed expression must fit.

ExXAMPLE 1. A substantial majority of equations
fit comfortably within the available width, even in
relatively complex mathematical material.

a=b+c

EXAMPLE 2. As an equation grows longer it begins
to approach the point where not all the material will
fit on a single line.

a=b+ct+d+e+f

ExXAMPLE 3. If the equation is just slightly wider
than will fit, the preferred strategy is to squeeze it a
little by reducing the space around binary operator
symbols such as +, —, or ®.

a = btctdtetf+yg

Compare the spaces around the plus signs.

You might think that reducing the space around
relation symbols would be a good idea as well;
however, the default math space settings in N TEX do
not have any shrinkability in the space for relation
symbols.

EXAMPLE 4. Shrinkable spaces inside a subscript,
superscript, fraction, root, or other special construct
are frozen and cannot shrink. There is a simple
reason for this: TEX cannot print any sort of object
that breaks out of the basic linear symbol stream
into two dimensions, except by putting it into a
vbox or by raising or lowering a box from the current

baseline. In either case, the material winds up inside
a box, and boxes have a fixed width determined
at the time of construction. A fraction consists of
a numerator box stacked atop a denominator box.
Thus spaces within the numerator and denominator
don’t shrink, even when that might be useful to help
an expression fit on a single line. The following
equation contains no more material, horizontally
speaking, than the previous one; it is the lack of
shrinking that makes it overrun the right margin.

a_b+c+d+e+f+g
N 2

EXAMPLE 5. In subscripts and superscripts mathrel
and mathbin spaces are entirely omitted! So ‘to
shrink or not to shrink’ isn’t even a question.

4 = Thictdtetfrg — 2

When shrinking isn’t enough

EXAMPLE 6. Suppose that an equation still exceeds
the available width after all available shrink capacity
has been used up. Then the obvious way to deal with
the over-wide condition is to break off the tail end
of the equation and move it down to the next line.
Commonly the break is chosen to fall just before a
binary operator such as + or —.

a=b+c+d+e
+f+yg

In some publishing traditions, the binary operator
symbol is repeated before and after the break
(Grinchuk, 1996):

a=b+c+d+e+
+f+yg

The chief feature of the breqn package is
that long equations will break automatically at
the conventional places and the continuation lines
will be indented by the conventional amounts
(configurable). The general idea is to set the
equation as a special sort of TEX paragraph, very
much like a list item (with ragged-right, rather than
justified, text). Compare the outlines of

1. A typical list item, with the text set ragged
right instead of justified.
and
(23— 1,2 1) = -3+ (2% - 1)/2% + ...
+7/235(23 —1) ...
EXAMPLE 7. Breaking an equation anywhere be-
tween a pair of delimiters is usually less desirable,

by an order of magnitude, than breaking elsewhere.
Bad:

186 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

a=b+ (c+d)+ (e
+f)+yg

Better:
a=b+ (c+d)
+(e+f)+yg

But TgX does not provide any native way to test
whether a given point falls between delimiters or
not. So between-delimiter breaks can be more
highly discouraged only if the delimiter symbols are
themselves programmed to support such a test. This
is in fact what the breqn package does.

EXAMPLE 8. By giving suitable TEX definitions to
delimiter symbols such as (,), \langle, \rangle,
etc., it is possible to suppress line breaks within
paired delimiters. With vert bars, however, there
is a bit of a problem. The standard method of
entering vert bar symbols in a document is just to
use the ASCII vert bar character from the keyboard.
When the verts are paired, mathematicians have
little trouble telling which ones are openers and
which ones are closers; but computer software such
as IMTEX doesn’t have the discriminatory powers of
a human mathematician. It is difficult, for example,
for BTEX to discern that a line break such as the
following is undesirable:

a=b +|c +d| +le +f| +g

a=b+|c+d +]e
+fl+y

EXAMPLE 9. Without any explicit indication of
directionality, we might envision programming some
sort of heuristic choice mechanism into the TEX
definition of the vert bar, such as ‘the first vert that
comes along is an opener; the next one is a closer,
and alternate thereafter’. Unfortunately, there are
no heuristics for this particular problem that are
actually good enough in practice.

If we have directional vert bar symbol com-
mands \lvert, \rvert, \1Vert, \rVert, we could
rewrite the earlier example as follows, allowing
IMTEX to easily tell where line breaks should be dis-
couraged more strongly.

a = b +\lvert ¢ +d\rvert
+\lvert e +f\rvert +g

a=b+|c+d|
+le+ fl+g
Even better is for paired use of the vert bars to be

encapsulated in a macro with some meaningful name
chosen by the author:

Breaking equations

\newcommand\abs [1]{\1vert#1i\rvert}

Both the amsmath package and the breqn package
(via flexisym) provide \lvert etc.

ExAMPLE 10. But then consider the following ex-
ample. Which break looks better: This one?

a="b
+(c+d+e+f+yg)

Or this one?
a=b+(c+d+e
+f+9)

ExaAMPLE 11. For completeness I should have
pointed out an intermediate form with the second
line indented to the usual position:

a=b+(c+d+e
+/+9)

This illustrates the point that when a line break
is taken between delimiters, we generally prefer to
have the delimiters clear their contents: all material
within the scope of an opening delimiter should be
indented at least as much as the delimiter itself,
and closing delimiters should fall further to the
right than the rightmost point of the material they
encompass.

EXAMPLE 12. Some displayed mathematical ex-
pressions don’t include any relation symbol. Then
the usual practice is to indent subsequent lines by a
fixed amount, say one or two quads:

a+b+ec
+e+f+yg

EXAMPLE 13. An alternative indention strategy
that may be used for two-line equations, especially
when the first line contains no natural alignment
point, is to start the first line at (near) the left
margin and end the last line at (near) the right
margin. In the amsmath package this functionality
is provided by the multline environment (Downes,
1995). This layout may seem more well-balanced
than the other if the second line is much shorter
than the first.
a+b+c+d+e
+f+y9

EXAMPLE 14. Even if a relation symbol is present,
the distribution of material between the left-hand
side and the right-hand side might make a break
in the former more reasonable than a break in the
latter. Compare

(a+b+ct+d+e+[f+yg)

=«

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 187

Michael Downes

and

(a+b+c+d
+etf+g) =«

ExAMPLE 15. A displayed formula may have the
form ‘A and B’:

Y_n=Y_k\quad\text{and}\quad Z_n=Z_k
Y,=Y, and Z, =27

This is a subcase of a more general list pattern
that may take various other forms:

Yn:Yk; Zn:Zk
Xn:Xk, Yn:Yk, and Zn:Z]C
Xn:ka Yn:ka Zn:Zk

EXAMPLE 16. It is not uncommon for a displayed
equation to have an attached condition or qualifier
(Knuth, 1986, Chapter 19, p 185):

Zy, = X, mod q for all n > 0.

In most cases, if there is not enough room for
everything to fit on one line, breaking between the
assertion and the condition is better than breaking
elsewhere. Compare

Zn = X1n + -+ + Xp mod ¢
for all n > 0.

and

Zn = X1 + -+
+ Xgn mod ¢ for all n > 0.

The breqn package provides a \condition com-
mand for such material:

\begin{dmathx*}

Z_n=X_{1n} +\cdots+X_{kn} \bmod q
\condition[]{for all $n\geq 0%}
\end{dmathx*}.

By default a comma is added by the \condition
command, but that can be overridden by an optional
argument (in this example, empty).

EXAMPLE 17. In a similar but rarer construction,
the extra material on a line is some sort of
annotation rather than a condition —i.e., it is not
essential to the truth of the assertion.

Z, = X, mod ¢ (cf. [KFT9])

Algorithm for breaking equations The algo-
rithm used by the breqn package for finding the
optimal arrangement of an equation is necessarily
rather complex. A portion of it is shown in Fig-
ure 2.

Some examples

Now consider Equation Example A. It doesn’t quite
fit in The TEpXbook’s column width. Knuth suggests
$$\eqalign{\sigma(2°{34}-1,27{35},1)
&=-3+(2"{34}-1)/2"{35}
+2°{35}\!/(27{34}-1)\cr
&\qquad+7/27{35} (2" {34}-1)

-\sigma(2°{35},2°{34}-1,1) .\cr}$$
with the comment ‘The idea is to treat a long one-
line formula as a two-line formula, using \qquad on
the second line so that the second part of the formula
appears well to the right of the = sign on the first
line.’

With the amsmath package the treatment would
be nearly identical, but using the split environment
instead of \eqalign:
\begin{equation*}\begin{split}

\sigma ...
1)
\end{split}\end{equation*}
With the breqn package it’s all automatic: the
contents of the equation are written exactly the
same as they would be if no line break were
needed — no ampersands, no qquads, no break-here
commands:
\begin{dmathx*}
\sigma(2~{34}-1,2"{35},1)
=-3+(27{34}-1)/2°{35}+2~{35}\ /(27 {34}-1)
+7/27{35}(27{34}-1)
-\sigma(2~{35},2"{34}-1,1)
\end{dmath*}.
The first relation symbol is taken to indicate the
primary alignment point, and if the total width
is greater than column width, extra lines will be
aligned and indented according to the class of
symbol that immediately follows the break.

In a similar example (Knuth, 1986, Exercise
19.17), the point of the exercise is adding the
equation number. In plain TEX this requires
switching from \egalign to \eqalignno and taking
a bit of extra care with the horizontal spacing (the
\quad in the last line).
$$\eqalignno{x_nu_1+\cdots+x_{n+t-1}u_t

&=x_nu_1+(ax_n+c)u_2+\cdots\cr
&\qquad+\bigl (a"{t-1}x_n+c(a~{t-2}
+\cdots+1)\bigr)u_t\cr
&=(u_1+au_2+\cdots+a”{t-1}u_t)x_n
+h(u_1,\ldots,u_t). \quad&(47)\cr}$$
With the breqn package, the equation number is
automatically placed at the location decreed by the
documentclass (left, right, top, middle, bottom) and
the dmath environment contains only the body of the

188 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

L owl)+ Y wR,)<A 2
2. w(L) + wmax(R) < A DA
3. wL)+wR) <A I -
4, I+wR)<a X

Breaking equations

Figure 2: Equation-breaking algorithm: w width, L left-hand side, R
right-hand side, A available width, I indent

Equation Example A. This equation (Knuth, 1986, Chapter 19, p 195)
remains just a few characters too wide even after shrinking the spaces around

the + and — symbols.

o(234-1,2% 1) = —3+4(2%-1)/2%°42%5/(234-1)+7/2%°(2%* ~1)—0 (2%, 2% ~1,1)]
Knuth discussed how to break the equation using \eqalign, with the following

result:

o(2* —1,2%,1) = =34 (2% —1)/2% + 2%9/(2** — 1)
+7/235(23% — 1) — o(2%,2% — 1,1).

Equation Example B. A change in the representation of the fractions would
allow the entire equation of Equation Example A to fit on a single line:

234

(23 —1,2% 1) = -3+

7
+ —o(2%,2% - 1,1)

5% T

231 _

17 235(231 — 1)

Most mathematicians would probably find this alternative more readable, as

well.

equation. This has the potential to save authors a
lot of work if they ever have to switch a book from
one book design to another one that has different
equation numbering conventions.

\begin{dmath}
x_nu_1+\dotsb+x_{n+t-1}u_t
=x_nu_1+(ax_n+c)u_2+\dotsb
+\bigl(a~"{t-1}x_n
+c(a”{t-2}+\dotsb+1)\bigriu_t
=(u_1+au_2+\dotsb+a"{t-1}u_t)x_n
+h(u_1,\dotsc,u_t)
\end{dmath}.

An interesting feature of the next example
(Knuth, 1986, Exercise 19.9) is that it is the second
relation symbol, not the first one, to which the
remaining relation symbols are aligned.

T(n) < T(2M8") < ¢(3Men] — 2Menl)

< 3¢ 3len

= 3cn'e3.

$$\eqalign{T(n)\le T(2"{\1lceil\lg n\rceill})
&\le c(3"{\1lceill\lg n\rceil}
-2"{\1ceil\lg n\rceill})\cr
&<3c\cdot3"{\1g n}\cr
&=3c\,n"{\1g3}.\cr}$$

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 189

Michael Downes

With the amsmath package that would be written

\begin{equation*}
\begin{split}

T(n)\le T(2"{\1lceil\lg n\rceill})
&\le c(3"{\lceill\lg n\rceil}
-2"{\1ceil\lg n\rceil})\\

&<3c\cdot3~{\1g n}\\

%=3c\,n"{\1g3}.
\end{split}
\end{equationx}

Using the dmath* environment you would use a
\> command (note—not ampersand) to mark the
relation symbol as the preferred alignment point:

\begin{dmath*}
T(n)\le T(2"{\lceil\lg n\rceill})
\>\le c(3°{\1lceil\lg n\rceil}
-2"{\1ceil\lg n\rceill})
<3c\cdot3"{\1g n}
=3c\,n"{\1g3}
\end{dmathx}.

Groups of equations

For an unaligned group of equations (see Equation
Example C), Knuth recommended \displaylines:

$$\displaylines{),

\hfill x\equiv x;\hfill\1llap{(1)}\cr
\hfill\hbox{if}\quad x\equiv y\quad
\hbox{then}\quad y\equiv x;\hfill

\1lap{(2)F\cr
\hfill\hbox{if}\quad x\equiv y\quad
\hbox{and}\quad y\equiv z\quad
\hbox{then}\quad x\equiv z.\hfill
\1lap{(3)}\cr}$$

With the amsmath package, the appropriate environ-
ment is gather:

\begin{gather}
x\equiv x;\\
\text{if}\quad x\equiv y\quad
\text{then}\quad y\equiv x;\\
\text{if}\quad x\equiv y\quad
\text{and}\quad y\equiv z\quad
\text{then}\quad x\equiv z.
\end{gather}

With the breqn package, it would be written as

\begin{dgroup*} [aligned={F}]
\begin{dmath}

x\equiv x
\end{dmath};
\begin{dmath}

\text{if}\quad x\equiv y\quad

\text{then}\quad y\equiv x

\end{dmath};

\begin{dmath}

\text{if}\quad x\equiv y\quad
\text{and}\quad y\equiv z\quad
\text{then}\quad x\equiv z

\end{dmath}.
\end{dgroup*}

A simple example of aligned equations (Knuth,
1986, Chapter 19, p 190):

$$\eqalign{
X_1+\cdots+X_p&=m, \cr
Y_1+\cdots+Y_g&=n.\cr

183

In ETEX that would be written

\begin{eqgnarray*}
X_1+\cdots+X_p&=&m, \\
Y_1+\cdots+Y_q&=&n.

\end{eqnarray*}

With the breqgn package it would be written

\begin{dgroup*}

\begin{dmathx*}
X_1+\dotsb+X_p

\end{dmathx*},

\begin{dmath*}
Y_1+\dotsb+Y_q

\end{dmathx}.

\end{dgroup*}

]
=]

]
=]

Here is an equation group with a single common
number (Knuth, 1986, Exercise 19.10):

$$\eqalign{%
P(x)&=a_0+a_1lx+a_2x"2+\cdots+a_nx"n, \cr
P(-x)&=a_0-a_1x+a_2x"2-\cdots
+(-1)"na_nx"n.\cr}\eqno(30) $$

In BTEX this would need to be done with the array
environment.

\begin{equation}

\begin{array}{rcl}
P(x)&=&a_O+a_1x+a_2x"2+\cdots+a_nx"n,\\
P(-x)&=&a_0-a_lx+a_2x"2-\cdots

+(-1)"na_nx"n.

\end{array}

\end{equation}

But without further adjustments, spacing around

the equals signs would be egregiously large, as

in the eqnarray environment, and the interline

spacing would be too small, and so on (see Equation

Example D). Using the breqn package:

\begin{dgroup}

\begin{dmath*}
P(x)=a_0+a_1lx+a_2x"2+\dotsb+a_nx"n

\end{dmath*},

\begin{dmathx*}

190 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Breaking equations

Equation Example C. This is from (Knuth, 1986, Chapter 19, p 194).

T =@ (1)
if =y then y=u; (2)
if x=y and y=z then z=2z. (3)

Equation Example D. Aligned equations done with the ITEX array environ-
ment in order to get the equation number centered:

Pla) =
P(—x)

ao4—a11:+»a2x2—%~'~+»anx",
= ap— a1z +azx® — -+ (=1)"a,a".

(30)

Notice the too-large spacing around the equal signs and the too-small interline
spacing. These can be corrected, but only by rather cumbersome extra work.

P(-x)=a_0-a_1x+a_2x"2-\dotsb+(-1) "na_nx"n
\end{dmathx*}.
\end{dgroup}

Perhaps some of the lines are numbered and
others are not (The TpXbook Chapter 19 p 192):

(z+y)(@—y) =2 —ay+yz —y?

=a? —y*; (31)
(x+y)? =2 + 20y + 4. (32)
$$\eqalignnof{ (x+y) (x-y)&=x"2-xy+yx-y~2\cr
&=x"2-y"2;&(4) \cr
(x+y) "2&=x"2+2xy+y"2.&(5) \cr}$$
In BTEX this would typically be accomplished in
with the eqnarray environment and \nonumber.

With the amsmath package it would be done with
a combination of split and align:

\begin{align}
\begin{split}

(x+y) (x-y) &=x"2-xy+yx-y " 2\\

&=x"2-y"2;

\end{split}
\\’% align break

(x+y) "2&=x"2+2xy+y~2.
\end{align}
With the breqn package the logical distinction
between a long, split equation and equations that
are entirely separate is clearer. Among other things,
this makes it possible for documentclasses to specify
that the space between distinct equations should be
larger than the space between the lines of a single
multiline equation, and/or should stretch more if
necessary to fill up a page.

\begin{dgroup}
\begin{dmath}
(x+y) (x-y) =x"2-xy+yx-y 2
=x"2-y"2
\end{dmath};
\begin{dmath}
(x+y) "2 =x"2+2xy+y~2

\end{dmath}.
\end{dgroup}

From The TgXbook Chapter 19 p193. You can
also insert a line of text between two equations,
without losing the alignment. For example, consider
the two displays

r=y+=z
and
z? = y2 + 22,
which Knuth demonstrates as
$$\eqalignno{x&=y+z\cr

\noalign{\hbox{and}}
x"2%=y"2+z"2.\cr}$$

The amsmath package provides an \intertext
command for this situation:
\begin{align*}
x&=y+z\\
\intertext{and}
X" 2&=y"2+2"2.
\end{alignx*}
The dmath environment reimplements ‘intertext’ as
an environment. Among other things this means
that the text can contain a bit of verbatim, should
that ever be necessary.
\begin{dgroup}
\begin{dmath*}
X =y+z
\end{dmath*}
\begin{intertext}
and
\end{intertext}
\begin{dmath*}
xX"2 =y"2+z"2
\end{dmathx*}.
\end{dgroup}

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 191

Michael Downes

Examples from (Fomin, Gelfand, and Postnikov, 1997). Note: the authors had added space by hand
before all the end-of-display punctuation to get the amount of space they desired. With breqn conventions
this is handled automatically and the amount of space is easy to change.

\begin{dmath*}
\partial_w(fg)=w(f)\partial_w g

aw(fg) = w(f)awg + Z()\z -)‘j)awti]g) +\Sm(\IMbda_i_\IMbda_j)\partial_{Wt_{ij }}g
\end{dmathx*},
\begin{dmath}
\partial_w(fg)=w(f)\partial_w g

Ow(fg) = w(f)Owyg + Z(/\i —X)uwt,, g, (2.5) +\sum(\lambda_i-\lambda_j)\partial {wt_{ij}}g
\end{dmath},

\begin{dgroup*}[aligned={F}]
\begin{dmath*}
\partial_i \partial_j = \partial_j \partial_i
\condition[]{for $\abs{i-j}>1$}
\end{dmath*},
o \begin{dmath*}
0:0; = 0;0; for |i —j| > 1, \partial_i\partial_{i+1}\partial_i
0;0i+10; = 03410;0i41 , =\partial_{i+1}\partial_i\partial_{i+1}
8?22 0. \end{dmath*},
\begin{dmath*}
\partial_i"2 = 0
\end{dmathx*}.
\end{dgroup*}

\begin{dgroup*}
\begin{dmath}
\partial_i \partial_j = \partial_j \partial_i
\condition[]{for $\abs{i-j}>1$}
\end{dmath},
. \begin{dmath}
9,0; = 9;0; for |i —j[> 1, (2:3) \paftial_i\partial_{i+1}\partia1_i
0i0i410; = 9i410:0i41 , (2.4) =\partial_{i+1}\partial_i\partial_{i+1}
07 =0. (2.5) \end{dmath},
\begin{dmath}
\partial_i"2 = 0
\end{dmath}.
\end{dgroup*}

192 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Breaking equations

Examples from (Fomin, Gelfand, and Postnikov, 1997) (continued).
\begin{dgroup}
\begin{dmathx*}
\partial_i \partial_j = \partial_j \partial_i|j
\condition[]{for $\abs{i-j}>1$3}
\end{dmathx*},
. \begin{dmath*}
0i0; = 0;0; for|i —j| > 1, \partial_i\partial_{i+1}\partial_i
0;0i410; = 0i410;0;41 , (2.3) =\partial_{i+1}\partial_i\partial_{i+1}
2 =0. \end{dmathx*},
\begin{dmath*}
\partial_i"2 = 0
\end{dmathx}.
\end{dgroup}

\begin{dmath*} [qed={T}]
e_j"k(e_{i+1}"k-e_{i+1}"{k+1})
, , , , = —e_i“k(e_{j+1}"{k+1}-e_{j+1}°k)
3?(6§+1 _'eﬁi?) ::'_ef(@?i} —-e§+1) .
: \sum_{1\geq 1}
::j{:(eﬁ:£46?+l——e?i%e§+17l). O (e_{i+1-1}"{k+1} e_{j+1}"k
1>1 - e_{j+1}"{k+1} e_{i+1-1}"k)
\end{dmathx*}.

\begin{dgroup}[inline={T}]
\begin{dmathx*}
\psi : f\mapsto F
\end{dmath*},

. _ \begin{dmath*}

vifm By f=FED). 54) £=F (\mathcal{X}) (1)

\end{dmathx*}.
\end{dgroup}

\begin{dgroup*}
\begin{dmathx*}
H_17°3 = x_1+x_2+x_3
\end{dmathx*},
\begin{dmath*}
H 272 = x_172+x_1 x_2+x_2"2-q_1-q_2
3 \end{dmathx*},
Hy = a1 + 2+ 23, \begin{intertext}
Hi =2+ s+ 25 —q1 — g2 and
and \end{intertext}
Ifé:: m?——Zmlql——mgql. \begin{dmathx*}
H3"1=x_1"3 -2x_1q.1-x_2q_1
\end{dmathx*}.
\end{dgroup*}

The reduced minimal Grobner basis for Ig consists
of

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 193

Michael Downes

Additional features under consideration

e With the package option refnumbers, all equa-
tions remain unnumbered except those that are
actually referred to (this idea coming from En-
rico Bertolazzi’s easyeqn package).

e In an equation group, a vertical bracket reach-
ing from the equation number indicates the
lines to which the number applies.

e More explicit support for the Russian typeset-
ting conventions for equation breaks, as de-
scribed by Grinchuk (Grinchuk, 1996). The
flexisym provides a natural entry point.

Concluding remarks

I think it may be clear from the above discussion
that the subject of typesetting equations is far
too broad and complex to be covered in adequate
detail in the space available here. I have perforce
limited myself to sketching out the goals of the
breqn package, the N TEX2e user syntax, and some
of the more significant constraints on the problems
it attempts to solve. Further details are available
in the documentation that accompanies the package
(which, unlike this article, will continue to evolve
as details change, as they surely will given that the
package is barely into alpha stage as I write).

References

Borde, Arvind. Mathematical TEX by Example.
Academic Press, New York, 1995.

Downes, Michael J. AmS-ETgX Version 1.2 User’s
Guide. American Mathematical Society, Provi-
dence, R.I., 1995.

Duff, M. J., R. Minasian, and E. Witten. “Evidence
for heterotic/heterotic duality”. zaz.lanl.gov e-
Print archive (hep-th/9601036), 1996.

Fomin, Sergey, S. Gelfand, and A. Postnikov.
“Quantum Schubert polynomials”. J. Amer.
Math. Soc. 10(3), 565-596, 1997.

Grinchuk, Mikhail Ivanovich. “TEX and Russian
traditions of typesetting”. TUGboat 17, 385388,
1996.

Knuth, Donald E. The TgXbook. Addison Wesley,
Reading, Mass., 1986.

Kopka, Helmut and P. W. Daly. A guide to ITEX 2¢.
Addison-Wesley, Wokingham, England, 1995.

194 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

The BTEX3 Project

Frank Mittelbach and Chris Rowley

ITEX3 project
Frank.Mittelbach@eds.com, C.A.Rowley@open.ac.uk

Abstract

This article describes the motivation, achievements and future of the KITEX3
Project™, which was established to produce a new version of I/ TEX, the widely-
used and highly-acclaimed document preparation system. It also describes how

you can help us to achieve our aims.

Note for Archive maintainers, Authors, Publishers and Distributors:
The project team request that, whenever possible, you include this article in any

of the following:
e Books about TEX and KTEX.

e Instructions for authors on using BTEX.
e The printed documentation of CD-ROM collections that contain IXTEX.
e On-line collections that include a significant proportion of documents en-

coded in IXTEX.

Outline

The purposes of the BTEX3 system can be summa-
rized thus: it will greatly increase the range of docu-
ments which can be processed; and it will provide a
flexible interface for typographic designers to easily
specify the formatting of a class of documents.

The BTEX3 Project Team is a small group of
volunteers whose aim is to produce this major new
document processing system based on the principles
pioneered by Leslie Lamport in the current KTEX.

The major visible work of the team before
1997 was the development of the current standard
version of IMTEX. This was first released in 1994
and has since then been actively mainatined and
enhanced by extensions to that core system. They
will continue to develop and maintain this system,
releasing updated versions every six months and
recording these activities in the BTEX bugs database
(see below).

Although IATEX may be distributed freely, the
production and maintenance of the system does
require expenditure of reasonably large sums of
money. The KTEX3 Project Fund has therefore been
set up to channel money into this work. We know
that some users are aware of this fund as they have
already contributed to it—many thanks to all of
them! If you want to know more about how you

* In addition to the authors, current members of The
IATEX3 Project Team are Johannes Braams (NL), David
Carlisle (UK), Michael Downes (USA), Alan Jeffrey (UK)
and Rainer Schépf (DE).

can help the project, see Page 197—and thanks in
advance for your generosity in the future.

Background

With TgX, Knuth designed a formatting system
that is able to produce a large range of documents
typeset to extremely high quality standards. For
various reasons (e.g., quality, portability, stability
and availability) TEX spread very rapidly and can
nowadays be best described as a world-wide de facto
standard for high quality typesetting. Its use is
particularly common in specialized areas, such as
technical documents of various kinds, and for multi-
lingual requirements.

The TEX system is fully programmable. This
allows the development of high-level user interfaces
whose input is processed by TEX’s interpreter to
produce low-level typesetting instructions; these are
input to TEX’s typesetting engine which outputs the
format of each page in a device-independent page-
description language. The ETEX system is such an
interface; it was designed to support the needs of
long documents such as textbooks and manuals. It
separates content and form as much as possible by
providing the user with a generic (i.e., logical rather
than visual) mark-up interface; this is combined
with style sheets which specify the formatting.

Recent years have shown that the concepts and
approach of KATEX are now widely accepted. Indeed,
IATEX has become the standard method of communi-
cating and publishing documents in many academic

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 195

Frank Mittelbach and Chris Rowley

disciplines. This has led to many publishers ac-
cepting I¥TEX source for articles and books; and
the American Mathematical Society now provides
a BTEX package making the features of ApS-TEX
available to all users of ITEX. Its use has also
spread into many other commercial and industrial
environments, where the technical qualities of TEX
together with the concepts of IXTEX are considered
a powerful combination of great importance to such
areas as corporate documentation and publishing.
This has also extended to on-line publishing using,
for example, PDF output incorporating hypertext
and other active areas.

With the spreading use of SGML-compliant
systems (e.g., Web-based publishing using HTML
or XML) TEX again is a common choice as the
formatting engine for high quality typeset output:
a widely used such system is The Publisher from
ArborText, whilst a more recent development is the
object-oriented document editor Grif. The latter
is used for document processing in a wide range of
industrial applications; it has also been adopted by
the Euromath consortium as the basis of their math-
ematician’s workbench, one of the most advanced
of the emerging project-oriented user environments.
Typeset output from SGML-coded documents in
these systems is obtained by translation into KTEX,
which will therefore soon also be a natural choice for
the output of DSSSL-compliant systems.

Because a typical SGML Document Type Def-
inition (DTD) uses concepts similar to those of
IMTEX, the formatting is often implemented by sim-
ply mapping document elements to N TEX constructs
rather than directly to ‘raw TEX’. This enables
the sophisticated analytical techniques built into the
IMTEX software to be exploited; and it avoids the
need to program in TEX.

Motivation

This increase in the range of applications of KTEX
has highlighted certain limitations of the current
system, both for authors of documents and for de-
signers of formatting styles.

In addition to the need to extend the variety
of classes of document which can be processed by
INTEX, substantial enhancements are necessary in,
at least, the following areas:

e the command syntax (attributes, short refer-
ences, etc);

e the layout specification interface (style design);

e the level of robustness (error recovery, omitted
tags);

e the extendibility (package interface);

e the layout specification of tabular material;

e the specification and inclusion of graphical ma-
terial;

e the positioning of floating material, and other
aspects of page layout;

e the requirements of hypertext systems.

Further analysis of these deficiencies has shown
that some of the problems are to be found in IXTEX’s
internal concepts and design. This project to pro-
duce a new version therefore involves thorough re-
search into the challenges posed by new applications
and by the use of KTEX as a formatter for a wide
range of documents, e.g., SGML documents; on-line
PDF documents with hypertext links.

This will result in a major re-implementation of
large parts of the system. Some of the results of such
rethinking of the fundamentals are already available
in Standard IATEX, notably in the following areas:

e Font declaration and selection;

e Font and glyph handling within mathematical
formulas;

e Handling multiple font glyph encodings within
a document;

e Allowing multiple input character encodings
within a document;

e A uniform interface for graphics inclusion;
e Support for coloured text;

e Building and interfacing new classes and exten-
sion packages.

Description

The strengths of the present version of INTEX are as
follows:

e excellent standard of typesetting for text, tech-
nical formulas
and tabular material;

e separation of generic mark-up from visual for-
matting;

e case of use for authors;

e portability of documents over a wide range of
platforms;

e adaptability to many languages;
e widespread and free availability;

e reliable support and maintenance by the INTEX3
project team.

These will be preserved and in many cases greatly
enhanced by the new version which is being devel-
oped to fulfill the following requirements.

e It will provide a syntax that allows highly au-
tomated translation from popular SGML DTDs

196 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

into BTEX document classes (these will be pro-
vided as standard with the new version).

The syntax of the new IATEX user-interface
will, for example, support the SGML concepts
of ‘entity’, ‘attribute’ and ‘short reference’ in
such a way that these can be directly linked to
the corresponding SGML features.

e It will support hypertext links and other fea-
tures required for on-line structured documents
using, for example, HTML and XML.

e It will provide a straightforward style-designer
interface to support both the specification of a
wide variety of typographic requirements and
the linking of entities in the generic mark-
up of a document to the desired formatting.
These two parts of the design process will be
clearly separated so that it is possible to specify
different layouts for the same DTD.

The language and syntax of this interface will
be as natural as possible for a typographic de-
signer. As a result, this language could easily be
interfaced to a visually-oriented, menu-driven
specification system.

This interface will also support DSSSL speci-
fications and style-sheet concepts such as those
used with HTML and XML.

e It will provide an enhanced user-interface that
allows expression of the typesetting require-
ments from a large range of subject areas. Some
examples are listed here.

— The requirements of technical documenta-
tion (e.g., offset layout, change bars, etc).

— The requirements of academic publishing
in the humanities
(critical text editions, etc).

— The requirements of structural formulas in
chemistry.

— Advanced use of the mathematical-type-
setting features of TEX.

— The integration of graphical features, such
as shading, within text.

— the integration of hypertext and other
links in on-line documents using systems
such as HTML, XML and PDF.

Special care will be taken to ensure that this
interface is extensible: this will be achieved by
use of modular designs.

e It will provide a more robust author-interface.
For example, artificial restrictions on the nest-
ing of commands will be removed. Error han-
dling will be improved by adding a more effec-
tive, interactive help system.

The BTEX3 Project

e It will provide access to arbitrary fonts from any
family (such as the PostScript and TrueType
fonts) including a wide range of fonts for multi-
lingual documents and the specialist glyphs
required by documents in various technical and
academic areas.

e The new interfaces will be documented in de-
tail and the system will provide extensive cata-
logues of examples, carefully designed to make
the learning time for new users (both designers
and authors) as short as possible.

e The code itself will be thoroughly documented
and it will be designed on modular principles.
Thus the system will be easy to maintain and
to enhance.

The resulting new KETEX will, like the present
version, be usable with any standard TEX system (or

whatever replaces it) and so will be freely available
on a wide range of platforms.

KETEX documentation

A complete description of Standard KTEX can be
found in:

ETEX: A Document Preparation System Leslie
Lamport, Addison-Wesley, 2nd ed, 1994.

The FTEX Companion Goossens, Mittelbach and
Samarin, Addison-Wesley, 1994.

A recent addition to the publications closely associ-
ated with the project is:

The ITEX Graphics Companion Goossens, Mittel-
bach and Rahtz, Addison-Wesley, 1997.

This IBTEX distribution comes with documentation

on several aspects of of the system. The newer

features of the system are described in the following

documents:

ETEX 2: for authors describes the new features of
ETEX documents, in the file usrguide. tex;

LETEX 22 for class and package writers describes
how to produce BTEX classes and packages, in
the file clsguide.tex;

KIEX 2: font selection describes the new features
of IXTEX fonts for class and package writers, in
the file fntguide.tex.

For further contacts and sources of information on
TEX and KTEX, see the addresses on Page 198.

The BTEX3 Project Fund

Although IXTEX may be distributed freely, the pro-
duction and maintenance of the system does require
expenditure of reasonably large sums of money.
There are many necessities that need substantial

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 197

Frank Mittelbach and Chris Rowley

financing: examples are new or enhanced computing
equipment and travel to team meetings (the volun-
teers come from many different countries, so getting
together occasionally is a non-trivial exercise).

This is why we are appealing to you for con-
tributions to the fund. Any sum will be much
appreciated; the amount need not be large as small
contributions add up to very useful amounts. Con-
tributions of suitable equipment and software will
also be of great value. This appeal is both to you
as an individual author and to you as a member of
a group or as an employee: please encourage your
department or your employer to contribute towards
sustaining our work.

We should like to see funded projects that make
considerable use of WTEX (e.g., conferences and
research teams who use it to publish their work,
and electronic research archives using it) include
contributions to this fund in their budgets.

We are also asking commercial organisations to
assess the benefits they gain from using, or distribut-
ing, a well-supported KTEX and to make appropriate
contributions to the fund in order that we can con-
tinue to maintain and improve the product. If you
work for, or do business with, such an organisation,
please bring to the attention of the relevant people
the existence and needs of the project.

In particular, we ask that all the large num-
ber of organisations and businesses that distribute
ITEX, within other software or as part of a CD-
ROM collection, should consider pricing all products
containing IWTEX at a level that enables them to
make regular donations to the fund from the profit
on these items. We also ask all authors and publish-
ers of books about ITEX to consider donating part
of the royalties to the fund.

Contributions should be sent to one of the
following addresses:

TEX Users Group, P.O. Box 2311

Portland, OR 97208-2311 USA

Fax: 4+1 503 223 3960

Email: tug@tug.org

UK TUG, 1 Eymore Close, Selly Oak
Birmingham B29 4L.B UK

Fax: +44 121 476 2159

Email: uktug-enquiries@tex.ac.uk

Cheques should be payable to the user group
(TUG or UKTUG) and be clearly marked as contri-
butions to the KTEX3 fund. Many thanks to all of
you who have contributed in the past and thanks in
advance for your generosity in the future.

Contacts and information

In addition to the sources mentioned above, BTEX
has its home page on the World Wide Web at:

http://www.tex.ac.uk/CTAN/latex/
This page describes M TEX and the KTEX3 project,
and contains pointers to other IATEX resources, such
as the user guides, the TEX Frequently Asked Ques-
tions, and the INTEX bugs database.

More general information, including contacts

for local User Groups, can be accessed via:

http://www.tug.org/

The electronic home of anything TEX-related is
the Comprehensive TEX Archive Network (CTAN).
This is a network of cooperating ftp sites, with over
two gigabytes of TEX material:

ftp://ftp.tex.ac.uk/tex-archive/
ftp://ftp.dante.de/tex-archive/

For more information, see the IATEX home page.

198 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Language Information in Structured Documents:

A Model for Mark-up and Rendering

Frank Mittelbach and Chris Rowley

ITEX3 project
Frank.Mittelbach@eds.com, C.A.RowleyQ@open.ac.uk

Abstract

In this paper™ we discuss the structure and processing of multi-lingual documents,
both at a general level and in relation to a proposed extension to the (no longer so
new) standard WTEX. Both in general and in the particular case of this proposal,
our work would be impossible without the enormous support, both practical and
moral, we get from our fellow members of the IXTEX3 project team! (who maintain
and enhance IWTEX) and from people all over the world who contribute to the
development of IMTEX with their suggestions and comments.

Introduction

The paper starts by examining the language struc-
ture of documents and from this a language tag
model for ITEX is developed. It then discusses
the relationship between language and document
formatting and the types of actions needed at a
change of language. This will lead to a model
that supports the specification of these actions and
of their association with the tag structure in the
abstract document.

The model is then extended to provide the
necessary support for regions that have their own
visual context or that receive content from other
parts of the document, thus breaking the basic tree
structure of an abstract document —this is in the
section entitled “Special Regions”.

Finally a high level summary of the required
interfaces is given. A full formal specification, to
be used for a prototype implementation in ITEX, is
currently under development—a first public test im-
plementation is expected to exist for the 1997/12/01
release of IATEX.

If you are interested in the issues raised in this
paper or in other aspects of our work to enhance
IMTEX, please join the project’s electronic discussion
list. To do this, please send a message to:

listserv@relay.urz.uni-heidelberg.de
Containing this line:

subscribe LATEX-L your name

* This paper was originally given at the Multilingual
Information Processing symposium, March 1997, Tsukuba,
Japan.

T Current IATEX3 project team members are Johannes
Braams (NL), David Carlisle (UK), Michael Downes (USA),
Alan Jeffrey (UK) and Rainer Schopf (DE).

Language Structure of Documents

Structured documents can be understood as being
explicitly or implicitly labeled with “language tags”
denoting that a portion of the document contains
data written in a certain “language”.

These tags have the following properties:

e They impose on the document a hierarchical
tree structure that may not be compatible with
that document’s other logical structure, e.g.,
there might be a language change in the middle
of a logical element such as a list item.!

e At any one point in the document the “current
language” can be determined.

The term “language” in this context is some-
what vague and might need further qualification;
but for the purpose of the following discussion it is
sufficient to define it as a ‘label’ whose value affects
certain aspects of formatting.

Hierarchy of language tags

The structure created by attaching such language
tags to the text can be considered to be of varying
complexity. The simplest case would be to regard
this as a flat structure: for each point in the doc-
ument only a “current” language is defined, disre-
garding the fact that certain language segments can
be considered to be embedded within others. This
model of language within documents is, for example,
employed within the current Babel system where, by
default, all language changes are in this sense global.

1 However, for practical purposes it is normally possible
and acceptable to artificially force the structure imposed by
the language tags into the logical hierarchy imposed by other
tags.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 199

Frank Mittelbach and Chris Rowley

In a more complex model each area has a “cur-
rent” language but may be embedded within a nest
of larger areas, each in its own language. In such
a model, a change of language has a different qual-
ity, and therefore may invoke different formatting
changes, depending on the level in the hierarchy at
which it occurs.

Our investigations lead us to conclude that, to
properly render a document, one needs a combina-
tion of both models:

e the concept of a base language for very large
portions of a text (for most documents this will
in fact be only one such language for the full
text): this has a flat structure, there is only
one base language at any point in the text;

e the concept of imbedded language segments:
these are nestable (to any number of levels)
and are used for relatively small-scale insertions
within a base language, such as quotations or
names.

Language tag (visual) structure

In addition to the nesting structure of language tags,
there is a more visual component that influences
rendering of a document: the paragraph structure.
To properly model this typographical treatment it is
necessary to classify the language tags according to
whether a language segment contains only complete
paragraphs or is part of the running text of a single
paragraph. A begin/end pair of tags is called a
“block-level” tag if its body consists of complete
paragraphs and a “paragraph-level” tag otherwise.
As later examples will show, the typographical treat-
ment for these two types is often different.

A Tag Model for BTEX

To support the above model, including both nesting
of language tags and the differentiation between
block- and paragraph-level tags, the following tag
structure for a system like KTEX is proposed:

e A document language tag (implicit). This tag
can be used to attach language-related typo-
graphical actions that should not change even
if the document contains more than one base
language.

e Base-language tags: used only at top-level, no
nesting. These tags denote the major lan-
guage(s) within a document. In the case of
essentially mono-lingual documents the base
language would be the same as the document
language.

e Language-block tags: contain complete para-
graphs, nestable. These denote larger imbed-

dings either directly within the base language
or further down in the nesting hierarchy.

e Language-fragment tags: only within para-
graphs, nestable. These denote smaller imbed-
dings but are otherwise identical to language
block tags.

Note that since, at least in the logical structure
of a document, paragraphs can occur within para-
graphs, block tags can be nested within fragment
tags.

Document interfaces

As HKTEX2: does not have built in support for
named attributes, its support for language changes
is best implemented by introducing additional lan-
guage tags (commands and environments). A con-
crete syntax for these tags could include the follow-
ing:

e A preamble declaration for the document lan-
guage (this is also the base language in mono-
lingual documents) with the language-label as
argument.

e A base-language change command with the
language-label as argument. This command
is declarative to highlight the flat structure of
base languages.

e A language-environment with the language-
label as argument and text as body. Such an
environment starts a new paragraph so as to
enforce the block-level nature of the tag.

e A language-command with the language-label
and text both as arguments. In contrast to the
environment, this command applies language-
related actions to its second argument, which
cannot directly contain full paragraphs.

For KTEX3 we shall probably normalize this
interface by supporting a language attribute on ap-
propriate tags. This would allow, for example, a
trivial translation of the language features currently
being proposed for HTML into KTEX for rendering
purposes. However, even in that case generic tags
for changing language are necessary as typical docu-
ments contain language changes that do not coincide
with the tag boundaries of other logical tags.?

Language-dependent Processing

Setting up the tags tells us only how to encode a
multi-lingual document. We now need to specify
how these tags affect the processing of the doc-
ument; how do we attach actions to them? Be-
fore answering this question we shall first discuss a

2 Tt is proposed that HTML 3.2 supports a tag for
this purpose.

200 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Language Information in Structured Documents: A Model for Mark-up and Rendering

number of representative examples of the effects of
language on this processing, classified according to
the categories input, transformation and formatting.

The actions shown below are all commonly
related to a change of language within a docu-
ment. Nevertheless, it is not the case that each of
them should necessarily be implemented by attach-
ing them firmly to language changes. For some it
might be more appropriate to freeze them for the
whole document or to attach them to areas within
the document that do not coincide with language
boundaries.

Input

Input encodings Entering text in a certain lan-
guage often requires special input methods (this is
especially true for languages with complex scripts)
but even in cases where direct keyboard entry is
possible it might be necessary to add information
about the keyboard codepage that is to be used, so
as to interpret the source characters correctly. At
present IATEX supports variable interpretation of the
upper half of the 8-bit plane, thus allowing source
text to be 8-bit encoded in one of the many keyboard
encodings used world wide.

Short-refs With the development of language pack-
ages and the subsequent development of the Babel
system, it became common practice to extend the
mark-up language of ITEX using so called “short-
refs” as a compact method for inputting certain
commands. Short-refs are character sequences that
do not start with TEX’s escape character, i.e., usu-
ally ‘\’, but nevertheless act like commands. That
is, they do not represent the equivalent glyph se-
quence but have either additional effects (e.g., the
punctuation marks in French typography, which
produce additional space) or even denote completely
different actions (e.g., "" for a break point without
a hyphen).

In addition to the above short-refs, some TEX
fonts implement short-refs by using (or misusing)
the ligature mechanism to implement arbitrary in-
put syntax, e.g., ‘¢ generating “ or -—- generating
an em-dash.

Short-refs can be used for different purposes:

e providing a compact input notation for com-
monly used textual commands such as charac-
ters with diacritical marks;

e providing a compact and readable input no-
tation for special applications, e.g., ==> for
\Longrightarrow;

e providing typographical features not otherwise
supported (e.g., extra space in front of punctu-
ation characters).

The first two items are related to input syntax and
not directly linked to the language of the current
text although historically they have been provided
by language packages, e.g., "a as a short-ref for
\"{a} was implemented by german.sty and within
Babel its meaning gets deactivated within regions
marked up as belonging to other languages.

The third item is directly related to language
since short-refs of this type are used to implement a
typographic style that is characteristic of a language
in such a way that the user is not forced to use
explicit mark-up in the document.

Transformations

Here, ‘transformations’ include only manipulations
of the source text that are independent of formatting
information (i.e., those that act entirely on the
logical document). Usually such transformations
enrich the document content in one way or the other
by using knowledge stored outside the document
source.

Generated text This is text that is not directly
encoded in the source document but is produced
from tags therein. Generated text can be classified
into two categories: content-related and structure-
related. Here content-related text is that generated
by tags that can appear anywhere in the source
text (a typical BTEX example would be the \today
command) while structure-related text refers to text
that is associated with a high level logical structure
(e.g., the heading produced for a bibliography or the
fixed text used in a figure caption).

While it is imaginable to keep structure-related
text in one language even though the surrounding
language changes, content-related text most likely
will have to change at every language tag.

Hyphenation The finding and marking of possible
hyphenation points is, perhaps, the most obvious
language-related transformation. Indeed, it is often
considered to be the defining characteristic of a
‘language’.

When using TEX this relationship is unfortu-
nately obscured by some technical details of the
implementation of hyphenation. One of these is
that TEX’s hyphenation does not depend only on
the ‘language’ but also on the current font encoding
(which can differ within a single language). Another
is TEX’s restriction that one can properly hyphenate
a whole multi-lingual paragraph only if the font en-
codings used therein share a single lower-case table

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 201

Frank Mittelbach and Chris Rowley

(and this is likely not to be the case if more than
one script is present).

Upper- and lower-case transformations The
mapping between upper- and lower-case characters
(for those writing systems that make such a distinc-
tion) is language-dependent (and not just script-
dependent): for example, in Turkish 1—I and i1
in contrast to the usual mapping i—I used in most
other languages. There can also be a one-to-many
mapping as for the German #§ that maps to SS.

Formatting

Although each of the examples listed here has been
documented as characteristic of the typography as-
sociated with a particular language, they are all also
aspects of the design over which a document de-
signer may wish to have control that is independent
of the language of the text.

Direction The direction of the text and, more
generally, the writing system used are very strongly
associated with the language in use.

Micro-rendering This covers the details of ren-
dering at the level of individual glyphs and the
relationships, often complex, between the characters
which form the textual part of the logical document
and the glyphs used to render this text, especially
when aiming for the highest levels of typographic
quality. These details often depend on what glyphs
are provided by the available fonts. Also, when using
TEX, this level of formatting is typically controlled
entirely by the choice of font, whereas it should be
possible to specify such details independent of the
font since they also depend on the language in use.
Some examples:

e The precise positioning of diacritics depends on
the language; e.g., a language such as German
with many umlauts puts them closer to the top
of the basic letter than is typically done with
the diaeresis in English or French typography.

e The use of aesthetic ligatures varies from lan-
guage to language, e.g., the fil-ligature is tra-
ditionally not used in Portuguese and Turkish
typography (implementing this is difficult in
TEX since these transformations are normally
controlled entirely by the font and there is no
simple way to ‘turn them off”).

Macro-rendering More global aspects of typogra-
phy can also be language-dependent, for example:

e the formatting of in-line quotes (i.e., what ‘quo-
tation marks’ to use);

e rendering of enumerations;

e aspects of page layout (e.g., float placement).

As with most language-related actions they
usually have a wide range of formatting possibilities
and can be considered to depend, at least partially,
on house style or other factors.

Attaching Actions to Change of Language

Having described some typical changes that need to
be made at a language tag, we now look at how to tie
particular actions to a particular tag, noting that it
is not sensible, for example, to change every aspect
of the formatting if only an in-line fragment of a few
words is to be in a different language.

Attaching actions to tags

First we note the following facts.

e The type of actions that are required at lan-
guage tags can be modeled by setting the values
of a collection of parameters to those appropri-
ate for the new language.

e Some actions may not make sense at certain
levels of the hierarchies. For example, while one
wants to use the correct hyphenation algorithm
at any level of the hierarchies changing of micro-
rendering, such as the positioning of diacritics,
might be applied only to language changes for
whole paragraphs but not for fragments.

e However, for most actions it is not possible to
specify one place in the hierarchies that will
produce the correct location of that action for
all documents. The correct place might, for
example, depend on document type or on a
particular house style.

There are two (at least) possibilities for spec-
ifying, for a particular document, where in the
tag hierarchy an action should be ‘attached’ (see
Figure 1). These are by the nesting-level in the
hierarchy of language tags or by the visual type of
the language tags as described in the section entitled
“Language tag (visual) structure”. These visual tag-
types implicitly define a partial hierarchy, from the
top: document, base, block, fragment.

In both cases an action is defined to be executed
down to a prescribed level in the hierarchy. As noted
above, different actions might be executed down to
different levels so there needs to be a mechanism
to specify this level for each action. To limit the
complexity of the model we think it is advisable
to assume that this stopping level depends on the
action but not on the language. It was pointed out
in Tsukuba that this is probably an oversimplifica-
tion, i.e., that there exist cases where it would be
better to model the formatting of language-related

202 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Language Information in Structured Documents: A Model for Mark-up and Rendering

base language level base language level
frag-
first nesting level ment paragraph level
. levels
second nesting level eves _ nested paragraph level
frag-
ment
) levels
" nesting level

Figure 1: The two hierarchies

document level
base language level

first nesting level

second nesting level

n'" nesting level

block level

fragment level

nested fragment level

Figure 2: Tag hierarchy diagram (THD)

items by attaching of language/action pairs to levels.
However, we think that these cases are sufficiently
rare that they can be handled by the action itself.?

It is also possible to combine these two hierar-
chies and allow the attachment of actions to tags via
either hierarchy (see Figure 2). In this case, for each
action it is necessary to define:

e on which of the two hierarchies the stopping of
the action depends;

e down to what level the action is carried out in
that hierarchy.

Data structures for this model

For this model of language tags/actions, the system
needs to specify the contents of the following three
data structures.

Tag hierarchy diagram (THD) While combin-
ing the two hierarchies we have simplified their
structure (compare figures 1 and 2), i.e., multiple
nestings of paragraphs are collapsed into a single
node. At the same time a new root node (document-
level) was added. This node serves as an anchor
point for typographic requirements that should stay

3 An action that depends both on language and level could
be specified in the model by executing it on all levels with an
additional conditional within the action body testing for the
current language.

fixed throughout the document even if the base
language changes.

The required number of significant nestings in
the hierarchy of nesting-levels is an open question
but probably n = 3 is sufficient to specify typical
formatting requirements.

The two end points of the hierarchies (n'"
nesting-level and nested-fragment-level) are com-
bined as they essentially mean to carry out attached
actions in all cases, thus it does not matter on which
hierarchy they are specified.

Another interesting point is that the two base-
language-levels,one from each hierarchy, are com-
bined.*

Nevertheless, it should be noted that the “level”
of a tag within the THD is logically described by a
pair of nodes (one on each hierarchy) even though
in some cases these nodes collapse into one.

Language actions table (LAT) This two-
dimensional table (indexed by parameter-group and
language-label) stores the effect of each action (i.e.,
the value for a parameter-group) for each language
(possibly only a default value if no value has been
explicitly defined for that language). Each entry is
an expression that returns a set of values appropri-
ate to the parameter-group.

4 From this it follows that in this model a base language
change is only allowed between paragraphs.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 203

Frank Mittelbach and Chris Rowley

It may be possible® to also allow special actions
to be specified, such as:

e leave unchanged;

e use some default (e.g. the value for the docu-
ment language).

Parameter assignment map (PAM) This one-
dimensional table maps each each action (modeled
by a parameter-group) to a single node in the THD.

Such an assignment means that this parameter
group changes its value (using the method specified
in the LAT) at all levels down to (and including) the
node to which it is mapped.

Special Regions

The scheme we have outlined so far will work well
for the main text of many documents but it needs
to be supplemented in order to handle formatting of
the following material (called special regions):

e regions that contain text which has moved from
other parts of the document, e.g., table of con-
tents, running heads;

e regions of text that are first formatted and then
the whole block is moved, e.g., (from KTEX)
floating tables, footnotes;

e regions that can contain elements breaking the
type hierarchy, e.g., paragraphs in table-cells.

There are several problems that arise when
“moving things around” in a document: one of
these, which arises only when logical (unformatted)
text is being moved, is the need to move language
information with the moving text. This is needed
even if the text being moved is in the document
language since this may not be the current language
at the point to which it moves. Thus the data-type
for ‘logical stuff being moved’ must be the text and
a language-label (describing its language).

Formatting special regions

A problem that affects the formatting of all special
regions is how to specify the language to be used
and the effective level of language tags contained
within the special region. It is not possible to
simply extend the THD and PAM from the main
part of the document since these assume that the
nesting of the language tags in the logical document
is faithfully represented in the formatted document.
This is very clearly not the case with regions such as
floats or end-notes which appear visually in totally
unrelated parts of the document. It is also not
true for paragraphs within tables since these can

5 Such details can have large effects on the efficiency of
the implementation, thus we are being cautious here.

be, logically, paragraphs within paragraphs, and our
classification of language tags into types does not
allow for this.

One possible solution to this problem is to allow
the specification of a local PAM for each type of
special region. This requires:

e a method to set the starting-language for the
region;

e the specification of a local PAM for the region.

The disadvantage of this solution is its inherent
complexity: for each special region the designer of
a document class needs to specify a full mapping
of all language-related actions to the tag hierarchy
(the local PAM). Since the numbers of both the
special regions and the language-related actions are
potentially unlimited, this would result in either a
very complex set-up mechanism or the use of general
defaults (e.g., the local PAM nearly always inherits
from the global document PAM) in which case the
solution is unnecessarily complicated.

A practical solution

A simpler solution is to use the PAM from the main
document but to allow the specification, for each
type of special region, of how the information from
the PAM is used. This would be done by specifying
the following:

e a method to set the starting-language for the
region;

o the actual initialisation-level (init-level) for the
change to this starting language;

o the effective level (inner-level), as far as imbed-
ded tags are concerned, of this change to the
starting-language for the region.

We now give an expanded description of these items.

Starting language In the case of special regions
that receive unformatted text the starting-language
will directly affect only the text generated by the
region’s tags themselves as each bit of received text
will carry its own language label (see the section
entitled “Special Regions”). In the case of regions
that move after being formatted it defines the de-
fault language used when formatting this region.

Initialization At the start of the region, actions
are executed as if the region started with a tag
whose level (in the THD, i.e., a pair of nodes) is
init-level using this starting-language. This results
in setting parameters to values suitable for that
starting-language whilst allowing for a region to
move to a different visual context.

204 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

Language Information in Structured Documents: A Model for Mark-up and Rendering

Inner processing Within the region, language
tags are processed as if the region started with a
tag whose level (in the THD) is inner-level (inner-
level must be at least as deep® as init-level in the
THD). This allows finer control over the subset of
actions executed at imbedded language tags.

Interfaces for the Rendering Model

The following interfaces will be provided for use by
writers of class and package files:

e specifying the THD (this will probably be fixed,
at least in the first version);

e specifying entries in the PAM;

e specifying entries in the LAT;

e specifying explicitly that a language-command
(i.e., parameter-group) will potentially be used
by the current package or class;”

6 An alternative model would be to also allow inner-level
to be one less than init-level. This would mean that language
tags within the special region are acting as language changes
on the same level as the starting language of the region.

7 These declarations allow the local customizations for all
language actions to be stored in one place (e.g., PAM or LAT
modifications); the system can then select only those that are
actually needed for the current document.

e specifying the starting-language and init/inner
levels for special regions;
e handling language information for moving text.

In addition to the new commands and environ-
ments outlined in the section entitled “Document
interfaces”, the following interfaces will be provided
for use in documents (the first two must be in the
preamble):

e specifying the document-language;
e specifying all the languages used in a document;
e possibly an interface for overwriting the start-
ing language of a particular special region
The second item above is not strictly necessary as
the information can be obtained by processing the
document; however, a large saving of time and space

can be made if the full list of languages actually used
is specified in the preamble.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 205

New font tools for TEX

Werner Lemberg

Kleine Beurhausstr. 1
D-44137 Dortmund

Germany
a79714280Qunet.univie.ac.at

Abstract

The following font tools will be described in this paper:

e VFlib, the Vector Font Library, which has been written by KAkuGcawa Hi-
rotsugu (F]I] #5¢X). This library together with an included suite of demo
applications is aimed to provide a uniform interface for accessing fonts in
many different formats. With the help of configuration files it is possible to
access fonts with other encodings, to define new (virtual) fonts, and others.
Using VFlib as a basis for dvi drivers, it will be no longer necessary to have
pk files for any font format except for METAFONT.

o FreeType, developed by David TURNER, Robert WILHELM, and the author
of this paper. This is a platform-independent library to render bitmaps
from TrueType fonts. What makes it different from other freely available
TrueType tools is a TrueType interpreter to process hints.

e ttf2pk and hbf2gf, maintained resp. written by the author. Both programs
are part of the CJK package and are used to convert CJK TrueType and HBF
fonts into TEX fonts.

Introduction Today, we have many font files and many dif-
ferent font file formats. When we need soft-
ware to display or print characters which does
not depend on a windowing system and/or
an operating system, we must write interface
routines for accessing font files in each appli-
cation software again and again. To do this,
programmers must have knowledge of font file
formats; it will be a hard task for program-
mers if the number of font formats that an
application software supports becomes large.

None of the tools are really new, but until now they
either have not been presented to the (English) TEX
community or have been hidden in other packages.
Most of them are work in progress, and there is a
good chance that this paper is already out of date
when it is printed.

All of them have a CJK! background more or
less; KAKUGAWA originally wanted easy Japanese
font support for dvi drivers, my two programs are
still only useful for CJK fonts, and FreeType was
also soon extended to manage CJK TrueType fonts.
Nevertheless, work is going on to internationalize the
tools, making them useful for a broader audience.

In the bibliography you can find the locations
from which to download the packages.

VFlib is a font library written in C pro-
viding several functions to obtain bitmaps of
characters. VFIlib hides the font format of font
files and provides a unified API for all sup-
ported font formats. Thus, programmers for
VFlib application software need not have knowledge
on font file formats. Instead, any software us-
ing VFlib can support various font file formats
immediately.

Until recently documentation was only available in
Japanese (see [2]) — the main reason why this great
tool is virtually unknown outside of Japan. Now a
translation into English has been made; this quote [...]
from basic.txt tells what VFlib is:2

I Chinese/Japanese/Korean
2 In general, I’'m following the documentation files very
closely, omitting not so important or too technical details.

Currently, VFlib supports the following font
file formats: PCF, BDF, HBF, TrueType,
GF, PK, TFM, ShotaiKurabu (2 {H 3838,

206 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

a vector font format for Japanese Kanji),?
and JG (another vector font format for Japa-
nese Kanji). Especially, VFlib can be used as
a font module for drivers/previewers of dvi
files (TEX/IYTEX); part of this package is a
sample dvi previewer for X Windows writ-
ten with only 400 lines of C code.

VFlib stands for Vector Font library — earlier
versions of the library have supported Japanese vec-
tor fonts only, hence the name.

Basic concepts. The VFlib module consists of two
parts: the library itself which must be linked to the
application program, and a font database file (called
‘vflibcap’ since the file format resembles the format
of a termcap database; see below for an example).
Font classes and font drivers. VFlib can handle
multiple font file formats. Reading a font file is done
by an internal module in VFlib corresponding to the
font file format. This internal module is called a
‘font, driver’. Service units provided by font drivers
are called ‘font classes’. From an end-user’s point of
view, font formats are distinguished by the names
of font classes. Font drivers themself are not visible
for end-users.

Some font drivers may not read font files on

disk; they may generate glyphs and outlines by in-
ternal computation only. In addition, some font
drivers may return glyphs which are obtained as
glyphs by another font class.
Font names and searching. In VFlib, a font is
specified by a ‘font name’ on opening. First, VFlib
checks if the font name is given in vflibcap or not. If
the font name is found, VFIib reads the description
for the font in vflibcap, invokes a font driver corre-
sponding to the font class name and opens the font
file.

If the font name is not given in a vflibcap file, a
font searching mechanism is invoked. Since there are
so many font files for X Window and TgX, this fea-
ture has been introduced to avoid writing an entry
for each font file. Various font drivers will be called
to see whether the font can be opened; a list of font
drivers for font searching is given in the vflibcap file.

Fonts described in a vflibcap file are called ‘ex-
plicit fonts’ and fonts that are searched by the font
search feature are called ‘implicit fonts’.

For TEX fonts, the kpathsea library will be used
for searching.

The vflibcap database. Each (virtual) font as
provided by VFIlib has its inherent information on
point size, pixel size, and resolution of the target

3 Other transcription forms are SyotaiKurabu or Syotai-
Club.

New font tools for TEX

device. In addition to these font metrics are defined
for each glyph.

Some font file formats do not have such con-
cepts; in this case, missing information either is
given in a vflibcap file or the specific font driver pro-
vides default values. For instance, a TrueType font
is a vector font and is not restricted to a certain
point size and resolution of the target device (since
vector fonts can be scaled to any size). Another ex-
ample is the ShotaiKurabu font format which does
not have font metric information at all: a font driver
for this font format generates virtual font metrics
using the data given in a vflibcap file.

Here a small excerpt of a vflibcap file suitable
for Japanese TEX (JTEX); omissions are indicated
with three dots.

VFlib-Defaults:\
:implicit-font-classes=ascii-jtex-kanji,\
gf/pk:\
:extension-hints=pk=ascii-jtex-kanji,\
gf=ascii-jtex-kanji,\
pk=gf/pk,\
gf=gf/pk,\
Sttf=ttf:\
:variables-default-values=\
$TeX_KPATHSEA_PROGRAM=\
/usr/local/teTeX/bin/x1dvi:

TeX-Defaults:\
:kpathsea-mode=1jfour:\
:dpi=600:\
:kpathsea-program-name=\

$TeX_KPATHSEA_PROGRAM:

TrueType-Defaults:\
rextension=.ttf:\
raspect=1:\
:dpi=600:\
:font-directories=\
/dos/texmf/fonts/truetype/japanese:\
:platform=microsoft:

mincho-jtex:\
:font-class=ttf:\
:font-file=uwjmg3.ttf:\
:magnification=0.92:\
:writing-direction=h:\
:character-set=jisx0208_1983:\
:encoding-force=sjis:

mincho-5pt:\
:point-size=5:\
:inheritance=mincho-jtex:

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 207

Werner Lemberg

mincho-10pt:\
:point-size=10:\
:inheritance=mincho-jtex:

min:\
:font-class=ascii-jtex-kanji:\
:kanji-adjustment-file=\
/usr/local/VFlib/ascii-jtex/ttf.adj:

min5:\
:kanji-font=mincho-5pt:\
:inheritance=min:

mini0:\
:kanji-font=mincho-10pt:\
:inheritance=min:

The format of a capability file is somewhat
strange: each entry must be formally on one line
(which can be split with a trailing backslash). The
name of a capability entry is the first name starting
a line; all capability descriptions then follow in the
format

A single colon ‘:’ is equivalent to the construction

“: (whitespace) :’, making it convenient to break a
line after the colon. Capability descriptions have
the format

(cap description)=(cap value)

The first equal sign separates the description from
the value (which can be e.g. a list containing equal
signs too).

The capability entry ‘VFlib-Defaults’ defines
global default values for VFIlib. ‘implicit-font-classes’
specifies a list of font classes for implicit font search;
the font class drivers are invoked in the order of that
list for searching. ‘extension-hints’ gives an ordered
list of pairs indicating which extension of an implicit
font needs which driver to handle. In the above ex-
ample there are e.g. two entries for files ending with
pk: one for Japanese TEX and one for standard TEX.
If the first driver fails, the second will be called.
Finally, ‘variables-default-values’ gives a list of de-
fault values which can be overridden at run-time if
supplied as an argument string to the initialization
function of VFlib.

‘TeX-Defaults’ primarily gives initialization val-
ues for kpathsea. Users of web2c and teTEX should
be quite familiar with the description names and its
meanings.

All other entries are used to define a Japa-
nese TrueType font as a font for JTEX. The final
JTEX font is built from various layers, starting with
the entry ‘mincho-jtex’ which defines the TrueType
font name, the writing direction, the character set,
etc. ‘mincho-5pt’ is an example of how to inherit
font capabilities: only a point size declaration has
been added. Then the ‘min’ base font class is speci-
fied, calling the ‘ascii-jtex-kanji’ font driver and us-
ing an adjustment file ttf.adj for all fonts of this
class.* Note that in ‘min’ no fonts are defined —
the concept is similar to object oriented languages
where some base classes are defined on which vir-
tual classes are built. With ‘min5’ or ‘minl(’ the
top level is reached, using all previously constructed
font classes.

NFSS would not require size quantization of the
font; it’s easy to add a proper entry like this:

min-nfss:\

:kanji-font=mincho-jtex:\
:inheritance=min:
A font defined in this way can then be used at any
size; VFlib would scale the font appropriately.

The VFlib API. The number of functions is small
due to the identical interface for all font formats.
Before opening any font you have to call VF_Init
to initialize the library with a vflibcap file. Open-
ing and closing of a font are handled with the func-
tions VF_OpenFont and VF_CloseFont respectively.
A glyph bitmap can be accessed in two ways. Either
you specify bitmap sizes in pixels (VF_GetBitmap2),
or you pass the resolution (in dpi) together with the
point size as parameters (VF_GetBitmapl). Simi-
lar commands exist for getting outline (vector) data
(VF_GetOutline) and for obtaining information on
metrics (VF_GetMetricl, VF_GetMetric2). All the
functions take the character code as a mandatory
parameter.

Auxiliary functions are provided to free bitmap
or metrics objects, to copy or scale bitmaps, and
to ‘dump’ the glyph using ASCII characters to get
similar output as gftype.

Finally, you can write your own font driver (to
be installed with VF_InstallFontDriver). Font
drivers must provide a small set of glyph manipulat-
ing functions,” and pointers to those functions are
then passed to the VFlib engine. Using the function
VF_GetProp it’s easy to extract font-class-specific

4 This file compensates the mono-width of Japanese
glyphs with small offsets for certain character classes like
CJK punctuation characters to improve typographical out-
put. Character classes are a special feature of JTEX.

5 With ‘glyph’ an empty box can be meant also e.g. for
writing a tfm driver.

208 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

entries from the vflibcap file to control the new font
driver.

Limitations and planned features. Many parts
of the VFIib package are still undocumented, or doc-
umentation is only available in Japanese. For in-
stance, VFlib contains a complete library for inter-
preting dvi files (with specials) which further sim-
plifies the writing of dvi drivers. A suite of dvi
previewers and dvi drivers is also included.

Currently, VFIib is limited to UNIX-like operat-
ing systems, but it should not be difficult to port it
to other platforms because no real dependencies on
UNIX features are built in.

Another useful tool yet to be written is a mod-
ule or program for creating tfm files from the bitmap
and vector fonts.

Planned for the near future are modules for pro-
cessing PostScript fonts and TEX virtual fonts; sup-
port for € metrics files is already implemented, but
without a vf module its use is rather academic.

FreeType

The report on FreeType (see [6]) will cover only the
basics without going too much into detail —the fi-
nal end-user API has not been defined yet. It is not
really linked to TEX, and if you are not interested
in how a rasterizer works, you should skip this sec-
tion. Nevertheless, it is linked to typography, and
the text presents some general principles of how out-
line glyphs will be handled to yield bitmaps.

FreeType is developed in a rather unusual way.
The package provides the complete library code and
some tools which demonstrate the use of the library
in two programming languages, namely in C and in
Pascar. We try to keep the library small (about
60 kByte if compiled for maximal speed with gcc);
nevertheless it is highly portable since the C part
is written in ANSI C, having only a few architec-
ture dependencies which can be adjusted with a few
global macro definitions.

The rasterizer. A rasterizer converts the vector
data of a glyph into a pixel representation. In
this short overview all complications (drop-out con-
trol, wrong contour direction, sub-banding of pro-
files etc.) are omitted.® This part of the FreeType
engine is quite generic and could be adapted to, say,
PostScript fonts too.

Glyphs as stored in a TrueType font (see [5] for
a reference) consist of vectorial information (straight
lines and Bézier curves of second order”) together

6 The original document is raster.doc of the FreeType
package, written by David TURNER.
7 PostScript fonts use third-order Bézier curves.

New font tools for TEX

with hinting instructions which move the points de-
termining the glyph contours to device resolution
dependent locations before rasterization.

We now assume that all point moving has been
done, and that the x and y coordinates of the points
are stored in a list together with a flag to indicate
whether the point is on or off the curve. See Fig-
ure 1.8

A scanline is a pixel line in the target bitmap.
An outline, also called contour, is a closed line that
delimits an inner and an outer region of the glyph.
The best way to fill a shape is to decompose it into
simple horizontal segments, called spans. Spans are
computed for each scanline. This is usually done
from the top to the bottom of the shape, in a move-
ment called sweep (see Figure 2). It’s easy to see
that there is typically more than one span per scan-
line. For each scanline during the sweep operation
we need the horizontal (x) coordinates of the start
and end points of all spans. These are computed
before the sweep, in a phase called ‘decomposition’
which converts the glyph contours into profiles.

Profiles are sections of the contours which are
either only ascending or only descending, i.e. mono-
tonic in the vertical direction (we will also say y-
monotonic). It can easily be deduced from Figure 3
that it is possible to resolve any contour into vertical
profiles and horizontal lines (which are not part of
a profile).

Each profile inherits the direction of the par-
ent contour (this is necessary to decide whether a
point is inside or outside of a contour, see below).
Figure 4 shows that a contour can have multiple pro-
files. Profiles are also called ‘edges’ or ‘edgelists’ in
other graphics libraries.

The rasterizer stores a profile as an array of
x coordinates of the intersection points of the pro-
file and the affected scanlines. To allocate a profile
array without wasting memory we must know the
height of that profile; with other words, we have to
compute the vertical extrema (minimum and max-
imum). This can be done very easily for straight
lines, but it is not trivial for Bézier arcs because

8 A second-order Bézier curve (also called quadratic
spline) is fully specified with the starting point of the curve,
a control point usually off the line, and the end point of the
curve. It is possible to have two consecutive off-points in
the points list; in this case a virtual on-point between the
two off-points will be constructed. The parametric form of a
quadratic spline is

p(t) = (1 —t)*p1 +2t(1 — t)p2 + t2ps ;

t denotes a real number in the range [0,1], p1 is the start
point, p2 the control point, and p3 the end point.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 209

Werner Lemberg

e

Two ‘on’ points

Two ‘on’ points and one ‘off’ point

o

Two ‘on’ points with two ‘off’ points between.
The box indicates a virtual point not in the list.

Figure 1: Possible ‘on’ and ‘off’ point combinations in a FreeType font

A A

Figure 2: Filling a shape with spans. The arrow indicates the sweeping direction.

- -

A y >

N\

Figure 3: Decomposition of a contour into profiles

KO

Figure 4: A contour with multiple profiles

they are not monotonic in the general case.” Nev-
ertheless, a Bézier arc can be split into two subarcs
with very little computation. Both subarcs are again
Bézier arcs, and one of them is guaranteed to be y-
monotonic. Look at Figure 5: p; denote the points
belonging to the original curve, ¢; and r; then define
the subarcs (7 being 1, 2, or 3). The following for-
mule give the relationship between an arc and its
subarcs:
Qo =p1; @ =(p+p2)/2
r3 =p3; T2 = (p2+ps3)/2
a3 =11 = (g2 +72)/2

We stop if either all subarcs are monotonic or the
subarcs become too small; in both cases we’ve found
an extremum. This process is called flattening.

The next step is to compute all intersection
points of profiles and scanlines. In the case of lines
this is straightforward, but it is a little more compli-
cated for splines. Fortunately we can use arc split-
ting again. Consider Figure 6. The horizontal lines
represent scanlines, and a short segment of a profile
is shown. If we continue splitting until each subarc

9 A quadratic spline is y-monotonic if and only if the y co-
ordinates of the points pi, p2, and ps are monotonic, i.e.
p1, < p2, <ps, orpi, >p2, >p3,. lfp, =p2, =p3,
the arc degenerates into a horizontal line.

210 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

p3 = g3

Figure 5: splitting a Bézier arc into two subarcs

crosses only one scanline, we can safely approximate
the subarcs with straight lines for which the compu-
tational effort is minimal. Internally this has been
realized with a Bézier arc stack; if the topmost arc
can be replaced with a line, the intersection point is
computed and the arc is popped off the stack. Oth-
erwise the arc is popped off, then split, and the two
new subarcs are pushed on the stack. This will be
repeated until the stack is empty.

y+3

A
A
/ y

d

Figure 6: the stepping process: replacing
sufficiently small subarcs with lines

We are done. The contours have been resolved
into profiles, and the profiles have been decomposed
into intersection points of the profiles and the scan-
lines. One last thing must be taken into account:
how can we decide which side of the countour is in-
terior and which is exterior? The TrueType specifi-
cation defines that the interior is always on the right
side of the contour (see Figure 7). Having an inter-
section point together with the contour direction, we
can decide simply which pixels must be blackened.

New font tools for TEX

scanline

Figure 7: the interior of a glyph must always be
to the right of the contour

The instruction interpreter. In figure 8 you can
see what instructions basically do. To avoid drop-
outs or ugly shapes, points are moved to new (reso-
lution dependent) locations before rendering, assur-
ing that even for low resolutions good optical results
can be computed. It has turned out that the True-
Type specifications are often very fuzzy about cer-
tain instructions. Long debugging sessions with well
hinted TrueType fonts were needed, comparing the
results with rendered bitmaps of other (commercial)
TrueType engines, to find out the undocumented
behaviour of those instructions. Nevertheless, af-
ter mastering these obstacles, most glyphs are now
rendered equally well with FreeType as with the ras-
terizers of Windows and the Mac.

To be added in the near future is instruction
support for composite glyphs. Again the specifica-
tions are too fuzzy to allow a straightforward imple-
mentation without testing undocumented instruc-
tion properties—for instance, should the instruc-
tion code of the subglyphs be executed or only the
instructions for the composite glyph? The TrueType
specification says nothing about this problem.

Font tools from CJK

Both programs discussed in this section are part of
the CJK package ([3]). They are specialized to CJK
fonts, but work is going on to internationalize them.
Script file skeletons of MakeTeXPK et al. are delivered
with these utilities for on-the-fly font generation.

ttf2pk. It is currently a special tool for converting
CJK TrueType fonts into tfm and pk files, but later

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 211

Werner Lemberg

an instructed ‘v’

an uninstructed ‘v’

Figure 8: comparison between a hinted and an
unhinted glyph

on it will use FreeType to process all kinds of True-
Type fonts. The original author is LIN Yaw-Jen who
modeled ttf2pk after ttf2bmp and pbmtopk.
ttf2pk takes a non-composite CJK TrueType
font in Big 5, EUC,' or SJIS encoding and converts
a certain contiguous subrange (at most 256 charac-
ters) into a pk and a tfm file. The program has a
lot of command switches; a typical call looks like
ttf2pk ntukaiOl.pk ntukaiOl.tfm 600 1.0 \
0xA140 256 -e Bigh ntu_kai.ttf

‘ntukaiOl’ is the first subfont of the ntukai font,
‘600’ is the resolution in dpi, ‘1.0’ a vertical scaling
factor (for printers with different horizontal and ver-
tical resolutions), ‘0xA140’ the first character code
of the subfont, and ‘256’ the number of characters
in the subfont. The switch -e selects the encoding
of the TrueType font, and the last parameter is a
full path to the TrueType font file.

Most of the other options not shown here have
been inherited from pnmtopk; one parameter (‘-r’)
has been added to rotate the glyphs by 90 degrees,
enabling faked vertical typesetting with TEX.!!

CJK subfonts as used in the CJK package are
discussed in another paper of the proceedings ([4]).

hbf2gf. Similarly to ttf2pk, hbf2gf is used to split
CJK bitmap fonts into subfonts. Its source code is
written in CWEB; the format used by this tool is
the Hanzi Bitmap Font format (HBF, see [1] for a
complete reference). Basically the format consists of
the bitmap files and a header file describing the font.
Here an example of an HBF header file, describing
a Chinese font with the character set CNS plane 7:

10 BUC stands for Extended UNIX code; examples are Chi-
nese GB, Japanese JIS, Korean KS encoding.

1 Alas, only Big 5 encoding has both horizontal and ver-
tical punctuation marks, but even here the set is not com-
plete. For typographically satisfying results you need a font
intended for vertical typesetting.

HBF_START_FONT 1.1

HBF_CODE_SCHEME CNS11643-92p5

FONT cns40st-5

SIZE 40 150 150
HBF_BITMAP_BOUNDING_BOX 40 40 0 -6
FONTBOUNDINGBOX 40 40 0 -6
STARTPROPERTIES 23

FONTNAME_REGISTRY ""

FOUNDRY "CBS"

FAMILY_NAME "Song"

WEIGHT _NAME "medium"

SLANT "r"

SETWIDTH_NAME "normal"
ADD_STYLE_NAME "fantizi"

PIXEL_SIZE 40

POINT_SIZE 400

RESOLUTION_X 75

RESOLUTION_Y 75

SPACING "c"

AVERAGE_WIDTH 400

CHARSET_REGISTRY "CNS11643.92p5"
CHARSET_ENCODING "O"

WEIGHT 19329

RESOLUTION 110

X_HEIGHT 34

QUAD_WIDTH 40

FONT_ASCENT 34

FONT_DESCENT 6

DEFAULT_CHAR 0x2121

ENDPROPERTIES

COMMENT "This HBF header file is in the"
COMMENT "public domain."
HBF_START_BYTE_2_RANGES 1
HBF_BYTE_2_RANGE 0x21-0x7E
HBF_END_BYTE_2_RANGES
HBF_START_CODE_RANGES 1
HBF_CODE_RANGE 0x2121-0x7C51 4040w5.bin O
HBF_END_CODE_RANGES

COMMENT

COMMENT Rarely used characters defined by
COMMENT Ministry of Education of Taiwan,
COMMENT said to be disjoint from the
COMMENT previous planes.

COMMENT 8603 characters, 2121--7C51.
COMMENT

HBF_END_FONT

The syntax is very similar to the format of a
BDF header (bitmap fonts used with X Windows);
a small set of keywords (starting with ‘HBF_’; all oth-
ers are BDF specific) have been added to accommo-
date the special needs of CJK files. As an example,
the line

HBF_CODE_RANGE 0x2121-0x7C51 4040w5.bin O
says that the file 4040w5.bin contains glyphs with
the character codes 0x2121-0x7C51, starting at off-

set 0. ‘HBF_BYTE_2_RANGE’ specifies the valid range
of the second bytes of the double byte font encoding

212 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

(see [3] for more details). Both keywords can appear
more than once.

hbf2gf can be called in two ‘modes’: the first
creates a complete set of subfonts for a particular
HBF font, and the second computes the gf and
tfm file of one subfont (to be used in MakeTeX. ..
scripts). In both cases, a configuration file is used
to avoid lengthy parameter lists.

We continue the example from above with an
hbf2gf configuration file using the just defined CNS
font (long lines are splitted and marked with a final
backslash for clarification):

hbf_header \
$TEXMF/fonts/hbf/chinese/cns40/cns40-5.hbf

comment \
CNS plane 5 song 40x40 pixel font \
scaled and adapted to 12pt

mag_x 1
design_size 12.0
x_offset 2
y_offset -8
output_name cbsol2
checksum 123456789
dpi_x 300
pk_files no
tfm_files yes

pk_directory \
$TEXMF/fonts/pk/modeless/chinese/c5so012/
tfm_directory \
$TEXMF/fonts/tfm/chinese/c5s012/

Keywords must start a line; a line not start-
ing with a known keyword is ignored. Environment
variables can be specified with a starting dollar sign.

An important concept to understand hbf2gf
configuration files is the difference between ‘magni-
fication’ and ‘scaling’.!? The former denotes a scal-
ing factor to reach the design size of the font (in the
above example it is 1.0 to get 12pt). Offset values
(given in pixels) refer to this size. The latter then
scales the font to its final size, indicated with dpi_x
(and optionally dpi_y).

It is also possible to create fonts with slanted
and rotated glyphs; additionally the next version
will be able to produce 2 virtual fonts.

12 The wording is a bit unfortunate because the meaning
is different in TEX.

New font tools for TEX

Conclusion

In a not too distant future the utilities and libraries
described in this paper will more or less merge, pro-
viding a vital basis for handling fonts under 2 and
TEX. With VFIib as the framework it will be possi-
ble to access already existing fonts in Unicode encod-
ing regardless of the original encoding, create virtual
fonts on the fly as needed for text processing with
mixed writing directions (both horizontal and verti-
cal), sophisticated space handling between fonts and
much more.

With FreeType a new font world will be opened
to TEX users working on UNIX like operating sys-
tems — after the integration of FreeType ttf2pk will
be (hopefully) as useful as pstopk or gsftopk.

References
[1] Nelson Chin et al. Hanzi Bitmap Font
(HBF) file format version 1.1. Avail-

able electronically from ftp://ftp.ifcss.org/
pub/software/info/HBF-1.1.tar.gz, Septem-
ber 1994.

[2] Kakugawa Hirotsugu (#8¢X f4JI[). The VFlib
package. Available from ftp://gull.se.
hiroshima-u.ac.jp/1997.

[3] Werner Lemberg. The CJK package. Available
from CTAN, language/chinese, 1997.

[4] Werner Lemberg. The CJK package for
ITEX 2¢ — multilingual support beyond babel.
In Proceedings of TUG 97, July 1997.

[5] Microsoft corporation. TrueType 1.0 font
files. Available electronically from ftp://ftp.
microsoft.com/developr/drg/TrueType/
ttspec.zip, November 1995.

[6] David Turner, Robert Wilhelm, and Werner
Lemberg. The FreeType package. Available
from ftp://ftp.physiol.med.tu-muenchen.
de/pub/freetype, 1997.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 213

The CJK package for ITEX 2¢ —
Multilingual support beyond babel

Werner Lemberg
Kleine Beurhausstr. 1
D-44137 Dortmund

Germany

a79714280unet.univie.ac.at

Abstract

With Mule (multilingual Emacs) you can write texts in multiple languages. This
editor is especially designed to handle the various encodings and character sets
of Asian scripts such as Big 5 and GB for Chinese, JIS for Japanese, etc. Even
more, you can use multiple CJK character sets simultaneously which enables
e.g. Chinese users to write simplified (jidntizi {ij{4F) and traditional Chinese
characters (fdntizi % % 5) at the same time.

The CJK package is the analogue for IXTEX 2¢ (to be run under standard
TEX). Most of the CJK (Chinese/Japanese/Korean) encodings are implemented;
an interface between Mule and IATEX 2¢ is provided by an output encoding filter
for Mule. CJK is of course not restricted to Mule. Any editor/environment which
is able to handle double byte encodings can be used.

If you restrict babel to (7-bit) ASCII as the input encoding it is possible to
embed babel into CJK seamlessly. Using Mule’s output filter, you even don’t need
enter INTEX-specific accent macros; the accented characters will be converted

automatically.

Included in the CJK package are auxiliary programs which can convert CJK

TrueType and bitmaps fonts into pk files.

Introduction

TEX (and thus KTEX) is an extremely flexible text
formatting system which supports some multilingual
features since the final version 3, mainly by allow-
ing 8-bit input and fonts. But for CJK languages
(Chinese/Japanese/Korean) this is still not enough
because all encodings have more than 256 characters
each.

The aim of the CJK package is to provide multi-
byte encoding support for ITEX 2¢ without any spe-
cific extensions of TEX. It contains modules for GB
and Big 5 (Chinese), JIS and SJIS (Japanese), and
KS (Korean) encoding, to name a few. In section
“Unicode” on page 219 you’ll find some notes on
the pros and cons of Unicode in relation to TEX.

As far as I know there is only one freely avail-
able editor which is capable to display multiple char-
acter sets at the same time: Mule, the multilingual
extension of Emacs.! A special output filter for Mule
converts the internal encoding of Mule directly into

1 The next major releases of the various Emacs flavours
(GNU Emacs and XEmacs) will merge the features of Mule back
into Emacs.

something KTEX can understand. See the section
“The interface between Mule and CJK” on page 220
for more details.

Among other utilities two font converters called
hbf2gf and ttf2pk are provided to convert CJK
fonts into pk and tfm fonts; both programs are dis-
cussed in another paper of the proceedings ([8]).

The latest version of CJK can be found on
CTAN in the directory language/chinese/CJK; var-
ious basic bitmap font packages are provided in
fonts/CJK.

CJK encoding schemes

It is not possible to represent CJK character sets
with one byte per character. At least two bytes are
necessary, and most of the common CJK encoding
schemes (GB, Big 5, JIS, KS, etc.) use a certain
range for the first byte (usually 0xA1 to OxFE or a
part of it) to signal that this and the next byte rep-
resent a CJK character. As a consequence, ordinary
ASCII characters (i.e., characters between 0x00 and
0x7F) remain unaffected.

214 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

The CJK package for IMTEX 2¢ — Multilingual support beyond babel

encoding 1. byte 2. byte 3. byte
GB 0xA1-0xF7 O0xA1-OxFE —
Big 5 0xA1-0xF9 0x40-O0xFE —
JIS 0xA1-0xF4 O0xA1-OxFE —
SJIS 0xA1-0xFE 0x40-0xFC —

KS 0xA1-0xFD OxA1-OxFE —
UTF 8 0xCO-O0xEF 0x80-0xBF 0x80-0xBF
CNS 0xA1-OxFE O0xA1-OxFE —

Figure 1: encoding schemes implemented in CJK

Some notes on the various encodings given in
table 1:

e SJIS, also known as MS-Kanji, consists of two
overlayed character sets: the so-called halfwidth
Katakana (JIS X0201-1976, 1-byte characters
encoded in the range 0xAl to 0xDF) and the
(fullwidth) JIS character set (JIS X0208-1990,
mapped to the remaining code points).

e Some encoding schemes (Big 5, SJIS) have gaps
in the range of the second byte.

e UTF 8 (Unicode Transformation Format 8),
also called UTF 2 or FSS-UTF, is a special
representation of Unicode (resp. ISO 10646).
It uses multibyte sequences of various length,
but only 2-byte and 3-byte sequences are imple-
mented in CJK. ASCII characters will be used
as-is—without this property it would be im-
possible to use UTF 8 with TEX.

e CNS is defined to have 16 planes with 94 x 94
characters. Currently 7 planes are assigned
(CNS 1 to CNS 7, an eighth plane has been
said to be under development).

e It’s difficult to input Big 5 and SJIS encoding
directly into TEX since some of the values used
for the encodings’ second bytes are reserved
for control characters: ‘{’, ‘}’, and ‘\’. Re-
defining them breaks a lot of things in KTEX;
to avoid this, preprocessors are normally used
which convert the second byte into a number
followed by a delimiter character.

For further details please refer to [10]; LUNDE
discusses in great detail all CJK encodings which
are or have been in use. See also section “Input
encodings, output encodings, character sets” below.

The CJK package in detail

An example. Here a small lucullic text:

\documentclass{article}

\usepackage{CJK}
\usepackage{pinyin}

\begin{document}
\begin{CJK}{Bgb}{fs}
FREBZPEK -

\Wo3 \hen3 \xi3\huanl \chil
\Zhongl\guo2\fan4.

I like to eat Chinese food
very much.

\end{CJK}

\end{document}
The result looks like this:

BARE B Z + ER -
W6 hén xihuan chi Zhonggudfan.
I like to eat Chinese food very much.

This example shows that basically only two
steps are necessary to write Chinese: loading CJK
with \usepackage{CJK} and opening a CJK envi-
ronment. Bgb selects the Big 5 encoding for Chinese
written with traditional characters, fs the font to
be used (in this case it is fangsongti 157 K #). The
procedure is slightly different if you use cjk-enc.el
and will be described below in the section “The in-
terface between Mule and CJK” on page 220.

\usepackage{pinyin} loads the pinyin package
which is also part of CJK. It enables input of pinyin
syllables, the transcription system of Chinese used
in Mainland China (see also the section “The pinyin
package” on page 221).

Basic concepts. To understand how CJK works
behind the scenes some basic concepts have to be
introduced.
Input encodings, output encodings, charac-
ter sets. Since the arrival of NFSS input and out-
put encodings are clearly separated in KTEX. With
CJK encodings the situation is a bit more compli-
cated because some encodings are input and output
encodings at the same time. To make things even
more confused, they can form a character set also!
Consider as an example Big 5. This is a charac-
ter set developed by software companies in Taiwan
for Chinese written with traditional Chinese charac-
ters. It is common practice to describe CJK charac-
ter sets in rows, usually (but not necessarily!) rep-
resented by the first bytes of the output encoding.
For Big 5 we have 94 rows of 157 characters each.
Not all rows are fully occupied: 94 x 157 = 14758
characters are possible, but only 13053 characters

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 215

Werner Lemberg

are really defined in the basic form of Big 5.2 This
character set can be split into three parts: 408 sym-
bols (rows 1-3), 5401 Level 1 hanzi (rows 4-38), and
7652 Level 2 hanzi (rows 41-89). Level 1 contains
the most frequent characters, Level 2 is an exten-
sion for rarely used characters occurring mainly in
names.®> With hanzi (J£ 5, kanji in Japanese, hanja
in Korean) all ideographic glyphs derived from the
Chinese script are denoted.

Row 1 of the Big 5 character set is mapped to
0xA1 as the first byte in Big 5 encoding, row 2 is
mapped to 0xA2 etc.

You may ask: “Why only 157 characters per
row? Table 1 would imply that 191 characters are
available for each row.” The answer is simple: due
to historical reasons the range for the second byte of
Big 5 input encoding (we are no longer talking about
the Big 5 character set!) is split into two subranges:
0x40-0x7E and 0xA1-0xFE. And for convenience, al-
most all fonts providing the Big 5 character set can
be accessed with an output encoding identical to the
Big 5 input encoding.*

The counter example is the SJIS input encod-

ing. Here we have two distinct Japanese charac-
ter sets (JIS X0201 and JIS X0208) which will be
accessed as two different fonts in the CJK package
having a 1-byte and a 2-byte output encoding re-
spectively.
The CJK macro layers. CJK makes all characters
above 0x7F active (except 0xFF). The macro level
assigned directly to the active characters is called
‘binding’ (stored in files with the extension bdg).
The binding decides whether only the current byte,
the next byte with the current byte or possibly the
next two bytes together with the current byte rep-
resent a CJK character (example: JIS encoding has
only 2-byte characters, SJIS has 1-byte and 2-byte
characters).

The next level chooses the encoding of the CJK
font and the output encoding of the subfonts (called
‘fontencoding’; see also the sections “Subfonts” and
“CJK font definition files” below for further informa-
tion); the corresponding macros are stored in files
with the extension enc. Here the proper subfont

2 See [10] for a complete description of the extensions to
Big 5.

3 Chinese names cause a great problem for electronic data
processing since every year new characters are invented; this
is quite common especially in Hong Kong.

4 This has changed with the propagation of TrueType
fonts where e.g. fonts with a Big 5 character set can be ac-
cessed as Unicode encoded and as Big 5 encoded, provided
the font has mapping tables for both encodings. The same
is true for the so-called CID PostScript fonts which also can
use multiple mapping tables for a particular font.

together with some font offsets will be selected and
passed as arguments to the next level.

Macros from the third and last level (stored in
files with the extension chr) finally select the proper
character, check whether it is a special character
etc., and print it out.

User selectable are only the encoding and font-
encoding, the other levels are chosen automatically.
‘Preprocessed’ mode. Big 5 and SJIS encoding
can’t be handled well within TEX due to some char-
acters in the range of the encodings’ second bytes
which interfere with the TEX control characters ‘{’,
‘}’, and ‘\’. It is possible to redefine them (and the
CJK package provides two environments, Bgbtext
and SJIStext, which exactly do that), but many com-
mands of KWTEX don’t work inside of them. Another
annoying fact is that second bytes smaller than 0x80
are affected by case changing commands, altering
the CJK characters!

Thus I have decided to program small prepro-
cessors written in C® to convert the encodings into a
form which won’t cause problems: the second byte
of an encoding will be converted into its decimal
equivalent, followed by OxFF as a delimiter charac-
ter.

This approach works for all encodings except
UTF 8. CJK simply checks the presence of the
\CJKpreproc command inserted by the preproces-
sor at the very beginning of the output file: if it is
defined, another set of macros connecting the ‘bind-
ing’ and ‘fontencoding’ level is used. If it is un-
defined, \MakeUppercase is disabled for Big 5 and
SJIS encoding.

Subfonts. What has been said about output en-
codings in a previous section is not the truth. It’s
a “little white lie”, to cite a famous computer sci-
entist whose name I can’t remember yet.® To make
large CJK fonts work with TEX we must split them.
I’'ve chosen the most compact subfont layout, i.e.,
256 characters per subfont, but due to the modular
concept of CJK it was not difficult to support other
subfont schemes (like poor man’s Chinese which uses
one subfont per leading byte).

The number of subfonts per font is large. A
JIS encoded font for example needs 35 subfonts, a
Big 5 encoded font even 55. See below the section

5 Former versions of CJK contained these preprocessors
written in both TEX and C, but under web2c it is impossible
to \write out real 8-bit characters larger than 0x7F to a file;
you will always get the ~~“xx notation which fails in verbatim
environments.

6 Nevertheless, it is the truth for which can handle fonts
with more than 256 characters.

216 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

The CJK package for IMTEX 2¢ — Multilingual support beyond babel

“CJK font definition files” for the naming scheme of
subfonts.

The interaction with NFSS. Today I'm suprised
by myself how simple it has been to adapt NFSS
to subfont selection; only one internal macro of the
ITEX 2¢ kernel, namely \pickup@font, must be re-
defined to gain the additional subfont functionality
needed by CJK.” Here is the version as implemented
in CJK.sty:®

\def\pickup@font{

\ifx\CJK@plane \Qundefined
% old definition
\expandafter\ifx\font@name \relax
\define@newfont
\fi
\else
% CJK extension
\expandafter
\ifx\csname \curr@fontshape/\f@size/
\CJK@plane\endcsname \relax
\define@newfont
\else
\xdef\font@name{
\csname \curr@fontshape/\f@size/
\CJK@plane\endcsname}
\fi
\fi}

\CJK@plane is only defined inside of a CJK
macro on the character level. It will contain the sub-
font plane to be used. The only purpose of the small
extension in \pickup@font is to define or check a
new \font@name by appending \CJK@plane to the
name KTEX would construct.

CJK font definition files. Font definitions for
CJK fonts are basically similar to other fonts. The
main difference is that you define classes of subfonts
instead of a single font.

Subfont names. The default name of a CJK sub-
font is the font family name plus a running decimal
number (normally consisting of two digits). Exam-
ple: bbkal201, b5kal202, etc. Unicode encoded
fonts have two running hexadecimal digits appended
instead, and some Japanese and Korean fonts follow
other naming conventions. For all declarations in
font definition files you have to specify the font fam-
ily only; in our example this would be b5kal2.
Size functions. A suite of additional font size func-
tions which take care of the subfonts has been de-

7 \selectfont will also be changed slightly; nevertheless,
it is not for the subfont selection but rather for the support
of boldface emulation for CJK fonts.

8 Please note that almost all files in the CJK package start
with \endlinechar -1 to avoid percent signs at the end of a
line if we must suppress the newline character. The other TEX
macro code fragments in this document assume the same.

fined. Most of them have a ‘CJK’ prefix or postfix
to standard I¥TEX size function names (CJK, sCJK,
CJKsub, ...) to indicate a similar behaviour. Addi-
tionally some CJK size functions have a ‘b’ postfix
to select ‘poor man’s boldface’, as I have called the
emulation of bold fonts by printing a non-bold char-
acter thrice with small offsets.” Providing a bold-
face emulation proved to be necessary because most
of the freely available CJK fonts are available in one
series only.

Here a sample entry for a GB encoded pixel
font:

\DeclareFontFamily{C10}{fs}{}

\DeclareFontShape{C10}{fsHm}{n}{

<=> CJK * gsfs14}{}
\DeclareFontShape{C10}{fs}{bx}Hn}H{
<-> CJKb * gsfs14}{\CJKbold}

\CJKbold sets an internal flag to switch on
boldface emulation.
NFSS font encodings. Since version 4 of the CJK
package all NFSS font attributes are supported. To
achieve that it was necessary to have an NFSS font
encoding for each CJK encoding. Figure 2 shows
some of the currently available font encodings; all
encodings defined by CJK start with an uppercase
‘C’, followed by two digits.

language environment NFSS encoding
Chinese: Bgbh Co0
GB C10
CNS1-7 C31-37
Japanese: JIS C40
JIS2 C50
SJIS C40 (fullwidth)
C49 (halfwidth)
Korean: KS C60 (hanja)
C61 (hangul)
Unicode: UTFS8 C70

Figure 2: The correlation between CJK
encodings, CJK fontencodings, and NFSS font
encodings. Only the most important encodings are
listed here.

Some CJK encodings need more than one NFSS
font encoding, as can be seen in the table (not listed
here is the support for HETEX fonts where four
NFSS encodings are necessary); the first digit usu-
ally represents the CJK encoding, the second digit
(except for CNS encoded fonts) the specific subfont
layout.

9 An explanation for the very reason of having extra size
functions for bold face emulation is beyond the scope of this
(already too long) article. It can be found in the documenta-
tion files of CJK.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 217

Werner Lemberg

The macro which internally maps the CJK en-
coding to one or more NFSS font encodings also
calls \DeclareFontSubstitution with an empty
font name macro to fake the fall-back mechanisms
of NFSS.10

Nevertheless, you never access the NFSS font
encodings directly; this will be done automatically
if you open a CJK environment or use a \CJKenc
command (see below).

CJK commands and environments. In this sec-
tion you will find some important CJK commands
not discussed elsewhere in this paper.

Additionally to the CJK environment CJK* will
be provided: the starred form suppresses spaces af-
ter a CJK character (using \ignorespaces) which
don’t appear in texts written with Chinese or Japa-
nese as the main language. To ‘switch’ from CJK to
CJK* without leaving the environment you can use
the \CJKspace command (and \CJKnospace for the
other direction).

To access a CJK character directly you can use
the \CJKchar command; it takes the first and sec-
ond byte (represented as a number) of the character
code together with an optional encoding string as
parameters. This is the most portable form since no
input characters larger than 0x7F are used.

Four commands will control encodings and font
encodings: \CJKenc, \CJKfamily, \CJKencfamily,
and \CJKfontenc. To change the encoding inside
of a CJK environment, use \CJKenc. It will always
use the font encoding for a certain encoding which
has been selected with \CJKfontenc. To change
the font family you have two alternatives: The first
is to define a family for a specific encoding with
\CJKencfamily. If this encoding is chosen, the fam-
ily defined in this way will be taken. The second is to
specify a family for all encodings with \CJKfamily,
overriding all \CJKencfamily commands. You must
explicitly say ‘\CJKfamily{} to reactivate any font
definitions done with \CJKencfamily. Here is a (hy-
pothetical) example:

\CJKencfamily{GBt}{heil}
\CJKfontenc{JIS}{dnp}
\begin{CJK*}{Bgb}{fs} % this is equal to
% \begin{CIK*x}{}{}
% \CJKenc{Bg5}

% \CJKfamily{fs}

10 The latest version of HIATEX has introduced ‘HFSS’ (the
‘H’ stands for Hangul), a font selection scheme to be run in
parallel with NFSS, basically having an identical interface.
A lot of advantages can be gained, mainly higher speed and
better error handling.

..Text in Bgb fangsong..}% cO00fs.fd used

\CJKenc{GB}

..Text in GB fangsong.. % c10fs.fd used
\CJKfamily{kail}

..Text in GB kai.. % clOkai.fd used
\CJKenc{JIS}

..Text in JISdnp kai.. 7% c42kai.fd used
\CJKfamily{}

\CJKenc{GBt}

..Text in GBt hei.. % c20hei.fd used
\end{CJK*}

‘dnp’ is the abbreviation for Dai Nippon Print-
ing (K HAHIR), a big printing company in Japan
providing Japanese TEX fonts. ‘GBt’ stands for GB
traditional encoding (GB 12345) — as far as I know
no GB 12345 font is freely available.

In case you get overfull \hboxes caused by CJK
glyphs the macros \CJKglue and \CJKtolerance
will help. The former is used for Chinese and
Japanese encodings, defining the glue between CJK
glyphs. Its default value is set to \hskip Opt plus
0.08\baselineskip. The latter makes sense for
Korean; the default value for \CJKtolerance is 400.

Only a subset of the commands available has
been introduced here. For a complete description
please refer to the various CJK documentation files.

CJK typography rules

Some special CJK characters should not start or end
a line, e.g. various kinds of parentheses and many
interpunctuation characters. In Japanese there is
additionally a set of Hiragana and Katakana char-
acters which are not allowed to start a line (kinsoku
shori ZEHI4L3E); both are supported automatically
by CJK (but can be controlled if necessary). The
mechanism to achieve this is quite tricky: usually
you have some breakable glue (using \hskip) be-
tween two consecutive CJK characters (with other
words, you need intercharacter spacing for Chinese
and Japanese). Every character will be checked
against encoding specific lookup tables whether it is
a character not allowed to start or to end a line. In
the former case, the glue before the character must
be made unbreakable, otherwise the glue after the
character.

No space will be printed after or before a CJK
interpunctuation mark in Japanese and Chinese, but
in Korean spaces are used between words'! and after
interpunctuation marks (which are in most cases the
same as in Western languages).

1 which are written as a combination with Hanja and
Hangul (3+=), the Korean syllable script. No intercharacter
glue is used but \discretionary{}{}{} instead; additionally
\tolerance is increased to \CJKtolerance.

218 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

The CJK package for IMTEX 2¢ — Multilingual support beyond babel

As explained above we have macros for all CJK
characters. How can we test whether the previous
character was a CJK character, maybe even a spe-
cial one? It’s impossible to use \futurelet or other
such commands because this only works on TEX’s
macro level, not on horizontal lists which are even-
tually output to a dvi file.

The solution I've found finally uses \lastkern
to check the amount of the last kern.'2 If the cur-
rent character is an ordinary one, a kern of 1sp is
emitted (do you remember TEX’s smallest unit?), if
no break should occur between the current and the
next character, a kern of 2sp is used instead. Now
the next character will be processed. If it is a CJK
character, \lastkern is tested whether it is 1sp or
2sp, and the appropriate action is executed.

Another typographic rule in CJK text process-
ing is the use of different spaces, depending on con-
text. Between a CJK character and a non-CJK
character (e.g. an English word to be cited or a
number) only a space having the quarter width of
a (fullwidth) kanji should be typeset, and between
non-CJK characters the default space has to be
used. This quarter space is called shibuaki (V443
% &). Some Japanese standards define more so-
phisticated rules where to print which space, but
even the simple problem with having two different
space widths can’t be solved automatically in stan-
dard TEX. There exist Japanese adaptations of TEX
which handle this internally, but you can’t use these
programs with other CJK languages. Nevertheless,
it is solvable within ; see [6] for a short discussion
on this topic.

The only way to manage shibuaki is to insert
them manually. For this purpose I’ve redefined the
tilde character to insert a quarter space instead of
an unbreakable space (this will be still available as
\nbs, a shorthand for \nobreakspace). The com-
mand \CJKtilde activates it; here an example:

HE AR\ food W EER B & food F B ER
AR food W BB B 8K food # B

‘~7 is defined as

\def~{\hspace{.25em plus .125em minus .08em}

The effect of ‘~’ seems to be minimal, but in
underfull boxes it is really an optical enhancement.

The Chinese Encoding Framework (CEF)

Christian WITTERN, a former employee of IRIZ
([1]), now working at the University of Géttingen,

12 UN Koaung-Hi (B JGH), the author of HIATEX ([12]) for
Korean, uses a different solution: he modifies the space factor
of specific characters to indicate a break point.

has developed CEF. Its primary aim is to access
seldom used CJK encodings (most notably CNS)
in a platform independent way using SGML macros
of the form ‘&<encoding>-<code>;’. Examples for
valid encoding values are ‘C3’ for CNS plane 3, ‘C0’
for Big 5, ‘U’ for Unicode; the code is given as a
hexadimal number (see [15] for a detailed descrip-
tion).

He has also developed KanjiBase for Windows,
an input tool for CEF which accesses a large CJK
character database (which I consider the very heart
of the whole system). It is also described in [15].13

A small example from an old Zen text (The
Records of Zhaozhou #§ N E & 4# BT 35 4%, taken from
the IRIZ ZenBase CD 1) shows how it works:

0304a12

S EfEE R EN =

BN B EATGERO T TIRE & (RSt NI R SRR -
BHRIR SR P o ARHERREC ~ AEHIFAE AL ~ 381

e o AT ~ RIS EE Wi o Eal Tk - &t
HEAHIE ~ RBEFR - (GRS - MITREARITT2C3-3847 ; 2pd
oo KEIFEANE T ~ BTTIIANE o BIRAETTSLARERR -
FLEMzEE2 ~ (1A - ATEECT R - B~ BB - MR 2

And here the same text with the appropriate
CNS character:

0304a12

o EEE e =

BN B EATGERO T TIRE & (RSt NI R R -
BIRIR SR I o ARIERREC ~ AEHIFRAE AL ~ 381

e o BFAEE T ~ RIS E B8 o BTNk - &t
HEAHE ~ REHR - fEESS - MR ARTTIZI R

oo KEIFENET ~ BIJTIIANE o BIRAETTSLARERR -
FLEMZEE2 ~ (1A - ATHECH R - B~ BB - BT 2

The punctuation marks have been inserted by
the editors and are not present in the original text.

CJK provides a small preprocessor to convert
CEF macros into \CJKchar macros.

Unicode

Characters encoded in Unicode can’t be used di-
rectly with TEX because the encoding is 16-bit wide.
Instead, you have to use UTF 8 (see table 3 for the
relationship between Unicode and UTF 8).

This multibyte representation has some impor-
tant advantages: it is completely transparent for
ASCII characters, you can always find the beginning
of a multibyte sequence because the leading byte is
unambiguously defined, and it is “reasonably com-
pact in terms of number of bytes used for encoding”,
to cite from appendix A.2 of [13].

13 You can find the latest version in [14] which also provides
some online access and conversion.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 219

Werner Lemberg

(U+0080 — U+OTFF)

Unicode UTF 8
byte 1 byte 2 byte 3
00000000 0bgbsbabsbabibo 0bsbsbabsbabiby — —
(U+0000 — U+007F)
00000b10bgbs b7bebsbabsbabibg 110b10bgbsb7bs 10b5babsbabiby —

b15b14b13b12b11b10bobs b7bsbsbab3b2b1bo
(U+0800 — U+FFFF)

1110b15b14b13b12 10b11b10bobgbrbs 10b5b4b3b2b1bo

Figure 3: The UTF 8 representation of Unicode

CJK supports the whole Unicode range, not
only the CJK part (provided you have fonts avail-
able), but I think that only the CJK range of Uni-
code makes sense with TEX under normal circum-
stances. The main reason is that you can have nei-
ther kerning nor automatic hyphenation if two ad-
jacent characters come from different fonts, and this
is almost inevitable because the number of (precom-
posed) latin characters with diacritics exceeds 700,
and composition doesn’t help either since the usage
of \accent prevents kerning and hyphenation. . .

Another reason is that most of the currently
available Unicode encoded CJK fonts provide one
glyph shape per code point. However, this is not
enough for typographically correct output. In fig-
ure 4 you can see the same character in three differ-
ent shapes. Ken LUNDE shows in [9] that for a Uni-
code CJK font which really satisfies Chinese, Japa-
nese, and Korean users about 40% more glyphs than
code points are needed — this would further increase
the number of TEX subfonts to be accessed simulta-
neously because the order of characters (or glyphs)
in the CJK section of a Unicode font does not fol-
low the character frequency but rather the order in
a famous Chinese dictionary (Kangzi zidian J& B 5

>N

Figure 4: The Unicode character U+9038 in
Japanese, Chinese, and Korean form (from left to
right)

The interface between Mule and CJK

HanDA Ken’ichi (3£ #l]—), the main author of
Mule, constructed a Lisp code frame for an inter-
face between Mule and CJK which I filled with the
needed values. It can be integrated into AUCTEX
([11]) without any great problems, making it a very
convenient multilingual environment for IXTEX.

The interface (stored in the file cjk-enc.el)
has the form of a Mule output encoding. This means
that you load a file into a Mule buffer, change the
name of the buffer to the target file name, select ‘cjk-
coding’ as the output encoding and save the file.

Look at figure 5. It shows a small multilin-
gual example where Japanese is mixed with Ger-
man and Czech.'* As you can see, babel ([2]) is
used for the two European languages; a CJK envi-
ronment together with proper encoding switches is
inserted automatically by the output encoding; ac-
cented characters are translated into KTEX macros
also without any additional work.

It’s not necessary to open a CJK environment
inside of the document (it can even cause errors).
Nor is it necessary to load the CJK package itself.
The output filter uses \RequirePackage to load CJK
and \AtBeginDocument to start a CJK environment
with empty arguments; proper \CJKenc macros are
inserted immediately before an encoding change.
The most convenient way to specify CJK font shapes
is then to use \CJKencshape in the preamble.

Now consider the word ‘Dvorak’ as an illus-
tration of the hidden mechanism of the interface.
Mule’s internal representation of this word is ‘Dvo
~~82°"£87"82""elk’ (" "xx denoting real 8-bit val-
ues); ~~82 is a leading byte representing the Latin-2
character set, ~~£8 and ~~el are the ‘¢’ and ‘4’ in
Latin-2 encoding.'® After applying the ‘cjk-coding’
output encoding (as defined in cjk-enc.el), the
Czech name looks like this: ‘Dvo~"8051~"ffr~"ff
~"8020""ffa~"ffk’. The active character ~~80 has
basically the following definition (in MULEenc.sty

14 The text has been taken from a synchronoptical transla-
tion of the libretto of Antonin Dvotak’s opera Rusalka. The
left column is printed in Czech (the original language), the
middle column in German, and the right column in Japanese.

15 This is a bit sloppy. To speak correctly I had to say
that the right-hand part of Latin Alphabet Nr. 2 (as defined
in ISO 8859/2 and registrated as IR 101 in [4]) is mapped
to the GR (Graphic Right, 0xAO to OxFF) area. See [3] for
a concise description of the terms necessary to understand
Mule’s internal and external code representations.

220 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

The CJK package for IMTEX 2¢ — Multilingual support beyond babel

4| emacs@rigel univie.ac.at | 4 | |

Buffers Filesz Tools Edit Search Hule LaTeX Comnand Help

Ndocumentclass{article}

‘usepackagel[T1ll{fontenc}
\usepackagelgerman,czechl{babel}

\CJKencshape{JIS}{song}

\begin{document}

\select language{czech}

Rusalka, smutné zamyslena.

\select lanquage{german?

b\%oﬁﬁi‘fﬁbﬁm% Z gy
WAV S OFUZAE L 2 D I~ T W5

vend{document}

Emacs: multiling.tex

Palouk na kraji jezera. Kolem lesy, v nich na bfehu jezera chalupa
JeZibaby. Mésic sviti. Na staré vrbé, jeZ se sklani k jezeru, sedi

Wiesengrund am Ufer eines Sees. Ringsum Wilder; unweit des Seeufers
die Hutte der Haldhexe. Der Mond scheint.
sich zum See neigt, sitzt Rusalka in traurigem Sinnen.

BlZBBLIHAMDED, Iﬁ(“ﬁc@i

Auf einer alten Heide, die

PN
S A

TYINEDTHT
AERICAI > T WA,

(LaTeX Fill)——-L1-—-C8——AlL

Figure 5: A screen snapshot of Mule

which will always be \input at the very beginning
of the output file):

\def~"80#1~~ff#2~"ff{...}

The first parameter is an index to an accent
macro, the second is the letter (or character macro)
to be modified. A number is used as the index;
this has the advantage that it works in verbatim
environments equally well as in case modifying com-
mands. After expanding the macros \mule@51 and
\mule@20 (defined with \csname) are called which
finally expand to \v and \’. Great care has been
taken to assure that really only expansion occurs to
retain kerning.

Besides the common Latin and CJK character
sets the Mule interface supports Vietnamese ([7]); it
is planned to extend it to Thai and Russian soon.

Other tools

The pinyin package. This style file (which can be
also used with plain TEX) enables the input of pinyin
syllables with tones. An example of its usage was
given on page 215.

Some additional notes:

Mandarin Chinese has basically four tones (si
sheng 4 %) but sometimes it is referred to have
a fifth, unstressed one. In the Chinese syl-
lable script zhuyinfihao (3F & 4 9%) this fifth
tone is indicated with a dot, but has no cor-
responding tone mark in pinyin. On the other
hand, the first tone will be marked with a hor-
izontal line in piym but remains unmarked in
zhuyinfihao.

With the pinyin package you can write e.g.
‘“\mab5’ to emphasize that you really mean an
unstressed syllable — the result is equal to ‘ma’.

In [16] a different approach to writing pinym
has been described; ligatures are used to com-
pose vowels with tone marks, e.g. ‘nu:v’e’r’ to
get nii’ér'® (4 5, the Chinese word for daugh-
ter). The advantage is the avoidance of any
macros to produce the accented letters. The
disadvantage is that you need virtual fonts to

16 The quote character is used to denote the syllable
boundary in ambiguous cases.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 221

Werner Lemberg

realize the ligatures which are not as easily in-
stalled as a macro package because you have to
create them first if you want to use a new font.

The ruby package. To cite Martin Diirst'” who
wrote a proposal for ruby in HTML documents:

Ruby are small characters used for annota-
tions of a text, at the right side for vertical
text, and atop for horizontal text, to indicate
the reading (pronounciation) of ideographic
characters.

The name ruby is the name of the 5.5 point
type size in British terminology; this was the
size most used for ruby.

Ruby are in most cases set at half the size
of the main letters, resulting in a possible two
ruby characters per main character, and tak-
ing up half of the width of the main charac-
ters. However, at least up to five ruby char-

acters per main character are possible (an
Sk Eh
example is u-ke-ta-ma-wa-ru (A 5, to listen

respectfully), and so various solutions, from
leaving white space in the main text to having
the ruby overlap the next characters of the
main text, are possible (the latter is possible
in Japanese especially because in many cases,
the characters around an ideograph with ruby
are syllabic, and therefore the assignment of
ruby to main characters poses no problems
for the reader).

Ruby are particularly frequent in Japa-
nese, because of the way CJK ideographs are
used in Japanese. Ideographs can have many
different readings (pronounciations) because
different readings were taken over from dif-
ferent regions of China and at different times
when the characters where adopted in Japan.
Also, these characters are used to write in-
digenous Japanese words, and many readings
may be possible because the ideograph might
cover many different concepts distinguished
in the Japanese language. [...] The main
use of ruby today is in magazines of all levels,
and of course in educational material. Ruby
are also used in educational material in China
and Taiwan.

In Japan, the term furigana (3« V) 237%) is
also used instead of ruby. ‘Furigana’ is com-

EN
posed of the verb furu (# %, to attach, sprin-

17 His email address is mduerst@ifi.unizh.ch.

S
kle, ...) and gana ({R#, either hiragana or
katakana, one of the two Japanese syllabaries

usually used for ruby).
SR b
The ruby 7 of the above citation has been in-

put as \ruby{#&}{ 9 |77z F H}; the first parameter
is the base character and the second the ruby itself.

To avoid lines sticking together the ruby pack-
age sets \lineskiplimit to 1pt. It may be neces-
sary to increase this value for larger font sizes.

Whether a ruby overlaps with the surrounding
characters or not can be controlled with the over-
lap and nonoverlap options. There are a number of
possibilities how ruby can interact with other CJK
characters in both cases.

e The ruby has a smaller width than its base char-
acter: the behaviour is identical to an ordinary
CJK character.

e The ruby has a greater width than its base char-
acter:

— Overlapping ruby:

x If the previous or next character is
a CJK character (ordinary or punc-
tuation), insert unbreakable glue be-
tween.

x If the previous or next character is a
ruby, handle both ruby as non-over-
lapping and insert unbreakable glue
between.

x A ruby at the beginning of a para-
graph will be treated as if the nonover-
lap option had been set. To force an
overlapping ruby you have to start the
paragraph with a \leavevmode com-
mand.

— Non-overlapping ruby: if the previous or
next character is a CJK character (ordi-
nary or punctuation), insert unbreakable
glue between.

ruby.sty introduces a third variation of a small
kern (3sp) to inform the next CJK or ruby macro
that the previous character was an overlapping ruby
with the ruby’s width greater than its base charac-
ter. The global variable \ruby@width then contains
this width.

The interface to the koma-script package

One of the greatest deficiencies of the current imple-
mentation of the standard document classes is the
inflexibility in handling captions which follow non-
English conventions. But even English captions can
cause trouble if they are non-standard. Consider
“Chapter Two” vs. “Second Chapter”: the former

222 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

The CJK package for IMTEX 2¢ — Multilingual support beyond babel

is supported, the latter isn’t. With ‘supported’ I
mean that it is not necessary to rewrite any inter-
nal IATEX commands, and that even a novice user
can change it. Besides this, many languages, espe-
cially in Asia, follow different conventions how to
numerate sections, figures etc. A Chinese example:
‘Chapter 5’ is ‘AL &’. ‘%’ (di) is a prefix which
converts the following Chinese number from a nu-
meral into an ordinal, ‘% #’ (diwil) thus means ‘the
fifth’. ‘&’ (zhang) means chapter.'®

Markus KouM, the maintainer and developer
of the koma-script package ([5]), has extended the
package’s document classes with a flexible hierarchi-
cal captioning model which consists of three levels,
one level deeper than in standard IMTEX.

Level 1 are the well known standard macros
\figurename etc. Language specific packages or
options usually replace the English names with the
right ones.

Level 2 is the modification of sectioning coun-
ters like \thesection. In the above example Chi-
nese numbers should be used instead of Arabic dig-
its.

Level 3 finally enables full control over the ex-
act placement of spaces, counters, and other text in
captions. All macros of this level have ‘format’ as
postfix, e.g. \chapterformat; they are directly used
by \chapter, \section etc.

A simplified definition for a Chinese chapter
heading macro would be:

\newcommand\CJKnumber [1]{
\ifcase#1\or
—\or =\or=\or@\or 7 \or
7~\or+t\or/\\or /L.\or+\£fi}

\newcommand\prechaptername{ % }
\newcommand\postchaptername{}
\renewcommand\thechapterq{
\prechaptername
\CJKnumber{\value{chapter}}
\postchaptername}
\renewcommand\chapterformat{\thechapter}

The CJK package supports this interface and
provides caption files for Chinese, Japanese, and Ko-
rean. To activate, say \CJKcaption{xxx} inside of a
CJK (or CJK*) environment; then the language mod-
ule xxx.cap will be loaded. The names of the mod-
ules usually mirror the encoding, e.g., the Chinese
caption file in Big 5 encoding is named Bg5. cap.

18 Often it is written like ‘% # &’ (£\ \ Z\ \ &) in
chapter headings, but the form without spaces is used in the
table of contents.

Conclusion

The CJK package works best if you write a document
in a non-CJK language as the main language. Many
typographic features needed for native CJK script
support can’t be handled automatically due to lim-
itations in TEX itself (the abovementioned shibuaki
problem, vertical typesetting,'® and others).

Another not yet mentioned problem is speed.
Due to the many (sub)fonts you have to change the
font for almost each character —if your document
consists entirely of, say, Chinese, you have more
than enough time to drink a cup of coffee to for-
mat 50 pages on a moderately fast computer.

The future for CJK multilingual text processing
with ITEX is definitely 2, but until someone will
have found time to provide CJK support (it is highly
probable that this person is me again), it may not be
the worst choice to use the CJK package meanwhile.

References

[1] Urs App, editor. ZenBase CD 1. Interna-
tional Research Institute for Zen Buddhism
(IRIZ), Hanazono University ({fE &2 EH R
2 B 9 F), Kyoto, 1995. A CD-ROM
with a large collection of Chinese Buddhist
texts. Additionally it contains KanjiBase for
Windows, the input tool for CEF, and a
lot of other utilities useful for East Asian
studies. Cf. http://www.iijnet.or.jp/iriz/
irizhtml/irizhome.htm.

[2] Johannes Braams. An update on the babel sys-
tem. TUGboat, 14(1):60-62, April 1993.

[3] European Computer Manufacturers’ Associa-
tion (ECMA). Standard ECMA-35. Character
code structure and extension techniques. Avail-
able electronically from ftp://ftp.ecma.ch as
the file E035-PSC.EXE, December 1994. This
standard is completely identical to ISO-2022.

[4] International Organisation for Standardization
(ISO). International register of coded character
sets to be used with escape sequences, October
1994.

[6] Markus Kohm. The koma-script package. Avail-
able from CTAN, macros/latex/contrib/
supported/koma-script, 1997.

[6] Werner Lemberg. Merging Babel and CJK un-
der . In Proceedings of the First Interna-
tional Symposium on Multilingual Information
Processing, 1996. Hold March 25-26, 1996, in
Tsukuba, Japan.

19 Something which I’ve almost forgotten to say: CJK con-
tains an experimental package for vertical typesetting with
Big 5 encoded characters.

TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting 223

[7] Werner Lemberg. The vncmr package. Avail-
able from CTAN, fonts/vietnamese/vncmr,
1996.

[8] Werner Lemberg. New font tools for TEX. In
Proceedings of TUG 97, July 1997.

[9] Ken Lunde. Creating fonts for the Unicode
kanji set: Problems & solutions. In Unicode
Implementers’ Workshop 6. The Unicode Con-
sortium, 1994. Hold September 8-9, 1994, in
Santa Clara, California.

[10] Ken Lunde. Online companion to “under-
standing Japanese information processing”.
Available from ftp://ftp.ora.com/pub/
examples/nutshell/ujip/doc/cjk.inf,
1996.

[11] Kresten Krab Thorup. GNU emacs as a front
end to BTEX. TUGboat, 13(3):304-308, Octo-
ber 1992.

[12] Un Koaung-Hi (B% JGEE). The HIATEX package.
Available from CTAN, language/korean, 1997.

[13] The Unicode Consortium. The Unicode Stan-
dard, Version 2.0. Addison-Wesley, 1996. The
latest versions of the various tables plus addi-
tional cross references can be found on ftp.
unicode.org.

[14] Christian Wittern. The KanjiBase home
page. Available from http://wuw.gwdg.de/
~cwitter.

[15] Christian Wittern. The IRIZ KanjiBase. The
Electronic Bodhidharma (78T & EE), 4:58-62,
June 1995. All articles in this journal are writ-
ten both in Japanese and English.

[16) Wai Wong. Typesetting Chinese pinyin using
virtual fonts. TUGboat, 14(1):8-11, April 1993.

224 TUGboat, Volume 18 (1997), No. 3— Proceedings of the 1997 Annual Meeting

—

DVIWindo [NEWTUGAD.DVI] page: 1

File Preferences Previous! Next! Unmagnify! Magnify! Fonts TeX
i
Powerful, fast, flexible TgX system for MicroSoft Windows L
I
— TeX System
Y&Y TgX System includes:
) , = Unique Features
« DVIWindo previewer
i e Partial font downloading for speed
. DVIPSONE PS driver f g 1ot 5b
. . ‘On the fly’ font reencodin
e Y&Y dynamic TgX fly &
. Dynamic memory allocation
« Adobe Type Manager Y Y
. . Support for EPS and TIFF images
. PFE Editor PP &
. . Commercial grade, fully hinted fonts
« PostScript Type 1 fonts & Y
o Windows 3.1, 95, NT 3.51, OS 2/2.1
. plain TEX, BIX 2.09, KX 2¢ etc.
— Why Y&Y?
Mature products — years of experience with
Windows, PostScript devices and scalable out-
line fonts. We understand and know how to
avoid problems with Windows, ‘clone’ Post-
Script printers, ATM and ‘difficult’ fonts.
Y&Y — the experts in scalable outline fonts for TEX
(J WWW: http://www.YandY.com
o email: sales-help@YandY.com
Y&Y, Inc. Tuttle’s Livery, 45 Walden Street, Concord, MA 01742 USA — (508) 371-3286 — (508) 371-2004 (fax)
DVIWindo and DVIPSONE are trademarks of Y&Y, Inc. Windows is a registered trademark of MicroSoft Co. Adobe Type Manager is a registered trademark of Adobe Systems Inc. [
| 3
. 1

